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PREFACE TO THE FOURTH EDITION

|
]

This fourth edition contains several additions. The main ones con-
cern three closely related topics: Brownian motion, functional limit
distributions, and random walks. Besides the power and ingenuity of
their methods and the depth and beauty of their results, their importance
1s fast growing in Analysis as well as 1n theoretical and applied Proba-
bility.

These additions increased the book to an unwieldy size and 1t had to
be split into two volumes.

About half of the first volume 1s devoted to an elementary introduc-
tion, then to mathematical foundations and basic probability concepts
and tools. The second half is devoted to a detailed study of Independ-
ence which played and continues to play a central role both by itself and
as a catalyst.

The main additions consist of a section on convergence of probabilities
on metric spaces and a chapter whose first section on domains of attrac-
tion completes the study of the Central limit problem, while the second
one is devoted to random walks.

About a third of the second volume is devoted to conditioning and
properties of sequences of various types of dependence. The other two
thirds are devoted to random functions; the last Part on Elements of
random analysis is more sophisticated.

The main addition consists of a chapter on Brownian motion and limit
distributions.

It is strongly recommended that the reader begin with less involved
portions. In particular, the starred ones ought to be left out until they
are needed or unless the reader is especially interested in them.

I take this opportunity to thank Mrs. Rubalcava for her beautiful
typing of all the editions since the inception of the book. I also wish to
thank the editors of Springer-Verlag, New York, for their patience and
care.

M. L.
Fanuary, 1977
Berkeley, California



PREFACE TO THE THIRD EDITION

This book 1s intended as a text for graduate students and as a reference
for workers in Probability and Statistics. The prerequisite 1s honest
calculus. The material covered in Parts Two to Five inclusive requires
about three to four semesters of graduate study. The introductory part
may serve as a text for an undergraduate course in elementary prob-
ability theory.

The Foundations are presented in:

the Introductory Part on the background of the concepts and prob-
lems, treated without advanced mathematical tools;

Part One on the Notions of Measure Theory that every probabilist
and statistician requires;

Part Two on General Concepts and Tools of Probability Theory.

Random sequences whose general properties are given in the Founda-
tions are studied in:

Part Three on Independence devoted essentially to sums of inde-
pendent random variables and their limit properties;

Part Four on Dependence devoted to the operation of conditioning
and limit properties of sums of dependent random variables. The
last section introduces random functions of second order.

Random functions and processes are discussed 1n:

Part Five on Elements of random analysis devoted to the basic con-
cepts of random analysis and to the martingale, decomposable,
and Markov types of random functions.

Since the primary purpose of the book is didactic, methods are
emphasized and the book 1s subdivided into:

unstarred portions, independent of the remainder; starred portions,
which are more involved or more abstract;

complements and details, including illustrations and applications of
the material in the text, which consist of propositions with fre-
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quent hints; most of these propositions can be found in the
articles and books referred to in the Bibliography.

Also, for teaching and reference purposes, it has proved useful to name
most of the results.

Numerous historical remarks about results, methods, and the evolu-
tion of various fields are an intrinsic part of the text. The purpose is
purely didactic: to attract attention to the basic contributions while
introducing the ideas explored. Books and memoirs of authors whose
contributions are referred to and discussed are cited 1n the Bibliography,
which parallels the text in that it 1s organized by parts and, within parts,
by chapters. Thus the interested student can pursue his study in the
original literature.

This work owes much to the reactions of the students on whom 1t has
been tried year after year. However, the book 1s definitely more concise
than the lectures, and the reader will have to be armed permanently
with patience, pen, and calculus. Besides, in mathematics, as 1n any
form of poetry, the reader has to be a poet 7 posse.

This third edition differs from the second (1960) in a number of
places. Modifications vary all the way from a prefix (“sub’” martingale
in lieu of ““semi”’-martingale) to an entire subsection (§36.2). To pre-
serve pagination, some additions to the text proper (especially 9, p. 656)
had to be put in the Complements and Details. It is hoped that more-
over most of the errors have been eliminated and that readers will be
kind enough to inform the author of those which remain.

[ take this opportunity to thank those whose comments and criticisms
led to corrections and improvements: for the first edition, E. Barankin, S.
Bochner, E. Parzen, and H. Robbins; for the sccond edition, Y. S. Chow,
R. Cogburn, J. L. Doob, J. Feldman, B. Jamison, J. Karush, P. A. Meyer,
J. W. Pratt, B. A. Sevastianov, J. W. Woll; for the third edition, S.
Dharmadhikari, J. Fabius, D. Freedman, A. Maitra, U. V. Prokhorov.
My warm thanks go to Cogburn, whose constant help throughout the
preparation of the second edition has been invaluable. This edition has
been prepared with the partial support of the Office of Naval Research
and of the National Science Foundation.

M. L.
April, 1962
Berkeley, California




CONTENTS OF VOLUME 11

GRADUATE TEXT IN MATHEMATICS vOL. 46

P — ——

iy PP algh A

PART FOUR: DEPENDENCE

CHAPTER VIIil: CONDITIONING
SECTION

27. ConcerT oF CONDITIONING .
27.1 Elementary case .
27.2 General case
27.3 Conditional expectation given a function .
*27.4 Relative conditional expectations and sufhicient

o-fields

28. ProPERTIES OF CONDITIONING
28.1 Expectation properties
28.2 Smoothing properties : ..
*28.3 Concepts of conditional mdependence and of chains

29. Recurar Pr. Functions . . .
29.1 Regularity and integration .

*29.2 Decomposition of regular c.pr.’s given separable
o-fields

30. ConNDITIONAL DISTRIBUTIONS
30.1 Definitions and restricted integration .
30.2 Existence .

30.3 Chains; the elementary case

COMPLEMENTS AND DETAILS

CHAPTER IX: FROM INDEPENDENCE TO DEPENDENCE

31. CENTRAL AsyMPTOTIC PROBLEM
31.1 Comparison of laws .
31.2 Comparison of summands

*31.3 Weighted prob. laws

32. CENTERINGS, MARTINGALES, AND A.S. CONVERGENCE
32.1 Centerings

32.3 Martingales: generalities
X1

PAGE

o 1 W

10

13
13
15
17

19
19

21

24
24
26
31

36

37
38
41
44

51
51
54



— T | — ——

X11 CONTENTS OF VOLUME II

SECTION
32.3 Martingales: convergence and closure

32.4 Applications :
*32.5 Indefinite expectations and a.s. convergence .

COMPLEMENTS AND DETAILS

CHAPTER X: ERGODIC THEOREMS

33. TRANSLATION OF SEQUENCES; Basic ErRGopic THEOREM AND
STATIONARITY .

*33.1 Phenomenological origin
33.2 Basic ergodic inequality
33.3 Stationarity

33.4 Applications; ergodlc hypothe31s and mdependence :
*33.5 Applications; stationary chains

*34. Ercopic THEOREMS AND L,-SPACES
*34,1 Translations and their extensions
*34.2 A.s. ergodic theorem
*34.3 Ergodic theorems on spaces L

*35. Ercobpic THEOREMs oN BANACH SPACES
*35.1 Norms ergodic theorem .
*35.2 Uniform norms ergodic theorems
*35.3 Application to constant chains .

COMPLEMENTS AND DETAILS

CHAPTER XI: SECOND ORDER PROPERTIES

36. ORTHOGONALITY .
36.1 Orthogonal r.v.’s; convergence and stablllty :
36.2 Elementary orthogonal decomposition
36.3 Projection, conditioning, and normality

37. SEconp OrRDER RanDoMm FuncTiONsS
37.1 Covariances
37.2 Calculus in q.m.; contmulty and dlfferentlatlon :
37.3 Calculus in q.m.; 1ntegrat10n
37.4 Fourier-Stieltjes transforms in q.m.
37.5 Orthogonal decompositions .
37.6 Normality and almost-sure properties

37.7 A.s. stability

CoMPLEMENTS AND DETAILS

PAGE

57
63
67

73

77
77
79
83
89
90

96
96
98
101

106
106
110
114

118

121
122
125
128

130
131
135
137
140
143
151
152

156



CONTENTS OF VOLUME II

. e e e pal——— A —

X111

PART FIVE: ELEMENTS OF RANDOM ANALYSIS

CHAPTER XII: FOUNDATIONS; MARTINGALES AND DECOMPOSABILITY

SECTION
38. FouNDATIONS .

