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Preface

This is the sequel to my book Functions of One Complex Variable I, and
probably a good opportunity to express my appreciation to the mathemat-
ical community for its reception of that work. In retrospect, writing that
book was a crazy venture.

As a graduate student I had had one of the worst learning experiences
of my career when I took complex analysis; a truly bad teacher. As a
non-tenured assistant professor, the department allowed me to teach the
graduate course in complex analysis. They thought I knew the material; I
wanted to learn it. I adopted a standard text and shortly after beginning
to prepare my lectures I became dissatisfied. All the books in print had
virtues; but I was educated as a modern analyst, not a classical one, and
they failed to satisfy me.

This set a pattern for me in learning new mathematics after I had become
a mathematician. Some topics I found satistactorily treated in some sources;
some I read in many books and then recast in my own style. There is also the
matter of philosophy and point of view. Going from a certain mathematical
vantage point to another is thought by many as being independent of the
path; certainly true if your only objective is getting there. But getting there
is often half the fun and often there is twice the value in the journey if the
path is properly chosen.

One thing led to another and I started to put notes together that formed
chapters and these evolved into a book. This now impresses me as crazy
partly because I would never advise any non-tenured faculty member to
begin such a project; I have, in fact, discouraged some from doing it. On
the other hand writing that book gave me immense satistaction and its re-
ception, which has exceeded my grandest expectations, makes that decision
to write a book seem like the wisest I ever made. Perhaps I lucked out by
being born when I was and finding myself without tenure in a time (and
possibly a place) when junior faculty were given a lot of leeway and allowed
to develop at a slower pace—something that someone with my background
and temperament needed. It saddens me that such opportunities to develop
are not so abundant today.

The topics in this volume are some of the parts of analytic function
theory that I have found either useful for my work in operator theory or
enjoyable in themselves; usually both. Many also fall into the category of
topics that I have found difficult to dig out of the literature.

I have some difficulties with the presentation of certain topics in the
literature. This last statement may reveal more about me than about the
state of the literature, but certain notions have always disturbed me even
though experts in classical function theory take them in stride. The best
example of this is the concept of a multiple-valued function. I know there
are ways to make the idea rigorous, but I usually find that with a little
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work it isn’t necessary to even bring it up. Also the term multiple-valued
function violates primordial instincts acquired in childhood where I was
sternly taught that functions, by definition, cannot be multiple-valued.

The first volume was not written with the prospect of a second volume
to tollow. The reader will discover some topics that are redone here with
more generality and originally could have been done at the same level of
sophistication if the second volume had been envisioned at that time. But
I have always thought that introductions should be kept unsophisticated.
The first white wine would best be a Vouvray rather than a Chassagne-
Montrachet.

This volume is divided into two parts. The first part, consisting of Chap-
ters 13 through 17, requires only what was learned in the first twelve chap-
ters that make up Volume 1. The reader of this material will notice, how-
ever, that this is not strictly true. Some basic parts of analysis, such as
the Cauchy-Schwarz Inequality, are used without apology. Sometimes re-
sults whose proofs require more sophisticated analysis are stated and their
proofs are postponed to the second half. Occasionally a proof is given that
requires a bit more than Volume I and its advanced calculus prerequisite.
The rest of the book assumes a complete understanding of measure and
integration theory and a rather strong background in functional analysis.

Chapter 13 gathers together a few ideas that are needed later. Chapter
14, “Conformal Equivalence for Simply Connected Regions,” begins with a
study of prime ends and uses this to discuss boundary values of Riemann
maps from the disk to a simply connected region. There are more direct
ways to get to boundary values, but I find the theory of prime ends rich in
mathematics. The chapter concludes with the Area Theorem and a study
of the set S of schljcht functions.

Chapter 15 studies conformal equivalence for finitely connected regions.
I have avoided the usual extremal arguments and relied instead on the
method of finding the mapping functions by solving systems of linear equa-
tions. Chapter 16 treats analytic covering maps. This is an elegant topic
that deserves wider understanding. It is also important for a study of Hardy
spaces of arbitrary regions, a topic I originally intended to include in this
volume but one that will have to await the advent of an additional volume.

Chapter 17, the last in the first part, gives a relatively self contained
treatment of de Branges’s proof of the Bieberbach conjecture. I follow the
approach given by Fitzgerald and Pommerenke [1985]. It is self contained
except for some facts about Legendre polynomials, which are stated and
explained but not proved. Special thanks are owed to Steve Wright and
Dov Aharonov for sharing their unpublished notes on de Branges’s proof
of the Bieberbach conjecture.

Chapter 18 begins the material that assumes a knowledge of measure
theory and functional analysis. More information about Banach spaces is
used here than the reader usually sees in a course that supplements the
standard measure and integration course given in the first year of graduate
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study in an American university. When necessary, a reference will be given
to Conway [1990]. This chapter covers a variety of topics that are used in
the remainder of the book. It starts with the basics of Bergman spaces, some
material about distributions, and a discourse on the Cauchy transform and
an application of this to get another proof of Runge’s Theorem. It concludes
with an introduction to Fourier series.

Chapter 19 contains a rather complete exposition of harmonic functions
on the plane. It covers about all you can do without discussing capacity,
which is taken up in Chapter 21. The material on harmonic functions from
Chapter 10 in Volume I is assumed, though there is a built in review.

Chapter 20 is a rather standard treatment of Hardy spaces on the disk,
though there are a few surprising nuggets here even for some experts.

Chapter 21 discusses some topics from potential theory in the plane. It
explores logarithmic capacity and its relationship with harmonic measure
and removable singularities for various spaces of harmonic and analytic
functions. The fine topology and thinness are discussed and Wiener’s cri-
terion for regularity of boundary points in the solution of the Dirichlet
problem is proved.

This book has taken a long time to write. I've received a lot of assistance
along the way. Parts of this book were first presented in a pubescent stage
to a seminar I presented at Indiana University in 1981-82. In the sem-
inar were Greg Adams, Kevin Clancey, Sandy Grabiner, Paul McGuire,
Marc Raphael, and Bhushan Wadhwa, who made many suggestions as the
year progressed. With such an audience, how could the material help but
improve. Parts were also used in a course and a summer seminar at the
University of Tennessee in 1992, where Jim Dudziak, Michael Gilbert, Beth
Long, Jeff Nichols, and Jeff vanEeuwen pointed out several corrections and
improvements. Nathan Feldman was also part of that seminar and besides
corrections gave me several good exercises. Toward the end of the writing
process I mailed the penultimate draft to some friends who read several
chapters. Here Paul McGuire, Bill Ross, and Liming Yang were of great
help. Finally, special thanks go to David Minda for a very careful read-
ing of several chapters with many suggestions for additional references and
exercises.

On the technical side, Stephanie Stacy and Shona Wolfenbarger worked
diligently to convert the manuscript to TEX. Jinshui Qin drew the figures in
the book. My son, Bligh, gave me help with the index and the bibliography.

In the final analysis the responsibility for the book is mine.

John B Conway
University of Tennessee
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Chapter 13

Return to Basics

In this chapter a few results of a somewhat elementary nature are collected.
These will be used quite often in the remainder of this volume.

31 Regions and Curves

In this first section a few definitions and facts about regions and curves in
the plane are given. Some of these may be familiar to the reader. Indeed,
some will be recollections from the first volume.

Begin by recalling that a region is an open connected set and a simply
connected region is one for which every closed curve is contractible to a
point (see 4.6.14). In Theorem 8.2.2 numerous statements equivalent to
simple connectedness were given. We begin by recalling one of these equiv-
alent statements and giving another. Do not forget that C,, denotes the
extended complex numbers and 0,,G denotes the boundary of the set G in
Coo- That is, 050G = O0G when G is bounded and 0,,G = 0G U {oo} when
(G is unbounded.

It is often convenient to give results about subsets of the extended plane
rather than about C. If something was proved in the first volume for a
subset of C, but it holds for subsets of C,, with little change in the proof,
we will not hesitate to quote the appropriate reference from the first twelve
chapters as though the result for C,, was proved there.

1.1 Proposition. If G is a region in C,, the following statements are
equivalent.

(a) G is simply connected.
(b) Co \ G s connected

(¢) Os0G 1is connected.

Proof. The equivalence of (a) and (b) has already been established in
(8.2.2). In fact, the equivalence of (a) and (b) was established without
assuming that G is connected. That is, it was only assumed that G was
a simply connected open set; an open set with every component simply
connected. The reader must also pay attention to the fact that the con-
nectedness of G will not be used when it is shown that (c) implies (b). This
will be used when it is shown that (b) implies (c).
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So assume (c) and let us prove (b). Let F' be a component of C, \ G; so
F' is closed. It follows that F'Ncl G # 0 (cl denotes the closure operation in
C while cl,, denotes the closure in the extended plane.) Indeed, if it were
the case that F'Ncl G = 0, then for every z in F' there is an € > 0 such that
B(z;¢)NG = 0. Thus FU B(z;e) C Cs \ G. But F'U B(z;¢) is connected.
Since F' is a component of C, \ G, B(z;¢e) C F. Since z was an arbitrary
point, this implies that F' is an open set, giving a contradiction. Therefore
Fnel G #0.

Let zg € FFNcl G; 80 29 € 0scG. By (¢) 050G is connected, so F'U 05,,G
is a connected set that is disjoint from G. Therefore 0,,G C F since F' is a
component of C, \ G. What we have just shown is that every component
of Co \ G must contain 0,,G. Hence there can be only one component and
so C \ G is connected.

Now assume that condition (b) holds. So far we have not used the fact
that G is connected; now we will. Let U = C \ cloocG. Now C, \ U =
clooG and clG is connected. Since we already have that (a) and (b) are
equivalent (even for non-connected open sets), U is simply connected. Thus
Coo \ OcG = G UU is the union of two disjoint simply connected sets and
hence must be simply connected. Since (a) implies (b), 0,cG = Cy \ (GUU)
is connected. O

1.2 Corollary. If G is a region in C, then the map F' — F'N0xG defines
a bijection between the components of Coo \ G and the components of 0. G.

Proof. If F' is a component of C,, \ G, then an argument that appeared in
the preceding proof shows that F'N 0, G # 0. Also, since 0,,G C C \ G,
any component C' of 0,,G that meets F' must be contained in F'. It must
be shown that two distinct components of 0.,G cannot be contained in F.

To this end, let G; = C \ F. Since G; is the union of G and the
components of C'», \ G that are distinct from F', G; is connected. Since
Coo \ G1 = F', a connected set, G; is simply connected. By the preceding
proposition, 0., G1 is connected. Now 0, G1 C 0soG. In fact for any point z
in 0suG1, 0 # B(2;6)N(Co \G1) C B(z;6)N(Cx \G). Also if B(z;e)NG =
D, then B(z;e) C Co \G and B(z;e)NF # (; thus z € int F', contradicting
the fact that z € 0,0G1. Thus 0,,G1 C 0,,G. Therefore any component of
O G that meets ' must contain 0,,G1. Hence there can be only one such
component of 0,,G. That is, F' N 0,G is a component of 0,,G.

This establishes that the map F' — F N 0, G defines a map from the
components of C,, \ G to the components of 0,,G. The proof that this
correspondence is a bijection is left to the reader. O

Recall that a simple closed curve in C is a path v : |a,b| — C such that
v(t) = ~v(s) if and only if ¢t = s or |s — t| = b — a. Equivalently, a simple
closed curve is the homeomorphic image of 0D. Another term for a simple
closed curve i1s a Jordan curve. The Jordan Curve Theorem is given here,
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but a proof is beyond the purpose of this book. See Whyburn [1964].

1.3 Jordan Curve Theorem. If v is a simple closed curve in C, then
C \ v has two components, each of which has v as its boundary.

Clearly one of the two components of C \ v is bounded and the other is
unbounded. Call the bounded component of C \ « the inside of v and call
the unbounded component of C \ v the outside of 7. Denote these two sets
by ins v and out 7, respectively.

Note that if v is a rectifiable Jordan curve, so that the winding number
n(; a) is defined for all a in C \ v, then n(vy;a) = %1 for a in ins v while
n(v;a) = 0 for a in out v. Say ~ is positively oriented if n(vy;a) = 1 for all
a in ins v. A curve 7 is smooth it v is a continuously differentiable function
and ~'(t) # 0 for all ¢t. Say that v is a loop if v is a positively oriented
smooth Jordan curve.

Here is a corollary of the Jordan Curve Theorem

1.4 Corollary. If v is a Jordan curve, ins v and (out y) U{oco} are simply
connected reqions.

Proof. In fact, C, \ ins v = cly(out ) and this is connected by the
Jordan Curve Theorem. Thus ins 7y is simply connected by Proposition 1.1.
Similarly, out v U {oo} is simply connected. O

A positive Jordan system is a collection I' = {v1,...,vm} of pairwise
disjoint rectifiable Jordan curves such that for all points a not on any -;,
n([5a) =Y .2 n(v;a) =0or 1. Let out I' = {a € C: n(I';a) = 0} = the
outside of I' and let ins I' = {a € C: n(I';a) = 1} = the inside of I'. Thus
C\I' =out I'Uins I'. Say that I' is smooth if each curve 7; in I' is smooth.

Note that it is not assumed that ins I' is connected and if I' has more
than one curve, out I' is never connected. The boundary of an annulus is
an example of a positive Jordan system if the curves on the boundary are
given appropriate orientation. The boundary of the union of two disjoint
closed annuli is also a positive Jordan system, as is the boundary of the
union of two disjoint closed disks.

If X is any set in the plane and A and B are two non-empty sets, say that
X separates A from B if A and B are contained in distinct components of
the complement of X. The proof of the next result can be found on page

34 of Whyburn [1964|.

1.5 Separation Theorem. If K is a compact subset of the open set U,
a € K, andb € Cy, \ U, then there is a Jordan curve v in U such that v is
disjoint from K and -y separates a from b.

In the preceding theorem it is not possible to get that the point a lies
in ins . Consider the situation where U is the open annulus ann(0;1, 3),
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K ={z;|z| =3/2}, a=3/2, and b = 0.

1.6 Corollary. The curve v wn the Separation Theorem can be chosen to
be smooth.

Proof. Let ) = ins v and for the moment assume that a € {). The other
case is left to the reader. Let Ko = K N 2. Since yN K = 0, it follows that
Ko is a compact subset of {2 that contains a. Since {2 is simply connected,
there is a Riemann map 7 : D — (). By a compactness argument there is
a radius r, 0 < r < 1, such that 7(rD) D Kj. Since U is open and v C U,
r can be chosen so that 7(r0dD) C U. Let o be a parameterization of the
circle rOD and consider the curve 7 oo. Clearly 7o o separates a from b, is
disjoint from K, and lies inside U. O

Note that the proof of the preceding corollary actually shows that v can
be chosen to be an analytic curve. That is, v can be chosen such that
it is the image of the unit circle under a mapping that is analytic in a

neighborhood of the circle. (See §4 below.)

1.7 Proposition. If K s a compact connected subset of the open set U
and b 18 a point in the complement of U, then there 1s a loop v in U that
separates K and b.

Proof. Let a € K and use (1.6) to get a loop v that separates a and b.

Let {2 be the component of the complement of v that contains a. Since
KNQ#0, KN~y =0, and K is connected, it must be that K C Q. O

The next result is used often. A proof of this proposition can be given
starting from Proposition 8.1.1. Actually Proposition 8.1.1 was not com-
pletely proved there since the statement that the line segments obtained in
the proof form a finite number of closed polygons was never proved in de-
tail. The details of this argument are combinatorially complicated. Basing
the argument on the Separation Theorem obviates these complications.

1.8 Proposition. If E is a compact subset of an open set GG, then there
1$ a smooth positively oriented Jordan system I' contained in G such that

FE CinsI' C @.

Proof. Now (G can be written as the increasing union on open sets G,
such that each G, is bounded and C \ G,, has only a finite number of
components (7.1.2). Thus it suffices to assume that G is bounded and C\ G
has only a finite number of components, say Ky, K1,..., K, where K is
the unbounded component.

It is also sufhicient to assume that G is connected. In fact if Uy, Us,...
are the components of G, then {U,,} is an open cover of E. Hence there
is a finite subcover. Thus for some integer m there are compact subsets
Ey of Ug, 1 < k < m, such that F = |J]' Ek. If the proposition is proved
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under the additional assumption that G is connected, this implies there
is a smooth positively oriented Jordan system 1’y in Ug such that F, C
ins I' C Ug; let T' = |J]" ['x. Note that since cl (ins I'y) = 'y Uins T'y C Uy,
cl (ins I'y) Ncl (ins I';) = 0 for k # 4. Thus I is also a positively oriented
smooth Jordan system in G and E Cins I' =] ins I'y C G.

Let € > 0 such that for 0 < 5 < n, (Kj) = {z : dist(z,K;) < ¢}
is disjoint from FE as well as the remainder of these inflated sets. Also
pick a point ag in intKy. By Proposition 1.7 for 1 < 3 < n there is a
smooth Jordan curve v, in {z : dist(z, K;) < €} that separates ag from K.
Note that ag belongs to the unbounded component of the complement of
{z :dist(z,K;) < €}. Thus K, C ins v; and ag € out ;. Give v; a negative
orientation so that n(v; : z) = —1 for all z in Kj.

Note that U = C\ K is a simply connected region since its complement
in the extended plane, Ky, is connected. Let 7 : ) — U be a Riemann map.
For some r, 0 < r < 1, V = 7(rD) contains FU|J; K; and 0V C int(Kjp)e..
Let vo = OV with positive orientation. Clearly E U |J; K; C ins 7o and
ag € out 7.

It is not difficult to see that I' = {v9,71,...,Vn} is & smooth Jordan
system contained in G. If z € K for 1 < j < n, then n(I', z) = n(v;, 2) +
n(vo,2) = —1+1 = 0. Now ag € out I''; but the fact that I' C G and K| is
connected implies that Ky C out I'. It follows that ins I' C G.

On the other hand, if 2 € E, then z € out y; for 1 < j < n and 2z € ins 7.

Thus £ CinsI'. O

1.9 Corollary. Suppose G is a bounded region and K,..., K, are the
components of Coo \ G with co in Ky. If € > 0, then there is a smooth
Jordan system I' = {vg,...,Yn} in G such that:

(a) for1 <j<n, K; Cinsvy,,

(b) Ko C out Yo,

(c) for0 < j <mn, v; C{z:dist(z,K,) < €}.

Proof. Exercise. O

1.10 Proposition. An open set G in C s ssimply connected if and only if
for every Jordan curve v contained in G, insvy C G.

Proof. Assume that G is simply connected and ~ is a Jordan curve in G.
So C \ G is connected, contains oo, and is contained in C \ 7. Therefore
the Jordan Curve Theorem implies that C\ G C out «. Hence, cl (ins v) =
C\ out v C G.

