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Chapter 1

Complex Variables

1.1 Conventions

Various people use different meanings for analytic, regular, etc. We will use these:

Definition. A function is analytic at a point iff there exists an open neighbourhood of
the point in which the function is complex differentiable. This is true iff the function
has a Taylor expansion about that point.

Definition. A function is analytic in a domain iff it is analytic at every point in the
domain and single valued in the domain.

Definition. A function is singular at a point iff it is not analytic at the point.

Definition. A function has an isolated singularity at a point iff it is analytic in some
punctured ball about the point, or iff it has a Laurent expansion about the point.

1.2 Cauchy Principal Value

The integral
� �
��

��
�

does not exist. If we consider

���� �� �

� �

��

��

�
�

� �

�

��

�
� ���

	�

�

then we see that �
������ ���� �� can be made to do anything we want. The particular
choice � � � gives a limit of ��� 	, and this is the Cauchy principal value of the original
integral. More formally:

If ���� has a simple pole at � � � with � 	 � 	 
 then the Cauchy principal value
of
� �

�
���� �� is defined to be

�
�
���

�� ���

�

���� �� �

� �

���

���� ��

�
�

It is written � � �
�
���� ��. For instance, � � ��� ��

�
� �.
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2 CHAPTER 1. COMPLEX VARIABLES

Consider the complex contour  shown and let � �
�
� ���� ��, and let � be ana-

lytic except for a simple pole at �.
By Cauchy’s theorem,

�
� �

�
�� . In the limit � �, we get�

��
���� �� � �

� �

�

���� �� � �
�
���

�
	�

���� ���

On �� � � � � �
� for � 	 � 	 	�. Since � has only a simple pole at � � � we
get ���� � ��	

��� � �� � � � � . Then �
����

�
	�

���� �� � ����� by Cauchy’s theorem.
Thus finally �

�

���� �� � �
� �

�

���� �� � ������

where as the name suggests, ��� is the residue of � at � � �. Similarly, going the other
way round,

�
�

���� �� � �
� �

�

���� ��� ������

We can extend this idea to more general complex contours, such as

to get�
��

���� �� � �
�
�

���� ��� ����� and
�
��

���� �� � �
�
�

���� �� � ������

Example. Find �
�

��� � ���

Solution. �
�

��� � �� � �
� �

��
���� ��� ��

� �� �� by symmetry.

Example. Find � �

��

�� ����

��
���



1.3. ANALYTIC CONTINUATION 3

Method 1. As the integrand is analytic we can deform the real axis into the contour ,
thus � �

��

�� ����

��
�� �

�
�

�� ��� �

��
���

Now we consider
�
��	�

����
��

�� and take the real part. This integral is 	�����.

Method 2. We consider�
�

�� �
�

��
�� � �

� �

��

�� �
�

��
��� �����

� �
� �

��

�� �
�

��
��� � � ��

Thus � ���� ��
�	�
��

�� � �, but this is the actual integral
��
��

��
�	�
��

�� as this
has no singularity at �.

Singularities at Infinity

If the integral diverges at� define

�
� �

��
���� �� � �
�

���

� �

��
���� ���

For instance, � ���� ��
��
 � �
���� ��� ��


���
 � �� on the principal branch.

Theorem. The function ���� �
� ��
��

���� �� �� is analytic in some domain � � � if

���� �� is analytic in � for each � � ���� ���. Furthermore ��
�� �

� ��
��

��
��

��� �� ��.

Proof. Omitted; see Copson page 108.

If either �� or �� is infinite then the convergence of the integral must be uniform for
� � �. This result extends to

���� �

�
�

���� �� ��

simply by parametrizing .

1.3 Analytic Continuation

Theorem. Suppose �� and �� are disjoint simply connected domains which share a
piece of common boundary , with � � �� � �� �  simply connected as well. Let
����� be analytic on �� and continuous on �� �  and similarly let ����� be analytic
on�� and continuous on���. Suppose further that �� � �� on . Then if we define

���� �

�
����� � � �� � 

����� � � ��

� is analytic on �. � is called the analytic continuation of �� from �� into �.
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Proof. Consider � �
�
	
���� �� for some contour � � �. Now � � � if � � �� or

� � ��, so we just need to consider the sketched case. Then
�
	

�
�
	�

�
�
	�

� �
and thus � is analytic by Morera’s theorem.

The analytic continuation is unique (if it exists) by the following theorem.

Theorem. If � is analytic in� and has an infinite sequence of zeroes with a limit point
in � then � 	 � on�.

Proof. Let the limit point be at �; then ���� � � by continuity. Either � 	 � or
���� � ���������� with � analytic and ���� 
� �. Now � is continuous and so there
is a neighbourhood of � on which � 
� �. Thus there exists a neighbourhood of � on
which � is nonzero, giving a contradiction.

If �� and �� are both analytic continuations then ��� �� � � on�� and so �� 	 ��
on �.

Continuation of power series

Suppose (for instance) that by hook or by crook we have obtained the power series
expansion for ���� �

�
� �

�. This is analytic in ��� 	 �. Then we can form a new
series by Taylor expansion about some other point � � such that ���� 	 �. Hopefully this
new power series has a convergent circle part of which is outside the original domain.
We can continue this process to try to cover � , but we may run into singularities or
branch cuts.

Functions defined by integrals

Suppose we have

���� �

� �

��

���
�

� � �
��

defined for �� 
� �. Can we find an analytic continuation of ����� � ���� for �� � �

into � ? Define ���� �
�
�

��
�

��� ��, with  chosen to lie below � � �. Then ���� is
analytic.

1. If �� � � we can deform  into � to get ���� � �����.

2. If �� � � we get ���� � � ���� ��
�

��� �� � �����.

3. If �� 	 � we use the  sketched to get ���� � ���� � 	�����.

There are functions defined by integrals which we cannot continue, for example

���� �

� �

��

���
�

�� � ��
��

cannot be continued from �� � � into � — there are two “pinching” singularities
which prevent deformation of the contour as above.



1.4. MULTIVALUED FUNCTIONS 5

1.4 Multivalued functions

The usual example is: ���� � �
�
� . If we take � � ��
� then ���� �


��

��
� . If we

trace ���� as � moves around a closed curve not encircling the origin we find that �
returns to its original value and � is continuous. If the curve encircles the origin then
� increases to 	� and ���� � ���
�. � is singular at � � � — it is not analytic
because it is not single valued in any neighbourhood of �. ���� has neither a Laurent
expansion nor a residue at �. � is called a branch point.

� has a Taylor expansion about � � � (for example) with circle of convergence
�� � �� 	 �. We can extend the Taylor expansion by analytic continuation.

The continued function is discontinuous across a curve (or ray) from the origin to
infinity. This curve is called a branch cut, and � is continued analytically to a simply-
connected domain which excludes the branch cut.

Another favourite example is ���� � ��� � � ��� � � ��. Now �� increases by 	�
on any trip around the origin and so � � � is a branch point.

A slightly more complicated example is ���� �
�
�� � �

	 �
� which has branch points

at � � ��. A useful way of doing it if we want � in the neighbourhood of the origin
is:

but if we want to consider ��� � � we may prefer to send both cuts away on the
negative real axis as shown on the left.

