Limit Formulas

Definition of Limit

LIMIT OF A FUNCTION (INFORMAL DEFINITION)

The notation

$$\lim_{x \to c} f(x) = L$$

is read "the limit of f(x) as x approaches c is L" and means that the functional values f(x) can be made arbitrarily close to L by choosing x sufficiently close to c.

LIMIT OF A FUNCTION (FORMAL DEFINITION)

The limit statement

$$\lim_{x \to c} f(x) = L$$

means that for each $\epsilon > 0$, there corresponds a number $\delta > 0$ with the property that

 $|f(x) - L| < \epsilon$ whenever $0 < |x - c| < \delta$

A FUNCTION DIVERGES TO INFINITY (INFORMAL DEFINITION)

A function *f* that increases or decreases without bound as *x* approaches *c* is said to **diverge to infinity** (∞) at *c*. We indicate this behavior by writing

(continued)

 $\lim_{x \to c} f(x) = +\infty$

if x increases without bound and by

 $\lim_{x \to c} f(x) = -\infty$

if x decreases without bound.

INFINITE LIMIT (FORMAL DEFINITION)

We write $\lim_{x\to c} f(x) = +\infty$ if, for any number N > 0(no matter how large), it is possible to find a number $\delta > 0$ such that f(x) > N whenever $0 < |x - c| < \delta$.

LIMITS INVOLVING INFINITY

The limit statement $\lim_{x\to+\infty} f(x) = L$ means that for any number $\epsilon > 0$, there exists a number N_1 such that

 $|f(x) - L| < \epsilon$ whenever $x > N_1$

for x in the domain of f. Similarly $\lim_{x\to -\infty} f(x) = M$ means that for any $\epsilon > 0$, there exists a number N_2 such that

 $|f(x) - M| < \epsilon$ whenever $x < N_2$

LIMIT OF A FUNCTION OF TWO VARIABLES (INFORMAL DEFINITION)

The notation $\lim_{(x, y) \to (x_0, y_0)} f(x, y) = L$ (continued) means that the functional values f(x, y) can be made arbitrarily close to L by choosing the point (x, y) close to the point (x_0, y_0) .

LIMIT OF A FUNCTION OF TWO VARIABLES (FORMAL DEFINITION)

Suppose the point $P_0(x_0, y_0)$ has the property that every disk centered at P_0 contains at least one point in the domain of *f* other than P_0 itself. Then the number *L* is the **limit of** *f* **at** *P* if, for every $\epsilon > 0$, there exists a $\delta > 0$ such that

$$|f(x, y) - L| < \epsilon$$
 whenever $0 < \sqrt{(x - x_0)^2 + (y - y_0)^2} < \delta$

In this case, we write

$$\lim_{(x, y) \to (x_0, y_0)} f(x, y) = L$$

Rules of Limits

BASIC RULES

For any real numbers *a* and *c*, suppose the functions *f* and *g* both have limits at x = c. Suppose also that both $\lim_{x\to+\infty} f(x)$ and $\lim_{x\to-\infty} f(x)$ exist.

Limit of a constant	$\lim_{x \to c} k = k \text{ for any constant } k$
Limit of x	$\lim_{x \to c} x = c$
Scalar rule	$\lim_{x \to c} [af(x)] = a \lim_{x \to c} f(x)$
Sum rule	$\lim_{x \to c} [f(x) + g(x)] =$ $\lim_{x \to c} f(x) + \lim_{x \to c} g(x)$
Difference rule	$\lim_{x \to c} [f(x) - g(x)] =$ $\lim_{x \to c} f(x) - \lim_{x \to c} g(x)$
Linearity rule	$\lim_{x \to +\infty} [af(x) + bg(x)] = a \lim_{x \to +\infty} f(x) + b \lim_{x \to +\infty} g(x)$