Now assume that G contains the inside of any Jordan curve that lies in
(. Let o be any closed curve in G; it must be shown that o is homotopic
to 0 in G. Let € > 0 be chosen so that (o). C G and pick a point b in the
unbounded component of the complement of (¢).. By Proposition 1.7 there
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is a Jordan curve 7 in {z : dist(z, o) < €} that separates the compact set
o and the point b. The unbounded component of the complement of (o).
must be contained in the outside of v so that b € out «; thus ¢ C ins ~.
But ins « is simply connected (1.4) so that o is homotopic to 0 in ins +.
But by assumption G contains ins v so that o is homotopic to 0 in G and

(G is simply connected. O

1.11 Corollary. If v and o are Jordan curves with o C cl(ins~y), then
ins o C ins .

A good reference for the particular properties of planar sets is Newman
11964].

Exercises

1. Give a direct proot of Corollary 1.11 that does not depend on Propo-
sition 1.10.

2. For any compact set I/, show that E. has a finite number of compo-
nents. If F is connected, show that E. is connected.

3. Show that a region G is simply connected if and only if every Jordan
curve in G is homotopic to 0.

4. Prove Corollary 1.9.

5. This exercise seems appropriate at this point, even though it does
not use the results from this section. The proot of this is similar to
the proof of the Laurent expansion of a function with an isolated
singularity. Using the notation of Corollary 1.9, show that if f is
analytic in G, then f = fo + f1 + -+ fn, where f; is analytic on
Coo \ K; (0 <7 <n)and f;j(co) =0 for 1 < j < n. Show that the
functions are unique. Also show that if f is a bounded function, then

each f; is bounded.

32 Derivatives and Other Recollections

In this section some notation is introduced that will be used in this book
and some facts about derivatives and other matters will be recalled.

For any metric space X, let C(X) denote the algebra of continuous
functions from X into C. If n 1s a natural number and G is an open
subset of C, let C"*(G) denote the functions f : G — C such that f
has continuous partial derivatives up to and including the n-th order.

C°(G) = C(G) and C*°(G) = the infinitely differentiable functions on
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G.If 0 <n < oo, C?(G) denotes those functions f in C™(G) with suppf =
support of f =cl {z € G: f(z) # 0} compact.

It is convenient to think of functions f defined on C as functions of the
complex variables z and Z rather than the real variables x and y. These
two sets of variables are related by the formulas

2 =x+1y Z =T —1y
. 2tz 2Tz
-2 ST Ty

Thus for a differentiable function f on an open set G, it is possible to
discuss the derivatives of f with respect to z and Z. Namely, define

_ of _1(of _.of
of = 5;_2(8x 8y)’
Of = Qi__l_ ?_[__Z_a__f_
o = 8z_2<83r: 8y)'

These formulas can be justified by an application of the chain rule. A
derivation of the formulas can be obtained by considering dz = dx + idy
and dz = dxr — idy as a module basis for the complex differentials on G,
expanding the differential of f, df, in terms of the basis, and observing that
the formulas for Of and Of given above are the coefficients of dz and dz,
respectively.

The origin of this notation is the theory of functions of several complex
variables, but it is very convenient even here. In particular, as an easy
consequence of the Cauchy-Riemann equations, or rather a reformulation
of the result that a function is analytic if and only if its real and imaginary
parts satisty the Cauchy-Riemann equations, we have the following.

2.1 Proposition. 4 function f : G — C is analytic if and only if 6f = 0.

S0 the preceding proposition says that a function is analytic precisely
when it is a function of z alone and not of Z.

With some effort (not to be done here) it can be shown that all the
laws for calculating derivatives apply to 8 and O as well. In particular, the
rules for differentiating sums, products, and quotients as well as the chain
rule are valid. The last is explicitly stated here and the proof is left to the
reader.

2.2 Chain Rule. Let G be an open subset of C and let f € C1(G). If Q is

an open subset of C such that f(G) C Q and g € C*(Q), then go f € C(G)
and

D
P
Nw'

O
S~y
N’

|

(9g) o f10f + [(Og) o f] O
(Bg) o f10f + [(8g) o f

Q|
P N
Nw'

O
S~y
N’

|
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So if a formula for a function f can be written in terms of elementary
functions of z and Z, then the rules of calculus can be applied to calculate
the derivatives of f to any order. The next result contains such a calcula-

tion.
2.3 Proposition.
(a) O(loglz|) = 1{2z} and 0 (log|z|) = 1{2z}.
(b) Of =0 f.

2 2 2 2
(c) If A s the Laplacian -—(2— + 8 = ( O ) - (-—a—) , then A =
400 = 400.

Proof. For part (a), write log|z| = 2 log|z|* = 7 log(zZ) and apply the
chain rule. The remaining parts are lett to the reader. C

Hence a function u : G — C is harmonic if and only if 80u = 0 on G.
Therefore, u is harmonic if and only if Ou is analytic. (Note that we are
considering complex valued functions to be harmonic; in the first volume

only real-valued functions were harmonic.)
For any function u defined on an open set, the n-th order derivatives of

u are all the derivatives of the form 8’ 0%u, where j + k = n.

A polynomial in z and Z is a function p(z,%) of the form 3 a;x2/Z",
where a ;i is a complex number and the summation is over some finite set
of non-negative integers. The n-th degree term of p(z, %) is the sum of all
the terms ajkzj'z'k with 7 + k = n. The polynomial p(z,Z) has degree n if
it has no terms of degree larger that n.

It is advantageous to rewrite several results from advanced calculus with

this new notation.

2.4 Taylor’s Formula. If f € C"(G), n > 1, and B(a; R) C G, then there
is a unique polynomial p(z,Z) 1 z and Z of degree < n — 1 and there is a
function g in C™(G) such that the following hold:

(a) f=p+g;
(b) each derivative of g of order < n — 1 vanishes at a;

(c) for each z in B(a; R) thereis an s, 0 < s <1, (s depends on z) such
that



13.2. Derivatives and Other Recollections 9

Thus for each z in B(a; R)

o)l < Eot S max {|0497 f(w)| < hw —al < |z —al}.

2.5 Green’s Theorem. If I' is a, smooth positive Jordan system with
G=insT, u e C(c G), ue CHQG), and Ou is integrable over G, then

Ju=2i[[ 3u

While here, let us note that integrals with respect to area measure on C
will be denoted in a variety of ways. [/ . is one Way (if the variable of inte-
gration can be suppressed) and [, fdA = |, f(z)dA(z) is another. Which
form of expression is used will depend on the context and our purpose at
the time. The notation [ f dA will mean that integration is to be taken
over all of C. Finally, xx denotes the characteristic function of the set K;
the function whaose value at points in K is 1 and whose value is 0 at points
of the complement of K.

Using Green’s Theorem, a version of Cauchy’s Theorem that is valid for
non-analytic functions can be obtained. But first a lemma is needed. This
lemma will also be used later in this book. As stated, the proof of this lemma
requires knowledge of the Lebesgue integral in the plane, a violation of the
eground rules established in the Preface. This can be overcome by replacing
the compact set K below by a bounded rectangle. This modified version
only uses the Riemann integral, can be proved with the same techniques
as the proof given, and will suffice in the proof of the succeeding theorem.

2.6 Lemmma. If K is a compact subset of C, then for every z

[ 2= dmaAQ) <
K

Proof. 1If h(¢) = |¢|~!, then using a change of variables shows that

/ 2 — ¢ 1dA(Q)

/ i (Oh(z — O)dAQ)
/ xi(z — OB AA(C)
[ modAe)
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If R is sufficiently large that z — K C B(0; R), then

/ 2~ (7N AQ) < / ¢~ dA()
K B(O;R

/ / d@dr
0 Jo
21 R.

2.7 The Cauchy-Green Formula. If I' is a smooth positive Jordan sys-
tem, G =ins T, u € C(cl G), u € CY(G), and Ou 1is integrable on G, then

for every z in G

u(z) = — /F w(¢)(C — 2)71d¢ — ~ /G (¢ — 2)"1Bu dAQ).

271 T

Proof. Fix w in G and choose € > 0 such that B(w;¢) C G. Put B, =
B(w;e) and G = G \ ¢l B.. Now apply Green’s Theorem to the function
(z — w)~!'u(z) and the open set G.. (Note that 0G, = I' U 0B, and, with
proper orientation, 0G. becomes a positive Jordan system.) On G,

(z —w) 'u] = (2 —w) ' ou

0

since (z — w) ™! is an analytic function on G.. Hence

2.8 / Uz) 4, / UZ) 4, — o / b B dA)
r < — w OB, <~ — W G, <~ W
But .
lim u(z) dz = lim z/ u(w + e*)dh
e—0 OB, < — W e—0 0
= 2miu(w).

Because (z — w)™" is locally integrable (Lemma 2.6) and bounded away
from w and Ou is bounded near w and integrable away from w, the limit
of the right hand side of (2.8) exists. So letting € — 0 in (2.8) gives

/F uz) dz — 2miu(w) = 22'/ : Ou dA(2).

< — W GZ—U)

- Note that if, in the preceding theorem, u is an analytic function, then
Ou = 0 and this become Cauchy’s Integral Formula.
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2.9 Corollary. If u € C;(C) and w € C, then

u(w) = —l/ : ou dA(z).

T < — W

There are results analogous to the preceding ones where the Laplacian
replaces 0.

2.10 Lemma. If K 18 a compact subset of the plane, then
f log | 2|| dA(2) < co.
K

Proof. If polar coordinates are used, then it is left to the reader to show
that for any R > 1

1
/ log |z||dA(z) = mR* [logR— = | + .
2|<R &

This proves the lemma. O

2.11 Theorem. If u € C? on the plane and w € C, then

u(w) = 51; /log z — w|Au dA(2).

Proof. Let R be positive such that supp(u) € B(w;R) and for € > 0

let Ge = {z:e<|z—w|< R} and v, = {z:|z — w| = ¢} with suitable
orientation. Green’s Theorem implies

Oulog |z — w|dz
Ve

22'/ 0 [log |z — w|Ou] dA(2)
G

Qi/ (00u) log |z — w|d.A(z)
Gz—:

c. 2(

Z — W)
(

5 /GE (Au) log |z — w|dA(z)

+-1 / — 811,_ dA(z).
G

< — W

')

Now l f% (Ou) log |z — w|dz| < Meloge for some constant M independent

of €. Hence the integral converges to 0 as € — 0. Since (Z — w) " is locally
integrable and du has compact support, [[. [0u/(Z—w)] converges as
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e — 0. By Corollary 2.9 and Proposition 2.3(b) this limit must be —7u(w).
Since Awu is continuous and has compact support, combining this latest
information with the above equations, the theorem follows. C

We end this section with some results that connect areas with analytic
functions. The first result is a consequence of the change of variables for-
mula for double integrals and the fact that if f is an analytic function, then
the Jacobian of f considered as a mapping from R? into R? is |f'|? (see
Exercise 2).

2.12 Theorem. If f is a conformal equivalence between the open sets G

and €2, then
Area(2) = // ]2
G

2.13 Corollary. If () s a simply connected region, 7 : D — €2 s a Riemann
map, and 7(z) = > anz™ in D, then

Area(Q)) = // 7/]% = W2n|an|2.
D ~

Proof. The first equality is a restatement of the preceding theorem for
this special case. For the second equality, note that 7/(2) = > na,z""".
So for r < 1,

(Z nanrn—lei(n—lw) (Z mamrm—lei(m—l)Q)

m,n

|

' (re'”)|’

and this series converges uniformly in 6. Using polar coordinates to calcu-
late [/, |7'|* and the fact that fo% e!m=m0dh = 0 for n # m, we get

1
[[1rP = SwtlanPeen [ e
n 0

1
) 2 n2_______
27) Y n%anf? -

|

[]

It f tails to be a conformal equivalence, a version of this result remains
valid. Namely, [[.|f'|* is the area of f(G) “counting multiplicities.” This
is made specific in the next theorem. The proot of this result uses some
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measure theory; in particular, the reader must know the Vitali Covering
Theorem.

2.14 Theorem. If f : G — (2 is a surjective analytic function and for each
¢ in Q,n(¢) is the number of points in f~1({), then

[ 1r1Paa= [ n(©da©:

Proof. Since f is analytic, {z : f'(z) = 0} is countable and its complement
in GG is an open set with the same measure. Thus without loss of generality
we may assume that f’ never vanishes; that is, f is locally one-to-one.
Thus for each z in G there are arbitraily small disks centered at z on
which f is one-to-one. The collection of all such disks forms a Vitali cover
of G. By the Vitali Covering Theorem there are a countable number of
pairwise disjoint open disks {D,} such that f is one-to-one on each D,
and Area(G \ U,D,) = 0.

Put A = U,f(D,) = f(U,D,). Because f(0D,) is a smooth curve,
Area(2) = Area(A). For 1 < k < oo, let Ay = {C € A : n({) = k}; so
Area(A) = >, Area(Ay). If Gy = f~'(Ag), then Theorem 2.12 implies

[irean = 3 [ ippas

|
>
®
=
>
N
D
P!
N

n=1

— k'Area(Ak)

since f is one-to-one on each D,,. Thus

[ 17/
G 1<k<oo Y Gk

| |

RN
= Q\
>
@ ~
2 o
S

H
S~
=
Z
=
P
C

Exercises

1. Show that if K and L are compact subsets of C, then there is a
constant M > 0 such that [, |z —¢(|7'dA({) < M for all z in L.
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2. Show that if f : G — C is an analytic function and we consider f as
a function from the region G in R? into R*, then the Jacobian of f

s 1P
3. Let f be defined on D by f(z) =exp|(z+ 1) /(2 — 1) )| and show that
ff |f’(Z)|2 — 00. Discuss.

4. It G is a region and u is a real-valued harmonic function on G such
that {z : u(z) = 0} has positive area, then u is identically 0.

33 Harmonic Conjugates and Primitives

In Theorem 8.2.2 it was shown that a region G in the plane has the property
that every harmonic function on GG has a harmonic conjugate if and only
if GG is simply connected. It was also shown that the simple connectivity
of G is equivalent to the property that every analytic function on G has a
primitive.

The above mentioned results neglect the question of when an individual
harmonic function has a conjugate or an individual analytic function has
a primitive. In this section these questions will be answered and it will be
seen that even on an individual basis these properties are related.

We begin with an elementary result that has been used in the first volume
without being made explicit. The proof is left to the reader.

3.1 Proposition. If f : G — C s an analytic function, then f has a
primaitive if and only if f,y f =0 for every closed rectifiable curve v in G.

Another result, an easy exercise in the use of the Cauchy-Riemann equa-
tions, is the following.

3.2 Proposition. If u : G — C is a C? function, then u is a harmonic
function on G if and only if f = (uy — tuy)/ 2 = Ou is an analytic function

on G.

It turns out that there is a close relation between the harmonic function
and the analytic function f = Ou. Indeed, one function often can be studied
with the help of the other. A key to this is the following computation. If
is any closed rectifiable curve in GG, then

3.3 /811, — - /(’u,xdy — U, dx).
v 2 J5

In fact, [ f = -%f,y(u,a3 — tuy ) (dx +1dy) = %f,y(uagda:—i—uydy) + Jo (uzdy —
uydz) and [ (uzdz +uydy) = 0 since this is the integral of an exact differ-
ential.
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We are now ready to present a direct relation between the existence of a
harmonic conjugate and the existence of a primitive.

3.4 Theorem. If G 1s a region in C and u : G — R is a harmonic function,
then the following statements are equivalent.

(a) The function u has a harmonic conjugate.
(b) The analytic function f = Ou has a primitive in G.
(c) For every closed rectifiable curve v in G, [ (uzdy — uydz) = 0.

Proof. By Proposition 3.1, (3.3) shows that (b) and (c) are equivalent.

(a) wmplies (b). If g is an analytic function on G such that g = u + v,
then the fact that the Cauchy-Riemann equations hold implies that ¢’ =
Ug + Uy = Uy — 12Uy, = 2.

(b) implies (a). Suppose g is an analytic function on G such that ¢’ = 2f
and let U and V be the real and imaginary parts of g. Thus ¢’ = U, +1V, =
2f = ug —tu,. It is now an easy computation to show that u and V satisty
the Cauchy-Riemann equations, and so V' is a harmonic conjugate of u. C

For a function u the differential u,y —u,dx is called the conjugate differ-
ential of u and is denoted *du. Why? Suppose u is a harmonic function with
a harmonic conjugate v. Using the Cauchy-Riemann equations the differ-
ential of v is dv = v, dz + v, dy = —u,dx + u,dy = *du. So Theorem 3.4(c)
says that a harmonic function u has a harmonic conjugate if and only if its
conjugate differential *du is exact. (See any book on differential forms for
the definition of an exact form.)

The reader might question whether Theorem 3.4 actually characterizes
the harmonic functions that have a conjugate, since it merely states that
this problem is equivalent to another problem of equal difficulty: whether
a given analytic function has a primitive. There is some validity in this
criticism, though this does not diminish the value of (3.4); it is a criticism
of the result as it relates to the originally stated objective rather than any
internal defect.

Condition (c) of the theorem says that to check whether a function has
a conjugate you must still check an infinite number of conditions. In §15.1
below the reader will see that in the case of a finitely connected region this
can be reduced to checking a finite number of conditions.

Here is a fact concerning the conjugate differential that will be used in
the sequel. Recall that Ou /On denotes the normal derivative of u with
respect to the outwardly pointed normal to a given curve ~.

3.5 Proposition. If u is a continuously differentiable function on the re-
gion G and v s a closed rectifiable curve in G, then

1 au_-—/ du = — /8u|dz|
7['2 7"2
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Proof. The first equality is a rephrasing of (3.3) using the latest edition
of the notation. The proof of the second equality is a matter of using the
definitions of the relevant terms. This will not be used here and so the
details are left to the reader. C

Exercises

1. If G is a region and u : G — R is a continuous function, then u is
harmonic if and only if for every a in G there is an 6 > 0 such that
u(a) = (2m)~! [u(a + re*)df for r < 6. (A slight weakening of the
fact that functions with the Mean Value Property are harmonic.)

2. It u is a real-valued function on G, show that Ou dz = ou dz =
2 (du + 1*du). Hence Ou dz + Ou dz = du + i*du.

3. Prove that a region G is simply connected if and only if every complex
valued harmonic function v : G — C can be written as u = g + h for
analytic functions g and h on G.

4. Let GG be a region and f : G — C an analytic function that never
vanishes. Show that the following statements are equivalent. (a) There
is an analytic branch of log f(z) on G (that is, an analytic function

g : G — C such that exp|g(z)] = f(z) for all z in G). (b) The
function f’/ f has a primitive. (c) For every closed rectifiable path ~

inG, | f'/f=0.

