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Preface

This book provides an introduction to abstract algebraic geometry using
the methods of schemes and cohomology. The main objects of study are
algebraic varieties in an affine or projective space over an algebraically
closed field: these are introduced in Chapter I, to establish a number of
basic concepts and examples. Then the methods of schemes and
cohomology are developed in Chapters II and I, with emphasis on appli-
cations rather than excessive generality. The last two chapters ot the book
(IV and V) use these methods to study topics in the classical theory ot
algebraic curves and surfaces.

The prerequisites for this approach to algebraic geometry are results
from commutative algebra, which are stated as needed, and some elemen-
tary topology. No complex analysis or differential geometry 1s necessary.
There are more than four hundred exercises throughout the book, oftering
specific examples as well as more specialized topics not treated in the
main text. Three appendices present brief accounts of some areas of
current research.

This book can be used as a textbook for an introductory course In
algebraic geometry, following a basic graduate course in algebra. I re-
cently taught this material in a five-quarter sequence at Berkeley, with
roughly one chapter per quarter. Or one can use Chapter I alone for a
short course. A third possibility worth considering is to study Chapter 1,
and then proceed directly to Chapter IV, picking up only a few definitions
from Chapters II and III, and assuming the statement of the Riemann-
Roch theorem for curves. This leads to interesting maternial quickly, and
may provide better motivation for tackling Chapters II and 111 later.

The material covered in this book should provide adequate preparation

for reading more advanced works such as Grothendieck [EGA], [SGA].
Hartshorne [5], Mumford [2], [5], or Shafarevich [1].
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Introduction

The author of an introductory book on algebraic geometry has the dithcult
task of providing geometrical insight and examples, while at the same
time developing the modern technical language of the subject. For In
algebraic geometry, a great gap appears to separate the intuitive ideas
which form the point of departure from the technical methods used In
current research.

The first question 1s that of language. Algebraic geometry has
developed in waves, each with its own language and point of view. The
late nineteenth century saw the function-theoretic approach of Riemann,
the more geometric approach of Brill and Noether, and the purely alge-
braic approach of Kronecker, Dedekind, and Weber. The Italian school
followed with Castelnuovo, Enriques, and Severi, culminating in the clas-
sification of algebraic surfaces. Then came the twentieth-century **Ameri-
can ' school of Chow, Weil, and Zariski, which gave firm algebraic foun-
dations to the Italian intuition. Most recently, Serre and Grothendieck
initiated the French school, which has rewritten the foundations of alge-
braic geometry in terms of schemes and cohomology, and which has an
impressive record of solving old problems with new techniques. Each of
these schools has introduced new concepts and methods. In writing an
Introductory book, is it better to use the older language which is closer to
the geometric intuition, or to start at once with the technical language of
current research?

T'he second question is a conceptual one. Modern mathematics tends to
obliterate history: each new school rewrites the foundations of its subject
In its own language, which makes for fine logic but poor pedagogy. Of
what use is it to know the definition of a scheme if one does not realize

that a ring of integers in an algebraic number field, an algebraic curve, and
a compact Riemann surface are all examples of a ‘‘regular scheme of

X111



Introduction

dimension one’"? How then can the author of an introductory book indi-

cate the inputs to algebraic geometry coming from number theory, com-
mutative algebra, and complex analysis, and also introduce the reader to
the main objects of study, which are algebraic varieties in athne or pro-
jective space, while at the same time developing the modern language of
schemes and cohomology? What choice of topics will convey the meaning
of algebraic geometry, and still serve as a firm foundation for further study
and research?

My own bias is somewhat on the side of classical geometry. | believe
that the most important problems 1n algebraic geometry are those arising
from old-fashioned varieties in affine or projective spaces. They provide
the geometric intuition which motivates all further developments. In this
book, I begin with a chapter on varieties, to establish many examples and
basic ideas in their simplest form, uncluttered with technical details. Only
after that do I develop systematically the language of schemes, coherent
sheaves, and cohomology, in Chapters Il and I11. These chapters form the
technical heart of the book. In them I attempt to set forth the most
important results, but without striving for the utmost generality. Thus, for
example, the cohomology theory i1s developed only for quasi-coherent
sheaves on noetherian schemes, since this 1s simpler and sufficient for
most applications; the theorem of “*coherence of direct image sheaves’' 1s
proved only for projective morphisms, and not for arbitrary proper
morphisms. For the same reasons I do not include the more abstract
notions of representable functors, algebraic spaces, €tale cohomology,
sites, and topoil.

The fourth and fifth chapters treat classical material, namely nonsingu-
lar projective curves and surfaces, but they use techniques of schemes
and cohomology. I hope these applications will justify the effort needed to
absorb all the technical apparatus in the two previous chapters.

As the basic language and logical foundation of algebraic geometry, I
have chosen to use commutative algebra. It has the advantage of being
precise. Also, by working over a base field of arbitrary characteristic,
which 1s necessary in any case for applications to number theory, one
gains new insight into the classical case of base field C. Some years ago.
when Zariski began to prepare a volume on algebraic geometry, he had to
develop the necessary algebra as he went. The task grew to such pro-
portions that he produced a book on commutative algebra only. Now we
are fortunate in having a number of excellent books on commutative
algebra: Atiyah—Macdonald [1], Bourbaki [1], Matsumura [2], Nagata [7],
and Zariski-Samuel [1]. My policy is to quote purely algebraic results as
needed, with references to the literature for proof. A list of the results

used appears at the end of the book.

Originally I had planned a whole series of appendices—short expos-
itory accounts of some current research topics, to form a bridge between
the main text of this book and the research literature. Because of imited

L]
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Introduction

time and space only three survive. I can only express my regret at not
including the others, and refer the reader instead to the Arcata volume
(Hartshorne, ed. [1]) for a series of articles by experts in their fields,
intended for the nonspecialist. Also, for the historical development of
algebraic geometry let me refer to Dieudonne [1]. Since there was not
space to explore the relation of algebraic geometry to neighboring fields as
much as I would have liked, let me refer to the survey article of Cassels [1]
for connections with number theory, and to Shafarevich [2, Part 11I] for
connections with complex manifolds and topology.

Because 1 believe strongly 1n active learning, there are a great many
exercises in this book. Some contain important results not treated in the
main text. Others contain specific examples to 1llustrate general
phenomena. I believe that the study of particular examples 1s inseparable
from the development of general theories. The serious student should
attempt as many as possible of these exercises, but should not expect to
solve them immediately. Many will require a real creative effort to under-
stand. An asterisk denotes a more difficult exercise. Two asterisks denote
an unsolved problem.

See (I, §8) for a further introduction to algebraic geometry and this

book.

Terminology

For the most part, the terminology of this book agrees with generally
accepted usage, but there are a few exceptions worth noting. A variety 1s
always 1rreducible and 1s always over an algebraically closed field. In
Chapter I all varieties are quasi-projective. In (Ch. II, §4) the definition 1s
expanded to include abstract varieties, which are integral separated
schemes of finite type over an algebraically closed field. The words curve,
surface, and 3-fold are used to mean varieties of dimension 1, 2, and 3
respectively. But in Chapter 1V, the word curve 1s used only for a nonsin-
gular projective curve; whereas in Chapter V a curve is any effective
divisor on a nonsingular projective surface. A surface in Chapter V is
always a nonsingular projective surface.

A scheme 1s what used to be called a prescheme in the first edition of
[EGA], but is called scheme in the new edition of [EGA, Ch. I].

T'he definitions of a projective morphism and a very ample invertible sheaf
In this book are not equivalent to those in [EGA]—see (11, §4, 5). They are
technically simpler, but have the disadvantage of not being local on the
base.

T'he word nonsingular applies only to varieties; for more general
schemes, the words regular and smooth are used.

Results from algebra

| assume the reader is familiar with basic results about rings. ideals,
modules, noetherian rings, and integral dependence, and is willing to ac-
cept or look up other results, belonging properly to commutative algebra

vy . rF



Introduction

or homological algebra, which will be stated as needed, with reterences to
the literature. These results will be marked with an A: e.g., Theorem
3.9A, to distinguish them from results proved in the text.

