


Graduate Texts in Mathematics 13 3

Editorial Board
JJH. Ewing F.W. Gehring P.R. Halmos

i

LR TR WL
X — ot i o ey

[

SR i 4, Tl

E
T L LT L A pe L bt
R T i | I S e e



Joe Harris - :

Algebraic Geometry

A First Course g_;

AT Y an
P T, O RS

With 83 Illustrations

A | BHAYHS R
& l # ¥ 7 I

N
\

Springer-Verlag
New York Berlin Heidelberg London Paris
Tokyo Hong Kong Barcelona Budapest




Preface

This book 1s based on one-semester courses given at Harvard in 1984, at Brown in
1985, and at Harvard in 1988. It 1s intended to be, as the title suggests, a first
mtroduction to the subject. Even so, a few words are in order about the purposes
of the book.

Algebraic geometry has developed tremendously over the last century. During
the 19th century, the subject was practiced on a relatively concrete, down-to-earth
level; the main objects of study were projective varieties, and the techniques for the
most part were grounded in geometric constructions. This approach flourished
during the middie of the century and reached its culmination in the work of the
Italian school around the end of the 19th and the beginning of the 20th centuries.
Ultimately, the subject was pushed beyond the limits of its foundations: by the end
of its period the Italian school had progressed to the point where the language and
techniques of the subject could no longer serve to express or carry out the ideas of
its best practitioners.

This was more than amply remedied in the course of several developments
beginning early in this century. To begin with, there was the pioneering work of
Zariski who, aided by the German school of abstract algebraists, succeeded in
putting the subject on a firm algebraic foundation. Around the same time, Welil
introduced the notion of abstract algebraic variety, in effect redefining the basic
objects studied in the subject. Then in the 1950s came Serre’s work, introducing the
fundamental tool of sheaf theory. Finally (for now), in the 1960s, Grothendieck
(aidded and abetted by Artin, Mumford, and many others) introduced the concept
of the scheme. This, more than anything else, transformed the subject, putting 1t on
a radically new footing. As a result of these various developments much of the more
advanced work of the Italian school could be put on a solid foundation and carried
further; this has been happening over the last two decades simultaneously with the
advent of new 1deas made possible by the modern theory.
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All this means that people studying algebraic geometry today are in the position
of being given tools of remarkable power. At the same time, didactically it creates
a dilemma: what 1s the best way to go about learning the subject? If your goal i1s
simply to see what algebraic geometry is about—to get a sense of the basic objects
considered, the questions asked about them and the sort of answers one can
obtain—you might not want to start off with the more technical side of the subject.
If on the other hand, your ultimate goal is to work 1n the field of algebraic geometry
it might seem that the best thing to do is to introduce the modern approach early
on and develop the whole subject in these terms. Even in this case, though, you
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appreciate the insights offered by it, if you had some acquaintance with elementary
algebraic geometry.

In the end, it is the subject itseif that decided the issue for me. Classical algebraic
geometry 1s simply a glorious subject, one with a beautifully intricate structure
and yet a tremendous wealth of examples. It is full of enticing and easily posed
problems, ranging from the tractable to the still unsolved. It is, in short, a joy both
to teach and to learn. For all these reasons, it seemed to me that the best way to
approach the subiject is to spend some time introducing elementary algebraic
geometry before going on to the modern theory. This book represents my attempt
at such an introduction.

This motivation underlies many of the choices made in the contents of the book.
For one thing, given that those who want to go on in algebraic geometry will be
relearning the foundations in the modern language there 1s no point in introducing
at this stage more than an absolute minimum of technical machinery. Likewise, 1
have for the most part avoided topics that I felt could be better dealt with from a
more advanced perspective, focussing instead on those that to my mind are nearly

as well understood classically as they are in modern language. (This 1s not absolute,

of course; the reader who is familiar with the theory of schemes will find lots of

places where we would all be much happier if I could just say the words “scheme-
99 “6 1 <r?? )

theoretic intersection” or “llat family”.)

This decision as to content and level in turn influences a number of other
questions of organization and style. For example, it seemed a good idea for the
present purposes to stress exampies throughout, with the theory deveioped concur-
rently as needed. Thus, Part I is concerned with introducing basic varieties and
constructions; many fundamental notions such as dimension and degree are not
formally defined until Part II. Likewise, there are a number of unproved assertions,
theorems whose statements I thought might be illuminating, but whose proofs are
beyond the scope of the techniques introduced here. Finally, I have tried to main-

tain an informal style throughout.
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Using This Book

There is not much to say here, but I'll make a couple of obvious points.

First of all, a quick glance at the book will show that the logical skeleton
of this book occupies relatively lhittle of its volume: most of the bulk 1s taken up by
examples and exercises. Most of these can be omitted, if they are not of interest, and
gone back to later if desired. Indeed, while I clearly feel that these sorts of examples
represent a good way to become familiar with the subject, I expect that only
someone who was truly gluttonous, masochistic, or compulsive would read every
single one on the first go-round. By way of example, one possible abbreviated tour
of the book might omit (hyphens without numbers following mean “to end of
lecture”) 1.22—-, 2.27—, 3.16—, 4.10—, 5.11—-, 6.8—11, 7.19-21, 7.25-, 8.9-13, 8.32-39,
9.15-20,10.12-17, 10.23—, 1140, 12.11-, 13.7—-, 15.7-21, 16.9-11, 16.21 -, 17.4-15,
19.11-, 20.4-6, 20.9-13 and all of 21.

By the same token, I would encourage the reader to jump around in the text. As
noted, some basic topics are relegated to later in the book, but there i1s no reason
not to go ahead and look at these lectures if you're curious. Likewise, most of the
examples are dealt with several times: they are introduced early and reexamined in
the light of each new development. If you would rather, you could use the index
and follow each one through.

Lastly, a word about prerequisites (and post-requisites). I have tried to keep the
former to a minimum: a reader should be able to get by with just some linear and
multilinear algebra and a basic background in abstract algebra (definitions and
basic properties of groups, rings, fields, etc.), especially with a copy of a user-friendly
commutative algebra book such as Atiyah and MacDonald’s [AM] or Eisenbud’s
'E] at hand.

At the other end, what to do if, after reading this book, you would like to
learn some algebraic geometry? The next step would be to learn some sheaf theory,
sheaf cohomology, and scheme theory (the latter two not necessarily in that order).
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For sheaf theory in the context of algebraic geometry, Serre’s paper [S] is the basic
source. For the theory of schemes, Hartshorne’s [ H] classic book stands out as the
canonical reference; as an introduction to the subject there is also Mumford’s [M1]
red book and the book by Eisenbud and Harris [ EH]. Alternatively, for a discus-
sion of some advanced topics in the setting of complex manifolds rather than
schemes, see [ GH].
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LECTURE 1

Affine and Projective Varieties

A Note About Our Field

In this book we will be dealing with varieties over a field K, which we will take to
be algebraically closed throughout. Algebraic geometry can certainly be done over
arbitrary fields (or even more generally over rings), but not in so straightforward a
fashion as we will do here; indeed, to work with varieties over nonalgebraically
closed fields the best language to use is that of scheme theory. Classically, much
of algebraic geometry was done over the complex numbers C, and this remains
the source of much of our geometric intuition; but where possible we will avoid

assuming K = C.

Affine Space and Affine Varieties

By affine space over the field K, we mean simply the vector space K”"; this is
usually denoted A% or just A” (The main distinction between affine space and
the vector space K” is that the origin plays no special role in affine space.) By
an affine variety X < A", we mean the common zero locus of a collection of
polynomials f, € K[z, ..., z,].

Projective Space and Projective Varieties

By projective space over a field K, we will mean the set of one-dimensional sub-
spaces of the vector space K"**; this is denoted Pk, or more often just P". Equiva-
lently, PP" is the quotient of the complement K"*! — {0} of the origin in K"*' by the
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action of the group K* acting by scalar multiplication. Sometimes, we will want to
refer to the projective space of one-dimensional subspaces of a vector space V over
the field K without specifying an isomorphism of V with K**! (or perhaps without
specifying the dimension of V); in this case we will denote it by P(V') or just PV. A
point of P” is usually written as a homogeneous vector [ Z,, ..., Z,], by which we
mean the line spanned by (Z,, ..., Z,) € K"™!; likewise, for any nonzero vector
v e V we denote by [v] the corresponding point in PV =~ P".

A polynomial Fe K[Z,,...,Z,] on the vector space K"*! does not define
a function on P". On the other hand, if F happens to be homogeneous of degree d,
then since

F(Zg,...,AZ) =24 F(Zo,.... Z,)

it does make sense to talk about the zero locus of the polynomial F; we define
a projective variety X < P" to be the zero locus of a collection of homogeneous
polynomials F,. The group PGL,,; K acts on the space P” (we will see in Lecture
18 that these are all the automorphisms of P"), and we say that two varieties X,
Y < P" are projectively equivalent 1f they are congruent modulo this group.

We should make here a couple of remarks about terminology. First, the stan-
dard coordinates Z,, ..., Z, on K"*! (or any linear combinations of them) are
called homogeneous coordinates on P", but this is misleading: they are not even
functions on P" (only their pairwise ratios Z;/Z; are functions, and only where the
denominator is nonzero). Likewise, we will often refer to a homogeneous poly-
nomial F(Z,, ..., Z,) of degree d as a polynomial on P"; again, this is not to suggest
that F is actually a function. Note that if P* = PV is the projective space associated
with a vector space V, the homogeneous coordinates on PV correspond to elements
of the dual space V*, and similarly the space of homogeneous polynomials of
degree d on PV is naturally identified with the vector space Sym“(V*).

Let U; — P" be the subset of points [Z,,..., Z,] with Z, # 0. Then on U, the
ratios z; = Z;/Z; are well-defined and give a bijection

U =~ A"

Geometrically, we can think of this map
as associating to a line L < K"*! not
contained in the hyperplane (Z; = 0) its
point p of intersection with the affine (Z;=0)
plane (Z; = 1) « K",

We may thus think of projective
space as a compactification of affine
space. The functions z; on U, are called
affine or Euclidean coordinates on the
projective space or on the open set U;;
the open sets U; comprise what is called (Zi=1)
the standard cover of P" by affine open
sets.

If X = P"is a variety, then the intersection X; = X n U, is an affine variety: if X
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is given by polynomials F, € K[Z,, ..., Z,], then X, for example, will be the zero
locus of the polynomials

f(zys...,2,)=F/(Z,,...,2Z)/Z8
sz(l, Zl, ...,Zn)

where d = deg(F,). Thus projective space is the union of affine spaces, and any
projective variety 1s the union of affine varieties. Conversely, we may invert this
process to see that any affine variety X, c A" =~ U, < P" is the intersection of U,
with a projective variety X: if X, is given by polynomials

Jalz1s ooy 2,) = Z ail,...,i"'Zil'...-Zi"
of degree d,, then X may be given by the homogeneous polynomials

Fa(Z(h tet Zn) = Zga-jc‘x(zl/‘z()& sy ZH/ZO)

Note 1n particular that a subset X < P" i1s a projective variety if and only if
its intersections X; = X n U, are all affine varieties.

Example 1.1. Linear Spaces

An inclusion of vector spaces W = K**! < V =~ K"*! induces a map PW < PV;
the image A of such a map is called a linear subspace of dimension k, or k-plane, in
PV.In case k = n — 1, we call A a hyperplane. In case k = 1 we call A a line; note
that there is a unique line in P” through any two distinct points. A linear subspace
A ~ P* = P" may also be described as the zero locus of n — kK homogeneous linear
forms, so that it is a subvariety of P"; conversely, any variety defined by linear forms
is a linear subspace.

The intersection of two linear subspaces of P" 1s again a linear subspace, possibly
empty. We can also talk about the span of two (or more) linear subspaces A, A’; if
A =PW, A" = PW’, this is just the subspace associated to the sum W + W' < K"+,
or equivalently the smallest linear subspace containing both A and A’, and 1s
denoted A, A’. In general, for any pair of subsets I', ® = P", we define the span of
I and @, denoted I" U @, to be the smallest linear subspace of P” containing their

union.

The dimension of the space A,A’ is at most the sum of the dimensions plus
one, with equality holding if and only if A and A’ are disjoint; we have in general
the relation

dim(A, A') = dim(A) + dim(A’) — dim(A N A’)

where we take the dimension of the empty set as a linear subspace to be — 1. Note,
in particular, one of the basic properties of projective space P": whenever k + [ > n,
any two linear subspaces A, A’ of dimensions k and [/ in P” will intersect in a linecar
subspace of dimension at least k + [ — n.
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Note that the set of hyperplanes in a
projective space P" is again a projec-
tive space, called the dual projective /
/

space and denoted P"*. Intrinsically, if

P" = PV 1s the projective space asso-
ciated to a vector space V, the dual
projective space P"™* = P(V*) is the

projective space associated to the dual B
space V*. More generally, if A=

P*= P" is a k-dimensional linear

- W W

subspace, the set of (k + 1)-planes
containing A 1s a projective space / ,
/ 17

ul‘['Dﬂ_k"‘l anrnd tha orans

, anl il Spall Gf h}’perplanﬂs
containing A is the dual projective space
(P"~*~1)* Intrinsically, if P" = PV and

A = PW for some (k + 1)-dimensional

subspace W < V, then the space of (k + 1)-planes containing A 1s the
projective space P(V/W) associated to the quotient, and the set of hyperplanes
containing A is naturally the projectivization P((V/W)*) = P(Ann(W)) < P(V*) of
the annihilator Ann(W) < V* of W.

Example 1.2. Finite Sets

Any finite subset I' of P" is a variety: given any point g ¢ I', we can find a poly-

nomial on P"” vanishing on all the points p, of I but not at g just by taking a product

of homogeneous linear forms L; where L, vanishes at p; but not at g. Thus, if I'

consists of d points (we say in this case that I has degree d), it may be describe,:/i by
/

polynomials of degree d and less. /

In general, we may ask what are the smallest degree polynomials that suffice to
describe a given variety I' < P". The bound given for finite sets is sharp, ag may be
seen from the example of d points lying on a line L; it’s not hard to see that a
polynomial F(Z) of degree d — 1 or less that vanishes on d points p; € L will vanish
identically on L. On the other hand, this is the only such example, as the following
exercise shows.

/
Exercise 1.3. Show that if I" consists of d points and is not contained in a line,
then I' may be described as the zero locus of polynomials of deégree d — 1 and
less.

Note that the “and less” in Exercise 1.3 is unnecessary: if a variety X < P" 1s
the zero locus of polynomials F, of degree d, < m, then it may also be represented
as the zero locus of the polynomials {X’-F,}, where for each « the monomial X'
ranges over all monomials of degree m — d,.

Another direction in which we can go 1s to focus our attention on sets of
points that satisfy no more linear relations than they have to. To be precise,
we say that | points p; = [v;] € P" are independent if the corresponding vectors
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v; are; equivalently, if the span of the points is a subspace of dimension [ — 1.
Note that any n 4+ 2 points in P" are dependent, while n + 1 are dependent if
and only 1if they lie in a hyperplane. We say that a finite set of points I' = P"
iS in general position if no n + 1 or fewer of them are dependent; if I' contains n + 1
or more points this 1s the same as saying that no n + 1 of them lie in a hyperplane.
We can then ask what is the smallest degree polynomial needed to cut out a set of
d points 1n general position in P”; the following theorem and exercise represent one
case of this.

Theorem 1.4. If I < P" is any collection of d < 2n points in general position, then T’
may be described as the zero locus of quadratic polynomials.

Proor. We will do this for I' = {p,, ..., p,,} consisting of exactly 2»n points; the
general case will be easier. Suppose now that g € P" is any point such that every
quadratic polynomial vanishing on I" vanishes at g; we have toshow thatge I'. To
do this, observe first that by hypothesis, if I’ = I'; U I3 is any decomposition of I'
into sets of cardinality n, then each I; will span a hyperplane A; < P"; and since
the union A, U A, 1s the zero locus of a quadratic polynomial vanishing on I” we
must have g € A; U A,. In particular, g must lie on at least one hyperplane spanned
by points of I

Now let p,, ..., p, be any minimal subset of I' such that g lies in their span;

s I A -

by the preceding, we can take k < n. Suppose that Z<I' — {p,,..., p,} is any
subset of cardinality n — k + 1; then by the general position hypothesis, the hyper-

a1 A cnﬁﬂnpﬂ I\U fhp ﬂn‘lﬂf n anAd Y Anpc not r‘ﬁﬁfﬂiﬂ n It fallawe that
l}].l.-l-l].\-' l—-’ul.l J FU .l.rh' Fz, . . 5 Fk i kA Wl H EBLWS Wi SALALVLLLA 1./1 s ALK LAWVLFLIVWF Y7Y V2 wALLLCLL

A cannot contain ¢, since the span of P25 ---» P and g contains p,; thus g must lie

- ul L -n-l“

all these hyperplanes 1S just p, 1tself, we conclude that q=p;-

Exercise 1.5. Show 1n general that for k > 2 any collection I' of d < kn points
in general position may be described by polynomials of degre¢ k and less (as
we will see in Exercise 1.15, this is sharp).

As a final note on finite subsets of P", we should my)én (in the form of

an exercise) a standard fact. 1
N

Exercise 1.6. Show that any two ordered subsets of n + 2 points in general position
in P" are projectively equivalent.

This in turn raises the question of when two ordered subsets of d > n + 3 points
in general position in P are projectively equivalent. This question is answered in

case n = 1 by the cross-ratio

(21 — 22) (23 — 24)
(z; — 23) (22 — z4)

since A(z4, ..., 24) is the image of z, under the (unique) linear map of P! to

14, -\
SACSERREERYY
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itself carrying z,, z,, and z,; into 1, oo, and O respectively, two subsets z,, ...,
z, and z7, ..., z; € P can be carried into one another in order if and only the
cross-ratios A(z(, ..., z4) = A(z7, ..., z;) (see for example [A]). We will give the
answer to this in case d = n + 3 in Exercise 1.19; a similarly explicit answer for
d > n + 3 1s not known 1n general.

Example 1.7. Hypersurfaces

>

hypersurface X 1s a subvariety of P" described as the zero locus of a single
omogeneous nnlvnnmml F{7n e 7 \—fm- exnmnle a nlnne curve or a surface

- AR & wr - e B ey W am am Eew R W

in 3-space P°. (We will see in Lecture 11 that 1n fact any variety of dimension n — 1
in P" 1s a hypersurface in this sense—but that will have to wait until we have

’

Aafin rl ha nntinn nf dAimaoancinan nt lanct con thoe Aiecmiicoinn at tho and Afthic lacrtiira )
Wibrill ]. LW | LAV l.UL VAL Wl WAL LA OIV L) CLL AL D l.-, Wl LW WL LD OILV/EL AL LILNY YwiliWwl UVl L1111 LWl Wl \.-f.}

Note that any hypersurface X 1s the zero locus of a polynomial F without
repeated prime factors. With this restriction F will be unique up to scalar multipli-

cation. (To see this we need the Nullstellensatz (Theorem 5.1). In partlcular, it
requires that our base field be algebraically closed; for example, we would not want
to comsider a single point like {0, 0, ..., §) € R" to be a hypersurface, even though
it is the zero locus of the single polynomial ) x?.) When this is done the degree of
F is called the degree of the hypersurface X. In Lecture 15, we will define a notion
of degree for an arbitrary variety X — P” that generaiizes the two cases mentioned
sO far; for the time being, note that our two definitions agree on the overlap of their

domains, that is, hypersurfaces in P*.
Example 1.8. Analytic Subvarieties and Submanifolds

This is not so much an example as a theorem that we should mention (without
proof, certainly) at this point. To begin with, observe that since polynomials
flzy,....2,eC[z,, ..., z,] with complex coefficients are holomorphic functions of
their varlables Zy,...,Z,, an algebraic.variety X in A% or P% will be in particular a

complex analytic subvariety of these CO lex manifolds (i.e., a subset given locally
)i Notably, this gives us an a priori

notlon of the dlmenswn of an algebralc variety X < P¢, and likewise of smooth
and singular points of X. These are not satisfactory definitions of these concepts

an f‘ﬂp Q]np]'\raw\ ﬂﬁ1ﬂ nf ‘IHFIIII <
LLUI.I.L Vilw A1 WoOpWRARL UL YAV YY O

ally invoke them implicitly, as, for example, when we refer to a variety as a “curve.”

N e will nnt ralvian tham hat « e vl " nr'-r-ao1n _
L ¥ W TFY LAAL AAWS L IU.I.J AR LA I.-l.l\.-"ll.l’ LWL ¥ W ¥Y¥Y i1l LWL W WY U]...I.

The theorem we should guote here 1s the famous co

- e A&

subsets of projective space.

Theorem 1.9. (Chow’s Theorem). If X < P is any complex analytic subvariety then
X is an algebraic subvariety.