5. Let r = p/q be a rational function, where p and g are polynomials
without a common divisor. Let aq,...,a, be the distinct zeros of p
with multiplicities a4, ..., o, and let by,...,b,, be the distinct zeros
of ¢ with multiplicities 31,...,08,,. It G i1s an open set in C that
contains none of the points a1,...,a,, b1,...,b;,, show that there is
an analytic branch of logr(z) if and only if for every closed rectifiable

path v in G,

0 = Zajn('y; a;) — Z,@in('y : b;).
j=1 i=1

34 Analytic Arcs and the Reflection Principle

If €2 is a region and f : D — €2 is an analytic function, under what circum-
stances can f be analytically continued to a neighborhood of cl D? This
question is addressed in this section. But first, recall the Schwarz Reflection
Principle (9.1.1) where an analytic function is extended across the real line
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provided it is real-valued on the line. It is probably no surprise that this
can be generalized by extending functions across a circle; the details are
given below. In this section more extensive formulations of the Reflection
Principle are formulated. The relevant concept is that of an analytic arc.
Before addressing this issue, we will concentrate on circles.

Suppose G is any region that does not include 0. If G = {1 /z: z € G},
then G is the reflection of G across the unit circle OD. If f is an analytic

function on G, then f#({) = f (C —1) defines an analytic function on G .

Similarly if G is any region and a is a point not in G, then for some radius

r >0
9 9

4.1 G#:{a-l— ! 2Z€G}:{C:a+—r EG}

Z—@ (—a

is the reflection of G across the circle 8B(a;r). Note that a ¢ G# and
G## = G. If f is an analytic function on G and G* is as above, then

—
4.2 ) =1 (a + = )
is analytic on G*. Here is one extension of the Reflection Principle.

4.3 Proposition. If G is a region in C, a ¢ G, and G = G7, let G4 =
GNB(a;r), Go = GNoB(a;r), and G_ = GN[C\ B(a;r)]. If f : G4+ U
Go — C is a continuous function that is analytic on Gy, f(Go) C R, and
f7* : G — C is defined by letting f7(z) = f(z) for z in G; UGy and letting
f#(2) be defined as in (4.2) for z in G_, then f7 is an analytic function on
G. If f is one-to-one and Im f has constant sign, then 7 is a conformal
equivalence.

Proof. Exercise O

The restraint in the preceding proposition that f is real-valued on Gy
can also be relaxed.

4.4 Proposition. If G is a region in C, a ¢ G, and G = G7, let G, G_,
Go be as in the preceding proposition. If f : G UGy — C 1s a continuous
function that is analytic on G4+ and there is a point a not in f(Gy) and
a p > 0 such that f(Go) C 0B(a; p) less one point and if f7 : G — C is
defined by letting f7(2) = f(2) on G4 UGq and

() = ot ——F

f(a+_57fa_) -

for z in G_, then f# is analytic. If f is one-to-one and f(G..) is contained
entirely in either the inside or the outside of B(a; p), then f is a conformal
equivalence.
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Proof. Let T be a Mobius transformation that maps 0B(a;p) onto R U
{oo} and takes the missing point to co; so T' o f satisfies the hypothesis of
the preceding proposition. The rest ot the proof is an exercise. O

Let Dy ={z€ D :Imz > 0}.

4.5 Definition. If €2 is a region and L is a connected subset of 02, then L is
a free analytic boundary arc of €2 if for every w in L there is a neighborhood
A of w and a conformal equivalence h : ) — A such that:

(a) h(0) = w;
(b) h(—1,1) = LN A;
(c) h(Dy) =QNA.

Note that the above definition implies that 2N A is a simply connected
region. The first result about free analytic boundary arcs is that every arc
in 0D is a free analytic boundary arc of D, a welcome relief. Most of the
proof is left to the reader. The symbol H_ is used to denote the upper halt

plane, {z : Im 2z > 0}.

4.6 Lemma. If w € 0D and € > 0, then there is a neighborhood V' of w
such that V C B(w;¢e) and there is conformal equivalence h : D — V such

that h(0) = w, h(—1,1) = V N D, and h(Dy) =V ND.

Proof. It may be assumed that w = 1. Choose a on d) such that Ima > 0

and the circle orthogonal to 0D that passes through a and @ lies inside
B(1;¢). Let h be the Mobius transformation that takes 0 to 1, 1 to ¢,

and oo to —1. It is not hard to see that h(R,,) = 0D and A(Hy) = D. If
h(0D) = C and V is the inside circle C, then these fulfill the properties

stated in the conclusion of the lemma. The details are lett to the reader.
[ ]

The next lemma is useful, though its proof is elementary. It says that
about each point in a free analytic boundary arc there is a neighborhood
basis consisting of sets such as appear in the definition.

4.7 Lemma. If L is a free boundary arc of S, w € L, and U 1s any
neighborhood of w, then there is a neiwghborhood A of w with A C U and a

conformal equivalence h : D — A such that:
(a) h(0) = w;

(b) h(—=1,1) =LNA,

(c) h(Dy) =R2NA,

Proof. According to the definition there is a neighborhood A of w and a.
conformal equivalence k£ : D — A with k(0) = w, k(—1,1) = AN L, and
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k(D) = QN A. The continuity of k implies the existence of 7, 0 < r < 1,
such that k(rD) C U. Let A = k(rD) and define h : D — A by h(z) = k(rz).
It is left to the reader to check that h and A have the desired properties.
[]

4.8 Theorem. Let G and ) be regions and let J and L be free analytic
boundary arcs in 0G and OS2, respectively. If f is a continuous function
on G U J that is analytic on G, f(G) C Q, and f(J) C L, then for any
compact set K contained in J, f has an analytic continuation to an open
set containing G U K.

Proof. Let z € J and put w = f(z); so w € L. By definition there is a
neighborhood A, of w and a conformal equivalence h,, : D — A, such that
ho(0) =w, hy(—1,1) = A,NL, and h,(Dy) = QNA,. By continuity, there
is a neighborhood U, about z such that f (U, Ncl G) = f (U, N (G U J)) C
A,Ncl @ =A,N(QUL). Since J is a free analytic boundary arc, the
preceding lemma implies this neighborhood can be chosen so that there is
a conformal equivalence k, : D — U, with k£,(0) = 2, k,(-1,1) = U, N J,
and kz(D+) — Uz NG.

Thus g, = h ! o f o k, is a continuous function on D, U (—1,1) that is
analytic on D, and real valued on (—1,1). In fact, g,(—1,1) C (—1,1) and
g.(Dy) C Dy. According to Proposition 4.3, g, has an analytic continuation
g7 to D. From the formula for g7 we have that ¢77 (D) C D. Thus f# = h,o
g7 ok ! is a well defined analytic function on U, that extends f |(U, N G).
Extend f to a function f on G U U, by letting f =fonG and f = f# on
U,. It is easy to see that these two definitions of f agree on the overlap so
that f is an analytic function on G U U,.

Now consider the compact subset K of J and from the open cover {U, :
z € K} extract a finite subcover {U; : 1 < j < n} with corresponding
analytic functions f; : GUU; — C such that f; extends f. Write K as the
union K; U---UK,, where each K is a compact subset of U;. (The easiest
way to do this is to consider a partition of unity {¢;} on K subordinate to
{U;} (see Proposition 18.2.4 below) and put K; ={z € K : ¢;(2) > 1/n}.)
Note that if it occurs that U;NU; # 0 but U;NU;NG = 0, then K;NK; = 0.
Indeed, if there is a point z in K;NK;, then z belongs to the open set U;NU;
and so U; NU; NG # (. Thus replacing U; and U; by smaller open sets that
still contain the corresponding compact sets K; and K;, we may assume
that whenever U; N U; # () we have that U; NU,; N G # 0.

Soif U;NU; # 0, f; and f; agree on U; N U; NG with f; thus the two
extensions must agree on U; N U;. Thus we can obtain an extension f# of
f to GU U;"zl U;, which is an open set containing G U K. [

We close this section with a reflection principle for harmonic tunctions.
First we attack the disk.

4.9 Lemma. Let u be a continuous real-valued function on cllD that is
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harmonic on . If there 1s an open arc J wn 0D such that u is constant on

J, then there is a region W containing DU J and a harmonic function u;
on W such that uy = u on DU J.

Proof. It suffices to assume that u = 0 on J. Suppose J = {e® : a < t <
3}, where —m < a < 8 < 7. By using the Poisson kernel we know that

u(2) 1 i

zt)dt

%{/ /} ey

for z = re® in D (10.2.9). Moreover on D, u = Re f where f is the analytic
function on W = C\ [0D \ J| defined by

1t
+ 2z lt
dt.
(2) 2'”{/—« /}elt—z Jat

Thus u; = Re f is the sought for harmonic extension. O

4.10 Theorem. Suppose G s a region and J s a free analytic boundary
arc of G. If u: GUJ — R 18 a continuous function that is harmonic in G
and constant on J, then for any compact subset K of J, u has a harmonic
extension u; on a reqgion W that contains G U K.

Proof. The proof is similar to that of Theorem 4.8; the details are left to
the reader. O

Here is a special type of finitely connected region.

4.11 Definition. A region G is a Jordan region or Jordan domain if it
is bounded and the boundary of G consists of a finite number of pairwise
disjoint closed Jordan curves. If there are n + 1 curves ~g,71,...,7, that
make up the boundary of GG, then G is called an n-Jordan region.

Since G is assumed connected, it follows that one of these curves forms
the boundary of the polynomial convex hull of cl G; denote this curve by g
and refer to it as the outer boundary of GG. It then follows that the insides of
the remaining curves are pairwise disjoint. Thus the curves can be suitably
oriented so that I' = {vo,...,7.} is a positive Jordan system.

4.12 Definition. Say that a Jordan curve 7 is an analytic curve if there
is a function f analytic in a neighborhood of 0D such that v = f(0D).
Say that a Jordan region is an analytic Jordan region if each of the curves
forming the boundary ot &G is an analytic curve.

It is easy to see that for an analytic Jordan region every arc in its bound-
ary is a free analytic boundary arc. An application of Theorem 4.10 (and
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Proposition 1.8) proves the following two results. The details are left to the
reader.

4.13 Corollary. Let G be an analytic Jordan region with boundary curves
Y0, V15 -+ -y Yn- If u 18 a continuous real-valued function on G U ~y; that is
harmonic on G and u 1 a constant on y;, then there is an analytic Jordan
region G1 containing G Uy; and a harmonic function u; on Gy such that
w1 = u on Q.

4.14 Corollary. If G is an analytic Jordan region and u : cIl G — R s a
continuous function that 1s harmonic on G and constant on each component
of the boundary of GG, then u has a harmonic extension to an analytic

Jordan region containing clG.

As was pointed out above, if G is an analytic Jordan region and z € 0G,
then there is a neighborhood U of z such that U N 0G is a free analytic
boundary arc. The converse is also true. If G is a Jordan region and every
point of the boundary has a neighborhood that intersects G in an analytic
Jordan boundary arc, then (G is an analytic Jordan region. This is another
of those results about subsets of the plane that seem obvious but require a
surprising amount of work to properly prove. See Minda [1977] and Jenkins

1991].

Exercises

1. Let GG, A, and {2 be simply connected regions and let f : G — A be a
conformal equivalence satisfying the following: (a) G 2 D and G # D;
(b) ADQ and A # Q; (c) f(D) = Q. If J is any open arc of G N OD,

then f(J) is a free analytic boundary arc of 2.

2. Prove Theorem 4.10.
3. Give the details of the prootf of Corollaries 4.13 and 4.14.

35 Boundary Values for Bounded Analytic Functions

In this section we will state three theorems about bounded analytic func-
tions on ) whose proots will be postponed. Both the statements and the
proofs of these results involve measure theory, though the statements only
require a knowledge of a set of measure 0, which will be explained here.

Let U be a (relatively) open subset of the unit circle, 0D. Hence U is
the union of a countable number of pairwise disjoint open arcs {Jx}. Let
Jr = {ew car < 0 <bi}, 0 < b —ar < 2m. Define the length of Ji by

LU) =) L(Jx).
k
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5.1 Definition. A subset E of 0D has measure zero if for every € > 0 there
is an open set U containing F with £(U) < e.

There are some exercises at the end of this section designed to help the
neophyte feel more comfortable with the concept of a set of measure 0. In
particular you are asked to show that countable sets have measure 0. There
are, however, some uncountable sets with measure 0. For example, if C is
the usual Cantor ternary set in [0, 1] and F = {62'”“" teC }, then £ is an
uncountable closed perfect set having measure 0.

A statement will be said to hold almost everywhere on 0D if it holds
for all a in a subset X of 0D and 0D \ X has measure 0; alternately, it
is said that the statement holds for almost every a in 0. For example, if
f : 0D — C is some function, then the statement that f is differentiable
almost everywhere means that there is a subset X of 9D such that 0D \ X
has measure 0 and f'(a) exists for all a in X; alternately, f'(a) exists for
almost every a in 0ID. The words “almost everywhere” are abbreviated by

a.e..
If f:D — C is any function and e* € 0D, then f has a radial limit at

el if, as r — 1—, the limit of f(re*’) exists and is finite. The next three
theorems will be proved later in this book. Immediately atter the statement
of each result the location of the proof will be given.

5.2 Theorem. If f : D — C s a bounded analytic function, then f has
radial limits almost everywhere on OlD.

This is a special case of Theorem 19.2.12 below.

If f is a bounded analytic function defined on D, then the values of the
radial limits of f, when they exist, will also be denoted by f(e*) unless it is
felt that it is necessary to make a distinction between the analytic function
defined on [D and its radial limits. Notice that f becomes a function defined
a.e.on OD.

5.3 Theorem. If f : D — C s a bounded analytic function and the radial
limaits of f exist and are zero on a set of positive measure, then f = 0.

This result is true for a class of analytic functions that is larger than the
bounded ones. This more general result is stated and proved in Corollary
20.2.12.

So, in particular, the preceding theorem says that it is impossible for
an non-constant analytic function f defined on D to have a continuous
extension f : ¢l ) — C such that f vanishes on some arc of OI). This
special case will be used in some of the proofs preceding §20.2, so it is
worth noting that this i1s a direct consequence of the Schwarz Reflection
Principle. It turns out that such a function that is continuous on cl D and
analtyic inside can have more than a countable set of zeros without being
constantly 0. That, however, is another story.



13.5. Boundary Values 23

Figure 13.1.

We now consider a more general type of convergence for a function as the
variable approaches a boundary point. Fix €, 0 < 0 < 27, and consider the
portion of the open unit disk DD contained in an angle with vertex e? = a,
symmetric about the radius z = ra, 0 < r < 1, and having opening 2¢,
where 0 < a < 5. See Figure 13.1.

Call such a region a Stolz angle with vertex a and opening «. The variable
z is sald to approach a non-tangentially if z — a through some Stolz angle.

This will be abbreviated z — a (n.t.). Say that f has a non-tangential
limit at a if there is a complex number ( such that f(z) — ( as z — a

through any Stolz angle with vertex a.

5.4 Theorem. Let v : [0,1] — C be an arc with v(|0,1)) C D and suppose
v ends at the point v(1) = a in OD. If f : D — C is a bounded analytic
function such that f(y(t)) » a ast — 1—, then f has non-tangential limat
« at a.

5.5 Corollary. If a bounded analytic function f has radial limit ¢ at a 1n
O, then f has non-tangential limit ( at a.

Theorem 5.4 will be proved here, but two results (Exercises 6 and 7) are
needed that have not yet been proved. These will be proved later in more
generality, but the special cases needed are within the grasp of the reader
using the methods of the first volume. For the proof a lemma. is needed. In
this lemma and the proof of (5.4), the Stolz angle at z = 1 of opening 26
is denoted by Ss.

5.6 Lemma. Suppose 0 <r <1, B=B(l;r), 2=BND, and I = {z €
0N : Imz < 0 and |z| = 1}. If w is the solution of the Dirichlet problem
with boundary values xr, then for everye > 0, there1sa p, 0 < p < r, such

that if |z — 1| < p, 0 < 6 < 7/2, and z € Sg, then w(z) > (1/2) —6/m — €.

Proof. For w in 2, let ¢(w) € (0, 1) such that 7¢(w) is the angle from the
vertical line Rez = 1 counterclockwise to the line passing through 1 and

w. It can be verified that ¢(w) = 7~ arg(—i(w — 1)). Thus ¢ is harmonic
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for Rew < 1 and continuous on cl D \ {1}. Let { be the end point of the
arc I different from 1.

Claim. If we define (¢ —w)(1) =0, then (¢ —w) : cl 2 — R is continuous
except at C.

Since (¢—w) is harmonic on €2 and is the solution of the Dirichlet problem
for its boundary values, we need only verify that (¢ —w) : 0D — R is
continuous except for the point (; by Exercise 6 the only point in doubt
here is w = 1. Suppose w — 1 with Imw < 0. Here ¢(w) — 1 and w(w)
is constantly 1. Now suppose w — 1 with Imw > 0. Here ¢(w) — 0 and
w(w) is constantly 0. Thus the claim.

To finish the proof of the lemma, let p > 0 such that |w(z) — ¢(2)| < ¢
for zincl Q and |z — 1| < p. If z € S, then ¢(z) > (1/2) — §/m. Thus

w(z) = w(z) — ¢(2) + $(2) > (1/2) = 6/m —e. T

Proof of Theorem 5.4. Without loss of generality we may assume that
a=1 a=0,and |f(2)] £ 1for |z|] < 1.If 0 < r < 1 there is a number
t. < 1 such that |y(t) — 1| <r fort, <t <1 and |y(¢t,) — 1| = r. Let 7.
denote the curve 7 restricted to [t,,1]. If £ > 0, then r can be chosen so
that |f(y(t))| < € for t, <t < 1. Fix this value of r and let Q = DN B(1;r).
As in the preceding lemma, let I; = {z € 02 : Im2z < 0 and |2| = 1} and
Ib ={z€002:Imz > 0and |z| = 1}. For k = 1,2 let wx be the solution
of the Dirichlet problem with boundary values x;,_; so by Exercise 6, wy, is
continuous on cl {2 except at the end points of the arc .

Claim. For z in 2, —log|f(z)| > —(loge) min{w; (2),w2(2)}-

Once this claim is proved, the theorem follows. Indeed, the preceding
lemma implies that there is a p, 0 < p < r, such that if |z — 1| < p, 0 <
6 < 7m/2,and z € Sg, then for k =1, 2, wk( ) > (1/2) — 6/m —e. (Observe
that wa(w) = wi(w).) Hence —log\f( )| > —(loge)|(1/2) — §/m — €] for
|z—1| < p and z € Ss. Therefore for such z, |f(z)| < e exp|(1/2) —6/m—¢],
which can be made arbitrarily small.

