Limit Formulas

Definition of Limit

LIMIT OF A FUNCTION (INFORMAL DEFINITION)

The notation

$$
\lim _{x \rightarrow c} f(x)=L
$$

is read "the limit of $f(x)$ as x approaches c is L ' and means that the functional values $f(x)$ can be made arbitrarily close to L by choosing x sufficiently close to c.

LIMIT OF A FUNCTION (FORMAL DEFINITION)

The limit statement

$$
\lim _{x \rightarrow c} f(x)=L
$$

means that for each $\epsilon>0$, there corresponds a number $\delta>0$ with the property that

$$
|f(x)-L|<\epsilon \text { whenever } 0<|x-c|<\delta
$$

A FUNCTION DIVERGES TO INFINITY (INFORMAL

 DEFINITION)A function f that increases or decreases without bound as x approaches c is said to diverge to infinity (∞) at c. We indicate this behavior by writing

$$
\lim _{x \rightarrow c} f(x)=+\infty
$$

if x increases without bound and by

$$
\lim _{x \rightarrow c} f(x)=-\infty
$$

if x decreases without bound.

INFINITE LIMIT (FORMAL DEFINITION)

We write $\lim _{x \rightarrow c} f(x)=+\infty$ if, for any number $N>0$ (no matter how large), it is possible to find a number $\delta>0$ such that $f(x)>N$ whenever $0<|x-c|<\delta$.

LIMITS INVOLVING INFINITY

The limit statement $\lim _{x \rightarrow+\infty} f(x)=L$ means that for any number $\epsilon>0$, there exists a number N_{1} such that

$$
|f(x)-L|<\epsilon \text { whenever } x>N_{1}
$$

for x in the domain of f. Similarly $\lim _{x \rightarrow-\infty} f(x)=M$ means that for any $\epsilon>0$, there exists a number N_{2} such that

$$
|f(x)-M|<\epsilon \text { whenever } x<N_{2}
$$

LIMIT OF A FUNCTION OF TWO VARIABLES (INFORMAL DEFINITION)

The notation

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L
$$

(continued)
means that the functional values $f(x, y)$ can be made arbitrarily close to L by choosing the point (x, y) close to the point $\left(x_{0}, y_{0}\right)$.

LIMIT OF A FUNCTION OF TWO VARIABLES (FORMAL DEFINITION)

Suppose the point $P_{0}\left(x_{0}, y_{0}\right)$ has the property that every disk centered at P_{0} contains at least one point in the domain of f other than P_{0} itself. Then the number L is the limit of f at \boldsymbol{P} if, for every $\epsilon>0$, there exists a $\delta>0$ such that
$|f(x, y)-L|<\epsilon$ whenever $0<\sqrt{\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}}<\delta$
In this case, we write

$$
\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L
$$

Rules of Limits

BASIC RULES

For any real numbers a and c, suppose the functions f and g both have limits at $x=c$. Suppose also that both $\lim _{x \rightarrow+\infty} f(x)$ and $\lim _{x \rightarrow-\infty} f(x)$ exist.

Limit of a constant	$\lim _{x \rightarrow c} k=k$ for any constant k
Limit of x	$\lim _{x \rightarrow c} x=c$
Scalar rule	$\lim _{x \rightarrow c}[a f(x)]=a \lim _{x \rightarrow c} f(x)$
Sum rule	$\begin{aligned} & \lim _{x \rightarrow c}[f(x)+g(x)]= \\ & \lim _{x \rightarrow c} f(x)+\lim _{x \rightarrow c} g(x) \end{aligned}$
Difference rule	$\begin{aligned} & \lim _{x \rightarrow c}[f(x)-g(x)]= \\ & \quad \lim _{x \rightarrow c} f(x)-\lim _{x \rightarrow c} g(x) \end{aligned}$
Linearity rule	$\begin{aligned} & \lim _{x \rightarrow+\infty}[a f(x)+b g(x)]= \\ & \quad a \lim _{x \rightarrow+\infty} f(x)+b \lim _{x \rightarrow+\infty} g(x) \end{aligned}$

Product rules

$$
\begin{gathered}
\lim _{x \rightarrow c}[f(x) g(x)]=\left[\lim _{x \rightarrow c} f(x)\right]\left[\lim _{x \rightarrow c} g(x)\right] \\
\lim _{x \rightarrow+\infty}[f(x) g(x)]= \\
\quad\left[\lim _{x \rightarrow+\infty} f(x)\right]\left[\lim _{x \rightarrow+\infty} g(x)\right]
\end{gathered}
$$

