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Translators’ Preftace

. . . if one wants to make progress in mathematics one should study
the masters not the pupils.

N. H. Abel

Hecke was certainly one of the masters, and in fact, the study of Hecke L-
series and Hecke operators has permanently embedded his name in the fabric
of number theory. It 1s a rare occurrence when a master writes a basic book,
and Hecke’s Lectures on the Theory of Algebraic Numbers has become a
classic. To quote another master, Andre Weil: “To improve upon Hecke, in
a treatment along classical lines of the theory of algebraic numbers, would
be a futile and impossible task.”

We have tried to remain as close as possible to the original text in pre-
serving Hecke’s rich, informal style of exposition. In a very few instances we
have substituted modern terminology for Hecke’s, e.g., “torsion free group”
for “pure group.”

One problem for a student is the lack of exercises in the book. However,
given the large number of texts available in algebraic number theory, this is
not a serious drawback. In particular we recommend Number Fields by
D. A. Marcus (Springer-Verlag) as a particularly rich source.

We would like to thank James M. Vaughn Jr. and the Vaughn Foundation
Fund for their encouragement and generous support of Jay R. Goldman
without which this translation would never have appeared.

Minneapolis George U. Brauer
July 1981 Jay R. Goldman






Author’s Preftace to the
German Original Edition

The present book, which arose from lectures which I have given on various
occasions in Basel, Gottingen, and Hamburg, has as its goal to introduce
the reader without any knowledge of number theory to an understanding
of problems which currently form the summit of the theory of algebraic
number fields. The first seven chapters contain essentially nothing new; as
far as form 1s concerned, I have drawn conclusions from the development of
mathematics, in particular from that of arithmetic, and have used the notation
and methods of group theory to develop the necessary theorems about
finite and infinite Abelian groups. This yields considerable formal and
conceptual simplifications. Nonetheless there will perhaps be some items of
Interest for the person who 1s familar with the theory, such as the proof of
the fundamental theorem on Abelian groups (§8), the theory of relative
discriminants (§36,38) which I deal with by the original construction of
Dedekind, and the determination of the class number without the zeta-
function (§50).

The last chapter, Chapter VIII, leads the reader to the summit of the
modern theory. This chapter yields a new proof of the most general quadratic
reciprocity law 1n arbitrary algebraic number fields, which by using the
theta function, is substantially shorter than those proofs known until now.
Even if this method 1s not capable of generalization it has the advantage of
giving the beginner an overview of the new kinds of concepts which appear
1n algebraic number fields, and from this, of making the higher reciprocity
theorems more easily accessible. The book closes with the proof of the
existence of the class field of relative degree two, which 1s obtained here as
a consequence of the reciprocity theorem.

As prerequisites only the elements of difterential and integral calculus and
of algebra, and for the last chapter the elements of complex function theory,

will be assumed.

Vil



Viil Author’s Preface to the German Original Edition

I am indebted for help with corrections and various suggestions to Messrs.
Behnke, Hamburger, and Ostrowski. The publisher has held the plan of the
book, conceived already before the war, with perserverance which i1s worthy
of thanks, and despite the most unfavorable circumstances, has made pos-
sible the appearance of the book. My particular thanks are due to him for

his pains.

Mathematical Seminar Erich Hecke

Hamburg
March 1923
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CHAPTER 1

Elements of Rational Number Theory

91 Divisibility, Greatest Common Divisors,
Modules, Prime Numbers, and the Fundamental
Theorem of Number Theory

For the time being the objects of arithmetic are the whole numbers, 0, +1,
+2, ... which can be combined by addition, subtraction, Wm
division (not always) to form integers. Higher arithmetic us ethods of
investigation analogous to those of real or complex numbers. Moreover it
also uses analytic methods which belong to other areas of mathematics, such
as infinitesimal calculus and complex function theory, in the derivation of
its theorems. Since these will also be discussed 1n the latter part of this book,
we will assume as known the totality of complex numbers, a number domain,
in which the four types of operations (except division by 0) can be carried out
unrestrictedly. The complex domain is usually developed more precisely in

the elements of algebra or of differential calculus. In this domain the number
1 1s distinguished as the one which satisfies the equation

l-a=a

for each number a. All successive integers are obtained by the process of
addition and subtraction from the number 1, and if the process of division
1s then carried out the set of rational numbers 1s obtained as the totality of
quotients of integers. Later, from §21 on, the concept of “integer” will be
subjected to an essential extension.

In this introductory part the basic facts of rational arithmetic will be
presented, briefly, as far as they concern divisibility properties of integers.

1



2 I Elements of Rational Number Theory

While, from two rational integers a, b, integers are always obtained 1n
the forma + b,a — b, and a - b, a/b need not be an integer. If a/b 1s an integer,
a special property of a and b 1s present, which we wish to express by the
symbol b|a, in words: b divides a, or b goes evenly 1nto a, or b 1s a divisor
(factor) of a, or a 1s a multiple of b. Each integer a (#0) has the trivial divisors
+a, +1; a and —a have the same divisors; the only numbers which divide
every number are the two “units” 1 and —1. An integer a, different from
zero, always has only finitely many divisors, as these cannot be larger 1n
absolute value than |a}; on the other hand every non-zero integer divides 0.

If b # 0 and integral, then, among the multiples of b which are not larger
than a given integer a there is exactly one largest multiple, say gb, and there-
fore a — gb = r is a non-negative integer which is less than |b|. This integer
r, uniquely determined by a and b by the requirement

a=gqb+r, qintegral, 0 <r <|b|

1s called the remainder of the division of a by b, or the remainder of a modulo
b. The statement b|a is thus equivalent to r = 0.

If we now direct our attention to the common divisors ¢ of two integers
a, b which satisfies c|a and c|b, then there is, to begin with, a uniquely de-
termined greatest common divisor (abbreviated GCD); we denote it by
(a,b) = d. According to this definition we always have d > 1. In order to
find properties of this number (a, b) we consider that we always have d|ax +
by for all integers x, y. If we now consider the set of all numbers L(x, y) =
ax + by, where x, y runs through all the integers, then d 1s obviously also
the GCD of all L(x, y); for 1t divides all L(x, y) and there 1s no larger number
with this property, since there can be no larger number which divides both
a= L(1,0) and b = L(0,1). Among the positive integers L(x, y), let d, =
L(x,, yo) be the smallest; thus from

L(x, y) > 0 1t immediately follows that L(x, y) > d,. (1)

We now show that each n = L(x, y) 1s a multiple of d, and that d = d,,.
Let the remainder r of n mod d, be determined by

r=n-—gq-dy= L(X—qxq, y — qYo)-

Here we have 0 < r < d,; however by (1) it would follow from r > O that
r >d,. Thus we can have only r =0, ie., n= qd,. Accordingly the num-
bers L(x,y) are identical with the multiples of d, for each multiple qd, =
L(gxq,q9Y,) also appears among the L(x, y). Consequently d,, is likewise the
GCD of all L(x, y)~hence it is identical with d. In particular this yields:

Theorem 1. If (a,b) = d, then the equation
n=ax + by

is solvable with integers x, y if and only if d|n.
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Moreover 1t follows from this that every common divisor of a and b
divides the GCD of q, b.

To ascertain the GCD one uses, as 1s well-known, a process which goes
back to Euclid, the so-called Euclidean algorithm. The main point of this
algorithm consists of reducing the calculation of (a, b) to the calculation
of the GCD of two smaller numbers. It follows from a = gb + r that the
common divisors of a and b are 1dentical with those of b and r, hence we
have (a,b) = (b,r). Assume a > 0, b > 0 for the sake of convenience, set
a = a,, b = a, because of symmetry, and then let the remainder of a, mod a,
be a,. In general let

a;., be the remainder of ¢, mod q;,, fori=1,2, ...
as long as the remainder can be determined, that 1s, a;, ; > 0, and indeed let
;i = qiG;+1 t iy 2 0<a;:; <a;;.

Since, according to this procedure, the a; form a monotone decreasing
sequence of integers for i > 2, the process must reach an end after finitely
many steps, which will occur when the remainder becomes zero. Suppose
a;,, = 0. Since

(a1,a;) = (az,a3) = - (a;,a;4 1)
= (ai+ laai+2) = (ak+ 19 ak+2)
= (Ak+1,0) = @11,

the last non-vanishing remainder q, . , 1s the GCD sought.

In the proof of Theorem 1 we have used only one property of the set
of numbers L(x, y), namely the property that this set is a module. Here
we define:

Definition. A system S of integers 1s a module if 1t contains at least one number
different from O and if along with m and n, m + n and m — n also always
belong to S.

Thus if m belongs to S, then m + m =2m, m + 2m = 3m - - - belong to
S; moreover m—m=0, m—2m= —m, m —3m= —2m - - belong to 8§.
Hence, 1n general, mx belongs to S for each integer x provided m belongs
to S, and consequently mx + ny also belongs to S for integers x, y if this
holds for m, n.

We can prove the following very general theorem about modules with
the help of the proof of Theorem 1.

Theorem 2. The numbers in a module S are identical with the multiples of
certain number d. d is determined by S up to the factor +1.

For the proof we consider that S contains positive numbers in any case.
Let d be the smallest positive number occurring in S. If n belongs to S, then
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by what has gone before, n — gd also belongs to S for each integer g, in
particular so must the remainder of » mod d, which is <d but >0, and
thus must =0. Consequently each » from S is a multiple of d and since d
belongs to S so do all multiples of d. Let d’ be a second number which also
has the property: the numbers of S are identical with the multiples of d'—
then d must be a multiple of d’ and conversely, that is, d' = 1-d.

If in an arbitrary linear form a,;x, + a,x, + - -+ + a,x, with integral
coeflicients one lets the x,, ..., x, run through all integers, then the range

of values defined in this way is obviously a module. Hence in particular
we have

Theorem 3. The range of values of an arbitrary linear form in n variables with

integral coefficients, not all vanishing, is identical with the range of values of
a certain form of one variable d - x. Here d is the GCD of the coefficients of the
original form.

In order that the equation (a so-called Diophantine equation)
k=a(x;{+ a,x, + + a,x,

be solvable 1n 1integers x,, . . ., x,, 1t 1s necessary and sufficient that the GCD
ofa,,...,a, divides k.

If (a,b) = 1, we call a and b coprime or relatively prime. By Theorem 1, in
order that (a, b) = 1, the solvability of

ax + by =1

In 1ntegers x, y 1s necessary and sufficient.
As the most important rule of calculation with the symbol (a, b) we state:

Theorem 4. For every three integers a, b, c, where ¢ > 0
(a,b)c = (ac, be). (2)

In fact if (a, b) = d, then the equation acx + bcy = cd follows by Theorem 1
from the known solvable equation ax + by = d; consequently cd 1s a multiple
of (ac, bc), again by Theorem 1. On the other hand, however, cd 1s a common
divisor of ac, bc and hence must be equal to (ac, bc).

In addition we note the concept of least common multiple of two numbers
a and b. This 1s the smallest positive number v which is divisible by a as
well as by b. For this number we have

ab
d 2

ab\_. _(a b
d,d—-, U= dv,dv.

However ab/d 1s a common divisor of (a/d v and (b/d )v and thus it divides v,
that is, v > |ab|/d; on the other hand, ab/d is a number which is divisible

where (a, b) = d. (3)

D =

For by (2),
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by a as well as by b, and consequently i1t has absolute value >v. Hence ab/d
can only be = 1.

Since the numbers divisible by a and by b form a module and v 1s the
smallest positive number occurring in it, every number divisible by a and by
b must be a multiple of v.

We now turn to the multiplicative decomposition of a number a. If, except
for the trivial decomposition into integral factors, in which one factor 1s +1
and the other 1s +a, there 1s no other, we call a a prime number (or prime).
Such numbers exist, e.g., +2, +3, +5,... . We do not wish to count the

units + 1 as prime numbers. If, for the sake of simplicity, we restrict ourselves
to the decomposition of positive numbers a into positive factors we see first
of all that every a > 1 1s divisible by at least one positive prime number since
the smallest positive factor of a, which 1s > 1, obviously can only be a prime.
Now we split off a prime number p, from the number a by the decomposition
a = p,a;, if a; > 1 we again split off another prime p, from a, by a, = p,a,,
and so on. Since the a,, a,, . . . form a decreasing sequence of positive integers
we must arrive at an end of the process after finitely many steps, that 1is,
some a, must be =1. With this, a 1s represented as a product of primes
Py Py Pi. Hence the primes are building blocks from which each integer
can be built up by multiplication. We now have

Theorem 3. (Fundamental Theorem of Arithmetic). Each positive number > 1
can be represented in one—and except for the order of the factors—in only
one way as a product of primes.

For this 1t 1s sufficient to show that a prime p can divide a product of
two numbers a - b only if 1t divides at least one factor. But this follows from
Theorem 4. Namely, if the prime number does not divide q, then as a prime
it cannot have any factor at all in common with a, hence (a,p) = 1. Then
for each positive integer b, we have by Theorem 4

(ab, pb) = b.