To prove the claim, let v(z) = (log|f(z)|)/loge; so v is a superharmonic
function on 2, v(z) > 0 for all z in 2, and v(y(t)) > 1 for £, <t < 1. So
if 2z € yNQ, then v(z) > 1 > wg(z). Suppose that z € 2\ v and let U
be the component of 2 \ v that contains z. Let (x be the end point of the
arc I, different from 1. Let o7 be the path that starts at 1, goes along 0D
in the positive direction to the point (5, then continues along 0B until it
meets y(t,). Similarly let oo be the path that starts at ~y(t,.), goes along
OB in the positive direction to the point (;, then continues along 0D in
the positive direction to the point 1. Note that o7 and oy together form
the entirety of the boundary of 2. Let I'y = o1 + v, and I'ys = 09 — 7,-. So
n(I'y;2) +n(le; 2) = n(0€2; z) = 1. Thus n(vg; z) # 0 for at least one value
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of k=1,2.

Suppose n(I'1;z) # 0. We now show that U C I';. In fact, general
topology says that OU C 0(2\7v,) = v»Uo1 Uoy =I'1 Uos. But if W is the
unbounded component of C\ I';, the assumption that n(I'y; z) # 0 implies
that UNW = 0. Also o2 \ {1,~(¢t,)} C W. Thus 0U C I';.

This enables us to show that v > w; on U, and so, in particular, v(z) >
w1(z). Indeed to show this we need only show that limsup,, ,,|wi(w) —
v(w)] < 0 for all but a finite number of points on QU (Exercise 7). Suppose
a € OU and a # 1 or 7(t.). By the preceding paragraph this implies
that a € v or a € 01. If a € +,. and a # 1 or v(¢.), then a € D and
v(a) > 1> wi(a). If a € 01 and a # 1 or 7(t,), then w; is continuous at a
and so wy (w) — 0 as w — a. Since v(w) > 0, limsup,,_, ,|w; (w)—v(w)] > 0.

In a similar way, if n(I'y;2) # 0, then v(2) > wa(z). This covers all the
cases and so the claim is verified and the theorem is proved. O

Theorem 5.4 is called by some the Sectorial Limit Theorem.

Be careful not to think that this last theorem says more than it does. In
particular, it does not say that the converse is true. The existence of a radial
limit does not imply the existence of the limit along any arc approaching
the same point of . For example, if f(z) = exp[(z+1) /(2 —1)], then
f is analytic, |f(z)| < 1 for all z in D, and f(t) — 0 as t — 1—. So the
radial limit of f at z = 1 is 0. There are several ways of approaching 1 by
a sequence of points (not along an arc) such that the values of f on this
sequence approaches any point in cl .

We wish now to extend this notation of a non-tangential limit to regions
other than the disk. To avoid being tedious, in the discussion below most of
the details are missing and can be easily provided by the interested reader.
For example if g : D, — C is a bounded analytic function, it is clear what
is meant by non-tangential limits at points in (—1, 1); and that the results
about the disk given earlier can be generalized to conclude that g has non-
tangential limit a.e. on (—1,1) and that if these limits are zero a.e. on a
proper interval in (—1,1), then ¢ =0 on D,.

If J is a free analyticity boundary arc of G and f : G — C is a bounded
analytic function, it is possible to discuss the non-tangential limits of f(z)
as z approaches a point of J. Indeed, it is possible to do this under less
stringent requirements than analytically for J, but this is all we require
and the discussion becomes somewhat simplified with this restriction. Re-
call (4.5) that if a € J, there is a neighborhood U of a and a confor-
mal equivalence h : ) — U such that h(0) = 0, h(—1,1) = U N J, and
h(Dy) = GNU. For 0 < a < w/2 and t in (—1,1), let C be the par-
tial cone {z € Dy : 72 < arg(z —r) < 72 + a} with vertex t. Since ana-
lytic functions preserve angles, h(C) is a subset of U bounded by two arcs
that approach h(t) on the arc J at an angle with the tangent to J at h(t).
Say that z — h(t) non-tangentially if z converges to h(t) while remaining
in h(C) for some angle a.
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Since the Mobius transformation (z — a)(1 — az) maps D to D, Dy to
D, and a to 0, it is not hard to see that the definition of non-tangential
convergence to a point on J is independent of the choice of neighborhood
U and conformal equivalence h. The details are left to the reader.

When we talk about subsets of the arc J having measure zero and the
corresponding notion of almost everywhere occurrence, this refers to the
arc length measure on J.

5.7 Theorem. Let G be a region with J a free analytic boundary arc of G
and let f : G — C be a bounded analytic function.

(a) The function f has a non-tangential limit at a.e. point of J.

(b) If the non-tangential limit of f is 0 a.e. on a subarc of J, then f =0
on G.

Proof. Let U and h be as in the discussion of the definition of non-
tangential convergence above. Thus f o h is a bounded analytic function
on D, and thus has non-tangential limits a.e. on (—1,1). Clearly this im-
plies that f has non-tangential limits a.e. on J NU. By covering U with a
countable number of such neighborhoods, we have a proof of part (a). The
proof of (b) is similar. O

5.8 Corollary. If G 1s a analytic Jordan region and f : G — C 15 a
bounded analytic function, then f has non-tangential limits a.e. on 0G.

Exercises

1. If E is a closed subset of 0D having measure 0, then 0D \ F is an
open set having length 2.

2. If {E} is a countable number of subsets of 0D having measure 0,
then | J, Ex has measure 0.

3. Every countable subset of 0D has measure 0.

4. Let f: D — C be defined by f(z) =exp|(z+1) /(2 —1)]. Show that
f is analytic, |f(2)| < 1 for all zin D, and f(f) - 0ast — 1—. If
(| <1, find a sequence {z,} in D such that z,, — 1 and f(z,) — (.

5. Let f; and fo be bounded analytic functions on D and suppose f;
has a radial limit at each point of E;, where D \ E; has measure 0.

Show (by example) that f; + f2 and f; fo may have radial limits at a
set of points that properly contains E; N Es.

6. (See Proposition 19.10.4) Let I" be a rectifiable Jordan curve and let
(2 be its inside. If v : I' — R is a bounded function that is continuous
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except for a finite number of points, then there is a function u : cl 2 —
R that is harmonic on €2 and continuous at every point of I' at which
the boundary function v is continuous.

7. (See Theorem 21.5.1.b) Let I' be a rectifiable Jordan curve and let
() be its inside. (Maximum Principle) If v : € — R is a subhar-
monic function that is bounded above and M is a constant such that
limsup,_,,u(z) < M for all but a finite number of points a in I', then

u < M on ().






Chapter 14

Conformal Equivalence for
Simply Connected Regions

In this chapter a number of results on conformal equivalence for simply
connected regions are presented. The first section discusses elementary in-
formation and examples. The next three sections present the basics of the
theory of prime ends for the study of the boundary behavior of Riemann
maps. This will be used in §5 to show that the Riemann map from the unit
disk onto the inside of a Jordan curve can be extended to a homeomorphism
on the closure of the disk. The chapter then closes with a discussion of the
family of all functions that are one-to-one on a simply connected region.

31 Elementary Properties and Examples

Recall that a conformal equivalence between two regions G and €2 in the
complex plane is a one-to-one analytic function f defined on G with f(G) =
(2. From the first volume we know that this implies that f'(z) # 0 for
all zin G. If f : G — C is an analytic function whose derivative never
vanishes, then we know that f is not necessarily a conformal equivalence
(the exponential function being the prime example). If f'(z) # 0 on G, it
does follow, however, that f is locally one-to-one and f is conformal.

In this section the conformal equivalences of some of the standard regions
will be characterized and some particular examples will be examined. A
slightly weaker version of the first result appeared as Exercise 12.4.2.

1.1 Proposition. If f is a conformal equivalence from C onto a subset
of C, then f(z) = az + b with a # 0. In particular, the only conformal
equivalences of C onto itself are the Mobius transformations of the form

f(z2) =az+ b with a # 0.

Proof. Clearly every such Mobius transformation is a conformal equiva-
lence of C onto itself. So assume that f : C — C is a conformal equivalence
onto f(C). Since f(C) is simply connected, f(C) = C. First it will be shown
that f(z) — oo as z — o0o. Note that this says that f has a pole at infinity
and hence f must be a polynomial (Exercise 5.1.13). Since f is a conformal
equivalence, it follows that f has degree 1 and thus has the desired form.
If either lim,_, f(z) does not exist or if the limit exists and is finite,
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then there is a sequence {z,} in C such that z, — oo and f(z,) — a, an
element of C. But f~! : C — C is continuous and so z, = f~! (f (2n)) —
f~1(a) # oo, a contradiction. O

To say that a function is analytic in a neighborhood of infinity means
that there is an R > 0 such that f is analytic in {z : |2| > R}. For such
a function f, f(z~!) has an isolated singularity at 0. Thus the nature of
the singularity of f at oo can be discussed in terms of the nature of the
singularity of f(z7') at 0. In particular, f has a removable singularity at
> if f is bounded near co and f(o0) = lim,_, f(2). If f has a removable
singularity at infinity, we will say that f is analytic at co. Similarly f has
a pole at oo if lim,_,, f(2) = co. In the case of a pole we might say that
f(o0o) = oo and think of f as a mapping of a neighborhood of oo in the
extended plane to a neighborhood of co. The order of a pole at oo is the
same as the order of the pole of f(z71) at 0.

1.2 Corollary. If f : C,, — C s a homeomorphism that is analytic on
Coo \ { f _l(oo)}, then f 1s a Mobius transformation.

Proof. If f(co) = oo, then this result is immediate from the preceding
proposition. If f(co) = a # oo, then g(z) = (f(z) — )" is a homeo-
morphism of C,, onto itself and g(co) = oo. Thus the corollary follows.
[

1.3 Example. If Q@ = C\ (—o0, —r]| for some r > 0, then

4rz

f(z):“("i“:—;)"g

is a conformal equivalence of I onto 2, f(0) = 0, and f'(0) = 4r. Thus f
is the unique conformal equivalence having these properties.

The uniqueness is, of course, a consequence of the uniqueness statement
in the Riemann Mapping Theorem. To show that f has the stated mapping
properties, let’s go through the process of finding the Riemann map.

Note that the Mobius transformation fi(z) = (1 + 2)(1 — 2)~! maps D
onto ) = {z:Rez >0}, f1(0) =1, f1(1) = oo, and f;(—1) = 0. Now
f2(z) = 2° maps Q; onto Qs = C\ (—00,0]; f3(2) = r(z — 1) maps 25 onto
(2. The map f above is the composition of these three maps.

Note that the function f in Example 1.3 has a pole of order 2 at z = 1
and f has a removable singularity at infinity. In fact f(oco) = 0. Moreover,
f'(00) =1lim, o 2f(z) = 4r > 0. Since f'(z) = 0 if and only if z = —1, we
see that f is conformal on C \ {£1}.

The next example is more than that.
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1.4 Example. For |a| = 1 define

<

f(Z):m

for z in ID. To facilitate the discussion, denote this map by f, to emphasize
its dependence on the parameter a. The function f; is a special case of the
preceding example and thus maps D onto C\ (—oo, —1/4]. For an arbitrary
o, fo is the composition of the rotation of the disk by «, followed by
f1, followed by a rotation of C by @. Explicitly, f,(z) = @fi(az). Thus
fa(D)=C\{—ta/4:0 <t < 0}.

The power series representation of this function is given by

<

24 2az°+3a% 4 = E na™ 1™
— 2
(1 — az) —

This will be of significance when we discuss the Bieberbach Conjecture in

Chapter 17. Also see (7.5) in this chapter.

The function in Example 1.4 for o = 1 is called the Koebe function and
the other functions for arbitrary o are called the rotations of the Koebe
function.

The next example was first seen as Exercise 3.3.13. The details are left
to the reader.

1.5 Example. If Q = C, \ |—2, 2],

is a conformal equivalence of D onto 2 with f(0) = oo. If g is any other
such mapping, then g(z) = f(e*?2) for some real constant 6.

Also note that f(z) = f(z7!) so that f maps the exterior (in C,) of the
closed disk onto ().

The next collection of concepts and results applies to arbitrary regions,
not just those that are simply connected. They are gathered here because
they will be used in this chapter, but they will resurtface in later chapters
as well.

1.6 Definition. If GG is an open subset of C and f : G — C is any function,
then for every point a in 0,,G the cluster set of f at a is defined by

Clu(f;a) =nN{cl o |f (B(a;e)NG)| : e > 0}.

1.7 Proposition. For every function f, Clu(f;a) is a non-empty compact
subset of Coo. If f is a bounded function, Clu(f;a) is a compact subset of

C.
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Proof. 1In fact, the sets cl  |f (B(a;c) N G)] form a decreasing collection
of compact subsets of C,, and must have non-empty intersection. The

statement about bounded functions is clear. O

1.8 Proposition. If a € 0,,G such that there is a p > 0 for which G N
B(a;r) is connected for all r < p and f s continuous, then Clu(f;a) is a
compact connected subset of Cn.

Proof. In this situation the sets cly [f (B(b;¢) N G)| form a decreasing
collection of compact connected subsets of C when € < p. The result is now
immediate from an elementary result of point set topology. C

The proof of the next proposition is left to the reader (Exercise 5).

1.9 Proposition. If a € 0,,G, then ¢ € Clu(f;a) if and only if there is a
sequence {a,} in G such that a, — a and f(a,) — C.

1.10 Corollary. If a € 0,G, then the limit of f(z) exists as z — a with 2
in G if and only if Clu(f;a) is a single point.

1.11 Proposition. If f : G — () is a homeomorphism and a € 0, G, then
Clu(f;a) C 0x12.

Proof. 1If ¢ € Clu(f;a), let {a,} be a sequence in G such that a, — a
and f(a,) — (. Clearly ¢ € cl .o and if ¢ € Q, then the fact that f~! is
continuous at ¢ implies that a = lim,, a,, = lim,, f~! (f(a,)) = f71({) € G,
a contradiction. O

We end this section with some widely used terminology.

1.12 Definition. A function on an open set is univalent if it is analytic
and one-to-one.

Exercises

1. In Example 1.3, what is f(C\D)? f(C \ {£1})?
Discuss the image of D under the map f(z) =z + 27".
Find a conformal equivalence of C,, \ [—2, 2] onto D.

(Give the details of the proof of Proposition 1.8.

Prove Proposition 1.9.

S otk W N

. What is the cluster set of f(z) =exp{(z+1)/(z —1)} at 17
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7. Characterize the conformal equivalences ot the upper half plane H =
{z :Im z > 0} onto itself.

8. Characterize the conformal equivalences of the punctured disk onto
itself.

9. Characterize the conformal equivalences of the punctured plane onto
itself.

32 Crosscuts

With this section we begin the study of the boundary behavior of a con-
formal equivalence 7 : D — 2. Much of the discussion here is based on the
book of Pommerenke [1975], which has additional material.

We will limit ourselves to the case of a bound region (or bounded Rie-
mann map) as this facilitates the proofs. The reader can consult the liter-
ature for the general case.

2.1 Definition. If GG is a bounded simply connected region in C, and C;
is a closed Jordan arc whose end points lie on 0G and such that C = C]
with its end points deleted lies in G, then C' is called a crosscut of G.

Usually no distinction will be made between a crosscut C' as a curve or
its trace. In other words, C' may be considered as a set of points or as
a parameterized curve C' : (0,1) — G. Recall that C is a Jordan arc if
C(s) # C(t) for 0 < s <t < 1. It is possible, however, that C;(0) = C;(1)
so that C; is a Jordan curve. At the risk of confusing the reader, we will
not make a distinction between a crosscut C and the corresponding closed
Jordan arc C';. This will have some notational advantages that the reader
may notice in the exposition.

Note that if C' is a crosscut of G and f : G — C is a continuous function,

then cl, [f(C)] \ f(C) C Clu(f;a;) U Clu(f;as2), where a; and as are the
end points of C.

2.2 Lemma. If G 1s a bounded simply connected region in C and C' 1is
a crosscut of G, then G \ C has two components and the portion of the
boundary of each of these components that lies in G s C.

Proof. If ¢ : G — D is a Riemann map, then f(z) = ¢(2)/(1 — |¢(2)|)
is a homeomorphism of G onto C. Hence f(C) is a Jordan arc in C. By
Proposition 1.11, Clu(f;a) € 0,,C = {0} for every point a in JG. Hence,
by the remark preceding this proposition, cl, f(C) is a Jordan curve in C,
passing through oo. If Q; and Q5 are the components of C \ cly, f(C) =

C\ f(C), then f~1(Q1) and f~1(Q2) are the components of G\ C. O
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It is now necessary to choose a distinguished point in G. In the following
definitions and results, this distinguished point is lurking in the background
as part of the scenery and we must forever be aware of its existence. Indeed,
the definitions depend on the choice of some distinguished point. It seems
wise, however, not to make this point part of the foreground by including it
in the notation. We do this by always assuming that 0 € GG. The assumption
that G is bounded will also cease to be made explicit.

The preceding lemma justifies the next definition.

2.3 Definition. If G is a simply connected region containing 0, then for
any crosscut C' of G that does not pass through 0, let out C' denote the com-
ponent of G \ C that contains 0 and let ins C' denote the other component.
Call out C the outside of C and ins C the inside of C.

This definition and notation is, of course, in conflict with previous con-
cepts concerning Jordan curves (§13.1). We'll try to maintain peace here by
reserving small Greek letters, like o and -, for Jordan curves, and capital

Roman letters, like X and C, for crosscuts.
From now on we will only consider crosscuts of G that do not pass

through the distinguished point O.

2.4 Definition. A zero-chain (or 0O-chain) of G is a sequence of crosscuts
of G, {C,}, having the following properties:

(a) ins Cpyq1 C ins Cy;
(b) cl C, Ncl C,, = 0 for n # m;

(c) diam C,, — 0 as n — oo.

Note that the condition in the definition of a 0-chain {C),} that cl C}, N
cl Cry1 = 0 and ins C), 1 C ins C}, precludes the possibility that cl C,,NOG
is a single point. It is not hard to construct a zero-chain {C,} such that
inf,, [diam(ins C},)| > 0. See the examples below.

Why make this definition? Let 2 be a bounded simply connected re-
gion and let 7 : D — () be a conformal equivalence with 7(0) = 0.
We are interested in studying the behavior of 7(z) as z approaches a
point of 0. Let a € 0D and construct a 0-chain {X,} in D such that
Nycl (ins X,,) = {a}. Clearly 7(X,) is an open Jordan arc in 2. By Propo-
sition 1.11 [c]l 7(X,,)] \ X, C 09. Unfortunately it is not necessarily true
that C,, = 7(X,,) is a crosscut in (2 since cl (), \ C,, may be an infinite set.
We can and will, however, choose the 0-chain {X,} in D so that not only
is each (), a crosscut in (2, but {C,} is actually a 0-chain in {2.

