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Preface

As 1ts title indicates, this book is intended to serve as a textbook for an
introductory course in mathematical analysis. In preliminary form the
book has been used in this way at the University of Michigan, Indiana
University, and Texas A&M University, and has proved serviceable. In
addition to its primary purpose as a textbook for a formal course, however,
it is the authors’ hope that this book will also prove of value to readers
interested in studying mathematical analysis on their own. Indeed, we
believe the wealth and variety of examples and exercises will be especially
conducive to this end.

A word on prerequisites. With what mathematical background might a
prospective reader hope to profit from the study of this book? QOur con-
scious intent in writing it was to address the needs of a beginning graduate
student in mathematics, or, to put matters slightly differently, a student
who has completed an undergraduate program with a mathematics ma-
jor. On the other hand, the book is very largely self-contained and should
therefore be accessible to a lower classman whose interest in mathematical
analysis has already been awakened.

The contents of the book may be briefly summarized. Chapters 1
through 3 constitute an overview of the preliminary material on which
the rest of the book is built, viz., set theory, the number systems, and lin-
ear algebra. In no case do we imagine that this brief summary of material
can serve as the reader’s initial encounter with these ideas. Rather we have
gathered together here the basic terminology and facts to be employed in
all that follows. In particular, in Chapters 2 and 3 we introduce only mate-
rial that is assumed to be already familiar to the reader, though perhaps in
different form, and these two chapters may in most cases be treated quite
lightly. Chapter 1, on the other hand, dealing with the rudiments of set
theory, acquaints the reader with inductive proofs based on the mazimum
principle in its various forms, and is deserving of more careful attention.

In Chapters 4 and 5 we present the essentials from the theory of trans-
finite numbers. This treatment, while concise, presents all of the ideas and
results that will actually be employed in the sequel, and is, in any case,

fuller than is to be found in most other texts. In this connection we note
that the various number systems, formally introduced in Chapter 2, actu-
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ally make a few brief cameo appearances in Chapter 1 as well. This minor
logical embarrassment could easily be averted, of course, but only at the
cost of unwelcome circumlocutions.

Chapters 6 through 8 constitute the heart of the book. In them we
explore in thoroughgoing fashion the structure of various metric spaces
and the mappings defined on or taking values in such spaces. The topics
and facts adduced are largely standard, though our choice of examples,
problems, and manner of presentation may make some modest claim to
freshness if not to novelty, but many of these lines of inquiry are pursued
in greater detail than will be found in most other recent texts.

The final chapter (Chapter 9) consists of a treatment of general topology.
In this chapter we equip the reader with the full panoply of topological
equipment needed for the transition from the world of classical analysis,
set in metric spaces, to “modern” or “abstract” analysis, the realm of
maximal ideal spaces, kernel-hull topologies, etc.

In formulating the sets of problems that follow each chapter we have
followed current practice. Each problem, or part of a problem, is, in effect,
a theorem to be proved, and it is our intention that the solutions should be
written out with that in mind. Thus a problem posed as a simple yes—or-
no question has for its proper solution not a simple yes—or-no answer, but
rather an argument showing which is, in fact, correct. Similarly, a problem
posed as a statement of fact is really a disguised invitation to the reader
to establish the validity of that fact. No conscious attempt was made to
grade the problems according to difficulty, but they are arranged in loosely
chronological order, so that the first problems in each chapter relate to
the earlier parts of that chapter and subsequent problems to later parts.
Thus the earlier problems in any one chapter do turn out, in general, to
be somewhat easier than the later ones. (The problem sets are an integral
part of the text; an independent reader is advised to begin to look into the
problem set at the end of a chapter as soon as he begins the perusal of
the chapter itself, just as he would do if assigned homework problems in a
formal classroom setting.)

Finally, the authors take this opportunity to express their appreciation
to the Mathematics Department of Texas A&M University for its support
during the preparation of the manuscript. In particular, the existence of
the associated TEX file is due almost entirely to the efforts of Professor
N. W. Naugle, a leading expert in this area, and Ms. Jan Want, who
cheerfully and conscientiously produced the entire file.

ARLEN Brown
CaArL PEARrCY

June 1994
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1

The rudiments of set theory

Sets and relations

We assume the reader to be familiar with the basic concepts of set and
element (or member or point) of a set, as well as with the idea of a subset
of a set, and the notions of union and intersection of a collection of sets.
We write £ € A to mean that = is an element of a set A, x € A to mean
that x is not an element of A, and B C A (or A D B) to mean that B is
a subset of A. We also use the standard notation U and N for unions and
intersections, respectively.

If p( ) is some predicate that is either true or false for every element of
some set X, then the notation {z € X : p(x)} will be used to denote the
subset of X consisting of all those elements of X for which p(x) is true. If
A and B are sets, we write A\ B for the difference

A\B={x€ A:z ¢ B},

AV B for the symmetric difference AVB = (A\B) U (B\A), and A x B
for the (Cartesian) product consisting of the set of all ordered pairs (a, b)
where a € A, b € B. It will also be convenient to reserve certain symbols
throughout the book for certain sets. Thus the empty set will consistently
be denoted by &, the singleton on an element z, i.e., the set whose sole
element is z, by {z}, the doubleton having x and y as its only elements
by {z,y}, etc. The set of all positive integers will be denoted by N, the

set of all nonnegative integers by Ng, and the set of all integers by Z.
Similarly, we consistently use the symbols QQ, R, and C to denote the systems
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of rational, real, and complex numbers, respectively. (Some explanatory
remarks concerning these basic numober systems will be given in the next
chapter.)

Suppose now that X and Y are sets. By a relation between X and Y is
meant any rule R with the property that if z is an arbitrary element of X
and y an arbitrary element of Y, then it is possible to say with certainty
that z and y either satisfy the rule R (so that x and y are related by R),
or that they do not. (A relation between a set X and itself is customarily
called a relation on X.) We write x Ry to indicate that z and y are related

by K.

Example A. Let X be a set and let 2* denote the set consisting of all
the subsets of X. (The set 2% will be called the power class on X; this
notation will be justified in due course.) Then € (is an element of) is a
relation between X and 2% —a relation of fundamental importance in all
set-theoretic considerations.

Example B. The familiar relation < (less than) is a relation on the system
7, of all integers, as well as on the system N of all positive integers.

Let X and Y be sets and let R be a relation between X and Y. The
set Gp = {(z,y) € X XY : z Ry} is called the graph of the relation R.
Thus for any relation R between X and Y, z and y are related by R if
and only if (z,y) € Gg. It is apparent that each relation R between X
and Y determines uniquely the subset Gg of X x Y, and that, conversely,
each subset G of X x Y determines uniquely a relation R = Rg between
X and Y having G for its graph (simply declare x Ry to be true when and
only when (z,y) € G). Thus there is no logical necessity for distinguishing
between a relation R between X and Y and the graph of R (a subset of
X xY). Nevertheless, it is frequently psychologically desirable to maintain
this distinction. (For example, it seems psychologically, if not logically,
supportable to distinguish between the relation < on the set of positive
integers and the subset G- = {(m,n) : m < n} of N x N that is its graph.)

Example C. On any set X equality (=) is a relation having for its graph
the diagonal A = {(z,z) :x € X}

Notation and terminology. Let X and Y be sets, let R be a relation
between X and Y, and let A be a subset of X. Then the subset of Y
consisting of all those elements y for which there exists some element z of

A such that z Ry is called the image of A under R (or with respect to R)
and is denoted by R(A). Dually, if B is a subset of Y, then the subset of X

consisting of all those elements x such that xRy for some y in B is called
the inverse image of B under R (or with respect to R) and is denoted by

4



1 The rudiments of set theory
R™1(B).

Definition. A relation ¢ between a set X and a set Y 1is called a mapping
of X into Y (or a function from X to Y) if for each element x of X there
exists precisely one element y of Y such that £ ¢ y. Thus ¢ is a mapping
if for each element x of X the product {z} XY meets (that is, intersects)
the graph G4 in a singleton, or, equivalently, if for each element z of X
the image ¢({x}) of the singleton {z} under ¢ is a singleton in Y.

Notation and terminology. Other terms that are sometimes used as
synonyms for mapping or function are map and transformation. We shall
usually write ¢ : X — Y to indicate that ¢ is a mapping of X into Y. If X
and Y are sets and if ¢ : X — Y, it is customary to write y = ¢(z) instead
of xpy (so that z¢p(¢p(x)) for every element z of X). If y = ¢(x) we say
that ¢ maps x to y, or that y is the value of the function ¢ at x, or again
that y is the tmage of £ under ¢.

While a mapping is really a special kind of relation, it is clear from the
foregoing discussion of the terminology habitually employed in connection
with mappings that they are not ordinarily thought of in that light. In
particular, if ¢ : X — Y and if y = ¢(z) for some element x of X, one does

not say that “x and y are related by ¢.”

Definition. Let ¢ be a mapping of a set X into a set Y. Then X is the
domain (of definition) of ¢, and Y is the codomain of ¢, while the range
of ¢ is the image ¢(X) of X under ¢. When the range of ¢ coincides
with the entire codomain Y, the mapping ¢ is said to map X onio Y,
or to be onto. If the mapping ¢ has the property that ¢(z) = ¢(z’)
implies that £ = z’ for all elements £ and z’ of the domain X, then ¢ is
a one-to-one mapping. A one-to-one mapping of a set X onto a set Y
is frequently called a one-to-one correspondence between X and Y. An
element x of the domain X of ¢ is a fized point of ¢ if ¢(z) = z (such a
point must also be an element of Y of course).