The basic conventions are these: All rings are commutative with i1den-
tity element 1. All homomorphisms of rings take 1 to 1. In an integral
domain or a field, 0 # 1. A prime ideal (respectively, maximal ideal) 1s an
ideal p in a ring A such that the quotient ring A/p is an integral domain
(respectively, a field). Thus the ring itself 1s not considered to be a prime
ideal or a maximal 1deal.

A multiplicative system in aring A is a subset §, containing 1, and closed
under multiplication. The localization § 7'A is defined to be the ring formed
by equivalence classes of fractionsa/s,a €EA,s €5, wherea/s anda’/s" are
sald to be equivalent 1f there 1s an s” € § such that s"(s'a —sa’) = 0 (see
e.g. Atiyah—-Macdonald [1, Ch. 3]). Two special cases which are used

constantly are the following. If p is a prime ideal in A, then S =4 —p1s a
multiplicative system, and the corresponding localization 1s denoted by
A, . Iffis an element of A, then § = {1} U {f"|n = 1} 1s a multiplicative
system, and the corresponding localization is denoted by A,. (Note for
example that if £ 1s nilpotent, then A, is the zero ring.)

References

Bibliographical references are given by author, with a number in square
brackets to indicate which work, e.g. Serre, [3, p. 75]. Cross reterences to
theorems, propositions, lemmas within the same chapter are given by
number in parentheses, e.g. (3.5). Reference to an exercise 1s given by
(Ex. 3.5). References to results in another chapter are preceded by the

chapter number, e.g. (II, 3.5), or (IlI, Ex. 3.5).

X V1



CHAPTER |

Varieties

Our purpose 1n this chapter 1s to give an introduction to algebraic geometry
with as little machinery as possible. We work over a fixed algebraically
closed field k. We define the main objects of study, which are algebraic
varieties 1n affine or projective space. We introduce some of the most
important concepts, such as dimension, regular functions, rational maps,
nonsingular varieties, and the degree of a projective variety. And most 1m-
portant, we give lots of specific examples, in the form of exercises at the end
of each section. The examples have been selected to illustrate many inter-
esting and important phenomena, beyond those mentioned 1n the text. The
person who studies these examples carefully will not only have a good under-
standing of the basic concepts of algebraic geometry, but he will also have
the background to appreciate some of the more abstract developments of
modern algebraic geometry, and he will have a resource against which to
check his inturtion. We will continually refer back to this library of examples
In the rest of the book.

The last section of this chapter 1s a kind of second introduction to the book.
It contains a discussion of the “classification problem,” which has motivated
much of the development of algebraic geometry. It also contains a discussion
of the degree of generality in which one should develop the foundations of
algebraic geometry, and as such provides motivation for the theory of
schemes.

1 Afhine Varieties

Let k be a fixed algebraically closed field. We define affine n-space over k,
denoted A} or simply A", to be the set of all n-tuples of elements of k. An
element P € A" will be called a point, and if P = (a4, ... ,a,) with u; € k, then
the a; will be called the coordinates of P.



[ Varieties

Let 4 = k[x,,....x,| be the polynomial ring in n variables over k.
We will interpret the elements of A as functions from the afhne n-space
to k, by defining f(P) = f(ay,....a,), where f e A and Pe A". Thus if
f e A 1s a polynomial, we can talk about the set of zeros of f, namely
Z(f)= |PeA"f(P) =0]. More generally, if T i1s any subset of 4, we
define the zero set of T to be the common zeros of all the elements of T,

namely

Z(T) = PeA"f(P)=0forall feT]

Clearly if a 1s the 1deal of 4 generated by T, then Z(T) = Z(a). Further-
more, since A 1s a noetherian ring, any 1deal a has a finite set of generators
fi,...,f.. Thus Z(T) can be expressed as the common zeros of the finite

set of polynomals f,,..../,.

Definition. A subset Y of A" i1s an algebruic set if there exists a subset T < A4
such that Y = Z(T).

Proposition 1.1. The union of two algebraic sets is an algebraic set. The
intersection of any family of algebraic sets is an algebraic set. T he empty
set and the whole space are algebraic sets.

Proor. If Y, = Z(T,) and Y, = Z(T,), then Y, v Y, = Z(T,T,), where
T, T, denotes the set of all products of an element of T, by an element of
T,. Indeed, if Pe Y, U Y,, then either Pe Y, or Pe Y,, so P 1s a zero of
every polynomial in T,T,. Conversely, if Pe Z(T,T,), and P ¢ Y, say,
then therei1s an f € T, such that f(P) # 0. Nowforanyge T,,(fg)(P) = 0
implies that g(P) = 0, so that P e Y,.

If Y, = Z(T,) is any family of algebraic sets, then (Y, = Z({ /T,), so
(1Y, is also an algebraic set. Finally, the empty set & = Z(1), and the whole
space A" = Z(0).

Definition. We define the Zariski topology on A" by taking the open subsets
to be the complements of the algebraic sets. This 1s a topology, because
according to the proposition, the intersection of two open sets 1s open,
and the union of any family of open sets 1s open. Furthermore, the empty
set and the whole space are both open.

Example 1.1.1. Let us consider the Zariski topology on the affine line A",
Every ideal in 4 = k| x| is principal, so every algebraic set is the set of zeros
of a single polynomial. Since k is algebraically closed, every nonzero poly-
nomial f(x) can be written f(x) = ¢(x — a;)- - (x — a,) with c.ay, ... a, €
k. Then Z(f) = 'u,.....u,|. Thus the algebraic sets in A" are just the finite
subsets (including the empty set) and the whole space (corresponding to
f = 0). Thus the open sets are the empty set and the complements of finite
subsets. Notice in particular that this topology 1s not Hausdorff.

2



|  Affine Varieties

Definition. A nonempty subset Y of a topological space X 1s irreducible if
It cannot be expressed as the union Y = Y, U Y, of two proper subsets,
each one of which 1s closed 1n Y. The empty set 1s not considered to be
irreducible.

Example 1.1.2. A' is irreducible, because its only proper closed subsets are
finite, yet 1t 1s infinite (because k 1s algebraically closed, hence infinite).

Example 1.1.3. Any nonempty open subset of an irreducible space 1s irre-
ducible and dense.

Example 1.1.4. If Y is an irreducible subset of X, then its closure Y in X is
also 1rreducible.

Definition. An affine algebraic variety (or simply affine variety) 1s an irre-
ducible closed subset of A" (with the induced topology). An open subset
of an affine variety 1s a quusi-affine variety.

These athne and quasi-athne varieties are our first objects of study. But
before we can go further, in fact before we can even give any interesting
examples, we need to explore the relationship between subsets of A" and
ideals 1n 4 more deeply. So for any subset Y < A", let us define the ideal of
Y In A by

I(Y)={feAlf(P) =0forall Pe Y]

Now we have a function Z which maps subsets of 4 to algebraic sets, and a
function I which maps subsets of A" to ideals. Their properties are sum-
marized 1n the following proposition.

Proposition 1.2.
(a) If T, < T, are subsets of A, then Z(T,) =2 Z(T,).
b) If Y, < Y, ure subsets of A", then I(Y;) = I(Y,).
c) For any two subsets Y, Y, of A", we have (Y, U Y,) = I(Y;) N I(Y,).
d) For any ideal a € A, [(Z(a)) = \/&, the radical of a.
e) For anv subset Y < A", Z(I(Y)) = Y, the closure of Y.

PROOEF. (a), (b) and (c) are obvious. (d) i1s a direct consequence of Hilbert's
Nullstellensatz, stated below, since the radical of a 1s defined as

va=(feA

To prove (e), we note that Y < Z(I(Y)), which 1s a closed set, so clearly
Y <€ Z(I(Y)). On the other hand, let W be any closed set containing Y.
Then W = Z(a) for some 1deal a. So Z(a) 2 Y, and by (b), IZ(a) < I(Y).
But certainly a € IZ(a), so by (a) we have W = Z(a) 2 ZI(Y). Thus
ZI(Y) =Y.

/" e ator some r > 0.




|  Varieties

Theorent 1.3A (Hilbert’'s Nullstellensatz). Let A be an algebraically closed
ficld, let a be an ideal in A = k[ xq.. ... N, |oand let fe A be a polynomial
which vanishes at all points of Z(a). Then f" e a for some integer r > 0.