Now if p|ab, then we must also have p|b, i.e., the prime p divides the other
factor b of the product ab. This theorem carries over at once to a product

of several factors.
In order to prove Theorem 5 we consider two representations of a positive

number a as a product of powers of distinct positive primes p;, q;,

PI'PZ " Py =4q1'q5 " " " qi"
By what was just proved each prime g divides at least one prime factor of
the left-hand side and 1s thus i1dentical with some p,. Thus the g4, ..., q,
agree with p,, ..., p,, except possibly for order; hence we also have k = r.
We choose the numbering so that p; = g;. Now if corresponding exponents
were not equal, say a, > b, then after division of the equation by ¢3! it follows

that the left-hand side still has the factor p, = g, but the right-hand side
ho longer has this factor. Hence a, = b, and in general g, = b..
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With this theorem about the unique decomposition of each number into
prime factors we have a substantially different method of deciding the
questions treated above, e.g., whether a given number b divides another
number a, how (a, b) or the least common multiple of a and b 1s found, etc.
Specifically, if we think of a and b as decomposed into their prime factors

Pis - -+ Drs

a=pipy" P

b=phr- -t
where zero is also allowed for the exponents a;, b;, then obviously b|a holds
if and only if we always have a; > b;. Moreover we have

(a9 b) = pilpgz S p;"r9 di = min(aia bi)9 | = 19 29 IIIEN £

— P C1pC2 . . . pfr _ .
V= pllpZ2 Py s C; = max(ai, bi)9 I = 1, 2, N

The existence of infinitely many primes follows immediately from the fact
that

Z=Ppy Py Ppt+1

1s a number which 1s not divisible by any of the primes p,, ..., p,. Hence
z 1s divisible by at least one prime number distinct from p,, ..., p, and con-
sequently if there are n primes, then there are n + 1 primes.

§2 Congruences and Residue Classes

By the preceding section, an integer n # 0 immediately determines a distri-
bution of all integers according to the remainder which they yield mod n.
We assign two integers a and b which have the same remainder mod n to
the same residue class mod n or more simply, the same class mod n, and write

a = b (mod n), (a 1s congruent to b modulo n),

which is equivalent to n|a — b. If a is not congruent to b relative to the
modulus n we write a # b (mod n). a = 0 (mod n) asserts that a is divisible by
n. Each number is called a representative of its class. Since the difierent
remainders mod n are the numbers 0, 1, 2, ..., |n| — 1, the number of dif-
ferent residue classes mod n is |n|. The following easily verified rules hold
for calculations with congruences: if a, b, ¢, d, n are integers, n # 0, then we
have:

(1) a = a (mod n).
(11) If a = b (mod n), then b = a (mod n).
() If a = b (mod n) and b = ¢ (mod n), then a = ¢ (mod n).
(iv) If a = b (mod n) and ¢ = d (mod n), thena + ¢ = b + d (mod n).
(v) If a = b (mod n), then ac = bc (mod n).
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(mod n). In particular we have ¢* = b* (mod n) for each positive integer k
whenever a = b (mod n). By repeated application 1v) and (v) we obtain:
if a = b (mod n), then f(a) = f(b) (mod n) when f(x) is an integral rational
function of x (polynomial in x) with integral coefficients.

Hence, to put it briefly, we can calculate with congruences of the same
modulus 1n exactly the same way as with equations as far as the integral
rational operations (addition, subtraction, multiplication) are concerned.
With division it i1s different. If ca = ¢b (mod n), it does not follow that
a = b (mod n), for the hypothesis means n|c(a — b). Now if (n,¢) = d, we

further have
n c n
= )=1, -
(d d) d

y a—b, 1l1e., a= b(mod g)

For example: It doesnot follow from5-4=5-1(mod 15)that4 =1 (mod 15),
but rather only mod(15/5) = 3. Hence we have

In general from a=b(modn) and c=d (moﬁq:;follows that ac = bd

g(a-—-b);

hence by Theorem 4,

n

Theorem 6. If ca = cb (mod n), then

a=b (mod Z—), where (c,n) = d,

and conversely.

In connection with this there 1s the fact:

A product of two integers may be congruent to zero mod n although neither
of the factors has this property.

For example 2 - 3 = 0 (mod 6) although neither 2 nor 3 is = 0 (mod 6).
Concerning the connection between congruences relative to different moduli
we see directly from the definition: if a congruence holds mod n, then 1t
also holds modulo each factor of n, in particular also modulo —n. Further-
more, 1f

a=b(modn,;) and a=b (mod n,),
then
a = b (mod v),

where v 1s the least common multiple of n, and n,.
Since the residue classes modulo n and the residue classes modulo —n
coincide, 1t 1s sufficient to investigate the residue classes modulo a positive n.
A system of n integers which contains exactly one representative from
each residue class mod »n will be called a complete system of residues mod n.
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Since a complete system of residues mod n consists of |n| distinct numbers,
n| incongruent numbers modulo n always form a complete system of residues
mod n, e.g., the numbers 0, 1,2, ..., |n| — 1. More generally

Theorem 7. If x,, x,, . ..,Xx, forms a complete system of residues mod n(n > 0),
thenax, + b, ..., ax, + b isalso such a system, as long as a and b are integers
and (a,n) = 1.

For by Theorem 6 the n numbers ax; + b (i=1, 2,..., n) are likewise
incongruent numbers modulo n.

A representation of a residue system with respect to a composite modulus,
which 1s often useful, 1s given by the following:

Theorem 8. If a,, a,, ..., a, are pairwise relatively prime integers, then a
complete residue system mod A, where A = aa, * * - a,, is obtained in the form

L( ) A + A + -+ A C

XisenoesXy) =—C1X7y +—C3X5+ "+ —C,X,

1 a, 11T 2% a

if the x; independently run through a complete residue system mod a; (i = 1,
2,...,n). Here the c; may be arbitrary integers relatively prime to a;.

The number of these L values is |4| and they are incongruent mod 4
since from the congruence mod A

L(x{,...,Xx,) = L(x},...,x,) (mod A)
the same congruence follows modulo each a;. Since

A
— =0 (mod a;) fork # i,
ax

we havefori=1,2,...,n

A A
c;— X; = ¢; — x; (mod a,).
a; d;

Moreover by Theorem 6, since (¢;,a;) = 1 and (4/a;,a;) = 1, we get x; = X;
(mod a;). Two numbers L, as they occur in Theorem &, are thus always
incongruent mod A.

In exactly the same way one can prove that one obtains a complete system
of residues mod a - b if we let the quantity x in x + by run through a complete
system of residues mod b, and independently let the quantity y run through
a complete system of residues mod a.

A characteristic of each residue class mod n 1s the greatest common
divisor which an arbitrary number from the class has in common with n.
This really depends only on the class, since if a = b (mod n), thena = b + gn
with integral g, and hence each common factor of a and » 1s also a common
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factor of b and n and conversely. Thus it makes sense to speak of the GCD
of a residue class mod n and n.

In particular we ask for the number of residue classes mod n which are
relatively prime to n. This number is the Euler function ¢(n). To begin with,
o(n) is easily determined for the case n = p*, a power of a positive prime p,
as @(p*) is the number of those numbers among 1, ..., p* which are not
divisible by p. Among these the number divisible by p is the number of
multiples of p between 1 and p*, hence p*~ ', and thus

) 1
o) =p" —p"" = p"(l _E)'

In order to determine @(n) for composite n we now prove the

Lemma. ¢(ab) = @(a)p(b) if (a,b) = 1.

One obtains, by Theorem 8, a complete system of residues mod ab 1n the
form ax + by, if x runs through a complete system of residues mod b, and
y runs through a complete system of residues mod a. However, in order
that such a number be relatively prime to ab, i.e., relatively prime to a as
well as to b, it 1s necessary and sufficient that (ax,b) = 1 and (by,a) = 1, 1.e,,
since (a,b) =1: (x,b) =1 and (y,a) = 1. Hence one obtains the numbers
ax + by relatively prime to ab if we let x run through the residue classes
which are relatively prime to b mod b, and y run through those relatively
prime to a mod a; hence the lemma is proved. By repeated application, if
n 1s decomposed into its positive prime factors, we obtain:

— a ... r
fOI' n = p‘ilp22 pf ’

1
o(n) = @(pt') o) - epy)=n [ll (1 — 5)' (4)

In the product p must run through all positive primes which divide n.

The complete system of residue classes mod n relatively prime to n 1s
called a reduced system of residues mod n. It contains ¢@(n) classes, and a
system of one representative from each class is called a complete reduced
system of residues mod n. As in Theorem 7 one proves:

If x{, X5,...,X, is a complete reduced system of residues mod n, then
ax,, ax,, ..., ax, is also such a system, provided (a,n) = 1.

From this we obtain a highly important fact about each number a rela-
tively prime to n. Since each of the numbers ax,, ..., ax, 1s congruent
mod n to one of the numbers x4, ..., x, by the above, then the product of
the numbers ax,, ..., ax, is congruent to the product x, * - - x;, that 1s,

a'x X, X, = X%, ¢ X, (mod n)
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and since each x is relatively prime to n, we obtain
a" = 1 (mod n),

and with this, since h = @(n),

Theorem 9. (Fermat’s Theorem). For each number a relatively prime to n

a?™ = 1 (mod n).

In particular if n 1s a prime p (>0), then ¢@(p) = p — 1, and after multipli-
cation by a we have, for each integer a, the congruence

a? = a (mod p). (5)

The significance of this theorem and the kernel of its proof really becomes
understandable 1n Chapter II when we introduce the general group concept
into these investigations. The theorem contains a statement about the solu-
tions of the congruence x? — x = 0 (mod p) and forms the basis for the theory
of higher congruences.

93 Integral Polynomials, Functional Congruences,
and Divisibility mod p

It we let ourselves be guided in the further development of the 1deas pre-
sented up to now by the analogies with algebra, then the next goal 1s the
investigation of polynomials f(x) with integral coefficients with regard to
their behavior relative to a modulus n, and then the question of solvability
of a congruence f(x) = 0 (mod n) in integers x.

By an integral polynomial f(x) = ¢y + ¢;x + - - + ¢.x* we understand
such a polynomial, where c,, c;, . . ., ¢ are integers. Two integral polyno-
mials f(x) and g(x), where g(x)=ay, + a;x + - + a,x*, are said to be
congruent modulo n or
; J(x) = g(x) (mod n),

1
c;=aq,(modn) fori=0,1,2,...,k.

(For constants, i.e., polynomials of degree 0, this concept of congruence
agrees with the one used up to now.) Thus this definition concerns the
behavior of f(x) and g(x) identically in the variable x, not only for special
values of x. For this reason even if for all integer values x, we have

f(xo) = g(xo) (mod n),
the polynomials f(x) and g(x) need not be congruent as the example

x? = x (mod p)
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(for p a prime) shows. By Fermat’s theorem this is a correct numerical con-
gruence for each integer x, but the polynomials x? and x are not congruent

to each other.

For these functional congruences exactly the same rules of calculation
(1)—(v) 1in §2 hold as for numerical congruences, and the proof is likewise
simple; for this reason we will not go into it.

Definition. For two integral polynomials f(x) and g(x), f(x) 1s said to be
divisible by g(x) mod n if there 1s an integral polynomial g,(x) such that

f(x) = g(x)g,(x) (mod n).
If moreover a 1s an integer such that
f(a) = 0 (mod n),

then a 1s called a root of f(x) mod n.

If a 1s a root of f(x) mod n and a = b (mod n), then obviously b 1s also a

root of f(x) mod n.
The connection between roots mod »n and divisibility mod n 1s shown by

the following fact:

Theorem 10. If a is a root of the integral polynomial f(x) mod n, then f(x) is
divisible by x — a mod n and conversely.

Since f(a) = 0 (mod n) we have

f(x) = f(x) — f(a) (mod n).

However (f(x) — f(a))/(x — a) 1s an integral polynomial, g(x), since for each
positive m

x" —a"
=x""1+ax" ? +a’x" 3+ -+ a" x+a"!

X —dad

1s an integral polynomial and f(x) — f(a) 1s an integral combination of
expressions x™ — a™. Hence

f(x) = (x — a)g(x) (mod n).

The converse 1s trivial.
However if f, g, g, are integral polynomials and

f(x) = g(x)g,(x) (mod n),

then a root a of f(x) mod n need not be a root of g(x) or g,(x) mod n, as one
might conjecture by analogy with algebra. For example, we have

x% = (x — 2)(x — 2) (mod 4).
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4 is a root of x* mod 4 but not a root of x — 2 mod 4. Only for prime moduli
do we have

Theorem 11. If f(x) = g(x)g,(x) (mod p), where p is a prime, then each root
of f(x) mod pisaroot of at least one of the two polynomials g(x), g,(x) mod p.

If for the integer a, f(a) = 0 (mod p), then

g(a) - g1(a) = f(a) = 0 (mod p).

If the prime p divides the product g(a) - g,(a), then it divides one of the two
factors.

Theorem 12. An integral polynomial f(x) of degree k has no more than k
incongruent roots modulo a prime p, unless f(x) = 0 (mod p), in which case all
coefficients are divisible by p.