Note that this is certainly false if we replace Pg by A'%; for example, the subset
Z < C = A¢ of integers is an analytic subvariety. See [S2] for a thorough discus-
sion of this and related theorems.
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Example 1.10. The Twisted Cubic

This 1s everybody’s first example of a concrete variety that is not a hypersurface,
linear space, or finite set of points. It is defined to be the image C of the map
v: P! > P given in terms of affine coordinates on both spaces by

vix = (x, x%, x3);
or, In terms of homogeneous coordinates on both, as
& [XO: X1] s [Xg: X§X19 XOXfS X%] — [ZO: Zl;'i ZZ: ZS:I

C lies on the 3 quadric surfaces Q4, Q,, and O, given as the zero locus of the
polynomials

Fo(Z) = 242, — lea
F]_(Z) - 2023 — lez, Ellld
F,(Z)=2,Z; — Z.%a

respectively, and is equal to their intersection: if we have a point p € P> with
coordinates [Z,, Z,, Z,, Z,] satisfying these three polynomials, either Z, or Z,
must be nonzero; if the former we can write p = v([ Z,, Z,]) and if the latter we can
write p = v([Z,, Z5]). At the same time, C 1s not the intersection of any two of these
quadrics: according to the following Exercise Q; and Q; will intersect in the union
of C and a line ;. \

™,

N

Exercise 1.11. a. Show that for any 0 < i J < 2, the surfaces Q; and Q; intersect
in the union of C and a line L.

b. More generally, for any 4 = [4,,
Ay A4 ], let

F;_=)L.O'Fo +)L.1'F1 +A.2'F2

and let @, be the surface defined by F,.
Show that for u # v, the quadrics Q,
and Q, intersect in the union of C and
aline L, ,. (A slick way of doing this
problem 1s described after Exercise 9.16;
it is intended here to be done naively,
though the computation is apt to get

messy.)

In fact, the lines that arise in this way form an interesting family. For example,
we may observe that any chord of the curve C (that is, any line pq joining points of
the curve) arises in this way. To see this, let r € pg be any point other than p and 4.
In the three-dimensional vector space of polynomials F; vanishing on C there will
be a two-dimensional subspace of those vanishing at r; say this subspace is spanned
by F, and F,. But these quadrics all vanish at three points of the line pg, and so
vanish identically on this line; from Exercise 1.11 we deduce that @, n Q, = C U pq.
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One point of terminology: while we often speak of the twisted cubic curve and
have described a particular curve C < P?3, in fact we call any curve C' = P? pro-
jectively equivalent to C, that 1s, any curve given parametrically as the image of the
map

[X] = [Ao(X), 4,(X), 42(X), A3(X)]

where A,, A, A,, A; form a basis for the space of homogeneous cubic polynomials
in X =[X,, X,], a twisted cubic.

Exercise 1.12. Show that any finite set of points on a twisted cubic curve are
in general position, i.e., any four of them span P°.

In Theorem 1.18, we will see that given any six points in P> in general position
there is a unique twisted cubic containing all six.

Exercise 1.13. Show that if seven points p,, ..., p, € P> lie on a twisted cubic,
then the common zero locus of the quadratic polynomials vanishing at the p,
i1s that twisted cubic. (From this we see that the statement of Theorem 1.4 is
sharp, at least in case n = 3.)

Example 1.14. Rational Normal Curves

These may be thought of as a generalization of twist?d cubics; the rational normal

curve C < P? s defined to be the image of the map |

Vi- [F"l —> [F"d \

given by \
|
Vi [Xo» X1 [X8, XE'X,, .., X111 =\[Zo, -, Za)
|
The image C = P? is readily seen to be the common zero locus of the poly-

nomials F; (Z)=2,Z,— Z,_,Z;,,for1 <i < j<d — 1. Note that ford > 3 it may
also be expressed as the common zeros of a subset of these: the polynomials F, ;,
1=1,...,d —1and F, ,_,, for example. (Note also that in\case d = 2 we get the
plane conic curve Z,Z, = Z%;in fact, it’s not hard to see that any plane conic curve
(zero locus of a quadratic polynomial on [P?) other than a union of lines is projec-
tively equivalent to this.) Also, as in the case of the twisted cubic, if we replace the
monomials X&, X5 'X,, ..., X{ with an arbitrary basis A,, ..., A, for the space of
homogeneous polynomials of degree d on P!, we get a map whose image is
projectively equivalent to v,(P'); we call any such curve a rational normal curve.

Note that any d + 1 points of a rational normal curve are linearly indepen-
dent. This i1s tantamount to the fact that the Van der Monde determinant vanishes
only if two of its rows coincide. We will see later that the rational normal curve 1s
the unique curve with this property. (The weaker fact that no three points of a
rational normal curve are collinear also follows from the fact that C 1s the zero locus
of quadratic polynomials.)
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Exercise 1.15. Show that if p,, ..., p,44+; are any points on a rational normal
curve in P4, then any polynomial F of degree k on P? vanishing on the points
p; vanishes on C. Use this to show that the general statement given in Exercise
1.5 1s sharp.

Example 1.16. Determinantal Representation of the Rational
Normal Curve

One convenient (and significant) way to express the equations defining a rational
normal curve 1s as the 2 x 2 minors of a matrix of homogeneous linear forms.
Specifically, for any integer k between 1 and d — 1, the rational normal curve may
be described as the locus of points [Z,, ..., Z,] € P such that the rank of the
matrix

-ﬁ

Zl Zz . . . . Zk+1
Z,
. . . . . . Zd,._.,l
_ Zd'_k v - L) . d‘_l Zd p

is 1. In general, a variety X < P" whose equations can be represented in this
. . . \ . .
way 1s called determinantal; we will see other exangéles of such varieties throughout

these lectures and will study them in their own right in Lecture 9.

We will see in Exercise 1.25 that in case k = l\or\d — 1 we can replace the
entries of this matrix with more general linear forms qunless these forms
satisfy a nontrivial condition of linear dependence the resulting variety will again
be a rational normal curve; but this is not the case for general k.

Example 1.17. Another Parametrization of the Rational Normal Curve

There 1s another way of representing a rational normal curve parametrically. It
is based on the observation that if G(X,, X,) 1s a homogeneous polynomial of
degree d + 1, with distinct roots (i.e., G(X,, X;) =] [ (1t: X0 — v; X;) with [, ;]
distinct in P!), then the polynomials H,;(X) = G(X)/(u; X, — v;X,) form a basis for
the space of homogeneous polynomials of degree d: if there were a linear relation
Y a;H(X,, X;) = 0, then plugging in (X,, X;) = (v;, ;) we could deduce that a; = 0.
Thus the map
Va: [ Xo, X1] = [Hi(Xo, X1), ..., Hyp1(Xo, Xy)]

has as its image a rational normal curve in P?. Dividing the homogeneous vector
on the right by the polynomial G, we may write this map as

I 1 1 ]

Va: [Xo, X1 ] 2 |
at L X0, Xy 1 Xo =i X g Xo — Ve X1
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Note that this rational normal curve passes through each of the coordinate points
of P4, sending the zeros of G to these points. In addition, if all y; and v; are nonzero
the points 0 and oo (that is, [1, 0] and [0, 1]) go to the points [u7!, ..., uzt,] and
[vil,..., v;i, ], which may be any points not on the coordinate hyperplanes. Con-
versely, any rational normal curve passing through all d + 1 coordinate points may
be written parametrically in this way. We may thus deduce the following theorem.

Theorem 1.18. Through any d + 3 points in general position in P? there passes
a unique rational normal curve.

We can use Theorem 1.18 to answer the question posed after Exercise 1.6,
namely, when two subsets of n + 3 points in general position in P" are projectively
equivalent. The answer is straightforward, but cute; through n + 3 points p,, ...,
p..3 € P" there passes a unique rational normal curve v,(P'), so that we can
associate to the points py, ..., p,.3 € P" the set of n + 3 points ¢; = v, *(p;) € P
We have then the following.

Exercise 1.19. Show that the points p; € P" are projectively equivalent as an ordered
set to another such collection {p;, ..., pr+3} P; if and only if the corresponding
ordered subsets ¢, ..., g,z and q1, ..., g,.3 € [Ij\l are projectively equivalent, that
is, if and only if the cross-ratios A{q1, 45, 43, 4;) = A(q1, 95, 95, qi)foreachi =4, ...,
n + 3. (You may use the characterization of the crﬁss-ratio given on page 7.)

\

Example 1.20. The Family of Plane Conics |

|
There is another way to see Theorem 1.18 in the spec%al case d = 2. In this case, we
observe that a rational normal curve C of degree 2 is\ specified by giving a homo-
geneous quadratic polynomial Q(Z,, Z,, Z,) (not a product of linear forms); Q 1s
determined up to multiplication by scalars by C. Thus the set of such curves may
be identified with a subset of the projective space PV = P° associated to the vector

space

V =1{aZ} + bZ{ + cZ; + dZ,Z, + eZ,Z, + fZ,Z,}

of quadratic polynomials. In general, we call an element of this projective space a
plane conic curve, or simply conic, and a rational normal curve—that is, a point of
PV corresponding to an irreducible quadratic polynomial—a smooth conic. We
then note that the subset of conics passing through a given point p = [Z£,, Z,, £, ]
is a hyperplane in P>, and since any five hyperplanes in P> must have a common
intersection (equivalently, five linear equations in six unknowns have a nonzero
solution), there exists a conic curve through any five given points p,, ..., ps. If the
points p; are in general position, moreover, this cannot be a union of two lines.

Exercise 1.21. Check that the hyperplanes in P° associated in this way to five
points p,, ..., ps with no four collinear are independent (i.e., meet in a single point),
establishing uniqueness. (In classical language, p,, ..., ps “impose independent
conditions on conics.”)
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The description of the set of conics as a projective space P~ is the first example
we will see of a parameter space, a notion ubiquitous in the subject; we will
introduce parameter spaces first in Lecture 4 and discuss them in more detail in
Lecture 21.

Example 1.22. A Synthetic Construction of the Rational Normal Curve

Finally, we should mention here a synthetic (and, on at least one occasion, useful)
construction of rational normal curves. We start with the case of a conic, where the
construction is quite simple. Let P and Q be two points in the plane P2 Then the
lines passing through each point are naturally parameterized by P! (e.g., if P is
given as the zeros on two linear forms L(Z) = M(Z) = 0, the lines through P are of
the form AL(Z) + uM(Z) = 0 with [4, u] € P!). Thus the lines through P may be
put in one-to-one correspondence with
the lines through Q. Choose any bijec-
tion obtained in this way, subject only
to the condition that the line PQ does
not correspond to itself, so that corre-
sponding lines will always intersect in
a point. (Note that this rules out the
simplest way of putting the lines through
P and Q in correspondence: choosing an
auxiliary line L and using it to parame-
terize the lines through both P and Q,
that is, for each R € L making the lines PR and QR correspond.) We claim then
that the loclis of points of intersection of corresponding lines is a conic curve, and
that conversely any conic may be obtained in this wa

You could say this i1s not really a synthetic construction, inasmuch as the
bijection between the families of lines through P and through Q was specified
analytically. In the classical construction, the two families of lines were each param-
etrized by an auxiliary line in P?, which were then put in one-to-one correspon-
dence by the family of lines through an auxiliary point. The construction was thus:
choose points P, Q, and R not collinear,
and distinct lines L and M not passing

through any of these points in P? and R

such that the point L n M does not lie

on the line pq. For every line N through / ) .
R, let Sy be the point of intersection of //‘

the line Ly joining P to N n L and the ///‘

line My joining Q to N n M. Then the N

locus of the points S, 1s a conic curve. //A ‘\ M
Exercise 1.23. Show that the locus

constructed 1n this way is indeed a P Q

smooth conic curve, and that it does
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pass through the points P, Q, and L n M, and through the points RQ N L and
RP n M. Using this, show one more time that through five points in the plane, no
three collinear, there passes a unique conic curve.

As indicated, we can generalize this to a construction of rational normal curves
in any projective space P¢. Specifically, start by choosing d codimension two linear
spaces A; =~ P?"2 = P% The family {H;(4)} of hyperplanes in P? containing A, is
then parameterized by 4 € P*; choose such parameterizations, subject to the condi-
tion that for each A the planes H,(4), ..., H,(4) are independent, 1.e., intersect in a
point p(A). It is then the case that the locus of these points p(1) as A varies in P is
a rational normal curve.

Exercise 1.24. Verify the last statement.

We can use this description to se¢ once again that there exists a unique rational
normal curve through d + 3.points in P no d + 1 of which are dependent. To do
this, choose the subspaces A, & P9"2 = H be the span of the points P, ..., P, ...,
P,. It 1s then the case that any choice of parametrizations of the families of hyper-
planes in P? containing A, such that the hyperplane H spanned by p,, ..., p,
never corresponds to itself satisfies the independence condition, 1.e., for each value
4 € P, the hyperplanes H.(A) intersect.in a point p(4). The rational normal curve
constructed in this way will necessarily contain the d points P;; and given three
additional points P, ,, P,,,, and P,,; we can choose our parameterizations of the
families of planes through the A, so that the planes containing P,.,, P,,,, and P, 5

correspond to the values A = 0, 1, and oo € P?, respectively.

Exercise 1.25. As we observed in Example 1.16, the rational normal curve X < P¢
may be realized as the locus of points [ Z,, ..., Z,] such that the matnx

ZO Zl ZZ ) : Zd-—}! Zd—l
zZ, Z, . . . .  Z

has rank 1. Interpret this as an example of the preceding construction: take A,
to be the plane (Z;_, = Z;, =0), and H;(1) the hyperplane (1,Z,_ + 4,Z; = 0).
Generalize this to show that if (L; ;) is any 2 x d matrix of linear forms on P such
that for any (4,, 4,) # (0, 0) the linear forms {4, L, ; + A,L, ;}, j=1, ..., d are
independent, then the locus of [Z] € P such that the matrix L; (Z) has rank 1 is a
rational normal curve.

Example 1.26. Other Rational Curves

The maps v, involve choosing a basis for the space of homogeneous polynomials of
degree d on P!. In fact, we can also choose any collection A4, ..., 4,, of linearly
independent polynomials (without common zeros) and try to describe the image of
the resulting map (if the polynomials we choose fail to be linearly independent, that
just means the image will lie in a proper linear subspace of the target space P™).
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For example, consider the case d = 3 and m = 2 and look at the maps
w,v: Pt 5 P2
given by
ui[Xe, X111 = [ X5, Xo X2, X3]
and
vi[ Xy, X111 [Xg, Xo X7 — X3, X3 — X2X,].

The images of these two maps are both
cubic hypersurfaces in P?% given by
the equations Z,Z% = Z? and Z,Z? =
Z} + ZyZ}, respectively; in Euclidean
coordinates, they are just the cuspidal
cubic curve y? = x> and the nodal cubic

yt = x> + x?. y2 = %3
Exercise 1.27. Show that the images of u
and v are in fact given by these cubic
polynomials.
; y2 = x3 + %2

Exercise 1.28. Show that the image of !
the map v: P! — P? given by any triple I,/
of homogeneous cubic polynomials A4;(X,, X i"') without common zeroes satisfies a
cubic polynomial. (In fact, any such image is /projectively equivalent to one of the
preceding two, a fact we will prove in Exercise/ 3.8 and again after Exercise 10.10.) (%)

For another example, in which we will/ see (though we may not be able to
prove that we have) a continuously varying family of non-projectively equiva-
lent curves, consider the case d = 4 and m =~ 3 and look at the map

Vo g P/ — p3
. /
given by
Va, 8- [ Xo, X1]
— [X5 — BXo X1, XX, — BX3XT, aXX? — Xo X3, aXo X3 — X1

The images C, , = P° of these maps are called rational quartic curves in P3. The
following exercise 1s probably hard to do purely naively, but will be easier after
reading the next lecture.

Exercise 1.29. Show that C, ; is indeed an algebraic variety, and that it may
be described as the zero locus of one quadratic and two cubic polynomials.

We will see in Exercise 2.19 that the curves C, ; give a continuously varying
family of non-projectively equivalent curves.
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Example 1.30. Varieties Defined Over Subfields of K
This is not really an example as much as it 1s a warning about terminology.

First of all, if L « K 1s a subfield, we will write A"(L) for the subset
L" ¢ K* = A%. Similarly, by P"(L) =« P we will mean the subset of points
[Z,, ..., Z,] with Z,/Z; € L whenever defined—that is, points that may be written
as [Z,, ..., Z,] with Z; € L. All of what follows applies to projective varieties, but
we will say it only in the context of affine ones.

We say that a subvariety X < A% is defined over L if 1t is the zero locus of
polynomals f,(z,,...,z,) € L[z,, ..., z,]. For such a variety X, the set of points of
X defined over L 1is just the intersection X n A"(L). We should not, however,
confuse the set of points of X defined over L with X itself; for example, the vanety
in AZ defined by the equation x> + y* 4+ 1 = 0 is defined over R and has no points
defined over R, but it is not the empty variety.

A Note on Dimension, Smoothness, and Degree

We have, as we noted in the Introduction, a dilemma. Already in the first lecture
we have encountered on a number of occasions refe/rences to three basic notions in
algebraic geometry: dimension, degree, and smgothness. We have referred to
various varieties as curves and surfaces; we have defined the degree of finite
collections of points and hypersurfaces (and, implicitly, of the twisted cubic curve);
and we have distinguished smooth conics from arbitrary ones. Clearly, these
three ideas are fundamental to the subject; they give structure and focus to our
analysis of varieties. Their formal definitions, however, have to be deferred until we
have introduced a certain amount of technical apparatus, definitions, and founda-
tional theorems. At the same time, I feel it is desirable to introduce as many
examples as possible before or at the san;’é time as the introduction of this appara-
tus.

The bottom line is that we have, to some degree, a vicious cycle: examples
(by choice) come before definitions and foundational theorems, which come (of
necessity) before the introduction and use of notions like dimension, smoothness,
and degree, which in turn play a large role in the analysis of examples.

What do we do about this? First, we do have naive ideas of what notions
like dimension and smoothness should represent, and I would ask the reader’s
forbearance if occasionally I refer to them. (It will not, I hope, upset the reader
if I refer to the zero locus of a single polynomial in P> as a “surface,” even
before the formal definition of dimension.) Secondly, when we introduce examples
in Part I, I would encourage the reader, whenever interested, to skip around and
look ahead to the analyses in Part 2 of their dimension, degree, smoothness, and/or

tangent spaces.
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LECTURE 2

Regular Functions and Maps

In the preceding lecture, we introduced the basic objects of the category we will be
studying; we will now introduce the maps. As might be expected, this is extremely
easy in the context of affine varieties and slightly trickier, at least at first, for
projective ones.

The Zariski Topology

We begin with a piece 0{ terminology that will be useful, if somewhat uncom-
fortable at first. The Zariski topology on a variety X is simply the topology whose
closed sets are the subyarieties of X, i.e, the common zero loci of polynomials
on X. Thus, for X & A" affine, a base of open sets is given by the sets
U ={pe X: f(p) # 0}, where f ranges over polynomials; these are called the
distinguished open subsets of X. Similarly, for X = P" projective, a basis is given by
the sets Up = {p e X: F(p) # 0} for F a homogeneous polynomial; again, these
open subsets are called distinguished.

This 1s the topology we will use on all the varieties with which we deal, so
that if we refer to an open subset of a variety X without further specification,
we will mean the complement of a subvariety. Implicit in our use of this topology
is a fundamentally important fact: inasmuch as virtually all the constructions of
algebraic geometry may be defined algebraically and make sense for varieties over
any field, the ordinary topology on P¢ (or, as it’s called, the classical or analytic
topology) is not logically relevant. At the same time, we have to emphasize that the
Zariski topology is primarily a formal construct; it is more a matter of terminology
than a reflection of the geometry of varieties. For example, all plane curves given
by irreducible polynomials over simply uncountable algebraically closed fields—
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whether affine or projective and whatever their degree or the field in question—are
homeomorphic; they are, as topological spaces, simply uncountable sets given the
topology in which subsets are closed if and only if they are finite. More generally,
note that the Zariski topology does not satisfy any of the usual separation axioms,
inasmuch as any two open subsets of P" will intersect. In sum, then, we will find it
convenient to express most of the following in the language of the Zariski topology,
but when we close our eyes and try to visualize an algebraic variety, it is probably
the classical topology we should picture.

Note that the Zariski topology is what is called a Noetherian topology; that
is, if Y, oY, > Y, >- 1s any chain of closed subsets of a variety X, then for
some m we have Y =Y, ., =---. This 1s equivalent to the statement that in
the polynomial ring K[ Z,, ..., Z,] any ideal is finitely generated, a special case of
the theorem that K[ Z,, ..., Z,] is a Noetherian ring (cf. [E], [AM]).

We should also mention at this point one further bit of terminology: an open
subset U = X of a projective variety X < P" is called a quasi-projective variety
(equivalently, a quasi-projective variety is a locally closed subset of P" in the Zariski
topology). The class of quasi-projective varieties includes both affine and projective
varieties and 1s much larger (we will see in Exercise 2.3 the simplest example of a
quasi-projective variety that is not isomorphic to either an affine or a projective
variety); but in practice most of the varieties with which we actually deal will be
either projective or affine.

By way of usage, when we speak of a variety X without further specifica-
tion, we will mean a quasi-projective variety. When we speak of a subvariety X of
a variety Y or of “a variety X < Y”, however, we will always mean a closed subset.

It should be mentioned here that there is some disagreement in the literature
over the definition of the terms “variety” and “subvariety”: in many source varieties
are required to be irreducible (see Lecture 5) and in others a subvariety X < Y is
defined to be any locally closed subset.