Example D. For each element x of an arbitrary set X the product {z} x X
meets the diagonal A in the singleton {(x, z)}. Thus the relation of equality
is a one-to-one mapping of X onto itself. When the relation of equality on
a set X 1s regarded as a mapping, it is rererred to as the identity mapping
on X and will ordinarily be denoted by ¢ or, when necessary, by ¢x.

Example E. Let X be a set and let A be a subset of X. The mapping of
A into X that leaves each point of A fixed, that is, that has each point of
A as a fixed point, is the inclusion mapping of A into X. In this case it is
best to maintain the distinction between the inclusion mapping of A into

O
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X and the identity mapping on A, but in the future we will not always be
entirely scrupulous about distinguishing between two mappings that differ
only in that one has a larger codomain than the other.

Notation. We shall sometimes write £ — ¢(x) to indicate the action of
a mapping ¢. It is also sometimes highly convenient, if a trifle illogical, to
use the compound symbol ¢(z) to denote the mapping ¢ itself (rather than
an element of the codomain of ¢). It should be noted that these notational
conventions are principally of use when the domain and codomain of the

mapping are agreed upon in advance.

Example F. If X is a set, then a mapping [0 of X x X into X is sometimes
called a binary operation on X. If this point of view is adopted, and if x and
y are elements of X, then one thinks of [ (z,y) as the result of combining
r and y according to the rule O, and one writes

O(z,y) =z 0O y.
If a binary operation [(J on X has the property that
rUy=ylUzx

for all £ and y in X, then O is said to be commutative. If O has the
property that

rOy0Oz)=(x0y) 0Oz

for all z, y and z in X, then O is said to be associative. (When O is
associative, we may and shall write simply z[OylJz for this threefold com-
position.) If [J is a binary operation on X and if e is an element of X such
that

rUe=elldx =12

for every element x of X, then e is said to be a neutral element with respect
to O. It is clear that if e and e’ are both neutral elements with respect to
the same binary operation on X, then e = €, so that the neutral element
with respect to a binary operation is always unique if it exists.

It should be noted that the symbol O, here used to stand for an arbitrary
abstract binary operation, was deliberately chosen for its artificiality, and
will not, in fact, be used to designate any binary operation in the sequel.
In actual practice it is usual to think of an associative binary operation
on a set X as a kind of multiplication on X, and when this is done the

product of two elements x and y of X is regularly denoted by zy, and the
neutral element with respect to this multiplication (if there is one) by 1.
Likewise, an associative and commutative binary operation on a set X is
frequently thought of as an addition on X, and when this is done, the sum

6



1 The rudiments of set theory

of two elements z and y of X is denoted by = + y, and the additive neutral
element (if there is one) by 0.

Another type of relation that is of considerable importance in mathe-
matics 1s the equivalence relation.

Definition. Let R be a relation on a set X. Then R is said to be refiexrive
if x Rx for every element x of X. Likewise, R is symmetric if for all
and y in X it is the case that y R x whenever z Ry, and R is transitive
if t Ry and y Rz imply x Rz for all z, y, z in X. A relation ~ on a set
X that is reflexive, symmetric and transitive is an equivalence relation

on X.

Example G. The identity relation (equality) of Examples C and D is an
equivalence relation on an arbitrary set X. Likewise, the entire product
X x X is the graph of an equivalence relation ~ on X. (In this relation it
is the case that x ~ y for all elements x and y of X.) Every equivalence
relation on X lies between these two extremes in the sense that its graph
contains the diagonal A and is contained in the entire product X x X. (In
this connection see Problem L.)

Definition. If ~ is an equivalence relation on a set X, then for each
element x of X the equivalence class of x (with respect to ~) is the set

z]={ye X :y ~z}.

Example H. Let ¢ be a mapping of a set X into a set Y, and define
r ~ x' to mean that ¢(z) = ¢(z’). Then ~ is an equivalence relation on
X . The equivalence classes of the various elements of X with respect to
this equivalence relation are called the level sets of ¢.

Definition. A collection C of sets covers a set X, or is a covering of X, if
l) C D X, i.e., if every element of X belongs to some set belonging to C.
Likewise, C is said to be disjoint if the sets belonging to C are pairwise
disjoint, 1.e., if ENF = & for any two distinct sets £ and F' belonging
to C. A collection P of nonempty subsets of X is a partition of X if it
is a disjoint covering of X.

It i1s an immediate consequence of these definitions that if ~ is an equiv-
alence relation on a set X, and if for each z in X we write [z] for the
equivalence class of z, then P. = {[z] : x € X} is a partition of X. (This
collection P~ of equivalence classes modulo the equivalence relation ~ is
called the quotient space of X modulo ~, and is sometimes denoted by
X/ ~.) Conversely, if P is an arbitrary partition of X, then the relation
~p defined by setting £ ~p ¥ when and only when £ and y belong to the

7
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same set in P is an equivalence relation on X called the equivalence relation
determined by the partition P. Clearly the quotient space of X modulo
the equivalence relation determined by P coincides with P itself, just as
the equivalence relation determined by the quotient space modulo some
given equivalence relation ~ on X coincides with ~. Thus the collection of
all equivalence relations on an arbitrary set X is in this way in one-to-one
correspondence with the collection of all partitions of X.

Example I. If ~ is an equivalence relation on a set X and if X/ ~ is the
corresponding quotient space, then the rule 7 that assigns to each element
z of X its equivalence class [x| modulo ~ is a mapping of X onto X/ ~.
This mapping 7 is called the natural projection of X onto X/ ~. (The level
sets of 7 are the equivalence classes modulo ~.)

Example J. Let C be a collection of nonempty sets. If C' and D are sets
belonging to C, we say that C and D are chained in C if there exists a
positive integer p and sets Cy,...,C, in C such that Cy = C, C, = D, and
Ci-inNC; #2,i=1,...,p. (The collection C itself is said to be chained
if every pair of elements of C is chained in C.) If for each pair C, D of
elements of C we write C ~ D to indicate that C' and D are chained in
C, then ~ is an equivalence relation on C. Moreover, if [C] and [D] are
any two distinct equivalence classes in C with respect to this equivalence
relation, and if V = |J|C| and W = |J[D], then V and W are disjoint
subsets of the union U = [ JC. Indeed, if a € V N W, then there exists a
set Cp in [C'] and a set Dy in [D] such that a € Cy N Dy, whence it follows
that C ~ D, and hence that [C] = [D], contrary to hypothesis. Thus the
collection {| J|C] : C € C} of all unions of equivalence classes with respect
to the equivalence relation ~ is a partition of U. This partition will be
called the partition of U corresponding to the relation ~ of being chained

in the covering C.

Indexed families

There are many situations in mathematics in which it is convenient to think
of a function ¢ not as a mapping carrying one set X into another set Y,
but rather as a scheme for labeling certain elements of ¥ by means of the
elements of X. In such cases it is customary to vary both the terminology
and the notation, calling the set X an indez set, the function ¢ itselt an

indezing, and writing {y: }-ex in place of ¢, where, of course, y, = ¢(x)
for each z in X. In this book we shall use the terminology and notation

of indexed families without further explanation or apology whenever it is

convenient to do so.
The most important instance of this usage is provided by the familiar
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infinite sequence. Recall that an infinite sequence (or, more simply, se-
quence, as we shall usually prefer to say) of elements of a set Y is just
a mapping of the set N (or perhaps Np) into Y, but that a sequence is
ordinarily denoted by {y»}nen, or, more usually still, by {y,}52,.

Example K. For an absolutely arbitrary set X the identity mapping on X
may be viewed as an indexing of X, the self-indexing of X. This observation
1s trivial but important. It shows that we may, at any time, assume a given
set of objects to be (the range of) an indexed family without any loss of
generality. In the sequel we shall use this fact whenever 1t is convenient to

do so.

Suppose given a family of sets { X, }~er indexed by a set I'. Then the
union | J. . X5 (or |J, Xy) and (if I' # @) the intersection [ . X, (or
(), X) are defined in the usual way to consist of the union and intersection,
respectively, of the collection of all sets X, appearing in the indexed family.
(The union of the empty collection of sets is easily seen to be empty; the
intersection of the empty collection of sets is undefined.) Somewhat less

familiar perhaps is the indexed product.

Definition. Let { X, },er be an indexed family of sets. Then the Carte-
sian product
1%

~yeIl

is the set consisting of all those indexed families {z }yer with the prop-
erty that z, € X, for every index « in I'. (If I' happens to be the set
{1,2,...,n}, then H'yer X., coincides with the set X; x Xg x...x X, of
all n-tuples (zy,...,x,) where z; € X;,7 = 1,...,n. Technically speak-
ing, the indexed product X; x X5 of two sets defined in this manner
does not coincide with the Cartesian product defined earlier, but it is
obvious how these two concepts of product are to be identified, and we
shall ignore this minor distinction.)

Example L. Let I' be an index set, and suppose X, = X for all indices
v in I', where X is some fixed set. Then the product H'yel“ X, simply
coincides with the collection of all mappings of the set I' into X. In the
sequel it will sometimes be convenient to denote this set by X! .