It is easy to see that this is equivalent to the branch cut from �� to �� shown on
the right (which is why it is useful for ��� large).
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1.4.1 Branch cut integrals

These can be considered simplest by example. We thus look at

� �



	

�
�� � �

	 �
� ���

where � is any closed curve encircling the origin outside ��� � �.
We introduce a branch cut on the real axis between ��, and as the integrand is

analytic in the cut plane we can deform the contour onto the cut. It is easy to see that�
���
� � and

�
���
� �. By fiddling some more we get that ���� � ��� ���

�
� �

��
� on

� and ���� � ��� ���
�
� ��

��
� on �. Thus

� �
�
��

��
� � �

��
�

	 � �

��

�
�� ��

	 �
� �� � ����

Another example, where we deliberately introduce a branch cut, is � �
��
� ���� ��

with � not even. We consider
��
� ���� ��� � �� as follows:

If � is sufficiently nice then
�
	�
� � as ���. We have

�
��

�

� �

�

���� ���� �� and
�
��

� �
� �

�

�������� � � 	��� ���

Adding these two gives� �

�

���� �� � �
�

��� ����� ��� �� �

1.4.2 Riemann surfaces

We consider ����� � �
�
� with ����� �


� for � � � positive and ����� � �

�
� with

����� � �� for � � � positive. We continue �� around the origin from the positive
real axis. At � � ��
� we can continue �� onto a copy of the complex plane where
it becomes ��. If we follow �� around again until its branch cut on the copy of the
negative real axis we find that we can jump back onto our original complex plane. We
have a function which is analytic everywhere in an enlarged space with two “Riemann
sheets”. Closed curves in this space encircle the origin an even number of times.

Another example is ���� � ��� � which has Riemann sheets in the form of an
infinite spiral ramp.



Chapter 2

Special Functions

This chapter deals mainly with the gamma function and its relatives. Other special
functions are encountered in the next chapter.

2.1 The Gamma Function

This is an analytic continuation of the factorial function from the positive integers into
� . We define

��� �

� �

�

������� ��� (2.1)

This integral is well defined for �� � �. For �� � � we integrate by parts to get the
recurrence ��� � �� � ���� � �� which we use to continue  into �� � �. This
continuation is analytic except for simple poles at the negative integers.

By straight integration we see that ��� � � and so by iteration, ��� �� � �� for
� a positive integer.

Note that (by change of variable in (2.1)).

��� � 	

� �

�

��������
�

��� (2.2)

7



8 CHAPTER 2. SPECIAL FUNCTIONS

2.2 The Beta function

We define

������ �

� �

�

������� ����� ��� (2.3)

This is well-defined for ��, �� � �. We now derive a formula for the beta
function in terms of the gamma function, using equation (2.2).

������ � �

� �

�

� �

�

�������������
���� ����

Changing to polar co-ordinates we obtain

������ � �

� �

�

�����������
�

��

� �
�

�

������� � �
����� � ��

� �� � ��

� �
�

�

	 ������� � �
����� � ���

Putting � � ���� � gives

������ � �� � ��

� �

�

������� �������

� �� � ���������

Thus we have the required formula,

������ �
������

�� � ��
(2.4)

and another integral representation of the beta function

������ �

� �
�

�

	 ������� � �
����� � ��� (2.5)

Special cases

Putting � � � � �
� into (2.4) and (2.5) we get � � � �

� ��, which ought to be familiar,
although perhaps not in quite this form.

If � � � and � � � � � we require � 	 �� 	 � for convergence of (2.3). With
this restriction we evaluate ���� �� �� � ������ ��.

������ �� �

� �

�

������� ���� �� � � say.

Putting � � �
���

we get

� �

� �

�

���

� � �
���
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Evaluating this as a branch cut integral gives

���� ����
�� � 	�����
�

and hence

� �
�

�
���
�

Thus ���� �� �� � �
	���� for � 	 �� 	 �. But this formula is analytic on � � �

and so by analytic continuation

������ �� �
�

�
���
(2.6)

on � ��. In fact it is true on the integers as well — if interpreted correctly!
We now want ���� �� with �� � �. (2.3) gives

���� �� �

� �

�

�
�� ��

	���
��

� 	

� �

�
�

�
�� ��

	���
���

to avoid a branch cut on putting � � �	�� ���

� 	����
� �

�

��
�
� ��� ��

���
��

� 	������ �� � ���

We relate this to the gamma function using (2.4) to get Legendre’s duplication
formula

����� � �
� � � �

�
� 	�����	��� (2.7)

Now we do

���� � � �� �
����� � ��

�� � � � ��
�

� �

�

������� ��� ��

� ���
� �

�

����
�
�� �

�

�
���

We take the limit as ��� to get

�
�
���

����� � ����

�� � � � ��
�

� �

�

������� �� � ���� (2.8)

We can rearrange this to get Euler’s limit for the gamma function:

��� � �
�
���

����

��� � �� � � � �� � ��
� (2.9)
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which can be thought of as showing the poles at �������	� � � ��. We can use (2.8)
to get

�
�
���

����

�� � ���
� �� (2.10)

We introduce the Hankel contour shown here.

Consider ���� �
�
	
����� ��, which is also written

� ���

�� .

�
��

�

� �

�
�������
����
� ��

� �
��
� �

�

������ ���
��

� ��
��
� �

�

������ ���

�
��
� ��� which tends to zero if �� 	 �. Thus

�

���
�

�

	��

� ���

��
����� ��� (2.11)

We proved this for �� 	 �, but in fact the derivative of (2.11) exists for all � and
so �

��� is analytic and (2.11) holds for all �.

2.3 The Riemann zeta function

The Riemann zeta function is defined for �� � � by

���� �

��
���

���� (2.12)

Some “famous” results are ��	� � ��

� and ���� � ��

�� . We use the Hankel repre-
sentation of the gamma function (2.11) to get

	�����

��� ��
�

� ���

��
������� �� and so

���� �
��� ��

	��

� ���

��

����

��� � �
���
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Thus ���� can only be singular at � � �� 	� � � � , thus the only singularity is at � � �.
We therefore have the analytic continuation of �:

���� �
��� ��

	��

� ���

��

����

��� � �
��� (2.13)

Something which we do not prove is the reflection formula

���� �� � 	������ ���
�
�
���

	
�������� (2.14)

which shows us that ���� � � at � � 	� � � for � � �� 	� � � � .
By noting that 	������ � �

�� � �
�� �� � � we see that ���	������� � �

�� � �
�� �� � � .

Continuing this process with the rest of the primes we obtain the Euler product for �:

���� �

��
���

�
��  ���

	��
� (2.15)

where  � is the �th prime. This is the reasoning behind the following (starred) section.

2.3.1 Applications to number theory

Let ���� be the number of primes less than or equal to the real number �. Then from
the Euler product (2.15) we have

��� ���� � �
��

���

���
�
��  ���

	

� �
��

���

������ ���� ��� ���
�
�����	

� �
��

���

����
�
���

�
�����	� ���

�
�� �� � ����

	�

�

��
���

����

� ���

�

�

� ��� � ��
�� and so

��� ��� ���� �

� �

�

�����

� ��� � ��
���

This looks like some kind of transform of ����. We will see later that we can find
approximations of ���� from the locations of the singularities of ��� ���� (or zeroes of
����).

In 1890 Hadamard proved that � has no zeroes on �� � �, which was enough
to prove the Prime Number Theorem, that ���� � �

��� � as � � �. The Riemann

Hypothesis of 1860 that the only zeroes of ���� in � 	 �� 	 � are on �� � �
� is

enough to prove the stronger result

���� �

� �

�

��

��� �
����

�
� ������

the snag being merely that the Riemann hypothesis is still a hypothesis.
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Chapter 3

Second order linear differential
equations

We shall discuss equations of the general form

!�� �  ���!� � ����! � �� (3.1)

The form of the solutions of this equation can be determined by the location and
nature of the singularities of  and " in � .