In this way we associate with each point a of 0D a 0-chain {C), } in 2. In
fact, we will see in the next section that after we introduce an equivalence
relation on the set of O-chains, there is a way of topologizing ), the set



14.2. Crosscuts 35

»

Figure 14.1

together with these equivalence classes, so that 7 extends to a homeomor-
phism 7 of ¢l D onto 2. This will pave the way for us to study the boundary
behavior of 7 in future sections when more stringent restrictions are placed
on 0.

The following are some examples of O-chains. Figure 14.1 has {2 = DD and
shows an example of a 0-chain. Some special 0-chains of this type will be
constructed below (see Proposition 2.9).

In Figure 14.2, ) is a slit disk and the sequence of crosscuts is not a
0-chain since it fails to satisfy property (a) of the definition. Again for 2 a
slit disk, Figure 14.3 illustrates a O-chain.

In Figures 14.4, 14.5, and 14.6, {) is an open rectangle less an infinite
sequence of vertical slits of the same height that converge to the segment
2,2 + i|. The sequence of crosscuts {C},} in Figure 14.4 is not a 0-chain
since it violates part (a) of the definition; the crosscuts in Figure 14.5 do
not form a 0-chain since their diameters do not converge to 0. The crosscuts
in Figure 14.6 do form a 0-chain.

Figures 14.7, 14.8, and 14.9 illustrate examples of 0-chains.

We begin with a result on 0-chains of ) that may seem intuitively obvi-
ous, but which requires proof. It might be pointed out that the sequence of

crosscuts in Figure 14.6 does not satisfy the conclusion of the next propo-
sition.

@\
N/

Figure 14.2 Figure 14.3
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2+2% '2_}_%

Figure 14.4 Figure 14.5
2+22 .
0
Figure 14.6 Figure 14.7

Figure 14.8 Figure 14.9

2.5 Proposition. If {X,,} is a sequence of crosscuts of D with ins X,, 11 C
ins X,, and diam X,, — 0, then diam (ins X,,) — O.

Proof. Since cl [ins X,,+1] C cl [ins X,| for every n, K = () _cl |[ins X,
is a non-empty compact connected subset of cl D. Since X,, is a crosscut,
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dlins X,,| = X,, Uy, for the closed arc in 0D, ~,, = cl [ins X,,] N dD. In
fact, Y41 = cl [ins X,,41] NOD C v, and so vy = ()], Y is a closed arc in
OD. It is easy to see that v = K NJD. Also, since X,, and ~,, have the same
end points, diam ~, — 0. Therefore, v, and hence K, is a single point 2z
in 0D. A straightforward argument now finishes the proof. O

The remainder of this section is devoted to the construction of 0-chains
{X,} in D such that {7(X,)} is a O-chain in 2. The process involves the
proof of a sequence of lemmas. The first of these necessitates a return to

the notion of a set of measure 0. The proof will not be given of the complete
statement, but only of the statement that can be obtained by the deletion
of any reference to a set of measure 0. The proof of the general statement

can be easily obtained from this proof and is left to the reader.

2.6 Lemma. Let 7 be a bounded univalent function defined on D with
7| < M onD. If E is a subset of 0D having measure 0, 1/2 < p < 1, and
0 < a < B<2m, then there is a 0 with a < 6 < 3 such that € ¢ E and

1
/ ' (re!®)| dr < M+V/27
0

— ¥

Proof. In fact an application of the Cauchy-Schwartz Inequality shows

that

[ remna] < [[ff ][] remra]s
/0%(1 - p) {/pl IT’(rei9)|2dr} do
< 2(1-p) /0% /1;2 7/ (re?®)|” rdrdf

since, with p > 1/2, we have 1 < 2r for p < r. But by Theorem 13.2.12
this last integral equals Area(r({z €D :1/2 < |z| < 1})) < 7M?*. But

(ﬁ—a)inf{[/pl IT/(’I"ew)IdT'] a <0< 6} __<___/ U 7/ (re* ] do.

Hence there is at least one value of € with
1 9
| 2(1 — M
{/ 'r’('r'ezg) d’f’] < 0 p)ﬂ-_ ;
p B -«

whence the lemma. O

FA

IN

2

Note that the preceding lemma gives a value 6 such that r — 7(re*?),
p < r < 1, is a half open rectifiable Jordan arc (and also gives an estimate
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on the length of this curve). But a rectifiable open arc cannot wiggle too
much, and so the next result is quite intuitive.

2.7 Proposition. If v : [0,1) — G is a half open rectifiable arc and f :
G — C 1s an analytic function such that f o~ is also a rectifiable arc, then
lim;_,1_ f(y(t)) exists and is finite.

Proof. Let L = the length of f o~. Since the shortest distance between
two points is a straight line, it follows that {f oy} C B(f (v(1/2));L). In
particular, there is a constant M such that |f (y(¢))] < M for 0 < t < 1.
If lim; ,;_ f (v(¢)) does not exist, then there are sequences {r,} and {s,}
in (0, 1) such that r, < s, <rpy1, 7, — 1 and s, — 1, f(v(r,)) — p and
f(v(sn)) — o, and p # o. If 0 < 36 < |p— o/, then there is an ngy such
that |f (v(rn)) — f (v(sn))| > 6 for all n > ny. But the length of the path

{f (v(t)) : rn <t < s,}isgreater than or equal to | f (v(ry)) — f (7(sn))| >
0. This contradicts the rectifiability of fo~. O

A combination of the last two results can be used to give a proof that the
set of points in JID at which a bounded conformal equivalence 7 has radial
limits is dense in OI). Unfortunately this will not suffice for our purposes
and we need more.

2.8 Lemma. If 7 : D — C is a bounded univalent function, then (1 —
rymax {|7'(z)|: |z| =7} — 0 asr — 1. Hence (1 —|z|)|7'(2)] — 0 as
z| — 1.

Proof. Let T(z) =) a,2™; hence, using the fact that |z + y|2 < 2 (lazcl2 +
Iylz), we get that

(1= 12D (@) = (L~ |2])? 2" Z ——

2

2(1 — |2])° +2(1—|2])°

E na,z" ! E na,z '

Applying the Cauchy—Schwartz Inequality to the second sum gives

o0 2 2
n—1
E nNanp 2
n=—m

S (Vi) (vaz")

n=—m

S| (S

VAN

But

00 00
Z n|Z|2n—2 S ZnIZIZn—Z
n=—m n=1
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Combining these inequalities gives

(1= 12?177 < 2(1—|z])7

u

|_L
|

E

But if |z| > 1/2, then

(1-12)* |17 (2)]° < 21—z k.

2 Z nlan|2] .

By Corollary 13.2.13, m can be chosen such that the last summand is

smaller than £2/2. Thus for 1 — |z| sufficiently small, (1 — |z])* |7 (2)|® can

be made arbitrarily small. O

an| |2

2.9 Proposition. Let €2 be a bounded simply connected region and let
7: 1D — Q be the Riemann map with 7(0) =0 and 7/(0) > 0. If0 <0 < 2m
and {r,} is a sequence of positive numbers that converges monotonically to

1, then for every n there are o, and (3, with o, < 0 < 3, o, — 6, and
Bn. — 0 such that if Y,, = the crosscut of D defined by

Y, = (em“,rnem"] U {rne o, <t < 6n} U rnei'@", ew’"’) ,
then {7 (Y,)} is a O-chain in 2.

Proof. Let M be an upper bound for |7|. By Lemma 2.8, positive numbers
{e,} can be chosen such that ¢, — 0 and

2.10 (1 —1,) max IT’ ('r'ne'it)l < 8%.

Now apply Lemma 2.6 witha =60—-2(1 —r,) /e2 and B3 =0(1 —r,) /e
to obtain an a,, with 8 —2(1 —r,) /e2 < a, <0 — (1 —r,) /e2 and

1 —
/T I'r’ (re’io‘“)ldr < MV2r -(1—1:—7—.57-3}—?2; — ¢, M~/ 2.
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Similarly, there is a (3,, with 8 < 3,, and
1
/ I'r’ (re’i’@“) | dr < €, M/ 2.

Actually we want to modify the choice of the points «,, and (3,, so that the
values of 7 (em") and 7 (e"i'8 ), the radial limits of 7 at the designated points,

are all different. This is done as follows. Suppose a1, ..., an—-1, B1,..., Bn-1
have been chosen and let £ = {a:0—-2(1 —1,) /e;, <a <0—(1—r,) /e
and 7 (e'*) exists and equals one of 7 (e'*?), ..., 7 (e aPhan-1) F (e'F1),

ey T (eiﬁ’n“l)}. By Theorem 13.5.3, £ has measure 0. By Lemma 2.6, o,
can be chosen in the prescribed interval with «,, ¢ E. By Proposition
2.7, T (eia“) exists and differs from 7 (e":o‘l) e, T (eia““l), T (eiﬁl), .
T (eiﬁ"“l). Similarly choose G,.

Define Y,, as in the statement of the proposition. Clearly {Y, } is a O-
chain in D. Let C,, = 7(Y,,). Since C,, is rectifiable, each C,, is a crosscut
of €. Since ins Y,, 11 C ins Y,, for every n, ins C,; 1 C ins C, for every n.
Since the values 7 (e":al), T (ei"‘z), e T (e":ﬁl), T (e"m), ... are all distinct
and cl Y, Ncl Y,.1 =0, c C,Ncl Cp,i1 = 0. It remains to prove that
diam C,, — 0. 2

Now (2.10) implies that ff: 7' (rne)|dt < (Bn — o) 72— and B, —

l—7r,

an <4(1—ry,) /es. Hence [ f " |T’ (rne"t) | dt < 4¢,. This, combined with

the preceding estimates, implies that the length of 7 (Y,,) < 4e,+2¢, M (27)
and thus converges to 0. It is left as an exercise to show that «,, and 3,, — 6
as n — oo. U

1
2

Exercise

1. If {X,} is a O-chain in D, show that () cl (ins X,,) is a single point
in OD.

33 Prime Ends

Maintain the notion of the preceding section. Let €2 be a bounded simply
connected region and let 7 : D — () be the conformal equivalence with

7(0) =0 and 7'(0) > 0.

3.1 Definition. If {C,,} and {C]} are two zero-chains in €2, say that they
are equivalent if for every n there is an m such that ins Cp, C ins (], and,
conversely, for every 7 there is a § with ins CJ’- C ins C;.

It is easy to see that this concept of equivalence for zero-chains in {2



14.3. Prime Ends 41

is indeed an equivalence relation. A prime end is an equivalence class of
zero-chains.

An examination of the 0O-chain in Figure 14.1 will easily produce other
0-chains that are equivalent to the one given. In Figure 14.2 if the crosscuts
that are above the slit constitute one 0-chain and the crosscuts below the
slit constitute another, then these two O-chains belong to different prime
ends. It can also be seen that the 0-chains appearing in Figures 14.7 and
14.8 are equivalent. The reader is invited to examine the O-chains appearing
in the figures in §2 and to find equivalent ones.

Let Q0 denote 0 together with the collection of prime ends. We now
want to put a topology on €. (Apologies to the reader for this notation,
which is rather standard but opens up the possibility of confusion with the
polynomially convex hull.)

3.2 Definition. Say that a subset U of Q is open if U N N is open in O
and for every p in U \ €2 there exists a zero-chain {C,, } in p such that there
is an integer n with ins C,, C U N (.

Note that from the definition of equivalence and the definition of a 0-
chain, if U is an open subset of € and p € U, then for every {C,} in p,
ins C),, C U N ) for all sufficiently large n.

The proof of the next proposition is an exercise.

3.3 Proposition. The collection of open subsets of ) is a topology.

The main result of the section is the following.

3.4 Theorem. If () is a bounded stmply connected reqion in C and 7 : D —
() 18 a conformal equivalence, then T extends to a homeomorphism of cl D

onto Q

Actually, we will want to make specific the definition of 7(z) for every
z in 0D as wel] as spell out the meaning of the statement that 7 is a
homeomorphism. If z € 0D, then Proposition 2.9 implies there is a 0-chain
{Y,.} in D such that ) _cl (ms ») = {2z} and {7 (Y,,)} is a O-chain in 2. We
will define 7(z) to be the equivalence class of {7 (Y},)}. We must show that 7
is well defined. Thus if { X, } is a second 0-chain in D with (] cl (ins X,) =
{z} and {7 (X,)} a 0-chain in 2, we must show that {7 (X,)} and {7 (Y,)}
are equivalent. This is not difficult. Fix n; we want to show that ins 7 (Y,,) C
ins 7 (X,,) for some m. But just examine ins X,: 0 (ins X,,) = X,, U v,,
where ~,, is an arc 0D with z as an interior point. Thus thereis a § > 0
such that D N B(z;6) C ins X,,. Since diam (ins Y,,) — 0 (why?), there is
an m with ins Y,,, CDN B(z;0) Cins X,; thus ins 7 (Y,,) = 7 (ins Y;,) C
7 (ins X,,) = ins 7 (X,,). Similarly, for every j there is an ¢ with ins 7 (X;) C
ins 7 (Y;).

The proof that 7 is well defined also reveals a little something about
the disk. Namely, the prime ends of D are in one-to-one correspondence
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with the points of D (something that better be true if the theorem is
true). In fact, if {X,,} is a 0-chain in D, then Proposition 2.5 implies that
diam (cl (ins X)) — 0. By Cantor’s Theorem, () cl (ins X, ) = {20} for
some point zg in cl D. It follows that zp € 0D (why?). The preceding
paragraph shows that whenever {X,,} and {Y,,} are equivalent O-chains in
D, (), ¢l (ins X,)=[), cl (ins Yy,).

We now proceed to the proof that 7 is a homeomorphism. Some prepara-
tory work is required.

3.5 Lemma. If v : [0,1) — D is an arc such that |y(t)] = 1 as t — 1,
then the set Z = {z : there exists tp — 1 with y(tx) — 2z} is a closed arc in
OD. If f : D — C is a bounded analytic function and lim;_,1 f (y(t)) exists,

then either Z 1s a single point or | 1s constant.

Proof. Observe that the set Z = Clu(vy;1) (1.6). Thus Z is a closed con-
nected subset of 0D (1.7 and 1.8); that is, Z is a closed arc.

Now assume that f : D — C is a bounded analytic function such that
lim; ,; f (7(t)) = w exists and Z is not a single point. It will be shown
that f must be constant. In fact, let z be an interior point of Z such that
the radial limit of f exists at z. It is easy to see (draw a picture) that the
radial segment |0, z) must meet the curve v infinitely often. Hence there is a
sequence {tx} in [0, 1) such that tx — 1, v(tx) — 2, and arg (y(tx)) = arg =
for all k. Thus lim,_,; f(rz) = limg_,» f (7(tx)) = w. By Theorem 13.5.3,
f=w. O

3.6 Lemma. Let 7 : D — Q be a conformal equivalence with 7(0) = 0. If
C is a crosscut of Q, then X = 771(C) is a crosscut of D.

Proof. Let C : (0,1) — Q be a parameterization of C and, for ¢ = 0 or
1, let a; = lim;_,, C(t). So a, € 0. Clearly X (t) = 7' (C(t)) is an open
Jordan arc and |X(¢)] - 1ast — 0or 1. For ¢ =0, 1, let Z, = {2: there
exists tx — ¢ with X(tx) — z}. But lim;,,7(X(¢)) = a4, and 7 is not
constant. By Lemma 3.5, Z, is a single point and so X is a crosscut. C

Now suppose {C,,} is a 0-chain in 2 and let X,, = 7~ !(C,,). So each X,
is a crosscut of D by the preceding proposition. We will see that it is almost
true that { X, } is a O-chain in ID. The part of the definition of a 0-chain

that will not be fulfilled is that clX,, N clX,,11 need not be empty.
Begin by noting that 7(ins X,,) = ins C},; hence ins X,,;. 1 C ins X,,.

3.7 Proposition. If 7 : D — Q is a conformal equivalence with 7(0) = 0
and {X,} is a sequence of crosscuts of D such that C,, = 7(X,,) defines a
0-chain of crosscuts in §2, then diam X,, — 0.

Proof. First assume that there is an r, 0 < r < 1, such that X,, N {z :
z| = r} # 0 for an infinite number of values of n. Let z; € X, with

zk| = r such that 7(zx) — (o380 o € T({z:]z|=7r}) C Q. Butif 6 >0
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such that B ({o;6) C €, there is a kg such that |7(2x) — (o| < 6 for k > ko.
But 7(zx) € Cp, N B({y;6) and diam C,, — 0. Hence there is a k1 > kg
such that C,,, C B({p;6) for k > k;. This implies that cl C,,, N 02 = 0.
Since C,, is a crosscut, this is a contradiction. Thus for every r < 1,
X,N{z:|z| =r} =0 for all but a finite number of indices n.

Let r, = inf{|z| : z € X, }; by the preceding paragraph, r,, — 1. Since
X, is a crosscut, dlins X, | = X, U+, for some closed arc ~, of dD. It
follows that K = () cl [ins X,]| is a non-empty closed connected subset
of 0D and hence is a closed arc in 0ID. Moreover, K = () _~, (why?). It
suffices to show that K is a single point.

Suppose K is a proper closed arc in 0D. Then by Theorem 13.5.2 there
are distinct interior points z and w of the arc K such that the radial limits
of 7 exist at both 2z and w; denote these radial limits by 7(z) and 7(w).
Since 0 belongs to the outside of each X,,, for each n there are points z,
and w, on X, that lie on the rays through z and w, respectively. Thus
7(2,) — 7(z) and 7(w,) — 7(w). But 7(2,) and 7(w,) € 7(X,) = C, and
diam C,, — 0. Hence 7(2) = 7(w). Since z and w were arbitrary interior
points of K, Theorem 13.5.3 implies that 7 is constant, a contradiction.

Therefore it must be that K is a single point and so diam X,, — 0. C

3.8 Lemma. If 7 : D — Q is a conformal equivalence with 7(0) =0, {C,}
is a 0-chain in Q, and X,, = the crosscut 7=1(C,), then there is a point
2o on 0D and there are positive numbers 6,, and ,, with 0 < 6,, < €, and
e, — 0 such that

39 ﬂ cl (ins X,,) = {20}

mn

and

3.10 DN B(z0;6,) Cins X,, CDN B(z0;€n).

Proof. By Propositions 3.7 and 2.5, diam|cl (ins X,,)] — 0. Therefore
there is a zg in cl D such that (3.9) holds. By Proposition 1.11, z5 € 9 D.

It is clear that since diam X,, — 0, the number ¢,, can be found. Suppose
the number §,, cannot be found. That is, suppose there is an n (which will
remain fixed) such that for every 6 > 0, D N B(zp;6) is not contained
in ins X,,. Thus for every § > 0 there are points in D N B(zp;6) that
belong to both ins X, and out X,; by connectedness, this implies that
X,.NB(zp;6) # 0 for every 6 > 0. Hence zg € cl X,,. Since ins X,,, C ins X,
for m > n, the same argument implies that 2y € cl X,,, for m > n.