Example M. Let {X,}- cr be an indexed family of sets and let v’ be
any one fixed index. The mapping that assigns to each element {z-} of
1 = ][ er Xy its term or coordinate z. having index 7' is called the
projection of II onto X,., and is denoted by w,,. The indexed family
{m }yer of all such projections is separating on II in the sense that if {z. }
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and {y,} denote two distinct elements of II, then ./ ({z+}) # 7y ({¥~})
for at least one index v’'. (If X and Y are sets, and if Y is defined as in

the preceding example, then for each element z of X the projection 7, is
simply the evaluation of the elements of Y* at the point x.)

In connection with indexed unions, intersections and products, we shall
assume the reader to be familiar with the standard associative, commuta-
tive, and distributive laws (see Problems D and G). There is, however, one
particular observation in this context that must not be omitted, since it is
an axiom, and, 1n fact, an axiom of great importance.

Axiom of Products. If {X,},cr is an indexed family of nonempty sets,

where I' # @, then || . X, is also nonempty.

In the sequel we shall employ this axiom without further explanation,
even though, as we shall see, some of its consequences are remarkable. Note
that the axiom of products says, in the language of algebra, that there are
no divisors of zero in the formation of indexed products. It is also not hard
to see that the axiom of products is equivalent to the following somewhat
more familiar axiom (Prob. H).

Axiom of Choice. Let C be a collection of nonempty sets, and let U
denote the union of the collection C. Then there exists a mapping z of
C into U (called a selection function or choice function on C) such that

2(F) € E for each set F in C.

Example N. For any set X there exists a mapping s that assigns to each
subset £ of X such that ¥ # X an element s(F) of X\E. Indeed, if C
denotes the collection of all nonempty subsets of X, and if z is a choice

function on C, then s(F) = z(X\F) is a mapping having the required
property.

Ordered sets

A relation < on a set X is a partial ordering of X if it 1s reflexive and
transitive, and if, for all z and ¥ in X,

r<y and y<z imply z=y.

We adopt the standard practice of writing ¥y > z to mean xr < y, and we
also write z < ytomeanz <yand z #y,and y >z tomean z < y. A
set X equipped with a partial ordering is a partially ordered set. (Thus a
partially ordered set is a pair (X, <) where X is a set and < is a partial

p J—
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1 The rudiments of set theory

ordering of X.) Observe that every subset of a given partially ordered set is
also a partially ordered set with respect to (the restriction to that subset of)
the same ordering. Whenever a subset of a partially ordered set is regarded
as a partially ordered set in its own right, it is this restricted ordering that
1s understood unless some other ordering is expressly stipulated

Example O. Let X be an arbitrary set, and let 2% denote the power class
on X. The set 22 is partially ordered by the inclusion ordering C. Thus
an arbitrary collection C of subsets of a set X is also a partially ordered
set 1n the inclusion ordering, and 1t is this partial ordering that is intended
whenever such a collection C is viewed as a partially ordered set unless
some other ordering is expressly indicated.

The most fundamental concepts in the theory of partially ordered sets
are those of upper and lower bounds. If A is a subset of a partially ordered
set X, then an element =z of X is an upper bound for A in X if y < z for
every element y of A. Dually, z is a lower bound for A in X if x < y for
every y in A. A subset A of a partially ordered set X may possess upper
bounds in X or it may not. If it does, we say that A is bounded above in
X; likewise, if A possesses a lower bound in X, we say that A is bounded
below in X. Finally, if A is bounded both above and below in X, then we
say that A is bounded in X.

Let X be a partially ordered set and let A be a subset of X. If A is
bounded above in X and if some upper bound of A belongs to A, then this
element (which is obviously unique) is the greatest or marimum element
of A. There is also the different and weaker notion of a mazimal element
of A. An element z of A is mazrimal in A if there exists no element y of A
such that x < y. (The difference between the maximum element of A and
a maximal element of A is subtle but important. The maximum element
of A is unique if it exists, and is an upper bound for A in X; maximal
elements of A, on the other hand, are not necessarily upper bounds of A
and may exist in abundance.) Dually, one defines the concepts of least, or
minimum element and minimal elements of a subset A of X.

Another important concept arising from the relation between a subset
A of a partially ordered set X and the set A, of all upper bounds of A
in X is that of least upper bound. If A, is nonempty and possesses a
least element z, then z is called the least upper bound, or supremum, of
A in X (notation: z = sup A). Dually, one defines the concept of greatest
lower bound, or infimum, of A in X (notation: inf A). For finite subsets

{z1,...,zn} of X we shall also write z; V...V z, for sup{z,,...,z,} and
Ty N...\Nxp for il’lf{ﬂ:l,. . . ,CBn}.

Example P. Let X be a partially ordered set with partial ordering < and
let us write <% y to mean y < . Then it is easily verified that <* is

11



1 The rudiments of set theory

also a partial ordering of X. This partial ordering is called the ordering of
X inverse to the given ordering (cf. Problem B). Note that the notions of
bounds and of suprema and infima are exactly reversed in passing from <
to <*. Thus zg is an upper bound in X for a subset A of X with respect
to < when and only when zg is a lower bound in X for A with respect to
<*, etc. The partially ordered set (X, <*) will be denoted by X*.

Example Q. Let X be a set and let C be an arbitrary collection of subsets
of X. Then C is a partially ordered set in the inclusion ordering (Ex. O),
and 1s also a partially ordered set in the inverse inclusion ordering <*, in
which we set A <* B when and only when B C A.

If Y 1s a partially ordered set and ¢ : X — Y is a mapping of a set X
Into Y, then an element y of Y is an upper bound of ¢ if it is an upper
bound for the range ¢(X ), and if such an upper bound exists, ¢ is said to
be bounded above. Dually, y is a lower bound of ¢ if it i1s a lower bound for
#(X), and if such a lower bound exists, ¢ is said to be bounded below. If ¢
i1s bounded both above and below, it is said to be bounded. Similarly, we
define the supremum of ¢ (notation: sup_. x ¢(x)) to be the supremum of
the range of ¢ if it exists, and the infimum of ¢ (notation: inf.c x ¢(x)) to
be the infimum of the range of ¢ if it exists.

A mapping ¢ : X — Y of one partially ordered set X into another
partially ordered set Y is monotone increasing if z; < x2 in X implies
d(z,) < ¢(zo) in Y for all z; and z9 in X. If ¢ is monotone increasing and
also one-to-one, then ¢ is said to be strictly increasing. Dually, one defines
monotone decreasing and strictly decreasing mappings between partially
ordered sets. A one-to-one mapping ¢ of a partially ordered set X onto a
partially ordered set Y 1s an order isomorphism if ¢ has the property that
r, < z2 in X when and only when ¢(z;) < ¢(z3) in Y (equivalently, if
both ¢ and ¢~! are monotone increasing; see Problem B). If there exists
an order 1isomorphism of X onto Y, then X and Y are said to be order
1somorphic.

If a partially ordered set X has the property that z V ¥y and = A y both
exist for every pair z,y of elements of X, then X is said to be a lattice.
Clearly (mathematical induction) every nonempty finite subset of a lattice
has a supremum and an infiimum. If X is a partially ordered set with the
property that every subset of X has a supremum and an infimum, then X
is a complete lattice. It X is a partially ordered set with the property that
every bounded nonempty subset of X has a supremum and an infimum,

then X is a boundedly complete lattice.

Example R. The power class 2% on an arbitrary set X is a complete
lattice in the inclusion ordering. (The supremum of a subcollection of 2%
is its union; the infimum of a nonempty subcollection is its intersection.)

12



1 The rudiments ot set theory

If Ag is a fixed subset of X, then the collection C of all those subsets of
X that contain Ay is also a complete lattice, as is the collection C’ of all
those subsets of X contained in Ag. A subset M of a lattice L with the
property that £ V y and z A y belong to M whenever x and y do is called
a sublattice of L; thus C and C’' are sublattices of 2*. An example of a
sublattice of 2 that is not a complete lattice (unless X itself is a finite
set) is the collection Cy of all finite subsets of X. (The sublattice Cy is

boundedly complete, however.)

Proposition 1.1. If X is a complete lattice, then X is nonempty and pos-
sesses a greatest element 1 and a least element 0. Indeed, the supremum
of the empty subset of X is 0; dually, inf @ = 1.

PROOF. Since, by definition, the empty subset of X has both supremum
and iInhmum, X 1itself cannot be empty. Since every element of X is both
an upper and a lower bound for &, the result tollows. [

Proposition 1.2 (Banach-Knaster-Tarski Lemma). Let X be a complete
lattice, and let ¢ be a monotone increasing mapping of X into itsell.
Then ¢ has a fixed point.

PROOF. Set A ={x € X : ¢(z) < z}, let xyg = inf A, and suppose x € A.
Then zy < x and therefore ¢(xg) < ¢(x) < z. Thus ¢(xg) is also a lower
bound of A, and therefore ¢(xg) < xg, so that g € A. But it follows at
once from the monotonicity of ¢ that ¢(A) C A, so that, in particular,
¢(xo) € A, and therefore zg < ¢(xg). Thus we see that ¢(xg) = xo. []

A weaker notion than that of a lattice, also of great importance, is that
of a directed set. A nonempty partially ordered set A is said to be directed
upward 1f every doubleton in A is bounded above in A; likewise, A is said to
be directed downward if every doubleton in A is bounded below in A. If A
is directed either upward or downward, then A is a directed set. (If nothing
1s said to the contrary, a directed set will be understood to be directed
upward; a directed set A is directed upward |downward] if and only if A*
is directed downward |upward| (Ex. P).)

Example S. Every nonempty lattice is directed both upward and down-
ward.