PrOOF. Loug | 2. p. 256 | or Atiyah-Macdonald [ 1. p. 85| or Zariski- Samuel
[ 1.vol 20 p. 164,

Corollary 1.4. There s a one-to-one inclusion-reversing correspondence
hetween algebraic sets in A" and radical ideals (ve., ideals which are equal
to their ovwn radical) in A, given by Y — I(Y)and a — Z(a). Furthermore,
an algebraic set is irreducible if and only if its ideal is a prime ideal.

Proor. Only the last part 1s new. If Y is irreducible, we show that [(Y) 1s
prime. Indeed. if fge (YY) then Y = Z(fg) = Z(f) v Z(y). Thus Y =
(Y N Z(f))u (Y n Z(y)), both being closed subscts of Y. Since Y 15 mrre-
ducible. we have either ¥ = Y n Z(/f). mmn which case Y € Z(f). or Y <
Z(y). Hence etther f e [(Y)orge I(Y)

Conversely, let p be a prime 1deal, and suppose that Z(p) = Y, U Y.
Then p = I(Y,) n I(Y,). so either p = I(Y,)or p = I(Y,). Thus Z(p) = Y,
or Y,. hence 1t 1s irreducible.

Example 1.4.1. A" is irreducible, since it corresponds to the zero 1deal in A.
which 1s prime.

Example 1.4.2. Lct / be an irreducible polynomial in 4 = k[ x.v]. Then f
cgenerates a prime 1deal in 4, since 4 1s a unique factorization domain. so
the zero set Y = Z( /) 1s irreducible. We call 1t the affine curce defined by
the equation f(x.yv) = 0. If f has degree d. we say that Y 1s a curve of degree d.

Example 1.4.3. More generally, if f 1s an irreducible polynomial in 4 =
N ] we obtain an afhine variety Y = Z(f), which is called a surface
1f 1 .or a hypersurface if n > 3.

Example 1.4.4. A maximal ideal mt of 4 = k| x,,....x,| corresponds to
a minimal 1rreducible closed subset of A”, which must be a point, say
P = (uay,....u ). This shows that every maximal ideal of 4 is of the form
ML= (X — Uq.. ... \, — d,), for some «y,....a, k.

Example 1.4.5. If k 1s not algebraically closed, these results do not hold. For
example. if A = R, the curve x* + 1* + 1 = 01in Ag has no points. So(1.2d)
1s false. See also (Ex. 1.12).

Definition. If Y < A" is an afline algebraic set, we define the affine coordinate
ring A{Y)of Y. tobe A I(Y).

Remark 1.4.6. If Y 1s an afline variety, then A(Y) 1s an integral domain.
Furthermore, A(Y) 1s a finitely generated k-algebra. Conversely, any
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finitely generated k-algebra B which 1s a domain is the affine coordinate
ring of some affine variety. Indeed, write B as the quotient of a polynomial
ring A = k| x,,....,x,| by anideal a, and let Y = Z(a).

Next we will study the topology of our varieties. To do so we introduce
an important class of topological spaces which includes all varieties.

Definition. A topological space X 1s called noetherian 1f 1t satisfies the de-
scending chain condition for closed subsets: for any sequence ¥Y; 2 Y, = ...
of closed subsets, there 1s an integer rsuchthat Y = Y ., = ...

Example 1.4.7. A" 1s a noetherian topological space. Indeed,if Y, =2 ¥, = ...
1s a descending chain of closed subsets, then I(Y;) € I(Y,) < ... 1S an as-
cending chain of ideals in 4 = k| x,,...,x,]. Since 4 is a noetherian ring,
this chain of 1deals 1s eventually stationary. But for each i, Y, = Z(I(Y))),
so the chain Y 1s also stationary.

Proposition 1.5. I'n a noetherian topological space X, every nonempty closed
subset Y can be expressed as a finite union Y = Y, U ... v Y of irreducible
closed subsets Y,. If we require that Y; 2 Y, for i # j, then the Y; are
uniquely determined. T hey are called the irreducible components of Y.

PrOOF. First we show the existence of such a representation of Y. Let &
be the set of nonempty closed subsets of X which cannot be written as a
finite union of irreducible closed subsets. If & 1s nonempty, then since X
1S noetherian, 1t must contain a minimal element, say Y. Then Y 1s not
irreducible, by construction of &. Thus we can write ¥ = Y’ U Y", where
Y’ and Y are proper closed subsets of Y. By minimality of Y, each of Y’
and Y" can be expressed as a finite union of closed 1rreducible subsets, hence
Y also, which 1s a contradiction. We conclude that every closed set Y can
be writtenasaunion Y = Y, u ... U Y, ofirreducible subsets. By throwing
away a few 1f necessary, we may assume Y, 2 Y, for i # .

Now suppose Y = Y; u ... u Y, 1s another such representation. Then
Yic Y=Y u...uY,so Y{ = J(Y; nY) But Y] is irreducible, so

- {

Y| € Y forsomei,sayi = 1. Similarly, Y, < Y;forsome,. Then Y| = Y.
soj = 1,and we find that Y, = Y;. Nowlet Z = (Y — Y,)”. Then Z =
Y u...uYandalsoZ = Y, u...u Y.. So proceeding by induction on

r, we obtain the uniqueness of the Y.

Corollary 1.6. Every algebraic set in A" can be expressed uniquely as a union
of varieties, no one containing another.

Definition. It X 1s a topological space, we define the dimension of X (denoted
dim X) to be the supremum of all integers n such that there exists a chain
Lo < £y < ... c Z, of distinct 1rreducible closed subsets of X. We
define the dimension of an affine or quasi-affine variety to be its dimen-
sion as a topological space.
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Example 1.6.1. The dimension of A' is 1. Indeed. the only irreducible closed
subsets of A' are the whole space and single points.

Definition. In a ring 4. the height of a prime 1deal p 1s the supremum of all
integers 11 such that there exists a chamm p, cp, ... <cp, =p of
distinct prime 1deals. We define the dimension (or Krull dimension) of A
to be the supremum of the heights of all prime 1deals.

Proposition 1.7. If Y is an affine algebraic set, then the dimension of Y is
cqual to the dimension of its affine coordinate ring A(Y).

PrOOF. If Y 1s an affine algebraic set in A", then the closed irreducible subsets
of Y correspond to prime ideals of A = k{x,,....,x,| containing I(Y).
These in turn correspond to prime ideals of A(Y ). Hence dim Y 1s the length
of the longest chain of prime 1deals 1in A(Y), which 1s 1its dimension.

This proposition allows us to apply results from the dimension theory of
noetherian rings to algebraic geometry.

Theorem 1.8A. Let k he a field, and let B be an integral domain which is «
finitely generated h-algebra. T hen:
(a) the dimension of B is equal to the transcendence degree of the
quotient field K(B) of B over k:
(b) For any prime ideal v in B, we have

height p + dim B p = dim B.

Proo¥. Matsumura [ 2. Ch. 5. §14| or. in the case A 1s algebraically closed.
Atiyah- Macdonald [ I, Ch. 11

Proposition 1.9. T he dimension of A" is n.

PrROOF. According to (1.7) this says that the dimension of the polynomial
ring k| Xy, ....,x,]|1s n. which follows from part (a) of the theorem.

Proposition 1.10. If Y is a quasi-affine variety, then dim Y = dim Y.

Proor. If Z, <« Z, = ... < Z, 1s a sequence of distinct closed irreducible

~

subsets of Y, then Z, = Z, —« ... < Z, is a sequence of distinct closed
irreducible subsets of Y (1.1.4), so we have dim Y < dim Y. In particular,
dim Y is finite, so we can choose a maximal such chamm Z, < ... < Z,,
with 7 = dim Y. In that case Z, must be a point P, and the chain P =
Z, < ...c Z, will also be maximal (1.1.3). Now P corresponds to a
maximal ideal m of the affine coordinate ring A(Y) of Y. The Z, correspond
to prime ideals contained in i, so height mt = n. On the other hand, since
P is a point in affine space, A(Y)/m = k (1.4.4). Hence by (1.8Ab) we find

that n = dim A(Y) = dim Y. Thusdim Y = dim Y.

6
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Theorem 1.11A (Krull's Hauptidealsatz). Let A be a noetherian ring, and let
1 € A be an element which is neither a zero divisor nor a unit. Then every
minimal prime ideal p containing f has height 1.

PROOF. Atiyah—-Macdonald [ 1, p. 122].