The theorem 1s true for the polynomials of degree O, the constants. For 1f
f(x) = ¢q 1s independent of x, then f(x) = 0 (mod p) has either 0 solutions—
when p does not divide c,—or 1t has more than 0 solutions—namely every
integer if ¢, 1s divisible by p, that 1s, the polynomial f(x) = 0 (mod p). Suppose
now that our theorem has been proved for polynomials of degree < k — 1.
Then we show 1t 1s correct for polynomials of degree k. If a 1s a root of
f(x) (mod p), then by the proof of Theorem 10 we may set

Jf(x) = (x — a)f,(x) (mod p),

where f,(x) 1s of degree at most k — 1. By Theorem 11 each root of f(x) mod p
1s either a root of f,(x) or a root of x —amod p (or both). However
x — a = 0 (mod p) has only one incongruent solution and f,(x) = 0 (mod p)
has either at most kK — 1 incongruent solutions, in which case f(x) has at
most k — 1 + 1 = k solutions, or the polynomial f,(x) = 0 (mod p). In the
latter case the polynomial f(x) is =0 (mod p). Thus the theorem 1s proved
by complete induction.

The theorem is not correct for composite moduli, as the example x* — 1
modulo 8 shows. This second-degree polynomial has four incongruent roots
mod 8, namely x =1, 3, 5, 7.

Theorem 13. If for two integral polynomials f(x) and g(x)

f(x) - g(x) = 0 (mod p), p a prime,
then either f(x) = 0 (mod p) or g(x) = 0 (mod p) or both.

Suppose the theorem 1is false, 1.e., neither f(x) nor g(x) is = 0 (mod p).
Then let all terms of f(x) and g(x) which are divisible by p be omitted and
two nonvanishing polynomials f;(x), g,(x) are obtained, all of whose coef-
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ficients are not divisible by p, while at the same time

f(x) = f,(x) (mod p),
g(x) = g,(x) (mod p);

f1(x)g1(x) = 0 (mod p).

The highest-degree term 1n f,(x)g,(x) must thus be = 0 (mod p) on the one
hand, on the other hand however it 1s equal to the product of the highest
terms of f,(x) and g,(x). Since p 1s a prime and all terms of f,(x) and g,(x)
are not divisible by p, the product of such terms is also not divisible by p.
Consequently the hypothesis 1s false, and the theorem 1s proved.

it follows that

Definition. An integral polynomial is called primitive if its coetlicients are
relatively prime, i.e., if for each prime p, f(x) # 0 (mod p).

Then Theorem 13 obviously allows the following formulation:

Theorem 13a (Theorem of Gauss). The product of two primitive polynomials
is again a primitive polynomial.

34 Congruences of the First Degree

The polynomials of degree 1 and their roots mod n can be dealt with easily.
This leads to the theory of congruences with one or several unknowns.

Let the integers a, b, n (n > 0) be given. What statements may be made
about the solutions x, 1n integers, of

ax + b =0 (mod n)? (6)

Since all the numbers of a residue class appear at once as solutions, if there
are any, we ask only for the incongruent solutions mod n. The answer 1s

Theorem 14. The congruence (6) has exactly one solution mod n if (a,n) = 1.

For by Theorem 7, ax + b falls exactly once into the residue class O 1f x
runs through a complete system of residues mod n.

If, however, (a,n) = d and (6) 1s solvable, then the congruence 1s also true
mod d and for b 1t yields the condition

b= 0 (mod d).
Then by Theorem 6, (6) 1s equivalent to

a b n
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and this equation has, by Theorem 14, exactly one solution x, mod(n/d). All
solutions of (6) are thus the numbers

n
x=x0+a-y

with integral y and among these there are exactly d different ones mod n.

They are obtained if y 1s allowed to run through a complete residue system
mod d.

In the case (a,n) = d > 1, (6) is thus solvable if and only if d|b. Then the
number of distinct solutions mod n is equal to d.

The congruence (6) 1s equivalent to an equation ax + b = nz, with z inte-
gral, 1.e., its solution 1s equivalent to the Diophantine equation ax — nz = —b.
Of course an application of Theorem 1 to this equation also leads to the
above result. In particular, if (g, n) = 1, the congruence

aa’ = 1 (mod n)

always has exactly one solution a’ determined mod »n, and the solution of
the more general congruence ax + b = 0 (mod n) is obtained, by multiplying
by a’, in the form

= —a'b (mod n).

Moreover by Theorem 9 we can take the number a*™~! for a'.
We can consider several linear congruences, with one unknown x but
relative to different moduli brought into the form

x=a; (modn;), x=a,(modn,), ..., x=a modn) (7)

If x and y are two numbers which satisfy this system, then x — y 1s divisible
by each n;, hence also by the least common multiple v of n,, . . ., n,, that is,
x = y (mod v); conversely, if x 1s a solution of (7), and x = y (mod v), then y
1s also a solution of (7). Thus the solutions of (7), in case such a solution exists,
are uniquely determined mod v. We are interested only in the most important
case:

Theorem 15. The k congruences (7) have exactly one solution determined
mod n.n, - - - n, if the moduli are pairwise relatively prime.

For with Theorem 8 1n mind let us set

v v v
X=—X +— Xy +" " +— X (v=nn, ' n)
ny n, n,

and determine the x; from the congruences

—hv—xisai(modni) i=12,...,k)
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which 1s always possible by Theorem 14 on account of the hypothesis. An
x obtained in this way 1s a solution of (7).

The investigation of the roots of polynomials of higher degree mod n
then leads to congruences of higher degree in one unknown. In order to be
able to attack the elements of this much more complicated theory we must
think through the calculations with residue classes more precisely. We will
encounter the essential relationships which were presented here several
times, in the following sections, in still different forms, so that it is useful to
extract the concept which 1s capable of so many difterent kinds of realizations
and to make 1t the object of the investigation. This 1s the group concept.
The following chapter 1s devoted to it.



CHAPTER 11

Abelian Groups

95 The General Group Concept and Calculation
with Elements of a Group

Definition of a Group. A system S of elements 4, B, C . . . 1s called a group
if the following conditions are satisfied:

(1) There is a prescription (rule of composition) given according to which
from an element A and an element B, a unique element of S, say C, is always
obtained.

We express this relation symbolically
C=AB or (AB)=_C.

This composition need not be commutative with respect to the elements A4
and B, that 1s, AB and BA may be diflerent.

(11) The associative law is true for this composition: For every three
elements A, B, C,

A(BC) = (AB)C.
(1) If A, A', B are any three elements of S, then the following are to hold:

If AB= A'B,then A = A’
If BA=BA' then A= A

(1v) For every two elements A, B, in S, there is an element X in S such that
AX = B and an element Y in S such that YA = B.

If the system S contains only finitely many different elements—Ilet their
number be h—then (iv) is automatically satisfied as a consequence of (1) and
(i11). To prove this, let X in AX run through the h different elements X4, . .. X,

16
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of the group. Then, by (1), AX always represents an element of the group, and
by (1) the h elements so obtained differ from one another. Consequently 1n
this way each element of the group appears exactly once, in particular this
holds for the element B, thus there 1s an X such that AX = B.In an analogous
fashion one can deduce the second part of (1v).

If the group contains infinitely many difierent elements it 1s called an
infinite group; otherwise 1t 1s called a finite group of order h, where h 1s the
number of i1ts elements.

The group property does not automatically belong to a system S but only
with respect to a definite type of composition. With one type of composition
S may be a group, while the same elements need not form a group under a
different kind of composition.

Examples of groups are the system of all integers with composition by
addition and the system of all positive numbers (integers and fractions) with
composition by multiplication.

On the other hand the system of positive integers alone with composition
by multiplication does not form a group, because requirement (1v) 1s not
satisfied.

Furthermore if we consider two integers as equal whenever they are
congruent relative to a definite modulus n, then the system of residues mod n
with composition by addition forms a finite group of order n.

In exactly the same way the system of residues mod n, which are relatively
prime to n, with composition by multiplication forms a group of order ¢(n).
In all these examples the rule for composition 1s commutative. An example
of a noncommutative group 1s the system of all rotations of a regular body,
e.g., a die, about its midpoint which brings the body back to cover itselt.
Here the composition of two such rotations 4 and B, which is called AB,

1s to be that rotation which 1s obtained if first B and then A 1s performed.
The set of all permutations of n digits forms a finite group. Composition

of the permutation 4 with B means the permutation AB which results from
the performance of B followed by the performance of A.

If two groups ®, and ®, are given whose elements are to be denoted by
the indices 1 and 2 respectively and i1f a well-defined invertible correspondence
(denoted by —) can be exhibited such that if A, - A, and B, — B,, then
A,B; - A,B,, then we call the two groups ®, and ®, isomorphic. Two
iIsomorphic groups are only distinguished by the way in which the elements
are denoted and the way in which the operation of combination 1s denoted.
Hence all properties which are expressible strictly in terms of the group
axioms (1)—(1v) and which hold for one group, are also satisfied by isomorphic
groups. Thus 1somorphic groups are not to be viewed as difierent for group-
theoretic 1nvestigations.

Now let ® be a group. In the following its elements are to be denoted by
capital Latin letters. The product of two elements of ® 1s defined by the
existence of the composition according to (1). We now define the product of
k elements by complete induction.
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Definition. Suppose we have already defined the element 4, - 4, - - A4, of S

which is to denote the product of n arbitrary elements 4,, A,, ..., A.. Then
we define the product of n + 1 arbitrary elements 4,,..., A,,, of ® by the
equation

AI'AZH'An+1=(A1'A2”'An)'An+1'

We now prove the

Lemma. For an arbitrary integer k > 3
AI.AZ...Ak= 1.(A2.A3...Ak).

For k = 3 this 1s obviously true, according to the associative law (11). If
however the theorem 1s true for k = n, then also for k = n + 1 as we have

AI.AZH'An+1=(A1'A2”'An)'An+1:Al'(A2iA3"'An)'An+1
= Ay (Ay- A3 Apsr).

Thus the lemma 1s proved 1n general.
Moreover i1t follows for 1 < [ < k

(Al'Az"'Az)(Az+1 "'Ak)= [(Al 'Az'”Az—l)'Al](Az+1"'Ak)
— (A1 Ay A1—1)(A1Az+1 S Ak),

that 1s, the two 1nner parentheses may be shifted one place to the left in the
original product without the result being changed. Consequently the inner
parentheses can also be shifted as many places as desired to the right or to

the left and thus
(A1A2”'Az)(Az+1 "'Ak)=A1 + Ay Ay

entirely independently of where the parentheses stand. Hence 1n a product
of two expressions 1n parentheses, the parentheses may be omitted without
the result being changed and one can easily prove the theorem for several
expressions 1n parentheses by complete induction:

Theorem 16. A product of r + 1 expressions in parentheses
(Al S An)(An1+1 S Anz) ' (An2+1 S Ang) S (Anr+1 S Ak)

does not change if the parentheses are removed and is thus independent of the
position in which the parentheses stand and therefore is equal to A, - A, * - * A,.

Theorem 17. In every group there is exactly one element E such that
AE=EA = A

for every element of the group. E is called the unit (identity) element.

By (1v), to each A there 1s an E such that
AE = A, thusalso YAE = YA.
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If Y runs through all elements of the group, then, by (iv) this also holds for
YA = B, hence BE = B holds for each B, and E 1s independent of B.
Moreover there likewise exists an E’ such that for each A

E'A=A.
For A = E 1t follows that
E'E = E,

and from AE = A it follows that for A = E’
EF'E=FE, hence E=F,

and the theorem 1s proved. This unit element may be omitted as a component
of a product. Thus it plays the role of the number 1 in ordinary multiplication

and 1t will also be denoted by 1.
Finally, again by (iv), for each A there i1s again an X and a Y such that

AX = E, YA = E.
From this it follows by composition with Y that
YAX = YE, hence EX=YE X =Y.

We call the element X uniquely defined 1n this way by A the inverse element
(or inverse) of A and we denote it by A~ 1. It is defined by

A-A"'=A"'-A=E

We can now introduce the powers of an element A4:
By A™ we understand a “product” of m elements, for positive m, each of
which 1s = A. Then by Theorem 16 for positive integers m, n

Am+n — Am . An — An . Am_
Furthermore by Theorem 16
A" (A" =E,

that is, (4~ )™ is the reciprocal of 4™, thus = (4™)~'. We denote this element
by
A—m — (A—l)m — (Am)—l.
Finally for each 4 we set
A’ =E.

Exactly as in elementary algebra one proves for these powers with arbitrary

Integral exponents:

Theorem 18. For all integers m, n

Am . An — An . Am — Am+n,
and
(Am)n — (An)m — Anm.
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An equation between elements of a group 1n one unknown can be solved
with the help of the inverse. By multiplication by A~ ! it follows that

if AX =B,then X = A 'B
and
if YA =B,then Y = BA™ .

§6 Subgroups and Division of a
Group by a Subgroup

Now a subset of the elements of ® may form a group under the same rule
for composition. Such a group is called a subgroup of ®. Let a fixed subgroup
be denoted by U;let U,, U,, ... be the different elements (finitely or infinitely
many) belonging to WU. If A is an arbitrary element of ® then let us denote
the totality of elements AU, (i=1,2,...) by

Au — (AUl,AUz, . o .).