Definition. If A is a directed set and X is an arbitrary set, then an indexed

family {z}rea of elements of X indexed by A is called a net in X
indexed (or directed) by A.

Example T. The sets N and Ny, consisting, respectively, of all positive

13
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integers and all nonnegative integers, are directed sets in their natural
orderings. Thus any sequence {z,}S ; or {z,}5°, in a set X is a net in
X. Indeed, these nets are the very prototypes out of which the general
concept of a net arose. In the sequel we shall have occasion to deal with

nets having a considerably more complex structure.

In many discussions dealing with sequences the following terminology is
very usetul.

Definition. Let p( ) be a predicate that pertains to the terms of an infinite
sequence {Z,}. Then we shall say that p( ) is true of {z, } eventually if
there exists an index ng such that p(x,,) is true for all n > ng, that is,
if there exists an entire tail T,,, = {x, : n > ng} of {z,} for every term
of which p(z,) is true. Likewise, we shall say that p( ) is true of {z,}
infinitely often if there are infinitely many indices n for which p(z,,) is
true or, equivalently, if for any index ng, no matter how large, there is
an index n > ng such that p(x,,) is true.

If {x,}5°, is a sequence and {n,} is a strictly increasing sequence of
positive integers, the sequence {z,, } is a subsequence of {z,}. Clearly a
predicate p( ) is true of a sequence {x, } infinitely often if and only if {z, }
has a subsequence {z,,,} such that p(x,, ) is true for every k. Moreover, it
is a matter of pure logic that a predicate p( ) fails to be true of a sequence
{x,} eventually if and only if the contrary predicate (not p)( ) is true of
{z,} infinitely often.

Example U. Given an arbitrary sequence {E, }°_, of sets there is a nat-
ural way to construct from it a monotone increasing sequence. Indeed, if

we define

D, = ﬁ Er., ne€N,
k=n

then the sequence {D, }S° , is monotone increasing. It is customary to
call the union L = J°°_, D, the limit inferior of the given sequence {E,}
(notation: L = liminf,, F,,). Dually, if we set

Spn = D FEir, meN,
k—n

then the sequence {S,,}°°_, is monotone decreasing and the intersection L =
N2>, Sy is called the limit superior of {E,} (notation: L = limsup,, En).
It is easily seen that L is the set of all elements that belong eventually to
the sequence {E,}, while L is the set of all those elements that belong to

infinitely many sets F,,. Hence, in particular,

LcL.
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1 The rudiments of set theory

In the event that L = L we say that the sequence {E,} converges to the
limit L = L = L (notation: L = lim, E,,).

Suppose now that the originally given sequence {E, } is itself monotone
increasing. Then it is apparent that D, = FE,, for each index n, while
S = Un b, = sup, £, for all n. Thus L = L = U,_,,L E.,—a monotone
increasing sequence of sets converges to its union. Dually, a monotone
decreasing sequence of sets { £, } converges to (] FE, = inf,, F,. Note that
this shows that the terms “limit inferior” and “limit superior” are fully
justified; it is literally true that for an arbitrary sequence { £, } of sets,

liminf £, = lim ( inf Ek)

n k>n

and

lim sup £,, = lim (sup Ek) .

n Tt k>n

It follows easily from these definitions that for any sequence {E,} of
subsets of a fixed set X we have

X\limsup F,, = liminf(X\E,) and X\liminf F, = limsup(X\E,).

Hence the sequence {F, } is convergent when and only when the sequence
{X\E,} of complements is, and when this is the case,

lim (X\FE,) = X\lim E,,.

Moreover, as with any useful notion of limit, it is the case that deleting,
changing, or adjoining any finite number of terms to a sequence {F, } of
sets does not change either liminf, E,, or limsup,A E,, and hence has no
effect on either the convergence of {£,,} or on lim,, F,, when it exists.

Example V. For each positive integer m let us write T, for the tail 7, =
{n € N:n >m}. Then the system {T},}°°_, of all tails in N is a directed
set in the inverse inclusion ordering (see Example Q), and the mapping
m — T, is an order isomorphism of N onto this directed set.

If X is a partially ordered set with the property that for every pair z, y of
elements of X either z < y or y < z, then X is a simply ordered (or linearly
or totally ordered) set. The most familiar examples of simply ordered sets
are the set R of real numbers and its various subsets. (Clearly any subset
of a simply ordered set is itself simply ordered.)

Example W. The simply ordered sets Ny and N are order isomorphic, the
unique order isomorphism of Ny onto N being the mapping n — n+1. (The

1o
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uniqueness of this order isomorphism will be established later, in Lemma.
5.2; no use will be made of the stated uniqueness in the interim.)

Example X. A finite set X containing n elements can be simply ordered
in n! different ways (there being n! permutations of X), but in each of
these orderings X is order isomorphic to the set {1,2,...,n} of the first n
positive 1ntegers.

If W is a partially ordered set with the property that every nonempty
subset of W possesses a least element, then W 1s a well-ordered set. In a
well-ordered set every doubleton, in particular, possesses a least element,
whence it follows that every well-ordered set is simply ordered. Conversely,
as was seen in the preceding example, every finite simply ordered set is well-
ordered. The best known examples of infinite well-ordered sets are the set
Ny of all nonnegative integers, and various of its subsets. (It is, once again,
obvious that every subset of a well-ordered set is well-ordered.)

Example Y. If X is either the empty set or a singleton, then there is but
one partial ordering of X, and this ordering is automatically a well-ordering.
If X is a doubleton, then X admits exactly three partial orderings, namely,
the identity relation and two well-orderings. Any set X containing three
or more elements admits various partial orderings that are not simple or-
derings.

We conclude this introduction to the theory of ordered sets by stating
two more axioms. (These axioms are, in fact, equivalent to one another

(Prob. V), and each is equivalent to the axiom of choice (see Problems
5R-5V).)

The Maximum Principle. Every partially ordered set X contains a
maximal simply ordered subset.

It may be observed that the name mazimum principle is slightly inap-
propriate, since all that is asserted is the existence of a mazimal linearly
ordered subset. Note also that the ordering of the subsets of X referred to
here is, as usual, the inclusion ordering (Ex. O). A frequently encountered
variant of the maximum principle is the following proposition, known in
the literature, inappropriately, as “Zorn’s lemma”.

Zorn’s Lemma. Let X be a partially ordered set, and suppose that every
nested (i.e., simply ordered) subset of X is bounded above in X. Then
X possesses a maximal element.

16
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PROBLEMS

A. If S is a relation between a set X and a set Y, and if R is another relation
between Y and a third set Z, then the composition of R and S is the
relation R o S between X and Z defined by setting

z(Ro S)z
when and only when there exists an element y of ¥ such that

zSy and yR=z.

(i) Prove that for every subset A of X we have (Ro S)(A) = R(S(A))
Similarly, for every subset B of Z,(RoS) ' (B) = S"'(R™'(B)).

(ii) Show that if either Ro (S oT) or (RoS)oT is defined, then the other
is also defined, and Ro (SoT) = (Ro §)oT. Thus in this situation
we may and shall write simply R o S o T for the triple composition.
Likewise, if R is a relation on a set X and n € N, we shall write R"

for the composition

n

e e,
Ro. .oR

Show also that if R is an arbitrary relation between a set X and a
set Y, and if tx and ¢ty denote the identity mappings on X and Y,
respectively (Ex. D), then Rotx =ty o R = R.

(iii) Verify thatif¢: X — Y and ¢ : Y — Z are both mappings, then 7)o ¢
1s a mapping of X into Z.

B. Let R be a relation between nonempty sets X and Y. Then the inverse
relation R~ ' between Y and X is defined by setting yR ™'z when and only
when zRy.

(i) Show that R = R~ if and only if X =Y and R is a symmetric relation
on X

(ii) If ¢ : X — Y is a mapping of X into Y, then ¢! is a mapping of the
range B of ¢ onto X when and only when for each y in B there exists
exactly one z in X such that ¢(z) = y. (Recall that such a mapping
is said to be one-to-one.) Verify that if ¢ is a one-to-one mapping of
X onto Y, then ¢! o0 ¢ and ¢ o ¢! are the identity mappings on X
and Y, respectively Show, too, that the composition of two one-to-one
mappings 1S one-to-one.

(iii) Let ¢ be a mapping of X into Y. Prove that there exists a mapping
¥ of Y onto X such that 9y o ¢ = tx if and only if ¢ is a one-to-one
mapping of X into Y Prove also that there exists a mapping w of

17
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Y into X such that ¢ o w = ¢y if and only it ¢ maps X onto Y, and
conclude that if there exist mappings ¥ and w of Y into X such that

T,ZJOCP:LX and ¢Ow=by,

then ¢ is a one-to-one mapping of X onto Y, and 7 = w = ¢~ '. (Hint:
Recall the axiom of choice.)

C. Let X be a nonempty set and let G denote the collection of all one-to-

D.

18

one mappings of X onto itself. Verify that composition o is an associative
binary operation on ¢ having the identity mapping ¢ x for neutral element
(Ex F), and that for each element ¢ of G the mapping ¢~ has the property
that

pop  =¢  o¢=ux.

(These facts are customarily summarized by saying that G is a group with
respect to the operation o The elements of the group G are called per-
mutations of the set X; the group G itself is sometimes referred to as the
symmetric group on X.)