Ordinary points

�� is an ordinary point (or regular point) of (3.1) if  and " are both analytic at � �. The
behaviour of ! near � � �� is determined by the leading order terms of the Taylor
expansions of  and " about ��. If  �

�
 ��� � ���

� and " �
�

"��� � ���
�, and

either  � 
� � or "� 
� � then we get

!�� �  �!
� � "�! � �� (3.2)

This has solutions �������, which is analytic at � � ��. This is enough to show
that the solution of (3.1) is analytic, and carries over to cases when  � � "� � �, and
shows that ! �

�
���� � ���

�. We can determine the coefficients �� by substitution,
and the series converges at least out to the nearest singularity of  or " in � . We can
see this with Legendre’s equation of order 1

��� ���!�� � 	�!� � 	! � �� (3.3)

We see that  and " both have singularities at � � ��, but are analytic at � � �.
We expand ! about � � �, and equating coefficients gives �� � ���

�������. We thus
get two series solutions, one of which terminates:

! � ��
�
�� �� � �

��
� � � � �

	
and

! � ����

The series has (unsurprisingly) a radius of convergence �.  and " are both singular
at � � ��, but we wish to know if we can analytically continue the series around these
singularities.

13
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Singular points

� � � is a singular point if either  or " is singular at � � �. We restrict to isolated
singularities (when  and " have Laurent expansions).

Let � � � be an isolated singularity and choose � such that  and " are analytic in
� � �� � � � � 	 �� � �� 	 ��. Let � be the circle �� � � � �� � �� � # � �

� �
and take �� � �. We can construct two independent solutions (by series substitution,
say) !� and !� about � � ��, which both have radius of convergence #. We then
choose �� � � with ��� � ��� 	 #. Repeat (about 8 times) until we get back to a circle
containing ��. We have obtained solutions !�� and !�� , which are linear combinations
of !� and !�:

�
!��
!��

�
� �$���

�
!�

!�

�
� (3.4)

The matrix �$��� is called the continuation matrix, which must be invertible, as we
can continue the solutions backwards. We now examine the eigenvalues of �$ ��� to see
what happens.

We first consider the distinct eigenvalue case, say %� and %�. Therefore, !�� �
%�!� and !�� � %�!�. We write %� � ���
�	 , and write !���� � �� � ��

�
 &����.
Then !�� � %� �� � ��

�
 &����. Thus &� is single-valued around the circle, and there-
fore has at worst an isolated singularity at �, and so has a Laurent expansion. If the
Laurent expansion terminates below then we can write

!���� � �� � ���

��
���

���� �� � ���

(redefining '� if necessary). This is a Frobenius expansion and in this case we call
� � � a regular singular point.

If we have two identical eigenvalues, %� � %� � % (say), there are two distinct
cases. If we can diagonalise �$��� then the results above hold. If we can’t diagonalise
�$��� then we can put �$��� in a Jordan Normal Form

�$��� �

�
% �
� %

�
�

Then the analysis for !� is as before, and we look for !���� � (���!����. Then
(�!�� � �� � %(�!�. So we write ( � ���

��
 ��� �� � �������, so ���� is single-valued
and has a Laurent expansion. Putting all this together we get

!� �
%��

	��
�� � ��

�� �&� ��� �� � �� � &����� �

where &� and &� both have Laurent expansions.

3.1 Method of Frobenius

Theorem. If � � � is a singular point of (3.1) then it is a regular singular point
(Laurent expansions terminate below) iff � ��� and � �"��� are both analytic at � � �.
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The method of Frobenius is to propose an infinite series !��� �
�

� ���
���. We

substitute this into (3.1) and take the coefficient of the lowest power of �. This is the
indicial equation which determines two values of ', '� and '� say.

If '� � '� )� � then we have two Frobenius series for !.
If '� � '� then we must insert a logarithm,

!��� � ��

�
�* � � ��� ��

��
���

���
� � �

��
���


��
�

�
�

If we have '� � '� a positive integer then there is always a Frobenius series
���

��
��� ���

�. Either (by some miracle), ���
��

��� 
��
� is also a solution, or we

need to insert a logarithm to get

!���� � ��� �* � � ��� ��

��
���

���
� � ���

��
���


��
��

The point at infinity

We set � � �
�

and examine what happens as � � �. (3.1) becomes

��!

���
�

�
	

�
�  

��

�
�!

��
�

�

��
"! � �� (3.5)

We then apply all our previous results to equation (3.5). We find that the point at
infinity is a regular singular point if 	� � ��� and � �"��� are regular at infinity.

3.1.1 Bessel’s Equation

We apply our theory to Bessel’s equation

!�� �
�

�
!� �

�
��  �

��


! � �� (3.6)

This arises frequently in cylindrical geometries. + is a constant parameter. (3.6)
has a regular singular point at � � � and an irregular singular point at infinity. The
indicial equation (at � � �) is '� � +�. We look for Frobenius series solutions of the
form

! � ��
��
���

���
�� �� 
� ��

We get a recurrence for ��, ����� � 	'� � �����. We thus split our study of the
form of the solutions of (3.6) according to +.

Case 1. 	+ )� �. Then '� � '� � 	+ )� � and we get two series solutions. The
coefficients of the equation can be determined by the recurrence and, on choosing � �

appropriately, we get the standard Bessel function , ���.

, ��� �
�
�
��
	 ��

���

�� �
��

�
	�

-��- � + � ��
(3.7)
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The series is clearly entire, the only finite singularity being the branch point at
� � � from the � factor. We get the linearly independent solution ,� by replacing +
with �+ in (3.7).

Case 2. + � �. Then '� � '� � �. We get the solution ,���� (+ � � in (3.7)) and
a second solution with a logarithmic singularity at � � �,

!���� � ,���� ��� � �

��
���


��
��

Case 3. 	+ � �. This has two subcases: Case 3a. + � �. Then we get ,� as
before and a second logarithmic solution. Case 3b. 	+ is odd. This is one of the “black
magic” cases referred to earlier. The first solution with ' � + � � works to give ,  

(it always works). The recurrence with ' � �+ could potentially go wrong, but it
just jumps over the trouble and we get ,� . If you wish to persuade yourself of this
just take a specific case (say + � �

� ) and play with it. The integer plus a half Bessel
functions ,�� �

�
��� are all expressible in terms of elementary functions, for instance

, �
�
��� � ��

��
�
� � and ,� �

�
��� � ��

��
��� �.

3.2 Classification of equations by singularities

We will only consider second order equations with at most three regular singular points
(including at infinity). This class, although it seems restrictive, in fact covers most of
the differential equations of mathematical physics.

It will be convenient to ensure that our singularities are in nice places. The Möbius
transform is useful, and we write it as

� �� �� � $��. � /�

�. � $��� � /�
� (3.8)

This maps $ �� �, . �� � and / �� �, and this seems a good place to point out
that our discussion will be on the complex sphere � � (or the complex plane with the
point at infinity attached).

3.2.1 Equations with no regular singular points

This will be a rather brief discussion.

Proposition. There are no second order linear differential equations with no regular
singular points.

Proof. Since there are no finite singularities  and " are entire. We must have  � �
�

as � ��, so  is bounded and thus constant. We now have a contradiction.

3.2.2 Equations with one regular singular point

Without loss of generality we can assume that this point is at � � �. Thus  � !��
�

and " � "��
��

, with *��� and ���� entire functions. As the equation is regular at� we
must have * � 	 and � � �. Thus the only second order linear differential equation
with one regular singular point is
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!�� � �
�
!� � �� (3.9)

This has a general solution !��� � #
�

� ..

3.2.3 Equations with two regular singular points

WLOG we can put these singular points at � and�, so we must have  � !��
�

and

" � "��
��

with * and � entire. As � � � we must have � ��� and ��"��� bounded
and thus * and � are bounded entire functions and therefore constant.