Proposition 1.12A. A noetherian integral domain A is a unique factorization
domain if and only if every prime ideal of height 1 is principal.

PrROOF. Matsumura |2, p. 141 ], or Bourbaki [ 1, Ch. 7, §3].

Proposition 1.13. 4 cariety Y in A" has dimension n — 1 if and only if it is
the zero set Z(f) of a single nonconstant irreducible polynomial in A =

k[ xi.....x, ]

ProoF. If f 1s an irreducible polynomial, we have already seen that Z(f) 1s
a variety. Its ideal 1s the prime 1deal p = (/). By (1.11A), p has height 1,
so by (1.8A), Z(f) has dimension n — 1. Conversely, a variety of dimension
n — 1 corresponds to a prime 1deal of height 1. Now the polynomial ring A4
1S a unique factorization domain, so by (1.12A), p 1s principal, necessarily
generated by an irreducible polynomial f. Hence Y = Z(f).

Remark 1.13.1. A prime ideal of height 2 in a polynomial ring cannot
necessarily be generated by two elements (Ex. 1.11).

EXERCISES

1.1. (a) Let Y be the plane curve y = x~ (i.e., Y 1s the zero set of the polynomial f =
v — x?). Show that A(Y) is isomorphic to a polynomial ring in one variable
over k.
(b) Let Z be the plane curve xy = 1. Show that 4A(Z) 1s not 1somorphic to a poly-
nomial ring 1in one variable over A.
*(c) Let f be any irreducible quadratic polynomial in k[ x.v |, and let W be the
conic defined by /. Show that 4(W)1s1somorphicto 4A(Y)or A(Z). Which one
1s 1t when’

1.2. The Twisted Cubic Curre. Let Y < A betheset Y = {(z,rz,r‘)lr c h,. ShowthatY
1s an aftine variety of dimension 1. Find generators for the ideal I(Y). Show that
A(Y') 1s 1Isomorphic to a polvnomial ring in one variable over k. We say that Y

1s given by the parametric representation x = r.v = (%, = t°.

1.3. Let Y be the algebraic set in A defined by the two polynomials x* — vz and
Xz — x. Show that Y 1s a union of three irreducible components. Describe them
and find their prime 1deals.

1.4. If we identify A with A" x A" in the natural way, show that the Zariski topology
on A- is not the product topology of the Zariski topologies on the two copies of A'.

]
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1.5. Show that a k-algebra B 1s isomorphic to the aftine coordinate ring of some alge-
braic set in A", for some n. if and only if B is a finitely generated k-algebra with no

nilpotent elements.

1.6. Any nonempty open subset of an irreducible topological space i1s dense and
irreducible. If Y 1s a subset of a topological space X, which 1s 1irreducible in 1ts

induced topology, then the closure Y 1s also irreducible.

1.7. (a) Show that the following conditions are equivalent for a topological space X:
(1) X 1s noetherian: (11) every nonempty family of closed subsets has a minimal
clement: (111) X satisfies the ascending chain condition for open subsets:
(1v) every nonempty family of open subsets has a maximal element.

(b) A noetherian topological space 1s quasi-compact, 1.€., every open cover has a
finite subcover.

(c) Any subset of a noetherian topological space is noetherian in 1ts induced
topology.

(d) A noetherian space which 1s also Hausdorff must be a finite set with the discrete
topology.

1.8. Let Y be an affine variety of dimension r in A". Let H be a hypersurface in A",
and assume that Y & H. Then every irreducible component of Y n H has
dimension r — 1. (See (7.1) for a generalization.)

1.9. Let a € 4 = k| x,,...,x,] be an ideal which can be generated by r elements.
Then every 1rreducible component of Z(a) has dimension = n — r.

1.10. (a) If Yisany subset ofa topological space X, thendim Y < dim X

(b) If X 1s a topological space which is covered by a family of open subsets | U, |,
then dim X = supdim U'..

(c) Give an example of a topological space X and a dense open subset U with
dim ' < dim X.

(d) If Y1s a closed subset of an irreducible finite-dimensional topological space X,
and 1 dim ¥ = dim X, then Y = X.

(e) Give an example of a noetherian topological space of infinite dimension.

*1.11. Let Y < A° be the curve given parametrically by x = >, v = 1*, z = t>. Show
that I(Y) is a prime ideal of height 2 in A| x,y,z| which cannot be generated by
2 elements. We say Y 1s not a local complete intersection— cf. (Ex. 2.17).

1.12. Give an example of an irreducible polynomial f € R|x, v|. whose zero set
Z( ) in Ay is not irreducible (cf. 1.4.2).

2 Projective Varieties

To define projective varieties, we proceed in a manner analogous to the
definition of affine varieties, except that we work 1n projective space.

Let k be our fixed algebraically closed field. We defined projective n-space
over k, denoted P}, or simply P", to be the set of equivalence classes of
(n + 1)-tuples (aq, ... ,a,) of elements of k, not all zero, under the equiva-

lence relation given by (ug,....,d,) ~ (Ldq, ... ,a,) for all 2ek, 2 # 0.
Another way of saying this 1s that P" as a set i1s the quotient of the set

!
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A"T1 — 10, ....0)] under the equivalence relation which identifies points
lying on the same line through the origin.

An element of P" 1s called a point. If P 1s a point, then any (n 4+ 1)-
tuple (g, . ...a,) 1n the equivalence class P 1s called a set of homogeneous
coordinates for P.

Let S be the polynomial ring k[ x,,...,x,|. We want to regard S as a
graded ring, so we recall briefly the notion of a graded ring.

A graded ring is a ring S, together with a decomposition S = ), S,
of S into a direct sum of abelian groups S,, such that for any d,e = 0,
S-S, < §S,... An element of S, 1s called a homogeneous element of degree
d. Thus any element of § can be written uniquely as a (finite) sum of
homogeneous elements. An 1deal a < S i1s a homogeneous ideal if a =
Paso (a N S,). We will need a few basic facts about homogeneous ideals
(see, for example, Matsumura | 2, §10| or Zariski-Samuel | 1, vol. 2, Ch. VII,
32]). An ideal i1s homogeneous if and only if it can be generated by homo-
geneous elements. The sum, product, intersection, and radical of homo-
geneous 1deals are homogeneous. To test whether a homogeneous ideal 1s
prime, 1t is sufficient to show for any two lhomogeneous elements f,g, that

fg € aimplies f e aor g € a.

We make the polynomial ring S = k[x,.....x,| into a graded ring by
taking S, to be the set of all linear combinations of monomials of total
weight d In x,,....,x,. If f € S is a polynomial, we cannot use 1t to define

a function on P", because of the nonuniqueness of the homogeneous co-
ordinates. However, if f 1s a homogeneous polynomial of degree d, then
f(ray, ... 2a,) = 2fla,, ... .q,), so that the property of f being zero or
not depends only on the equivalence class of (ag,...,q,). Thus f gives a
function from P" to [0,1] by f(P) = 0 1if f(ug,...,q,) =0, and f(P) = 1
i flag, ... .a,) # 0.

Thus we can talk about the zeros of a homogeneous polynomial, namely
Z(f)= (PeP"f(P)= 0. If Tis any set of homogeneous elements of S,
we define the zero set of T to be

/Z(T) = PeP"f(P)=0forall feT)]

If a 1s a homogeneous 1deal of S, we define Z(a) = Z(T), where T 1s the set
of all homogeneous elements in a. Since S 1s a noetherian ring, any set of
homogeneous elements T has a finite subset f,,....f. such that Z(T) =

Z(f )

Definition. A subset Y of P" 1s an alyebraic set if there exists a set T of ho-
mogeneous elements of S such that ¥ = Z(T).

Proposition 2.1. T he union of two dalyebraic sets is an algebraic set. The
intersection of any family of algebraic sets is an algebraic set. T he empty
set and the whole space are alyebraic sets.

PROOF. Left to reader (1t 1s similar to the proof of (1.1) above).
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Definition. We define the Zariski topology on P” by taking the open sets
to be the complements of algebraic sets.

Once we have a topological space, the notions of irreducible subset and
the dimension of a subset. which were defined 1n §1. will apply.

Definition. A projective algebraic variety (or simply projective variety) 1s an
irreducible algebraic set in P". with the induced topology. An open
subset of a projective variety 1s a quasi-projective variety. The dimension
of a projective or quasi-projective variety is its dimension as a topo-
logical space.