Let ' be a nonempty index set and let { A~ },er be a family of sets indexed
by I' Show that if {I's}sca is an arbitrary indexed partition of I, then

A=) |4 and (4, =() () A

vyeTI €A ~€lg vyeI' beA ~€lg

and likewise that if m is an arbitrary permutation of I', then

Verify also that if B is an arbitrary set then

Bul JA, = J(BUA,) and BU()A,=(\(BUA4,).

Similarly, verify that

Bn| JA,=|)Bn4,) and Bn()A,=()(BNA,)
Y Y Y

Y
and that
Bx|Ja,=JBxA4,) and Bx()4,=()(BxA4,)
Y Y Y Y

Let {A~} and {B,} be two similarly indexed families of subsets of a set X.
Verify that both

CONCORN DY
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are subsets of U'r (A4 \ By) Verify, likewise, that

U A, |V U B, and ﬂ Ay | V ﬂ B,
2 Y v v
are subsets of U'r (A,VB,).

F. Let X and Y be sets and let ¢ be a mapping of X into Y.

(i) The mapping A — ¢(A) of 2% into 2" is said to be induced by ¢ Show
that this induced mapping preserves unions, i.e., gb(U C) =] AcC d(A)
for any collection C of subsets of X. Does this assertion remain valid
if ¢ is replaced by an arbitrary relation R between X and Y7 What if
unions are replaced by intersections?

(i) The mapping ® of the power class on Y into the power class on X
obtained by setting ®(B) = ¢~ '(B),B C Y is said to be inversely
induced by ¢ Show that ® preserves all set operations on 27, ie.,
arbitrary unions, intersections, differences and symmetric differences.
Does this assertion remain valid if ¢ is replaced by an arbitrary relation

R between X and Y7

(iii) Show that ¢~ ' o ¢ is an equivalence relation on X, and find the equiv-
alence classes of this relation.

G. The indexed product of sets is neither commutative nor associative. Verify,
however, that if { X, },er is an arbitrary nonempty indexed family of sets,
and if 7 is a permutation of the index set I', then there is a simple and
natural one-to-one correspondence between

Show similarly that if {I's}sca is an arbitrary indexed partition of I', then
there is also a simple and natural one-to-one correspondence between

[]x, and J] ] x,

veI S€CA ~vEDl g

H. Verify that the axiom of products and the axiom of choice are equivalent.
(Hint: It suffices to treat the case of an indexed collection {X-}~er of
nonempty sets; recall Example K )

I. A subset M of a partially ordered set X is said to be cofinal in X if for
every element x of X there is an element ¢ of M such that £ < oy Show
that if M is a cofinal subset of a partially ordered set X, and if M is
bounded above in X, then X has a greatest element z; and £, € M If a
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partially ordered set X has a greatest element z1, then the singleton {z;}
is cofinal in X If z; is merely a maximal element in X, then {z;} need
not be cofinal in X

Suppose given a transitive and reflexive relation < on a set X Show that
if, for all x and v in X, z ~ vy is defined to mean that z < y and vy < z,
then ~ is an equivalence relation on X with the property that if z ~ 2’
and y ~ y', then z < y if and only if ' < 3y’ Hence if [z] and {y] denote
the equivalence classes of £ and y, respectively, with respect to the relation
~, then either ' < y' for every pair of elements selected from [z| and [y],
respectively, or ' < 3’ is true of no such pair In the former of these two
situations we write [z| < ly|. Show that this relation is a partial ordering
of the quotient space X/ ~. (The set X/ ~ equipped with this partial
ordering is the partially ordered set associated with the given pair (X, <);
a set X equipped with a relation such as < is called a weakly partially
ordered set.)

Let X be a partially ordered set with the property that every subset of X
has a supremum in X. Show that every subset of X also has an infimum
in X, and hence that X is a complete lattice. Dually, if every subset of
a partially ordered set X has an infimum in X, then X is a complete
lattice. Find and prove appropriate versions of these results for boundedly
complete lattices.

If R and S are two relations between a set X and a set Y, then it is
customary to define R C S to mean that for every pair £ and y of elements
of X and Y, respectively, x Ry implies zSy. (If R C S then R is a restriction
of S and S is an exztension of R.)

(i) Verify that this is a partial ordering of the set R of all relations between
X and Y, and that the mapping K — Ggr assigning to each relation R
in R its graph is an order isomorphism of R (in this eztension ordering)
onto the power class on X x Y (in the inclusion ordering) Conclude
that R is a complete lattice in the extension ordering Show too that
the collection of all equivalence relations on an arbitrary set X is also
a complete lattice in the extension ordering, though not, in general, a
sublattice of the lattice K

(ii) If R is a relation on a set X, then R° = Ro R C R if and only if R is
transitive Similarly, if R is reflexive, then R C R?. Is the converse of

this latter assertion true?”

M. Let X and Y be sets. The collection M consisting of all mappings ¢ such

that vhe domain of ¢ is a subset of X and the range of ¢ is a subset of
Y is a subset of the lattice R ot all relations between X and Y and is
therefore a partially ordered set (in the extension ordering introduced in
the preceding problem). If ¢ C ¢ in .\, and if the domain of ¢ is A, then
¢ will be denoted in the sequel by ] A.



(1)

(iii)
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Show that every pair of mappings ¢ and ¥ in M possesses an infimum
éNin M (In particular, if the domains of ¢ and % are disjoint, then
¢ N1 is the empty mapping, that is, the unique mapping having for its
domain of definition the empty set @ )

If  and ¢ are elements of M with domains A and B, respectively,
then ¢ and v are coherent it the domain of ¢ N1 is AN B. Likewise,
an indexed family {¢~ }yer of elements of M is coherent if each pair of
mappings belonging to the family is coherent. Show that an indexed
family {¢~} in M is bounded above in M if and only if it is coherent,
and that, in this situation, the tamily possesses a supremum Show also
that if the family {¢-} is coherent and if, for each index ~, D~ and R,
denote the domain and range, respectively, of the mappings ¢, then
the supremum U7 ¢~ has for domain the union U,Y D.,, and for range

the union | J_ R,.

Let {¢y} be an indexed family in M, and let D, and R, denote,
respectively, the domain and range of the mapping ¢., If the family
{¢#-} is nested, then it is coherent. Show that if the family is nested,
and if each of the mappings ¢, is one-to-one, then Uw ¢~ is a one-

to-one mapping of U,Y D. onto U,Y R.,. Likewise, if the domains D,

are pairwise disjoint, then the family {¢.} is coherent. Show that if
the domains D, and the ranges R, are both pairwise disjoint, and if
each mapping ¢~ is one-to-one, then, once agan, U,Y @~ is a one-to-one

mapping

N. Let (X, <) be a simply ordered set

(1)

(iii)

Show that < is a transitive relation on X that satishes the condition
that if £ and y are any two elements of X, then exactly one of the
following three statements is true.

r<y, T=Y, T>U.

(Recall that we write £ < y to mean that r < y and =z # y, and
that £ > y means y < x.) Show, conversely, that if < is a given
transitive relation on X satisfying the last stated condition (known as
the trichotomy law), and if we define a relation < on X by setting
x < y whenever either z < y or £ = y, then < is a simple ordering on

X

Show that if ¢ is a mapping of X into another simply ordered set (Y, <),
then the following conditions are equivalent:

(1) ¢ is strictly increasing,
(2) 1 < xz2 implies ¢(z1) < Pd(z2), z1,z2 € X,
(3) ¢ is an order isomorphism of X onto ¢(X)

Show that X is a lattice and that if ¥ = {z1, . ,zn} is an arbitrary
nonempty finite subset of X, then z; Vv...vVz, and z1: A. .Az, belong

to the set F'.
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Show that the simple orderings of a set X are distinguished as the maximal
elements in the partially ordered set consisting of all the partial orderings
of X (in the extension ordering; ct. Problem L).

Let W be a well-ordered set, and let i be an arbitrary strictly increasing
mapping of W into itself Show that ¢(w) > w for all w in W, and conclude
that ¢(W) is necessarily cofinal in W (Prob 1)

If I" is an index set, X is a partially ordered set, and ¢ and ) are mappings
of I' into X, we write ¢ < 9 to mean that ¢(v) < ¥(v) for every v in I’

Show that this relation is a partial ordering of the set X' of all mappings of
' into X. More generally, the same definition introduces a partial ordering
on every indexed product II = H,}( .r X~ of partially ordered sets. Show

that if each partially ordered set X, is a (complete) lattice, then Il is a
(complete) lattice

Let X be a fixed set. For each subset A of X the characteristic function
of A is that function x4 that takes the value one at every point of A and
the value zero at every point of X\A. If A and B are subsets of X, then
xAnB = XaXxB and xauB = x4 V xB. Furthermore, A C B if and only if
x4 < xB, and xauB = x4 + xB if and only if 4 and B are disjoint.

If P and P’ are two partitions of the same set X, then P’ is said to be
finer than P, or to refine P (and P is said to be coarser than P’; notation.
P < P") if every set in P’ is a subset of some set in P.