The elements of ® may now be arranged in a sequence of the form AU;
These sequences are called cosets. We then have

Lemma. If two cosets AU, BU have one element in common, then they have
all elements in common, thus they agree except for order.

To prove this let AU, = BU, be a common element. Then it follows that
B = AU,U, ', hence

Bu — (AUan_lUl,AUan—le, . . .).

However U,U, U, runs through all elements of U for i =1, 2, . . . because
of the group property (iv) of U, hence in fact AU and BU agree.

The number of different elements occuring 1n a coset AU 1s obviously
independent of A4; it is equal to the order of U. Let this order be called N
(where N may also be = o0). Each element A of ® actually appears in one
such coset, e.g., A occurs in AU because in any case the unit element must
belong to U, since it i1s a group, and AE = A. Thus we obtain each element
of ® exactly once if we run through all elements of the difierent sequences.
In symbols we express this by the equation

G =AU+ AU+

where A, U, 4,U, ... denote the distinct cosets of this kind.

Now 1n case ® is a finite group of order h, then the order N of U 1s also
finite and then the number of different cosets is also finite, say = j. Since each
element of ® occurs in exactly one coset and exactly N difierent elements are
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contained 1n each coset, we have

h=j'N
and thus we have shown

Theorem 19. In a finite group of order h, the order N of each subgroup is a
divisor of h.

The quotient h/N = j i1s called the index of the subgroup relative to ®.

In case ® 1s an infinite group, then the order of U as well as the number of
different cosets can be infinite and at least one of these cases must obviously
occur. Furthermore, the number of different cosets 1s called the index of U
relative to ® whether this index 1s finite or not.

Our further investigations deal first with finite groups.

A system S =(U,,U,,...) of elements which belong to a finite group
forms a subgroup of ® as soon as it 1s known that each product of two
elements U again belongs to S. For the group axioms (11) and (111) are satisfied
automatically, (1) holds by assumption, and with finite groups (1v) 1s a con-
sequence of the remaining axioms.

For example, all the powers of an element A with a positive exponent
always form a subgroup of ®. These powers cannot all be difterent, since ®
contains only finitely many elements. From A™ = 4" 1t follows that A™ " = E.
Hence a certain power of 4 with exponent difterent from zero 1s always = E.

In order to gain an overview of those exponents g for which A% = E, we
note that these exponents obviously form a module since from A% = E and
A" = E it follows that A?*" = E. Hence by Theorem 1 these g are identical
with all multiples of an integer a (> 0). This exponent a, uniquely determined
by A, 1s called the order of A. This exponent has the property:

A"=FE 1ifand onlyif r =0 (mod a).

The only element of order 1 1s E. More generally

Theorem 20. If a is the order of A, then

AMm — An,
if and only if
m = n (mod a).

Consequently among the powers of 4 there are only a distinct ones, say
A° =E, A',..., A° ', and by the above these form a subgroup of ® of

order a. Moreover from Theorem 19 we have

Theorem 21. The order a of each element of ® is a divisor of the order h of ®

and hence
A" =E
for each element A.
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Q7 Abelhian Groups and the Product of Two
Abelian Groups

The groups which occur in number theory are almost exclusively those
whose composition laws are commutative: AB = BA for all of its elements.
Groups of this kind are called Abelian groups. In this and the next section
we will undertake a more precise investigation of the structure of an arbitrary
finite Abelian group. In the following, ® denotes a finite Abelian group of
order h.

Theorem 22. If a prime number p divides the order h of ®, then there is an
element of order p in ®.

Let C, C,, ..., C, be the h elements of ® and let ¢,,¢c,, ..., ¢, be their
respective orders. We form all products

Cy Cy oo Gy ®

in which each x; runs through a complete residue system mod c;. Then we
obtainc, * ¢, - - * ¢, formally different products, among which are all elements
of ®. Since a representation of the unit element 1s at once obtained from two
different representations of the same element all elements occur equally
frequently, say O times 1n the form (8). Hence

ci¢y ¢, =h-Q.

The prime number p, which divides h, must therefore divide at least one c;,

say ¢,. Then
A = Ccll/p

1s an element of order p by Theorem 20.

Theorem 23. Let h = a, * a, ‘- * a, and suppose that the integers a, ..., a,
are pairwise relatively prime. Then each element C of ® can be represented
in one and only way in the form

C=A, A, A

Y

with the conditions

A?1=Ag2=...=A?r=E.
For let r integers ny, ..., n. be determined so that
h h h
___nl_l__nz_l_..._l___nr__:l,
aq 22) a,

which 1s always possible by Theorem 3 because of the assumption about

the a;. If we then set
A = C(h/ai)”i,
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then by Theorem 21
A% = CM = E
and with this
C=A4,"4, A,

1s represented in the required form. To see the uniqueness of the representa-
tion let C = B, - B, ‘- - - B, be yet another representation of this type. Then

(B By B = (A, Ay -+ A, )

However, since composition 1s commutative, a fact which 1s used at this
point for the first time, 1t follows from (9) that

B’{/al . Bg/al .o B'{t/m — Ailt/al : Ag/al e A'{!/m.

Now since h/a, 1s a multiple of each a,, a;, ..., a,, the factors with the
indices 2, 3, ..., r must be equal to E by the hypotheses about the A4;, B,,

hence
Btlar — A’i/al _

Since (a,,h/a,) = 1, there are integers x, y with a,x + (h/a,)y = 1 and re-
calling that
E = B} = A{,
we have
B, = B‘;Ix'l'(h/al)y — A‘;Ix+(h/al)y = A,.

In general, 1t follows in this fashion that A; = B; and with this the uniqueness

of the representation of C.
If a; 1s the number of difierent elements A with the property

A% = E,

then obviously the totality of these forms a subgroup of ® of order a; because
the product of two elements of this kind again has the same property. In
any case by Theorem 23 we have

h=aya, ' a =a.a,"""a,. (10)

We see that we must have a = a;, for if p is a prime, and p|a;, then by
Theorem 22 there exists among the elements 4 with 4% = 1 one of order p,
hence p|a;. Therefore a; has no prime factors other than those of g;. Since

the a; are pairwise relatively prime, we must have, by Equation (10), a; = a;.
With this we have proved:

Theorem 24. If c| h, (h/c,c) = 1 (c > 0), then the totality of elements of ® with
the property
A€ =1

forms a subgroup of ® of order c.

Theorem 23 makes plain the necessity to introduce a special notation
for the relation of the group ® to the r subgroups A,, ... A, from which
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® can be built up by this theorem. One can define ® simply as a “product™
of these subgroups. However, if starting out from two groups ®, and ®,
one merely wishes to define a group ® which has ®; and ®, as subgroups
and which 1s then to be called the product of these groups, one must consider
that at the outset the product of an element of ®, with an element of ®, has
no meaning at all yet.

For this reason we proceed as follows: We denote the elements of the
Abelian group ®, (i = 1,2) with the subscript i. We now define a new group
whose elements are pairs (4, A,) and we set

(1) (4,,A,) =(B,;,B,) means A, = B, and A, = B,.
(2) The rule of composition for these pairs 1s to be (4,,A4,) (B, B;) =
(AlBlaAZBZ)'

In this way the h, - h, new elements (h; 1s the order of ®,) are combined to
form an Abelian group ®. The unit element of this group 1s (E,, E,), where
E: is the unit element of ®;. The h, elements (4,, E,), where A runs through
the group ®, obviously form a subgroup of ® and this group 1s 1somorphic
to ®,; likewise the group of elements (E,, A,) is isomorphic to ®,. The two
subgroups have only the one element (E,, E,) in common. Each element
from ® can be represented in exactly one way as a product of two elements
of the two subgroups:

(41, A4,) = (A, E;) - (Eq, A,).
Finally we define

3) (4., E,) = A, (E{,A,) = A,, thus 1n particular E; = E,.

This use of the symbol “=" is permissible, since the relation “=" is still not
defined between elements of ®, ®,, and ®,, and composition of elements
defined as equal yields again equal elements. We call the group ® defined
in this way by (1), (2), (3), with the h,h, elements 4, A, the product of the
two groups ®, and ®, and we write

6=6,-6,=06, 6,

With this terminology it then follows immediately from Theorem 23 that
the formation of products 1s associative:

Theorem 25. Each finite Abelian group can be represented as a product of
Abelian groups whose orders are powers of primes.

98 Basis of an Abelian Group

Now we can prove the following theorem which gives us full information
about the structure of the most general finite Abelian group.

Theorem 26 (Fundamental Theorem of Abelian Groups). In each Abelian
group ® of order h (>1) there are certain elements By, . .., B, with orders
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hi, ..., h respectively (h; > 1) such that each element of ® is obtained in
exactly one way in the form

C — B-’lclB325,2 ¢ o o B;Cr,

where the integers x; each run through a complete system of residues mod h;,
independently of one another. Moreover the h; = p* are prime powers and

h=h, -h, - h.

r elements of this kind are called a basis for ®.
By our previous results the truth of this theorem is obtained at once for

arbitrary h, as soon as it is proved for all Abelian groups of prime-power
order.

Hence let h = p* be the order of ®, where p is a prime and k is an integer
> 1. Then the order of each element of ® has a value p* where 0 < a <k,
o integral.

A system of m elements A4,,..., A, with orders a,,...,a, 1s called
independent 1f from A7 - 432 - -+ A’ = E 1t follows that

x;=0(moda;) fori=12,...,m.

For example, each element 4 is an independent element. The product of
powers of m independent elements obviously forms a group which contains
exactly a, - a, - - - a,, difierent elements. If A,, ..., A, are independent then
the m + 1 elements A,,..., A, E are always independent and conversely.
We now always agree on a numbering of the independent elements, such
that the orders form a decreasing sequence:

a, =>a,=>0a;" """ =>a, = 1.

Let this system of numbers a,, a,, ..., a, be called the system of rank
numbers of 4,,..., A, orthe rank R of A{,..., A,. We now determine a

definite ordering of the systems R. Let two independent systems

A; of order a; = p* i=12,...,m),
B, of order b, = ps =12 ...,n)

be given. In case m # n,and saym > n,wedefine ,,, = f,., == B, =
0. Both systems are said to be of equal rank if o, = B. for alli=1,...,m.
Otherwise the rank of (A4, ..., A, ) i1s called higher or lower than the rank of
(B,, ...,B,), according as the first nonvanishing difference a; — p.1s > O or
< 0. Thus the omission or the addition of elements E does not change the
rank. If the rank of (4,, . . .) 1s higher than the rank of (B,, . . .) and the rank
of (B,, .. .)1s higher than that of (C,, .. .), then the rank of (4, . . .) 1s higher
than the rank of (C,, .. .). Obviously there are at most h" possibilities for
the ranks of systems of elements independent of one another and distinct
from E; consequently there are systems of independent elements of highest
rank. We will call such systems maximal systems for short. L.et B,, ..., B,
be a maximal system in which there i1s no element = E. We show that B, . . .,
B, 1s a system of basis elements. For this we must only verify that each



26 II Abelian Groups

element of ® 1s representable as a product of powers of the B,—and for this
the following lemmas suffice:

Lemma (a). No element among the elements B,, ..., B, can be a pth power
of an element of ®.

If we had B,, = C? then the system obtained from the B,,..., B, by
replacing B,, with C and possibly changing the numbering would also be
independent, but obviously of higher rank than the maximal system B,, .. .,
B,, which 1s impossible.

Lemma (b). If we replace one of the B, say B,,, in the system By, ..., B, by
A —_— B::‘ ::1”3|-+11 ¢« o o B-:.Cr,

where u # 0 (mod p), but the x; are arbitrary integers, then the rank does not
change and the new system is again a maximal system.

A has the same order as B,,, since the orders of B, ., ..., B, are not
larger than that of B,,, and thus are divisors of the order of B,,. Moreover,
each product of powers from A4, B,,., ..., B, 1s representable as a product
of powers of B,, B,,.,...,B,, and conversely. Consequently the new
system 1s also independent and thus it i1s a maximal system.

Lemma (c). If an element CP is representable as a product of powers of the
B;, then the same holds for C.

If, 1n fact,
Cp — B-’fl o« o o B;’.Cr, (11)

then all x; are = 0 (mod p). For if x,, = u were the first exponent which is
not divisible by p, then let B, be replaced by

A= BYBXm+1... B;’fr — CPBl—xl ¢ o o B';fnit—l

m~m-+1

in the system of the B;. This new system would be again a maximal system
by (b), but it would contain the pth power of one of its elements, namely A4, in
contradiction to (a). Consequently, in (11), we may set x = py; with integral

y; and hence
(C—IB31?1 -+« BYr)P = 1.

It C were not representable as a product of powers of the B;, then this would
also hold for all C" with n # 0 (mod p) and we would also have in the paren-

thesis above
C' = C—lB)lu - B £ 1;

hence C" would be an element of order p. Consequently the r + 1 elements
B,, B,, ..., B, C’"would also be independent, correctly arranged according
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to decreasing order (as the order of B 1s greater than 1 and hence > p).
However they would have a higher rank than the maximal system B,,..., B
which 1s impossible. Hence the assumption is false and (c) i1s proved.