If Y 1s any subset of P", we define the homogeneous ideal of Y 1n 8§,
denoted I(Y), to be the ideal generated by | f € S|/ is homogeneous and
f(P)=0for all PeY|. It Y i1s an algebraic set, we define the homo-
geneous coordinate ring of Y tobe S(Y) = S I(Y). We refer to (Ex. 2.1-
2.7) below for various properties of algebraic sets in projective space
and their homogeneous ideals.

Our next objective 1s to show that projective n-space has an open covering
by affine n-spaces, and hence that every projective (respectively, quasi-
projective) variety has an open covering by affine (respectively, quasi-affine)
varieties. First we introduce some notation.

If f €S8 1s a inear homogeneous polynomial, then the zero set of f 1s
called a hyperplane. In particular we denote the zero set of x; by H., for
i = 0,....,n. Let U, be the open set P" — H,. Then P" is covered by the
open sets U, because if P = (uq.....d,)1s a point, then at least one «; # 0,
hence Pe U.. We define a mapping ¢;: U.— A" as follows: if P=(u,....,u,) e
U..then ¢,(P) = O, where QO 1s the point with affine coordinates

with «;ya; omitted. Note that ¢, 1s well-defined since the ratios «;/u; are
independent of the choice of homogeneous coordinates.

Proposition 2.2. The map ¢: is a homeomorphism of U, with its induced
topology to A" with its Zariski topology:

PROOF. o, 1s clearly biective, so 1t will be sufficient to show that the closed
sets of U are identified with the closed sets of A" by ;. We may assume
i = 0, and we write ssmply U for U, and ¢:U — A" for ¢,

Let A = k[ v,,....y,]. We define a map « from the set S" of homo-
geneous clements of S to 4, and a map ff from A to S". Given [ e S", we

seta(f) = f(L,y,,....v,). On the other hand, given g € A of degree ¢, then

10
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NOY(X,/Xq, .. ..X, /X)) 1s @ homogeneous polynomial of degree ¢ in the x,,
which we call [(g).

Now let Y < U be a closed subset. Let Y be its closure in P". This is
an algebraic set, so Y = Z(T) for some subset T < S§". Let T' = a(T).

Then straightforward checking shows that ¢o(Y) = Z(T"). Conversely, let
W be a closed subset of A". Then W = Z(T') for some subset T’ of 4, and

one checks easily that o " '(W) = Z(B(T')) n U. Thus ¢ and ¢ ' are both
closed maps, so ¢ 1s a homeomorphism.

Corollary 2.3. If Y is u projective (respectively, quasi-piojective) variety, then

Y iscovered by theopensets Y n Ui = 0,... . n,which aire homeomorphic
to dffine (respectively, quasi-affine) varieties via the mapping @. defined
above.

EXERCISES

2.1. Prove the "homogeneous Nullstellensatz,” which saysif a = § 1s a homogeneous
Ideal, and if f € S 1s a homogeneous polynomial with deg f > 0, such that f(P) = 0
for all P € Z(a) in P", then f € a for some ¢ > 0. [ Hint: Interpret the problem in
terms of the affine (n + 1)-space whose affine coordinate ring i1s S, and use the
usual Nullstellensatz, (1.3A).]

2.2. For a homogeneous 1deal a < §, show that the following conditions are equi-
valent:

(1) Z(a) = J (the empty set):
(ii) \/a = either S or theideal S, = (4. Sy:
(m) a =2 S, for some d > 0.

2.3. (a) If T, < T, are subsets of S". then Z(T,) 2 Z(T,).
(b) It Y, < Y, are subsets of P”, then I(Y,) 2 I(Y,).
(c) For any two subsets Y,.Y, of P". I(Y, U Y,) = I(Y,) n I(Y,).
(d) If a = §1s a homogeneous ideal with Z(a) # . then I(Z(a)) = a.
(e) Forany subset Y < P". Z(I[(Y)) = Y

2.4. (a) There 1s a 1-1 inclusion-reversing correspondence between algebraic sets 1n
P". and homogeneous radical 1deals of S not equal to S, given by Y+ I(Y)
and a— Z(a). Note: Since S. does not occur 1n this correspondence, 1t 1s
sometimes called the i, relevant maximal 1deal of S.

(b) An algebraic set Y = P" s irreducible if and only if I(Y) is a prime 1deal.
(c) Show that P" itself 1s irreducible.

2.5. (a) P"1s a noetherian topological space.
(b) Every algebraicset in P"can be written uniquely as a finite union of irreducible
algebraic sets. no one containing another. These are called its irreducible
COMpPONents.

2.6. If Y 1s a projective variety with homogeneous coordinate ring S(Y), show that
dim S(Y) =dim Y + 1. [Hint: Let ¢;: U, — A" be the homeomorphism of (2.2).
let Y, be the afhine variety ¢ (Y n U;), and let A(Y;) be its affine coordinate ring.

11
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Show that A(Y)) can be identified with the subring of elements ot degree 0 of the
localized ring S(Y),. Then show that S(Y), = A(Y)[x,,x.7']. Now use (1.7),
(1.8A), and (Ex 1.10), and look at transcendence degrees. Conclude also that
dim Y = dim Y; whenever Y, is nonempty. |

2.7. (a) dim P" = n.
(b) If Y < P"is a quasi-projective variety, then dim Y = dim Y.
| Hint: Use (Ex. 2.6) to reduce to (1.10). |

2.8. A projective variety Y < P" has dimension n — 1 i1f and only if 1t is the zero set of
a single irreducible homogeneous polynomial f of positive degree. Y 1s called a

hypersurface in P".

2.9. Projective Closure of an Affine Variety. It Y < A" 1s an athne variety, we identify

A" with an open set U, < P" by the homeomorphism ¢,. Then we can speak of

Y. the closure of Y in P", which is called the projective closure of Y.

(a) Show that I(Y) is the ideal generated by B(I(Y)), using the notation of the
proof ot (2.2).

(b) Let Y < A° be the twisted cubic of (Ex. 1.2). Its projective closure Y < P-
is called the nwisted cubic curre in P°. Find generators for I(Y) and I(Y), and
use this example to show thatif f,, ..., f generate I(Y), then S(f,), ..., B(f))
do not necessarily generate I(Y ).

2.10. The Cone Over a Projective Variety (Fig. 1). Let Y = P" be a nonempty algebraic

set, and let O:A""' — [(0,...,0)] — P" be the map which sends the point with
affine coordinates (a,,...,t,) to the point with homogeneous coordinates

(ag, . ..,a,). We define the affine cone over Y to be
C(Y)=06"(Y)u {(0,...,0)].

(a) Show that C(Y) i1s an algebraic set in A""', whose ideal 1s equal to I(Y),
considered as an ordinary ideal in k| x,, ... ,x,]|.

(b) C(Y)1s irreducible if and only 1f Y 1s.

(c) dm C(Y) =dm Y + 1.

Sometimes we consider the projective closure C(Y)of C(Y)in P*""!. This is called

the projective cone over Y.

/A

C(Y)

IP

Figure 1. The cone over a curve in P~

[2
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2.11. Linear Varieties in P". A hypersurface defined by a linear polynomal 1s called a
hyperplane.

(a) Show that the following two conditions are equivalent for a variety Y in P".
(1) I(Y)can be generated by linear polynomuials.

(1) Y can be written as an intersection of hyperplanes.
In this case we say that Y 1s a linear variety in P".

(b) If Y is a linear variety of dimension » in P", show that I(Y) 1s mimmimally gen-
erated by n — - linear polynomials.

(¢) Let Y. Z belinear varietiesin P", withdimY = . dimZ = s. Itir + 5 — n = 0,
then Y nZ # . Furthermore, if Y Z # ¢J, then Y n 2 1s a linear
variety of dimension > r + s — n. (Think of A"™! as a vector space over A,
and work with 1ts subspaces.)

2.12. The d-Uple Embedding. For given n,d > 0, let My, M, ... M, be all the mono-

mials of degree d in the n + 1 variables x,,...,x,, where N = (") — 1. We

define a mapping p,:P" — P" by sending the point P = («,, . .. ,u,) to the point

p,(P) = (My(a), ... ,My(a)) obtained by substituting the ¢, in the monomials M ,.