(i) Show that if P and P’ are partitions of a set X, then P < P’ if and only
if every set F in P is partitioned by the subcollection of P’ consisting of
the sets in P’ contained in E. Show too that the relation < is a partial
ordering on the collection of all partitions of X, and that the mapping
P —~p assigning to each partition of X the equivalence relation on X
that it determines is an order anti-isomorphism of that collection onto
the complete lattice of equivalence relations on X (in the extension
ordering; see Problem L). Show, that is, that P < P’ when and only
when ~p:C~p Conclude that the collection of all partitions of X is a
complete lattice with respect to the ordering <

(i) If {E,1,...,E,} is a finite collection of subsets of a set X, then the

partition of X determined by {F1,...,E,} is the coarsest partition of
X that partitions each of the sets F;, ¢ = 1, ..,n. Show that this
partition consists of the collection of all nonempty sets of the form

AinN...NA,

where each A; is either F; of X\ FE,. (There are 2" such sequences
{A1,...,An}, but the number of sets in the partition may be smaller.,
of course.)
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T. Let C be a collection of (not necessarily pairwise disjoint) sets If for each
set E in C we write E' = E x{E}, then £ — (z, F) is a one-to-one mapping
of E onto E’, and the collection C’ of all sets E’, E € C, is pairwise disjoint

U. Let {A,}.—; be a sequence of sets. Show that there exists a unique disjoint
sequence of sets { B, },—; with the property that

for every positive integer n. (The sequence {B,} will be referred to as
the disjointification of the given sequence {A,} ) Verify that B,, C A,, for
each positive integer n, and also that

o0 o0
U B = 4-
n—1 n=1

V. A partially ordered set X is said to be inductive if every simply ordered
subset of X has a supremum in X Clearly every inductive partially ordered
set satisfies the hypotheses of Zorn’s lemma, as that result is stated above,
so Zorn’s lemma is formally stronger than the assertion that every inductive
partially ordered set possesses a maximal element. Nonetheless, in many
treatments of set theory this latter assertion is called “Zorn’s lemma”.
Justify these terminological variations by showing that these two versions of
Zorn’s lemma and the maximum principle are all equivalent to one another.
(Hint: The collection of all simply ordered subsets of an arbitrary partially
ordered set is inductive in the inclusion ordering )

In connection with each and every notion of an abstract mathematical
structure there is an appropriate concept of isomorphism, meaning, in
every case, a one-to-one correspondence between any two examplars X
and Y of that structure that preserves the structure, that is, with the
property that any statement (that is germane to the structure in question)
concerning the elements ot X is true if and only if it is also true of the
corresponding elements of Y. The significance of this idea is simply put-
It two examplars of a mathematical structure are isomorphic, i.e , if there
exists such an isomorphism between them, then they are indistinguishable
as far as the theory of the structure in question is concerned. Suppose, for
example, that X and Y are order isomorphic partially ordered sets Then
if either X or Y possesses a maximal element, both must. Again, if either
is a lattice, or a directed set, or simply ordered, then both must be Prove
these four statements (as tokens of the general fact that any assertion of
an order-theoretic nature that is true of either X or Y is true of both)

Show also that (1) the identity mapping on any partially ordered set X is
an order isomorphism of X onto itself, (2) if ¢ is an order isomorphism of
a partially ordered set X onto a partially ordered set Y, then ¢~ ' is an
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order isomorphism of YV onto X, and (3) if ¢ is an order isomorphism of
X onto Y and ¥ is a second order isomorphism of Y onto a third partially
ordered set Z, then 9 o ¢ is an order isomorphism of X onto Z (These
three properties are common to every notion of isomorphism; in the sequel
we shall ordinarily leave it to the reader to formulate and check them on
his own )



Number systems

The real number system

In this second preliminary chapter we turn attention to the structure that
lies at the heart of all mathematical analysis—the real number system, or
real number field. In so doing we shall not waste a great deal of time on the
basic properties of the real numbers. Indeed, the reader has been dealing
with the real numbers in one way or another for many years. Rather it is
our intention, first, to fix some terminology and notation and, second and
more important, to present a fairly detailed discussion of certain aspects of
the order-theoretic properties of the real numbers that are sometimes not
treated adequately in undergraduate mathematics courses.

To begin with, the real number system—denoted throughout the text
by the usual symbol R—has both an algebraic structure and an order-
theoretic structure. Algebraically the real numbers are equipped with both
an addition and a multiplication, so that every pair s, t of real numbers has
both a sum s+t and a product st. Both of these binary operations satisfy
the associative and commutative laws—meaning that, if s, ¢t and u are real
numbers, then

s+ (t+u)=(s+1)+u, s(tu)=(st)u, (1)

and
s+t=t+s, st=1Ls (2)
(cf. Example 1F). From these two laws it follows, via a routine argument

which we omit, that if F' is an arbitrary nonempty finite set of real numbers,
then the sum ) F and product || ¥ of the numbers in the set F are
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2 Number systems

uniquely and unambiguously defined, independently of the order in which
F ={s;,. ,sp} is arranged or how the sum and product of the numbers
sy,. .,8n are grouped. Moreover, the addition and multiplication ot real
numbers are related by the distributive law, which says that

s(t +u) = st + su (3)

for all real numbers s,t and wu.
There are special and distinct neutral elements 0 (zero) and 1 (one) in
R for the operations of addition and multiplication, respectively, so that

s+0=s8 and sl =s

for every real number s. Moreover, each real number s has a (unique)
negative —s such that s+(—s) = 0, which implies that the equation s+x =t
has the (unique) solution

r=1t+ (—s),

written as £ = t — s (tf minus s). Similarly, if s # 0, then there exists a
(unique) reciprocal 1/s such that s(1/s) = 1, which implies that if s # 0,
then the equation sz =t has the (unique) solution

= t(1/s),

written as x = t/s (¢ over s, or t divided by s). (The distributive law
implies that s0 = 0 for every real number s, so the real number 0 cannot
have a reciprocal; accordingly, division by zero is impossible in R. See
Problem C.)

In the language of abstract algebra, the properties of R set forth thus far
are summarized by saying that the real numbers form a field. The order-
theoretic structure of the real number system can be summarized almost
as succinctly: There is an order relation < given on R that turns it into
a simply ordered set (see Problem 1N). In the simply ordered set R the
number 0 plays a special role; indeed, a real number s such that s > 0
is positive, while a real number s such that s < 0 is negative. Thus it
is a special case of the trichotomy law that every real number is positive,
negative or zero, and that no real number falls into any two of these classes.

The algebraic and order-theoretic structures of the real number system
are connected with one another in a number of ways, but, as it turns out
(see Problems F, G, H, I, J and K), these various connections all follow
readily from two facts, which we now state.

(i) If @ and b are real numbers such that a < b, and if s is any real
number, then

a+ s < b+ s.
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(ii) If @ and b are real numbers such that ¢ < b, and if p is a positive real

number, then
ap < bp.

As a simply ordered set, R is automatically a lattice in which, for any
two real numbers s and ¢,s V¢ and s At are simply the larger and smaller,
respectively, of s and ¢ (Prob. 1N). In particular, for any real number s
the number s* = sV 0 is called the positive part of s, while s~ = —(s A 0)
is the negative part of s. According to these definitions, both s™ and s~
are nonnegative for every real number s, and s = s7 — s~. The number
st + s, which is equal to s when s is nonnegative and to —s when s is
nonpositive, is called the absolute value of s (notation: |s|). Thus

5] =

(In this connection, see also Problem L.)
If a and b are real numbers such that a < b, then the real numbers be-

tween a and b constitute an interval bounded by a and b. More specifically,
if a < b, then the closed interval |a,b] is given by

a,b] ={t€R: a <t <b},
while the open interval (a,b) is
(a,b) ={t € R: a <t < b}.

(In particular, [0,1] and (0, 1) are the closed and open unit intervals, re-
spectively.) In the same spirit we define the half-open intervals

(a,b] ={t€eR: a<t<b} and [a,b)={t€eR: a <t <b}.

(If the assumption that a < b is dropped, these definitions still make sense,
of course, but the intervals |a,b|, (a,b), (a,b] and [a,b) are all empty for
a > b, and also (a,a) = [a,a) = (a,a] = @, while [a,a] = {a}.) This
notation for intervals is also extended to include rays. Thus for any real

number a we write
a,+00) and (a,+00)

for the closed right ray {t € R: a < t} and the open right ray {t € R:a < t},
determined by a, respectively, and also

(—o00,a] and (—o0,a)

for the closed left ray {t € R: a > t} and the open left ray {t € R: a > t}
determined by a, respectively. Such rays are frequently regarded as special
intervals, as is the entire real number system R = (—o0, +00) itself.
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2 Number systems

A field that is simultaneously a simply ordered set in such a way that (i)
and (ii) are satisfied is, in the language of modern algebra, called an ordered
field. That R is not uniquely determined as an ordered field is clear from the
fact that the field of rational numbers—familiar from primary school—is
also an ordered field. (There are many other ordered fields as well.) What
sets the real number system apart trom other ordered fields is a property
known as completeness.

Axiom of Completeness. Every nonempty set of real numbers that is
bounded above in R has a supremum in R. (Dually, a nonempty set of
real numbers that is bounded below in R possesses an infimum in R, cf.

Problem G.)

The property of completeness just tormulated is important and 1s worth
a paraphrase. Here is another way of saying the same thing. Let A be a
set of real numbers, and let M denote the set of all upper bounds ot A in
R. Then M may be empty (this happens when A is not bounded above in
R), and M may coincide with R (this happens when A is empty), but in all
other cases M 1is a closed right ray: M = [sup A,+00). Yet another way
to describe this situation is to say that R is a boundedly complete lattice.