Regular Functions on an Affine Variety

Let X < A" be a variety. We define the ideal of X to be the ideal
I(X)={feK[z,...,2,]: f =0o0n X}

of functions vanishing on X; and we define the coordinate ring of X to be the
quotient

A(X) = K[z,, ..., 2,1/ I(X)

We now come to a key definition, that of a regular function on the variety
X. Ultimately, we would like a regular function on X to be simply the restriction
to X ofa polynomialinz,,..., z,, modulo those vanishing on X, that is, an element
of the coordinate ring A(X). We need, however, to give a local definition, so that
we can at the same time describe the ring of functions on an open subset U < X.
We therefore define the following.
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Definition. Let U < X be any open set and p € U any point. We say that a function
fon U is regular at p if in some neighborhood V of p it is expressible as a quotient
g/h, where g and h e K[z,, ..., z,] are polynomials and h(p) # 0. We say that f is

"3
reqular on U 1f it is regular at everv point of U.
o o J
That this definition behaves as we desire is the content of the following lemma.

Lemma 2.1. The ring of functions regular at every point of X is the coordinate
ring A(X). More generally, if U = U, is a distinguished open subset, then the ring of
requiar functions on U is the localization A(X)[1/f].

The proof of this lemma requires some additional machinery. In particular,
it 1s clear that 1n order to prove it we have to know that a polynomial h(z,, ..., z,)
that is nowhere zero on X is a unit in A(X), which is part of the Nullstellensatz
(Theorem 5.1); we will give its proof following the proof of the Nullstellensatz in
Lecture 5. Note that it is essential in this definition and lemma that our base field
K be algebraically closed; if it were not, we could have a function f = g/h where h
was nowhere zero on A"(K) but did have zeroes on A% (for example, the function

1/(x* + 1) on A*(R) and we would not want to call such a function regular.

We should also warn that the conclusion of Lemma 2.1—that any function f
regular on U is expressible as a quotient g/h with h nowhere zero on U —is false for
general open sets U < X.

Note that the distinguished open subsets U, are themselves naturally affine
varieties: if X < A" is the zero locus of polynomials f,(z,, ..., z,), then the locus
¥ < A""! given by the polynomials f,—viewed formally as polynomials in z, ...,
z ., —together with the polynomial

g(zlﬂ"‘ﬂzn+1)= 1 _Zn+1.f(zlﬂ"'azn)

is bijective to U,. (Note that the coordi-
nate ring of X is exactly the ring 5 / \

AX)Y1/f 1 of regular tunctions on U,

Thus, for example, if X = A and U, is / \

the open subset A — {1, — 1}, we may
eanliza T th huariaty 3 — M2 TN

fCaizé Uy as ull SUodvaricily 4 T ~
given by the equation w(z? — 1) — 1 = / \

0, as in the diagram.

Exercise 2.2. What is the ring of regular #
functions on the complement A* — Uy

{(0,0)} of the origin in A*?

We can recover an affine variety X
(though not any particular embedding X <» A") from its coordinate rning 4 = A(X):

just choose a collection of generators x,, ..., x, for 4 over K, write

A=K[xy,..., %,/ (f1(x), ..., fu(X)),
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and take X < A" as the zero locus of the polynomials f,. More intrinsically,
given the Nullstellensatz (Theorem 5.1), the points of X may be identified with
the set of maximal ideals 1n the ring A: for any p € X, the ideal m, = A4 of functions
vanishing at p is maximal. Conversely, we will see in the proof of Proposition 5.18
that given any maximal ideal m in the ring A = K{[x,, ..., x,]/(1 f,}), the quotient
A/m will be a field finitely generated over K and hence isomorphic to K. If we then
let a; be the image of x;, € A under the quotient map

p:A— A/m = K,

the point p = (a4, ..., a,) will lie on X, and m will be the i1deal of functions vanishing
at p.
We will see as a consequence of the Nullstellensatz (Theorem 5.1) that in fact any

finitely generated algebra over K will occur as the coordinate ring of an affine

l.l.j.ll.‘.r\pi"lJ bvllv T O S F A Yl A E AR W c -

variety iIf and only if it has no nilpotent elements.
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On¢ further o
X ata point p € X, denoted Oy ,. This is defined to be the ring of germs of functions
defined in some neighborhood of p and regular at p. This is the direct limit of the
rings A(U,) = A(X)[1/f] where f ranges over all regular functions on X nonzero
at p, or in other words the localization of the ring A(X) with respect to the maximal
ideal m,. Note that if ¥ < X 1s an open set containing p then Oy , = Oy .

Projective Varieties

There are analogous definitions for projective varieties X < P". Again, we define
the 1deal of X to be the 1deal of polynomials F € K[Z,, ..., Z,] vanishing on

X; note that this is a homogeneous ideal, ie., it is generated by homogeneous
nolynomials {equivalently, it is the direct sum of its homogeneous pieces). We

e R W W

likewise define the homogeneous coordinate ring S(X) of X to be the quotient ring
KiZ,, ..., Z,]/1(X); this i1s again a graded ring.

A regular function on a quasi-projective variety X < P"—or mor
an open subset U < X—is defined to be a function that 1s locally regular, i.e., if
{U;} is the standard open cover of P” by open sets U; 2 A", such that the restriction
of f to each U n U, is regular. (Note that this is independent of the choice of cover
by Lemma 2.1.) -

This may seem like a cumbersome definition, and it is. In fact, there 1s a simpler
way of expressing regular functions on an open subset of a projective variety: we
can sometimes write them as quotients F/G, where F and Ge K[Z,, ..., Z,] are
homogeneous polynomials of the same degree with G nowhere zero in U. In
particular, by an argument analogous to that for Lemma 2.1, if U = U; < X is the
complement of the zero locus of the homogeneous polynomial G, then the ring of
regular functions on Uy, is exactly the Oth graded piece of the localization S(X)[G™'].

Finally, we may define the local ring (0 , of a quasi-projective variety X < P”
at a point p € X just as we did in the affine case: as the ring of germs of functions

regular in some neighborhood of X. Equivalently, if X is any affine open subset of
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X containing p, we may take 0y , = O3 ,,1.e, the localization of the e
A(X) with respect to the i1deal of functions vanishing at p.

Regular Maps

Maps to afline varieties are simple to describe: a regular map from an arbitrary
variety X to affine space A" is a map given by an n-tuple’of regular functions on X;
and a map of X to an affine variety ¥ < A" is a map to A" with image contained
in Y. Equivalently, such maps correspond bijectively to ring homomorphisms from
the coordinate ring A(Y) to the ring of regular functions on X.

This gives us a notion of isomorphism of affine varieties: two affine
varieties X and Y are isomorphic if there exist regularmaps n: X > Yand ¢p: Y - X
inverse to one another in both directions, or equivalently if their coordinate rings
A(X) =~ A(Y) as algebras over the field K (in particular, the coordinate ring of an
affine variety 1s an invariant of isomorphism).

Maps to projective space are naturally more complicated. To start with, we say
that a map ¢: X — P" 1s regular if it is regular locally, 1.e., it is continuous and for
each of the standard affine open subsets U, >~ A" = P" the restriction of ¢ to
o '(U,) is regular. Actually specifying a map to projective space by giving its
restrictions to the inverse images of affine open subsets, however, is far too cumber-
some. A better way of describing a map to projective space would be to specify an
(n + 1)-tuple of regular functions, but this may not be possible if X is projective. If
X < P™1s projective, we may specify a map of X to P" by giving an (n + 1)-tuple of
homogeneous polynomials of the same degree; as long as they are not simultane-
ously zero anywhere on X, this will determine a regular map. It happens, though,
that this still does not suffice to describe all maps of projective varieties to projective
space.

As an example of this, consider the variety C < P? given by X? + Y% — Z2, and
the map ¢ of X to P! given by

[ X, Y, Z]—[X,Y — Z]

The map may be thought of as a
stereographic projection from the point
p=10,1,1]: 1t sends a point reC
(other than p itself) to the point of inter-
section of the axis (Y = 0) with the line
pr. The two polynomials X and ¥ — Z
have a common zero on C at the point
p = [0, 1, 1], reflecting the fact that this
assignment does not make sense at
r = p; but the map is still regular (or
rather extends to a regular map) at this
point; we define ¢@(p)=1[1,0] and
observe that in terms of coordinates

p=10,1,1] Y-Z=0

[0,-1,1] Y+7Z =0
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X containing p, we may take Oy , = Oy ,, 1.e., the localization of the coordinate ring
A(X) with respect to the ideal of functions vanishing at p.

Regular Maps

Maps to alline varieties are simple to describe: a regular map from an arbitrary
variety X to affine space A" 1s a map given by an n-tuple of regular functions on X;
and a map of X to an afline vaniety ¥ < A" 1s a map to A” with image contained
in Y. Equivalently, such maps correspond bijectively to ring homomorphisms from
the coordinate ring A(Y) to the ring of regular functions on X.

This gives us a notion of 1somorphism of affine varieties: two affine
varieties X and Y are isomorphic if there exist regular mapsn: X - Yand g: Y > X
inverse to one another in both directions, or equivalently if their coordinate rings
A(X) = A(Y) as algebras over the field K (in particular, the coordinate ring of an
affine variety is an invariant of isomorphism).

Maps to projective space are naturally more complicated. To start with, we say
that a map ¢: X — P" is regular if it 1s regular locally, 1.€., it is continuous and for
each of the standard affine open subsets U, =~ A" < P" the restriction of ¢ to
o '(U,) is regular. Actually specifying a map to projective space by giving its
restrictions to the inverse images of affine open subsets, however, is far too cumber-
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(n + 1)-tuple of regular functions, but this may not be possible if X is projective. If
X < P™1s projective, we may specify a map of X to P” by giving an (n + 1)-tuple of
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ously zero anywhere on X, this will determine a regular map. It happens, though,
that this still does not suffice to describe all maps of projective varieties to projective
space.

As an example of this, consider the variety C < P? given by X* + Y? — Z?%, and
the map ¢ of X to P! given by

[X, Y, Z]— [X,.Y - Z]
The map may be thought of as a

stereographic projection from the point L [0.4.1] )
p=1[0,1,1]: 1t sends a point reC p'kR(_Z'O
(other than p itself) to the point of inter- .

section of the axis (¥ = 0) with the line ¥ = (
pr. The two polynomials X and Y — Z

have a common zero on C at the point

p=[0, 1, 1], reflecting the fact that this ) Y
assignment does not make sense at
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rather extends to a regular map) at this - 17 o 0
point: we define ¢(p)=1[1,0] and 0,-1,1] T
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[S, T] on P! with affine opens U,: (S # 0) and U,: (T # 0) we have
(PHI(UU) — C T {[0: _15 1]}

and

(P_I(Ui) =C - {[Oa 1, 1]}

Now, on ¢ (U, ), the map ¢ is clearly regular; in terms of the coordinate s = S/T
on U,, the restriction of ¢ 1s given by

X

X!K 2
L Z]Hy_z

which is clearly a regular function on C — {[0, 1, 1]}. On the other hand, on
¢ '(U,), we can write the map, in terms of the Euclidean coordinate t = TS,
as

Y —-Z
[X, Y, Z] — :

This may not appear to be regular at p, but we can write
Y-Z Y*-2Z°
X X(Y + Z)
— X2
X(Y + 2)
=X
Y+ Z°

which is clearly regular on C — {[0, —1, 1]}. We note as well that the map ¢:
C — P! in fact cannot be given by a pair of homogeneous polynomials on P?
without common zeros on C.

This example 1s fairly representative: in practice, the most common way of
specifying in coordinates a map ¢: X — P” of a quasi-projective variety to projec-
tive space 1s by an (n + 1)-tuple of homogeneous polynomials of the same degree.
The drawback of this is that we have to allow the possibility that these homo-
geneous polynomials have common zeros on X; and having written down such an
(n + 1)-tuple, we can’t immediately tell whether we have in fact defined a regular

map.

Just as 1n the case of affine varieties, the definition of a regular map gives
rise to the notion of i1somorphism: two quasi-projective varieties X and Y are
isomorphic 1f there exist regular maps n: X - Y and ¢: Y - X inverse to one
another in both directions. In contrast to the affine case, however, this does not
mean that two projective varieties are isomorphic if and only if their homogeneous
coordinate rings are isomorphic. We have, in other words, two notions of congru-
ence of projective varieties: we say that two varieties X, X' < P" are projectively
equivalent if there is an automorphism 4 € PGL, ., K of P” carrying X into X',
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which 1s the same as saying that the homogeneous coordinate rings S(X), S(X') are
isomorphic as graded K-algebras; while we say that they are isomorphic under the
weaker condition that there is a biregular map between them. (We will see an
explicit example where the two notions do not agree in Exercise 2.10.)

Exercise 2.3. Using the result of Exercise 2.2, show that for n > 2 the comple-
ment of the origin in A" is not isomorphic to an affine variety.

Example 2.4. The Veronese Map

The construction of the rational normal curve can be further generalized: for any
n and d, we define the Veronese map of degree d

v, P — PN
by sending
[Xo,.... X, ] —[...X"...]

where X' ranges over all monomials of degree d in X,, ..., X,. As in the case
of the rational normal curves, we will call the Veronese map any map differing
from this by an automorphism of P¥. Geometrically, the Veronese map is character-
ized by the property that the hypersurfaces of degree d in P" are exactly the
hyperplane sections of the image v,(P") = P". It is not hard to see that the image
of the Veronese map is an algebraic variety, often called a Veronese variety.

Exercise 2.5. Show that the number of monomials of degree d in n + 1 variables is

d . , d
the binomial coefficient (n ji- ), so that the integer N 1s (n ; ) — 1.

For example, in the simplest case other than the case n = 1 of the rational
normal curve, the quadratic Veronese map

v,: P% - P

is given by .

v2: [X{)a Xl! XZ] - [Xga Xizn X%a XOXlﬁ XOXZ:! X1X2]'

The tmage of this map, often called simply the Veronese surface, is one variety
we will encounter often in the course of this book.

The Veronese variety v,(P") lies on a number of obvious quadric hypersurfaces:
for every quadruple of multi-indices I, J, K, and L such that the corresponding
monomials X' X7 = K¥X% we have a quadratic relation on the image. In fact, it is
not hard to check that the Veronese variety is exactly the zero locus of these
quadratic polynomials.



Example 2.6. Determinantal Representation of Veronese Varieties

The Veronese surface, that is, the image of the map v*: P? - P>, can also be
described as the locus of points [Z,, ..., Zs] € P> such that the matrix

~ ~\
Lo Z; Z,
Z3 Zl Zﬁ
Ly Zs Z;
has rank [. In general, if we let {Z; .}, ;.;-, be the coordinates on the target
i o ? JIUVSLIS TSR =
space of the quadratic Veronese map

Vo Pr _, ﬂjp(n+1)(n+2)f2—15

then we can represent the image of v, as the locus of the 2 x 2 minors of the
(n + 1) x (n + 1) symmetric matrix with (i, j)thentry Z;,_, ;,_, fori < j.

Example 2.7. Subvarieties of Veronese Varieties

The Veronese map may be applied not only to a projective space P", but to any
variety X < P" by restriction. Observe in particular that if we restrict v, to a linear
subspace A= Prc P" we get Jubt the Veronese map of ucglcc: d on P* For
example, the images under the map v,: P? - P° of lines in P? give a family of conic
plane curves on the Veronese surface S, with one such conic passing through any
two points of S.

More generally, we claim that the image of a variety Y < P” under the Veronese
map is a subvariety of P". To see this, note first that homogeneous polynomials of
degree k in the homogeneous coordinates Z on P" pull back to give (all) polyno-
mials of degree d- k in the variables X. Next, observe (as in the remark following
Exercise 1.3) that the zero locus of a polynomial F(X) of degree m is also the
common zero locus of the polynomials { X;F(X)} of degree m + 1. Thus a variety
Y < P” expressible as the common zero locus of polynomials of degree m and less
may also be realized as the common zero locus of polynomials of degree exactly
k - d for some k. It follows that its image v,(Y) = P under the Veronese map is the

intersection of the Veronese variety vd([l)")———which we have already seen 1s a vari-
Ptv_w1fh the common zero locus of nnlv 1als of deoree k.

F— e gt Mg g e T .---"--ur — :- -—

For example, if Y < P? is the curve given by the cubic polynomial
X2 + X3 + X3, then we can also write Y as the common locus of the quartics

X4 4+ Xo X3 + XoX3, XX, + X!+ X,X3, and X3X, + X;X, + X3.

The image v,(Y) < P> is thus the intersection of the Veronese surface with the
three quadric hypersurfaces

Z2 4 2,24+ 2,74, ZoZy+ Z2+ Z,Zs, and ZoZ, + Z,Zs + Z2.

In particular, it is the intersection of nine quadrics.
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Exercise 2.8. Let X < P" be a projective variety and Y = v,(X) = PV its image
under the Veronese map. Show that X and Y are isomorphic, i.e., show that the
inverse map 1s regular.

Exercise 2.9. Use the preceding analysis and exercise to deduce that any projective
variety 1s 1somorphic to an intersection of a Veronese variety with a linear space
(and hence in particular that any projective variety is isomorphic to an intersection
of quadrics).

Exercise 2.10. Let X <= P" be a projective variety and Y = v,(X) < P¥ its image
under the Veronese map. What is the relation between the homogeneous coordi-
nate rings of X and Y?

In case the field K has characteristic zero, Veronese map has a coordinate-free
description that is worth bearing in mind. Briefly, if we view P" = PV as the space
lines in a vector space V, then the Veronese map may be defined as the map

v: PV - P(Sym?V)
to the projectivization of the dth symmetric power of V, given by

v: [v] — [v*].

Equivalently, if we apply this to V'* rather than ¥V, the image of the Veronese
map may be viewed as the (projectivization of the) subset of the space Sym“V*
of all polynomials on V consisting of dth powers of lincar forms. Note that this is
false for fields K of arbitrary characteristic: for example, if char(K) = p, the locus
in P(SymPV') of pth powers of elements of V' is not a rational normal curve, but a
line. What 1s true in arbitrary characteristic is that the Veronese map v, may be
viewed as the map PV — P(Sym*V) sending a vector v to the linear functional on
Sym®V * given by evaluation of polynomials at p.

Example 2.11. The Segre Maps

Another fundamental family of maps are the Segre maps
o [FD" X ﬂjpm N ﬂjp(n+1)(m+1)—1

defined by sending a pair ([ X], [ Y]) to the point in P"* D"+ D=1 whose coordinates
are the pairwise products of the coordinates of [ X ] and [ Y], 1.e,,

o:([Xo,...,. Xp ), [ Yo, ..o, Y ]) = L., XY, ]
where the coordinates in the target space range over all pairwise products of

coordinates X; and Y.

It is not hard to see that the image of the Segre map is an algebraic variety,
called a Segre variety, and sometimes denoted X, ,,: if we label the coordinates
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on the target space as Z; ;, we see that it is the common zero locus of the quadratic
polynomials Z; ;-Z, ,— Z;,-Z, ;. (In particular, the Segre variety is another
example of a determinantal variety; it 1s the zero locus of the 2 x 2 minors of the
matrix (Z; ;).)

The first example of a Segre variety is the variety X, ; = o(P! x P') = P°,
that 1s, the image of the map

g. ([X ’ Xl]: [Y(}a Yl]) = [XOYO': XO Yla Xl YO! Xl Yl:l

This 1s the locus of the single quadratic
polynomial Z,Z, — Z,Z,, that is, it is
simply a quadric surface. Note that the
fibers of the two projection maps from
P* x P™to P"and P™ are carried, under
o, into linear subspaces of p*m+h—1.
in particular, the fibers of P! x P!
are carried into the families of lines
{2, =42y, 2y, =12,} and {Z, = AZ,,
Z, = AZ,}. Note also that the description of the polynomial Z,Z, — Z,Z, as the

determinant of the matrix
v (%0 Z
Z, Z,

displays the two families of lines nicely: one family consists of lines where the two
columns satisfy a given hinear relation, the other lines where the two rows satisfy a
given linear relation.

Another common example of a Segre variety is the image
22‘1 — O'(H:Dz X [Fbl) - PS,

called the Segre threefold. We will encounter it again several times (for example, it
is an example of a rational normal scroll, and as such is denoted X, ; ;). For now,
we mention the following facts.

Exercise 2.12. (i) Let L, M, and N < P be any three pairwise skew (i.e., disjoint)
lines. Show that the union of the lines in P> meeting all three lines is projectively
equivalent to the Segre variety £, ; = P° and that this union is the unique Segre
variety containing L, M, and N. (¥)

(i) More generally, suppose that L, M, and N are any three pairwise disjoint
(k — 1)-planes in P?*7!, Show that the union of all lines meeting L, M, and N is
projectively equivalent to the Segre variety £, , ; < P?*7! and that this union is
the unique Segre variety containing L, M, and N. Is there an analogous description
of Segre varieties %, , with a, b > 27

Exercise 2.13. Show that the twisted cubic curve C < P> may be realized as the
intersection of the Segre threefold with a three-plane P> < P>.
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Exercise 2.14. Show that any line | < £, ; < P> is contained in the image of
a fiber of P? x P! over P? or P! (). (The same is true for any linear space
contained in any Segre variety o(P" x P™), but we will defer the most general
statement until Theorem 9.22.)