Thus the most general equation with two regular singular points at � and� is

��!�� � *�!� � �! � �� (3.10)

This is a homogenous equation and so

!��� �

�
$��� � .��� '� 
� '�

�� �$ � . ��� �� '� � '� � '�

We can work backwards to find * and � in terms of '� and '�; we find * �
�� '� � '� and � � '�'�.

Confluence of singularities

We map � �� � � $ and let $�� and define %� � $'�. Then we get the equation

!�� � �%� � %��!
� � %�%�! � �� (3.11)

which has the general solution !��� � $���� � .���� . (3.11) has an irregular
singular point at infinity and the solution has an essential singularity there.

3.2.4 Equations with three regular singular points

Or, a User’s Guide to the hypergeometric equation. This section is only vaguely on the
edge of the Schedules. We can assume that the singular points are at �, � and�, and
let the indices at � be �� �� �, at � be �� �� � � 
 and at infinity be �� 
 respectively.
We get the hypergeometric equation

��� � ��!�� � ��� � 
� �� � � ��!� � �
! � �� (3.12)

There is one solution which is regular at the origin. It is written 0 ��� 
� �� �� and

0 ��� 
� �� �� � � �
�


�
� �

��� � ��
�
 � ��

��� � ��

��

	�
� � � � � (3.13)

This series is convergent for ��� 	 �. The other solution is � ���0 �� � � � �� � �

� �� 	� �� �� if � )� �. If � � � the second solution is logarithmic.
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Transformations to hypergeometric form

Suppose we have a second order linear differential equation of the form ! �� �  !� �
"! � � with three regular singular points at � � *, � � � and � � �. We transform
this into hypergeometric form by applying a Möbius transform on the independent
variable taking �*����� �� ��� ���� to put the singularities in the right place and
applying a transform of the form !old � �� � *���� � ����� � ���!new on the
dependent variable to give the correct indices at the singularities. We illustrate this
with an example, Legendre’s equation:

��� ���!�� � 	�!� �
�
��� � ��� ��

�� ��

�
� �� (3.14)

which has regular singularities at �� and �. The indices at �� are � �
� and the

indices at infinity are �� and � � �. The transform

!��� � ��� ��
�
� �� � ��

�
� ����

gives � indices of ���� at � � �� and �� ��� � � � � at � ��. and we also put
� � ���

� to move the singularities at �� to � and � respectively. The coefficients �, 

and � of the hypergeometric equation are therefore � � � � �, 
 � � � � � � and
� � � � � and so

!��� �
�
�� ��

	�
� 0 ��� ��� � � � ��� � �� ���� �

is a solution of (3.14).

Integral representation

The point of departure is the series for 0 ��� 
� �� ��, (3.13). We have

0 ��� 
� �� �� �

��
���

�- � ��

���

�- � 
�

�
�

���

�- � ��

��

-�

�
���

�
���� 
�

��
���

�- � ��

���

�- � 
���� 
�

�- � ��

��

-�

�
���

�
���� 
�

��
���

�- � ��

���
��
 � -� �� 
�

�
���

�
���� 
�

��
���

��

-�

�- � ��

���

� �

�

��������� ������� ��

�
���

�
���� 
�

� �

�

������� ���������� ����� ���

We thus get the final result

0 ��� 
� �� �� �
���

�
���� 
�

� �

�

������� ���������� ����� ��� (3.15)
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Confluent hypergeometric equation

We move the singularity at � � � to � � 
 using � �� 
� and then let 
 � �. We get
the confluent hypergeometric equation

�!�� � ��� ��!� � �! � �� (3.16)

This has a regular singular point at � � � with indices � and �� � and an irregular
singular point at infinity. The regular solution is

���� �� �� � � �
�

�
� �

��� � ��

��� � ��

��

	�
� � � � (3.17)

and the other solution is ������������ 	��� �� if � )� �. The series representation
(3.17) is entire.

If � � � we get ���� �� �� � ��. If �� � � the series terminates to give the
Laguerre polynomials. Hermite’s equation

!�� � 	�!� � 	�! � � (3.18)

has solutions ��� �
���� �

� � ��� and �
�
� �� ���� �� �

� � ���. After some work we can
get the Bessel functions

, ��� � � ��
���+ � �
� � 	+ � �� 	���� (3.19)

Triple confluence

This can be done in a symmetric way by placing the singularities at 1, 1�
���
� and

1�
���
� with indices �

� � �
�1

�
� and letting 1 ��. This results in Airy’s equation

!�� � �! � �� (3.20)

which has no singularities in the finite complex plane but a really evil singularity at
infinity.

If we let � � �
��

�
� and define 2 ��� � ��

�
�!��� we get

2 �� �
�

�
2 � �

�
�� �

���

�
2 � ��

This is Bessel’s equation (3.6) for 2 ����, so we get !��� � �
�
� ,� �

�
� �
� �

�
� � as a

solution of (3.20).

3.3 Integral representation of solutions

In general, look for a solution of the form

!��� �

�
�

1��� ������ ��� (3.21)

where we have freedom to choose 1, � and  so as to satisfy the differential equa-
tions. 1��� �� is known as the kernel. Some (famous?) kernels are:
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1. Laplace kernel: 1��� �� � ���. This is used in Laplace transforms in the form
���� with  � �� .

2. Fourier kernel: 1��� �� � �
��. This is used in Fourier transforms with  � �.

3. Euler kernel: ��� ��$.

4. Mellin kernel: ���.

The Laplace kernel and Fourier kernel amount to the same thing, the choice be-
tween them just influences . We will only examine this kernel. Use is best illustrated
by example.

Consider Airy’s equation (3.20), and look for a solution of the form

!��� �

�
�

������� ���

where  and � are to be determined. We substitute into (3.20) to get

� �

�
�

��� � ��������� ��

�

�
�

�
������ � � ����

	
��� ��� ��������

�
�

integrating by parts.

So if by hook or by crook we can find � such that the integrand is zero and
���������� � � we have found a solution to (3.20). We choose � such that � ����� � �,

which gives ���� � *��
��

� and

!��� �

�
�

�����
��

� ��� (3.22)

We now have to choose  such that
�
�����

��

�

�
�

� �. As we are dealing with an

analytic function this is true on any closed , but in this case (3.22) gives the true but
not-very-useful solution !��� 	 � (by Cauchy’s theorem).

We can get this if we integrate over an infinite range and the integrand tends to zero
at infinity. This happens iff � �

� 	 ��� �� 	 �
� , which is in the shaded regions of the

�-plane.

Contours starting and ending in the same sector give ! 	 �, so we have three
choices of contour, �, � and �. We note that�

��

�

�
��

�
�
��
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and so we only have two linearly independent solutions. One choice is

!��� �

�
����

�����
��

� ���

Although this seems on the face of it to not be overly helpful we will see later that
this can be approximately evaluated when ��� � �, which is usually the physical case
we are interested in.

For another example we try the confluent hypergeometric equation (3.16). We try
as before

!��� �

�
�

������� ��

and find that this works if

�
������ � ������

�
�
�
�
�

�
�

��

�
��� � ���

�� ��� � ��

�
��� �� � ��

As before we choose ���� to make the integrand zero, which gives ���� � �� �
����������� and then choose  to make ��������� ������� � �. Choosing  depends
on the particular ranges of �, � and � � �, and given a range of �, � and � � � it is not
difficult to find  such that ��������� ������� � � and the integral for !��� does not
give the trivial zero solution.