This is called the d-uple embedding of P* in P*. Forexample,ifn = 1,d = 2, then

N = 2. and the image Y of the 2-uple embedding of P! in P~ is a conic.

(a) Let O:k[ vo,....vn] = k[ xq,. ... v,] be the homomorphism defined by
sending y; to M, and let a be the kernel of 0. Then a 1s a homogeneous prime
ideal, and so Z(a) 1s a projective variety in P,

(b) Show that the image of p, 1s exactly Z(a). (One inclusion is easy. The other will
require some calculation.)

(c) Now show that p, 1s a homeomorphism of P" onto the projective variety Z(a).

(d) Show that the twisted cubic curve in P° (Ex. 2.9) is equal to the 3-uple embed-
ding of P! in P°, for suitable choice of coordinates.

2.13. Let Y be the image of the 2-uple embedding of P in P°. This is the Veronese
surface. 1f Z < Y s a closed curve (a curre 1s a variety of dimension 1), show that
there exists a hypersurface V < P > such that ' n Y = Z.

2.14. The Segre Embedding. Let :P" x P° — P* be the map defined by sending the
ordered pair (uaq, . ..,u,) x (bg,....,by) to (....qb,, ...) n lexicographic order.
where N = rs + r + s. Note that y 1s well-defined and injective. It 1s called the
Segre embedding. Show that the image of W is a subtvariety of PY. [Hint: Let the
homogeneous coordinates of P* be [z,[i=0,...,,j=0,.... o', and let a be

the kernel of the homomorphism k[ |z, ] = k[ x4, ... . N R v, | which sends

z,, to x,v,. Then show that Imy = Z(a).]

“m——

2.15. The Quudric Surfuce in P (F1g. 2). Consider the surface Q (a surface 1s a variety of

dimension 2) in P’ defined by the equation xy — -w = 0.

(a) Show that Q is equal to the Segre embedding of P! x P! in P~. for suitable
choice of coordinates.

(b) Show that Q contains two families of lines (a /line 1s a linear variety of dimen-
sion 1) [L,].;M,!. each parametrized by 1 € P'. with the properties that if
L,# L, then L, nL, = ¢:if M, # M,, M, n M, = . and for all r.u.
[., ~ M, = one point.

(c) Show that O contains other curves besides these lines, and deduce that the

Zariski topology on Q 1s not homeomorphic via y to the product topology on
P' x P' (where each P' has its Zariski topology).

[ 3
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Figure 2. The quadric surface in P-.

2.16. (a) The intersection of two varieties need not be a variety. For example, let Q,
and Q, be the quadric surfaces in P> given by the equations x? — yw = 0
and xy — ow = 0, respectively. Show that Q, ~ Q, is the union of a twisted

cubic curve and a line.
(b) Even 1f the intersection of two varieties 1s a variety, the i1deal of the inter-

section may not be the sum of the ideals. For example, let C be the conic in
P~ given by the equation x? — 1= = 0. Let L be the line given by 1 = 0.
Show that C n L consists of one point P, but that I(C) + I(L) # I(P).

2.17. Complete intersections. A variety Y of dimension r in P" 1s a (strict) complete
intersection if 1(Y) can be generated by n — r elements. Y is a set-theoretic com-
plete intersection 1if Y can be written as the intersection of n — r hypersurfaces.

(a) Let Y be a variety in P", let Y = Z(a); and suppose that a can be generated

by ¢ elements. Then show thatdim Y > n — ¢
(b) Show that a strict complete intersection 1s a set-theoretic complete inter-

section.
*(c) The converse of (b) is false. For example let Y be the twisted cubic curve In

P’ (Ex. 2.9). Show that /(Y) cannot be generated by two elements. On the
other hand, find hypersurfaces H,H, of degrees 2,3 respectively, such that
Y=H,"H,.

**(d) It 1s an unsolved problem whether every closed irreducible curve in P~ is
a set-theoretic intersection of two surfaces. See Hartshorne [ 1] and Hart-

shorne | 5, I11, §5] for commentary.

3 Morphisms

So far we have defined afhine and projective varieties, but we have not dis-
cussed what mappings are allowed between them. We have not even said
when two are 1somorphic. In this section we will discuss the regular func-
tions on a variety, and then define a morphism of varieties. Thus we will

have a good category in which to work.

| 4



3 Morphisms

Let Y be a quast-afline variety in A”. We will consider functions f from
Y to k.

Definition. A function f:Y -» ks regular at a point P € Y 1f there 1s an open
neighborhood U with Pe U < Y, and polynomials g.ie A = k| xy,....x, ]|
such that 1 1s nowhere zeroon U, and f = ¢g/ion U. (Here of course we
interpret the polynomials as functions on A", hence on Y.) We say that
f1s reqular on Y 1f 1t 1s regular at every point of Y.

Lemma 3.1. A regular function is continuous, when k is identified with A,
in its Zariski topology.

PROOF. It is enough to show that f ' of a closed set 1s closed. A closed set
of A; is a finite set of points, so it is sufficient to show that f~'(a) =
'Pe Y|f(P) = a} 1s closed for any « e k. This can be checked locally: a
subset Z of a topological space Y 1s closed 1if and only if Y can be covered
by open subsets U such that Z » U 1s closed in U tor each U. So let U be
an open set on which f can be represented as ¢/h, with g, e A, and / no-
where Oon U. Then f ™ (a)n U = [P ¢ Ulg(P)/h(P) = «a!. But ¢(P)/h(P) =
a if and only if (¢ — «l)(P) = 0. So f Ya) n U = Z(g — ah) n U which
1s closed. Hence /™ '(«) 1s closed in Y.

Now let us consider a quasi-projective variety ¥ < P".

Definition. A function f:Y — ks reqular at a point P € Y 1f there 1s an open
neighborhood U with Pe U < Y, and homogeneous polynomials
gheS = klxq,....x,], of the same degree, such that h 1s nowhere zero
on U, and f = g/h on U. (Note that in this case, even though g and £
are not functions on P”, their quotient 1s a well-defined function whenever
h # 0, since they are homogeneous of the same degree.) We say that
f1s reqular on Y 1f 1t 1s regular at every point.

Remark 3.1.1. As in the quasi-affine case, a regular function 1s necessarily
continuous (proof left to reader). An important consequence of this 1s the
tact that if f and ¢ are regular functions on a variety X, and if f = ¢ on
some nonempty open subset " < X, then f = ¢g everywhere. Indeed, the
set of points where f — g = 0 1s closed and dense, hence equal to X.

Now we can define the category of varieties.

Definition. Let &k be a fixed algebraically closed field. A variety over k (or
simply variety) 1s any aftine, quasi-affine, projective, or quasi-projective
variety as defined above. If XY are two varieties, a morphism ¢: X — Y
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1S a continuous map such that for every open set V' < Y, and for every
regular function f/: 1" — k. the function f ¢@:¢ (1) — k 1s regular.

Clearly the composition of two morphisms 1s a morphism, so we have a
category. In particular, we have the notion of iIsomorphism: an isomorphism
0:X — Y oftwo varieties 1s a morphism which admits an inverse morphism
Y - X withy ¢ = idy and ¢ ¢ = i1d,. Note that an isomorphism 1s
necessarily bijective and bicontinuous, but a biective bicontinuous mor-
phism need not be an isomorphism (Ex. 3.2).

Now we introduce some rings of functions associated with any variety.

Definition. Let Y be a variety. We denote by ( (Y) the ring of all regular
functions on Y. If P 1s a poimnt of Y, we define the locul ring of P on Y,
(py (Oor simply (p) to be the ring of germs of regular functions on Y
near P. In other words, an element of (", 1s a pair <U, f > where U 1s an
open subset of Y containing P, and f 1s a regular function on U, and
where we 1dentify two such pairs (U,f> and (Vg> it f = gon U NV
(Use (3.1.1) to verify that this 1s an equivalence relation!)

Note that ( p 1s indeed a local ring: 1its maximal 1deal m 1s the set of germs
of regular functions which vanish at P. For if f(P) # O, then 1/f 1s regular
In some neighborhood of P. The residue field ¢ »/nt 1s isomorphic to k.