38.1 Generalities

38.2 Separability

38.3 Sample continuity
38.4 Random times

39, MARTINGALES . ..
39.1 Closure and Iimits . . :
39.2 Martingale times and stoppmg

40. DECOMPOSABILITY
40.1 Generalities L.
40.2 Three parts decomposition .

40.3 Infinite decomposability; normal and Pmsson cases .

COMPLEMENTS AND DETAILS

CHAPTER XIII: BROWNIAN MOTION AND LIMIT DISTRIBUTIONS

41. BrownianNn MoTioN
41.1 Origins
41.2 Definitions and relevant properties
41.3 Brownian sample oscillations
41.4 Brownian times and functionals

42. LimiT DisTRIBUTIONS
42.1 Pr’son@ .
42.2 Limit distributions on € . .
42.3 Limit distributions; Brownian embeddmg
42.4 Some specific functionals
Complements and Details

CHAPTER XIV: MARKOV PROCESSES

43. MAarRkov DEPENDENCE
43.1 Markov property .
43.2 Regular Markov processes
43.4 Stationarity . .
43.4 Strong Markov property

PAGE

163
164
170
179
188

193
194
207

212
212
216
221

231

235
235
237
246
254

263
264
268
271
278
281

289
289
294
301
304



X1V

CONTENTS OF VOLUME 11

S i—

SECTION
44. TiME-CONTINUOUS T RANSITION PROBABILITIES

44.1 Differentiation of tr. pr.’s
44.2 Sample functions behavior .

45. MARKOV SEMI-GROUPS

45.1 Generalittes . . . .
45.2 Analysis of semi-groups
45.3 Markov processes and semi-groups

46. SAMPLE CONTINUITY AND Di1FrusioN OPERATORS

46.1 Strong Markov property and sample rightcontinuity
46.2 Extended infinitesimal operator

46.3 One-dimensional diffusion operator

COMPLEMENTS AND DETAILS

BIBLIOGRAPHY

INDEX

PAGE

310
312
321

331
331
336
346

357
357

366
374

381

334
391



CONTENTS OF VOLUME 1

GRADUATE TEXTS IN MATHEMATICS VOL. 45

- —— — v S . i ———— P -
' — e P e g0 e g e P — __"ﬁ_"..- —

ELEMENTARY PROBABILITY THEORY

Intuitive Background
Axioms: Independence and the Bernoulli Case
Dependence and Chains

NOTIONS OF MEASURE THEORY

SETS, SPACES, AND MEASURES
‘Sets, Classes, and Functions
Topological Spaces
Additive Set Functions
Construction of Measures on ¢-Fields

MEASURABLE FUNCTIONS AND INTEGRATION
Measurable Functions
Measure and Convergences
Integration
Indefinite Integrals; Iterated Integrals

GENERAL CONCEPTS AND TOOLS OF
PROBABILITY THEORY

PROBABILITY CONCEPTS
Probability Spaces and Random Variables

Probability Distributions

DISTRIBUTION FUNCTIONS AND CHARACTERISTIC FUNCTIONS

Distribution Functions
Convergence of Probabilities on Metric Spaces
XV



XVI CONTENTS OF VOLUME I

—

Characteristic Functions and Distribution Functions
Probability Laws and Types of Laws
Nonnegative-definiteness; Regularity

INDEPENDENCE

SUMS OF INDEPENDENT RANDOM VARIABLES
Concept of Independence

Convergence and Stability of Sums; Centering at Expectations and
Truncation

Convergence and Stability of Sums; Centering at Medians and
Symmetrization

Exponential Bounds and Normed Sums

CENTRAL LIMIT PROBLEM

Degenerate, Normal, and Poisson Types
Evolution of the Problem

Central Limit Problem; the Case of Bounded Variances
Solution of the Central Limit Problem
Normed Sums

INDEPENDENT IDENTICALLY DISTRIBUTED SUMMANDS
Regular Variation and Domains of Attraction

Random Walk

BIBLIOGRAPHY

INDEX




Part Four

DEPENDENCE

For about two centuries probability theory has been concerned almost
exclusively with independence. Yet, very particular forms of depend-
ence appear already in the theory of games of chance. But a first
general type of dependence—chains—was introduced only at the be-
ginning of this century by Markov. Another type of dependence—
stationarity—appears in ergodic theory, and a related type—second
order stationarity—is then introduced 1n probability theory by
Khintchine (1932). Centering at conditional expectations by P. Lévy
(1935) gives rise to a new type of dependence—martingales.

At the very core of the study of dependence lies the concept of con-
ditioning—with respect to a function—put in an abstract and rigorous
form by Kolmogorov. In this part, the concept of conditioning is in-
troduced in a more general form—with respect to a ¢-field—and, as
much as possible, the properties of various types of dependence are re-
lated to more general results, with emphasis given to the methods.
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CONDITIONING

827. CONCEPT OF CONDITIONING

The concept of “‘conditioning’” can be expressed in terms of sub
o-fields of events. Conditional probabilities of events and conditional
expectations of r.v.’s “given a o-field ®,” to be introduced and investi-
gated in this chapter, are ®-measurable functions defined up to an
equivalence. If ® 1s determined by a countable partition of the sure
event, then these functions are elementary. In this “elementary case,”
a constructive approach with a definite intuitive appeal 1s possible and
there are no technical difficulties. In the general case, there is no suit-
able and rigorous constructive approach, and a descriptive one, requiring
more powerful tools, especially the Radon-Nikodym theorem, has to be
used.

The R.-N. theorem was obtained in its abstract form in 1930 and the
concept of conditional probabilities and of conditional expectations of
integrable r.v.’s “‘given” a measurable function, finite or not, numerical
or not, was then put on a rigorous basis by Kolmogorov in 1933.

27.1. Elementary case. Investigation of the elementary case will give
us an insight into the ideas involved in the intuitive notion of condi-
tioning and will lead “naturally” to the notions and problems which
appear in the general case.

The notien of conditional probability of an event A4 “given an event
B corresponds to that of frequencies of A in the repeated trials where
B occurs; it is one of the oldest probability notions. For every event

A, the relation PB-Pod = PAB

defines the conditional probability (c.pr.) PpA of A given B as the ratio

PAB/PB, provided B is a nonnull event; if B is null, so is 4B, and the
3 |
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foregoing relation leaves PgA undetermined. In what follows, we
assume that, unless otherwise stated, B is nonnull.

The function Pg on the o-field @ of events, whose values are PgA,
A € @, 1s called conditional pr. given B. The defining relation shows
at once that since P on @ 1s normed, nonnegative, and o-additive, so
iS PB on :

PsQ=1, Pg20, PgY A; =Y PgA;.

Thus, the conditioning expressed by “given B’ means that the initial
pr. space (2, @, P) 1s replaced by the pr. space (2, @, Pg). The expec-
tation, if it exists, of a r.v. X on this new pr. space 1s called conditional
expectation (c.exp.) given B and 1s denoted by EpX; in symbols

Eg X =fXdPB.

Since Pg = 0 on {AB°, 4 € @}, the right-hand side reduces to f X dPp
B

1 1
and, since Pp = -E)-EP on {AB, A€ @}, it becomes —E)—éLXa’P.
Therefore, the c.exp. of X given B can be defined directly by

PBE;X = [ X aP
B
and is determined if B is a nonnull event. In particular,
PBEsls = [ 14 dP = PAB
B

so that the c.pr. PgA can be defined, thereafter, by
PpAd = Eply.

Thus, if Eg is the c.exp. given B, with values £ X on the family &g of
all r.v’s X whose integral on B exists, the c.pr. Pg becomes the re-
striction of Eg to the family I, of indicators of events. Furthermore,
properties of Pp become particular cases of the immediate properties

of Ep below.
If X 20 then EgX 2 0, and if ¢ is a constant then kgt = . If the

X; are nonnegative, or if the X; are integrable and their consecutive sums
are uniformly bounded by an integrable r.v., then Ep Y X; = 2, EpXj.

C.exp.’s (hence c.pr.’s) acquire their full meaning when reinterp.reted
as values of functions, as follows. The number Ep X is no longer assigned
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to B but to every point of B, and similarly for EzX, so that we have a
two-valued function on 2, with values EgX for w € B and EgzX for
w € B°. More generally, let {B;} be a countable partition of @ and
let ® be the minimal o-field over this partition. Let & be the family of
all r.v.’s X whose expectation EX exists, so that their indefinite inte-

grals, hence c.exp.’s given any nonnull event, exist. Consider the ele-
mentary functions

E®X = ¥ (Ep,X)Ip, X € E.

If some B; are null, then the corresponding values Ep X are undeter-
mined, so that E®X is undetermined on the null event which is the sum

of null B;. Such a possibility, together with the definition of Ep X,
leads to the following

CONSTRUCTIVE DEFINITION. The elementary function E®X defined
up to an equivalence by

I
=Y (— | XaP)1z, XcC &,
(1) E®X Z(PBJ_ 5 ) 5y XE

is the c.exp. of X given ®.

Upon particularizing to indicators, the ®-measurable function P*4,
defined up to an equivalence by setting

P&AL‘E@IA, A€ @,

will be the ¢.pr. of A given ®; the contraction of E® on I4, to be denoted
by P%, will be the c.pr. given ®, and its values are the ®-measurable
functions P®4, 4 € @, defined up to an equivalence.

We say “given (the o-field) ®” and not “given (the partition) {Bj;},”
because E®X determines the c.exp. of X given an arbitrary nonnull
event B € ®. In fact, if 3. denotes the summation over some sub-
class of {B;}, then every event B € ® is of the form 2’ Bj, and we
have

PBE;X = | XdP = X'| XdP = 5’ PBiEsX

2'B;

This relation can also be written as follows: If Pg is the restriction of

P to ®, defined by
PgB = PB, B € &,

then the right-hand side becomes f (E®X) dPg while the left-hand side
B

T f X dP. This leads to the following
B
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DESCRIPTIVE DEFINITION. The c.exp. E®X of X € & given ® is any
®-measurable function whose indefinite integral with respect to Pg is the
restriction to ® of the indefinite integral of X with respect to P. Since
the indefinite integral with respect to Pg of a ®-measurable function deter-
mines this function up to an equivalence, this definition means precisely

that, for every X € &, E°X is defined by
f(E‘“X) dPg =fXdP, B € @®.
B B

To conclude the discussion of the elementary case, we revert to the
initial approach, first defining c.pr.’s and, then, defining c.exp.’s as
integrals. According to what precedes, we define P® on @ either by

f(P‘BA)dP(B=PAB, A€q, BE®
B

or, equivalently, by

PPAd=Y""I, ACa,

J

PAB
PB

up to an equivalence.
Let B, be the null sum of all null B; and, for every A, select P4

within its equivalence class by taking its values P %4 at w € B; to be
PAB;/PB; if B;is nonnull and PA if B; is null (CBg). Then, for every
w € Q, the function P,® on @, with values P,®A4, is a probability and
we can form integrals with respect to it. Let X € & and set

ES*X =fX dP.,®, w & .
Since, for every w € B; not contained in the null event B, we have

1
P2 =— | XdP,
fXP PBJ Bj

't follows that the function on @ with values E,*X belongs to tl‘.le equiva-
lence class of E2X. Thus, we can define E®X to be Pg-equivalent to

the integral f X JP® where P®, hence the integral, are functions of

w € Q; in symbols
E®X ==J’X4:a"P‘B a.s.
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27.2. General case. The constructive approach fails at the very start
as soon as the “‘given” ¢-fields are not generated by countable partitions.
However, the descriptive approach remains possible, thanks to the
Radon-Nikodym theorem.