Exercise 2.15. Show that the image of the diagonal A < P" x P" under the Segre
map is the Veronese variety v,(P"), lying in a subspace of P"**2"; deduce that in
general the diagonal Ay < X x X in the product of any variety with 1itself is a
subvariety of that product, and likewise for all diagonals in the n fold product X™.

Example 2.16. Subvarieties of Segre Varieties

Having given the product P" x P™ the structure of a projective variety, a natural
question to ask 1s how we may describe its subvarieties. A naive answer 1s immedi-
ate. To begin with, we say that a polynomial F(Z,,...,Z,, W,, ..., W_)1n two sets
of variables 1s bihomogeneous of bidegree (d, e) 1f it 1s simultaneously homogeneous
of degree d in the first set of variables and of degree e in the second, that 1s, of the
form
F(Z,W)= S a,,-Zis...Zin-Wio... Win.
17

si.=d,
Ejﬁ=E

Now, since polynomials of degree d on the target projective space P*De+1)—1

pull back to polynomials F(Z, W) that are bihomogeneous of bidegree (d, d), the
obvious answer is that subvarieties of P* x P™ are simply the common zero loci of
such polynomials (observe that the zero locus of any bihomogeneous polynomial
is a well-defined subset of P" x P™). At the same time, as in the discussion of
subvarieties of the Veronese variety, we can see that the zero locus of a bihomo-
geneous polynomial F(Z, W) of bidegree (d, ¢) 1s the common zero locus of the
bihomogeneous polynomials of degree (d’, e’) divisible by it, for any d’ > d and
¢' > e; so that more generally we can say that the subvarieties of a Segre variety
P* x P™ are the zero loci of bihomogeneous polynomaials of any bidegrees.

As an example, consider the twisted cubic C < P2 of Example 1.10 given as the
image of the map

t— [1,t,t% 2]

As we observed before, C lies on the quadric surface Z,Z; — Z,Z, = 0, which
we now recognize as the Segre surface S = o(P' x P') < P?. Now, restrict to
S the other two quadratic polynomials defining the twisted cubic. To begin with,
the polynomial Z,Z, — Z? on P2 pulls back to XX, Y — X¢ Y%, which factors
into a product of X, and F(X, Y) = X, Yy — X, Y. The zero locus of this polyno-
mial i1s thus the union of the twisted cubic with the line on S given by X, = 0 (or
equivalently by Z, = Z, = 0). On the other hand, the polynomial Z, Z, — Z7 pulls
back to X, X, Y — X?Y{, which factors as — X, - F; so its zero locus is the union
of the curve C and the line Z, = Z, = 0. In sum, then, the twisted cubic curve is the
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zero locus of a single bihomogeneous
polynomial F(X, Y) of bidegree (1, 2) on
the Segre surface S = o(P! x P!); the
quadratic polynomials defining C restrict
to § to give the bihomogeneous
polynomials of bidegree (2, 2) divisible
by F (equivalently, the quadric surfaces
containing C cut on S the untons of C
with the lines of one ruling of S).

Exercise 2.17. Conversely, let C = P! x P! be the zero locus of an irreducible
bithomogeneous polynomial F(X, Y) of bidegree (1, 2). Show that the image of C
under the Segre map

g P! x Pl 5 P

1s a twisted cubic curve.

Exercise 2.18. Now let C = C, ; — P° be a rational quartic curve, as introduced in
Example 1.26. Observe that C lies on the Segre surface S given by Z,Z, — Z, Z, =
0, that S is the unique quadric surface containing C, and that C is the zero locus of

a bithomogeneous polynomial of bidegree (1, 3) on S =~ P! x P!. Use this to do
Exerctse 1.29.

Exercise 2.19. Use the preceding exercise to show in particular that there is a
continuous family of curves C, ; not projectively equivalent to one another. ()

Exercise 2.20. a. Let X < P" and Y < P™ be projective varieties. Show that the
image a(X x Y) < a(P" x P™) < P"™*"*™ of the Segre map restricted to X x Y is
a projective variety. b. Now suppose only that X < P* and Y < P™ are quasi-

projective. Show that a(X x Y) is likewise quasi-projective, that is, locally closed
iIl [Fpnm+n+m.

Example 2.21. Products of Varieties

At the outset of Example 2.11, we referred to the product P" x P™; we can only
mean the product as a set. This space does not a priori have the structure of an
algebraic variety. The Segre embedding, however, gives it one, which we will adopt
as a definition of the product as a variety. In other words, when we talk about “the
variety P* x P™” we mean the image of the Segre map. Similarly, if X < P” and
Y < P™ are locally closed, according to Exercise 2.20, the image of the product
X x Y < P" x P™is a locally closed subset of P"™*"*™ which we will take as the
definition of “the product X x Y as a variety.

A key point to be made in connection with this definition is that this 1s actually
a categorical product, 1.c., the projection mapsny: X X Y-> X andny: X x Y- Y
are regular and the variety X x Y, together with these projection maps, satisfies the
conditions for a product in the category of quasi-projective varieties and regular
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maps. What this means 1s that given an
arbitrary variety Z and a pair of maps v

v/ —-X and p:Z - Y, there 1s a
unique map « x ff: Z - X x Y whose % 2
compositions with the projections 7y \
and n, are « and B, respectively. It is not XxY
hard to see that this is the case: to begin Ty
with, the map « x B 1s certainly Ty

X Y

uniquely determined by « and f; we

have to check simply that 1t is regular.

This we do locally: say r, € Z 1s any

point, mapping via « and f to points p € X and g € Y. Suppose p lies in the open
set Z, # 0 in P", so that in a neighborhood of r, the map « is given by

a.r — [13 fl(r)& ceey .ﬁ:(r)]&

with f,, ..., f, regular functions of » on Z, and say g is given similarly by f(r} =
[1,g9,(), ..., 9, ] Then in a neighborhood of r, the map &« x f: Z > X x Y <

prm+ntm s given by

ax fire—=[1,..., fi@),...,9;), ..., fi(r)g;(r), ... ]

and so is regular.

Exercise 2.22. Show that the Zariski topology on the product variety X x Y is not
the product of the Zariski topologies on X and Y.

Example 2.23. Graphs
This is in some sense a subexample of Example 2.16, but it is important enough to

warrant its own heading. The basic observation is contained in the following
EXEICISE.

Exercise 2.24. Let X < P" be any projective variety and ¢: X - P™ any regular
map. Show that the graph I', « X x P™ < P" x P™is a subvariety.

Note that it is not the case that a map

¢: X — P™ is regular if and only if the Ef,\/
graph I’ is a subvariety. For example,

consider the map u: P' - P* of Exam- “l T
ple 1.26 and denote by X < P* its P

image, the cuspidal curve Z,Z; = Z;.
[nasmuch as the map u is one to one, we
can define a set-theoretic inverse map

0 X - P!

as may be readily checked, this map 1s
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not regular, although its graph, being the same subset of X x P* as the graph of g,
is a subvariety of X x P!,

Example 2.25. Fiber Products

The notion of categorical product has a
direct generalization: in any category, W .
given objects X, Y, and B and morp- \ P \
hisms ¢@: X —» B and n: Y — B, the fiber B
product of X and Y over B, denoted Z - > Y
X xg Y, 1s defined to be the object Z 4
with morphisms«: Z - Xand f: Z > Y

such that for any object W and maps K
Z:W-oXand f: W - Ywithgpoo =

no f, there is a unique map y: W - Z

with &' = ¢ oy and ' = f o y. This property uniquely determines Z, if it exists. In
the category of sets, fiber products exist; very simply, the fiber product is

X xg ¥ ={(x,y)€ X x Y: 9(x) = n(y)}.

What we may observe here 1s that the set-theoretic fiber product of two varieties
may be given the structure of a variety in a reasonably natural way. To do this, let
I'c X x Bbethegraphof o and ¥ « Y x B the graph of #. By Exercise 2.24, both
I' x Yand ¥ x X are subvarieties of the triple product X x Y x B, and hence so
is their intersection, which is set-theoretically the fiber product. We will in the
future refer to X x5z Y as the fiber product of X and Y over B.

Exercise 2.26. Show that the variety X x; Y is indeed the fiber product of X
and Y over B in the category of algebraic varieties.

Example 2.27. Combinations of Veronese and Segre Maps

We can combine the constructions of the Veronese and Segre maps to arrive at
more varieties. To take the simplest case of this, let v: P! — P* be the quadratic
Veronese map, o: P! x P? - P° the Segre map, and consider the composition

o: Pl x P12, pt x p2 7, PS5,

The image of this map is again an algebraic variety (in particular, it 1s another
example of a rational normal scroll and 1s denoted X, ;).

Exercise 2.28. Find the equations of the variety X, ,. Show that the rational
normal curve in P* may be realized as a hyperplane section of X, ,.

Exercise 2.29. Realize P' x P! as the quadric surface in P> given by the polynomial
ZoZ,— 7Z,7Z,, and let L < Q be the line Z, = Z, = 0. Show that the vector space
of homogeneous quadratic polynomials in the Z; vanishing on L has dimension 7,
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and show that the composite map ¢ may be given as
¢0:[Zo, Z1, 2y, 23] — [Fo(2), ..., Fs(Z)],

where {Q, Fo(Z), ..., F5(Z)} is a basis for this vector space. Show that this map
cannot be represented by a sixtuple of homogeneous polynomials of the same
degree in P3 with no common zero locus on Q.

As with the Veronese map, there 1s a coordinate-free version of the Segre map:
if we view the spaces P" and P™ as the projective spaces associated to vector spaces
V and W, respectively, then the target space P"*V™"+*D~1 may be naturally identified
with the space P(V ® W), and the map

o: PV x PW - P(V&Q W)

given as

o ([v], [w]) — [0 ® w]
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P*™° < P* and a point p € P" not iying
on P"'; if we like, we can take //N}
coordinates Z on P" so that P!

is given by Z,=0 and the point
p=10,...,0,1]. Let X <« P"! be any
variety. We then define the cone X, p

over X with vertex p to be the union
o B X
X,p=\ ¢

= \ -

of the lines joining p to points of X. (If p
lies on the hyperplane at infinity,
X, p will look like a cylinder rather than a cone; in projective space these are the
same thing.) X, p is easily seen to be a variety: if we choose coordinates as earlier
and X < P"! is the locus of polynomials F, = F,(Z,, ..., Z,_,), the cone X, p will
be the locus of the same polynomials F, viewed as polynomials in Z,, ..., Z,.
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As a slight generalization o \
¥ =~ P" %! be complementary linear subspaces (i.e., disjoint and spanning all of
P"), and let X < ¥ be any variety. We can then define the cone X, A over X with
vertex A to be the union of the (k + I)-planes g, A spanned by A together with
points g € X. Of course, this construction represents merely an iteration of the
preceding one; we can also construct the cone X, A by taking the cone over X with

vertex a point k + 1 times.
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Exercise 3.2. Let ¥ and A < P" be complementary linear subspaces as earlier,
and X =¥ and Y c A subvarieties. Show that the union of all lines joining
points of X to points of Y is a variety.

In Lecture 8, we will see an analogous way of constructing a variety X, Y
for any pair of varieties X, Y < P",

Example 3.3. Quadrics

We can use the concept of cone to give a uniform description of quadric hyper-
surfaces, at least in case the characteristic of the field K is not 2. To begin with, a
quadric hypersurface Q < PV = P" is given as the zero locus of a homogeneous
quadratic polynomial Q: V — K. Now assume that char(K) # 2. The polynomial Q
may be thought of as the quadratic form associated to a bilinear form Q, on V, that
1S, We may write

Q(v) = Qo(v, v),
where Qqy: V x V — K is defined by

Qv + w) — Q(v) — Q(w)
, .

Qo(v, w) =

Note that @, is both symmetric and bilinear. There is also associated to Q,
the corresponding linear map

e

Q: V- V*
given by sending v to the linear form Q(v, -), i.e., by setting

Q(v)(w) = O(W)(v) = Qo (v, W).

Now, to classify quadrics, note that any quadric Q on a vector space V may
be written, in terms of a suitably chosen basis, as

OX)= X+ X+ + X2

To see this, we choose the basis e, ..., e, for V as follows. First, we choose e, such
that Q(ey) = 1; then we choose e, € (Key)" (i.e., such that Q,(e,, e;) = 0) such
that Q(e;) = 1, and so on, until Q vanishes identically on (Ke, + --- + Ke)'.
Finally, we may complete this to a basis with an arbitrary basis ¢,,,, ..., e, for
(Keg + - + Ke,)". We say in this case that the quadric Q has rank k + 1; note that
k + 1is also the rank of the linear map Q. By this, a quadric is determined up to
projective motion by its rank.

Note that as in Example 1.20, we are led to define a quadric hypersurface
in general to be an equivalence class of nonzero homogeneous quadratic polyno-
mials; two such polynomials are equivalent if they differ by multiplication by a
scalar. The one additional object that this introduces into the class of quadrics is
the double plane, that is, the quadric associated to the square Q = L? of a linear
polynomial L.
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If P! there are two types of quadrics:

® . 2 ®

two points (rank 2) on¢ double point (rank 1)

In P, there are three:

(O > ——

smooth conic pair of lines double line
(rank 3) (rank 2) (rank 1)

In P3 there are four:

smooth quadric quadric cone pair of planes double plane
(rank 4) (rank 3) (rank 2) (rank 1)

In general, we will call a quadric Q = P” smooth if it has maximal rank n + 1,
L.e., If the associated bilinear form Q, is nondegenerate (the reason for the term, if
it 1s not already clear, will become so in Lecture 14). We have then the following
geometric characterization: a quadric Q of rank k > 2 is the cone, with vertex
A = P"¥ over a smooth quadric in 0 in P*". To be specific, we can say that the
vertex A is the subspace associated to the kernel of the map Q.

Example 3.4. Projections

We come now to a crucial example. Let the hyperplane P"~! = P" and the point
p e P*" — P""! be as in Example 3.1. We can then define a map
my: P" — {p} > P!
by
m,:q—>gp P

that 1s, sending a point g € P" other than p to the point of intersection of the line
pq with the hyperplane P"™'. 7, is called projection from the point p to the
hyperplane P"~!. In terms of coordinates Z used earlier, this is simple: we just
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sct

2oy ... Zy 112y, ..., Z,1 ]

Suppose now that X 1s any projective
variety in P" not containing the point
p. We may then restrict the map =, to
the vartety X to get a regular map
n,: X —> P""!; the image X = n,(X) of
this map 1s called the projection of X
from p to P"'. We then have the
following basic theorem.

Theorem 3.5. The projection X of X
from p to P"~1 is a projective variety.

ProOF. The essential ingredient in this
proof 1s elimination theory, which
centers around the notion of the

35

>

resultant of two polynomials in a variable z. We will take a moment out here to

recall/describe this.

To begin with, suppose that f(z) and g(z) are two polynomials in a variable
z with coefficients in a field K, of degrees m and n, respectively, and we ask whether
they have a common factor. The answer 1s not hard: we observe simply that f and
g will have a common factor if and only if there is a polynomial h of degree
m + n — 1 divisible by both, 1.e., if and only if the spaces of polynomials of degree
m + n — 1 divisible by f and g individually meet nontrivially. This is equivalent to
saying that the polynomials f, z-f, z*-f, ..., z" Y- f,g,z°g, ..., z"1-g fail to be
independent, or in other words that the determinant

a a, . . a,
0 a, a,

0 O a,
b() bl

0 by, by

0 . . 0 b

0 O

a, 0

dq

b, 0
b, O

by

of the (m + n) x (m + n) matrix of coefficients of these polynomials 1s zero. This
determinant is called the resultant R(f, g) of f and g with respect to z, and we may
express our analysis as the following lemma.
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Lemma 3.6. Two polynomials f and g in one variable over a field K will have
a common factor if and only if the resultant R(f, g) = 0.

Note that if f and g are polynomials of degree strictly less than m and n,
respectively—in other words, a,, = b, = 0—then the determinant will also vanish.
This corresponds to the fact that R really tests whether or not the homogenizations
of f and g to homogeneous polynomials of degree m and n have a common zero in
Pt

Generalizing slightly, suppose that f and g are polynomials in the variable
z not over a field but over the ring K{x,, ..., x,]. We can still form the matrix
of coefficients with entries a; and b; that are polynomials in x,, ..., x,; the deter-
minant will be likewise a polynomial R(f, g)€ K[x, ..., x,], again called the
resultant of f and g. It will have the property that for any n-tuple of elements y,, ...,
y, € K, R(y) =0 f and only if either f(y, z) and g(y, z) have a common root as
polynomials in z or the leading coefficient of both vanishes.

Returning to the projection X of X from p, suppose the projection map =,
is given as earhier by

n,: [ Zg,.... Z, ] > [Zy, ..., Z,_,].

The key point is that for any point g =[Z,,...,Z,_,] € P"}, the line | = pg
will meet X if and only if every pair of polynomials F, G € I(X) has a common
zero on | = {[aZ,,...,aZ,_,, B]}. To see this, observe that if I does not meet
X, we can first find a polynomial F vanishing at finitely many points of I, and
since not all G € I(X) vanish at any one of those points, we can find such a G
nonzero at all of them. (Note that this statement would not be true if instead
of taking all pairs F, G € I(X) we took only pairs of a set of generators.)

Now, for any pair F, G of homogeneous polynomials in Z,, ..., Z,, we may
think of F and G as polynomials in Z, with coefficients in K[Z,, ..., Z,_, ] and form
the resultant with respect to Z, accordingly (note that the degree of F and G in Z,
will be less than their homogeneous degree if they vanish at p). We denote this
resultant by R(F, G), noting that it is again homogeneousin Z,, ..., Z_ _,. We have
then for any point q = [Z,, ..., Z,_,;] € P"! the sequence of implications

the line [ = pg meets X
<> every pair F, G of homogeneous polynomials in I(X) has a common zero on !
<> the resultant R(F, G) vanishes at g for all homogeneous pairs F, G € I(X).

In other words, the image X of the projection 7: X —» P" ! is the common
zero locus of the polynomials R(F, G), where F and G range over all pairs of
homogeneous elements of I(X).

Exercise 3.7. Justify the first of the preceding implications, that is, show that
if [ 1s any line 1n P" not meeting X we can find a pair of homogeneous polynomials
F, G € I(X) with no common zeros on [.

Exercise 3.8. Find the equations of the projection of the twisted cubic curve from
the point [ 1, 0, 0, 1] and from [0, 1, O, 0]. (Note that taking resultants may not be
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the most efficient way of doing this.) If you’re feeling energetic, show that any
projection of a twisted cubic from a point is projectively equivalent to one of these
two.

The notion of projection may be generalized somewhat: if A = P* is any sub-
space and P""*7! a complementary one, we can define a map

ma: PP — A - P

by sending a point g e P" — A to the intersection of P**™! with the (k 4+ 1)-
plane g, A. Again, for any X < P* disjoint from A we may restrict to obtain a
regular map n, on X, whose image is called the projection of X from A to P" %71,
Inasmuch as this map may also be realized as the composition of a sequence of
projections from points p,, ..., p, spanning A, Theorem 3.5 also implies that the
projection m(X) < P* %! is a variety.

Projection maps are readily expressed in intrinsic terms: if P” is the projective
space PV associated to an (n + 1)-dimensional vector space V, A = PW corre-
sponds to the (k + 1)-plane W = Vand P"*7! = PU for some (n — k)-plane U = V
complementary to W, then m, is just the map associated to the projection
V=W® U - U.Inparticular, note that if U’ is another (n — k)-plane complemen-

i-aru fn |V, 74 1']'1:1 ﬂi‘n1ﬁr‘fiﬁﬂ£‘.‘ tn I-DIT f]ﬂ{'l fn HZDI}” un" I‘]*I'[‘Tﬂf I'nr comn ncitinn unth a
Qi y Y, uiv pPLrUjbLvuvILe U 1L UITE Uy LUs 111_)U01L1U1.l Witil an

isomorphism PU =~ PU’; thus the projection 7,(X) of X from A to P*"*71 will
depend, up to projective equivalence, only on A and not on the subspace P* *1,

Exercise 3.9. Show that the curves C, ; of Exercise 1.29 may be realized as projec-
tions of a rational normal curve in P* from points p, , € P* and use these to
illustrate the p01.nt t}lat pl’O_]ﬁF:thI‘lS n,(X), m,(X)ofavariety X from different points
need not be projectively equivalent.

In fact, any regular map ¢: P" > P™ from one projective space to another
may be realized, for some d, as the composition of the Veronese map v,: P" - PV
with a projeciion m,: PY —» P™ from a center A disjoint from the Veronese variety
v,(P"} = PY and possibly an inclusion P™ < P™, though it would be difficult to
prove that at this point.

Example 3.10. More Cones

We can also use projections to broaden our definition of cones, as follows. Suppose
that X < P" 1s any variety and p € P" any point not lying on X. Then the union

X.p={J qp,
geX
which we will again call the cone over X with vertex p, 1s a variety; it 1s the
cone, in the sense of Example 3.1, with vertex p over the projection X = 7, (X)
of X from the point p to any hyperplane P! not containing p. Similarly, for
any k-plane A < P” disjoint from X we can form the union of the (k + 1)-planes
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A, g spanned by A and points g € X; this will be a variety called the cone over X
with vertex A.