Quotient rules
$\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\frac{\lim _{x \rightarrow c} f(x)}{\lim _{x \rightarrow c} g(x)}$ if $\lim _{x \rightarrow c} g(x) \neq 0$
$\lim _{x \rightarrow+\infty} \frac{f(x)}{g(x)}=$
$\frac{\lim _{x \rightarrow+\infty} f(x)}{\lim _{x \rightarrow+\infty} g(x)}$ if $\lim _{x \rightarrow+\infty} g(x) \neq 0$
Power rules $\quad \lim _{x \rightarrow c}[f(x)]^{n}=\left[\lim _{x \rightarrow c} f(x)\right]^{n} n$ is a
rational number
$\lim _{x \rightarrow+\infty}[f(x)]^{n}=\left[\lim _{x \rightarrow+\infty} f(x)\right]^{n}$
Limit limitation \quad Suppose $\lim _{x \rightarrow c} f(x)$ exists and $f(x) \geq 0$ theorem
throughout an open interval
containing the number c, except possibly at c itself. Then $\lim _{x \rightarrow c} f(x) \geq 0$.
The squeeze rule If $g(x) \leq f(x) \leq h(x)$ for all x in an open interval containing c (except possibly at c itself) and if

$$
\lim _{x \rightarrow c} g(x)=\lim _{x \rightarrow c} h(x)=L
$$

then $\lim _{x \rightarrow c} f(x)=L$.
Limits to infinity $\quad \lim _{x \rightarrow+\infty} \frac{A}{x^{n}}=0$ and $\lim _{x \rightarrow-\infty} \frac{A}{x^{n}}=0$
Infinite-limit If $\lim _{x \rightarrow c} f(x)=+\infty$ and $\lim _{x \rightarrow c} g(x)=$ theorem
A, then
$\lim _{x \rightarrow c}[f(x) g(x)]=+\infty$ and $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=$
$+\infty$ if $A>0$
$\lim _{x \rightarrow c}[f(x) g(x)]=-\infty$ and $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=$
$-\infty$ if $A<0$
l'Hôpital's rule
Let f and g be differentiable functions on an open interval containing c (except possibly at c itself).
If $\lim _{x \rightarrow c} \frac{f(x)}{g(x)}$ produces an indeterminate form $\frac{0}{0}$ or $\frac{\infty}{\infty}$, then

$$
\lim _{x \rightarrow c} \frac{f(x)}{g(x)}=\lim _{x \rightarrow c} \frac{f^{\prime}(x)}{g^{\prime}(x)}
$$

provided that the limit on the right side exists.

TRIGONOMETRIC LIMITS

$$
\begin{aligned}
& \lim _{x \rightarrow c} \cos x=\cos c \lim _{x \rightarrow c} \sec x=\sec c \\
& \lim _{x \rightarrow c} \sin x=\sin c \lim _{x \rightarrow c} \csc x=\csc c \\
& \lim _{x \rightarrow c} \tan x=\tan c \lim _{x \rightarrow c} \cot x=\cot c \\
& \lim _{x \rightarrow 0} \frac{\sin x}{x}=1 \lim _{x \rightarrow 0} \frac{\sin a x}{x}=a \lim _{x \rightarrow 0} \frac{\tan x}{x}=1 \lim _{x \rightarrow 0} \frac{1-\cos x}{x}=0
\end{aligned}
$$

MISCELLANEOUS LIMITS

$$
\begin{aligned}
& \lim _{n \rightarrow+\infty}\left(1+\frac{1}{n}\right)^{n}=e \quad \lim _{n \rightarrow 0}(1+n)^{1 / n}=e \\
& \lim _{n \rightarrow+\infty}\left(1+\frac{k}{n}\right)^{n}=e^{k} \quad \lim _{n \rightarrow+\infty} p\left(1+\frac{1}{n}\right)^{n t}=p e^{t} \\
& \lim _{n \rightarrow+\infty} n^{1 / n}=1
\end{aligned}
$$

Limits of a Function of Two Variables

BASIC FORMULAS AND RULES FOR LIMITS OF A FUNCTION OF TWO VARIABLES

Suppose $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)$ and $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)$ both exist, with $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=L$ and $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)=M$.
Then the following rules obtain:

Scalar rule

$$
\begin{aligned}
& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}[a f(x, y)] \\
& =a \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)=a L \\
& \lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}[f+g](x, y) \\
& =\left[\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)\right]+\left[\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)\right] \\
& =L+M
\end{aligned}
$$

Sum rule

Product rule $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}[f g](x, y)$

$$
\begin{aligned}
& =\left[\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)\right]\left[\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)\right] \\
& =L M
\end{aligned}
$$

Quotient rule $\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)}\left[\frac{f}{g}\right](x, y)=\frac{\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} f(x, y)}{\lim _{(x, y) \rightarrow\left(x_{0}, y_{0}\right)} g(x, y)}=\frac{L}{M}$

$$
\text { if } M \neq 0
$$

Substitution rule

If $f(x, y)$ is a polynomial or a rational function, limits may be found by substituting for x and y (excluding values that cause division by zero).