Let (Q, @, P) denote, as usual, the pr. space. Let ®, with or without
afhixes, denote a o-field contained in @, and let Pg denote the restric-
tion of P to . Finally, let & be the family of all @-measurable func-
tions whose integral (hence indefinite integral) exists.

DerINITION. The c.exp. E°X of X € € given ® is a B-measurable
function, defined up to a Pg-equivalence by

(1) L(E‘BX) dPg =LXdP, B € ®.

It follows at once that
1° E(E®*X) = EX.
2° If® = @ or X is ®-measurable, then E°X = X a.s.
3° E®X = E®xt — E®X~ 4.

The definition is justified: the indefinite integral ¢ of X being o-addi-
tive and P-continuous, its restriction ¢g to ® is o-additive and Pg-
continuous, the extended Radon-Nikodym theorem applies, and the
®-measurable function E°X defined by (1) exists and is defined up to a
Pg-equivalence.

If g is o-finite, then the Radon-Nikodym theorem applies, so that,
moreover, E°X is finite except on an arbitrary null event belonging to
®. If X is a r.v., then ¢ 1s o-finite, but this does not imply that ¢g i1s
o-finite: take () = © and ® = {f, @}. However, such a possibility
is excluded in the case of integrable r.v.’s for, then, ¢ and hence ¢g are
bounded.

We observe that as soon as it is understood that E*X is, by definition,
a ®-measurable function, we can replace Pg by P, and properties of
E®X valid, except on a Pg-null event, may and will be said “a.s.”

The function E® on & to the space of ®B-measurable functions (more
precisely, on the space of equivalence classes of @-measurable func-
tions possessing an integral to the space of equivalence classes of
®-measurable functions) will be called c.exp. given . E® can also be
considered as a function on @ X & to R = [—o, 4] with values E,°X
for w € Q, X € &, the value for all w belonging to an arbitrary Pg-null
event being arbitrary.

The restriction of E® to the family [, of indicators of events is
called ¢.pr. given ® and is denoted by P®; in other words, P® is a func-

L L ]
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tion on @ whose values are B-measurable functions P*4 defined up to
an equivalence by P°4 = E®1, or, directly, by

f (P®4) dPy = PAB, B € ®.
B

Extension. It 1s “natural” to require of the definition of c.exp.’s
that £°X = X a.s., whatever be the measurable function X. Yet, the
foregoing definition does not apply to those X whose integrals do not
exist. However, 1t 1s possible to extend the definition so as to achieve
the foregoing requirement, as follows: Write X = X — X~ where,
as usual, Xt and X~ are the positive and negative parts of X, respec-
tively; E®2X™* and E®X~ always exist but may be infinite. Define E*X
by E®X = E®X* — E® X~ so that E®X exists on the set on which the
difference is not of the form 4o — « up to a Pg-null event. This
generalized c.exp. exists a.s. if the event [X = 0] and hence [X < 0}
belong to ® (and, in particular, if ® = @), for then E®XT X E*X~ = 0
a.s. If ® = @, then E°XT — E°X™ = Xt — X~ = X a.s., whatever
be the r.v. X.

27.3. Conditional expectation given a function. We connect now the
foregoing definition with the usual definition of c.exp., but we do not

assume, as usually done, that the c.exp.’s are restricted to those of
integrable r.v.’s.

Let Y be a function on (2, @, P) to a measurable space (2', @’) and let
Ry C @ and ®'y C @’ be the o-fields induced by Y on Q@ and Q' respec-
tively: ®'y is the o-field of all sets of @’ whose inverse images under Y are
events (€ @) and ®y is the o-field of these events. Let Py and P’y be
the probabilities induced by Y on ®y and ®'y, respectively, defined by

PyB=PB BE€ ®y; PyB =PB, B E€®y, B=Y'(B).
(If Y is measurable, then ®'y = @'. If no @' is given, then we take

@ = S(@).)

If ® = ®y in the definitions of the preceding subsection, then we
replace every ®y by Y. Thus, we write EY X instead of E*YX, and
call it c.exp. of X given Y. The reason for this terminology is that, as
we shall show now, EY X is a function of the function Y. We require
the following proposition. |

a. For every numerical measurable function g on (', ®'y, P'y)

fgdp'y =f£(Y) dPy, B'€ ®'y, B=7Y(B)
B’ B

in the sense that, if one of these integrals exists, so does the other, and both
are equal.
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E,' X for w € Q, or it is considered as a function of Y with values E,¥ X
for Y = y, defined up to a Py or P’y-equivalence, respectively.

Notation. The following symbols are and will be used according to
convenience:

E¥Xor E(X|Y)or E(Y; X), E,XX or E(X|y) or E(y; X);
P¥ A or P(Al Y)or P(Y; 4), P,¥ 4 or P(A I y) or P(y; A);
and similarly with y replaced by w and/or Y replaced by ®.

*27.4. Relative conditional expectations and sufficient o-fields. The
Radon-Nikodym theorem applies to o-finite and u-continuous signed
measures on @ with o-finite measures u on @. Therefore, the concept
of c.exp. continues to apply if, in what precedes, P is replaced by any
such measure u. But, then, we have to specify that the c.exp.’s are
taken with respect to u—they are relative c.exp.’s. To simplify, we limit
ourselves to finite and P-continuous measures u. (Yet, we shall see in
the next volume that, led by physics, we may have to replace pr.’s by
s-finite measures and, thus, use fully the foregoing conditioning.)

Given the pr. space (2, @, P), the measures u are indefinite integrals
of nonnegative r.v.’s Z and we say that the relative c.exp.’s are taken
with respect to Z. In what follows, the r.v.'s Z, with or without affixes, are
nonnegative and integrable, and the u, with the same affixes if any, are their
indefinite integrals.

If a r.v. X possesses an integral with respect to u, then the c.exp. of
X given ® with respect to Z is a ®-measurable function, defined up to a
ug-equivalence by

f(Ez(BX) dug ==fXdp, B € ®.
Since ’ ’
vi=[zap, A€,
it follows that §
ugB =j;z.:fp =L(E“Z) dPg, B € @®,

and this definition 1s equivalent to

f(E(BZ)(Ez(BX) dPg ==fZXdP ==f(EBZX) dPg, B € @,
B B B

which, in its turn, is equivalent to

(1) E®Z.E,®X = E®ZX aus.




[Sec. 27] CONDITIONING 11

i —

iy

E;®X is defined up to a ug-equivalence and PgA = 0 entails ugAd = 0;
furthermore,

ue(E°Z = 0] = f (E®Z) dPg = 0.

[EBZ = 0]
Therefore, up to a ug-equivalence, Ez*X is given by
(1) E®X = E*ZX/E®Z,
so that

a. Relative c.exp.'s are reducible, up to an equivalence, to ratios of ordi-
nary c.exp.’s.

It may happen that c.exp.’s given ® relative to the r.v.’s of a family
{Z:} collapse together: there exists a r.v. Z such that, for every ¢,

(2) E;®X = Ez®X

in the sense that, whenever the left-hand side exists, so does the right-
hand side, and both are equal. But these sides are determined up to
(ue)e- and (u@)-equivalences, respectively. Thus, equality might be
interpreted in the sense that the ug-equivalence class of Ez®X belongs
to every (ug)g-equivalence class of £z X’s. This is certainly true as
soon as the equality holds for an element of each class, provided every
ug i1s p-continuous. Then, moreover, whenever EZ,CBX exists so does
Ez®X. Finally, we are led to the following definition.

Let X be “admissible” for the family {Z,} if its integrals with respect
to every u; exist. A sub o-field ® of events is sufficient (with Z) for the
family {Z,} if there exists a Z such that every u; is u-continuous and,
for every admissible X, (2) holds up to a (u;)g-equivalence. This con-
cept of sufficient sub o-fields is slightly more general than the usual
concept of ‘“‘sufficient statistics’’ which plays a considerable role in
statistics. Clearly every o-field P-equivalent to a sufficient ® 1s suffi-
cient. Thus, in what follows, we assume that every sufficient o-field
is defined up to a P-equivalence.

The basic result (originating with Neyman and put in its final form
by Halmos and Savage—in terms of sufficient statistics) is as follows:

A. FacToRrI1ZATION THEOREM. The sub o-field ® of events is syfficient
for the family {Z,} if, and only if, there exists a Z such that every Z, = gL
a.s. and every g, is ®-measurable; then every g, = E®Z,/E®Z up to a
pg-equivalence.
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We require two properties of c.exp.’s: 1° E® and ®-measurable func-
tions commute (25.2, 3); 2° 1if, for Y integrable or nonnegative, and

for every indicator 74 of events, E*Y7, = E®*Y']4 as., then Y = Y’

a.s. since, for everv 4 € Q,

fA Y dP = f YI,dP = f (E®Y1,) dPg = f (E®Y'1 ) dPg

=fY’IA 2P ==fY’ aP.
A

Proof. Z, = g,Z a.s. entails u-continuity of u; and, by (1),
E®Z, E;®X = E®*Z,X = g\F®ZX = g, E®Z-E;®*X = E®*Z,-E;®*X a.s.