Definition. If Y 1s a variety, we define the function field K(Y) of Y as follows:
an element of K(Y) 1s an equivalence class of pairs (U, f ) where U 1s a
nonempty open subset of Y, f 1s a regular function on U, and where
we 1dentify two pairs (U, f > and {Vig>if f = gon U n V. The elements
of K(Y) are called rational functions on Y.

Note that K(Y) 1s in fact a field. Since Y 1s irreducible, any two non-
empty open sets have a nonempty intersection. Hence we can define addition
and multiplication in K\Y), making it a ring. Then if (U.f) e K(Y) with
f # 0, we can restrict f to the openset V= U — U n Z(f) where 1t never
vanishes, so that 1/f 1s regular on V, hence {V,1.f ) 1s an inverse tor (U, f ).

Now we have defined, for any variety Y, the ring of global tunctions ((Y),
the local ring (¢ , at a point of Y, and the function field K(Y). By restricting
functions we obtain natural maps ((Y) — ( , — K(Y) which 1n fact are
injective by (3.1.1). Hence we will usually treat ¢ (Y) and (', as subrings of
K(Y).

[f we replace Y by an isomorphic variety, then the corresponding rings are
isomorphic. Thus we can say that ( (Y), (p, and K(Y) are invariants of the
variety Y (and the point P) up to isomorphism.

Our next task is to relate ¢(Y), Cp, and K(Y) to the athne coordinate
ring A(Y) of an afline variety, and the homogeneous coordinate ring S(Y')
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of a projective variety, which were itroduced earlier. We will ind that for
an affine variety Y, A(Y) = ((Y), so it 1s an invariant up to 1Isomorphism.
However, for a projective variety Y, S(Y) 1s not an invariant: it depends on
the embedding of Y 1n projective space (Ex. 3.9).

Theorem 3.2. Let Y < A" be an affine variety with affine coordinate ring
A(Y). Then:

(@) ((Y) = A(Y);

(b) for each point Pe Y., let mip € A(Y) be the ideal of functions
canishing at P. Then P myp gives a 1-1 correspondence between the
points of 'Y and the maximal ideals of A(Y):

(c) for each P, (p = A(Y), ,,and dim (p = dim Y ;

(d) K(Y) is isomorphic to the quotient field of A(Y), and hence K(Y)
is a finitely generated extension field of k, of transcendence degree = dim Y.

PrOOF. We will proceed in several steps. First we define a map a: A(Y) —
( (Y). Every polynomial f € A = k| x,,...,x,]| defines a regular function
on A" and hence on Y. Thus we have a homomorphism 4 — ((Y). Its
kernel 1s just I( Y'), so we obtain an injective homomorphism x: A(Y) — C(Y).

From (1.4) we know there i1s a 1-1 correspondence between points of Y
(which are the minimal algebraic subsets of Y) and maximal i1deals of A4
containing I(Y). Passing to the quotient by I(Y), these correspond to the
maximal 1deals of A(Y). Furthermore, using x to identify elements ot A(Y)
with regular functions on Y, the maximal 1deal corresponding to P 1s just
mp = | f e A(Y)|f(P) = 0]. This proves (b).

For each P there i1s a natural map A(Y),, — Cp. 1t1snjective because x
IS 1njective, and it 1s surjective by definition of a regular function! This
shows that ¢ , =~ A(Y).,.,. Now dim ( , = height m,. Since A(Y),np = K,
we conclude from (1.7) and (1.8A) that dim ( , = dim Y.

From (c) 1t follows that the quotient field of A(Y) 1s 1somorphic to the
quotient field of ¢, for every P, and this 1s equal to K(Y), because every
rational function is actually in some (' ,. Now A(Y) 1s a finitely generated
k-algebra, so K(Y) is a finitely generated field extension of k. Furthermore,
the transcendence degree of K(Y) k 1s equal to dim Y by (1.7) and (1.8A).
This proves (d).

To prove (a) we note that ((Y) = ()p., (p, where all our rings are re-
garded as subrings of K(Y).

Using (b) and (¢) we have

AY) S ((Y) <= [)AY),.

P

where m runs over all the maximal ideals of A(Y). The equality now follows
from the simple algebraic fact that if B is an integral domain, then B is
equal to the intersection (inside its quotient field) of its localizations at all
maximal 1deals.
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Proposition 3.3. Let U, < P" be the open set defined by the equation x, # 0.
T hen the mapping @,: U, = A" of (2.2) abotve is an isomorphism of varieties.

PrOOF. We have already shown that it 1s a homeomorphism, so we need
only check that the regular functions are the same on any open set. On U,
the regular functions are locally quotients of homogeneous polynomials in
Xo, .. .,X, of the same degree. On A" the regular functions are locally
quotients of polynomials in vy, ...,y,. One can check easily that these two
concepts are 1dentified by the maps « and f of the proot of (2.2).

Before stating the next result, we introduce some notation. If § 1s a
graded ring, and p a homogeneous prime ideal in §, then we denote by §,,,
the subring of elements of degree O 1in the localization of § with respect to
the multiplicative subset T consisting of the homogeneous elements of §
notin p. Note that T~ 'S has a natural grading given by deg( f/g) = deg f —
deg g for f homogeneous in § and gye T. §,, 18 a local ring, with maximal
ideal (p- T 'S)n S,,,- In particular, if S is a-domain, then for p = (0) we
obtain a field S ,. Similarly, if / € S 18 a homogeneous element, we denote
by S, the subring of elements of degree 0 1n the localized ring S .

Theorem 3.4. Let Y < P" be a projective variety with homogeneous co-
ordinate ring S(Y). Then:
(a) ((Y) = k;
(b) for any point Pe Y, let mp S S(Y) be the ideal generated by the
set of homogeneous f € S(Y) such that f(P) = 0. Then (p = S(Y ),
(c) K(Y) = 5(Y )0y

PROOF. To begin with, let U, < P" be the open set x, # 0, and let Y, =
Y n U,;. Then U, 1s 1somorphic to A" by the isomorphism ¢; of (3.3), so we
can consider Y; as an athne variety. There 1s a natural 1somorphism ¢f
of the athne coordinate ring A(Y;) with the localization S(Y),, , of the homo-
geneous coordinate ring of Y. We first make an isomorphism of k| y, ..., y,]
with k{ xq,....x, ], by sending f(y,,...,y,) to f(xo/x;, ... .X,/X;), leaving
out x;/x;, as 1n the proof of (2.2). This isomorphism sends I(Y;) to I(Y)S,,
(cf. Ex. 2.6), so passing to the quotient, we obtain the desired 1somorphism
PFIA(Y) = S(Y),,.

Now to prove (b), let P e Y be any point, and choose i so that Pe Y.
Then by (3.2), € = A(Y)),,,, where mjp 1s the maximal 1deal of A(Y;) corre-
sponding to P. One checks easily that of(mp) = mp - S(Y),. Now x; ¢ mp,
and localization is transitive, so we find that A(Y,),, = S(Y) which
proves (b).

To prove (c), we use (3.2) again to see that K(Y'), which 1s equal to K(Y),
is the quotient field of A(Y;). But by ¢/, this 1s 1Isomorphic to S(Y )0y

To prove (a), let f € O(Y) be a global regular function. Then for each i,
f 1s regular on Y, so by (3.2), f € A(Y,). But we have just seen that A(Y,) =
S(Y).,, so we conclude that f can be written as g,;/x;'* where g; € S(Y) is

(mp)?

| 8
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homogeneous of degree N;. Thinking of @(Y), K(Y) and S(Y) all as sub-
rings of the quotient field L of S(Y), this means that x;''f € S(Y)y , for each i.
Now choose N > Y N;. Then S(Y)y is spanned as a k-vector space by
monomials of degree N m x,,...,x,, and In any such monomial, at least
one Xx; Occurs to a power = N,. Thus we have S(Y)y - f = S(Y)y. Iterating,
we have S(Y)y: f1 < S(Y)y for all g > 0. In partlculdr, xp f1e S(Y) for
allg > 0. ThlS shows that the subring S(Y)[ /'] of L is contained in x, “S(Y),
which 1s a finitely generated S(Y)-module. Since S(Y) 1s a noetherian ring,

Y) f] is a finitely generated S(Y)-module, and therefore f 1s integral
over S(Y) (see, e.g., Atiyah—-Macdonald |1, p. 59]). This means that there
are elements a,, ... .a,, € S(Y) such that

‘fm + (llfm_l + (y, = 0.