Example 3.11. More Projections

Consider for a moment a subvariety X < Y x P! where Y is an affine variety. Such
a variety may be given as the zero locus of polynomials F(W,, W;) homogeneous
in the coordinates W,, W, on P!, whose coefficients are regular functions on Y. The
technique of elimination theory then tells us that the image X of X under the
projection map m,: Y x P! - Y is the zero locus of the resultants of all pairs of such
polynomials; in particular, it is a closed subset of Y.

Next, suppose we have a subvariety X of Y x P? and would like to make the
same statement. We can do this by choosing a point p € P* and first mapping
Y x (P* — {p}) to Y x P!, then projecting from Y x P! - Y. This works
except where X meets the locus Y x {p}, i.e,, if we let V < Y be the closed subset
{ge Y:(q, p) ¢ X} its shows that the image X = 7,(X) < Y intersects the open set
U=Y — Vin a closed subset of U. But since X contains V, it follows that X is
closed in Y. In general, this argument establishes the following theorem.

Theorem 3.12. Let Y be any variety and m: Y x P" = Y be the projection on the
first factor. Then the image n(X) of any closed subset X < Y x P" is a closed
subset of Y.

As an immediate consequence of this, we may combine it with Exercise 2.24 to
deduce the following fundamental theorem.

Theorem 3.13. If X = P" is any projective variety and ¢: X — P™ any regular map,
then the image of ¢ is a projective subvariety of P™.

A regular function on a variety X may be thought of as a map
X - A' = P'. Applying Theorem 3.13 to this map, we may deduce the following
coroliary.

Corollary 3.14. If X < P" is any connected variety and | any regular function
on X, then f is constant.

“Connected” here means not the disjoint union of two proper closed subsets.
This in turn yields the following corollary.

Corollary 3.15. If X < P" is any connected variety other than a point and Y < P" is
any hypersurface then X n'Y # (.

PrOOE. Let F(X) be the homogeneous polynomial defining the hypersurface Y; say
the degree of F1sd. If X nY = ¢, we can apply Corollary 3.14 to the regular
functions G/F, where G ranges over homogeneous polynomials of degree d on P”,
to deduce that X is a point.

- b wd | I e
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Constructible Sets

Naturally enough, Theorem 3.13 raises
the question of what the image of an
affine or quasi-projective variety X may
be under a regular map f: X —» P". The
first thing to notice 1s that it does not
have to be a quasi-projective variety.
The primary example of this is the map

f: A* > A? given by

f(x, ) = (x, xy).

Wenote that under this map, horizontal
lines are mapped into lines through
the origin, with every line through the
origin covered except for the vertical;
vertical lines are mapped into them-
selves, except for the y-axis, which is
collapsed to the point (0, 0). The image
15 thus the union of the open subset
{(z, w): z # 0} with the origin, a set that
is not locally closed at the origin.

Happily, this is about as bad as the
situation gets; the images of quasi-
projective varieties in general form a
class of subsets of P" called con-
structible sets, which look pretty much
like what you’d expect on the basis of this example. A constructible set Z — P”
may be defined to be a finite disjoint union of locally closed subsets U; = P",
that is, a set expressible as

L=X —(X, — (X3 — — X,))...)

for X; o X, © X3 o - 2 X, a nested sequence of closed subsets of P” (to see the
correspondence between the definitions, take U; = X, — X,, U, = X; — X, and
so on). Equivalently, we may define the class of constructible subsets of P" to be the
smallest class including open subsets and closed under the operations of finite
intersection and complementation.

The basic fact is that images of quasi-projective varieties under regular maps in
general are constructible sets. In fact, it is not harder to prove that images of
constructible sets are constructible.

Theorem 3.16. Let X < P™ be a quasi-projective variety, {: X — P" a reqular map,
and U = X any constructible set. Then f(U) is a constructible subset of P".

PrROOF. The key step in the proof is to establish an a priori weaker claim: that
the image f(U) contains a nonempty open subset V < f(U) of the closure of f(U).
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Given this, we set U, = U (X — f~'(V)) and observe that the theorem for U
follows from the theorem for U,. We then apply the claim to U, and define a closed
subset U, & U, and so on; since the Zariski topology is Noetherian (see page 18),
a chain of strictly decreasing closed subsets of a constructible set 1s finite, and the
result eventually follows.

It remains to establish the claim. To begin with, we may replace U by an
open subset, and so may assume that it is affine; restricting to a smaller affine
open, we may assume the target space is also affine space. After replacing U by the
graph of f we may realize the map f as the restriction to a closed subset U < A" of
a linear projection A" — A™, so that it is enough to prove the claim for a locally
closed subset U < A" under the projection

. A" > A*!

iz, zZy) (20,00, Zy—1)

Finally, we can replace A" ! by the Zariski closure Y = n(U) of the image of U
and A" by the inverse image n71(Y) = Y x A'. It will thus suffice to establish the
ciaim for a iocaily ciosed subset U of a product ¥ x A’ (or, equivalentiy, a locaily
closed subset U = Y x P!') and the projection map n: Y x P' - Y on the first
factor, with the further assumption that 7(U) is dense in Y. In sum, we have reduced
the proof of the Theorem to the following Lemma.

Lemma 3.17. Let 1: Y x P! = Y be projection on the first factor and let U < Y x P!

be any locally closed subset such that n(U) is dense in Y. Then n(U) contains an open
subset of Y.

PrOOF. Let X be the closure of U in Y x P! and write
U=XnV

for some open V = Y x P!; let T be the complement of ¥V in Y x P*'. Note that if
X =Y x P! we are done, since the locus of points p € Y such that T contains the
fila e fn] ./ ﬁ'Dl 10 rroavaans crthararatir Af Ve xx1a acorisern nnnmrdimcaly that V O UV O ﬂ'Dl
1wl 'l[}j U 1 A PlU})Dl DUUV’GIJIULJ vl 1, WL doosulllv CI.DDUI.LIIIJ.EI.Y L1lal A ;t I A U .
By Theorem 3.12, m(X) is closed, and so by our hypothesis n(X) = Y; thus we just
have to show that the closed subvariety n(X n T') does not equal Y.

Now, aiter restricting to an open subset of Y, the ideais of X and T wiil be
generated by polynomtals F of the form

F(Z, W)= a,Z"+ a,Z"" "W + - + a,W"

What’s more, not every pair of such polynomials F € I(X) and G € I(T) can have a
common factor: if for example every G € I(T) had a factor H in common with a
given F € I(X), it would follow that H was nowhere zero on U and hence that
F/H e I(X)as well. But if F € I(X)and G € I(T) have no common factor, the image
(X n T) will be contained in the proper subvariety of Y defined by their resultant
R(F, G).
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' Example 4.1. Families of Varieties

Next, we will give a definition without much apparent content, but one that is
i fundamental in much of algebraic geometry. Basically, the situation is that, given a
f collection {V,} of projective varieties V, = P” indexed by the points b of a variety
| B, we want to say what it means for the collection {V}} to “vary algebraically with
parameters.” The answer 1s simple: for any variety B, we define a family of projective
varieties In P" with base B to be simply a closed subvariety ¥~ of the product
B x P". The fibers V, = (n;)"'(b) of ¥ over points of b are then referred to as the
- members, or elements of the family; the variety ¥~ is called the total space, and the
- family is said to be parametrized by B. The idea is that if B = P™ is projective, the
family ¥~ < P™ x P" will be described by a collection of polynomials F (Z, W)
bihomogeneous in the coordinates Z on P and W on P”, which we may then think
of as a collection of polynomials in W whose coefficients are polynomials on B;
similarly, if B 1s affine we may describe ¥~ by a collection of polynomials F,(z, W),
which we may think of as homogeneous polynomials in the variables W whose
coefficients are regular functions on B.

There are many further conditions we can impose on families to insure that
they do indeed vary continuously in various senses; we will discuss some of these
further in Lecture 21.

A ey o T FRTRETT g Sy v

F We should remark here that as a general rule a geometric condition on the
. members of a family of varieties V; « P" will determine a constructible, and often
. an open or a closed subset of the parameter space B; for example, we use Theorem
3.13 to show that for any point p € P" the set of b € B such that pe V, will be a
closed subvariety of B. More generally, we have the following.

Exercise 4.2. Let X «— P" be any projective variety and {V},} any family of projective
varicties in P" with base B. Show that the set

p—— —rerm = —— e s T RTETET N T Lol ] l' mer e
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{beB: X NV, # &}

is closed in B. More generally, if {W,} is another family of projective varieties
in P* with base B, show that the set

b: VN W, # &}

is a closed subvariety of B.

Exercise 4.3. More generally still, if { W.} is another family of projective varieties in
P* with base C, show that the set

b, 0): Vo n W, # &}

1s a closed subvariety of the product B x C. Show that this implies the preceding
€XEICISE.

In a similar vein, for any X < P”" and family {V}} we can consider the subset
{be B:V, « X}.

This is always constructible, though we cannot prove that here. It is not, however,
in general closed; for example, take ¥~ < A? x P! given in terms of Euclidean
coordinates z on A? and homogeneous coordinates W on P! by z, W, = z, W, and
X < P! any point. By contrast, we have the following.

Exercise 4.4. For any X < P”* and any family {V}}, show that the subset
ibheB: X c V,}

is closed in B.
Example 4.5. The Universal Hyperplane

If we think of the projective space P"* as the set of hyperplanes H — P" we may
define a subset of the product P™* x P” simply as

I'={(H, p):peH}

This is a subvariety of P** x P": in terms of coordinates Z on P" and W on
P"* corresponding to dual bases for K""! and K"*'*, it is given by the single
bilinear polynomial

Z"Vi'zizo-

In particular, it may be realized as a hyperplane section of the Segre variety
[Fpn* x P" ﬂ:pn2+2n‘

I' is the simplest example of a family; inasmuch as the fibers of ' over the
first factor B = P™* are all the hyperplanes in P", we think of I" as the family
of all hyperplanes in P", parameterized by P"*. (Needless to say, the situation
1s symmetric; via projection on the second factor, we may view I' as the family
of all hyperplanes in P"*, parameterized by P".)

» - eTeTmes e e + amw e —
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The reason for the adjective “universal” is the following property of I': if
v < B x P" is any family of hyperplanes satisfying a technical condition called
flatness (see page 267) then there is a (unique) regular map B — P™* such that 7" is
the fiber product B X p.+«I'—in other words,

vV — T

B — P"~

the map ¢: B —» P"™* sending a point b € B to the hyperplane V, € P™* is regular. It
is unfortunate that we have to throw in the presently undefined condition “flat”
here (it will be defined in Lecture 21), but the statement is false without 1t, as the
example following Exercise 2.24 shows. This is one of the many places where the
language of schemes would be useful.

Example 4.6. The Universal Hyperplane Section

We can use the preceding construction to see that the set of hyperplane sections of
a given variety X < P”" forms a family. Simply, with I’ <« P"™* x P" as in Example
4.5, set

Q, ={(H,p):pe HNn X}
— (RZ)_l(X)a

where m,: " — P" 1s projection on the second factor. From the second descrip-
tion, we see that Q, is a subvariety of P** x X, which we may view as the family
of hyperplane sections of X.

One question we may ask about any family of varieties ¥~ < B x P" 1s whether
it admits a section, that is, a map o: B — ¥ such that n, o o is the identity on B.
Similarly, we define a rational section to be a section o defined on some nonempty
open subset U < B (the reason for the term “rational” will be made clearer in
Lecture 7). The problem of determining whether a given family admits a section can
be subtle; for example, even in the relatively simple case of the universal hyperplane
section of a variety X < P”", it is not known in general under what conditions €
admits a rational section (even in case X 1s a surface). The following exercise
will be simple enough to do after we have introduced some further machinery
(specifically, it will be an immediate consequence of Theorem 11.14), but it may be
instructive to try it now.

Exercise 4.7. Show that the universal hyperplane section Q4 of X does not admit a
rational section in case (i) X < P? is a smooth plane conic and (i) X < P is a

twisted cubic.
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Example 4.8. Parameter Spaces of Hypersurfaces

The parametrization of the family of hyperplanes in P” by P™* is the first example
of a general construction, which we will now discuss. We start with a family already
discussed in Example 1.20: the set T of all conic curves C < P2, A conic C < P?
may be given, in homogeneous coordinates X; on P, as the locus of a polynomial

F(.X)= a'Xg + b'Xf +CX§ + d'X{)Xl + e'Xon +f'X1X2

with not all the coefficients zero. The conic C is determined by the 6-tuple (a, b, c,
d, e, f) up to scalars, that is, (Aa, Ab, Ac, Ad, le, Jf)and (a, b, c, d, e, ) determine the
same conic for any A € K*. Thus, we see that the set £ may be identified with a
projective space P°. (Without coordinates, if P*> = PV, then the homogeneous
polynomials of degree 2 on V form the vector space W = Sym?(V*), and we have
an identification ¥ = PW obtained by sending the zero locus of F to the point
[Fle PW)

Of course, in order for this to be completely accurate, we have to more or less
define a plane conic to correspond to such a polynomial; thus, for example, we have
to define loci such as pairs of lines—the zero locus of X, X;—and double lines—
the zero locus of XZ—to be in the set X. (We will see in Lecture 22 another
approach to defining the set of conics if we are too fastidious to include line pairs
and double lines as conics.)

The variety ¥ = P® parametrizing plane conics is an example of a parame-
ter space, a basic construction in algebraic geometry. It is peculiar to algebraic
geometry in that in most geometric categories it is relatively rare to find the
set of geometric objects of a given type naturally endowed with the structure
of a geometric object of the same type; for example, the family of submanifolds
of a given manifold is not even locally a manifold in the usual sense. Within
algebraic geometry, though, this construction is ubiquitous; virtually every object
introduced in the subject varies with parameters in the sense that the set of all such
objects is naturally endowed with the structure of an algebraic variety. This is true
not only for subvarieties of projective space, but for subvarieties of a given projec-
tive variety X < P"; and, by applying this notion to their graphs, to maps between
two given projective varieties,

We lack at this point a number of the basic notions necessary to describe
the general construction of these parameter spaces, and so will have to defer
this discussion to Lecture 21. We can say, though, that the construction of the
parameter space P° for the set of plane conics generalizes immediately to the
set of hypersurfaces in P" of a given degree d: such a hypersurface X 1s given
by a homogeneous polynomial

F(ZO’“'*ZH)=Zaio,...,in'XE)“'m'X;"

so that the set of hypersurfaces is parametrized by the points of a projective
space PY with homogeneous coordinates a; ;.

n
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Example 4.9. Universal Families of Hypersurfaces

In the terminology we have introduced, to say that the set of hypersurfaces of
degree d in P" is parametrized by a projective space PY suggests the existence of a
family of hypersurfaces with base B = P". Such a family does indeed exist; for
example, consider once again the equation of the general conic in P?

aX:+b X2+ X2+d XoX, +e XX, + [ X, X,.

Ifwe think of [ X, X, X,] as coordinates on P* and [a, b, c, d, e, f] as coordinates
on P>, then we may view this equation as defining a hypersurface X = P> x P2,
with the property that the fiber of X over any point C € P~ is the conic curve
C = P? = P? x {C} corresponding to the point C. X is called the universal family
of conics; as in the case of the universal hyperplane, it is called universal because
any flat family of smooth conics ¥~ « B x P*? may be realized as the fiber product

V:Bxpﬁx

for a unique regular map B — P°. (The specification “smooth conics” in the last
sentence may be broadened to include line pairs, but things get trickier when we
include double lines; see Lecture 21 for a discussion of these issues.)

More generally, universal families exist for the parameter spaces of hyper-
surfaces of any degree d in projective space P" of any dimension. Note that if
we had taken d = 1, the parameter space would be simply the dual projective space
P** and the universal family just the universal hyperplane I' = P*™* x P" described
in Example 4.5.

The basic observation made earlier for families, that as a general rule geometric
conditions on the members of a family determine constructible subsets of the base,
applies to parameter spaces. For example, let £ = P° be the parameter space for
plane conics, and consider the subset ¥ < P corresponding to double lines. This
may be realized as the image of the space P** of lines in P?, under the map sending
a line [ to the “conic” [*; that is, the map taking a linear form

I(X)=a Xe+b- X, +c X,

and sending it to the quadratic polynomial
(X =a® X+ b2 X?+c* X2+ 2ab- XX,

+ 2ac- X, X, + 2bc- X1 X,

(each defined only up to scalars, naturally). In coordinates, then, this is the map
v, . P2¥* - P3
given by
v,:[a, b, c] — [a?%, b*, c* 2ab, 2ac, 2bc],
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which we may recognize (if the characteristic of K is not 2) as the quadratic
Veronese map. We see thus that the variety W is the Veronese surface in P°.

We can similarly characterize the subset A = P> of conics that consist of a
union of lines (1.e., corresponding to quadratic polynomials that factor as a product
of linear forms) as the image of the map P** x P?* - P° sending a pair of linear
forms ([/], [m]) to their product [I-m]. We may recognize this map as a composi-
tion of the Segre map P** x P?* - P8 followed by a projection (in intrinsic terms,
this 1s the map PV x PV - P(V ® V) — P(Sym?V)); in any event, it is clearly a
regular map and so its image is, as claimed, a subvariety of P°. As we will see in
Lecture 8, we can also realize A as the chordal variety of the Veronese surface.

Exercise 4.10. Let P be as earlier the parameter space of hypersurfaces of degree
d in P". Show that the subset £ of PV corresponding to nonprime polynomials
F(Xy, ..., X,) 1s a projective subvariety of P". (X corresponds to hypersurfaces X
that contain a hypersurface Y of degree strictly less than d, though we will need
Theorem 5.1 to establish this.)

Exercise 4.11. Let X < P" be any hypersurface of degree d given by a homoge-
neous polynomial F(Z,,..., Z,). Show that the subset of hyperplanes H < P"
such that the restriction of F to H factors (i.e., such that H n X contains a hyper-
surface of degree < d in H)is a subvariety of P"*.

The question of the existence of sections may be raised in the case of the
universal hyperfaces; in this case, the answer is known, as indicated later.

Exercise 4.12. (a) For any n, find a rational section of the universal hyperplane
I = P"™ x P". (b) For n odd, find a section of I'. (c) For n even, show that there
does not exist a section of I'. (For part (¢), you may want to use the fact, stated on
page 37 following Exercise 3.9, that any regular map from P”" to P™ is given by an
(m + 1)-tuple of homogeneous polynomials.) (*)

Exercise 4.13. Show that the universal plane conic X = P> x P* does not admit
even a rational section. ()

It 1s in general true that the universal family of hypersurfaces of any degree
d > 1 admits no rational sections’.

Exercise 4.14. (a) Let X < B x P> be any family of twisted cubics. Show that
X admits a rational section. (b) By contrast, exhibit a family of rational normal
curves of degree 4 that does not have a rational section. (x) (The general pattern is
that a family X = B x P*""! of rational normal curves of odd degree will always

' Idon’t know of a reference for this; a proof can be given by applying the Lefschetz hyperplane theorem
to the universal family X < PY x P".
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admit a rational section, but this is not the case for families of rational normal
curves of even degree.)

Example 4.15. A Family of Lines

Our final examples of families are of linear spaces in P". To start with the simplest
case, we let U < P" x P” be the complement of the diagonal and consider the
subset

Q={(p,q;r):repq} c U x P"

We first observe that Q is indeed a subvariety of U x P"; it is the family whose
fiber over a point (p, q) € U is the line spanned by p and q. Since every line
[ = P" occurs as a fiber of m,: Q — U, we may think of this as a parameter space for
lines; 1t 1s not optimal, however, because every line occurs many times, rather than
just once. We will see how to fix this when we discuss Grassmannians in Lecture 6.

Exercise 4.16. Show that Q is indeed a subvariety of U x P". More generally,
show that for any k the subset U < (P")* of k-tuples (p,, ..., p,) such that p., ..., p,
are linearly independent is open, and that the locus

Q= {((P1,---»Pe);1):TEPY, .. Pay = U x P"

is again a subvariety. What is the closure of Q in (P")* x P™?

Exercise 4.17. For another family of linear spaces, let V < (P"*)"* be the open

subset of (n — k)-tuples of linearly independent hyperplanes, and set
E={((Hy,....H,_);r):reH n...nH,_,} c V x P".

Show that & is a family of k-planes. In the case of lines in P>, compare the family
constructed in this exercise to that constructed earlier: are they isomorphic?



LECTURE 5

Ideals of Varieties, Irreducible
Decomposition, and the Nulistellensatz
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The time has come to talk about the various senses in which a variety may be
defined by a set of equations. There are three different meanings of the statement
that a collection of polynomials {F,(Z)} “cut out” a variety X < P”, and several
different terms are used to convey each of these meanings.

Let’s start with the affine case, where there are only two possibilities. Let X < A"
be a variety and { f,(z,,...,2,)},=1 . @ collection of polynomials. When we say
that the polynomials f, determine X, we could a priori mean one of two things:
either

(i) the common zero locus V(f,, ..., f,,) of the polynomials f, 1s X or
(i1) the polynomials f_ generate the ideal I(X).