The sets [E®Z, = 0] being (u)g-null, Ez°X = Ez®X up to (u)e-equiva-
lence. The set [E*Z = 0] being pg-null, it follows from

E(th = ggE(BZ a.S.

that g, = E*BZ,/E*BZ up to a ug-equivalence.
Conversely, if, for all indicators X, every Ez,an = FE;*X up to a
(u:)g-equivalence, then, by (1),

E%7.E%2,.X = E®Z,EF®ZE,*X = E®Z,E®ZX a.s.

E®Z,XE®Z) = E*(ZXE®Z) a.s.,

or

so that
Z,E®Z = ZE®Z, a.s.

and, hence, on B = [E®Z > 0],

2y = %Z
(3) ey a.s.

Since u; is u-continuous, from
uBt=| 24P = | (E®Z)dP =0,
Be J Be

so that Z = 0 on B¢ except for P-null subsets, it follows that uB° = 0;
hence Z; = 0 on B° except for P-null subsets. Thus (3) is trivially true

on B¢. This completes the proof.

Underlying the concept of sufficient o-fields with Z is the fact that
every u; is supposed to be u-continuous. This alone implies that every
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Z, = gZ a.s. where the g, are measurable. Thus, the whole o-field @
of events is trivially sufficient with any such Z and, in particular, with
Z = 1. And every sub o-field ® of events such that all the g; are ®-meas-
urable 1s sufficient with such a Z; in particular, the sub o-field ® induced
by the family {g.} 1s the least fine sufficient with Z. The question
arises whether there exists some Z, say Z,, such that the least fine sufh-
cient ag-field with Z, 1s the least fine of all possible sufficient o-fields for
the family {Z;}—the minimal sufficient s-field for the family {Z,}. The
answer is in the affirmative, as follows:

According to Chapter II: Complements and Details 23, there exists
a Zg such that

(1) wod =0 & every ud = 0;
or, equivalently,
(i’) up to P-null subsets, Zg = Oon 4 & every Z;, = O on 4.

Since, on account of ('), every Ez*X common to all the equivalence
classes E;®X belongs also to the equivalence class of Ez X, it fol-
lows that every sufficient o-field ® with Z is also sufficient with Z,.
Therefore, the least fine sufficient ¢-field with Zy is the minimal one.
On account of (i’), the corresponding factorization—every Z, = g2,
a.s.—is such that Zy = 0 a.s. = every Z, = 0 a.s. Thus:

B. MINIMALITY CRITERION. Hrite every Z, sn the form Z, = g2y a.s.,
with Zo such that every Zy = 0 a.s. = Zoy = 0 a.5.; this is always pos-
stble. Then the minimal sufficient a-field for the family {Z,} is the one

snduced by the family {g.}.

§28. PROPERTIES OF CONDITIONING

To avoid constant repetitions, it will be assumed in this and the fol-
lowing section that the integrals of all functions which figure under the
integration and c.exp. signs exist. We recall that an a.s. relation be-
tween ®-measurable functions is a Pg-equivalence.

28.1. Expectation properties. Loosely speaking, c.exp.’s have a.s. all
properties of expectations.

Let x4, ¢, and ¢’ be numbers.

1. If X =c¢ as. then EBXa ¢ as., and of X 2Y, as. then
E®X = E®Y a.s. B
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E® is an a.s. linear operation: E>(cX + ¢/ X") = cE®X + /E®X’ a.s.

In particular,

P =1as., P90 =0as, P°420a.s.

and

E® ( ) xka;,) = 3 x,P%4, a.s.
k=1

k=1

These properties follow at once from the definition of ¢.exp.’s and prop-
erties of integrals.

CONDITIONAL INEQUALITIES. Ubpon replacing E by E°, the c,-, Min-
kowski and Hdilder inequalities, as well as their consequerices and the in-
equalities for convex functions, remain valid, almost surely.

For, on account of 1, their proofs remain valid up to a Pg-equivalence
(for Holder’s inequality use also 25.2, 3).

2. CONVERGENCE IN THE 7rTH MEAN. If X, — X, then E®X, —
E®X forr = 1.

MonNoTONE CONVERGENCE. [f0 = X, T X a.5.,then0 =< EGXn 1 E®X
a.s. In particular, P®* Y. A, = Y. P%4, a.s.
k=1

FaTou-LEBESGUE CONVERGENCE. Let Y and Z be integrable. If
Y X, as. or X, £ Z a.s., then E®liminf X, < lim inf E®X, a.s.,
resp., lim sup E* X, < E®lim sup X, a.s.

In particular,if Y < X, 1 Xas,orY £ X, £ Za.s.and X, = X,
then E*X, — E®X.
The first assertion follows by
E| E®X, — E®X|" = E| E®(X, — X) |"
éE(EBIXn-XI’) ==E|Xn—-—X|"—-+O.
As for the monotone convergence assertion, since Xp41 2 Xn a.s. im-

plies EBX,,+1 > E®X, a.s., it follows that E®X, T X’ a.s. where X' 1s

®-measurable. Therefore, the monotone convergence criterion applies
to both sequences X, and E*X,, for every B € ®,

LX'JPTL(E@X,,)JP@ =LkndPTLXdP

L(EBX)dP@,

and the assertion follows. Upon taking X, =-'=kzl I4, so that

E®X, = 3 P®A4 a.s., the particular case is proved.
k=1
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The Fatou-Lebesgue assertion follows from that of monotone conver-
gence as in the nonconditional case.

28.2. Smoothing properties. Loosely speaking, the operation E® is a
®R-smoothing.

1. On every nonnull atom B € ®, E*X is constant and its value Eg X
is the average of values of X on B with respect to P.

By definition, B is a nonnull atom of ® if PB > 0 and B contains no
other sets belonging to ® than itself and the empty set.

Proof. The first assertion follows from the fact that E°X is a ®-
measurable function defined up to a Pg-equivalence and a ®-measurable
function is constant on atoms of &. Therefore, on every atom B of ®,

EgX-PB =-.f(E<BX) dPg ==fXdP
B B
and, for PB > 0,

1
EX==-—--—--fXdP.
T prpJs

This proves the second assertion and completes the proof.

Thus, E*X is a ®-smoothed X, in the sense that on atoms of ® which
are not atoms of @, E*X is an “averaged X’ and, on the whole, has
“fewer values” than X. In particular, if ® is the minimal o-field over a

countable partition {B;} of Q, so that the B; are atoms of ®, then, as
is to be expected,

E°X = Y (Ep,X)Ip, as.;

the right-hand side is a.s. defined since the Ep. X are determined except
for null B; whose countable sum is necessarily null. For the “least fine”
or “smallest” of all possible o-fields ® C @, that is, for &y = {0, @},
we obtain E®*X = EX a.s. The same conclusion holds for every ®
independent of the ¢-field ®x of events induced by X:

2. If ® and ®x are independent, then E°X = EX a.s.
For, X and /g being independent for every B € ®,

f (E®X) dPg = f X dP = E(XIg) = EX-PB = f (EX) dPg.
B B B

In particular, since EY X denotes E°¥X and independence of X and Y
means independence of ®x and ®y, we have

If X and Y are independent, then EXX = EX a.5s., EXY = EY a.s.
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The operation E® transforms @-measurable functions (whose inte-
grals exist) into ®-measurable functions (whose integrals exist); in fact,
it transforms classes of P-equivalence into classes of Pg-equivalence.
In particular, as is to be expected, the operation E® does not modify
classes of Pg-equivalence, in the sense that, if X is B-measurable, then

E®X = X a.s.; since, then, for every B € ®,

_L(E‘BX)dP@ =--fBXdP =—-LXdP@.

More generally, £® and ®-measurable factors commute, as follows:

3. If X is ®-measurable, then E°XY = XE®Y a.s.

The assertion holds for X = Iz, where B’ € ®, since, for every
B € ®,

f(EGIBrY)dP(B ==f]BrYdP"—'= (E&Y)dpcg =f(]BrE<B},)dP@.
B B B

BB’
Therefore, it holds for simple functions X,:
E®X.Y = X, ,E®Y a.s.

and, by the monotone convergence theorem for c.exp.’s, it holds for
nonnegative functions—take 0 £ X, 7 X and let » — o« 1n the fore-
going relation. The assertion follows.

4. If ® C ®, then
ESE®¥X) = E®X = E¥(E®X) a.s.

Since ® C ®’ implies that Pg is restriction of Pg to ®, we have,
for every B € ®,

f (EXE¥ X)) dPg = L (E¥X) dPg = fB X dP = fB (E®X) dPg,
B

and the left-hand side equality is proved. o
Since ® C ® implies that a ®-measurable function 1s ®’-measurable,

the right-hand equality follows either from 3 or directly from

f (E¥(E®X)) dPg = f (E®X) dP = f (E®X) dPg, B € &.
B B B

Thus, the smoothing E® can be performed in steps and remains a.s.
invariant under “finer’”’ smoothings.
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Together, 3 and 4 yield the

A. Basic sMOOTHING PROPERTY. If ® C ®' and X' is ®'-measurable,
then

E*XX = ES( X' E¥X).

In particular, denoting by EX*" the c.exp. given the o-field @y y
of events induced by the couple (X', Y), we have

EYXX = EY(X’EX'YX) a.s.