In treatments of the real numbers that touch upon questions of the
foundations of mathematical analysis one customarily finds a painstaking
and fairly lengthy construction of the real number system based on some
other simpler and more familiar number system—sometimes the system of
rational numbers (see |12, for example), more usually the very primitive
number system set forth in the Peano postulates (Prob. O). (See |[16] and
114], to name but two sources.) In this book we eschew any consideration
of foundation problems, and are content simply to assume the existence of
a number system R possessing all of the heretofore stated properties.

From this more or less postulational point of view the various construc-
tions of R from more tamiliar number systems may be seen primarily as
existence theorems, i.e., as proofs of the existence of a complete ordered
held. However, the various constructions of R also serve to elucidate just
how it is related to the other, more primitive, number systems, and these
relations are by no means clear from what we have said so far. Accordingly,
we close this discussion of the real number system with a brief account of
how the more primitive number systems may be identified within R.

Definition. A set J of real numbers is inductive if (i) 1 € J and (ii) if
s € J, then s +1 € J. (This notion is to be distinguished from the one

introduced in Problem 1V.)

That inductive sets of real numbers exist is obvious; the set R itself is
inductive, as is the set P = (0,+o00) of all positive real numbers (Prob.
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J). Moreover, the intersection of any collection of inductive sets is clearly
again an inductive set. Thus there exists a smallest inductive set, viz., the
intersection of the collection of all inductive sets in R.

Definition. The smallest inductive set of real numbers is known as the
set of natural numbers and is denoted by N.

According to this definition, if a set S of real numbers is shown to be
inductive, then N C S§. Let us spell this out in greater detail: If for a
set S of real numbers it can be shown that (i) 1 € § and (ii) if s € S,
then s + 1 € 5, then every natural number belongs to S. The more usual
formulation of this fact is the following principle.

Principle of Mathematical Induction. If a set S of natural numbers
satisfies the conditions (i) 1 € S and (ii) for each natural number n,
neSimpliesn+1€S, then S = N.

Proposition 2.1. The real number 1 is the smallest natural number. The
set N is not bounded above in R, and is therefore cofinal in R.

PROOF. The first assertion of the proposition is an immediate consequence
of the definition of N and the fact that the ray [1,+o00) is inductive. To
see that N i1s cofinal in R, suppose that N is bounded above in R. Then
M = sup N exists, and M —1 is therefore not an upper bound for N. Hence
there exists a natural number n such that n > M —1. But thenn+1 > M,
which is impossible. 0

Example A. As has been noted, every natural number n is positive. It
follows that all reciprocals 1/n of natural numbers n are also positive (Prob.
K). But if € is an arbitrary positive number, then there exists a natural
number n such that n > 1/¢ (by the preceding proposition and Problem
K), so 1/n < e. Thus the set R of all reciprocals of the natural numbers is

a Subset of R with inf R = 0.

Example B. The function ¢(t) = ¢t/(1+1¢) is a strictly increasing mapping
(and thus an order isomorphism) of the ray [0,+o00) onto the half-open
interval [0,1), the inverse mapping being given by ¢~1(t) = t/(1 — t),
0 <t <1 (cf Problems D, F, I, and K). The mapping

t
1+ [t]’

o(t) = t € R,

with 1nverse
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p(t) = t] < 1,

1 — |t}

is an extension of ¢ providing an order isomorphism of all of R onto (—1, +1)
(cf. Problems G and L).

Proposition 2.2. If m and n are natural numbers, then their sum m + n
and their product mn are also natural numbers.

Proor. Consider first the set S of all those natural numbers m with the
property that m + n € N for every n in N. It is obvious that 1 € S, and,
ifme S, then (m+1)+n=m+(n+1) € Nforevery nin N, so § is
inductive, and therefore S = N. Thus sums of natural numbers are again
natural numbers.

Next let T denote the set of all those natural numbers m with the prop-
erty that mn € N for every n in N. It is again obvious that 1 € T.
Moreover, if m € T and n € N, then

(m+1)n=mn+n

is the sum of natural numbers, and is therefore itself a natural number
by what has just been shown. Thus T also is inductive, and the proof is
compiete. O

Another important property of the set N of natural numbers is that
the next natural number larger than a natural number n is n + 1. (That
is, for each natural number n, there is no natural number in the open
interval (n,n + 1); see Problem O.) By exploiting this fact we are able to
establish an apparently stronger version of the principle of mathematical
induction (formally stronger because the inductive hypothesis is weaker
while the conclusion remains the same, but only apparently stronger since
we derive it, in fact, from the original principle of mathematical induction).
In the formulation of the next result it will be convenient to denote the set

{keN: k<n} by A,.

Theorem 2.3. If a set S of natural numbers satisfies the conditions (i)
1 € 5, and (ii) for each natural number n, A, C S implies that n+1 € S,
then S = N.

ProOF. Consider the set T of all those natural numbers n with the prop-
erty that A,, € S. Since A; = {1}, we have 1 € T. Moreover, if n € T,
then A,, C S and therefore n +1 € S. But then

An+1 =AnU{‘n+1}CS,
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and therefore n +1 € T'. Thus T'= N, and consequently S = N too. []

Our next result, while quite important in its own right, is an immediate
consequence of Theorem 2.3.

Theorem 2.4. The set N of natural numbers is well-ordered. (That is,
every nonempty subset of N possesses a least element; see Chapter 1.)

PROOF Let A be a subset of N that does not possess a least element,
and set S = N\A. Then 1 € S since A clearly cannot contain the least
natural number 1. But also, ift A, C 5, and if n + 1 belonged to A, then
n + 1 would surely be the least element of A, contrary to hypothesis. Thus
A, C Simpliesn+1 € 5, so S is inductive, and therefore S = N. But
then A is empty. O

The method of mathematical induction is much more than a device for
proving theorems; it also provides a powerful and exceedingly useful tool
for giving definitions.

Theorem 2.5 (Principle of Inductive Definition). Let X be a nonempty
set, let * be an element of X, and let F denote the collection of all
finite sequences {x,,...,T,} in X. Suppose given a mapping g of F
into X. Then there exists a unique sequence {x,}° , in X satisfying
the conditions

Note. The proof of this theorem is omitted because it is wholly subsumed
under the discussion of the principle of definition by transfinite induction to
be found in Chapter 5. The role of the function g in the above formulation
1S simply to provide the “inductive step” in the definition, and this rule
can ordinarily be set forth quite informally, so that in an actual definition
by mathematical induction the function g need never appear explicitly. It
1S also only fair to point out that in most applications the value assigned
by the inductive rule g to a sequence {z1,...,z,} depends only on z,, and
not on zx,k = 1,...,n — 1. Thus, however ponderous the machinery of
Theorem 2.5 may seem, an actual inductive definition is typically quite
brief and wholly perspicuous.

Example C. For each real number ¢ we define t! = ¢ and then, for each
natural number n, assuming t™ already defined, we set

tnth = ", (4)
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Thus the power function ¢ — t" is defined inductively for all real numbers
t and all natural numbers n, according to the inductive rule (4) and the

initial requirement
t' =t teR (5)

It may be noted that in this example it is entirely immaterial whether
one thinks of the definition of t" as being given for one ¢y at a time (in
which case, in the notation of Theorem 2.5, X = R,x = {3 and g assigns
the number tgz, to a finite sequence {x,, x2,...,x,} of real numbers) or
as the definition of the function t — t",¢t € R (in which case X becomes
the set RR of real-valued functions on R,Z = (g, the identity mapping on
R (Ex. 1D) and ¢ becomes the rule assigning to an n-tuple {fi,..., fo} of
functions in R® the function g f,.). It may also be noted that the inductive
definition of positive integral powers given in this example applies equally
well in any system in which an associative product is defined (cf. Example

1F).

Definition. The subset of R consisting of the natural numbers and the
negatives of the natural numbers, along with the number zero, is the set
Z, of integers.

If we write - N ={t € R: —t € N}, then Z = NU {0} U —-N. We see
that the set N coincides with the set of all positive integers, while —N is
precisely the set of all negative integers (Prob. G). Also of interest in this
context is the set Ng = {0} UN of nonnegative integers. The set of integers
has a number of important properties as a subset of R.

Theorem 2.6. If j and k are integers, then the sum j + k, the difference
7 — k, and the product jk are all integers as well.

PROOF. Since the negative of an integer is clearly an integer, we may, in
view of Problem C, assume that neither j nor k is zero. As for products, we
already know (Prop. 2.2) that the product of positive integers is a positive
integer, and since jk = (—j)(—k), the product of two negative integers is
also a positive integer. On the other hand, if one ot 7, k is positive and the

other negative, then jk = —(—j)k is a negative integer.
In proving that the difference 7 — k is an integer we first note that
since j — k = —((—j) — (—k)) (Prob. D), we may also assume without

loss of generality that 7 is a positive integer. But then, if k£ is negative,
j—k =37+ (—k) is also a positive integer. On the other hand, if j and %
are both positive, then either 5 > k, in which case 3 — k is a nonnegative
integer (see Problem O), or j < k, in which case j —k = —(k— j) is a
negative immteger.

Finally, to show that the sum j + k is an integer, we write j + k =
j—(—k). O
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A quick check of cases shows that if k£ is an integer, then there is no
integer between k£ and k£ + 1, and we have the following fact.

Proposition 2.7. For any integer k the next larger integer is k + 1, and
the next smaller is k — 1

From this last result it follows at once that if 4 and k are distinct integers,
then the half-open intervals (7,5 + 1) and [k, k + 1) are disjoint subsets of
R. The following proposition is a sharpening of this observation.