Now construct crosscuts {Y; } as in Proposition 2.9 so that (] cl (ins Y;) =
{20}, diam Y; — 0, and {7(Y;)} is a O-chain of €. It is claimed that
X, NY; # 0 for all sufficiently large values of j. In fact, if this were not
the case, then, by connectedness and the fact that zg € cl X,,, X;, Cins Y,
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for all j. But diam[ins Y;|] — 0 and so this implies that X,, is a single-
ton, a contradiction. Hence there must be a jo such that X,, NY; # 0 for
j > jo. Similarly, jo can be chosen so that we also have X,,1; NY; # () for
j > jo. But this implies that C, N 7(Y;) # 0 # Cpy1 N 7(Y;) for 5 > jo.
Therefore, dist(C,,,Cr+1) < diam 7(Y;), and this converges to 0. Thus
cl C, Ncl C,,4.1 # 0, contradicting the definition of a 0-chain. This implies
that (3.10) holds. C

Proof of Theorem 3.4. Define 7 : c1 D — by letting 7(z) = 7(2) for
2| < 1 and 7(z) = the prime end of §2 corresponding to the 0-chain {7(Y;)},
where {Y}; } is any O-chain in D such that ), cl (ins Y;) = {2} and {7(Y})}
is a 0-chain in 2. We have already seen that 7 is well defined.

To show that 7 is subjective, let p € 2\ Q and let {C,,} be a 0-chain in p.
If X, =7"1(C,), then (3.10) and Proposition 2.9 imply we can construct
a O-chain {Y;} in D with (. cl (ins Y;) = {2}, {7(¥;)} a O-chain in (2, and
ins Y,, C ins X,, for every n. Moreover, for each n, the form of Y,,, (3.9),
and the fact that diam|ins X,,| — 0 imply that ins X,,, C Y,, for sufficiently
large m. This implies that {7(Y;)} and {C,,} are equivalent 0-chains in
and so 7(z) = p.

The proof that 7 is one-to-one is left to the reader (Exercise 2).

It remains to show that 7 is a homeomorphism. Let U be an open subset
of €; it must be shown that 7-1(U) is (relatively) open in cl D. Clearly
FHU)ND = 7YUNQN), and so this set is open. If zg € 771 (U)NOD, it
must be shown that there is a § > 0 with D N B(zg;6) C 7~ 1(U) N D. Put
p=17(z0); s0 p € U\ Q. Let {C,} € p; by definition, there is an integer
n such that ins C,, CUNQ. If X,, = 771(C,), then X,, is a crosscut and
ins X,, = 77 !(ins C,) C #~1(U) N D. By (3.10), there is a § > 0 with
DN B(zp;6) Cins X,,, and so 7 is continuous.

Finally, to show that 7 is an open map it suffices to fix a zg in 0D
and a 6 > 0 and show that 7(cl D N B(zp;0)) contains an open neigh-
borhood of p = 7(z9). Construct a O-chain {Y,} as in Proposition 2.9
with (), cl [ins Y,] = {20} and cl [ins Y,] € B(zp;6) for all n. Thus
{r(Y,)} € p and ins 7(Y,,) = 7(ins Y,,) C QN 7(cl DN B(zp;6)). By
definition, 7(cl D N B(zp;6)) is a neighborhood of p. O

Some additional material on prime ends will appear in the following two
sections. Additional results can be found in Collingwood and Lohwater

11966] and Ohtsuka [1967].

Exercises

1. Prove that the collection of open sets in () forms a topology on Q.

2. Supply the details of the proof that the map 7 is one-to-one.
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3. Can you give a direct proof (that is, without using Theorem 3.4) that
() 1s compact?

4. If Q is the slit disk, describe the topology on €.

34 Impressions of a Prime End

We already have seen in §1 the definition of the cluster set of a function
f: G — C at a point a in 0G. Here we specialize to a bounded function
f : D — C and define the radial cluster set of f at a point a in OD.
The preliminary results as well as their proots are similar to the analogous
results about the cluster set of a function.

4.1 Definition. If f : D — C is a bounded function and a € 0D, the radial
cluster set of f at a is the set

Clur(f;a) = ()l {f(ra) : 1—e <r <1}

e>0

The following results are clear.

4.2 Proposition.

(a) If f : D — C is a bounded function and a € 0D, then & € Clu,(f;a) if
and only if there is a sequence {ry } increasing to 1 such that f(r,a) —

C.
(b) If f is continuous, then Clu,.(f;a) is a non-empty compact connected
set.

(c) If f is a homeomorphism of D onto its image, then Clu,.(f;a) is a

subset of Of(DD).

4.3 Proposition. If f : D — C is a bounded function and a € 0D, then f
has a radial limit at a equal to ¢ if and only if Clu,.(f;a) = {(}.

Now let’s introduce another pair of sets associated with a prime end of
a bounded simply connected region {2 containing 0. The connection with
the cluster sets will be discussed shortly.

4.4 Definition. If p is a prime end of a bounded simply connected region
(2, the tmpression of p is the set

il

I(p) ﬂ cl [ins C,,]

where {C,,} € p.
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It is routine to show that the definition of the impression does not depend
on the choice of the 0-chain {C,,} in p so that I(p) is well defined.

4.5 Proposition. For each prime end p of 2, the impression I(p) is a
non-empty compact connected subset of Of).

4.6 Definition. If p is a prime end of €2, a complex number ( is called a
principal point of p if there is a {C},} in p such that C,, — ( in the sense
that for every € > 0 there is an integer ng such that dist({,C,,) < ¢ for all
n > ng. Let II(p) denote the set of principal points of p.

It might be expected that at this point it would be demonstrated that
[I(p) is a non-empty compact and possibly even connected subset of Of2.
This will in fact follow from the next theorem, so we content ourselves with

the observation that II(p) C I(p).

4.7 Theorem. If 7 : D — Q 1is the Riemann map with 7(0) = 0 and
7'(0) > 0, a € 0D, and p is the prime end for Q corresponding to a (that
18, p=T7(a)), then

Clu(t;a) = I(p) and Clu,(7;a) = II(p).

Proof. Let ( € Clu(r;a) and let {2} be a sequence in D such that 7(z;) —

. Let {C,} € p. By Lemma 3.8 there are positive numbers ¢,, and §,, such
that D N B(a;6,) C ins 771(C,) € DN B(a;&,) for all n. This implies

that for every n > 1 there is an integer k, such that z; € ins 771(C,,) for
k > k,. Thus 7(z) € ins C}, for k > k,, and so ¢ € cl (ins C,,). Therefore
¢ € I(p).

Now assume that ( € I(p). If {C,,} € p, then { € cl (ins C,) for all
n > 1. Hence for each n > 1 there is a point z, in ins 77(C,) with
17(2,) — (| < 1/n. But an application of Lemma 3.8 shows that z, — a
and so ¢ € Clu(t;a).

Let ( € Clu,(7;a) and let r, T 1 such that 7(r,a) — (; define the
crosscuts {Y,} as in Proposition 2.9 so that {7(Y,)} is a O-chain in 2
and 7(rpa) € 7(Y,) for each n. Note that of necessity {7(Y,,)} € p. Thus
¢ € I(p).

Finally assume that { € II(p) and let {C,,} be a 0-chain in p such that
Crn — (. An application of Lemma 3.8 implies that ( € Clu,(7;a). The
details are left to the reader. O

An immediate corollary of the preceding theorem can be obtained by
assuming that the two cluster sets are singletons. Before stating this ex-
plicitly, an additional type of prime end is introduced that is equivalent to
such an assumption. Say that a prime end p of {2 is accessible if there is a
Jordan arc v : [0,1] — cl Q with «(¢) in Q for 0 < ¢t < 1 and ~(1) in 02
such that for some {C},} in p, v N C,, # 0 for all sufficiently large n. Note
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that if p is an accessible prime end, then for every {C,,} in p, yNC,, # 0
for sufficiently large n.

4.8 Corollary. Let 7 : D — 2 be the Riemann map with 7(0) = 0 and
7'(0) > 0 and let a € 0D with p = 7(a).

(a) lim,_,, 7(2) exists if and only if I(p) is a singleton.

(b) The following statements are equivalent.

(i) lim,_; 7(ra) exists.
(ii) II(p) is a singleton.
(iii) p is an accessible prime end.

Proof. The proof of (a) is clear in light of the theorem and Proposition 4.3.
(b) The equivalence of (i) and (ii) is also immediate from the theorem
and Proposition 4.3. Assume (i) and let ( = lim,_,; 7(ra). So ¢ € 0 and
v(r) = 7(ra) is the requisite arc to demonstrate that p is an accessible
prime end. This proves (iii).

Now assume that (iii) holds and let v : [0,1] — C be the Jordan arc
as in the definition of an accessible prime end; let { = v(1). Thus o(t) =
7 H(~(t)) for 0 < t < 1 is a Jordan arc in D. Let {C,} € p and put
X, = 771(C,). According to Lemma 3.8 there are sequences of positive
numbers {e,} and {d,} that converge to 0 such that for every n > 1,
DN B(a;6,) C ins X,, C DN B(a;ey,), where

{a} = () cl [ins X,].

If ¢ > 0 is arbitrary, choose ng such that ¢, < € and YN C,, # 0 for
n > ng. Fix n > ng and let ¢y be such that v(¢) € ins C,, for tg < t < 1.
Thus o(t) € ins X,, and hence |o(t) — a| < € when ty < t. This says that
o(t) — a ast — 1; define o(1) = a. By Theorem 13.5.4, 7 has a radial limit

at a. U

Exercises

1. Prove that the definition of I(p) (4.4) does not depend on the choice
of 0-chain {C/, }.

2. Let K be a non-empty compact connected subset of C such that K
has no interior and C \ K is connected. Show that there is a simply
connected region () for which K = I(p) for some prime end p of 2.
(The converse of this is not true as the next exercise shows.)

3. Let v(t) = et *i for 0 < t < 0o and put Q = D\ {7}. Show that
() has a prime end p such that I(p) = 0 D.
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39 Boundary Values of Riemann Maps

In this section we address the problem of continuously extending a Riemann
map 7 from D onto a simply connected region €2 to a continuous map from
the closure of D to the closure of €). First note that Proposition 1.11 implies
that if 7 : D —  has a continuous extension, 7 : cl D — cl €2, then
7(0DD) C 02. Thus 7 maps cl D onto cl 2 and so 7(0D) = 0. This also
shows that 0f) is a curve. If 7 extends to a homeomorphism, then 0f2 is a
Jordan curve. The principal results of this section state that the converse
of these observations is also true. If 0f2 is a curve, 7 has a continuous
extension to cl D; if 02 is a Jordan curve, 7 extends to a homeomorphism
of cl D onto cl ().

This is a remarkable result and makes heavy use of the fact that 7 is
analytic. It is not difficult to show that ¢(z) = z exp(i/(1 —|z|)) is a home-
omorphism of D onto itself. However each radial segment in ) is mapped
onto a spiral and so Clu(¢;a) = 0D for every a in 0ID. So ¢ cannot be
continuously extended to any point of the circle.

Why suspect that conformal equivalences behave differently from home-
omorphisms? Of course we have seen that the conformal equivalences of D
onto itself have homeomorphic extensions to the closure. Also imagine the
curves 7,(0) = 7(re*), r > 0; the images of the circles of radius r. 7 maps
the radial segments onto Jordan arcs that are orthogonal to this family of
curves. If 02 is a Jordan curve, then the curves {7 : » > 0} approach O 2
in some sense. You might be led to believe that 7 has a nice radial limit at
each point of 0 D.

We begin with some topological considerations.

5.1 Definition. A compact metric space X is locally connected if for every
e > (0 there is a 0 > 0 such that whenever £ and y are points in X with
lx —y| < 6, there is a connected subset A of X containing z and y and

satistying diam A < «.

The proots of the following topology facts concerning local connectedness
are left to the reader. An alternative is to consult Hocking and Young [1961].

5.2 Proposition. If X 1s a compact metric space, the following statements
are equivalent.

(a) X 1s locally connected.

(b) For every € > 0 there are compact connected sets Ai,...,An with
diam A; < € for 1 < j <m and such that X = A; U...UA,,.

(¢c) For every € > 0 and for every x in X, there is a connected open set
U such that x € U C B(x;¢).
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Part (c) of the preceding proposition is the usual definition of local con-
nectedness. Indeed it can be easily extended to a definition that can be
made for arbitrary topological spaces. Definition 5.1 was chosen for the
definition here because it is the property that will be used most often in
subsequent proofs.

The next topological fact is easier to prove.

5.3 Proposition. If X and Y are compact metric spaces, f : X — Y
s a continuous surjection, and X s locally connected, then Y 1is locally
connected.

Note that as a result of this proposition it follows that every path is
locally connected. We need one final topological lemma that will be used
in the proof of the main results of this section.

5.4 Lemma. If A; and Ay are compact connected subsets of C with A1NAs
connected and non-empty and x and y are points such that neither A1 nor
Ao separates x from vy, then Ay U Ay does not separate x and vy.

Proof. Waithout loss of generality it can be assumed that x = 0 and y = oc.
For j = 1,2 let v; : [0,1] — Cy \ A; be a path with ~;(0) = 0 and
v;(1) = oco. Since A; N Ay is a connected subset of C \ (1 U ~y2) there is a
component G of C\ (77 U~ys) containing A; N As. Thus A; \ G and A; \ G
are disjoint compact subsets of C\~; and C\ ~,; therefore there are disjoint
open sets Vi and V; such that for j = 1,2, 4, \G CV; CC\ ;.

Let U = GUV; UV, so that A; U Ay C U. Proposition 13.1.7 implies
there is a smooth Jordan curve o in U that separates A; U Ao from oo;
thus A; U A, C ins o. It will be shown that 0 is in the outside of ¢ so that
A1 U A5 does not separate 0 from oo.

Note that each component C\~, is simply connected and does not contain
0. Thus there is a branch of the logarithm f : C\ «v; — C. Moreover these

functions can be chosen so that fi(z) = f2(2z) on G. Therefore

f1(2) if z €V,
f(z) — fz(Z) if z € Vs
fi1(z) = fa(2) if z€e G

is a well defined branch of the logarithm on U. Since f'(2) = 27! on U, the
winding number of o about 0 is 0. Theretfore 0 is in the outside of 0. O

Pommerenke [1975] calls the preceding lemma Janiszewski’s Theorem.
Now for one of the main theorems in this section.

5.5 Theorem. Let (2 be a bounded simply connected region and let T :
D — Q be the Riemann map with 7(0) = 0 and 7'(0) > 0. The following
statements are equivalent.
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Proof. It has already been pointed out that (a) implies (b) implies (c).
Assume that (c) holds. To prove (d), let € > 0 and choose 6 > 0 so that
for z and y in 02 and |z — y| < 6 there is a connected subset B of 0f2 that
contains x and y and satisfies diam B < /3. Choose 6 so that § < ¢/3. It
suffices to show that if z and w € X = C\ Q such that |z — w| < 6§, then
there is a connected subset A of C\ €2 that contains z and w and satisfies
diam Z < €. (Why?) Examine [z, w]| N 0f) and let x and y be the points in
this set that are nearest z and w, respectively; thus |x — y| < 6. Let B be
the subset of 92 as above and put A = [z, z] U B U [y, w]|. So diam A < ¢
and z, w € A.

Now assume that (d) holds. To prove (a) it suffices to show that for every
prime end p of {2 the impression I(p) is a singleton. Fix the prime end p
and let {C,,} € p. Let 0 < ¢ < dist(0,092) and let 6 > 0 be chosen as
in the definition of locally connected; also choose 6 < €. Find an integer
ng such that diam C,, < 6 for n > ng. Thus it a,, and b,, are the end
points of C,,, |a, — b,| < 6. Since X = C \ Q is locally connected there is
a compact connected subset B,, of X that contains a,, and b,, and satisfies
diam B,, < €. Observe that B,, U C,, is a connected subset of B(a,;¢).

Thus if |( — a,| > ¢, then 0 and ( are not separated by B, U (). If in
addition ¢ € 2, then 0 and { are not separated by X. But (B,UC,)NX =
B, is connected. Thus the preceding lemma implies that for ¢ in {2 with
' —ayn| > €, 0 and ( are not separated by (B,UC,)UX = C,UX. That is,
both 0 and { belong to the same component of C\ (C,,UX) = Q\ C,,. Hence
¢ € out C, if ( € G and | — a,| > €. But this says that ins C,, C B(an;¢)
and so diam (), < € for n > ng. Thus I(p) is a singleton. O

It 1s now a rather easy matter to characterize those Riemann maps that
extend to a homeomorphism on cl D,

5.6 Theorem. If () is a bounded stmply connected region and 7 : D — 2
is the Riemann map with 7(0) = 0 and 7'(0) > 0, then T extends to be a
homeomorphism of clD onto cl ) if and only if OS2 is a Jordan curve.

Proof. If 7 extends to a homeomorphism of cl D onto cl €2, then, as men-
tioned before, 7(0 D) = 92 and so 0f2 is a Jordan curve. Conversely, assume
that 0} is a Jordan curve. By Theorem 5.5, 7 has a continuous extension
to7:cl D — cl 2. It remains to prove that 7 is one-to-one on 0f).
Suppose wi, we € D and 7(w1) = 7(ws); let o; = {7(rw;) : 0 < r < 1}
So 01 and o4 are two Jordan arcs with end points 7(0) = 0 and wg =
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7(w1) = T(w2) that lie inside 2 except for the final point. Taken together,
these arcs form a (closed) Jordan curve o; let A = ins 0. (In fact, o is
a crosscut.) By Corollary 13.1.11, A C Q. Put A\; = (out o) N Q; A is
connected (verify). Also AUA; U (o NQ) = . Observe that (cl A) N O is
the singleton {wyq }.

Let V and V; be the two components of D\ {rw; : 0 <r <1, 7 =1,2}.
Since 7(V U V;) = AU A, a connectedness argument shows that either
7(V)=A or 7(V) = A;. Assume that 7(V) = A; hence 7(V}) = A;.

The proof now proceeds to show that if w belongs to the arc 0D N oV,
then 7(w) = wg. Fix w in this arc; so A = {7(rw) : 0 < r < 1} is a path in
A except for the points 0 and 7(w). But 7(w) € (cl A) N9 = {wp}. Since
w was an arbitrary point in the arc 0D N OV, this shows that the bounded
analytic function 7 is constant along an arc of 0ID. By Theorem 13.5.3, 7
1s a constant function, a contradiction. O

A Jordan region is a simply connected region whose boundary is a Jordan
curve.

5.7 Corollary. If G and ) are two Jordan regions and f : G — ) 1s
a conformal equivalence, then f has an extension to a homeomorphism of

clG onto clf.