®.
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e K[x] is the origin 0 € A, b t the ideal of functions vanishing at
not (x?). In general, the ideal of functions vanishing on a variety has the property
that, for any polynomial f € K[z, ..., z,], if a power f* € I then f € I. We formal-
ize this by observing that for any ideal I in a ring R, the set of all elements f € R
such that f* e I for some k > 0 is again an ideal, called the radical of I and denoted
r(I). We call an ideal I radical if it is equal to x(I); as we have just observed, an ideal
without this property cannot be of the form I(X).
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To put 1t another way, we have a two-way correspondence

subvarieties R ideals
of A" < I <Kl|z,...,2,]

L/
L

but this is not by any means bijective: in one direction, the composition of the
two is the identity—the definition of a variety X < A” amounts to the statement
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that V(I(X)) = X—Dbut going the other way the composition is neither injective nor
surjective. We can iix this by simply restriciing our aiiention io the image of the
map I, and happily there is a nice characterization of this image (and indeed of the
composition I o V). This is the famous Nullstellensatz:

Theorem 5.1. For any ideal I — K[z, ..., z,], the ideal of functions vanishing on the
common zero locus of I is the radical of 1, i.e.,

I(V(1)) = (1)

Thus, there is a bijective correspondence between subvarieties X — A" and radical
ideals I < K[z,,..., z,].

We will defer both the proof of the Nullstellensatz and some of its corol-
laries to later in this lecture and will proceed with our discussion now.

Note that, as one consequence of the Nullstellensatz, we can say that a K-algebra
A occurs as the coordinate ring of an affine variety if and only if 4 is finitely
generated and has no nilpotents. Clearly these two conditions are necessary; if they
are satisfied, we can write

A= K[xla"'ﬁxn]/(flﬂ""fm)

so that we will have A = A(X), where X < A" is the zero locus of the polyno-
mials f,.

At this point we can take a minute out and mention one of the fundamental
notions of scheme theory. Basically, if one 1s going to fix the correspondence on
page 48 so as to make it bijective, there are naively two ways of going about it. We
can either restrict the class of objects on the right or enlarge the class of objects on
the left. In classical algebraic geometry, as we have just said, we do the former; in
scheme theory, we do the latter. Thus, we define an affine scheme X < A" to be an
object associated to an arbitrary ideal I < K[z,, ..., z,].

What sense can this possibly make? This is not the place to go into it in
any detail, but we may remark that, in fact, most of the notions that we actually
deal with in algebraic geometry are defined in terms of rings and ideals as well as in
terms of subsets of affine or projective spaces. For example, if X < A" 1s a variety
with ideal I = I(X), we deﬁne a function on X to be an element of the ring

AIVY . T 1/T+ +lha 11 ta Nt ~F trrrm ~h nviatine Y V — A‘\ﬂ 1c miuns
/‘llﬂ} — IN Lél, . . ﬁn_lf.l, l.-llL-' lllLUIDUULIUll Ul LYYWV DU\.{]J. FGLJULIMG ..f.l, A S T ) 5 'Ull

by the join of thelr 1deals; the data of a map between two such varieties X and Y
are equivalent to the data of a map A(Y) —» A(X), and so on. The point is that all
these things make sense whether or not [ 1s a radical 1deal. The scheme associated
to an arbitrary ideal I < K[z, ..., z,] may not seem like a geometric object,
especially in case 1 1s not radical, but it does behave formally like one and it encodes
extra information that 1s of geometric interest.

Before going on, we will introduce some terminology. We say that a collection

f £ 1 Af nAalunAaminlc r-n'l' nnf a nr:ir*uhfw Y - &" oaf-fhanrahﬁn”‘l? ‘h"\ meean 1I1Ef that
Vo Vi PUL)ILUJJ.JJHJ.LJ VUL UultL vy dy 1o mean just that

their common zero locus V({ f,}) = X; we say that they cut out X scheme-theoreti-
cally, or ideal-theoretically, if in fact they generate the ideal I(X).
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Ideals of Projective Varieties

The case of projective space 1s in one respect like that of affine space: we have
a correspondence between projective varieties X < P" and homogeneous i1deals
I < K[Z,,...,Z,] that becomes almost a bijection when we restrict ourselves
to radical ideals (the almost is because we have to exclude the radical ideal
m=(Z,, ..., Z,)). There is, however, one other sense¢ in which a collection of
polynomials can cut out a variety.

For example, suppose X < P”" is any variety and I < K[Z,, ..., Z,] its ideal.
Consider the ideal I’ formed by simply intersecting I with the ideal (Z;, ..., Z )

that is, if we write I as the direct sum of its homogeneous pieces

then

Certainly the radical of I’ is I, since any element of I, raised to a sufficiently high

L
W R S - W

power, will lie in . Biit the relationship between [ and [’ is closer than that: for any
polynomial F € K[Z,, ..., Z,], F will lie in I if and only if the product of F with
any homogeneous polynomial of sufficiently high degree lies in I'. What this means
is that if we restrict to the affine open subset (Z; # 0) = A" < P"—that is to say,
we consider the Oth graded piece of the localization (I'-K{Z,, ..., Z,, Z;'])o in
the coordinate ring (K[Z,, ..., Z,, Z ') = K[z, ..., z,] of A"—we get exactly
the ideal of the affine open subset X N A" < A". We may say, in this case, that the
ideal I’ cuts out the variety X locally, even though it does not equal I.

To formalize this, we introduce the notion of the saturation I of an ideal

[« K[Z,,...,Z]]. Thisis given by
[ = {FeK[Z,,...,2,):(Z,,..., Z,)" F < I for some k}.

Note that since K[Z,, ..., Z, ] is Noetherian, I/I is finitely generated, so that I will
agree with I in large enough degree. Indeed, we have the following.

Exercise 5.2. Show that the following conditions on a pair of homogeneous i1deals
ITand J < K[Z,, ..., Z,] are equivalent:

(1) [ and J have the same saturation.
() [, = J,for all m > 0.
(iti) I and J agree locally, that is, they generate the same ideal in each localization
K[Zy,....,Z¢, Z;7 'Ot K[ 2y, ..., Z,]

In the language of schemes, all three conditions of Exercise 5.2 amount to saying
that I and J define the same subscheme of P*; we often say that a coilection of
functions cuts out a variety X < P" scheme-theoretically if the saturation of the
ideal they generate in K[ Z,, ..., Z,] 1s the homogeneous i1deal I(X). In sum, then,
the three statements we can make about a collection of polynomials F, in relation
to a variety X are, in order of increasing strength, that they
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(1) cut out the variety X set-theoretically, if their common zero locus in P” 1s X;
(1) cut out the variety X scheme-theoretically, if the saturation of the ideal they
generate 1s 1(X); and
(1) generate the homogeneous ideal I(X) of X.

By way of example, if I = (X) is the ideal of the line (X = 0) in the plane P* with
homogeneous coordinates X, Y, and Z, the ideal I' = (X?, XY, XZ) generates |
locally, though it does not equal I; while the ideal (X?) does not even generate [
locally, though its zero locus 1s the same.

Exercise 5.3. Consider once again the rational normal curve C < P? given in
Example 1.14. Show that the homogeneous quadratic polynomials

F1,.-:(Z) — Zi Zi — Zozi+1

b, (Z) = Z{ — 2124
and
FioZ) =224« — 2,2,

fori=1,...,d— 1 generate the ideal of the rational normal curve locally but do
not generate the homogeneous ideal I(C).

Exercise 5.4. Show that the polynomials F; (Z) = Z,Z, — Z,_,Z;,, for | <i < j <
d — 1 do generate the homogeneous ideal of the rational normal curve C — P*.
Similarly, check that the equations given earlier for the Veronese and Segre
varieties in general do generate their homogeneous ideals.

As a final example, note that if X € P” 1s a variety and pe P" — X a point,
the equations we have exhibited that cut out the projection X = n,(X) of a variety
X from p—the pairwise resultants of the polynomials F, G € I(X)—do not in
general generate its homogeneous ideal (see, for example, Exercise 3.8). In fact, they
do generate the ideal of X locally, though our proof does not show this.

Lastly, we should remark that there 1s a projective version of the Nullstel-
lensatz: the ideal of polynomials on P"” vanishing on the common zero locus
of a collection {F,} of homogeneous polynomials is the radical of the ideal they
generate (or the unit ideal, if the F, have no common zeros). As a consequence, we
deduce that any finitely generated graded algebra

A == @ Ai
over K is the homogeneous coordinate ring of a projective variety if it has no
nilpotent elements and is generated by its first graded piece 4, .

Irreducible Varieties and Irreducible Decomposition

Definition. We say that a variety is irreducible if for any pair of closed subvarieties
YZ c X suchthat YuZ = X,either Y = X or Z = X.
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Observe that an affine variety X < A" is irreducible if and only if its ideal
I{X)<c K[xq,...,x,] 1s prime. To se¢ this, note first that if Y and Z are proper
closed subvarieties of X, there exist f € I(Y) not in I{(X) and g € I(Z) not in I(X);
if X =YuZ it follows that f-g e I(X). Conversely, if f, ge K[x,..., x,] with
f g € I{X), then the subvarieties of X defined by f and g—that is, the subvarieties
Y = V(I(X), f)and Z = V(I(X), g—have union X. More generally, we say that an
ideal I <« K[x,,...,x,] is primary if Vf, ge K[x,,...,x,]), frgel=f"el for
some m or g € I; this implies that the radical of I 1s prime. The same argument then
shows that for any I, the variety V(I) will be irreducible if I 1s primary; moreover,
if we use the Nullstellensatz, we can deduce that in fact V(I) will be irreducible if
and only if the radical of I 1s prime.

The analogous statements apply to projective varieties and their homogeneous
ideals: a variety X < P” is irreducible if and oniy if its homogeneous ideal 1(X) is
prime, and the zero locus V(I) of a homogeneous i1deal I < K[ X,,..., X, ] 1s
irreducible if I is primary. Note that if a projective variety X < P" is irreducible
then so is any nonempty affine open subset U = X n A", though the converse is
true only 1n the sense that if the affine open subset X N A" of X is irreducible for
every hyperplane complement A" < P” (not just the standard U,, ..., U,) then X
must be irreducible.

Exercise 5.5. Show that a variety X is irreducible if and only if every Zariski
open subset of X 1s dense, i.€., every two Zariski open subsets of X meet.
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Proposition 5.6. Any radical ideal I < K[xq,..
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Given this equivalence, this implies the following.

Theorem 5.7. Any variety X may be uniquely expressed as a finite union of irreducible
subvarieties X; with X; = X; for i # j.

The varieties X; appearing in the expression of X as a finite union of irreducible
varieties are called the irreducible components of X.

A few notes: first, those familiar with commutative algebra will recognize Propo-
sition 5.6 as a very weak form of the general theorem on primary decomposition of
1ideals in Noetherian rings. We will prove this weak form in the section at the end
of this lecture; for a proof of the full statement see [AM] or [E]. Second, observe
that the uniqueness of the expression of a radical ideal as a finite intersection of
prime ideals is formal; if we had I = [ | p; = [} g; then for each i we would have
p; © () q;= p; = q for some k and vice versa. The same argument (with inclusions
reversed and intersections and unions exchanged) shows that the expression of an

arbitrary variety as a union of irreducible components is likewise unique.
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It 1s worthwhile to go through some of the varieties introduced earlier and
verify that they are irreducible (one useful tool in this regard is the observation that
the tmage of an irreducible projective variety under a regular map is an irreducible
variety). We will not do much of this explicitly here, since it will become much easier
once we have introduced the notion of dimension, and in particular Theorem 11.14.

One example that is worth doing, and that will be useful shortly, is the following.

Theorem 5.8. Let X — P" be an irreducible variety, and let Q, < P™ x X be its
universal hyperplane section, as in Example 4.6. Then Qy is irreducible.

ProOF. For each point pe X, let T, = (n,)"'(p) be the fiber of Qy over p. We
claim that for any irreducible component ¥ of Q,, the locus

() ={peX: T, c ¥}

is a closed subset of X. The theorem follows from this claim: since I', is isomorphic
to P"~1, which is irreducible, for any irreducible decomposition Q, = ¥, U U P,
of QQ, we must have

X =) voe¥)).

[t will follow that X = ¢(%¥;) for some i and hence that Q, = V..

To establish the claim, we may work locally, say over the open subset U = X
given by Z, # 0. Now, for each o« = (a4, ..., ®,), let ®, = P"* x U be the locus
given in terms of homogeneous coordinates Z on P" and dual coordinates W on
P"* by the equations

W,

0 _fxlzl R — OC"Z,, alld
47

aiZO, i=1,...,n.

@, is then a closed subvariety of P"* x U, meeting each fiber I', in exactly one
point; moreover, the union of the @, is the inverse image of U in Q. It follows
that o(¥) n U may be written as the intersection

cP)nU={Y{peU:D,nI, eV}
— p TEZ(le(Da);

by Theorem 3.12, thts 1s closed.

Exercise 5.9. By a similar argument, show that the product of two irreducible
varieties is irreducible.

General Objects

Having introduced the notion of irreducible variety, we can also mention a fairly
ubiquitous piece of terminology: the notion of a general object. Basically, when a
family of objects {X,},.y—Varieties, maps, or whatever—is parametrized by the
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points of an irreducible algebraic variety X, the statement that “the general object
X has property P” is taken to mean that “the subset of points p € X such that the
corresponding object X, has property P contains a Zariski open dense subset of
¥.” Thus, for example, given a point p, € P2, we say that “a general line L < P?
does not contain p,” to refer to the fact that the set of lines contaming p, 1s
contained in a proper subvariety of the dual plane P**. As another example, we
say that “the general conic has rank 3 (e.g., 1s projectively equivalent to the image
of the Veronese map v,: P! — P?).” This refers to the fact that, as observed in the
discussion preceding Exercise 1.21, the set of conics in P? can be parametrized by
the points of P>, and asserts that in this P° the subset of those not projectively
equivalent to v,(P!) is contained in a proper subvariety.

We should note that the word “generic” is sometimes used 1n place of “general.”
“General” is preferable, since in some sources the word “generic” is given a techni-
cal meaning (it is also sometimes the practice to use the phrase “the generic object
X has property P” to mean that the set of p € £ such that X, does not have this
property is contained in a countable union of proper subvarieties of X). Nonethe-
less, using “generic” and “general” interchangably is one of the more venial sins
assoclated to the use of the word(s).

Another remark to be made here is that there is also an adverbial usage of
the term; for example, if X is an irreducible variety, we say that a map f: X —» P”
is generically finite to mean that for a general point p e X the inverse 1mage

£ f(p)) is finite.

The example of “the general conic” points up one possibly troublesome 1ssue:
every time we use this terminology we will be implicitly invoking the existence of a
parameter space. In general, we will not refer explicitly to the construction of this
parameter space; in some cases it may seem ambiguous. In fact, there are standard
constructions of parameter spaces in algebraic geometry, which we will discuss in
Lecture 21; it is these to which we implicitly refer. In practice, however, we can
approach the matter on an ad hoc basis. We give some examples of this usage,
starting with an exercise.

Exercise 5.10. Consider the parameter space for lines in P” introduced in Example
4.15. Show that, given any linear space I < P" of dimension n — 2 or less the
general line in P” does not meet I'. Given a twisted cubic curve C < P>, show that
the general line in P> does not meet C. (As we noted at the time, the parameter
space for lines introduced in Example 4.15 is not the standard one; but we will see
when we do introduce the Grassmannian that the same statements apply.)

Example 5.11. General Projections

We have seen that projections of the twisted cubic curve C «— P> are projectively
equivalent to one of two curves, the nodal cubic Z,Z; = Z7? + Z,Z} and the
cuspidal cubic Z,Z? = Z3. We can further make the statement “the general projec-
tion of a twisted cubic curve to P is projectively equivalent to the nodal cubic.”
Implicit in this statement is the idea that the set of projections of a twisted cubic
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C < P° is parametrized by the set of points in the complement P? — C of C in P3:
the content of the statement is that for all points p in an open subset U < P3 — C,
the projection 7 (C) is projectively equivalent to the nodal cubic. We will see more
statements about the general projections of varieties in Lecture 15,

Example 5.12. General Twisted Cubics

As another example, consider again twisted cubics. Any twisted cubic C can be
written as the image of a map of the form

[ — [a0,3t3+a0,2t,2+a0,1t+a0,0, Cee a3,3t3+a3,2t2+a3,1t+a3,0],

where the determinant of the matrix (g, ;) of coefficients is nonzero, so that we
can describe C by specifying a nonsingular 4 x 4 matrix. Of course, this does
not give a bijection between the variety U — K'° of invertible 4 x 4 matrices
and the set of twisted cubics, since the curve C does not determine this expression.
Alternately, recall from Theorem 1.18 that any twisted cubic is determined by six
points in general position in P>. Thus we get a twisted cubic for any point in the
open subset V < (P?)° corresponding to configurations in general position, though
as 1n the previous case, this is not a bijection.

The point 1s, we can take the statement that “the general twisted cubic has
property X” to mean either that the set of C € U with property X contains an open
dense subset, or the same for the analogous set of C € V. This apparent ambiguity
will be dealt with in Lecture 21, where we will see that a universal parameter space
A for twisted cubic curves in P> does exist and that the corresponding maps
U—- # and V — A are regular. It will follow that to say that a property holds for
an open dense subset of C € U is equivalent to saying that it holds for an open
dense subset of C € #, which is in turn equivalent to saying that it holds for an
open dense subset of V.

Two further variations on the theme of “general” objects: first, it is clear that if
a family of objects 1s parametrized by a variety X, the family of (ordered) pairs (or
n-tuples) of these objects is parametrized by the product X? (or X"); when we talk
about a property of a “general pair” of these objects, we mean a property enjoyed
by the pairs corresponding to an open dense subset of this product. Thus, for
example, “a general triple of points in P* does not lie on a line.” Sometimes the
usage dictates using the fiber product rather than the regular product; for example,
a “general pair of points on a general line in P*” would refer to a point in an open
subset of the (irreducible) variety I' x p.« I', where T' = P?* x P? is the universal
hyperplane (line) in P2, as in Example 4.5. Also, we say that an object X € X arising
in some construction is “general” if, given no further specification, X could be the
object corresponding to any point in an open dense subset of . Thus, “a general
point p on a general line [ < P? is a general point of the plane,” and “a general pair
of points on a general line in the plane is a general pair of points in the plane.”
but “a general triple of points on a general line is not a general triple of points
in the plane.” This terminology may seem opaque at first but it is extremely
useful; it becomes, if anything, too easy to use with a little practice.
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Exercise 5.13. Show that foranyd and n < (d — 1)(d — 2)/2, a general set of n points
in P? imposes independent conditions on curves of degree d, in the sense that the
space of polynomials vanishing at the points has codimension n in the space of all
homogeneous polynomials of degree d on P*. In case n < 2d + 1, exactly what
open subset of (P#)" is implicitly referred to?

Exercise 5.14. Let C < P? be a curve of degree d, that is, the zero locus of a
homogeneous polynomial F(Z,, Z,, Z,) of degree d without repeated factors. Show
that a general line L < P? will intersect C in d points.

Finally, here is an example of the usage “general” that we will need in the
following example (and that is worthwhile in i1ts own right).

Proposition 5.15. Let n: X — Y be any regular map with Y irreducible, and let
Z < X be any locally closed subset. Then for a general point pe Y the closure
of the fiber Z, =272 nn'(p) is the intersection of the closure Z of Z with the
fiber X, = n7'(p).

We will defer the proof of this proposition until after the proof of Theorem
11.12.

Example 5.16. Double Point Loci

One classic example of the decomposition of a variety into irreducibles is the
definition of the double point locus associated to a generically finite map. We
suppose that X is an irreducible projec-
tive variety and ¢: X — P" a map; we
also assume that ¢ 1s generically finite, p
that 1s, for a general point p € ¢(X) the

fiber ¢ "' (p) is finite. Recall from Exam-

ple 2.25 that the set Z of pairs of points

p, ¢ € X that map to the same point of

P", that 1s, the set-theoretic fiber pro-

duct X xp. X, 1s a subvariety of X x X.

Now, to say that ¢ is generically finite p"
implies in particular that the diagonal

AcZ <X x X is an irreducible com-

ponent of Z (this follows from applying
Proposition 5.15 to the subvariety W =

Z — A « Z - X). In this case, we define (q,p)
the double point locus of the map ¢ to be .

the union of the remaining components

of Z, oritsimage in X under projection. ¥ x X

(p,q)
L

We should give one warning here: all
we are really doing in this example is
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saying that the set of distinct pairs of points of X mapping to the same point of P"
is a quasi-projective variety—more precisely, a closed subset of the complement of
the diagonal in the product X x X. To actually prove meaningful theorems about
the double point locus in general requires a much more sensitive definition. To see
why this is so, consider the simplest example, of a map ¢ of a curve to the plane P2
that is generically one to one but may be two to one over a finite collection of
points—for example, the projection of a space curve C < P> from a point r in P>
described 1n Exercises 1.27 and 3.8. Clearly every chord pq of the curve C containing
the point r contributes a pair of points (p, q) and (g, p) to the double point locus Z
Spec:1allzes to a tangent 11ne? The pomts ( p, ) and (q, ) both approach the pomt
(p, p) on the diagonal in X x X, and we’d like to say that this point lies in the

AAsilala mnt 1A Tasit +lan s P Aafinmitins AAana vt can 14 T Fant +A Aafima
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the double point locus correctly we have to be both more imaginative and
working in the category of schemes rather than varieties. Good references for this

are [F1], [K].