Since f has degree 0, we can replace the ¢, by their homogeneous components
of degree O, and still have a valid equation. But S(Y), = k, so the q; € k,
and f 1s algebraic over k. But k 1s algebraically closed, so f € k, which
completes the prool.

Our next result shows that if X and Y are athne varieties, then X 1s 1so-
morphic to Y if and only if A(X) 1s 1somorphic to A(Y) as a k-algebra.
Actually the proof gives more, so we state the stronger result.

Proposition 3.5. Let X be any variety and let 'Y be an affine variety. Then
there is a natural bijective mapping of sets

x»:Hom(X.,Y) S Hom(A(Y).('(X))

where the left Hom means morphisms of varieties, and the rignt Hom
means homomorphisms of k-algebras.

PRrROOF. Given a morphism ¢: X — Y, ¢ carries regular functions on Y to
regular functions on X. Hence ¢ induces a map ((Y) to ¢'(X), which 1s
clearly a homomorphism of k-algebras. But we have seen (3.2) that ((Y) =
A(Y), so we get a homomorphism A(Y) — ((X). This defines 2.

Conversely, suppose given a homomorphism 1: A(Y) - ( (X)) of k-algebras.
Suppose that Y is a closed subset of A", so that A(Y) = k| x,,....x,|/I(Y
Let X; be the image of x; in A(Y ), and consider the elements &, = h(X;) e ( (X).
These are global functions on X, so we can use them to define a mapping
v X - A"by Yy(P) = (S,(P),... .. (P)) for Pe X.

We show next '[hdt the image of ¥/ 1s contained in Y. Since Y = Z(I(Y)),
it 1s sufficient to show that forany P € X and any f € I(Y), f(/(P)) = 0. But

FW(P)) = f(Si(P), ... .Ca(P))
Now f 1s a polynomial, and /i 1s a homomorphism of k-algebras, so we have
f(él(P)’ R ’;;H(P)) — h(f(jx._lﬁ v 9-Yri))(P) — O
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since f € I(Y). So ¢ defines a map from X to Y, which induces the given
homomorphism A.
To complete the proof, we must show that  1s a morphism. This 1s a

consequence of the following lemma.

Lemma 3.6. Let X be any variety, and let 'Y < A" be an affine variety. A
map of sets y:X — Y is a morphism if and only if x; =y is a regular
function on X for each i, where x,...,x, are the coordinate functions
on A",

PROOF. Ity 1s a morphism, the x; -  must be regular functions, by definition
of a morphism. Conversely, suppose the x; - iy are regular. Then for any
polynomial f = f(x,,....,x,), f < 1s also regular on X. Since the closed
sets of Y are defined by the vanishing of polynomial functions, and since
regular functions are continuous, we see that iy ' takes closed sets to closed
sets, so V¥ 1s continuous. Finally, since regular functions on open subsets of
Y are locally quotients of polynomials, g - 1s regular for any regular
function g on any open subset of Y. Hence y 1s a morphism.

Corollary 3.7. If XY are two affine varieties, then X and Y are isomorphic
if uand only if A(X) and A(Y) are isomorphic us k-alyebrus.

PrROOF. Immediate from the proposition.

In the language of categories, we can express the above result as follows:

Corollary 3.8. The functor X — A(X) induces an arrow-retversing equivalence
of categories between the category of dffine varieties over k and the category
of finitely generated integral domains over k.

We include here an algebraic result which will be used in the exercises.

Theorem 3.9A (Finiteness of Integral Closure). Let A be an integral domain
which is a finitely generated algebra over a field k. Let K be the quotient
field of A, and let L be ua finite algebraic extension of K. Then the integral
closure A" of A in L is a finitely generated A-module, and is also a finitely
generdated k-algebra.

ProoOF. Zariski-Samuel [ 1, vol. 1, Ch. V., Thm. 9, p. 267. |

EXERCISES

3.1. (a) Show that any conic in A“ is isomorphic eitherto A’ or A’ — {0] (cf. Ex. 1.1).
(b) Show that A' is not isomorphic to any proper open subset of itself. (This result
1s generalized by (Ex. 6.7) below.)
(c) Any conic in P* is isomorphic to P'.
(d) We will see later (Ex. 4.8) that any two curves are homeomorphic. But show
now that A? is not even homeomorphic to P~.
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3 Morphisms

(e) Ifan affine variety is isomorphic to a projective variety, then it consists of only
onc point.

A morphism whose underlying map on the topological spaces 1s a homeomor-

phism need not be an isomorphism.

(a) For example, let ¢:A' — A~ be defined by 1 +— (17.°). Show that ¢ defines a
bijective bicontinuous morphism of A' onto the curve = = x°. but that ¢ is
not an isomorphism.

(b) For another example. let the characteristic of the base field A be p > 0, and
defincamap ¢:A' — A' by 1 +— (7. Show that ¢ 1s bijective and bicontinuous
but not an isomorphism. This 1s called the F.obenius mo.phism.

(a) Let ¢: X — Y be a morphism. Then for each P € X, ¢ induces a homomor-
phism of local rings pp:C  p, = Cpy.

(b) Show that a morphism ¢ 1s an isomorphism 1f and only if ¢ 1s @ homecomor-
phism, and the induced map ¢} on local rings 1s an iIsomorphism, forall P e X.

(c) Show that if (X)) 1s dense in Y}, then the map @} 1s injective for all P e X,

Show that the (-uple embedding of P" (Ex. 2.12) 1s an 1somorphism onto its
Image.

. By abuse of language, we will say that a variety “is afhine™ if it 1s isomorphic to

an afhne variety. If H < P" s any hypersurface. show that P" — H 1s athine.
| Hint: Let H have degree d. Then consider the d-uple embedding of P" in P
and use the fact that P* minus a hyperplane is afline.

. There are quasi-athne varieties which are not atline. For example, show that

N = A° — (0,0)] 1s not athine. | Hint: Show that ¢ (X) = Al x.1v| and use (3.5).
See (111, Ex. 4.3) for another proof. |

(a) Show that any two curves in P~ have a nonempty intersection.

(b) More generally, show that if Y < P"is a projective variety of dimension > 1.
and if H 1s a hypersurface. then Y n H # ¢J. | Hint: Use (Ex. 3.5) and (Ex.
3.1¢). See (7.2) for a generalization. |

. Let H, and H, be the hyperplanes in P" defined by x, = O and x, = O, with i # |

Show that any regular function on P" — (H, » H ) 1s constant. (This gives an
alternate proof of (3.4a) in the case ¥ = P")

9. The homogeneous coordinate ring of a projective variety 1s not invariant under

isomorphism. For example, let X = P!, and let Y be the 2-uple embedding of
P'inP-. Then X = Y (Ex. 3.4). But show that S(.X) X S(Y)

. Subtariceties. A subset of a topological space 15 locally closed 1if 1t 15 an open

subset of 1ts closure. or. equivalently. if it 1s the intersection of an open set with
a closed set.

[t X 1S a quasi-athine or quasi-projective variety and Y 1s an irreducible locally
closed subset. then )} is also a quasi-athne (respectively. quasi-projective) variety,
by virtue of being a locally closed subset of the same athine or projective space.
We call this the induced structure on Y. and we call 'Y a subvaricty of X

Now let ¢: X — Y be a morphism. let X' < X and Y' < Y be irreducible
locally closed subsets such that o(X') < Y'. Show that q)lk X" — Y ' 1s a mor-
phism.
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3.11. Let X be any variety and let P € X. Show there 1s a 1-1 correspondence between
the prime ideals of the local ring (' ; and the closed subvarieties of X containing P.

3.12. If P is a point on a variety X, then dim (¢, = dim X. | Hinr: Reduce to the
affine case and use (3.2¢). |

3.13. The Local Ring of « Subtariety Let Y < X be a subvariety. Let ¢, | be the sel
of equivalence classes (U.f> where U < X 1s open, U mn'}Y # ¢J, and [ 15 a
regular function on U. Wesay (U.f) 1sequivalentto (V.g>.if f = gon U N 1.
Show that (', , 1s a local ring, with residue held K(}') and dimension = dim X -
dim Y. It is the local ring of Y on X. Note1f Y = P1s a point we get ( . and if
Y = X we get K(X). Note also that if Y 1s not a <ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>