*28.3. Concepts of conditional independence and of chains. Under
conditioning, the concept of independence extends as follows:

We say that ®, and ®, are conditionally independent (c.ind.) given
® if, for every B; € ®; and B; € ®,,

P®B,B, = P®B,-P®B, as.

If ® = @, then this relation becomes /g,p, = /5 [p, a.s., so that
two sub o-fields of events are always c.ind. given the o-field @ of events,
and the concept of c.ind. given @ 1s trivial.

If ® = ® = {0, @}, then this relation becomes PB,B; = PB,-PB,
a.s., so that independence is c.ind. given ®q, the “smallest’ of all sub
o-fields of events.

In what follows, we drop the parentheses and commas in writing
compound o-fields.

A. B, and ®y are c.ind. given ® if, and only if, for every By € ®q,
| P(B@lBg == P&Bg a.5.,
the subscripts 1 and 2 can be interchanged.

Proof. Let B, € ®; and B, € ®; be arbitrary. We have to prove
that

(1) E®IgIp, = E®Ip, -E®Ip, as.
is equivalent to

(2) E® g, = E‘BIB, a.s.
Since, on account of smoothing properties (25.2),

E@IBlng == E(B(]Blﬂmaljgz) 4.S.
E®Ip -E®I5, = E®(15,E%I,) a.s.,

and
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it suffices to prove that (2) 1s equivalent to
(3) E®(I5,E*®'Ip,) = E®(I5,E®Ip,) a.s.

Upon multiplying both sides in (2) by 75, and performing the operation
E®, (3) follows.

Conversely, (3) implies that, for every B € ®,

f(]BlE@(Bljgz) dP =f(]BlE<B.[32) dP
B B

or, both c.exp.’s being B®;-measurable,

(E®®'Ip,) dPgg, = (E®I,) dPgg,.

BB, BB

Since bounded indefinite integrals coinciding on the class of all sets
BB, coincide on the o-field ®®,, it follows that the integrands E**'/p,
and E®Ip, are Pgg,-equivalent, and the proof is complete.

Upon following literally the pattern used for the investigation of the
concept of independence, the concept of c.ind. extends to arbitrary
families of o-fields and hence of r.v.’s, random vectors and random
functions, and the investigations of the case of independence (Part III)
can be transposed to the case of c.ind.

Furthermore, the concept of c.ind. leads to another generalization
of that of independence, as follows: Let ®, be a sequence of sub o-fields
of events. The ®, are said to form a chain, or to be chained (or chain-
dependent or Markov-dependent) if, for arbitrary integers m and #», the
o-fields ®y, < +*, ®Bn_1, and ®Bn41, ***y ®nim are c.and. given ®,. In
symbols, the ®, are chained, if, for every m, n, By € ®,

(1) P*By -+ Bp_1Bny1 -+ Bnym
= P B, .- Ba 1 P*Bniy -+ Bnym as.

or, equivalently, on account of A,

(2) P‘BI(B?.“‘(B?IB"’-*-I * Bn+m == P(Ban+1 te Bn+m a.S.
or
(3) PO®nt1:Gaemp ... B, | = P*B, .-« B,_; as.

Ifn =1,2, «--,is interpreted as the “time,” we can say, loosely speak-
ing, that the ®, form a chain if the “past” and the “future” are a.s.
independent when the “present” is given, or, equivalently, the “future
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(“past’) is a.s. independent of the given “past’” (“future’), when the
“present’’ is given. We shall use mostly the defining property (2).

Let k) < - < kpn_) < kn <kpnyy << kpinm be arbitrary inte-
gers and apply the operation E®%" ®% to both sides of (2) where #
and » + m are replaced by k&, and k... respectively. It follows,
by 24.2, and upon replacing by Q all events whose subscripts are differ-
ent from kny1, *°, knim, that we have the seemingly more general
property

poGp B _PB .. B as

Loosely speaking, whatever be the “future” it depends a.s. only upon
the last given “past.”

As usual, if 8, = By, are o-fields of events induced by r.v.’s (ran-
dom vectors, random functions) X,, we replace above ®, by X, and
speak about the chain of r.v.’s (random vectors, random functions) X,.

§29. REGULAR PR. FUNCTIONS

29.1. Regularity and integration. Since c.exp.’s behave at first sight
as integrals with respect to c.pr.’s, the question arises whether c.exp.’s
can be so defined. More precisely, according to 25.1,

1° Properties of functions P®A4 are almost surely those of pr. values:

P20 =1as., PP4=20as, PSS A4, =3 P%°4;as.

2° Properties of functions E®X are almost surely those defining
integrals with respect to P®:

EES xp 1y, = 3 2 PP Ay ass.,

kw1 k=1
0 £ X.T X implies E®X, T E®X as.,
E®X = E® X+ — E®X~ as.

Yet, to speak about integrals with respect to the P.%, we have to know
that the P,® are pr.’s for every w € Q or, the c.exp.’s being defined up
to an equivalence, that at the least the P,® are pr.’s except for w belong-
ing to some null event. Thus, we have to assume that P® is “regular.”

A c.pr. P® is said to be regular if, for every 4 € Q, it is possible to
select P®A4 within its class of equivalence in such a manner that the
P.® are pr.’s on @ except for points w belonging to a Pg-null event V.
A regular pr.f. P® can be said to be defined up to an equivalence, 1n
the sense that if all the functions P4 are modified arbitrarily on an
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arbitrary but fixed Pg-null event, the new c.pr. is still regular. In par-
ticular, a regular c.pr. P® can be selected within its equivalence class
so that P,” is a pr. on @ for every w € Q. For example, for every w
belonging to the exceptional Pg-null event N set P,® = Py where Py
1s a pr. on @. Unless otherwise stated, regular c.pr.’s will be so selected.
In other words,

a regular c.pr. P®, with values P®(w; A), will be a function on @ X @
with the following properties:

(1) P®(w; A) is ®B-measurable in w(€Q) for every fixed A and is a

pr. in A(€_Q) for every fixed w.
(1) For every A € Q@ and B € ®,

f (P®A4) dPg = PAB.
B

In the case of regular c.pr.’s the answer to the question stated at the
beginning of this section is, as might be expected, in the affirmative.

A. INTEGRATION THEOREM. If P® is a regular c.pr., then
E*Xx =fX‘:2’1""’cB a.s.

Proof. Since all P,® are pr.’s on @, we can write

P.%A =f]A dP.% wE Q,

that 1s,

E®ry = P®4 --.-ff,, dP°,
It follows, on account of relations 2°, that

E°® i xila, = f ( ;: x,JA,,) dP® a.s.;

k=<1 k=1
0 < X, 1 X, where the X, are simple functions, implies that E®X =

lim E2X, = limeﬂb dP® =fXdP(B a.S.;
X = E®xt — E®Xx~ =fX+dP‘B --fX“‘dP‘B =fXdP(B a.s.;

and the assertion 1s proved.
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The basic smoothing property becomes

B. BASIC INTEGRATION PROPERTY. [If ® C ® C @ and P®, P* are
regular, then, for Q-measurable functions X and ®'-measurable functions

X',
fXX’ dP® =fX’ dP(BfXdP(B' a.s.

The iterated integrations are to be read, as usual, from right to left.

The foregoing relation can be written explicitly as follows: except for
w belonging to a Pg-null event

fP(B(w; dw') X (") X' () =fPCB(w; dw”)X’(w”)fPCB’(w”; dw’) X (w').

*20.2. Decomposition of regular c.pr.’s given separable o-fields. The
“elementary’’ case investigated in 24.1 corresponds to a given o-field ®
generated by a countable disjoint class of events. It can then be as-
sumed, without restricting the generality, that the class is a partition of
the form > B; 4+ Bg, where every PB; > 0 and B, 1s null but not neces-
sarily empty. The corresponding “elementary’ c.pr.’s can be written as

(1) P® = 3 (Pp)Ip, + (P,
where every Pp. 1s a pr. on @ defined by
(2) Pp.A = Ei!:.fi, A€ Q,

’ PB;

so that PgB; = 1, and Pp, is an arbitrary pr. on @ which disappears
when By is empty. Thus, an “elementary’ c.pr. is regular and can be
said to be “decomposed” into a countable set of pr.’s. We intend to
show that regular c.pr.’s given separable o-fields can be decomposed 1n
an analogous manner.

A o-field ® is separable if it is generated by (1s minimal over) a count-

able class of sets.

a. If a o-field ® is separable, then every set B € ® 15 a sum of atoms
B, of ® such t}zatt g:r B, = Quwith T CR.

Proof. Let B; be the generators of ® and let B, be the nonempty
distinct sets of the form (B; where B; = B; or B;*. Since the set of
#’s is countable, the power of the set T of #'s 1s at most that of the con-
tinuum, so that T can be supposed to lie in R. Since the B, are dis-
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A — P .

joint and any w € Q belongs to one of them, > B, = Q. Since ® is
tET
the o-field generated by the Bj, every B, belongs to ®, and by construc-

tion contains no other sets belonging to ® than itself and the empty

set and is not empty; further, every B € ® i1s a sum of B,’s. The asser-
tion 1s proved.

The functions P®A4, being ®-measurable, reduce to constants on
atoms of B. In fact, they reduce to constants on possibly larger events,
namely, on atoms of the o-field Bp C ® 1induced by these functions for
A varying over @. The o-field ®Bp 1s generated by events of the form
[P®4 € 8] where S are arbitrary Borel sets in R; and it suffices to take
events of the form [P®4 < r] where the » are positive rationals. The
atoms of ®p will be called P®-atoms and every event contained in a
P®_atom will be called P®-indecomposable; for example, atoms of ® are
P®.indecomposable.