A Little Algebra

In this section we will give proofs of several of the algebraic lemmas: the Null-

stellensatz (Theorem 5.1); one of its corollaries (Lemma 2.1, which states that the

on an affine ‘U’ﬂf’le‘U X 1¢ fumnlv 1ts coordinate r1no 4(}{}},

and Proposition 5.6, which asserts that every radlcal ideal 1s an intersection of
primes. We will try to prove these statements with a minimum of algebraic

L2

A P A R s A F

ring of regular functio

' % o
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proof of Artin and Tate and a “quick and dirty” alternative); for a more thorough
treatment of these areas, the reader can read the standard sources [AM] and [E]
on commutative algebra. One notion from commutative aigebra that cannot be
readily dispensed with, however, is that of a Noetherian ring; we will assume that
the reader knows what this means and that the polynomial ring K{x,,..., x,] 18
one.

case of the \T""“*“""‘“SEHL, w¢C 51 Ve tWO pTGGfS the now-classic

PROOF OF THE INULLSTELLENSATZ. We stari wiith an arbitrary ideal in t
K[x,,..., x,]; we let X be its zero locus V(I). We have a trivial inclusion

f!
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and we have to establish the opposite inclusion. We will do this 1n two stages.
th 1 at

1 o
I.IJ’. ¥y

Theorem 5.17. (Weak Nullstellensatz). Any ideal I < K[x,, ..., x,] with no com-
mon zeros is the unit ideal.
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We will then see that this implies the apparently stronger form.

PrROOF OF THEOREM 5.17. We have to show that any ideal I properly contained
in the ring K{x,, ..., x,] must have nonempty zero locus. Since we know that
such an 1deal I must be contained in some maximal 1deal, this will follow from
the following proposition.

Proposition 5.18. Any maximal ideal m in the ring K[x, ..., x,] is of the form
(x, —aq,...,x, —a,) for someay,...,a,cK.

PROOF. The statement that m is of the form (x, — a,, ..., x, — a,) is equivalent

to the statement that the quotient L = K[x,, ..., x,]/m is K itself; since K 1is
ﬂ]gphrﬁ‘lf‘ﬂ“}f n]nspr'] thic in turn ig Pqnn:nlpnf to En}nng 1mst fhat I 15 ﬂ]{rehrﬂw‘ Qver

K. The key step in showing this is the following lemma.

— U

N L. . AT .« =2
R be a Noetherian ring and S o R any subr iFig of the polynomial

Lemma 5.19. Let €da
ring R[xl, oy Xo ) If R[xy, ..., x,)1s finitely generated as an S-module, then S itself
is finitely generated as an R-algebra.

PROOF OF LEMMA 5.19. Let y,, ..., y,, € R[x{, ..., x,] be generatorsof R[ x,, ..., x, |
as an S-module; we can write

X; =) a;;'Y;

and likewise

Xi® Xj = Z bi,j,k " Vi

with a; ;, b; ; , € S. Let Sy = S be the subring generated over R by the coefficients
a; ;and b; ; ,; being finitely generated over R, S, 1s again Noetherian. By virtue of
these relations, the elements y,, ..., y,, generate R[x,, ..., x, | as an S,-module. But
a submodule of a finitely generated module over a Noetherian ring is again finitely
generated; thus S is a finitely generated S,-module and hence a finitely generated
R-algebra.

PROOF OF PROPOSITION 5.18. Consider again our extension field L. = K[ x,, ..., x,1/

m of K. We can, after reordering the x;, assume that x,, ..., x, € L are algebraically
IIIUMHUIIUUIIL UTUL .['L .I.LJ..I. .A-rk_l_l 4 v v 00 .r‘\.an HJ.EUUI (-l-.l\-f L T\-']. LLLW GHULIULU Ax t.«’\:l g vy .»"\-rk}' Y B e

Since L is thus a finitely generated K(x,, ..., x,)-module, we can apply Lemma
5.19 to deduce that the purely transcendental extension K(x,, ..., x;) 1s a finitely
generated K-algebra.

This is where we finally run into a contradiction. Let z,, ..., z, € L be a collection
of generators of K(x,, ..., x;) as a K-algebra; write

. Pi(x,,..., %)
I Qi(xlﬂ"'ﬁxk)

for some collection of polynomials P, O;. Now let f € K[ x,, ..., x, ] be any irreduc-
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ible polynomial. By hypothesis, we can write 1/f as a polynomial in the rational
functions z;; clearing denominators, we deduce that f must divide at least one of
the polynomials Q;. This implies in particular that there can be only finitely many
irreducible polynomials in K[x,, ..., x;]. But for k > 1 the ring K[x,, ..., X; ]
contains infinitely many irreducible polynomials (this is true for any field K; in our
case, since K 1s necessarily infinite, we can just exhibit the polynomials {x — a},. ).
We may thus deduce that kK = 0, 1.e., L 1s algebraic over K and hence equal to K.

Lastly, we want to deduce the Nullstellensatz from the a priori weaker Theorem
5.17. Once more, suppose that I < K[x,..., x,] is any ideal, and suppose that
feK[xq,...,x,]1s any polynomial vanishing on the common zeros of ] —that is,
fe I(V(I)). We want to show that f™ e I for some m > 0.

To do this, we use what 1s classically called the trick of Rabinowitsch. This
amounts to realizing the complement U, = {(x, ..., x,): f(X{, ..., X,) # 0} < A"
as an affine variety in its own right—specifically, as the variety

2= {(xla “cs xn+1): Xn+1 'f(xla ccy xn) = 1} = ’&n_}-l

and applying the Weak Nullstellensatz there. In other words, we simply observe
that the i1deal J < K[x,, ..., x,+;] generated by I and the polynomial x, ., "
f(x45...,x,) = 1 has no common zero locus, and so must be the unit ideal. Equiva-

lently, if
A=K[xy,....,x, 1071 =K[x1, .., X1 Y Xpir " f— 1)
is the coordinate ring of U,, we must have I- 4 = (1). We can thus write
1 = Z d;" q;
with g; € I and a, € A4; collecting terms involving x,,, we can express this as
l=ho+hy X0+ 0+ hy (x,0)"
with h; € 1. Finally, multiplying through by f™ we have
f?ﬂ =fm_1.h0 + - + hm!

in particular, f™ e I.

ALTERNATIVE PROOF OF THE NULLSTELLENSATZ. As promised, we give here a shorter
proof of a marginally weaker statement (we have to assume that our ground field

K 1s of infinite transcendence degree over the prime field Q or F)).
To begin with, we may replace the i1deal I in the statement of the Nullstel-

lensatz by its radical. This is then expressible as an intersection of prime ideals
I=p,np,n " Np,..
On the other hand, we have X = | | X, where X, = V(p,), so
(V1)) = I(V(p)) - I(V(p)).
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Thus, it suffices to establish the Nullstellensatz for a prime ideal p, 1.¢., to establish
the following,

Lemma 5.20. Let p <« K[x,,..., x, | be a prime ideal. If f € K|[x,, ..., x,] is any
polynomial not contained in p, then there exists a,, ..., a, € K such that

p C(xl —_alﬂ"'axn_an)ﬂ

but f(a,,...,a)#0,ie, f¢(x, —ay,...,x,— a,).

PrROOF. We will prove this only under one additional hypothesis: that K is of
infinite transcendence degree of K over the prime field k = Q or F,. Given this, we
write f in the form

£\ LT,
J — ¢ Ao

we suppose that p 1s generated by polynomials g,, which we write as
Ga =), Cra X'
and let
L=k[...,c;y...;C1p---]=K
be the field generated over k by the coefficients of f and the g,. Now set
po=PnLixy,...,x,] < K[x1,..., X,]

Note that since all the generators g, of p hie in the subring L[x,,..., x,] <
K{x,,...,x,], we have py-K{xy,...,Xx,|=9p; also, p, 1s again prime In
L[x{,...,x,], so that the quotient L[x, ..., x,]/po 1S an integral domain. Let M
be 1ts quotient field; since M is finitely generated over k, there exists an embedding

- M < K.

Let a; € K be the image under this map of the element x; € L[x,, ..., x, 1/ py < M.
It is not hard to see now that a,, ..., a, fulfill the conditions of the lemma:
by construction, the ideal p, 1s contained in the ideal (x; —a,...,x, —a,) <
L{x,,....x,], and so p=p, K[x;,...,x,] 1is contained in the ideal
(X, —a;,...,x,—a, < K[x,,..., x,]. On the other hand, f e L[x,,..., x, ], but

f¢p0,801(f)=f(a1,...,an)#0,i.e.,f¢(x1 “ala"'ﬂxnﬂan)'

Restatements and Corollaries

We can reexpress the Nullstellensatz in the often useful form of the following

+1'| oW T LT T
(YL VILW SR WYYy

Theorem 5.21. Every prime ideal in K[x,, ..., x,] is the intersection of the ideals of
the form(x, — ay, ..., x, — a,) containing it.
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Note that the same statement for the ring K[x,, ..., x,]/I (i.e., that every prime
ideal is the intersection of the ideals of the form (x, — a,, ..., x, — a,) containing it)
follows immediately by applying Theorem 5.21 to the collection (f, ..., fi, §1s---» §)
where I = (g,, ..., g;). In particular, note that if a polynomial f does not vanish

anywhere 1n V(I), it must be a unit in K[x,, ..., x,]/I.

As one corollary of the Nullstellensatz, we can now give a proof of Lemma 2.1.
The circumstances are these: X < A" is any affine variety, f € K[x,,..., x,] any
polynomial and U, = {p € X: f(p) # 0} = X the corresponding distinguished open
subset. By definition, a regular function on U, is a function g such that for any point
pe U, we can write

f = h/k

in some neighborhood of p with k(p) # 0. We claim that the ring of such functions
is just the localization A(X)[1/f] of A(X).

To prove this, note first that by the Noetherian property of the Zariski topology
(page 18), 1f g 1s any regular function on U, then we can find a finite open cover {U, }
of U, such that in each U, we can write

g = h,/k,

with k, nowhere zero on U,; we can further take the open sets U, in this cover
to be distinguished, i.e., we can assume U, = U, n U, for some collection f,. Now,
since the open sets Uy, cover U, and k, is nowhere zero on U, n U, , the common
zero locus of the k, must be contained in the zero locus of f; by the Nullstellensatz
we must have f™ e (..., k,, ...) for some m, or in other words, we can write

fm=S1 -k,

But now

fmog =2 Uy k) (ho/ky) = 3 Lhy;

that is,

Iarhcz

g = 2 - € AX)L/f]
/

We note one immediate corollary of this: that any regular function on A" itself

must be a polynomial. It follows in particular that any regular function on P" must
be a constant; this is a special case of Corollary 3.14.

PROOF OF PROPOSITION 5.6. This proposition asserts that every radical ideal I —
K[x,,...,x,] 1s a linite intersection of prime ideals.

We use here the property of Noetherian rings that every collection {a;} of ideals
contains maximal elements, that is, ideals a; not contained in any other ideal of the
collection. We apply this to the collection of radical ideals I « K[x,, ..., x,] such
that I 1s not a finite intersection of prime ideals; we let I, be a maximal such ideal.
By construction, [, is not itself prime; let a and b€ K[x,, ..., x,] be polynomials
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not in I, such that ab € I, and let
I, =r(ly,a) and I, =1(1,,b)

be the radicals of the ideals generated by I, together with a and b. Since I, and I,
are radical and strictly contain I,, by hypothesis each will be a finite intersection
of prime 1deals; Proposition 5.6 will thus follow once we establish that

IO =11ﬁ12.

To show this, suppose that f € I, n I,. By definition, we will have /™ e (I,, a)
and f" € (I,, b) for some m and n, i.e., we can write

fm=gl+h1'a and fnzgz"hz'b

with g,, g, € I,. But then
f™"=g,g9, + g hb +g,h,a + hih, abel,

and since I 1s radical it follows that f € I,.
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LECTURE 6

Grassmannians and Related Varieties

Example 6.6. Grassmannians

Grassmannians are fundamental objects in algebraic geometry: they are simultane-
ously objects of interest i1n their own right and basic tools in the construction and
study of other varieties. We will be dealing with Grassmannians constantly in the
course of this book; here we introduce them and mention a few of their basic
properties.

By way of notation, we let G(k, n) denote the set of k-dimensional linear sub-
spaces of the vector space K”; if we want to talk about the set of k-planes in an
abstract vector space V without making a choice of basis for VV we also write

f"”.r I/\ ﬁF course a l . dAimancinnal QII“\Q‘I"\QFF nf a Upr‘fnr gnace V" 10 fhp cama thinao
U’ “ 'y \..I-I.AI.LUI.LL)'J.ULLHL o L 1.’ t.’ I.LJ‘ S LAL% WJULLLL L ‘rlllll&

as a (k — 1)-plane in the corresponding projective space P"™', so that we can
think of G(k n) as the set of such (k — 1) planes; when we want to think of the

___________ 1 MThT A
Uldbbllldllllldll llllb Wd.y w¢C Wlll WIILU ll ‘LIDU‘» — 1 n— l} Oor ‘LZDU'L — 1, FV )L

In most contexts, Grassmannians are defined initially via coordinate
patches or as a quotient of groups; it is then observed that they may be embedded
in a projective space. Since our main objects of interest here are projective varieties,
we will do 1t differently, describing the Grassmannian first as a subset of projective
space. This is straightforward: if W < V is the k-dimensional linear subspace
spanned by vectors v, ..., v,, we can associate to W the multivector

T o e s .- Ak¢ I/
A=V A nukt:m\

“"—-"'

4 1s determined up to scalars by W: if we chose a different basis, the corre-
sponding vector A would simply be multiplied by the determinant of the change of
basis matrix. We thus have a well-defined map of sets
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U: Gk, V) — P(\V),

In fact, this is an inclusion: for any [w] = (W) in the image, we can recover
the corresponding subspace W as the space of vectors v € V such that v A @ =
0 € A**'V. This inclusion is called the Pliicker embedding of G(k, V).

The homogeneous coordinates on PY = P(A*V) are called Pliicker coordinates
on Gk, V). Explicitly, if we choose an identification ¥V =~ K" we can represent the
plane W by the k x n matrix M,, whose rows are the vectors v;; the matrix My, is

determined up to multiplication on the left by an invertible k x k matnx. The
Pliicker coordinates are then just the maximal minors of the matrix My, .

We have described the Grassmannian G(k, V) as a subset of P(/\*V); we should
now check that it 1s indeed a subvariety. This amounts to characterizing the subset
of totally decomposable vectors w € /A\*V, that is, products w = v; A --- A v, of linear
factors. We begin with a basic observation: given a multivector w € A*V and a
vector v € V, the vector v will divide w—that 1s, @ will be expressible as v A ¢ for
some ¢ € A\*"1V—if and only if the wedge product w A v = 0. Moreover, a multi-
vector o will be totally decomposable if and only if the space of vectors v dividing
it is k-dimensional. Thus, [@w] will lie in the Grassmanntan if and only 1if the rank
of the map

p(w): V- NV
VP> WA
is n — k. Since the rank of ¢(w) is never strictly less than n — k, we can say
[w] € G(k, V)<rank(p(w)) < n — k.

Now, the map NV — Hom(V, A**1 V) sending w to ¢(w) is linear, that is, the entries
of the matrix ¢(w) € Hom(V, A**1V) are homogeneous coordinates on P(A\*V); we
can say that G(k, V) < P(/\*V) is the subvariety defined by the vanishing of the
(n—k+ 1) x (n — k + 1) minors of this matrix.

This is the simplest way to see that G(k, V) is a subvariety of P(/\*V), but the
polynomials we get in this way are far from the simplest possible; in particular, they
do not generate the homogeneous ideal of G(k, V). To find the actual generators of
the ideal, we need to invoke also the natural identification of A*V with the exterior
power /A" *V* of the dual space V* (this is natural only up to scalars, but
that’s okay for our purposes). In particular, an element w € A*V corresponding to
w* e A"V * gives rise in this way to a map

Y(w): V- A"TErLp*

0¥ 5 0¥ A 0¥
by the same argument o will be totally decomposable if and only if the map
(w) has rank at most k. What’s more, in case w 1s totally decomposable, the

kernel of the map ¢(w)—the subspace W itself—will be exactly the annihila-
tor of the kernel of y/(w); equivalently, the images of the transpose maps

IQO((O)I /\k+1 V* V*
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and
Y(w): \"" YV -V

annihilate each other. In sum, then, we see that [w] € G(k, V) if and only if for every
pair « € A**1V* and g € A"**1V, the contraction

Eq, plw) = o (w) (@), Y(w)(p)> = 0.

The E, ; are thus quadratic polynomials whose common zero locus is the Grass-
mannian G(k, V). They are called the Pliicker relations, and they do in fact generate
the homogeneous ideal of G(k, V'), though we will not prove that here.

Exercise 6.2. In the special case k = 2, assuming char(K) # 2 show directly that a
vector w € /\*V is decomposable if and only if w A @ =0 and hence that the
Grassmannian G(2, V) < P(A*V) is a variety cut out by quadrics. (In fact, the

. ny . . . .
equation w A w = 0 represents ( 4> independent quadratic relations, which are

exactly the span of the Pliicker relations.)

Observe in particular that the first nontrivial Grassmannian—the first one

that is not a projective space—1s G(2, 4), and this stts as a quadric hypersurface in
P(A2K*) ~ P2,

We can get another picture of the Grassmannian by looking at certain special
affine open subsets. To describe these first intrinsically, let I' = V be a subspace of
dimension n — k, corresponding to a multivector w € A" *V = A¥*, We can think
of w as a homogeneous linear form on P(A*V); let U < P(A*V) be the affine open

—_——

subset where w # 0. Then the intersection of G(k, V) with U 1s just the set of
k-dimensional subspaces A < V complementary to I'. Any such subspace can be
viewed as the graph of a map from V/I' to I' and vice versa, so that we have an
identification

Gk, V)~ U = Hom(V/T, T) = K*n®

To see this in coordinates, identify V with K" and say the subspace I 1s spanned
by the last n — k basis vectors e,,,, ..., ¢, € K". Then U n G(k, n) is the subset of
spaces A such that the k x n matrix M, whose first k x k minor 1s nonzero. It
follows that any A € G(k, V) n U is represented as the row space of a unique matrix

of the form

r ~
1 00 . . 0 ay, a5, . . . G,
0 1 0 0 a,, a,, . . . Gy,

00 . .01 ay @& - - . Gui

and vice versa. The entries q; ; of this matrix then give the bijection of U n G(k, V)
with K*"~ 9,
Note that the affine coordinates on the affine open subset of G(k, V') are just
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the k x kK minors of this matrix, which is to say the minors of all sizes of the
(n — k) X kmatrix (g; ;). In particular, expansion of any of these determinants along

any row or column yields a quadratic relation among these minors; thus, for
example,

A1 Q1,2
A1 1°Qg 2 — Q1 274y 1 =

dy1 Az 2

is a relation among the affine coordinates on P(A*K") restricted to G(k, n). In
this way, we can write down all the Pliicker relations explicitly in coordinates.

There 1s, finally, another way to describe the affine coordinates on the open
subset U n G(k, n) of k-planes A complementary to a given (n — k)-plane I'": we take
vectors vy, ..., v, € K" that, together with T’, span all of K*, and set

v(A) = AT + vy

The vectors v;(A) then give a basis for A, for all A € U; and the k-tuple of vectors
v,(A) — v; € T gives an identification of U n G(k, n) with T*.

Subvarieties of Grassmannians

To begin with, an inclusion of vector spaces W < V induces an inclusion of
Grassmannians G(k, W) < G(k, V), likewise, a quotient map V — V/U to the quo-
tient of V by an I-dimensional subspace U induces an inclusion G(k — [, V/U) <
G(k, V). More generally, if U <« W < V, we have an inclusion G(k — [, W/U) <
G(k, V). The images of such maps are called sub-Grassmannians and are sub-
varieties of G(k, V) (in terms of the Pliicker embedding G(k, V) < P(A\*V), they are
just the intersection“ﬂq}(k, V) with linear subspaces in P(/\*V), as we will see in the
following paragraph). o

If we view the Grassmannian as the set of linear subspaces in a projective
space PV, the sub-Grassmannians are just the subsets of planes contained in
a fixed subspace and/or containing a fixed subspace. We can also consider the
subset 2(A) = G(k, PV) of k-planes that meet a given m-dimensional linear sub-
space A = PV, or more generally the subset £,(A) of k-planes that meet a given
A in a subspace of dimension of at least I. These are again subvarieties of the
Grassmannian; 2,(A) may be described as the locus

EI(A) — {[0)]: WO ANDy A A Um—l-{“l — O VU]_, co e vm_l.{_l EA}

from which we see 1n particular that it, like the sub-Grassmannians, 1s the intersec-
tion of the Grassmannian with a linear subspace of P(A*V). These are in turn
special cases of a class of subvarieties of G(k, PV) called Schubert cycles, about
which we will write more later.