By repeated application of (c) however, the representability of each
celement A of ® through the B, 1s obtained. For if 4 is of order p™, then

AP = 1

ro

is certainly representable by the B;. Hence, by (c), AP" ' is also representable
by the B;, and thus also 47" if m > 1 and so on until we arrive at A?° = A4
itself.

The elements of a basis for ® are not uniquely determined by ®. Certain
properties of the basis are nevertheless characteristic of ® itself. The number
e = e(p) of those basis elements whose order 1s divisible by the prime p 1s
considered the most important constant determined by ® alone; we call e
the basis number belonging to p. Its independence of the choice of basis
elements 1s shown by

Theorem 27. If p is a prime, then the number of different elements of ® with
the property
AP =1

is equal to p®, where e is the basis number belonging to p.

If B, B,, ..., B, are those basis elements whose orders are powers of p,
then from

A — Bi’lCIB3252 e o o BzeBZiHl c o o B;’.Cr and AP — 1
we have the sequence of congruences

px; = 0 (mod h,) i=1,2,...,r,

hence fori=e + 1,..., rsince (h p') = 1,
x; = 0 (mod h,)
andfori=1,2,..., e, since h; = p*,

x; =0 (mod —’—11)
p

Conversely the latter congruence has as a consequence the equation 4?7 = 1.
The number of solutions of each of these congruences which are incongruent
mod h;1s 1l fori=e+1,...,rand pfori=1,2,...,e Consequently the
number of incongruent systems of solutions i1s p°.

The statement 1s also correct if p does not divide the order h of the group,
for then e = 0.

The simplest Abelian groups are obtained by raising one element to a
power: A° =1, 4, A% ... and A~ ', 472 ... If all elements of an Abelian
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group are powers of a single element A4, the group i1s called cyclic, and A is
called a generator of the group. Here we have

Theorem 28. An Abelian group ® of order h is cyclic if and only if for each
prime p dividing h, the number of elements A with A? = 1 is equal to p.

By the preceding theorem the condition 1s equivalent to: the basis number
belonging to p should be = 1.
The condition 1s necessary. Namely if

C,C% ..., C'1 Ccr=1
are the h elements of ®, then from A? =1 it follows that for 4 = C*

h
px=0(modh) and x=0 (mod E),
that 1s, x has one of the p values h/p, 2h/p, ..., ph/p mod h, and conversely
we thus also obtain p difierent elements A with A? = 1.
The condition, however, is also sufficient; for if h = p% - - - p* is the de-
composition of h into different prime factors then, by hypothesis, only one

basis element belongs to each p;; hence all elements of ® are of the form

A=B-’1‘31...B;€r,
where
B?i — 1 With h — pii.

One then obtains h different elements, hence all elements of ®, if one forms
the successive powers of

C=BI'B2"'B'..
If u 1s the order of C, then by the basis property of the B it follows that
u=0(modh) fori=1,2,...,r,

and since the h; are pairwise relatively prime, u is divisible by h = h, - - - h,,
hence = h, since u cannot be greater than h.

9 Composition of Cosets and the Factor Group

If U 1s a subgroup of the Abelian group ®, hence itself Abelian, then U gives
rise to another group as follows. By §6 the cosets AU are uniquely deter-
mined along with . The number of cosets 1s /N where N 1s the order of
U; we denote them by R, R,,... . We now set up a law of composition
between the R’s with the following observation. If A, and 4] are elements
of R,, A, and A, are elements of R,, then A; A, and A4 A’ belong to the
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same coset R;. Since
Ay =AUy, 2 = AU,

where U, U, are elements of U, then 474, = A,A,U,U, (here we use the
fact that the composition of elements of ® 1s commutative). Since 4,4, and
A’ A5 differ only by a factor from U they therefore belong to the same coset
R;. Hence R, 1s uniquely determined by R, and R,. We write

Rl 'R2=R3.

The group axioms (1)—(111) are obviously satisfied with this composition.
Furthermore this composition 1s obviously commutative. Consequently the
cosets R form an Abelian group ‘R of order h/N.

Definition. The group R defined 1n this way 1s called the factor (quotient)
group of U. Its order 1s equal to the index of U. One writes

R = G/

We can also describe 1t as follows: the factor group is obtained from ®
if one considers two elements of ® as not being different whenever they
difter only by an element of U, where moreover we retain the composition
rules of U.

We will apply these concepts to advantage in the case where U is the
group of those elements of ® which can be represented as the pth power of
elements of ®, where p 1s a prime dividing h. In particular this subgroup U
may now be denoted by U . We have

Theorem 29. The order of ®/U, is p® if e is the basis number of ® belonging
to p. The group ®/U_ is isomorphic to the group of elements C of ® for which
CPr=1.

In fact we see from Theorem 26 that each element X of ® can be repre-

sented 1n the form
X = B¥'B%2- - - B*< 4P

where B, ..., B, are the basis elements belonging to the prime p and the
e numbers x,, ..., x, are uniquely determined mod p by X, while A? 1s a
suitably chosen pth power, 1.€., an element from . Such an element X 1s a
pth power if and only if all x; are = 0 (mod p). Consequently the number of
cosets determined by U 1s equal to the number of different systems x; mod p,
1.e., = p°. The pth power of each coset 1s 1dentical with the system U, 1.e,
in the group ®/R  of order p®, each element, if it is not the unit element,
has order p. Hence ®/U, must contain exactly e basis elements, each of
order p. By Theorem 27 the group of all C with C? = 1 has the same structure.
Moreover it 1s seen that the e cosets

Biu i=1,2,...,€
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form a system of basis elements 1n the factor group, and the e elements
Bh/P i=12...,¢e

are basis elements in the group of those C with C? = 1. Hence the two groups
are 1Isomorphic.

10 Characters of Abelian Groups

Since the law of composition in an Abelian group, like ordinary multiplica-
tion, 1s commutative, those elements which satisfy the symbolic equation
A" = 1 behave formally like the hth roots of unity, thus like certain numbers.
The question arises whether 1t 1s not possible to transform the investigation
of Abelian groups entirely into a problem about numbers, perhaps of the
following kind:

To each element A of a given Abelian group ® there 1s to be assigned a
number, denoted by y(A4), in such a way that for every two elements A, B
from ®

x(A4) - x(B) = x(AB). (12)

The composition of the elements thus corresponds to multiplication of the
assigned numbers.

The construction of all these “functions” y(A4) 1s obtained according to
the fundamental theorem in the following way.

Let the trivial solution “y(A4) = O for all A” be discarded.

First we must have

X(E) =1

for the unit element since for each 4

(A (E) = x(AE) = x(A).

Next, if B, ..., B, 1s a basis for ®, then by repeated application of (12)
it follows that for

A:_._.._.B-}:l.BJzCZ...Bfr’
x(A) = x(By)™ - - x(B,)™.

Consequently y(A4) 1s known for each element 4 as soon as it 1s known for
the r basis elements B;. However these values y(B;) are not arbitrary, but
rather they must be chosen in such a way that all systems of exponents x;
which lead to the same A also yield the same value y(A) 1n (13). That 1s, y(B;)
must be a number such that

(13)

x(B;)*

depends only on the value of x; mod h;. Since 1 = y(E) = y(B¥) = x(B)",
we have y(B;) # 0 and thus 1t 1s an h;th root of unity.
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However this condition is also sufficient. To prove this let

X(Bm) = Cm;
m=1,...,r beany h, th roots of unity
([, = eC™/mmam (g an arbitrary integer).
Then we define
Y(A) =3 Gr ifA=Bj--- By (14)

Since, 1n fact, the expression y(A) only depends on which residue class
mod h,, the x, are contained in, and since this 1s uniquely determined by
the element A, y(A) 1s therefore uniquely defined by these x,, and also satisfies
the requirement (12). Now there are exactly h, difierent roots of unity of
degree h,, corresponding to the valuesa,, =1, 2, ..., h,. Consequently there
exist exactly h = h, - h, - - - h. formally difierent functions y(A4), for which no
two are identical for all elements, since they differ for at least one basis
element. With this we have proved:

Theorem 30. There are exactly h distinct functions y(A) which have the
property: Y(AB) = x(A) - y(B) and y(A) is not = 0 for all elements A of ®.
Each y is an hth-root of unity.

Each such function y(A) 1s called a group character or character of ®.

Among the characters y(A) there 1s one which 1s = 1 for all A4; it 1s called
the principal character. Conversely, there exists exactly one element, namely
E, such that y(E) = 1 for every character.

The characters themselves can be combined again to form a group of
order h. For 1if y,(A) and yx,(A) are characters, then f(A4) = x,(A4) * x,(A) also
satisfies the defining equation of a y, hence it 1s also a character of ®. If y(A)
runs through all characters and if y,(A4) 1s a fixed character, then y(A)y,(A4)
also runs through all characters of ®. If we understand by ) , a sum extended
over all h elements A of ® and by ) , a sum extended over all h characters
¥, then we have

Theorem 31.

h if y is the principal character,
> =< " .
y O if x is not the principal character,

(b if A=E,
ZX:X(A)"{O if A+#E.

The first half of each statement is trivial, as each summand =1. If B is an
arbitrary element, then along with A, AB also runs through h all elements
of ®, hence

; X(A) = ; 1(AB) = x(B) ; x(A), thus (1 — x(B)) ; x(A) = 0.
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Now 1f y 1s not the principal character, then y(B) # 1 for at least one B,
hence ) , is equal to O.
Likewise let y, be an arbitrary character. Then we have

D x(A) =) 11(A)x(4) = x1(A) ). x(A4)

(1 = x1(4)) ), x(4) = 0.

If A # E, then for at least one character y,(A4) # 1, hence ), is equal to 0.
The element A 1s determined uniquely by the h numbers y,(A4), where y,
are the h characters forn=1, 2, ..., h. For if a second element B had the
same values y,(B), then we would have y (4B~ ') =1 for all n, and AB~!
would be the unit element, thus A = B.
The h numbers y,(A4) are, however, not arbitrary. On the contrary the
following holds:

Theorem 32. If A is an element of order f, then y,(A) is an fth root of unity.
Among the h numbers y,(A),n=1, ..., h, all fth roots of unity occur equally
often, namely h/f times.

To begin with, since 47 = 1: y,(4)) = x,(47) = %, (1) = 1. Thus the first
part of the theorem 1s true. Now if { 1s an arbitrary fth root of unity, let us
consider the sum

h
2, (€1l A) + I 5(A%) + -+ T (47)) = 5.

Since by hypothesis 4™ is not the unit element for 1 < m < f—if we exclude
the trivial case f = 1, that 1s, A = E—, 1t follows by Theorem 31, that if we
split the sum into f individual sums, then S = h.

On the other hand the term inside each set of parentheses 1s equal to
e+ e+ -+ ¢&f, where

& = C_1Xn(A)a ¢/ = 1.

Hence1tis equal to O or f, depending on whether e # or =1, that 1s, according
to whether y.(A4) # { or = (. If k denotes the number of characters y,(A4)
for which y,(A) = ( it follows that S = kf. Therefore if we combine this with

the first result we get

h
kf = h, k=—,
4 7

independently of {, which was to be proved.

Moreover the group of characters is isomorphic with the group ® itself. To
see this we assign to the basis element B, a primitive h_th root of unity, say

C — eZni/hq
g .
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Then each character y(A) i1s represented uniquely 1n the form
x(A) = x1' (A2 (A4) - - x;7(A),

A=B3151...B;’.Cr,

where

by the r basis characters

xA)=C* (@=12,...,r),

where the y, are uniquely determined integers mod h,. If we now assign the
clement
B){lBaz o o o B'J.’r
to the character
X=X1'X2" " X
then an isomorphism between the group of characters and the group ® 1s
obviously determined.

Every subgroup can be determined with the help of the characters of an
Abelian group. If one takes some distinct characters y, x5, . . ., x, of ®, then
the totality of elements U for which y,(U) = x,(U) = - = x(U) = 1 obvi-
ously forms a subgroup U of ®, since along with two elements U, and U,
the product U, - U, also has this property.

Moreover 1t can be seen, as follows, that each subgroup U of ® can be
obtained 1n this way: let U be an arbitrary subgroup of ®; the factor group

®/U whose elements are the different cosets AU 1s also an Abelian group,

and accordingly it has exactly j characters which are denoted by 4,(A),
A(AN), . .., A;(AU). With the help of these we define a character by fixing

w(A) = A4 (AN) fork=1,2,...,].

For each k this determination is unique since each element 4 belongs to
only one coset. Moreover for any two elements A and B of ® we always have

Xx(4) - 1 (B) = 4, (AU) - 4, (BU) = A, (ABU) = x,(AB);

consequently y,(A4) is actually a character of the group ®. The various char-
acters A, (A), k=1, 2,...,j, have the value 1 simultaneously only for the
unit element of the group ®/U, that is, only for the coset which is identical
with U. Hence the\j characters x,(A4) are all equal to 1 precisely for those
elements 4 which belong to U. That 1s, the subgroup U 1s to be defined as
the totality of those elements A for which the j conditions

(A =1 fork=1,2,...,] (15)
are satisfied.