22 CHAPTER 3. SECOND ORDER LINEAR ODEs



Chapter 4

Asymptotic Expansions

4.1 Motivation

We will motivate this discussion with an example. Suppose we wish to evaluate the
error function

�� � �
	
�

� �

�

���
�

��� (4.1)

This occurs throughout statistics and mathematical physics, for instance as a solu-
tion to the diffusion equation �%

��
� 3��%

���
(put � � �

�
�
&�

to get an ODE for 4 ���). One

naive approach is to expand ���
�

as an infinite sum and integrate termwise, which is
certainly analytically permissible. As ���

�

is entire then the series we obtain for �� �
will have an infinite radius of convergence. The series is

�� � � ��
�
�
�
�� �

��
� � �

���
� � �

���
� � � � �

	
� (4.2)

If we evaluate this at � � � we need eight terms to get an accuracy of ����. If
we evaluate at � � 	 we need 16 terms and if we evaluate at � � ! we need 75
terms. Although the series is convergent, the terms of the series get quite large before
eventually tending to zero. At � � ! the largest term is approximately " � �� �, so
although a computer (say) can perform the sum of 75 terms in no time at all it will
converge to something which is incorrect even in the first significant digit.

For large ��� a better approach is to obtain an asymptotic expansion for �� �. We
know that �� � � � as � �� and so we write

�� � � �� 	
�

� �

�

���
�

��

� �� 	
�

� �

�

����
� �

�
��

� �� �
�

���
�

�
�

�
�

� �

�

���
�

��
�� integrating by parts.

We can continue this to get the asymptotic series for �� �

�� � � �� ���
�

�

�

�
�� �

	��
�

�� �

�	����
� �� �� !

�	����
��

�
� (4.3)
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If we apply the ratio test we see that this series is convergent nowhere. However, if
we consider the remainder term� we see that

� �

� �

�

��!

�#

����
�

��
��

� ��!

�	

���
�

��

and so the remainder term tends to zero very rapidly as � � �. At � � 	�! only
three terms of the series are needed for an accuracy of ���� and at � � � two terms
will do. The truncated series is an asymptotic expansion of �� � as � ��. Note that
the Taylor expansion is an asymptotic expansion of �� � as � � �.

4.2 Definitions and examples

Definition. The sum
�'

��� ����� is an asymptotic expansion of ���� in the limit � �
� if �5 � 6 we have

������(
��� �����

�( ���
� � as � ���

We can state this informally as “the remainder is smaller than the last included
term” and a similiar definition holds in any limit � � �. The property of asymptotic-
ness may depend on ����� � ��.

Definition. A sequence of function ����������� is an asymptotic sequence as � � �

in some sector if ��, )����
)��

� � as � � � in that sector.

For instance ����� � ��� is asymptotic as � � � with any argument. ����� �
���� is asymptotic as � � � for � �

� 	 ��� � 	 �
� . ����� � ��
� ��

� is asymptotic
as � � � for any argument.

Definition. If for a given asymptotic sequence ������� there exist constants ����
such that for all �, ���� �

�'
� ������� � 7��' ���� as � � � in some sector then

we write

���� �
��
�

������� as � � ��

These infinite asymptotic expansions go against the spirit of their use, but they are
conceptually useful as they allow us to show

���� �

'�
���

������� � �'���'����� � 7��'��� �

'�
���

������� ����'����

For a given asymptotic sequence ���� the coefficients �� are unique and can be
found recursively from

�' � �
�
���

������'��
� ����

�'
�
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remembering that possibly � � � in some sector. A given function can have different
asymptotic expansions in terms of different asymptotic sequences:

��� � � � � �
��

� � �
���

�

� �
� � � �
� ��
� ��

�
� �

� ��
� ��
�
�

both as � � � for any ��� �.

4.2.1 Manipulations

Asymptotic expansions can be naively added, subtracted, multiplied and divided to
form new asymptotic expansions, but perhaps in terms of a new asymptotic series. The
size of terms must be checked. Obviously, if we have an asymptotic expansion of � �

about � confined to a sector 8� and an asymptotic expansion of �� about � confined to
a sector 8� then the asymptotic expansion obtained by multiplication is only valid in
the sector 8� � 8�.

Asymptotic expansions can be integrated termwise but cannot in general be dif-
ferentiated. However if ���� is analytic in a sector and differentiable in the sector at
� (some kind of one-sided limit) then the asymptotic expansion can be differentiated
termwise in that sector.

4.3 Stokes Phenomenon

Suppose ���� ���
' ���

�� as � �� for all ��� �. Let � be analytic in a punctured
neighbourhood of infinity. Then � has a (convergent) Laurent expansion

��
�� 
��

��.
This is asymptotic so by uniqueness 
� � � for � 	 6 and �� � 
� for � � 6 and
the asymptotic expansion is convergent.

Conversely if the asymptotic expansion is divergent then it cannot be valid for all
��� �. Divergent asymptotic expansions are associated with essential singularities of � .

For instance we have seen that for real positive � we have �� � � �� ��
�

�
�
�

as � ��.

In deriving this we considered
��
�

���
�

��, and for more general ��� � this integral can

be shifted onto the original contour provided we’re in the sector such that ���
� � � as

� � �; thus the asymptotic expansion is valid for � �
� 	 ��� � 	 �

� . Noting that �� 

is an odd function of � we see that �� � � ��� ��
�

�
�
�

as � �� for ��
� 	 ��� � 	 ��

� .

An alternative method gives that �� � � � ��
�

�
�
�

as � � � for �
� 	 ��� � 	 ��

�

and ��
� 	 ��� � 	 ��

� . The lines separating these sectors are called Stokes lines;
asymptotic expansions have jump discontinuities across Stokes lines.

4.4 Asymptotic Approximation of Integrals

4.4.1 Integration by parts

This is used if the independent variable is in a limit of the integral.
For instance, consider the exponential integral (with � real and positive at first)
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9���� �

� �

�

���

�
��

�

�
����

�

��
�

�
� �

�

���

��
��

�
���

�

�
�� �

�

�
� 	

� �

�

���

��
��

We can bound the remainder term with �
��
��� � 7

�
��

��


and so

9���� � ���

�

�
�� �

�

�
as � �� for positive real �.

For complex � we can see that the above method works if ��� � � as � � �,
that is for �� � �. The result is in fact true for all arguments of �, but we need another
method to cope with that.

As another example we will find asymptotic expansions as � � � for the Fresnel
integrals (at first for positive real �)

���� �

� �

�

��� �� �� ���� �

� �

�

�
� �� ���

We will consider

���� �

� �

�

�
�
�

��

�

� �

�

�
�
�

���
� �

�

�
�
�

���

The first of these integrals can be done as a standard contour integral to give
�
�

� �

�
� .

As for the second:

� �

�

�
�
�

�� �

� �

�

	���
�
�

	��
��

�

�
�
�

�

	��

��
�

�������

� ��
�
�

	��
��������

The evaluation of this second integral carries over to negative real �. We need to
change the first integral and we get

���� � �

�

	
�


�
� �

�
�
�

	��
as � � �� � ��

We ask if we can extend these results into more of � . The key point is the � 
�
�

term,
which must decay as � � �. This restricts the series to the regions � � ��� � � �

�
and � � ��� � � ��

� respectively.
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In the quadrants with exponential growth the exponential term of the series dom-

inates and we get ���� � ��
�

�
� as � � �. The real and imaginary axes are clearly
Stokes lines.

4.4.2 Watson’s Lemma

This applies to integrals of the form

� !

�

�������� �� (4.4)

and relies on the fact that (in this case), ���� decays rapidly as ��� � � with �� � �.
The integral is dominated by a neighbourhood of � � �.

Lemma (Watson’s Lemma). Suppose ���� has an asymptotic expansion in a sector
8,

���� � ���
#� � � � �� ���

# as �� �

with $� � ��. Then the integral (4.4) can be evaluated termwise and

� !