There are also analogs for Grassmannians of projection maps on projective
space. Specifically, suppose W < V 1s a subspace of codimension [ in the
n-dimensional vector space V. For k < [, we have a map n: U — G(k, V/W) defined
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on the open set U < G(k, V) of k-planes meeting W only in (0) simply by taking the
image; for k > [ we have a map »: U’ - G(k — [, W) defined on the open subset
U < G(k, V) of planes transverse to W by taking the intersection. Note that both
these maps may be realized, via the Plicker embeddings of both target and domain,
by a linear projection on the ambient projective space P(A\*V)~—for example, the
map = is the restriction to G(k, V) of the linear map P(A\*V) - P(A*(V/W)) induced
by the projection V — V/W.

Example 6.3. The Grassmannian (1, 3)

The next few exercises deal specifically with the geometry of the Grassmannian
G = G(1, 3) parametrizing lines in P>, which as we have seen may be realized (via

the Pliicker embedding) as a quadric hypersurface in P~.

Exercise 6.4. For any point p € P> and plane H < 3 containing p,let X , = G be
the locus of lines in P? passing through p and lying in H. Show that under the
Pliicker embedding G — P°, X , is carried to a line, and that conversely every line
in P° lying on G is of the form X, ;, for some p and H.

Exercise 6.5. For any point p e P>, let £ < G be the locus of lines in P> passing
through p; for any plane H < P°, let X, = G be the locus of lines in P3 lying in H.
Show that under the Pliicker embedding, both X and X, are carried into two-
planes in P, and that conversely any two-plane A =~ P? < G < P? is either equal
to 2, for some p or to Xy for some H.

Exercise 6.6. Let [, [, = P> be skew lines. Show that the set Q < G of lines in
P? meeting both is the intersection of G with a three-plane P° < P>, and so
is a quadric surface. Deduce yet again that QO = P* x P!, What happens if [,

and [, meet? /,\ﬁ
'|

Exercise 6.7. Nowmooth quadric surface. Show that the two
families of lines correspond to plane conic curves on G lying in comple-
mentary two-planes A,, A, = P>, Show that, conversely, the lines in P> corre-
sponding to a plane conic curve C < G sweep out a smooth quadric surface if and

only if the plane A spanned by C is not contained in G. What happens to this
correspondence if either the quadric becomes a cone or the plane A lies in G?

The next exercise is a direct generalization of the preceding one; it deals with
Segre varieties other than P! x P!,

Exercise 6.8. Let £, , = P! x P* < P?**! be the Segre variety, and for each p € P
let A, be the fiber of X, , over p. We have seen that A, is a k-plane in P?*™*; show
that the assignment p +— A, defines a regular map of P' to the Grassmannian
G(k, 2k + 1) whose image is a rational normal curve lying in a (k + 1)-plane in
ﬂ:p(/\k-f—lKZk-FZ)-
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Before proceeding, we should mention here a generalization of Exercise 6.4,
which will be crucial in the proof of Theorem 10.19. (The reader 1s encouraged to
skip ahead and read this theorem, which does not require much more than what
we have introduced already.)

Exercise 6.9. Let G = G(k, V) = PY = P(A*V). (i) Show that for any pair of points
A, A’ € G the line A, A’ they span in P" lies in G if and only if the corresponding
k-planes intersect in a (k — 1)-plane (equivalently, lie in a (k + 1)-plane). Thus, any
line L = G = P consists of the set of k-planes in V containing a fixed (k — 1)-plane
I' = V and contained in a fixed (k + 1)-plane Q < V.

(ii) Use part (i) to show that any maximal linear subspace ® = G — P" is either
the set of k-planes containing a fixed linear subspace of V or the set of k-planes
contained 1n a fixed linear subspace of V.

Example 6.10. An Analog of the Veronese Map

There is a somewhat esoteric analog of the Veronese map for Grassmannians. Let
S=K[Z,, ..., Z,] be the homogeneous coordinate ring of projective space P", and
(?enote by S, the dth graded piece of S, that 1s, the vector space of homogeneous

/Eolynomials of degree d in Z,, ..., Z,. Now, for any k-plane A < P", let I(A) be its
|

omogeneous ideal, and let I(A), = S, be its dth graded piece. Then I(A), 1s a

k+d
subspace of codimension ( T

d

\ .. . n+d\ (k+d\ (n+d
\ vi: Gk, n) G(( 7 ) ( PR B

or, dually, a map
k+d d
vd:G(k,n)-—»G(( :i' ),("; ))

.
Exercise 6.11. Verify the preceding statements about the codimension of I(A),
in S, and that the map v, 1s a regular map.

) in S;, and so we get a regular map

It is perhaps easier (at least in characteristic 0) to express this map in intrinsic
terms: if we view P" as the projective space PV associated to a vector space V, and
G(k, n) = G(k + 1, V) as the Grassmannian of (k + 1)-dimensional subspaces of V,
it is just the map sending a subspace A = V to the subspace Sym?(A) = Sym(V).
(In particular, in the case k = 0 we have the usual Veronese map.)

Example 6.12. Incidence Correspondences

Let G = G(k, n) be the Grassmannian of k-planes in P”. We may then define a
subvariety X < G x P" by setting

Y ={(A, x): xeA}
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2 is simply the subvariety of the product whose fiber over a given point A € G
1s the k-plane A < P” itself; in the language of Lecture 4, it is the “universal
family” of k-planes. The simplest example of this 1s the universal hyperplane,
the variety £ < PV x PV* whose fiber over a point H € PV * is just the hyperplane
H < PV, discussed earlier in Example 4.5. In general, this is the universal family
referred to in Example 4.15 when we indicated that the family constructed there
was not optimal.
It’s not hard to see that X is a projective variety; in fact, we may write

S={0; A AVLWIUL A AU A W= 0};
or in the case of the universal hyperplane,
2 = {([v], [w*]): (v, w*> =0} < PV x PV*

The construction of 2 is just the paradigm for a general construction that
will arise over and over in elementary algebraic geometry. One example of its
usefulness 1s the following proposition.

/

{

Propositiol(l/ 6.13. Let ® = G(k, n) be any subvariety. Then the union
=) AcP"

Acd

is also a variety.

PrOOF. Let 7, , 7, be the projection maps from the incidence correspondence X to
G(k, n) and to P". We can write

¥ = 712(71;1(@))

from which it follows that ¥ is a subvariety of P".

Example 6.14. Varieties of Incident Planes

Let X < P" be a projective variety. We claim that the locus %,(X) of k-planes
meeting X 1s a subvariety of the Grassmannian G(k, n). To see this, we may use the
incidence correspondence ¥ < G x P" introduced in Example 6.12: we write

€(X) = m, (3" (X)) < Gk, n)

where X is the incidence correspondence and n,: X — G(k, n), n,: & — P" are the
projection maps. This variety, called the variety of incident planes, will be useful in
a number of contexts, most notably the construction of the Chow variety. Note that
we have already seen that 4, (X) < Gk, n) 1s a subvariety in the special case of X a
linear subspace of P”".

Exercise 6.15. Now let X < P" be a locally closed subset. Show that the closure in

G(k, n) of the locus of k-planes meeting X is the variety of k-planes meeting the
closure X of X.
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Exercise 6.16. (i) Let C = P? = P° be the plane conic curve given by Z, =
Z,Z, — Z1 = 0. Find the equations of the variety of incident lines %, (C) = G(1, 3).
(ii) Do the same for the twisted cubic given parametrically by t s [1, ¢, £, t*]. (x)

Example 6.17. The Join of Two Varieties

Let X, Y < P" be any two disjoint projective varieties. We can combine Proposi-
tion 6.13 and Example 6.14 to deduce that the union J(X, Y) = P" of the lines
joining X to Y is again a projective variety. First, by Example 6.14, the set #(X, Y)
of lines joining X and Y is a subvariety of the Grassmannian, since it 1s expressible
as the intersection %, (X) N %,(Y); then by Proposition 6.13 the union of these lines
1S a subvari7fy( of P". We call the variety J(X, Y) the join of X and Y.

/

This construction generalizes that of the cone. We will give another proof
that J(X, Y)is indeed a subvariety of P" in Example 8.1; this alternate construction
will in particular allow us to generalize the definition of J(X, Y) to the case where
X and Y do meet (or even are equal).

Exercise 6.18. Give another proof that J(X, Y) 1s a subvariety of P", as follows.
First, show that in case X and Y are contained in complementary linear subspaces
I, A = P" the join J(X, Y) is simply the intersection of the cones I', Y and A, X.
Second, reduce to this case by arguing that any pair of disjoint varieties X, Y < P”"
can be realized as the images of varieties X, Y contained in complementary linear
spaces of a larger projective space PV under a linear projection from P" to P", and
that J(X, Y) is simply the image of J (X, Y) under 7. Does this approach allow you
to extend the definition to the case where X and Y meet?

Example 6.19. Fano Varieties

A fundamental type of subvariety of the Grassmannian G(k, n) 1s the Fano variety
associated to a variety X < P". This is just the variety of k-planes contained in X,
that 1s,

F(X)={A:A c X} < G(k, n).

To see that F,(X) is indeed a variety, observe first that it is enough to do this in case
X is the hypersurface given by a polynomial G(Z): in general, the Fano variety
F.(X) will be the intersection in G(k, n) of the Fano varieties associated to the
hypersurfaces containing it. To show it in this case, we work locally; we restrict our
attention to the affine open subset U = G(k + 1, n + 1) of (k + 1)-planes A < K"*'
complementary to a given (n — k)-plane A, and exhibit explicitly equations for
F(X)nU c U =~ K&D"™0 We start by choosing a basis v4(A), ..., v,(A) for each
A € U by taking vectors v, ..., v, € V that, together A, span all of V, and setting

0(A) = A A (Ag + 0,).

As we saw in the discussion of Grassmannians, the coordinates of these vectors are
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regular functions on U. Now, we can view the homogeneous polynomial G as an
element of Sym*(K"*!) < (K""1)®4, and set, for each multi-index I = {i,, ..., i;},

af(A) = G, (A), ..., v;,(A))

(to put it another way, the a; are the coeflicients of the restriction of G to A,
written in terms of the basis for A dual to the basis {v4(A), ..., v,(A)}). The a,(A)
then provide a system of polynomials cutting out F,(X)1in U.

For a more intrinsic version of this argument, recall from Example 6.10 that the
. map sending a k-plane A = P” to the dth graded piece I(A), of its ideal, viewed as a
\ subspace of the space S; of homogeneous polynomials of degree d, 1s a regular map

S
N v¥: G(k, n) > G(l, N)

'\\\.
~

\
n+d n+d k+ d
here | , K = — .
We"e&\(d) (d) (d)
*,
\
Now, the subset ® — G(I, N) of I-planes in S, containing the homogeneous
polynomial G € S, is a subvariety, and we can write
F(X) = (v)'(®)

so F;(X) is indeed a subvariety of G(k, n).

Exercise 6.20. Carry this out in the case of the quadric surface Q = P° given
by the polynomial Z,Z, — Z,Z,, and show that the Fano variety F,(Q) is a
unton of two conic curves. Compare this with the parametric description of F,{Q)
given in the discussion of the Segre map.
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Rational Functions and Rational Maps
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Let X < A" be an irreducible affine variety. Since its coordinate ring A(X) is
an integral domain, we can form its quotient field; this 1s called the rational function
field of X and is usually denoted K(X); its elements are called rational functions on
X. Note that if Y — X 1s an open subset that is an affine variety in its own right (as
in the discussion on page 19), the function field of Y will be the same as that of X.

One warning: a rational function h € K(X) is written as a quotient f/g, where f
and g € A(X) are regular functions on X; but despite the name, h itself 1s not a
function on X; even if we allow oo as a value at points where g = 0, we cannot in
general make sense of h at points where both f and g vanish. We will see shortly in
what sense we can deal with these objects as maps.

Next, consider an irreducible projective variety X < P". We can define its func-
tion field in two ways. We can either take the rational function field K(U) of any
nonempty affine open U = X n A" or we can form the field of fractions of the
homogeneous coordinate ring S(X) and take the Oth graded piece of that field, that
is, take expressions of the form h(Z) = F(Z)/G(Z) where F and G are homogeneous
of the same degree.

Exercise 7.1. Show that this all makes sense, 1.e., that the first definition of K(X) 1s
independent of the choice of affine open U and that the second agrees with the first.

i

cucsion to reducible varieties: for examnie. we can form
L= PN W L bW ' LALILTAS AR LW L WA e R LS5 LW T Wil L% LA uj F L Y v““‘l—lt—’lv, TF W "wwiiid LWL ARAL

We can extend this di
the quotient ring of the coordinate ring of any variety by inverting all non-zero

divisors (though it won’t in general be a field; indeed, by Theorem 5.7 1t will be a

darm ot mzuanm d dle oA -‘:Aldn L7 VvV 2\ T :lrnt-r-: P “n-l 5 am o - -n o 'Iﬂ'!"l.l'l n;Llﬁ «7 '-:.f\“'"f
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X will be given by specifying (arbitrarily) a rational function on each irreducible



Rational Maps 73

component of X, equivalently, by specifying a regular function on some dense open
subset of X.

Rational Maps

Having introduced the notion of rational function, we can now discuss ratio-
nal maps. We will proceed in four steps. We will give a provisional definition,
explain why the definition needs to be fixed up (this is essentially just a matter
of abuse of terminology), indicate how we may fix it up, and then proceed with
our ¢ SCussion.

Provisional Definition 7.2. Let X be an irreducible variety. A rational map ¢ from
X/to A" is given by an n-tuple of rational functions, 1.e.,

@(x) = (hy(x), ..., hy(x))

I;'fwhere h; € K(X). Likewise, a rational map of X to P" is given by an (n + 1)-tuple
| of rational functions

p(x) = [ho(x), ..., hy{(x)].

A rational map is usually represented by a dotted arrow:

. X ——— P~

Note that if X < P™ is projective, there is another way to represent a rational
map to P”: we may write the rational functions h;(x) in the form F;(x)/G;(x), where
F. and G; are homogeneous polynomials of the same degree d; and then multiply
the vector [hy(x), ..., h,(x)] by the product of the G; to arrive at an expression

QO(X) — [HO(x)n Tt Hn(x)]

where the H. are homogeneous polynomials of the same degree. The difference
between this and the corresponding description of a regular map to P”, of course,
is that we do not require that the H; do not all vanish simultaneously at some points

of X.

Lastly, note that, since the field of rational functions on a variety X 1is the
same as the function field of an affine open U < X, there is essentially no difference
between giving a rational map on X and giving one on U. In particular, every
rational map on X is regular on some open subset of X, and conversely any regular
map on an affine open subset of X extends to a rational one on all of X.

What’s wrong? Essentially the same objection as raised in connection with
rational functions: a rational map, despite the name, is not a map, since it may not
be defined at some points of X. But if a rational map is not a map, what sort of
object is 1t? Definition 7.2, which says that a rational map is “given by” a collection
of rational functions, but does not say what it actually i1s, is clearly unsatisfactory
from a formal standpoint. For example, since a rational map ¢: X ——— Y cannot



f

74 7. Rational Functions and Rational Maps

be described simply as an assignment to each point p € X of a point of Y, it may
not a priori be clear when two rational maps are to be considered the same.

The solution to this problem lies in the preceding observations that a rational
map ¢: X ——— Y should be defined on a Zariski open subset U — X; that con-
versely every regular map on an open U — X should extend to a rattonal one on
X; and that a rational map should be determined by its values on any open subset
U < X where it is defined. Combining these observations we are led to the follow-
ing definition.

efinition 7.3. et X be an irreducible variety and Y any variety. A rational

i

Q. X—-———>Y

| is defined to be an equivalence class of pairs (U, y) with U < X a dense Zariski

 open subset and y: U — Y a regular map, where two such pairs (U, y) and (V, ) are
. said to be equivalent if Y|,y = 7ly~y-

Note that if Z <= X is any open set, there is a natural bijection between the
sets of rational maps from X to Y and of rational maps from Z to Y. Similarly,
if W< Y is any open subset, we have an inclusion of the set of rational maps
X ——— W into the set of rational maps X ——— Y; the image of this inclusion
is just the set of those rational maps [(U, y)] such that y(U) £ Y — W.

Let p: X ———> Y and #: Y ——— Z be a pair of rational maps. In case there
exist pairs (U, f) representing ¢ and (V, g) representing 5 such that f ~1(V) # &, we
define the composition n o @ to be the equivalence class of (f ~*(V), g o f). If ¢ is the
inclusion of a subvariety Z < X, we also call this the restriction of  to Z. Note that
neither is defined in general: it may well be that for any (U, f) and (V, g) the image
of f lies entirely outside V.

If Definition 7.3 is the correct one, why start with a provisional definition? The
answer 15 that Definition 7.2 is in fact much closer to the way we actually think
about rational maps in practice, that is, as maps given by rational functions. For
the most part, this 1s how we will work with them, being always careful not to
assume formal properties they don’t possess (such as restriction or composition). In
any event, Definition 7.3 1s what we may consider our first point of view on

rational maps: a rational map ¢: X ——— Y is a regular map on an open dense
subset of X.

As in the case of rational functions, we can extend the preceding discussion
to the case of reducible varieties, for example, by applying Definition 7.3. In
particular, giving a rational map on a variety X with irreducible components X,
..., X, will be the same as giving a rational map on each component separately,
without any conditions coming from their intersections. For this reason, nothing 1s
lost if in discussing rational maps we restrict ourselves to the case where the domain
is irreducible. By way of terminology, then, we will adopt this convention; for
example, if we write “let ¢: X ——— P” be a rational map” we will be implicitly
assuming that X is irreducible.
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Example 7.4.

The simplest example of a rational map that is not regular is the map
o: A% ——— P!
given by

o(x, y) =[x, y¥].

Note that this map is defined exactly on
A% — {(0, 0)}, and sends lines through
the origin in A“ to the points of P! they pl
represent; in particular, there is no way
it can be continuously extended to all
of A%, Completing, we may think of ¢ as
a rational map from P2 to P!, which may then be described geometrically: it is just
the projection from the point p = [0, 0, 11 € P? to a line.

This has an obvious generalization: for any plane A =~ P* in P", the projec-
tion map 7, from A to a subspace P"*~! < P”, regular on the complement P* — A,
may be thought of as a rational map from P" to P""*7!; and similarly for any
X < P" not contained in A the restriction of 7, to X gives a rational map X ———
Pr~*~1 whether or not X meets A.

Graphs of Rational Maps

Let X be a projective variety and ¢: X ——— P" a rational map; let U < X be
an open subset where ¢ is defined. The graph of ¢|; 1s as we have seen a closed
subvariety of U x P"; by the graph of the rational map ¢ we will mean the
closure I', in X x P" of the graph of ¢|,. Note that this 1s independent of the
choice of open subset U « X (in particular, if ¢ is regular, this is just the ordinary

graph).

Since the graph I, of the rational map ¢ is a closed subvariety of X x P,
it is also a projective variety. It follows that the projection n,(I',) of the graph
I, to P" is again a projective variety; we will define the imuge of the rational

map ¢ to be the image of its graph I' .

We can also use the graph of ¢ to define the notion of image and inverse
image for rational maps. With ¢ as earlier, for any closed subvariety Z < P"
we take the inverse image ¢ 1(Z) of Z in X to be the image

¢ N Z)=m, (7351 (Z)),

where n,: I, » X and =n,: I, > P" are the projections. Likewise, for any closed
Y < X, we define the image, or total transform of Y under ¢ to be the image

@(Y) = my(n3 " (Y)).
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One warning: as in the case of the terminology “rational map” itself, the terms
“image” and “inverse image” may be misleading; for example, it is not the case that
for any point p € P" in the image of ¢ there exists a point g € X with ¢(q) = p. It
gets especially dangerous when we talk about the image under a rational map
0: X ——— P" of a subvariety Y < X; as Exercise 7.6 shows, the image of the
restriction of ¢ to Y (even assuming this restriction exists) will not in general
coincide with the image of Y under ¢ (the former 1s called the proper transform of Y).

Exercise 7.5. Verify the statement that the graph I is independent of the choice of
open set U, and show that the image of the rational map ¢ is the closure of the
image of @(U).

Exercise 7.6. Show that if ¢: X -—— P" 1s a rational map and Z < X a sub-
variety such that the restriction of ¢ to Z 1s delined, the graph I, = Z x P”
will be contained in the inverse image (n,) ' (Z) =T, N (Z x P") < X x P", but
may not be equal to it.

Exercise 7.7. Show that the image of a rational normal curve C < P" under projec-
tion from a point p € C is a rational normal curve C' = P"*,

By way of notation, for any projective variety Y < P", we will now define
a rational map ¢: X ——— Y to be a rational map from X to P" whose image
is contained in Y; by the preceding this i1s the same as requiring @(U) < Y for
any U < X on which ¢ is regular.

We observed, following Exercise 2.24, that it is not the case that a map ¢:
X — P™ on a projective variety X < P" 1s regular if and only if its graph I is a
subvariety of the product P" x P™. It is true, however, if we replace the word
“regular” with “rational.”

Exercise 7.8. Let X < P™ be an irreducible quasiprojective variety. Assuming that
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