A. DecomposiTiON THEOREM. If P®is a regular c.pr. and ® coniains a

separable o-field ® whose atoms are P®_indecomposable, then there exists a
partition @ = 2, By + N with T C R and PgN = 0 such that, except

teE T
on N X @,
P(B = Z (P B,)IB,,

te T

where the Pg, are pr.’s on @ and P B, = 1.

Proof. Let the countable class {B;} generate ® < ®. The field
generated by the B; is a countable class and, hence, 1t may be assumed
that {B;} 1s a field.

Let S B, = Q be the partition into atoms B, € ®’, as constructed
t €T

in a. Since, by assumption, these atoms are P%®.indecomposable, the
functions P2A(A4 € @) reduce to constants PgA4 on B, Since P® is
regular, the Pp, are pr.’s on @. It remains to show that, upon lumpipg
together some atoms B, into a Pg-null event, PpB; = 1 for the remain-
ing ones. |
For all B € ®, the indicators /p being ®-measurable coincide with
their c.exp. P®B given ® except on a Pg-null event. Let N; be the
Pg-null event on which P®B; # Ip. Since the functions P®B; do not
vary on the atoms B,, Njis the sum of some B; and the union N = U.N,-
of all those exceptional atoms is Pg-null. Fix w belonging to a remaining
atom B,. Since PgB'(= P.,®B’) and Ip/(w) are values of pr.’s on ®’
and coincide on the generating field {B;}, it follows that P B’ = Ip/(w)
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for every B’ € ®’; in particular, Pg B, = Ip(w) = 1, and the proof is
concluded.

CoroLLary 1. If P® is a regular c.pr., and one of the o-fields @ or ®
or ®p 15 separable, then the foregoing decomposition holds.

Proof. Since atoms of ® and of ®p(C®) are P®-indecomposable,
we have only to prove the assertion when @ 1s separable. Thus, let
{A;} be the countable class which generates @; the class can be assumed
to be a field. The countable class of events of the form [P®4; < 7],
r rational, generates a separable o-field B’ C ®p C ®. It suffices to
show that its atoms B; are P®-indecomposable.

The functions P®4; reduce to constants Pg A4; on atoms B, of ®' and,
for w € B,, the pr.’s P,* and P, on @ coincide on the field {4;}. There-
fore, they coincide on @ and, hence, for every 4 € @, the functions
P® 4 reduce to constants Pg .4 on atoms B,. The proof is terminated.

CoRrOLLARY 2. Under conditions of the decomposition theorem

E°X = E (EB‘X)IB‘ a.d.,
te T
where

EpX = f XdPg, t€T.

Apply the integration theorem 26.1A.

In the elementary case, relation (2) can be written

PyA = f p5,(w) dPW'), A€ a
A

with

ij(w’) = IB,‘(“'”)) W’ E.-. 2.

PB;

Therefore the decomposition (1) becomes, for w & By,

PGa w? A) = p W, w' dP
with

. 1 ’
p(B(w) "-”) = Z Ry B,‘(w)IB,'(w’)) w € BO) w' € 8,
PB,

and, taking Pg, = P, the integral relation holds for all w € &, provided
we add Ig,(w) to p*(w, w’).
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In general, let 4 be a o-finite measure on @. We say that a regu-
lar c.pr. P® is u-comtinuous if there exists an @®@-measurable function
2, (w, @) In ' such that, for every w € Q and 4 € @,

P(B(w; A) =Lpp(3(w, w’) du(w’).

The function p,* will be called the conditional pr. density given ® with
respect to u. It can and will be assumed to be nonnegative and finite.
Furthermore, u can and will be assumed to be a pr. on @. If uis finite,
it suffices to set

po= u/uQ, Pu'(B = Pu&‘#Q-

If u is strictly o-finite and 2_ A4, = Q 1s a partition such that every
uAd, < oo, it suffices to set

wd= pdd,/2"uA,, A4E Q,

and
2.8, &) = 3w, 0) A, ©w €Q o € A,

CoroLLarRY 3. Under conditions of the decomposition theorem, if

P® is u-continuous, then the decomposition is countable; more precisely,
the decomposition s

Q=> B;4+ N, uB; >0, PN =0.

Proof. Since u is a pr. on @ and hence on ®, there exists only a
countable class {B;} of non u-null atoms B;. On the other hand, if B;
is one of the u-null atoms then, for any w € B,

1 = Pp B, = BPu(B(% ') du(w’) =0

so that B; must be empty.

$30. CONDITIONAL DISTRIBUTIONS

30.1. Definitions and restricted integration. A regular c.pr. P
restricted to a sub o-field of events still has the regularity properties:
‘+ is ®-measurable and it is a pr. on the sub o-field to which 1t 1s restricted.
However, the converse 1s not necessarily true. Thus, in the search
for regular c.pr.’s, it will be convenient to begin by investigating the
weaker “restricted regularity.” In fact, it will prove useful to extend
this concept to functions of a point in a measurable space (@4, @) with
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points w; and measurable sets 4, and of a measurable set in a meas-
urable space (Q2, @2) with points ws and measurable sets As.

We shall not hesitate to proceed to the usual abuse of language, that
1s, according to convenience and the possible degree of confusion, we
shall speak of “the function A(w;, A45)” instead of “‘the function 4 on
Q; X @2.”" We say that the function A(w;, A42) 1s an Q@ -measurable pr.
if 1t 1s @;-measurable in w, for every fixed A5 and 1s a pr. in A4, for every
fixed w;. Observe that, whenever there exists a pr. P; on @, then the
function

Pio(Ad, X A2) = . Pi(dwy)h(wy, A2)

determines, by the extension theorem (for measures) a pr. on the
product-measurable space (2; X Qq, @; X Q3).

Let X be a family of r.v.’s on the pr. space (2, @, P). Let @x be the
o-field of events induced by X, that is, the o-field of the inverse images

(X € §] of Borel sets § in the range space € of X. If a c.pr. P*(w, A),

where A varies only over Qx, is a pr. on @x for every fixed w € Q, we
say that it is a conditional distribution (c.d.) of X given ®. Clearly

A function P®(w, A), where A varies over Qx, is a c.d. of X given ®
tf, and only if,

(CDy) P®(w, A) is a ®-measurable pr.
(CD,) f P(dw)P®(w, 4) = PAB
B

for every A € Qx and every B € ®.

To c.pr.’s P®(w, A) restricted to @y, we make correspond ®-functions
(0®(w, S) such that, for every fixed Borel set § in X,

(C) 0% (w, S) = P®(w, [X € S)) up to a Pg-equivalence.

If a function Q%(w, §) in (C) is a pr. on the Borel sets §, we say that 1t
s a mixed c.d. of X given ®. Clearly, if there exists a c.d. of X.glven
®, then there exists a mixed c.d. of X given ® but the converse is not

necessarily true.
The importance of c.d.’s and mixed c.d.’s of X 1s due to the fact that

they still have the integration property of regular c.pr.’s, provided the
integrand depends only upon X.

A. RESTRICTED INTEGRATION THEOREM. Let g be a Borel function
on the range space X of a family X of r.v.’s, such that Eg(X) ex1sts.
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If there exists a c.d. (mixed c.d.) of X given ®, then, except for points w in
a Pg-null set,

E%(w, (X)) = f P*(w, du)g(X@)) (= [ 0 (@, dr)g(s).

Proof. By definition of a c.d. (mixed c.d.), the asserted equality
holds for indicators g = Ig. It follows, as usual, that 1t holds for simple,
then for nonnegative, Borel functions, and the theorem follows.

If 0®%w, §) is 2 mixed c.d. of a random vector X = (X, -+, Xn),
we sct
F@(w) X') = Q&(w) (“m) x))) X = (xly " ')xn))

and call this function a conditional distribution function (cd.f.) of X
given ®; 1t 1s B-measurable in w and a d.f. in x. Thus, we can form its
Fourier-Stieltjes transform

f&(w) Z{) =__feiux dF(B(w) X'), U = (“1, T un)

where ux = uyxy + -+ + 4 u.xn, and shall call this function a conditional
characteristic function (c.ch.f.) of X given ®; it is ®-measurable In w
and a ch.f. in «.

CoroLLaRrY. To a c.ch.f. f&(w, u) of a random vector X given ®, there
correspond c.exp.’s E%¢™X such that, for every w and every u,

E(w, 6*X) = f%(a, u).

For, we can select the c.exp.’s such that, according to the theorem, the
equality holds for every rational point #, and then use the continuity

property of ch.f’s in passing to the limit along rational points.
30.2. Existence. The problem of existence of regular c.pr.’s has been

investigated principally by Doob who begins by solving the problem
of c.d.’s as follows.

a. EXISTENCE LEMMA. If there exists a c.d. of a famsly X of r.v.'s
given ®, then there exists a mixed c.d. of X given ®. The converse 15 lrue

when the range of X is a Borel set.

We recall that the range of X is the set of values X(w) as w varies over

Q.
Proof. We use repeatedly the correspondence relation (C). The

direct assertion follows at once by setting, for every w € @ and every
Borel set § in the range space of X,

0%, §) = P®, [X € 3.
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In general, the converse 1s not true because a set 4/ € @y may be iIn-
verse image of different Borel sets, say, § and §’. However, when the
range of X is itself a Borel set Sy, then

(@, Sx°) = P°(s, [X € Sx°)) = P%(w, 8) = 0

except for points w of some Pg-null set N. Therefore, when there exists

a mixed c.d. 0®%(w, S), that is, a B-measurable pr., then, §§’° and S¢S’
being 1n §x°, we have

% (w, §) = 0%w, §) = 0%, §§'), w & N.