Recall that a curve v : 9D — C is rectifiable if § — ~(e*’) is a function
of bounded variation and the length of the curve 7 is given by [ d|v|(e?*) =
V(7), the total variation of «. If the boundary of a simply connected region
() is a rectifiable curve, Theorem 5.5 can be refined.

In Chapter 20 the class of analytic functions H! will be investigated.
Here this class will be used only as a notational device though one result
from the future will have to be used. In fact H' consists of those analytic
functions f on D such that

27
sup{/ |f(rei9)|d6’:0<r< 1} < 00.
0

Note that if f is an analytic function on D and 0 < r < 1, then v, (0) =
f(re*) defines a rectifiable curve. The length of this curve is given by

'r'/o27r £/ (re*)| db.

Thus the condition that f/ € H! is precisely the condition that the curves
{7} have uniformly bounded lengths. This leads to the next result.

5.8 Theorem. Assume that 2 is a Jordan region and let 7 : D — €2 be the
Riemann map with 7(0) = 0 and 7'(0) > 0. The following statements are
equivalent.

(a) 02 is a rectifiable Jordan curve.
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(b) 7" € H'.
(c) The function 0 — 7(e*%) is a function of bounded variation.

(d) The function 8 — 7(e*%) is absolutely continuous.

Proof. Using Theorem 5.6, extend 7 to a homeomorphism of cl D onto cl €.
Assume that + is a rectifiable parameterization of 9 and let a(0) = 7(e*).
Since both a and ~ are one-to-one, there is a homeomorphism o : |0, 27| —
0, 27| such that a(8) = v(o(6)) for all 8. So o is either increasing or de-
creasing. If 0 = 6y < 61 < --- < 0, = 2w, then ) |a(0r) — a(fr_1)| =
Y v (6(0k)) — v (0(0k—1))| < V() since {a(bp),...,0(0,)} is also a parti-
tion of |0, 27]. Thus « is a bounded variation. This shows that (a) implies
(c). Clearly (c) implies (a).

Now let’s show that (b) implies (c). Assume that 7/ € H' and let 0 <
r<l.lt0=60<-.---<6, =2m, then

n

2 |T(7"""9-7') — T('r'e'igj——l)| _ Z

j=1

& e
/ rr' (re??)ie® df

0,1

27
< / 7/ (rei®)| df
0

< C,

where (' is the constant whose existence is guaranteed by the assumption
that 7/ belongs to H!. Letting r — 1 we get that

T
Z |T(€i9j — T(eigj“1)| <C
j=1

and so 7 is a function of bounded variation of 0D.
The fact that (c) and (d) are equivalent and imply (b) will be shown in
Theorem 20.4.8 below. O

Now for an application of Theorem 5.6 to a characterization of the simply
connected regions whose boundaries are Jordan curves.

5.9 Definition. For any region {2 a boundary point w is a simple boundary
point if whenever {w,} is a sequence in {2 converging to w there is a path
a : |0,1] — C having the following properties:

(a) a(t)eNfor0<t <1

(b) (1) = w;
(c) there is a sequence {t¢,} in [0, 1) such that ¢,, — 1 and a(¢,) = w, for
all n > 1.
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It is not hard to see that each point of D is a simple boundary point
(Exercise 4). The region in Figure 14.4 furnishes examples of boundary
points of a simply connected region that are not simple boundary points.
Exercise 4 also states that not every point in the boundary of a slit disk is
a simple boundary point. Here is one way of getting some examples and a
precursor of the main result to come.

5.10 Proposition. If () is a simply connected region, g : @ — D is a
conformal equivalence, and w € 0§} such that g has an extension to a
continuous map from QU {w} onto DU {a} for some a in 0D, then w is a
stmple boundary point of ().

Proof. Exercise. O

5.11 Corollary. If € is a Jordan region, then every point of OS2 is a simple
boundary point.

The preceding corollary is a geometric fact that was derived from a the-
orem of analysis (5.6). Giving a purely geometric proof seems quite hard.

5.12 Theorem.

(a) Let  be a bounded simply connected region and let g : 2 — D be a
conformal equivalence. If w is a stmple boundary point of €2, then g
has a continuous extension to QU {w}.

(b) If R is the collection of simple boundary points of €2, then g has a
continuous one-to-one extension to 2 U R.

Proof. (a) If g does not have such an extension, then there is a sequence
{wyp} in  that converges to w such that g(wan) — we, g(wony1) — wi,
and wi; # ws. It is easy to see that w; and wy belong to 0D (1.11). Let
a:[0,1] - QU{w} be a path such that a(1) = w, a(t,) = w,, and t,, — 1.
Put p(t) = g (a(t)). It follows that |p(f)| — 1 ast — 1 (why?). Let J; and
Jo be the two open arcs in 9D with end points w; and wsy. By drawing
a picture it can be seen that one of these arcs, say J;, has the property
that for every w on J; and for 0 < s < 1, there is a t with s <t < 1 and
p(t) lying on the radius [0, w] (exercise). If 7 = ¢g~! : D — Q, then 7 is a
bounded analytic function since {2 is bounded. So for almost every w in Jj,
lim,_,; 7(rw) exists; temporarily fix such a w. But the property of J; just
discussed implies there is a sequence {s,} in (0,1) such that s,, — 1 and
p(sn) — w radially. Thus 7 (p(s,)) — 7(w). But 7 (p(s,)) = a(s,) — w; so
7(w) = w for every point of J; at which 7 has a radial limit. By Theorem
13.5.3, 7 is constant, a contradiction.

(b) Let g denote its own extension to 2 U R. Suppose w; and ws are
distinct points in R and g(w;) = g(w2); we may assume that g(w;) =
g(we) = —1. Since w; and wy are simple boundary points, for 5 = 1,2 there
is a path a; : [0,1] — QU {w;} such that a;(1) = w; and «a;(t) € 2 for
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t < 1. Put p;(t) = g(a;(t)); so p; (|0,1)) €D and p;(1) = —1. Let tg < 1
such that for tg < s,t <1

1
5.13 |Of1 (S) — sz(t)l > -2- le — w2| :

Choose § > 0 sufficiently small that
p; ([0, %0]) N B(—1;6) =0

for j = 1,2 and put As = DN B(—1;06). Since each of the curves p; termi-
nates at —1, whenever 0 < r < §, there is a t; > tp so that p;(¢;) = w;,
satisfies |1 + w;| = r. Again letting 7 = g~' we have that (5.13) implies
that

1

fwr —wa| < lr(wn) - 7(ws))

92 . .
/ (=1 + re*)rie*’ds)|.
01

For each value of r, let 6, be the angle less than 7/2 such that 1+re®® € D
for || < 0,.. The above inequalities remain valid if the integral is taken
from —6, to 6,.. Do this and then apply the Cauchy-Schwartz Inequality
for integrals to get

T 9, | 0,
_I_C—i1_ wa| < [/ |'r’(—1 + re"’g)|2 dQJ [/ rzdé’]
4 0, 0,

0, |
< mre / (-1 + 'r'ezg)|2 de.
-9,

Thus, performing the necessary algebraic manipulations and integrating
with respect to r from 0 to 6, we get

9
_|_°f_}___4 wa| / / / |T 1+rez9| dOdr
T

Area (

< Area Q.

Since {2 1s bounded, the right hand side of this inequality is finite. The
only way the left hand side can be finite is if w; = w9, contradicting the
assumption that they are distinct.

The proot that g is continuous on 2 U R is lett to the reader. O

5.14 Corollary. If Q2 1s a bounded simply connected region in the plane
and every boundary point 1s a stmple boundary point, then OS2 is a Jordan
curve.
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Finally, the results of this section can be combined with the results on
reflection across an analytic arc.

5.15 Proposition. Let {2 be a simply connected region and let g : ) — D
be a conformal equivalence. If L 1s a free analytic boundary arc of Q) and K
1s a compact subset of L, then g has an analytic continuation to a region
A containing QU K.

Proof. Use Exercise 7 and Theorem 13.4.8. O

Note that even though the function g in Proposition 5.15 is one-to-one,
its extension need not be.

5.16 Example. Let (2 = D, and define g : 2 — D as the composition
of the function h(z) = z + 27! and the Mobius transformation T'(z) =
(z—d)(z+1)" 1

24 — iz +1

22 +4z+1

The function h maps D, onto the upper half plane and T' maps this half
plane onto [D. The upper half circle L is a free analytic boundary arc of ()
so that g has an analytic continuation across L. In fact it is easy to see that
h#(z) = h(z) on © and so g7 (2) = g(z). Thus even though g is univalent
on €2, g7 is not.

9(z) =T o h(z) =

The following question arises. If {2 is a Jordan region and the curve that
forms the boundary of {2 has additional smoothness properties, does the
boundary function of the Riemann map 7 : ) — () have similar smoothness
properties? If 0€2 is an analytic curve, we have that 7 has an analytic
continuation to a neighborhood of cl D by the Schwarz Reflection Principle.
But what if 9Q is just C>°; or C'? A discussion of this question is in Bell
and Krantz [1987]. In particular, they show that if 02 is C*°, then so is

the boundary function of 7.

Exercises

1. Prove Proposition 9.2.

2. This exercise will obviate the need for Theorem 13.5.3 in the proot
of Theorem 5.6. Let 7 be a bounded analytic function on D and let
J be an open arc of 0D. Show, without using Theorem 13.5.3, that
if 7 has a radial limit at each point of J and this limit is 0, then
7 = 0. (Hint: For a judicious choice of wy,...,w,, in 0D, consider
the function h(z) = 7(w12)T(wez2) ... T(Wn2).)

3. Let G be a region and suppose that (; € 0G such that there is a
6 > 0 with the property that B(a;6) N G is simply connected and
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B(a;6) N 0G is a Jordan arc . Let €2 be a finitely connected region
whose boundary consists of pairwise disjoint Jordan curves. Show
that if f : G — (Q is a conformal equivalence, then f has a continuous
one-to-one extension to G U 7.

4. Show that every point of 0D is a simple boundary point. If €2 is the
slit disk D \ (—1, 0], show that points of the interval (—1,0) are not

simple boundary points while all the remaining points are.

5. ohow that if w is a simple boundary point of {2, then thereisa é > 0
such that B(w;d) N is connected.

6. Show that the conclusion of Theorem 5.12 remains valid if 2 is not
assumed to be bounded but C \ cl 2 has interior. Is the conclusion
always valid”?

7. Show that if J is a free analytic boundary arc of {2, then every point
of J is a simple boundary point.

8. (a)If g:cl D — Cis a continuous function that is analytic in D, show
that there is a sequence of polynomials {p,, } that converges uniformly
on cl D to g. (Hint: For 0 < r < 1, consider the function g, : c1 D — C
defined by g,(z) = g(rz).) (b) If v is a Jordan curve, €2 is the inside
of v, and f : cl {2 — C is a continuous function that is analytic on
(2, show that there is a sequence of polynomials {p, } that converges
uniformly on cl €2 to f.

9. If Q is any bounded region in the plane and f : cl 2 — C is a
continuous function that is analytic on {2 and if there is a sequence of
polynomials {p,} that converges uniformly on cl 2 to f, show that
f has an analytic continuation to int [Q], where () is the polynimally
convex hull of €.

10. Suppose that G and (2 are simply connected Jordan regions and f
is a continuous function on cl G such that f is analytic on G and
f(G) C Q. Show that if f maps 0 G homeomorphically onto 02,
then f is univalent on G and f(G) = €.

36 The Area Theorem

If f is analytic near infinity, then it is analytic on a set of the form G =
{z:]z]| > R} = ann(0; R, o), and thus f has a Laurent expansion in G

f(Z) — Z an2';

n——0oo
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this series converges absolutely and uniformly on compact subsets of G.
With this notion, f has a pole at oo of order p if a,, = 0 for n > p. Note
that this is the opposite of the discussion of poles at finite points. The
residue of f at oo is the coeflicient a; and f has a removable singularity at
oo if this expansion has the form

_ M %2
f(z)—ao—l—z-l—z2—|— :
Here ag = f(00), a1 = f'(00) = lim, . 2 (f(2) — ap),. ...
Consider the collection U of functions f that are univalent in D* = {z :
2| > 1} and have the form

8

In other words, U consists of all univalent functions on D* with a simple pole
at oo and residue 1. This class of functions can be characterized without
reference to the Laurent expansion. The easy proof is left to the reader.

6.2 Proposition. A function f belongs to the class U if and only if f is
a univalent analytic function on D* such that f(oo) = oo and f — z has a
removable singularity at oo.

6.3 Area Theorem. If f € U and f has the expansion (6.1), then
Z nlanl? < 1.
n=1

Proof. For r > 1, let I', be the curve that is the image under f of the
circle |z| = r. Because f is univalent, I', is a smooth Jordan curve; let €2,
be the inside of I',.. Applying Green’s Theorem to the function u = Zz we

get that
Area(€),) = / / 0(z)
(2,
1

wam—

<

2i Jr.
1 27

2 Jo

I ()M (¢)dt.

Since I',.(t) = f(re*), this means that

2
Area(Q,) = g/ f(ret) f'(re')e™dt.
0
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Using (6.1) we can calculate that

o0
SE— O
f(rett) = re 't +ap + E et
n=1 n
> s
N m  _i(m41)t
fl(re’) = 1- E M- e (m+1)t,
m=1

T

Using the fact that f02 e'™tdt = 0 unless n = 0, in which case the integral
is 27, the uniform convergence of the above series implies that

r . nloy,|?
0 < Area((},) = 5 2T — Z r2nj—1 (27)
n=1
— n|ap|?
_ 2 n
6.4 = 7T —WZ r2n——-.
n=1
Therefore
. n|ap,|?
1 2 ,r.2n-|—2
n=1

for all » > 1. If the inequality is not valid for » = 1, then there is an
integer /N such that 1 < Ziv n|a,|?. But since » > 1 this also gives that

1 < Ziv n|ay|? /r*™ T2, a contradiction. O

Part of the proof of the preceding theorem, namely Equation 6.4, in-
dicates why this result has its name. What happens to (6.4) when 7 is
allowed to approach 17 Technically we must appeal to measure theory but
the result is intuitively clear.

If X, =f({z:]2| >r}) for r > 1, then @, =C\ X,.. Thus (). Q, =C\
.. X, = C\({2|2] > 1}) = E, aclosed set. Asr — 1, Area(2,) — Area(FE).
Thus the following corollary.

6.5 Corollary. If f € U, f has the Laurent expansion (6.1), and E =
C\ f(D*), then

Area(E) =7 — Z n|on,|?.
n=1

Thus Area(E) = 0 if and only if equality occurs in the Area Theorem.

The next proposition provides a uniqueness statement about the map-
pings in the class /. Note that if f € U and f is considered as a mapping
on the extended plane C,, then f(oco) = oo.

6.6 Proposition. If f e U and f(D*) = D*, then f(z) = z for all z.

Proof. 1If f is as in the statement of the proposition, then Corollary 6.5
implies that 7 = 7 — 7Y n|a,|?, so that a, = 0 for all n > 1. Thus
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f(z) = z+agp. On the other hand, the hypothesis on the mapping properties
of f also implies that |f(z)| — 1 as |z| — 1. Letting z — 1, this implies that
1f(2)|? = |z4ag|? = |z|?+2Re (apz)+|ag|? — 1+2Re (ag)+]|ag|? = 1. Thus
Re (ag) +|ag|? = 0. Similarly, letting 2 — —1 show that —Re (ag) +|agp|® =
0. We now conclude that ap = 0 and so f(z) = z. O

The preceding proposition can also be proved using Schwarz’s Lemma,
(Exercise 3).

6.7 Proposition. If f € U and f has the expansion (6.1), then |a1| < 1.
Moreover |a1| = 1 if and only if the set E = C\ f(D*) is a straight
line segment of length 4. In this case f(z) = z + ag + a12™! and E =
[—2)\ + ag, 2X + ao], where \* = a;.

Proof. Since |a;| is one of the terms in the sum appearing in the Area
Theorem, it is clear that || < 1. If |a1| = 1, then a,, = 0 for n > 2. Thus
f(2) = z+ag +a1z7 1. It can be seen by using Exercise 2 that in this case
E = [-2) + ag, 2\ + ag], where A\? = «;. In particular, F is a straight line
segment of length 4.

Conversely assume that F is a straight line segment of length 4; so £ has
the form F = [—2u + By, 21 + Bol|, where By and u are complex numbers
and |u| = 1. If g(2) = 2+ Bo+puz"1, then g € Y and g(D*) = C\E = f(D*).
Therefore f o g~! € U and maps D* onto itself. By Proposition 6.6, f = g
and a; = p?, so that |ay| = 1. O

The next proposition is a useful estimate of the derivative of a function

in 4.
6.8 Proposition. If f € U, then

f ()] € —5—

2|2 —1

whenever |z| > 1. Equality occurs at some number a with |a| > 1 if and
only if f is given by the formula
a|® —1

f(Z)=Z+ao—a_-(_EL_z_-—)~.

Proof. Since f'(z) =1 —a1z27? —agz > —--- =1-=> na,z~ " !, an

application of the Cauchy-Schwarz Inequality as well as the Area Theorem
shows that

FO-1 = |3 (V) (V)

00 %’ 00
< {Z nlan|2] {Z n|z|—2n—2}
n=1 n=1

1
2
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It now follows that |f'(2)| < |f'(z) —1|+1< (|2 =1)"1 +1
= |2[*(|2|* = 1)~

Now suppose that there is a complex number a, |a| > 1, such that the
inequality becomes an equality when z = a. Thus |f'(a)| < |f'(a)—1|+1 <
lal*(la]®* — 1)~! = |f’(a)|. This implies that the two inequalities in the
above display become equalities when z = a. The fact that the first of
these becomes an equality means there is equality in the Cauchy-Schwarz
Inequality. Therefore there is a complex number b such that a,, = ba—""*
for all n > 1. The fact that the second inequality becomes an equality

1 = Z n|oy, |

means that

]
E
N
E_
E__
w
3
to

_ b2—-—————-————-——-—--.
o e =102

Thus |b| = |a|? — 1. Substituting these relations in the Laurent expansion
for f gives

SO O e |

f(z)

Z+ Qo + %Z(_ﬁ}_)

n:

1
ac

- T T g laz—1
Now use this formula for f(z) to compute f’ (a):
fl(a) = 1—9( aa —1)7°

a
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= 1-1b(|a]? —1)72
(lal* —1)%2 —b

~ (la? = a)?

~ bb—b

- T

_b-1

- T3

By assumption

' (a)]3

|
N
-
NSO
| I ™
-
N
)

Equating the two expressions for |f’(a)|? we get that Re b = Re b = —|b|.
It follows that b= —|b| = 1 — |a|? and so f has the desired form.