However these j conditions, which each single element A from U must
satisfy, are not independent of one another as, along with y, and y,,
X1 X, = X5 also occurs among the y,; thus the condition y;(4) = 1 already
follows from the two conditions y,(A) = yx,(4) = 1. In order to find the
number of mutually independent conditions among the j conditions (15),
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we consider that the 4,, which define the y, uniquely, form a group 1somorphic
to ®/U since they are exactly the characters of ®/U. Hence they are rep-
resentable by a basis, say 4,, . . ., 4,,, where r 1s the number of basis elements
of ®/U. That is, each character 4, 1s a product of powers of these r, characters.
Hence 1t follows from the r, conditions

X1(A) = x2(4) = - = x,(4) = 1

that all j conditions (15) are satisfied for 4 and with this it follows that A4
belongs to . If h; is the order of the basis character A;and (;(i=1,2,..., 1)

are arbitrarily given h;th roots of unity, then moreover there is always a
coset AU such that 4,(AW)={_;fori=1,2,...,r,. Thus we have proved

Theorem 33. If U is a subgroup of ® and if the factor group ®/U has r,

basis elements, then among the h characters of ® there are ry characters y;
with order h;, a power of a prime, (i=1, 2, ..., rq) such that the r, conditions

r:(A4) =1 i=12,...,r0)

are satisfied for all elements A of U and only for elements A of U, while on
the other hand there always exist elements B in ® for which those ry characters
v.(B) are arbitrarily prescribed hith roots of unity.

§11 Infinite Abelian Groups

The theory of infinite Abelian groups has still not been developed 1in any
direction as completely as the theory of finite Abelian groups developed
above. The few theorems on infinite Abelian groups which exist refer to
groups which are specialized still further. The concepts and facts which have
an application to arithmetic in the further course of our presentation will be
explained in this section. Moreover the theory of infinite Abelian groups
will be used only later from Chapter IV on in the theory of fields.

In an 1infinite group ® we distinguish elements of finite order and those
of infinite order, according as some power of the element 1s equal to E or
not—of course the zeroth power 1s excluded. As will be shown later with
examples, it may happen that an infinite Abelian group has only elements
of infinite order (except E) or only elements of finite order.

We call a system of finitely many elements of ®, 4,, A,, ..., A4,, Ty,
T,,..., T, independent 1f a relation

ATAT - AFTY - T =1

with integral x, y implies that all x; = 0 and each y, = 0 (mod h;), where each
A has infinite order and each T; has finite order h;. In this case the expression
on the left obviously represents different elements if each x runs through
all integers (positive and negative) and each y, runs through a complete
residue system mod h,.
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A system of finitely or infinitely many elements of ®: A4, (i=1,2,...),
T, (k=1,2,...) (A4, of infinite order, T, of finite order), 1s called a basis for
® 1f each element of ® can be represented 1n the form

AJ’IC1A32€2 ¢ oo T{1T)272 A — C’
where

(1) the exponents x; and y, are integers and only finitely many are # O,
(2) the exponents x; are determined uniquely and the exponents y, are
determined uniquely mod h, by C.

Obviously any finite set of elements of a basis must be independent.

The requirement that the h, are powers of a prime will not be imposed
here for the sake of simplicity.

A basis 1s called finite if it consists of finitely many elements.

Theorem 34. If an infinite Abelian group ® has a finite basis, then each subgroup
of ® also has a finite basis.

Let B, B,, ..., B, be a basis of ® where B,, ..., B, are the elements of
infinite order and B, , , . . ., B,, are those of order h,, . .., h,,_,. We consider
the systems of exponents of all products of powers

U= B .. B

which belong to U, where, in addition, the last w,,,,...,u, are to run
through all numbers, not just the numbers which are distinct mod h;, as
long as the product belongs to U. By the group property of U, however, we
obviously have that along with the system of exponents (u,, ..., u,) and
(uy, ..., u,), the systems (u, + uy,...,u, +u,) and (v, — uy, ..., u, — u,)
also correspond to elements U. In particular we keep in mind the elements

U=BB'{ "By (l<k<m (16)
belonging to U for a definite k, thus for which u; = - - -y, _, = O—there are

such elements, since if all 4; = 0 the unit element of U 1s obtained—then
the totality of possible first exponents z, in (16) forms a module of integers
in the sense of §1, as long as we do not always have z, = 0. However, all
numbers of this module are identical with the multiples of a certain integer;
consequently, if we do not always have z;, = 0, there 1s an element U, in U
with one such r, # 0,

Uk — Bl"ckB;'jc_:ll e o o

2

such that z, in (16) 1s a multiple of this r,. From the U, with this r,—possibly
infinite in number—we pick out a definite one for each k=1,...,m,
where we set U, = E and r, = 01n case we always have z, = Ofor this k 1n (16).

We show that each element in U 1s representable as a product of these
elements U,, ..., U,,. Let

U=B‘{1...B::1m
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be an element of U. By the preceding discussion u, 1s a multiple of r,, u, = v,r,,
and hence

UU{" = Btzc’ngé .o B::fn (17)
1s a product only of powers of B,, ..., B, which also belongs to U by the

group property. If we should have r; = 0 and U, = E, then we should take
v; = 0. Likewise, 1n (17), 4, must be a multiple of r, 1n case this element 1s
# 0, u, = v,r,. Moreover if r, = 0 then u, must be = 0 and we take v, = 0.
In any case then UU{ “*U, "2 1s an element of U and representable as product
of powers only of B,, ..., B, etc. until we arrive at the unit element and
obtain a representation

U —_— U'il ng ¢ o o U:ilm.

The U,, ..., U, are of infinite order if they are # E, the other U’'s are
of finite order.

The products of powers of the U, ., ..., U, form a finite Abelian group
and can hence be represented by a basis Cy, ..., C,, by Theorem 26. We
assertthat Uy, ..., U,,Cy, ..., C, form a basis for U if we omit the elements

U. = E. First, each element U can be represented by the U,, ..., U,,, hence
also by the Uy, ..., U,,Cy, ..., C,. Now 1f

U'il ng P U:frccil c oo (Ca = 1 (18)

q

1s a representation of the unit element where v; = 0 1s assumed for U, = E
(i.e., r; = 0), then by substitution of the B; in place of the U; and C,, it follows
that

v,r; = 0;

hence either v, = O or r; = 0. However, in the latter case we also have v, = 0
as a consequence of our convention. Likewise v, =0, ..., v, = 0. Further-
more, since the C, form a basis of the finite group, then 1n (18) each ¢, must
be a multiple of the order of C,. Now since each element 1s represented the
same number of times by the U; as by the C;, hence the same number of
times as the unit element, these elements actually form a basis for U as was
to be proved.

Those 1nfinite Abelian groups in which no element of finite order except
E appears are of chief interest. We call such groups torsion-free groups, the
others mixed groups.

Along with a torsion-free group ® each subgroup of ® is also torsion-free.
In particular, let U be a subgroup of ® of finite index (§6). Then a certain
power of each element of ® with exponent different from zero must always
belong to U. For if 4 1s an element of ®, then the cosets

AU, A2, ..., A™U

are not all distinct, since the index 1s assumed to be finite. Thus for some n
A™U = A™U, that 1s, A™ " must belong to U, with m — n # 0. Hence in the
above proof applied to ® and U the case r, = 0, U, = E can obviously never
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occur, since, in fact, a system of values z, #0, z, ., ="+ =z, = 0 always
exists, so that
U, = Bi* belongs to 1.

From this we have immediately

Theorem 35. If ® is a torsion-free Abelian group with finite basis By, . . ., B,
then every subgroup U of ® with finite index hasabasis U ., . .., U, of the form

Ul —_— BTIBEH ¢ o e B;m,
U2 —_— B522.. .B;2n,

U, = B!,
withr,; #0 fori=1,2,...,n.

Theorem 36. The index of Win ® is j=|ry 155" " Fpl-

For the proof we must determine the maximum number of elements
which can exist in ® such that no two differ by a factor in U. We first show
that an element

X1DX2 ... DX
BIIBZ2 Bnna

where all |x;| < r;;, belongs to U only if all x; = 0. By the definition of the
U; in the preceding proof x, must be divisible by r,, and since |x,| < r,
we must have x, = 0. However then x, must be divisible by r,, and must
consequently also be = 0 etc.

From this it follows that among the j = |r,, - 75, -  * | elements

Bil : Bgz tee an, O < Zi < rii (19)

no two can difter by a factor in U. Hence there are at least j different cosets—
each represented by one of these elements. On the other hand, however, we
obtain all elements of ® from these elements if we multiply them by all
elements of U, and hence j 1s the exact value of the index. To see this note
that for an arbitrary product of the B,, B, ., ..., B,,

P — B"’ka;:’i"‘ll “ o B;’:n,
we can always determine an integer b, such that
PUk_bk — Bisz;f:ll e

where the first index z, satisfies the condition 0 < z, < r,,. Obviously z, 1s
the smallest positive remainder of x;, mod r,,. By applying this conclusion
repeatedly we see that for each 4 in ® a sequence of exponents by, ..., b,
can be found such that

AUl_bl U2_b2 .. Un—bn
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1s an element of the system (19). Consequently, 4 differs from this element
only by a factor in .

We now 1nvestigate the connection between different systems of bases of
a group ® 1n order to find properties of bases which are determined by ®
alone.

Theorem 37. If a torsion-free Abelian group ® has a finite basis of n elements
B,,...,B,, then n is the maximal number of independent elements of ®,

independent of the choice of basis.

Since the B,, . .., B, are independent 1n any case, there are n independent
elements 1n ® and thus we need only show that n + 1 elements in ® are not
independent. In fact, between n + 1 arbitrary elements

A, =B -By - Bin (i=1,2...,n+ 1)

there 1s the relation
AiCIA-’zCz . o o Asz —_— 1,

if we choose the n + 1 integers x; so that they satisfy the n linear homogeneous

equations
n+1

Z xicik-—: (k=1,2,...,n).

i=1

As 1s known this 1s always possible since the coeflicients ¢; are integers.

Theorem 38. From a basis By, ..., B, of a torsion-free Abelian group ® one
can obtain all systems of bases By, . . ., B, of ® in the form

B; = B}'B5?2- - - Bain i=12,...,n)
where the system of exponents are arbitrary integers a; with determinant + 1.
To begin with, the B; always form a basis. To see this we need only show
that the B, can be represented through the B;. The equation
B, = B - B2 .- B/*n
1s satisfied if the integers x are chosen so that the n equations

0, 1fi#m,

x1a1i+x2a2i+"‘+xnani={1 lfl—m
y o y

hold. Since the determinant of the (integral) coeflicients is = +1 and the
right side 1s also integral, the x; are uniquely determined integers.
Secondly, 1f n elements

B;=BY"---B~ (i=12,...,n)
form a basis, then B, must be representable through the B;,

B, = ByBy - B/»,  (q=1,...,n)
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and if the B’s are substituted for the B”s, then the n® equations

k 0 ifg#k
b,ic; . ’
EZI i {1 lfq — k,

are obtained, by the basis property of the B’s. The determinant of this array
1s thus = 1; on the other hand, however, by the multiplication theorem of
determinant theory, the determinant is equal to the product of the two
determinants |b,| and |c;|. Hence each of these integers must divide 1, and
therefore each integer is itself = +1; thus |c;| = +1.

Finally by combining the last three theorems we obtain

Theorem 39. If ® is a torsion-free Abelian group with a finite basis B, . . ., B,
U a subgroup of finite index j, then U also has a finite basis U, ..., U,, an
the determinant |a;| in the n equations

U;=B%B%>---B%  (i=1,2,...,n)

is always equal to j in absolute value.

The last assertion holds for the special basis mentioned in Theorem 36.
The passage from the special basis U’ to an arbitrary basis U 1s done by
Theorem 38 using an array of exponents with determinant +1. However,
in the passage from B to U we obviously obtain an array of exponents whose
determinant 1s equal to the product of the determinants which appear in the
passage from B to U’ and from U’ to U, and hence which 1s equal to +j.

Finally we formulate a simple criterion for U to be of finite index.

Theorem 40. If ® is a group with a finite basis B, ..., B, then a subgroup
U is of finite index if and only if a power of each element of ® belongs to .

If the N,th power (N, > 0) of B, belongs to U and if we set
N::NINZ“'NmS

then B, also belongs to U and consequently the Nth power of each element
likewise belongs to U. Hence each element of ® differs from some

B3---B  (0<x; <N)

by a factor in U; therefore there are at most N™ difierent cosets, represented
by the above elements. Thus the index of U 1s finite.
Conversely 1n the case of a finite index the infinitely many cosets

AU, AU, 43U, ...

cannot all be distinct, thus a power of A must belong to .

We also note that the definition of a factor group ® /U carries over without
change from finite groups to infinite Abelian groups, where 1t is of no concern
whether the group ® has a basis.