It follows that, in (C), we can select a ®-measurable pr. by setting, for
every 4 € Qx,

P@(w)/{) =Q(B(w) S)) WQN
P&(w)/f) =Q<B(w0) S)) wCN) wOQN)

where § i1s any 1mage of 4. This function 1s an asserted c.d., and the
proof 1s complete.

A. C.p.’s EXISTENCE THEOREM. There always exists a mixed c.d. of a

countable family X of r.v.s given ®. If the range of X is a Borel set,
then there exists a c.d. of X given ®.

Proof. On account of the existence lemma, 1t suffices to prove that
there exists a mixed c.pr. We show first that a c.d.f. exists; the proof
is based upon the fact that the countable set of rational points
r = (r1, -+, ra) of an n-dimensional euclidean space is dense in it.

Let x, ¥’ and 7, » denote points and rational points, respectively, of
the range space of a random vector X = (Xj, -+, X»). Let P(w, 4)
be a c.pr. given ®, and, for every r, set

F‘B(w,r)=Pm(w,[X<r]), w € Q;

the right-hand sides are selected arbitrarily within their Pg-equivalence
classes and kept fixed. Let N, with or without affixes, denote Pg-null
sets. On account of a.s. properties of c.pr.’s, we have

FG("’) -—-OO)=O, F(B(w)+°°)= 1) “"QNO
Ay _F®w,7) 20,1, »r<7#, wq Ny
F‘B(w, 7)1 F‘B(w, ) as rt1r, o N,
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The countable union

N=NoUUN, UUN,

r <r

of Pg-null sets i1s Pg-null. For every x, set

F®w, x) = liTmF(B(w,r), wqd N,

F®w, x) = F®(wg, x), w €N, wyq N.

For every w € Q, the function so defined is a d.f. and, by the corre-
spondence theorem (for d.f.’s), the relation

%@, (=, x)) = F%(w, x)

determines a pr. 0®(w, §) in Borel sets S.

This function 1s an asserted mixed c.d., provided we prove that this
function 1s ®-measurable in w and that, for every S,

0%(w, §) = Po(w, [X € S])

up to a Pg-equivalence. By construction, the assertion is true for every
§ = (—=, ). Hence, on account of the a.s. properties of c.pr.’s, 1t 1s
true on the field of all finite sums of intervals § and, by monotone pas-
sages to the limit, it is still true on the minimal monotone field over this
field, that is, on the o-field of all Borel sets §.

Now, let X = (X;, X2, -+-) be a countable family of r.v.’s. Once
the F&(w; 7y, - - -, 7,) are selected, we can select the F®(w; 71, * -, #ny #nt1)
within the defining Pg-equivalence classes so that, for every w € Q,

F‘@(w;rl) '”)rﬂ)rﬂ-{-l) _')F(B(w;rly "')rn) as 7Tp41 —F 0.

Then, for every w € £, the foregoing construction yields consistent
d.f’s, hence consistent pr.’s, and, proceeding step by step with
n =162, ..., we obtain a consistent family of pr.’s which, by the con-
sistency theorem (for measures), determines a mixed c.d. % (w, S )on
the o-field of all Borel sets § in the range space of X. The theorem is
proved.

Sample pr. spaces. As long as we are concerned only with a given
family of r.v.’s, we can always take for pr. space, the sample pr. space
of the family. To simplify the statements and the notations, we con-
sider a countable family X = (X, Xo, - ) of r.v.’s (or random vectors

or random sequences). Set Ry,...x, = H R;,, denote by Sy,..., and
7=1
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Qi,...x, the Borel sets and their o-field in this real space, and let

Py,...x,, be the distribution of Xi,...x,, = (Xi,, * -, Xi,) defined by
Pk;---km(Skl---km) - P[Xkl,---,k,,, C Skl"‘km]'

If the same affixes occur inside and outside a bracket, we shall omit
either the inside or the outside ones, according to our conventence.

The sample pr. space of X consists of the space Ry X Ry X+, the
a-field of Borel sets in this space, and the distribution of X on this o-
field. We take it for our pr. space (2, @, P). Then

X(xl: X2y *° ') = (xl) X2y * " )

and the range of any X, coincides with 1ts range space R,. Therefore,
the existence theorem applies and, for every o-field ® C @, there exists
a c.d. of any subfamily of X given 8 C @; in fact, there exists a c.d.
of the countable family X given ®, that is, a regular c.pr. P®. Thus

B. REGULARITY THEOREM. C(.pr.s in sample pr. spaces of countable

families of r.v.s can be regularized and c.d’s of their subfamilies always

exist.

In the remainder of this section we take for pr. space of X =

(X;, X, ---) its sample pr. space and can and will assume that the
c.pr.’s given a measurable function Y on © are expressed as functions

of Y and are regularized. By applying repeatedly the restricted inte-
gration theorem, we obtain

b. If g is a Borel function on Ry...n, such that Eg(Xy, - - -, Xp) exists,
then

Eg(XI: AR Xn)

”‘J‘gdpln

=J‘P(dx1)f{’(x1; dJC'2) . 'fP(x1, "ty Xn—1, dxn)g(xh " xn)

and, except for a Pi-null set of points xy,

Em(xl; g(Xl: "%y Xn))

ﬂfp(xl;dx2'“n)g(xh $e vy Xn)

mfp(xl; dx2) * e 'fp(xh * gy Xn—ly dxn)g(xl: * e 'sfxn)'
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The c.d.’s defining properties separate as follows:

c. Property
(CDy) P(xy, S3) is an Qi-measurable pr. on @,

characterizes c.d.'s of Xy given Xy, and property

(CDg) P(§1 X §2) = S P(dx1)P(xy, S2)

relates the distributions of X, and (X, Xs).

Applications. 1° The law of the countable family (X;, X5, ---)
is defined by the distribution of this family which determines and is
determined by a consistent family of distributions PS§;, PS8, ---
Because of the consistency requirement, this family of distributions is

superabundant. Conditioning permits us to determine the law by means
of a nonsuperabundant family of measurable pr.’s (that is, with no

required relations among members). For, by applying repeatedly the
above propositions, we find that

The law of the countable family X,, Xa, + - determines and is deter-
mined by a family P(S,), P(xy; §2), P(x1, x2; S3), -+ of c.d.f)s.

Clearly, we can replace c.d.’s by c.d.f.’s or by c.ch.f.’s.

2° Let X;, X5, --- be r.v.s on their sample space (2, @, P) with
joint d.f.’s Fy,...r,, and c.d.f.s Fk,...kma of (X, *-+, Xi,). We can
define conditional independence of the X’s given ® by the property

® ® ®
Foooook, = Fyy oo+ Fy

m

for arbitrary finite subsets &y, - - -, kn of subscripts. Then

Fo. . =E&FS" - F°%

1- - -

where the expectation is obtained by integrating with respect to Pg.
Conversely, any family X;, X, --- is trivially conditionally inde-
pendent—given @; we exclude this trivial case.
If the r.v.’s are conditionally independent with common c.d.f. F®,

then
Fkl'-'km(xl) " T xm) - E(F(B(xl) ST F(B(xm))'

Thus, the joint d.f.’s of any m of the r.v.’s do not depend upon their
subscripts but only upon their number m. If the joint d.f.’s have this
property, that is, for every finite subset ky, - -, km

Gm - Fklﬂ-km)
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we say that the r.v.’s are exchangeable. This concept was introduced

by de Finetti and his basic result, in terms of conditional independence
and in a somewhat more precise form, 1s as follows.

The concept of exchangeability is equivalent to that of conditional inde-
pendence with common c.d.f.

The second concept implying the first one, it suffices to prove the
converse. Thus, let G,, = Fy, ... and set, for every x € R,

l n
En(x) = =2.1 (X%, <2l
7 5l
Since, as m, n — oo,
, |m—n]
E@En(x) — £n(x))" = ———— (G1(x) — Ga(x, x)) — O,

mn

it follows that there exists a r.v. £(x) such that E(¢,(x) — £(x))* — O,

P . :
and hence £,(x) — £(x). "Since the £,(x) are bounded by 1, it follows,
by the dominated convergence theorem and a.s. invariance under finite

permutations of X’s of B € ® = ®(¢(x), x € R), that

E(¢(x1) - §(xm)B) — Ea(x1)" £a(xm)lB)
— P([X1 < %1, 0y Xm < xm]d ).

Thus P8[Xi < %1, "y Xm < %] = £(x1)- - £(xm) a.s. Finally, since the
function £.(w, %) is a d.f. in x, it follows that the function &(w, x) has
a.s. the properties of a d.f. in x and therefore, in the preceding relation,
£(x) can be replaced by a c.d.f. (use, for example, the same method as in
the proof of the c.d.’s existence theorem).

30.3. Chains; the elementary case. In the case of random vectors
the definition of chain is as follows:

A sequence X, of random vectors 1s a chain if, for every integer 7,
1 c. distribution of Xn41 given Xj, - -+, Xa can (and will) be so selected
that it coincides with a c. distribution of Xa41 given Xn; in symbols
Pﬂ:l”'x“ = P§:+l or, equivalently, the c. distribution P(x1, ***y Xn;
Sn.+1) is independent of the a priori arguments x1, **°, ¥n—1- (On
account of 27.2b, this definition entails chain-dependence as de-
fined in 25.3; apply the second relation with n replaced by m + 1, a1 =
(1, * ety 77), Qy =N -+ 1, *rty Qpyl =7 -+ m, and g = Isu+l>("‘>(3n+m')

Usually, the chained random vectors have a common range-space;
to fix the ideas, consider a chain X, of r.v.’s. The terrnmo}ogy :.:sed
is phenomenological. The chain is a “system” X whose ‘ state at
i »is X, and has for values points ¥ € R—the “possible’ states.