If f is given by the stated formula it is routine to check that equality
occurs when z = a. O

Exercises

1. Show that for » and 8 any complex numbers, f(z2) = 4rB2(8 — z) 2
is the composition f = f3 o fy o f1, where f1(z) = (B8 + 2)/(8 — z),
f2(2) = 22, and f3(z) = r(z—1). Use this to show that f is a conformal
equivalence of {z : |z| < |B|} as well as {z : |z| > |3|} onto the split
plane C\ {z = —rt:t > 1}.

2. For a complex number ), show that f(z) = z + A?27! is the compo-
sition fo 0 f1, where f1(2) = z2(A—2)"2% and f3(2) = (1+2X2)/z. Use
this to show that f is a conformal equivalence of both {z : |z| < |\|}
and {z : |z]| > |A|} onto C \ [—2), 2.

3. Prove Proposition 6.6 using Schwarz’s Lemma.

37 Disk Mappings: The Class S

In this section attention is focused on a class of univalent functions on
the open unit disk, ). Since each simply connected region is the image
of D under a conformal equivalence, the study of univalent functions on
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D i1s equivalent to the study of univalent functions on arbitrary simply
connected regions. If oo is adjoined to the region D*, the resulting region
(also denoted by D*) is also simply connected, so that it is equivalent
to consider univalent functions on D*. After suitable normalization this
amounts to a consideration of functions in the class . The class of univalent
functions S on D defined below is in one-to-one correspondence with a
subset of the class U. The study of S is classical and whether to study S or
U depends on your perspective, though one class sometimes offers certain
technical advantages over the other.

7.1 Definition. The class S consists of all univalent functions f on D such
that f(0) =0 and f'(0) = 1.

The reason for the use of the letter S to denote this class of functions is
that they are called Schlicht functions.

If h is any univalent function on D, then f = [h — h(0)| /h'(0) belongs
to S, so that information about the functions in & gives information about
all univalent functions on . If f € S, then the power series expansion of
f about zero has the form

7.2 f(z) =z4+az” +agz” +---.

As mentioned the class S and the class U/ from the preceding section are
related. This relation is given in the next proposition.

7.3 Proposition.

~1
c S and, con-

(a) If g € U and g never vanishes, then f(z) = [g(z_l):
versely, if f € S, then g(z) = [f(z71) -

(b) If f € S with power series given by (7.2) and |f(w™!)|
w4 280 anz” " for w in D, then ag = —as.

€ U and g never vanishes.

L= g(w) =

Proof. (a) Suppose g € U and f(z) = [g(z_l)_ ~ for z in . Since g(oo) =
00, it is clear that f is univalent on D and f(0) = 0. Moreover g(z)/z — 1
as z — oo and so it follows that f/(0) =lim,_,o f(2)/z =1and f € S. The
proof of the converse is similar.

(b) Just use the fact that for |z|] < 1, g(z71)f(2) = 1, perform the
required multiplication of the corresponding series, and set equal to 0 all
the coefficients of the non-constant terms. O

7.4 Proposition.

(a) If f € S and n is any positive integer, then there is a unique function
g in S such that g(z)"™ = f(2™). For such a function g, g(wz) = wg(z)
for any n-th root of unity w and all z in D. Conversely, if g € S and
g(wz) = wg(z) for any n-th root of unity w and all z in D, then there
is a function f in S such that g(2)™ = f(2").
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(b) Similarly, if f € U, then there is a unique function g in U such that
g(z)™ = f(2™). For such a function g, g(wz) = wg(z) for any n-
th root of unity w and all z in D. Conversely, if g € U such that

g(wz) = wg(z) for any n-th root of unity w and all z in D, then there
1s a function f in U such that g(z)™ = f(2™).

Proof. (a) Assume that f € S and let h( ) = f(2™) for |z| < 1. The
only zero of h in D is the one at z =0 and this has order n. Thus h(z) =

2z"h1(z) and h; is analytic on D and does not vanish. Moreover the fact that
f'(0) = 1 implies that h;(0) = 1. Thus there is a unique analytic function
g1 on D such that g7 = h; and ¢1(0) = 1. Put g(z) = zg¢:1(2); clearly
g(z)" = f(z"), g(0) = 0, and ¢'(0) = lim,_,0g(2)/z = ¢g1(0) = 1. Notice
that these properties uniquely determine g. Indeed, if k£ is any analytic
function on I such that k(z)™ = f(2™) and k'(0) = 1, then [¢g/k|™ = 1 and
g/k is analytic, whence the conclusion that k = g.

[f the power series of f is given by (7.2), then a calculation shows that
hi(z) = 1+ agz™ + a3z®™ + - -+, so that h(wz) = h(z) whenever w™ = 1.
Thus for an n-th root of unity w, k(z) = zg¢1(wz) has the property that
k(z)® = f(2™) and k'(0) = 1. By the uniqueness statement above, k = g.
Thus g1(wz) = g1(2). From here it follows that g(wz) = wg(z) whenever
wt = 1.

To complete the proof that g € S it remains to show that ¢ is univalent.
If g(2) = g(w), then f(2™) = f(w™) and so 2™ = w™; thus there is an n-th
root of unity such that w = wz. So g(z) = g(wz) = wg(z). Clearly we can
assume that z # 0 so that g(z) # 0 and hence w = 1; that is, w = z.

For the converse, if g € S and g(wz) = wg(z) for any n-th root of unity
w and all z in D, then g has a power series representation of the form

g(Z) = Z + bn+1zn+1 —+ b2n+1z2n+1 + ...

Thus
g(2)" = 2" + con2®™ + - -

Let
f(z) = 2+ cand® + -+

The radius of convergence of this power series is at least 1, f(0) = 0, and
f/(0)=1.If zand w € D and f(z) = f(w), let z; and w; be points in D
with 27 = z and w} = w. So g(z1)" = g(w1)™. It is left to the reader to
show that this implies there is an n-th root of unity w such that z; = ww;.
Hence z = w and so f is univalent. That is, f € S.

(b) This proof is similar. O

The celebrated Bieberbach Conjecture concerns the class S. Precisely,
this says that if f € S and its power series is given by ( 7.2), then

7.5 la,| <n
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for all n > 2. Moreover, equality occurs if and only if f is the Koebe
function or one of its rotations (1.4).

We will prove the Bieberbach conjecture now for n = 2. The proof of
the general case is due to L deBranges [1985|. This material is presented
in Chapter 17. We start with a corresponding inequality for the class U,

which is stated separately.

7.6 Theorem. If g € U with Laurent series g(z) = z+oag+a 2z~ 1+ -+, then
lag| < 2. Equality occurs if and only if g(2) = z+2X+ X221 = 271 (2+))?,
where |\| = 1. In this case g maps D* onto C \ [0,4]].

Proof. Let h € U such that h(z)? = g(z?) for z in D* and let the expansion
of h be given by h(z) =2+ By + 81z~ +---. Thus

h(z)* 2% + 280z + (B5 +2081) + - -
g(2%)

22 +ag+aiz” 4

Hence 3y = 0 and ag = 23;. But according to Proposition 6.7, |31| < 1
so |ag| < 2. The equality |ag| = 2 holds if and only if |3;| = 1, in which
case h(z) = z + Az~ !, where \* = (3; (so |A\| = 1). But in this case,
g(2%) = h(2)? = (2+Az71)?% = 2242X+ %274, so that g(2) = z2+2 +X?27 1.
The mapping properties of this function are left for the reader to verity.
(See Exercise 6.2) O

7.7 Theorem. If f € S with power series given by (7.2), then |az| < 2.
Equality occurs if and only if f is a rotation of the Koebe function.

Proof. Let g be the corresponding function in the classf : g(z) = [ f (z“l)]
for z in D*. It follows that g has the Laurent series

g(z):z—ag—l—(a%—ag)z_l-l—---

The fact that |as| < 2 now follows the preceding theorem. Moreover equal-
ity occurs if and only if there is a A, |A| = 1, such that g(2) = 271 (z + \)“.
This is equivalent to having f be a rotation of the Koebe function. O

As an application this theorem is used to demonstrate the Koebe “1/4-
theorem.”

7.8 Theorem. If f € S, then f(D) D {(: |(| < 1/4}.

Proof. Fix f in S and let (y be a complex number that does not belong
to f(ID); it must be shown that |(| > 1/4. Since 0 € f(ID), {y # 0 and so

g(z) = f(z) [1 — Co_lf(z)] ~is an analytic function on D. In fact g € S. To
see this first observe that g(0) = 0 and ¢'(0) = lim,_,q [g9(2)/2] = f'(0) = 1.
Finally g is the composition of f and a Mobius transtormation and hence
must be univalent.
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Since f(0) = 0, there is a small value of r such that |f(z)| < |(o| for
2| < r. In this neighborhood of 0 we get

1 ()] =146 f(2) + G2 F(2)2 +

Substituting the power series expansion (7.2) of f and collecting terms we
get that for |z| <7

g(z)=z+ ({5 +az)2®+---.

(In fact this power series converges throughout the unit disk.) By Theo-
rem 7.7 this implies that |(;* + as| < 2. But |az| < 2 so that |(; '] < 4, or
Col = 1/4. O

Consideration of the Koebe function shows that the constant 1/4 is sharp.
The next result is often called the Koebe Distortion Theorem.

7.9 Theorem. If f € S and |z| < 1, then:

1+ |z|

(a) A SeI < g

2

2
(1 +[2])°

Equality holds for one of these four inequalities at some point z # 0 if and
only if f is a rotation of the Koebe function.

(b)

Proof. For each complex number a in D define the function

f(#2) - f(a
(1=Tal2)f"(a)

It is easy to see that f, is univalent on I since it is the composition of

univalent functions. Also f,(0) = 0 and a routine calculation shows that
f.(0) = 1. Therefore f, € S. Let fo(2) = 2z + boz® +--- in D.
Another computation reveals that

fa(2) =

0 = (1= la?) T

Since by = f'(0)/2 and |b2| < 2 by Theorem 7.7, this shows that

| a2 f'(a) a-l
(1 =1al) gy — 2] <4

— 2a) .

Thus
| (a) 2a | 4

_ < _
| f'(a)  1—la]*| ™ 1—]af3
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Multiply both sides of this inequality by |a| and substitute z = a to get

f(z) 2 | _ 4z

7.10 — .
“Fz)  1— 22| T 1= 2P

Now f’ does not vanish on D, so there is an analytic branch of log f'(z)
with log f'(0) = 0. Using the chain rule,

g o8 £0e%)] = 5 log (2 e+ 5 Mg (2) . 2

r

/ ”(”’ew) i0

fi(rei®)
Now for any function g, Re[{0g/dr| = ORelg|/0r, so

9, b "(z
7.11 T log | f'(re 9)'] Re [z]; ((z))J .
Thus (7.10) implies
9, 2 4
"or log | f'(re™)]] - i{ri =1 —rrz'

Dividing by r and performing some algebraic manipulation gives that

2r—4 0 2r + 4
1—r2 = 8r [loglf re )” = 1 — r2
for all re*® in D. Thus, for p < 1,
P 2r — 4 P 0 NT P 2r +4
. = dr< | = '(ret? <
7.12 /0 1_r2dr_/0 5 log |f'(re ){_dr_/o 1_r2dr
or , ,
—p 1/ 16 TP
log[ 1 <log|f'(pe”)l < log{ }
(14 p)? (™) (1—-p)°

Now take the exponential of both sides of these inequalities to obtain the
inequality in (a) for z = pe*’.

Suppose for some z = pe’’ one of the inequalities in (a) is an equality; for
specificity, assume that equality occurs in the lower bound. It follows that
the first inequality in (7.12) is an equality. Thus the integrands are equal
for 0 < r < p. Using (7.11) for 0 < r < p and letting r — 0 we get that
—4 = Rele*? f”(0)], so that |f"/(0)| > 4. By Theorem 7.7, |f"(0)| = 4 and
f is a rotation of the Koebe function. The proof of the case for equality in
the upper bound is similar.

To prove part (b) note that |f(z)]| = 'fo a4 F'( )dCl < f[O,z] lf'(C)HdCI
Parameterize the line segment by ( = tz, 0 <t < 1, and use part (a) to get
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an upper estimate for |f'({)|. After performing the required calculations

this shows that .
z

(1—12))%’

f(2)] <

the right hand side of part (b).
To get the left hand side of part (b), first note that an elementary ar-

gument using calculus shows that ¢(1 +¢)?2 < 1/4 for 0 < t < 1; so it
suffices to establish the inequality under the assumption that |f(z)| < 1/4.
But here Koebe’s 1/4-theorem implies that {¢ : |(| > 1/4} C f(D). So
fix z in D with |f(z)| < 1/4 and let v be the path in D from 0 to z such
that f o« is the straight line segment |0, f(z)]. Tha,t is, f ( ( )) = tf(2)

for 0 < ¢ < 1. Thus |f(2)] = | [, f'(w)dw| = ‘fo '(t)dt|. Now

Friv@)y(t) = [tf(2)] = f( ) for all ¢. Thus |f(2)| = f,,, \f ( )Hd’w\- Using
the appropriate part of (a) we get that |f'(w)| > (1 — |w|)(1 + |w|)~>. On
the other hand if we take 0 < s <t <1, |y(¢t) —v(s)| < ||v(t)| — |v(s)|| and
so (symbolically), |dw| < d|w|. Combining these inequalities gives that

Zl 1 —p
_ d
/0 (1+r)3"
2l

(1 + |2)?

This proves (b). It is left to the reader to show that f is a rotation of the
Koebe function if one of these two inequalities is an equality. C

f(2)]

Before giving an important corollary of this theorem, here is a lemma
that appeared as Exercise 7.2.10.

7.13 Lemma. If {f,} is a sequence of univalent functions on a region G
and f, — f in H(G), then either f is univalent or f is constant.

7.14 Corollary. The set S of univalent functions is compact in H(D).

Proof. By Montel’s Theorem (7.2.9) and Theorem 7.9, S is a normal fam-
ily. It remains to show that S is closed (8.1.15). But if {f,} C Sand f, — f
in H(ID), then the preceding lemma implies that either f is univalent or f
is constant. But f/ (0) = 1 for all n so that f'(0) = 1 and f is not constant.
Clearly f(0O)=0andso f €S. O

The next result is almost a corollary of the preceding corollary, but it
requires a little more proof than one usually associates with such an ap-

pelation.

7.15 Proposition. If G is a region, a € G, and b is any complex number,
then S(G,a,b) = {f € H(G) : f is univalent, f(a) = b, and f'(a) = 1} is
compact in H(G).
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Proof. By a simple translation argument it may be assumed that a = b =
0; let S(G) = S(G,0,0). Let R > 0 such that B(0O;R) C G. If f € S(G)
and fr(z) = R~ f(Rz) for zin D, then fr € S = S(D). Thus fr(D) D {(:
(| < 1/4} and so |fr(€*?)| > 1/4 for all § (7.8). Hence |f(Re*)| > R/4
for all § and B(0; R/4) C f(B(0; R)). So f maps G \ B(0; R) into f(Q) \
B(0; R/4); that is, |f| > R/4 for z in G\ B(0; R). Therefore ¢¢(2) = z/f(2)
is an analytic function on G, |¢¢(2)| < 4 for |2| < R and |¢¢(2)| < 4|z|R~}
for z in G\ B(0; R). Thus ® = {¢; : f € S(G)} is a locally bounded family
of analytic functions on G and hence must be normal.

By an argument similar to that used to prove Corollary 7.14, S(G) is
closed. So to prove the proposition, it suffices to show that S(G) is a normal
family. Let {f,.} be a sequence in S(G) and let {¢,,} be the corresponding
sequence in ®. By passing to a subsequence it necessary, it may be assumed
that ¢,, — ¢ for some analytic function ¢ on G. Clearly the functions ¢,
have no zero in G so either ¢ = 0 or ¢ does not vanish in G (7.2.6). Also
for each n, ¢,(0) = f (0) = 1 and so ¢(0) = 1 and hence ¢ has no zeros
on G. Let f(z) = z/¢(z). Now f'(0) = 1, so f is not constant. Clearly
fn(2z) — f(z) for all z in G. If K is a compact subset of G, let € > 0 such
that |¢| > 2¢ on K. It follows that |¢,| > € on K for all n sufficiently
large (see Exercise 4). This implies that {f,} is locally bounded on G and,
hence, a normal family. O

We close with an extension of the Distortion Theorem; you might call
this the Generalized Distortion Theorem.

7.16 Theorem. If K is a compact subset of the region G, then there is a
constant M (dependent on K ) such that for every univalent function f on
G and every pair of points z and w in K,

1 _1re)
M )] =

Proof. By interchanging the roles of z and w, it suffices to prove the
second of these inequalities. Let 0 < 2d < dist(K,0G) and cover K by
a finite collection B of open disks of radius d/8. Suppose B; and By are
two of the disks from B such that B; N By # (. Let 2; € B;, 7 = 1,2. So
21 — 22| < d/2 and B(z;;d) C G. Consider the function

g(z) = 12 _tiﬁll_ )

This function belongs to the class S. According to Theorem 7.9,

1+ |z
(1—1z])?

g'(2)] <
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for |z| < 1. Making the appropriate substitutions we get

|f,(251 +dZ)
) | A2

Take z = (21 — z2)/d so that |z| < 1/2 and we get that

-
__I_
™

' 1 + L
= b
2)1 (1= 3)
If z and w are arbitrary points of K, then there are points z; = 2, 29, ..., 2,

= w such that each consecutive pair of points is in a disk from B, n < N,
the total number of disks in B, and these disks are pairwise intersecting.

Therefore

| f,(Z) | |f,(21)| |f’(252)| lf,(zn—l)l < M(')n,—l < Mé\f—l = M.

f(w) |f,(z2)||f,(z3)|.”| f'(zn) |

Exercises

1. Let f and g be as in part (b) of Proposition 7.3 and show that a; =

a% — a3. Show that as = —a4 + 2a9a3 — a%.

2. Let f be the function given in (7.5) and show that f € § and if the
power series of f is given by (7.2), then |a,| = n for all n > 2. Show
that the image of D under f is the plane minus the radial slit from
A/4 to oo that does not pass through the origin.

3. Let f,(2) = 2z + nz? and show that even though f,(0) = 0 and
fl(0)=1foralln > 1, {fn} is not a normal sequence.

4. Let {g.} be a normal sequence of analytic functions on a region G
such that each g, has no zeros in G and g, — ¢, where g is not
identically 0. Show that if K is a compact subset of G, then there is
an £ > 0 such that |g,| > € on K for all n > 1.

5. Let GG be a region and fix a point a in GG. For a choice of positive con-

stants C', m, and M show that F = {f € H(G) : f is univalent, |f(a)]
< (C,and m < |f'(a)|] < M} is a compact subset of H(G).

6. For the set U of univalent functions on D* = {co} U {2z : |z| > 1},
show that U U {oo} is compact