Proposition 2.8. The intervals |k, k + 1),k € Z, constitute a partition of
R.

PROOF. All that is needed 1s to show that for any real number ¢ there is
an integer k such that ¥k <t < k+ 1, and to this end it clearly suffices to
treat the case in which ¢ is not itself an integer. If ¢ is positive, there is
a least positive integer n such that ¢ < n (Prop. 2.1, Th. 2.4). If n = 1,
then 0 <t < 1, while if » > 1, then n — 1 is a positive integer such that
n—1 < t < n. Thus, in either case, K = n—1 satishies the required condition.
Finally, if t < 0,and if k < —t < k+1, then —(k+1) <t < —(k+1)+ 1.0

Corollary 2.9. Every nonnegative real number t is uniquely expressible
as the sum of a nonnegative integer (called the integral part of t and
denoted by [t|) and a number in the interval |0, 1) (called the fractional
part of t and denoted by (t)).

Corollary 2.10. For an arbitrary positive real number d, the intervals
kd, (k+ 1)d), k € Z, also constitute a partition of R.

PROOF. A real number ¢ belongs to [kd, (k+ 1)d) if and only if ¢/d belongs
to [k, k+ 1). O]

Finally, we consider the field of rational numbers in the context of our
postulational development of the real number system.

Definition. The subset of R consisting of all numbers of the form j/k,
where 7 and k are both integers and k # 0, is the set Q of rational
numbers. (Since —j/(—k) = j/k, we may, and usually do, assume that
k is positive in the representation j/k of a rational number.)

As has already been noted, the rational numbers constitute a field. What
is meant by this assertion is simply that if ¢ and r are two rational numbers,
then the sum ¢ + r, the difference ¢ — r, the product ¢r, and, if » # 0,

33



2 Number systems

the quotient ¢/r are all rational numbers too. Without stating a formal
proposition to this effect, we can verify these facts by supposing that g =
7/k and r = £/m, where j and ¢ are integers, while k£ and m are positive
integers. Then

74
r—= -
! km
1s a rational number, as is
qg_Jm
T k{

provided 7 # 0, i.e., provided £ # 0. Moreover, we also have

m 4
- —— d = ——,
= %m 2 T km
so that | ”
qtT = JR =2 = :
km

and these are also rational numbers.

Since properties (i) and (ii) in the definition of an ordered field are clearly
enjoyed by Q as well, it is also true that Q is an ordered field along with
R. The following observation concerns the way the subfield Q is situated
in R.

Theorem 2.11. If a and b are real numbers such that a < b, then there
are (infinitely many) rational numbers in the interval (a,b).

PROOF. There exists a positive integer N exceeding the positive number
1/d, where d = b — a (Prop. 2.1). Let k be the unique integer such that
k(1/N)<a< (k+1)(1/N) (Cor. 2.10), and set r = (k+1)/N. Thena < r
while 7 —a < 1/N < d =0b—a. Hence r < b, and therefore r is contained
in the interval (a,b). To see that this interval contains, in fact, an infinity
of rational numbers, we note that the interval (a,r) must also contain a
rational number, etc. ]

Definition. By a base in R is meant any positive integer greater than
one. It p is a base, then the digits with respect to p are the integers
0,1,...,p — 1. (The most favored bases are p = 2,3 and, of course,
p = 10, though p = &, 12 and 16 have also found adherents.)

The following result is just a summary of the basic facts concerning the
“place holder” system of notation that is universally employed for denoting
real numbers. The interested reader will have no difficulty supplying the
proof of Theorem 2.12 on the basis of the preceding material.
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Theorem 2.12. Let p be a base in R. Then every positive integer n has
a unique expression in the form

n==c1+ep+...+mp

where €1, ...,€&,, are digits with respect to p and €,, # 0. This relation
is customarily expressed by writing

nNn=—etméEm-—-1..-£1. (6)

Moreover, every number t in |0,1) may be written as

t = Z E_np ", (7)
n=1

where {€_,,}5%, is a sequence of digits with respect to p. This relation

1S expressed by writing
t—_—O.E_lE_g...S_n..., (8)

or by
t“‘—“‘O.E_l...&_n (9)

when €_; = 0 for every k > n. (Such numbers are rational of the
form k/p™, and are called p-adic fractions.) This expression for t is
not necessarily unique, but if {n_, }>°_, is another, different sequence of
digits such that (7) holds, then

(1) if ng denotes the first index at which €_, and n_,, differ, then
€ _ng — N—nol = 1, and, assuming that n_,, = €—_n, + 1,

(2) m_n =0 for all n > ng, whilee_,, = p—1 for all n > ny.

Thus every nonnegative real number t may be written as
t=€m...€1+0.e_16_9...,

or, as 1S more customary,
t = €Em .. E1.€—1+eE—pr.-, (10)

and this representation is unique except for p-adic fractions, which, as
noted, admit exactly two such representations.

For p = 2 the expansion (10) is called a binary expansion of t. When

p = 3, it is a ternary expansion; when p = 10, a denary expansion. In
general, one refers to (10) as a “p-ary” expansion of t.
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The extended real number system

It is frequently very convenient to enlarge the real number system by ad-
mitting to it the “ideal” numbers 400 and —o0. Thus it is customary to
write sup £ = 400 for any set E of real numbers that is not bounded above
in R. In the study of analysis the usefulness of this symbolism is so great
that it is desirable to introduce it on a formal basis. Accordingly, we adjoin
to R two new “numbers” +00 and —oc. The enlarged number system

R U {+0o0, —00}

will be called the extended real numbers and will be denoted by RY. (In
dealing with RY we will distinguish the elements of R as ordinary real num-
bers, or as finite numbers.) The simple ordering of R is extended to R% by
defining —o0 < 400 and

—00 <t < +00

for every finite real number ¢. Thus 400 is the largest element of R and
—o0 is the smallest. (Note that in R it is not a notational convention but
a literal fact that sup £ = +o0 for a set E of real numbers that is not

bounded above in R.)
As for algebraic operations, we define

i+ oo = oo+ 1 = oo
for every finite real number ¢, and likewise
+00 + 00 = 0.
Similarly, we agree that
t—+too=Fox and T —t=F0
for every finite real number ¢, and that
TO00 — Fo0 = 0Q.

(The symbols +00 + Foo and 00 — +00 remain undefined.) As regards
multiplication, we define

+o0 t >0
t(+o0) = (Foo)t = {0 t =0
Foo t<0

for every finite real number ¢, and likewise
(+00)(+o0) = 400 and (+00)(Foo) = —oc.
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It must be admitted, to be sure, that the systematic use of R? in place of
R brings some inconvenience with it (see, for example, Problem T below).
The best that can be said is that, on balance, it is easier to get along with
+00 in real analysis than it 1s to get along without them.

The complex number system

While this book is basically a treatise on real analysis, it 1s a feature of
its development that the complex numbers appear in the sequel with fair
frequency. Accordingly, we close this chapter with a brief account of the
complexr number system (notation: C). Here again, as above in the case of
the real number system, we shall not bother to construct C (though this
turns out to be a fairly simple thing to do, and would have the advantage
of proving the existence of C), but we will rather simply assume that such a
number system exists, having properties that serve to determine it uniquely.

The first and most important thing about C is that it is a field and is
algebraically an ezxtension of R, so that C contains R as a subfield (meaning
that the ordinary sums and products of real numbers are the same as their
sums and products when they are thought of as complex numbers). It
follows at once that the elements 0 and 1, neutral with respect to addition
and multiplication, respectively, in C, are just the real numbers 0 and 1.
Hence the difference s — t and, if ¢ # 0, the quotient s/t, of any two real
numbers s and ¢ are the same as their difference and quotient when they

are regarded as complex numbers.
The second, and most characteristic, feature of C is that the equation

°+1=0 (11)

has a solution 7 in C (so that i is a “square root of minus one” ). Clearly no
real number can be a root of (11) (Prob. J) so i € C\R. Complex numbers
of the form b, b € R, are said to be pure imaginary, and every complex
number is of the form ( = a + b, where a is real and b is pure imaginary.

It is easily seen that the only complex number that is both real and pure
imaginary is 0 (= 0 + ¢0), and hence that

( = a + b, a, b e R,

called the standard form of (, is uniquely determined by (. In this standard
form the real number a is the real part of { (notation: Re (), while b is
the imaginary part of ( (notation: Im ¢} Thus for any complex number (
both Re ¢ and Im ( are real numbers.

We conclude this brief discussion of the field C by recalling how the
operations of arithmetic are conducted on complex numbers expressed in
standard form. To this end let a + ib and s + it be complex numbers in
standard form. Then

(@ +1ib) + (s +it) = (a+s) +i(b+t),
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and

—(a + ib) = (—a) + i(—b).

Moreover
(a + ib)(s + it) = (as — bt) + i(at + bs).

Finally, if @ + 2b # 0, then

a i b
a’ + b? a? + b4

1s readily seen to be the reciprocal of a + ib.

Note. The following problems that bear on R are not intended to acquaint
the reader with new properties of the real number system. Indeed, he knows
most if not all of these properties already. The real goal here is rather to
convince the reader that our description of the real number system is,
in fact, full and complete enough to permit the derivation of all of the
properties of R. Accordingly, in solving the following problems bearing on
R, it is a cardinal principle of the enterprise that all arguments be based—
either directly or indirectly—on those assertions concerning R explicitly set
forth in the above text.

PROBLEMS

A. Show that if s,t and ¢’ are real numbers, and if <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>