�

�������� �� �
� “�”

�

���� ����
#� � � � �� ���

#� ��

�
��
�

���
�#
���$� � ��

as � �� with ��� and * in 8.

We do not prove this but give examples of its use. Consider (again) the exponential
integral

� �

�

���

�
�� � ���

� �

�

����

� � �
��

� ���
� �

�

����
�
�� � � �� � � � �

	
��

� ���
�

�� �

�

�

as � � �, and as the Taylor series for �� � ���� we used is asymptotic as � � � for
any argument the end result we get for 9� is valid for any argument. Using similar
artifice we can do the same sort of thing for the error function, although it is easier to
work with the complementary error function �� � � � �� �� �.

4.4.3 Laplace’s Method

This applies to integrals of the form

���� �

� *

#

������+�� �� (4.5)
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in the asymptotic limit � � � (which is understood to mean � � �). The inte-
grand is largest where : has its maximum. If the maximum is at an endpoint (say at
$) with :��$� 	 � then by expanding :��� � :�$� � �� � $�:��$� ���� � $�� and
expanding ���� � ��$� ����� $� we get

���� � ���+�#��$�

�:��$�
�

The remainder term is������ and so this an asymptotic expansion. We get the leading
order term easily but the higher order terms are unpleasant.

If there is an interior maximum (at ��) then only the highest maximum contributes
to the leading order term. Then :��� � :� � �

�:���� ���
� ����� ���

� with :� 	 �.
Now

� � ��+�
� *

#

���
�
�+��������	����������� ��

�
� ��”

���”
�
�
� +�,

� �
� ���(���

	 �
�� ���(��

	
�(

� ���
+��

�
	�

�:��
� �

�

� ���
+������

�
� ��

Note that the ��(��� and ��(�� terms are lost (integrating an odd function).
This gives us an easy way to derive Stirling’s formula for ��. Recall that �� ���

� ����� ��. Put � � �� to get

�� �

� �

�

������ ����� ������ ��

� ���
� �

�

������ ��� ���

The maximum of ��� � � � is at � � � and we apply the formula developed above
to get �� � 	������� as ���.

A harder example (which comes from scattering cross-sections in fusion reactions)
is

���� 
� �

� �

�

�$%

�
�
��
�

 �
� � �




�
���

The integrand is peaked at
�
���

�

 �
�

. The integral is locally dominated by this re-

gion. We pick up the major contribution by rescaling � �
�
�
�

	 �
� � . We put � �

�
�
�

	 �
�

and let this tend to infinity. This gives

���� 
� � �
�
� 


�
�

� �

�

�
��

�
�
� �
���

�
��

and is now in a suitable form for the application of Laplace’s method. Applying
this gives (eventually)

���� 
� �
�

�#���
�

	"

� �
�

�$%�
�

	"�

�


� �
�

�
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4.4.4 The method of stationary phase

We will need the Riemann-Lebesgue lemma, which is stated but not proved.

Lemma (Riemann-Lebesgue). If ���� is continuous in ��� 
� then

� �

�

�����
�� ��� � as ����

We can see intuitively that when � becomes large the exponential term is oscillating
faster and faster and getting more and more cancellation.

The method of stationary phase applies to integrals of the form

���� �

� �

�

�
�+������ �� �� ��

where �, � and : are all real.
First we note that if : is strictly monotonic in some subinterval �$� .� then

� *

#

�
�+������ �� �

� *

#

�
�+
����:��

:����:��
�:

which tends to � as � � � (by the Riemann-Lebesgue lemma). This change of
variables also suggests that the dominant contributions to � are when : ���� � �. Near
a stationary point �� of : we expand :��� � :� � �

� ��� ���
�:� ����� ���

� and then

���� �
� ��”

���”
�
+��������


���+� ��

� ������

+��

� ��”

���”
�$%

�
�

	
�:���

�

�
��

�
�

	�

�:������

� �
�

������

�+����
�� �

As an example we will consider the Airy function for large negative �.

*;���� �
�

�

� �

�

���

�
�

�
<� � �<

�
�<�

This is most easily approached with

���� �

� �

�

�


�
��

� ��-
�

�<�

Let < �

�� and % � �

�
� . We get

���� �

�

� �

�

�

�
�
��

� ��
�

���

which is now in the correct form for the method of stationary phase. Applying the
theory gives

*;���� �
�
��

�
�

� �
�

���

�
	

�
�

�
� � �

�

�
as ����
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Another (more physical) example is that of group velocity. Many waves are disper-
sive — different wavelengths travel at different speeds. If the waves are linear they can
be superposed and Fourier analysis used to obtain

���� �� �

� �

��
0 �-��
����-��� �- (4.6)

given an initial disturbance

���� �� �

� �

��
0 �-��
�� �-�

Suppose the initial disturbance is compact to ��� 	 �. What does one see at large
distances from the initial disturbance? We also need � to be large, else no waves reach
�. The method of stationary phase gives the asymptotic behaviour of (4.6) as dominated
by the point where �

��
�-�� <�-��� � �, or in other words �

�
� �-

��
. For a given large

�, � find -� such that �-
��

��
��

� �
�

. Then the dominant waveform is 0 �-���

�����-����.

Conversely, given -� then an observer moving with speed �-
��

��
��

asymptotically

sees waves of wavenumber -�. This speed �-
��

��
��

is called the group velocity and is the
physical quantity: the speed at which energy is transferred.

For water waves < �

�- and along a ray �

�
� �� � �

�

�
�
�

. The method of
stationary phase gives

���� �� � 	


	�-
� �

�
� ��

�
� ��

�
�0 �-���


�����-������
� ��

4.4.5 Method of Steepest Descents

In this section we generalise the method of stationary phase (or equivalently Laplace’s
method) into the complex plane. We consider integrals of the form

���� �

�
.

������+�� ��

with : and � analytic on /. To begin with we consider � real and positive and split
: into real and imaginary parts, : � ( � �&. We cannot naively apply the previous
methods as if the maximum of (��� on / is not a saddle point of : then & is varying
monotonically and in the limit a large amount of cancellation occurs.

We can deform / into / � to pass through a saddle point of : along a contour of
&. In this case ( has its maximum on / � at the saddle point, so the integral is locally
dominated and & is stationary so no rapid cancellation occurs.

By letting / � be tangent to a contour of & at the saddle point we get ( decreas-
ing most rapidly either side of the saddle and ��+ is most strongly peaked. This is
the method of steepest descents. If only the leading order term is required then any
descending path through the saddle point will do — this is the saddle point method.

As an example we consider the Airy function

*;��� �
�

	��

�
	�

����
�
� �

�

��

with � real and positive. We write � � �
�
� � and then

*;��� �
�
�
�

	��

�
	�

�
�
�
�

�
�� ��

�

�
���
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We now consider the integral

���� �

�
	�

�
�
�
�� ��

�

�
��

for � � �
�
� � � and :��� � � � ��

� , which has saddles at � � ��. Although � � �
is the higher saddle we will go through � � �� so that �:��� 	 � on the path of
integration and *;��� remains bounded as � ��.

Put � � �� � � with � � � � ��. :��� � � �
� � �� � � � � . The steepest descent

path at � � �� is parallel to the imaginary axis, so we have � � �. Then

���� �
� �

��
����

�
��������

� ���
�
��

� �

��
����

�

��

� �

�
�

�
��

�
���

Putting all this together *;��� � �
� �
�

�
�
�
��

�
� �

�
� .