Product rules	$\lim_{x \to c} [f(x)g(x)] = [\lim_{x \to c} f(x)][\lim_{x \to c} g(x)]$
Quotient rules	$\lim_{x \to +\infty} [f(x)g(x)] =$ $\lim_{x \to c} \frac{f(x)}{g(x)} = \frac{\lim_{x \to c} f(x)}{\lim_{x \to c} g(x)} \text{ if } \lim_{x \to c} g(x) \neq 0$ $\lim_{x \to +\infty} \frac{f(x)}{g(x)} =$ $\frac{\lim_{x \to +\infty} f(x)}{g(x)} \text{ if } \lim_{x \to +\infty} g(x) \neq 0$
Power rules	$\lim_{x \to +\infty} g(x) = \lim_{x \to c} f(x) \Big _{n}^{n} \text{ is a}$ rational number
	$\lim_{x \to +\infty} [f(x)]^n = [\lim_{x \to +\infty} f(x)]^n$
Limit limitation theorem	Suppose $\lim_{x \to c} f(x)$ exists and $f(x) \ge 0$ throughout an open interval containing the number <i>c</i> , except possibly at <i>c</i> itself. Then $\lim_{x \to c} f(x) \ge 0.$
The squeeze rule	If $g(x) \le f(x) \le h(x)$ for all x in an open interval containing c (except possibly at c itself) and if $\lim_{x \to c} g(x) = \lim_{x \to c} h(x) = L$ then $\lim_{x \to c} f(x) = L$.
T · · · · · · · · · ·	$\lim_{x \to c} A \qquad $
Limits to infinity	$\lim_{x \to +\infty} \frac{1}{x^n} = 0 \text{ and } \lim_{x \to -\infty} \frac{1}{x^n} = 0$
Infinite-limit theorem	If $\lim_{x \to c} f(x) = +\infty$ and $\lim_{x \to c} g(x) =$
	A, then $\lim_{x \to c} [f(x)g(x)] = +\infty \text{ and } \lim_{x \to c} \frac{f(x)}{g(x)} = +\infty \text{ if } A > 0$ $\lim_{x \to c} [f(x)g(x)] = -\infty \text{ and } \lim_{x \to c} \frac{f(x)}{g(x)} = -\infty \text{ if } A < 0$
l'Hôpital's rule	Let f and g be differentiable functions on an open interval containing c (except possibly at c itself). If $\lim_{x\to c} \frac{f(x)}{g(x)}$ produces an indeterminate form $\frac{0}{c}$ or $\frac{\infty}{c}$, then
	0∞

$$\lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)}$$

provided that the limit on the right side exists.

TRIGONOMETRIC LIMITS

 $\lim_{x \to c} \cos x = \cos c \quad \lim_{x \to c} \sec x = \sec c$ $\lim_{x \to c} \sin x = \sin c \quad \lim_{x \to c} \csc x = \csc c$ $\lim_{x \to c} \tan x = \tan c \quad \lim_{x \to c} \cot x = \cot c$

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \frac{\sin ax}{x} = a \lim_{x \to 0} \frac{\tan x}{x} = \lim_{x \to 0} \frac{1 - \cos x}{x} = 0$$

MISCELLANEOUS LIMITS

$$\lim_{n \to +\infty} \left(1 + \frac{1}{n} \right)^n = e \qquad \lim_{n \to 0} (1+n)^{1/n} = e$$
$$\lim_{n \to +\infty} \left(1 + \frac{k}{n} \right)^n = e^k \qquad \lim_{n \to +\infty} p \left(1 + \frac{1}{n} \right)^{nt} = p e^t$$
$$\lim_{n \to +\infty} n^{1/n} = 1$$

Limits of a Function of Two Variables

BASIC FORMULAS AND RULES FOR LIMITS OF A FUNCTION OF TWO VARIABLES

Suppose $\lim_{(x,y)\to(x_0,y_0)} f(x, y)$ and $\lim_{(x,y)\to(x_0,y_0)} g(x, y)$ both exist, with $\lim_{(x,y)\to(x_0,y_0)} f(x, y) = L$ and $\lim_{(x,y)\to(x_0,y_0)} g(x, y) = M$. Then the following rules obtain:

Scalar rule $\lim_{x \to 0} [af(x, y)]$

$$\lim_{(x,y)\to(x_0,y_0)} [af(x,y)] = a \lim_{(x,y)\to(x_0,y_0)} f(x,y) = aL$$

Sum rule

$$\lim_{(x,y)\to(x_0,y_0)} [f+g](x,y)$$

$$= \left[\lim_{(x,y)\to(x_0,y_0)} f(x,y)\right] + \left[\lim_{(x,y)\to(x_0,y_0)} g(x,y)\right]$$

$$= L + M$$

Product rule $\lim_{(x,y)\to(x_0,y_0)} [fg](x, y)$ $= \left[\lim_{(x,y)\to(x_0,y_0)} f(x, y)\right] \left[\lim_{(x,y)\to(x_0,y_0)} g(x, y)\right]$ = LMQuotient rule $\lim_{(x,y)\to(x_0,y_0)} \left[\frac{f}{g}\right](x, y) = \frac{\lim_{(x,y)\to(x_0,y_0)} f(x, y)}{\lim_{(x,y)\to(x_0,y_0)} g(x, y)} = \frac{L}{M}$ if $M \neq 0$

Substitution rule

If f(x, y) is a polynomial or a rational function, limits may be found by substituting for x and y (excluding values that cause division by zero).