CHAPTER 111

Abelian Groups 1n Rational
Number Theory

912 Groups of Integers under Addition and
Multiplication

In the elementary theory of rational numbers we are constantly dealing with
Abelian groups. The set of integers has the properties:

(1) a + b 1s an integer if a and b are integers;a + b = b + a,
(11) a+ (b + ¢) =(a + b) + c,
(m) Ifa+b=4d + b, thena = a,
(1v) For each a and b there i1s an integer x such that a + x = b.

Thus under composition by addition, the set of integers (positive and
negative) forms an infinite Abelian group ®. The unit element 1s the number
zero: a + 0 = a. This group 1s obtained by composition of the element 1
with 1itself. Hence we are dealing with a torsion-free group with one basis
element, thus with a cyclic group. The integers of a module also obviously
form an Abelian group and indeed a subgroup of ®. What we proved
earlier about a module in Theorem 2 is expressed as follows in the termi-
nology of group theory: Every subgroup of an infinite cyclic group is again
a cyclic group.

The module of those numbers divisible by a fixed number k forms a
subgroup U, of ®. The index of U, 1s the number of distinct integers which
differ by an element not in U,, that i1s, which have a difference that is not a
multiple of k. Hence the index of U, is equal to the number of integers which
are incongruent mod k, that 1s, =k (k assumed >0). What we called a coset
in group theory 1s here the system of numbers which arise by composition
of a definite number a with all elements of U, , thus which arise by adding on

40
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all multiples of k. The cosets are thus simply the different residue classes
mod k. The composition of cosets which led us to the factor group ®/U,
appears here as a composition of residue classes mod k, which will be
designated as addition of residue classes.

Thus the k residue classes mod k, with composition by addition, form
an Abelian group which is isomorphic to the factor group ®/U,.

In all these cases we are dealing with cyclic groups, thus with very simple
groups. The investigation of another kind of composition, multiplication,
1s more important and more difficult.

We first show that the positive integers do not form a group under com-
position by multiplication, since the group axioms (i)—(111) hold but (1v) does
not: namely, for integers a, b there does not always exist an integer x with
ax = b. However if we add the fractions then we see:

Under composition by multiplication the positive rational numbers form an
infinite Abelian group, and indeed a torsion-free group It. The unit element is
the number 1. The theorem about unique decomposition of integers into
prime factors obviously asserts:

The positive primes form an infinite basis in the group JN.

The simplest subgroups of 9t are obtained, say, in the form of rational
numbers for whose representation only certain (finitely or infinitely many)
primes are needed.

By adding on the negative rational numbers (0 excluded) we obtain an
extended group, in which one element of finite order, namely — 1, occurs.

We now wish to compose the residue classes mod n by a kind of multi-
plication. If A and B are two residue classes mod n and a, = a, (mod n),
b, = b, (mod n) are two representatives of A and B, then we have a,b; = a,b,
(mod n); the residue class to which a, - b, belongs is determined by the
classes A, B, independent of the choice of representatives. We write A - B or
more briefly AB for the class defined by 4 and B in this way. Obviously
AB = BA and A(BC) = (AB)C. However the residue classes mod n do not
form a group, since RoA = RyB for each A4, B, where R, denotes the residue
class of zero; hence axiom (111) 1s not satisfied.

However, if A and B are residue classes mod »n which are relatively prime
to n, then this also holds for AB. And it follows from ab = a’b (mod n) that
a = a (mod n), if b and »n are relatively prime. With this we have proved:

Theorem 41. The system of residue classes mod n does not form a group with
composition by multiplication. However, the @(n) residue classes prime to n
form an Abelian group under composition by multiplication. Let this group be
simply called the “group of residue classes mod n” and let it be denoted by
R(n). The unit element is the class which contains 1.

From this fact we immediately infer Fermat’s theorem as a consequence
of Theorem 21 on groups: if (a,n) = 1 then A°™ = E or a*™ = 1 (mod n).
We pose the problem of giving the structure of this finite Abelian group.
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§13 Structure of the Group R(n) of the Residue
Classes mod n Relatively Prime to 7

First we reduce the investigation of R(n) to the case where n 1s a power of a
prime by means of

Theorem 42. Suppose (n;,n,) = 1, n = ny * n,. Then
R(n) = R(ny) - Riny).

To prove this we assign to each element A of R(n) a pair of elements C,
from R(n,) and C, from R(n,) as follows: If a is a number in A4, then choose
any two numbers c,, ¢, according to the conditions

C{=4a (mOd n1)9 Cr=d4ad (mOd nz). (20)

The residue class C, of ¢; mod n, is determined uniquely by A, likewise the
residue class C, of ¢, mod n,. We set

A — (Cla C2)

where C, belongs to R(n,) and C, belongs to R(n,). Conversely if ¢; and ¢,
are two numbers relatively prime to n; and n, respectively, then by The-
orem 15, since (n,,n,) = 1, there is an a determined uniquely by the modulus
n = n, - n, which satisfies (20). Moreover it obviously follows from

A= (Cls Cz), A = ( J'19 ,2)
that
AA" = (Clcfls C2 J'2)

Thus the group R(n) 1s represented as a product of the groups R(n,) and
R(n,).

It follows by repeated application of the theorem for a product of difterent
primes p,, p,, . . . , Py that

RPTPZ - - pi) = R(PTIR(PZ)R(prX).

Therefore the investigation of R(n) 1s reduced to the case where n 1s a power
of a prime.

Theorem 43. If p is a prime, then the group R(p) of residue classes mod p is a
cyclic group of order p — 1.

By Theorem 27, we need only show that if g is a prime dividing p — 1,
then the number of classes 4 with 4?2 =1 is equal to g (by Theorem 22 it
must be at least g). However, the number of these classes A 1s identical with
the number of integers a which are incongruent mod p and which satisty
a? = 1 (mod p), that 1s, with the number of difterent roots of x2—1=20
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(mod p). By Theorem 12 this number 1s at most equal to the degree g, because

the modulus 1s a prime. Consequently 1t 1s precisely equal to g.
Hence there 1s a generating class mod p. Each number g from this class

1s called a primitive root mod p. Accordingly g is a primitive root mod p
if g, g%, g°,..., g~ ! are all incongruent mod p. The powers g“, where
(u, p — 1) = 1, and only these, are again primitive roots. There are @(p — 1)
difierent primitive roots mod p.

Theorem 44. If p is an odd prime, then the group of residue classes modulo
each power p* is cyclic.

The order of this group is h = @(p*) = p*~'(p — 1). Here we may take
o > 2. The primes dividing h are p and the prime divisors g of p — 1. If e 1s
the basis number which belongs to p in R(p?%), then p° 1s the number a of

solutions of
a? = 1 (mod p% (21)

which are incongruent mod p®. By Fermat’s theorem each such a 1s =1
(mod p). We assume a # 1 and a = 1 + up™, where p™ 1s the highest power
of p dividing a — 1; hence we have

m=1, (up)=1. (22)
It follows from (21) that
(1 + up™? =1 (mod p?). (23)

We now expand the pth power by the binomial theorem and note that, for
a prime p, all binomial coefficients

p\_plp—1(p—=2)--(p—k+1) - )

are divisible by p, since the numerators are divisible by p while the denomina-
tors are not divisible by the prime p. We now wish to show for m 1in (23) that
m>o — 1. If we have m < o — 2, then it would follow from (23) that

(1 + up™? =1 (mod p™*?2),

(1 +up™)P =1+ (I;)up'" + 0+ (p i l)u""lpm("_” + u?p™”.
Since p > 2 and m > 1, all terms from the third on are divisible by p™*?,
that 1s,

(24)

(1 +up™? =1+ up™*! (mod p™*2).
Hence 1t follows from (24) that

upm+1 — O (mod pm+2),

1.€.,
u = 0 (mod p)
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in contradiction to (22). Therefore 1n (23), a=1+ up™ with m > a — 1.
However, among these numbers there are at most p which are incongruent
mod p~.

The basis number e which belongs to p for the groupis thus < 1, hence = 1.
The easiest way to see that the basis number for the primes g 1s also equal
to 1 1s the following. By Theorems 23 and 24, the elements of the group of
classes mod p* can be represented in the form

A-B

where B runs through the p — 1 classes with BP~! = 1, and A runs through
the p*~ ! classes with A”"" " = 1. We thus need only check that the subgroup
of the B’s 1s cyclic. Now if a 1s a primitive root mod p, then since a = a? =
a?”° =---=a” ' = b, bis also such a number. Hence the numbers b, b2, . . .,
b~ ! are different mod p, thus a fortiori mod p*, while their (p — 1)th powers
are = 1 (mod p*). Hence the group of classes B 1s represented by the powers
of the class of b. Therefore it is cyclic and Theorem 44 is proved.
The exceptional case of the prime 2 1s treated by

Theorem 45. The groups R(2) and R(4) are cyclic. If a > 3 then the group
R(2%) of order h = @(2%) = 2*~! has exactly two basis classes. One is of order

2, the other of order hj2 = 2% 2.

The statements are trivial for the moduli 2 and 4. Thus suppose o > 3.
The group of classes mod 2* has order h = @(2%) = 2*~!. The number of
incongruent solutions of x* = 1 (mod 2%) is 22, that is, e = 2, because x must
be odd 1n any case, x = 1 + 2v, and consequently

O=x*—-1=(1+ 2v)> — 1 =4v(v + 1) (mod 2%
o0 + 1) = 1 (mod 2%~ 2)

Obviously only one of the factors can be even and it must then be divisible
by 2%~ 2, that is,

v=2"%w or v=—1+4 223w

x=1+4+2*"w or x=—1+4+2*"1w

with integral w. Each such x is, in fact, also a solution of x* = 1 (mod 2%).
Exactly four of these numbers are incongruent modulo 2% namely for
w = 0and 1.

However since there exist two basis classes in this group of order h = 2*~ 1,
each class can be of order at most h/2. If a class of order h/2 exists, then this
class must also be a basis class of degree h/2; the other class then has order 2.
We show that the class represented by the number 5 has order h/2 = 2%~ 4
modulo 2% To see this we show that

5%£1(mod?2% fora>3andk<a—2,
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but
527 = 1 (mod 29).

Obviously this is equivalent to
52" =1+ 2%, where uisodd (« > 3).

Since 25 = 1 4 8 - 3, the equation is true for a = 3. Ifit is true for a in general,
then 1t follows by squaring that

52“‘1 — (1 4 2au)2 — 1 4 2a+ lu 4+ 22au2 — 1 4 2a+ 1u(1 4+ 2a—1u).

Therefore we have the validity of the assertion for o + 1.

We observe further that for composite moduli n, the group R(n) is not
cyclic 1n general. If p 1s a divisor of ¢(n), then, by Theorem 42, the basis
number e(p) of R(n), which belongs to p, is equal to the sum of the basis
numbers ¢;(p), which belong to p in R(p¥), where p = p%1p% - - - is the decom-
position of n into primes. However for odd p;, 2 is a divisor of ¢(p%) and
consequently e;(2) = 1. Thus if two odd primes divide n, so does e(2) for
R(n) = 2. Hence the group is not cyclic.

314 Power Residues

With the help of the theorems before us, the foundations of the theory of
power residues, that 1s, the solvability of binomial congruences of the form

x? = a (mod n) (25)

can easily be developed. If we restrict ourselves to the cases where the fol-
lowing hypotheses are satisfied:

g 1s a positive prime, n 1s odd and a power of a prime, say p% (a,n) = 1,

then the solutions x, if any, are likewise relatively prime to the modulus p*,
and the problem of the solvability of (25) in integers can be formulated 1n

group-theoretic fashion as follows:
Let a class A be given in the group of residue classes mod p*. How many

elements X are there 1n the group such that

X1= A7
We distinguish two cases:
1. The prime q does not divide the order of the group h = @(p*). Then
there is exactly one element X of the desired sort. To see this let the integers

m, n be determined so that gm + hn = 1, which is possible since (g, h) = 1.
Since X" = 1, it follows from X? = A that

X — qu+hn — (Xq)m — Am

and this element actually satisfies X? = A.
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2. q divides h = @(p*). By Theorem 44 there 1s an element C (of order h),
whose powers yield all elements of the group. We set

A= C?, X =C"

with integral a' and x, which are completely determined mod h. By Theo-
rem 20, 1t follows from

X?1= A, C* = C%*
that
xg = a’ (mod h)

and conversely. However, since q|h, this congruence is solvable in integers x
only if

/

q|d,

and then it has exactly g different solutions mod h. That is, the equation
X? = A has either no solutions or exactly q distinct solutions X. Since C 1s a
primitive class, the condition g|d’ is equivalent to

Ala — ca'ha — (Ch)a’/q - 1.