We also want to know how far we can generalise this result for different values
of ��� �. Suppose ��� � � $; this causes rotation of the steepest descent paths of
� ��:���� by $. For small $ this doesn’t matter — we get the same asymptotic expan-
sion. For larger $ other saddles come into view. As the steepest descent path jumps
from one saddle to another we get Stokes’ phenomenon. For the Airy function the
asymptotic expansion we found is valid for ���� �� 	 �.

The Hankel functions

=����
 �

�

��

�
	���

�� 	��� �� � ���

The Bessel function , ��� � �
�

�
=

��
 ��� � =

��
 ���


. We will seek an asymptotic

approximation for = ��
 ���, and use the method of steepest descent with ���� � �� �

and :��� � �
�& �. This has saddles where ���& � � �, or � �
�
� � �

�

	
��. We deform

�� to go through the saddle at �� � 
�
� .

����� � ��

��
� , :���� � � and :���� � �. Then : � � � 


� ��� ���
� and put

���� � ��
�. Then : � �� �
��

��
����
�
� �. It is clear that the path of steepest descent has

� � �
� . However, any � such that � 	 � 	 �

� , since in this range�
�
�
����

�
� �

� �. If

we put 	$ � 	� � �
� we have
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=��
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4.5 Liouville-Green Functions

This area has a number of names associated with it; it is usually called WKB theory 1.
We return to equations of the form ! �� �  ���!� � "���! � � and by putting

!��� � 2 �����
�
�

�
� /���� we convert into the standard form ! �� � "���! � �.

If " is a constant then we can write down a solution of this equation; !��� � *� 
�

where � � "
�
� �. When " � � solutions are oscillatory with wavelength proportional to

"�
�
� .
The WKBJ method can be applied to problems in which " varies slowly, that is �0

0

is small when '� � ��"�
�
� �, or alternatively “the fractional change in " is small over

one wavelength”.This derivation is starred —
the final result isn’t. Take   � and " � "��� so that �0

�� � "� � ���. We expect solutions with a
slowly varying amplitude � � ���� and a slowly varying phase � � ������. The
factor �� ensures the wavelength is ���� to leading order. Then

�
� � �
��
��)���)����� �

� �)
�������111 �

� �
����	
� �
)

�����

We propose a solution !��� � �����
�����	

� . Substituting into the governing equa-
tion we get

���� � ����� � "� � �

��� � 	���� � ���� � ��

The ���� equation gives � � � � � " �
� �� and the ��� equation gives � � "�

�
�

(integrating and using the ���� equation). We have the Liouville-Green approximate
solutions to the differential equation:

! � "�
�
�

�
* �$%

�
�

� �

"
�
� ��

�
� � �$%

�
��
� �

"
�
� ��

��
� (4.7)

If " 	 � a more convenient form is

! � ��"�� �
�

�
� �$%

�� �

��"� �
� ��

�
� 
 �$%

�� �

��"� �
� ��

��
� (4.8)

1and in Cambridge, WKBJ theory. W, K, B and J are Wentzel, Kramers, Brillouin and Jeffrey respectively.
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These give asymptotic solutions for large � under certain conditions:
Suppose " � �� as � � �. Then � � ��


� and � � �


���. Recalling the

derivation we see that we can neglect the term corresponding to the  � term provided
���  ���� as � � �, or substituting in we get � � �	. This is the converse of the
condition for the point at � to be a regular singular point. The WKBJ method thus
works when the point at infinity is an irregular singular point.

As an example we consider Airy’s equation ! �� � �! � � (again). Thus " � ��
and "

�
� � ��� �

� .
� 

" �� � �� ���
�
� and so

!��� � ��
�
� �$%

�
�� �

�


� � ��

� ��� �� ���
�
�

�
	

�
��� ��

�
� � ���

We do not get the constants from this method.

4.5.1 Connection formulae

These Liouville-Green functions (4.7) and (4.8) work well where " � � or " 	 � but
do not work where " passes through zero, at which points the frequency is zero (" is
no longer slowly varying on scales of the wavelength, which becomes infinite) and the
amplitude is infinite.

Points at which " � � are called turning points and the equation. WLOG consider
" 	 � for � 	 � and " � � for � � �

In regions 1 and 3 we have the Liouville-Green solutions

!��� � �

��"� �
�

�
*�) � ���)

�
���� �

� �

��"� �
� ��

!��� � �

"
�
�

�� ��� � � 
 �
� �� ���� �

� �

"
�
� ���

We have four unknown constants. We get two equations from the boundary condi-
tions at �� and two others from the connection formulae across region 2.

As � � �, "��� � "�� (since "��� � �) and the above expansions become

! � �

��"���
�
�

�
*�) � ���)

�
���� �

	

�
"
�
�
� ����

�
� (4.9)

! � �

�"���
�
�

�� ��� � � 
 �
� �� ���� �
	

�
"
�
�
� �

�
� � (4.10)

valid for � � �� in region 1 and � � �� in region 3 respectively. They need
to be matched across the intermediate region 2. In this region we approximate the

differential equation as ! �� � "��! � � and on letting � � � �"��
�
� � we get Airy’s
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equation !�� � �! � �. This has solutions ! � $*;��� � .�;���. We can use
steepest descents (for instance) to find asymptotic expressions for this inner solution as
� � �(�”. As � � �(�”, � � �� and we get the asymptotic expression

! � �

�"

�
��
� ����

�
�

�
�

	
$�) � .��)

�
� (4.11)

As � � (�” we have � � �� and

! � �
	�"

�
�� �

�
�

��$� .� �
� � � �$ � .� ��� �� � (4.12)

We now need to match coefficients between (4.11) and (4.9); we get

$ �
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�

*

. �


�

"
�
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��

Doing the same thing with (4.12) and (4.10) we get

� �
"
�
�
�
	�

�$ � .�


 �
"
�
�
�
	�

�$� .� �

Eliminating $ and . we obtain the connection formulae

* �
� � 


	


	

� �
�� 


	
�

(4.13)

As an example of the use of the connection formulae we seek to find approximate
energy eigenvalues for the non-dimensional Schrödinger equation > ���

�
9 � ��

	
> �

� with the boundary conditions > � � as � � �� (quantum harmonic oscillator). In
particular we will consider 9 � �. We see that there are oscillations of frequency 9

�
�

(and so the wavelength is proportional to 9� �
� ). " � 9 � �� is varying on a scale of

9
�
� and so is slowly varying on the scale of the oscillations. We can therefore apply

WKBJ theory and the connection formulae.
There are turning points at�9 �

� and exponentially decaying solutions in ��� � 9
�
� .

In � 	 �9 �
� we have � � � and WLOG * � �. The connection formulae at

� � �9 �
� give � � 
 �


	 and so in ��� 	 9

�
� we have

> � �

�9 � ���
�
�

�
	 �
� � �


	 ��� �



� 	

�9 � ���
�
�

�
�
�
� �

�

�
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where � �
� �
�
�
2

�
9 � ��

	 �
� �� (the lower limit puts the origin at � for the con-

nection formulae). Near � �

9 we write

> � 	

"
�
�

�
�

�� �
2

�
�
2

"
�
� �� �

� �
2

�

"
�
� �� �

�

�

�

� 	

"
�
�

��
�$ ��� �� � ���$ �
� ��� �

where $ �
��2

�
�
2
"
�
� �� � �

� and �� �
� ��

2
"
�
� ��. This moves the origin to � �


9

and we can now apply the connection formulae (4.13).
In � �


9 we have *� � � (for exponential decay) and so > � � ���). Therefore

we obtain

	 ���$ �
��

	
	 �
�$ � � ��

	
�

This implies that ���$ � ��, or that $ � �� � �
� . We can easily do the integral

for $, and we obtain 9� � � � �
� for � � �. We have (coincidentally) obtained

the exact eigenvalues, and it is clear that this method can be used to find approximate
eigenvalues of more complicated potentials.
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Chapter 5

Laplace Transforms

5.1 Definition and simple properties

The Laplace transform of a function ���� is defined by

0 � � � ! ������ �

� �

�

��/����� ��� (5.1)

The variable  may be complex but we must have �� � � / where / is sufficiently
large to permit convergence. A greater class of functions have Laplace transforms than
have Fourier transforms, due to the exponential attenuation at large �.