Returning to numbers from residue classes we see that we have proved

Theorem 46. The congruence
x? = a (mod p%)

where q, p are primes, p # 2 (a, p) = 1, has exactly one solution x in integers
if g does not divide @(p*). However if q divides @(p*), then the equation has
q solutions, and indeed exactly q, if

a®?4 = 1 (mod p%) (26)

If the exponent 1s also relatively prime to the modulus, that is g # p,
then Condition (26) allows a still simpler formulation. For, since g 1s a
prime, but g # p, it follows from g|¢(p?) that

~-1
qlp — 1, q = b= integral,

q
and (26) reads

a?” " '? = 1 (mod p%; (26a)
hence 1n particular, because of Fermat’s theorem we also have
a? =1 (mod p). (27)

This congruence, which has the solvability of x? = a (mod p) as a conse-
quence, also conversely has (26) as a consequence. Specifically for each prime
p, 1t follows from

m = n(mod p"), m=n+ xp" (integral x),
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that

mp - (n —|— xpr)p — np _l_ (I;)xpr _I_ v 00 == np (mOd pl"+1)

m? = n? (mod p" 1),

since the binomial coeflicients () are divisible by pfor k=1,2,...,p—1

as we have already used above once (see p. 43); thus (26) follows from 27.
If g|p — 1, then (27), which does not depend any more on the exponent
o, 1S also a condition for the solvability of x? = a (mod p*). Hence

Theorem 46a. If q is a prime factor of p — 1, p an odd prime, and (a, p) = 1,
then the congruence x? = a (mod p?) is solvable if and only if it is solvable
mod p. For this it is necessary and sufficient that

a®~ V4 = 1 (mod p).

Then there are q solutions incongruent mod p°.

As moduli, the powers 2% require special treatment because of Theorem 45.

Theorem 47. With odd q and a, the congruence x? = a (mod 2%) always has

exactly one solution. For g = 2 and odd a, x* = a (mod 2% is solvable for
oo > 3 if and only if it is solvable mod 8, that is, if a =1 (mod 8), and indeed
the number of incongruent solutions in this case is equal to 4. For a = 1 (mod 4),

* = g (mod 4) has two solutions, otherwise it has no solutions for odd a, and

x% = a (mod 2) always has a solution.

The first part (g odd) 1s proved exactly as above in Case 1. Since, by
Theorem 435, the classes mod 2* (& = 3) can be represented in the form B{'B%,
where B? = B3"™° = 1, then we see as above in Case 2 that only those classes
A = B*B%, where a, = 0, a, even, can be represented in the form X?*. And
then there are as many classes X with X? = B% as there are classes with
X? =1, that is, 2° = 4. A simple form of the solvability condition for x* = a
(mod 2%) with « > 3 a = 1 (mod 8) arises as follows:

If x* = a (mod 2% (o« > 3) is solvable (let x = x, be a solution), then the

congruence is also solvable mod 2**!. For let an integer z be determined so
that

(xo +2° 122 —a=x5 —a+ 2%,z + 2%*" 22?2 = 0 (mod 2**1)

which, since
20—2=a+(x—2)=>a+1,

leads to the solvable congruence

Xg — a
2a

+ X9z = 0 (mod 2).
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If x*=a (mod 8) is solvable, then the congruence is consequently also
solvable mod 2% However, as we see by trying out the other cases, this
congruence 1s solvable only for a = 1 (mod ).

From this we immediately obtain an overview of the solutions of

x4 = g (mod n) (28)

for composite n. Suppose (a, n) = 1. In order that the congruence be solvable
mod n 1t must be solvable modulo each power of a prime which divides .
If n = p'p% - - - pir, where the p; are distinct primes, and if N; 1s the number
of different solutions mod p;* of

z? = a (mod py),
then the number of different solutions of (28) 1s
N=N, N, --N,.

To see this assume that the r numbers z4, ..., z, are solutions of z{ = a
(mod p}?) and then let us determine x from

x = z; (mod p}), (i=1,2,...,r).

Then
x? = z¥ = a (mod p%),
hence
x?1 = a (mod n).

x 1s uniquely determined mod n by the z;. Two difterent systems z; and z;
lead to the same x modn if and only if z; = z; (mod p¥) fori=1,2,...,r.
On the other hand every solution x of (28) is also a system of solutions of
the r single congruences, namely z; = x. Consequently N,N, - - - N, 1s the

exact number of solutions of (28) mod n.

§15 Residue Characters of Numbers mod #

In closing these investigations we finally wish to connect the numbers a
considered relative to a modulus n with the concepts, developed in §10,
related to characters of Abelian groups.

The elements of the group R(n) are the difierent residue classes mod n
which are relatively prime to n, and hence, as an Abelian group, there i1s
assigned to these elements a system of h = @(n) characters. Let a be an
integer from one such class A. Then corresponding to each character y(A)
we define a number-theoretic function

x(a) = x(A),
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for each integer a, relatively prime to n, which has the following properties:

(1) x(a) = x(b), 1f a = b (mod n).

(2) x(@)x(b) = x(ab)
(3) x(a) # O for all a relatively prime to n.

We complete this definition for the remaining integers by fixing
(4) x(a) =0, 1f (a,n) > 1.

Statements (1)—(3) are valid for this extended system of arguments where a

1s allowed to run through all integers.
Each function y(a) with the properties (1)—(4) is called a residue character

of a mod n. There are exactly h = ¢(n) different residue characters mod n
and by Theorem 31 we have

0 if ¥ 1s not the principal character,
Y xk) ={ PP (29)

@(n) 1f x 1s the principal character.

k mod n

Here again we call that character which is equal to 1 for all a relatively prime
to n the principal character. The summation k mod » under ) signifies that
the index k runs through a complete residue system mod n. In an analogous
manner we have

Y x(k) =

X

{O if k £ 1 (mod n), 30)

p(n) ifk=1 mod n).

With the help of residue characters mod n we now wish to give a difierent
formulation of the conditions for the solvability of a congruence

x? = g (mod n)

which were developed in the preceding section. Here we will make the

hypothesis:
(g,n) =1, gprime, and (a,n)= 1.

Thus the class A of a should be a gth power 1n the group R(n). Now the gth
powers of all classes form a subgroup U, of R(n). By Theorem 29, the order
of the factor group is R/U, = ¢°, where e = e(q) 1s the basis number belonging
to g in R(n) and e 1s at the same time the number of basis elements 1n R/U,_.
Consequently, by Theorem 33, there exist exactly e characters for R(n) and
thus exactly e residue characters mod n

Xl(a)a XZ(a)a SRR Xe(a)

such that the e equations y;(a)=1 (i=1,2,...,e) are the necessary and
sufficient conditions for the class A of a to be a gth power. These e characters
are independent of one another in the sense that there are always numbers
a for which these e characters are arbitrarily given gth roots of unity.

Until now only the fact that R(n) 1s a finite Abelian group was used; the
finer structure plays a role only when we try to represent e as a function of
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g and n. Now if n 1s a power of a prime p*, then e(q) = O for odd p if g does not
divide @(p*), and e(gq) = 1 1f g | @(p*), since the group R(p*) 1s cyclic. However
if n 1s composite and odd, n = p5! - - - p%, then by Theorem 42, e(q) for R(n)
is equal to the number of those p; for which g | (pf).

Each residue character y(a), which is equal to 1 for all gth powers a, 1s
called a gth power character of a mod n. By Theorem 33, each gth power
character 1s representable as a product of powers by the basis characters
L1s -« s Ke

The simplest case, which will concern us exclusively 1n what follows, 1s
the case with g = 2, where we are concerned with the classes which can be
represented as squares. The corresponding power characters are then called
quadratic characters.

§16 Quadratic Residue Characters mod »

An integer a relatively prime to n i1s called a quadratic residue mod n, or
simply a residue mod n if the congruence

x* = a (mod n)

1s solvable in integers x. In the other case a is called a nonresidue mod n.
By the preceding section the conditions for the solvability are that the e(2)
given residue characters mod n, for a, have the value 1. Each of the characters
y(a) 1s a square root of unity, hence it can only have the value +1.

To begin with, if n = p 1s an odd prime, then the corresponding e(2) = 1,
as 2 divides p — 1 and the group R(p) 1s cyclic. Thus among the p — 1
characters mod n there 1s exactly one, say y(a), which 1s a square root of
unity but not always = +1 and y(a) = +1 1s the condition that a 1s a
quadratic residue mod p. We set

x@=@)
P

By its definition this character 1s equal to +1 for each a not divisible by p.
Thus we have

(1) §) = (%) ifa=a (mod p),

2 (@) = @),

3) (%) =1,

(4) (3) 1s not equal to 1 for some a,

where d', a, b are integers not divisible by p. The symbol (3) is defined by
these properties alone, for each a relatively prime to p, since by (1) and (2),
it is a residue character mod p, by (3) this character has only the values +1,
and by (4), it 1s not always = + 1. Hence the residue classes 4 for which it
1s 1 form a subgroup of R(p) to which all squares belong. Thus its index 1s
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<2 but > 1 and therefore exactly = 2. Hence (§) = +1 for the quadratic
residues a mod p and equal to —1 for the nonresidues mod p.
If we recall that since

a? ! — 1 =0 (mod p),
@~V 4+ 1)(@®~ 12 — 1) = 0 (mod p),

then in view of Theorem 46a, (3) should be defined as the one of the two
numbers + 1 for which

(8) = a?~ Y2 (mod p). (31)

Legendre introduced the residue symbol (7) into number theory in this
manner.

The number of incongruent quadratic residues mod p 1s (p — 1)/2, so
the number of nonresidues =p—1—(p—1)/2 =(p — 1)/2; hence there
are just as many residues as nonresidues mod p.

By Theorem 46a, the condition (3) = + 1 1s at the same time the condition
that a 1s a quadratic residue mod p*. The number of residues mod p* 1s
also equal to the number of nonresidues mod p* namely = @(p*)/2 =
" Hp—1)2(a>1)

For a composite, and for the time being, odd n = pip% - - - p’r, the con-
dition that a 1s a residue mod n is given by e(2) equations for a certain set
of e(2) characters mod n. Here e(2) = r. The number of quadratic residues
mod n is @(n)/2", hence for r > 1 it 1s not equal to the number of nonresidues.
By what was done at the end of §14, the conditions that a 1s a residue mod n
are that a 1s a residue modulo each prime p; which divides », that 1s, that the

r equations
(—a—)=1 i=1,2,...,r)
Pi

hold. As we know, for the modulus 2%a > 3), the group R(2%) 1s no longer
cyclic, but it has two basis elements. The decision as to whether or not a 1s
a quadratic residue mod 2% cannot be made by statements about one residue
character mod 2% but rather for this we need two pieces of information. For

the time being we omit the introduction of a residue symbol mod 2%, and only
later, 1n §46, will we return to it.
On the other hand we define a symbol (%) for composite odd n. Let

n=pi---pr, n odd.

(O-GYGT T

provided the elements on the right side have a meaning, that 1s, if (a, n) = 1.

Finally let
(?—) =0 1if(a,n)>1.
n

We set
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For this extended symbol, we have, by definition,

(g) _ (%) if a = a’ (mod n),
£-006

for arbitrary integers a, a’, b whether they are relatively prime to »n or not.
Hence this symbol 1s also a residue character mod n. However we recall
once more that for composite n, no conclusion can be drawn from the value
(£) as to whether a is a quadratic residue mod n or not. If a 1s a residue mod n,
then (¢) = + 1 but not conversely.

Legendre and before him, in special cases, Euler, had already made the
following remarkable discovery about this residue symbol, which has many
consequences for all of number theory and which as the law of quadratic
reciprocity 1s formulated today as follows:

For positive odd a, n,

) = (2} (= 1)@ v2@-12)
n a

Beyond this, the so-called completion theorems hold :

(—-—;—1-) = (=112 nodd >0

(%) = (—=1)"™~DB  podd.

After Legendre published an attempted proof, which was to be sure incom-
plete in an essential point, Gauss (1796), who was nineteen years old, suc-
ceeded in finding the first proof which he published in 1801 in his classical
work Disquisitiones Arithmeticae. Since then many different proofs have been
given for the reciprocity law; the index in Bachmann’s book contains 45
entries; eight proofs are due to Gauss alone.

Modern number theory dates from the discovery of the reciprocity law.
By its form it still belongs to the theory of rational numbers, as it can be
formulated entirely as a simple relation between rational numbers; however
its content points beyond the domain of rational numbers. Gauss himself
recognized this. He first attempted to carry over the arithmetic concepts to
the complex integers a + b/ — 1 where a, b are integers and he succeeded in
finding and proving a similar law for fourth power residues. (It was probably
this success of complex number theory which induced him to introduce
complex numbers, which were viewed at that time with mistrust and used
only occasionally as having equal rights with real numbers in the remaining
parts of analysis). He recognized that Legendre’s reciprocity law represents
a special case of a more general and much more encompassing law. For this
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reason he and many other mathematicians have looked again and again for
new proofs whose essential ideas carry over to other number domains in
the hope of coming closer to a general law. The last decisive step was taken
by Kummer through his introduction of ideal prime factors. Then Dedekind
laid the foundations for the general theory of algebraic number fields, and,
with this available, the formulation and the proof of the most general reci-
procity law for gth power residues, where g 1s a prime, was finally achieved
by Hilbert and his student Furtwdngler.

The development of algebraic number theory has now actually shown
that the content of the quadratic reciprocity law only becomes understand-
able if one passes to general algebraic numbers and that a proof appropriate
to the nature of the problem can be best carried <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>