Since the integral’s range is ����� we lose all knowledge of the function for � 	 �
and the inversion of ! ������ is =�������.

The following properties are both trivial to prove and very useful in both evaluating
and inverting Laplace transforms.

" ! �%� � ?�� � %! �� � � ?! ���

" shifting: ! ��������� � 0 � � ��

" ! �=��� ������ ��� � ���/0 � �

" change of scale: ! ���$��� � �
#
0 � /

#
�

" !
�
��
��

�
� ����� �  0 � �

" !
�� �

� ��(� �(
�

� 3 �/
/

" ! �������� � ����� �

�/0 � �

These properties often give the best way to calculate Laplace transforms and to
guess inverses. We can now, starting from ! ��� � �

/
obtain Laplace transforms for a

reasonably useful class of functions.
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� ! �0 �

=��� $� ���

/

�� ��
/��

�#� �
/�#

���$� /
/��#�

�
�$� #
/��#�

���&$� /
/��#�

�
�&$� #
/��#�

Table 5.1: Simple Laplace transforms

5.1.1 Asymptotic Limits

Using Watson’s Lemma as  �� we get

0 � � �
��
���

�

 ���
� �����

and so �
�/��  0 � � � ����.
From the properties of the Laplace transform on the preceding page we have that

 0 � � � ���� �

� �

�

��/�
��

��
��

and so letting  � � we get �
�/��  0 � � � �
���� ���� (if both limits exist).
This begs the obvious question; how do we know that both limits exist? If all the
singularities of 0 � � lie in �� � � � �� 	 �� then both the limits exist.

5.1.2 Convolutions

We define

� # � �

� �

��
�������� �� �� (5.2)

and since ���� � ���� � � for � 	 � we have that

� # � �

� �

�

�������� ���

Now

! �� # �� �

� �

�

� �

�

��/�������� � �� ����

�

� �

�

� �

�

��/�������� � �� ����

�

� �

�

��/����� ��

� �

�

��/,��(� �(

� ! �� �! ��� �
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5.2 Inversion

Consider

� �

� .�
�

.�
�
�/�0 � � � 

where the contour lies to the right of all of the singularities of 0 � �.
At this stage you should be scenting waffle; recall that the Laplace transform was

defined only for  with sufficiently large real part. What we mean by 0 � � is the
analytic continuation of the Laplace transform into the whole of � .

We now evaluate � (recall that we insisted that ���� � � for � 	 �).

� �

� .�
�

.�
�
�/�

� �

�

������/� ��� 

�

� .�
�

.�
�

� �

��
�/�������� ��@ 

� ��.�
� �

����

� �

����
�
��������� ����

� 	���.�
� �

��
Æ��� ����.����� ��

� 	�������

We thus obtain the Bromwich inversion formula:

���� �
�

	��

� .�
�

.�
�
0 � ��/� � � (5.3)

Since / is chosen so that the contour of integration lies to the right of all the sin-
gularities we can close the contour in the right half-plane for � 	 � and use Cauchy’s
theorem to get ���� � � for � 	 �.

Note that if 0 � � is meromorphic then

���� �
�

residues of 0 � ��/��

It is usually much easier to invert Laplace transforms by knowing the answer than
by using the inversion formula.

5.3 Application to differential equations

5.3.1 Ordinary differential equations

We will illustrate this with an example. Suppose we have

)�� � *� � 	� � ��� ���� � ��� *���� � !� (5.4)

Incidentally, Laplace transforms are overkill for this problem; it can be solved eas-
ily by using the methods learnt at A-level or in Part 1A.



40 CHAPTER 5. LAPLACE TRANSFORMS

Generally we use Laplace transforms when we have an initial value problem, not a
boundary value problem.

We write A� � for the Laplace transform of ���� and on transforming (5.4) we get

A
�
 � � � � 	

�
� � � �� �

�

 � 	

which has the solution

A� � �
�

� � 	��� � ��
�

��� � 

� � 	�� � ��
� (5.5)

To invert this we convert to partial fractions:

A� � �
�

� � 	��
�

�

 � 	
� "

 � 	

which can be inverted (trivially) to get ���� � ����� � ���� � "��.

Asymptotic behaviour as ���
Deform the Bromwich contour such that it folds back around the singularity of 0 � �
with largest real part (say at  �  �). Then the integral

�
�
0 � ��/� � is dominated by

the neighbourhood of  �.
We can approximate this integral by forming an asymptotic expansion of 0 � �

about  �  �.
In our example (using (5.5)) we see that  � � 	 and on writing  � 	 � � we have

A� � �
�

��
�� � ��

��
�

+� ��

�
�� � ��

�� � �

��
�

�

�
� analytic terms�

Thus

���� � �

	��
���

� .���
�

.���
�
0 ������ ��

� ��� ��� � �� �

The �"�� term in the exact solution is exponentially smaller than this asymptotic
solution and so doesn’t feature in the asymptotic expansion.

Green’s functions

For our example we wish to solve

)� � � *� � 	� � Æ���� ���� � *���� � ��

where Æ���� is such that
��
�

Æ���� �� � �.
Laplace transforming the problem we getB� � � �

/��� �
/�� and so ���� � ������.

For the general problem

)�� � *� � 	� � ���� ���� � ��� *���� � ��

we find A� � � B� � �0 � � �  �� � �� � ���� and so

���� � ���� # ����� � ��Æ
������ ��� � ����Æ��

��
�
�
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5.3.2 Partial differential equations

Consider the problem

C�

C�
� 3

C��

C��

subject to the boundary conditions ���� �� � �, ���� �� � � as � � � and ���� �� �
��. This models (say) the concentration of diffusing salt in a semi-infinite tube.

Laplace transforming the diffusion equation (with respect to �) we get (in obvious
notation)  ,� � 3,���.

Using the boundary conditions on � we get the solution ,� � )�
/
��


�

�
�.

We can find a lot out about � without doing the inversion. Suppose we wish to
evaluate

���� �

� �

�

���� �� ��

which could be the total amount of salt in the tube. Then

,� �

� �

�

,����  � �� � ��

�
3

 �
�

We can now inverse transform this to get

���� � 	��

�
3�

�
�

For the asymptotic behaviour of � as � � � we find an asymptotic expansion for
,� about the largest singularity, which in this case is at  � �.

,� � ��
 

�
��

�
 

3
� � � � �

�
thus

� � ��

�
�� �

�3�
� � � �

�
�

valid when � 3�. This approximation shows that �)
��

���
���

� � )��
�&�

.

We now do the full inversion, we see that

���� �� �
��
	��

� .�
�

.�
�

�

 
�/��


�

�
� � 

�
��
	��

� ���

��

�

 
�/��


�

�
� � 

�
��
��

� �

��

�

�
�
����� ����

� ���

Thus
C

C�
���� �� � � ��

�

3

� �

��
�
����� ����

� ��

� � ��
�3�

��
��

��� �



42 CHAPTER 5. LAPLACE TRANSFORMS

Thus

���� �� �

� �

�

��
�3�

��
��

��� �� �
	��
�

� �

�

�
�
��

���
�

�� � �� �� �
�
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