’ * c¢ _* 2
The c. distribution P%",, is the one-step transition pr. at time 7. By
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the classical abuse of language, 1t 1s represented by the same symbol
as its values. This symbol will be P*"*!(x; §) and is read “pr. of
passage from x at time n into § at time #» + 1.” The very language
used contains implicitly the assumption of chain-dependence.

If Prnrtl(x: §) = P(x; S) is independent of »n, then the chain is said
to be constant (in time); P(x; §) is called the #ransition pr. function
(f.) of the chain and read “pr. of passage from x into § in one step.”
From a phenomenological point of view, a constant chain represents a
“random system’’ whose “law of evolution’” does not vary in time.
Let P, (S) denote the distribution of X,. Since, for every n,

Poir(S) = f P.(dx)P(x; S),

it follows, by induction, that, for every pair m, n of integers,

Prin(S) = f P, (dx)P"(x; S)

where
P*(x; S) ==fP(x;dx1)fP(x1; dxg) --'fP(xn._z; dxn_1)P(xn_1; §).

Clearly, this relation implies and 1s implied by the relation
P*tP(x; S) ==fP"(x; dxYPP(x'; 8); mp=12, --.

P*(x: S) is called the n-step transstion pr. and read “pr. of passage from
x into § in n-steps.” Upon applying 27.2b, 1t 1s easily seen that the
n-step transition pr. is a ¢. distribution of X s given Xpn(m = 1,2, -+ ).

Upon applying 27.2a and 27.2A, we can summarize the basic prop-
erties of constant chains, as follows:

A. A function P(x; S), of points x € R and Borel sets § C R, 15 the
transition pr.f. of a constant chain of r.v.s if, and only if, it is a Borel

function in x for every fixed S and a pr. in § for every fixed x.
The law of a constant chain of rv.’s X,, with distributions Pn(S), s

determined by the initial distribution P1(S) and the transition pr.f. P(x; §).
For every patr m, n of integers,

Pin(S) = f P, (dx)P™(x; S),

where the function P™(x; S) is determined by the relation

Pn+p(x'; S) ----fP"(x; dx’)Pp(x’; S); n,p = 1,2, ---
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Let P(x; §) be a transition pr.f. If there exists an initial distribution
P{(S) such that, for every »n, the consecutive distributions P,(§) coin-
cide with the initial one, the transition pr.f. is said to possess an invariant
distribution P1(§) and P{(S) 1s said to be snvariant under the transition
pr.f. P(x; §); the chain whose law 1s determined by the invariant dis-

tribution P{(S§) and by P(x; §) 1s said to be stattonary. In symbols,
P,(S) is invariant under P(x; §) if, for every n,

Pl(S) -‘=fP1(dX)Pn(X, S)

Since, for every n,

Prii(S) = f P.(dx)P(x; 5),

it suffices to require that this relation be valid for » = 1. It easily
follows from 27.2b that, if the chain X, 1s stationary, then, for every
n, the distribution of (X, -+, Xm+n) 1s independent of m.

A transition pr.f. P(x, §) is elementary if there exists a countable parti-
tion 38, = @ such that P(x, §x) = Pj, for all x € §j; thus 1t reduces to a
transition pr. matrix and the only values of initial distributions which
matter are of the form P; = Py(S;). We set P} = P,(§;) and Pj =

P"(x, Si) for x € §; and the basic properties of constant chains become

n20, L Prp=1, PRt" =2 PiP,
k h

P??-:O: 2. P =1, P}"+"=E £y
7 h

ExPONENTIAL CONVERGENCE. The basic limit- problem for constant
chains is that of the asymptotic behavior of n-step transition pr.f.’s
P*(x, S). A particularly simple yet a cornerstone case, which in essence
goes back to Markov, is the exponential convergence case: there exists a
set function P(S) and positive constants @, b such that, for n sufficiently
large, ‘P"(x, $) — P(S) I < ae~®" whatever be x and J. This implies
at once that P(S) is a pr.

In what follows we use repeatedly the fact that differences ¢(S) of two
pr.’s vanish for § = R so that 2¢(S) and 2\ tp(S)‘ attain the same

supremum Var ¢ =fl o(dy) | at a positive Hahn decomposition set

of o(8) to be denoted by H, with or without afhixes.

a. INVARIANCE LEMMA. P(S) is invariant under transition pr.f.s and
| Pnia(S) — P(S) | S ae™"" whatever be P1(S)-
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P— R P P — —

For
[{2 a9 - Pan| 6,91 5 [ P ) - P | 5 226~

implies that

P(s) — Pr(s) = [(Prx, )P0, ) [Panemes)

and

| Pun® = P®) | < [ Pi(an) | Px, S) = P(S)| 5 ae™

We introduce now a “measure” of chain dependence which originated
with Markov. Let A, nim = sup sup{P"(x, S) — P**t™(y,8)}. The

(generallzed) Markov measure 1s A = Apn Clearly 0 £ A, =1, and
in the independence case A, = O (since x, y disappear) while in the de-
terministic case A, = 1 (since P*(x, S) = I(x, §)).

b. BAsic INEQUALITIES:

An,m,+m < A, and An+m < A,A,,.
For
| P(5,S) — PP, 8) | S [Pr0ydn) | P S) = P ) | S s

and if ¢,(S) = P*(x,§) — P*(»,5), then

| onam(®) | = | f onld)P"(2, )| S ealHy) sup P(3, )
Hn+Hn

+ ‘Pn(an) 12fP’”(z, S)

= o, (H){sup P"(z, §) — inf P™(z, S)} = Anlnm.
B. FXPONENTIAL CONVERGENCE CRITERION. Exponential convergence
holds if, and only if, Ay < 1 for some integer h.
Proof. If exponential convergence holds, then
| P(x, §) — P59 | S| P'x,8) — P(9)
+ | PY(y,S) — P(S)| S 2ae™"

Conversely, if Ay < 1 then, by b, as m, 7 — &,
[Pr(x,8) — PPT™(5,8) | S An S An mIb s 0,
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hence lim P*(x, §) = P(x, §) exists and this limit is a function P(S) of
S only (set m = 0), so that [ P*(x, §) — P(S) [ < AL (let m — ).

Let u be a o-finite measure. By the Lebesgue decomposition theorem

Pi(x, §) = [ 25, uldy) + Pi(x, S)
where p™(x, y) = 0 and Pj(x, §) 1s u-singular.
MarkOV CASE (GENERALIZED). If inf p"(%,y) 2 6 > 0 for all y in
some u-positive set S, then exponential convergence holds.

For, if H is a Hahn set for the difference of pr.’s in Ay, then
P'x,8") — P*(y,8) £ 1 — {P'(x, H) + P'(y, H)}

<1 — {P*x, HS) + P*(y, HS)}
<1—=1} 2t nud) + | 2"y, Du(d))
W HES HS
<1 —6ulS) < 1.
c. Let Xy, X, - -+ be a sequence of chained r.v.’s in the exponential con-
vergence case and let Y be a r.v. bounded by c defined on Xy ym, Xntmals
.«. If E refers to P, then

| EY — E(Y| X,) | < 2ace™".
For,
|EY — E(Y| X, = %) |

y = Ile(Y'l Xngm = W{P(dy) — P (x, dy)] I < 2ace™®™,

This sequence behaves asymptotically as in the case of independence, as

follows:
C. ExPONENTIAL CONVERGENCE THEOREM. [n the exponential con-

vergence case with chained ro.s Xy, Xo, - - -, whatever be P1(S),

() (e(X) +- -+ g(X))/n —> | g(x)P(dx)

for every Borel function g for which the integral exists

g(Xy) +- -+ g(Xn) _

On
where g is a finite Borel function, are stable and independent of P1(S).

A, b, — ®

(i) the limit laws of normed sums :
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Proof:

Ny Vi g e i e il
by gy Sy —
Ny —

1° If P, = P then, by a, the sequence g(X}), g(X3), - - - is stationary
and also 1s indecomposable since, for every invariant set C, Io(x) =
I':’(x, C) = P*(x,C) — P(C), so that assertion (i) follows by the sta-
tionarity theorem. Since the limit on and the indicator of the con-
vergence set of the averages are tail functions on X;, X,, - - -, it follows
from a that (1) holds for any P;.

2° To prove (i) we can take 2, = 0 on account of the convergence of
types theorem. Thus, let £(5./6,) — £(X) with ch.f. f, where

S = g(X:). Then, by the same theorem, upon excluding the
k=]

trivial case of degenerate limit laws, 6,/6,; — 1 so that, given positive
constants, ¢, ¢’, there exists a sequence m = m(n) such that 4,/b,
— ¢'/c.

Let P, = P. Then, by a, in

(1) ¢Sn/bn + C(Sn+p — Sn)/bn + C(Sm+n+p - Sn+p)/bn = CSm+n+p/bm

the law of the middle term is £(S,/6,) — £(0) for every fixed p. Thus
we can and do select » = p(n) T © such that, for these p, £((Sr4p —
S,)/b,) — £(0) and hence, in passing to limit laws, we neglect the
corresponding term in (1) while the “distance” p between 35, and
Smtnt+p — Sntp increases indefinitely. But, by a and c,

E(exp{itc(Smintp — Sn+p)/bn} | Sn)
= E(exp{iuc(Smy1+p — S14+p)/ba} | X1
= E(exp{iuc(Smyp14p — S14+0)/bn} + 0o(1)
= E(explitc(bm/bn)(Sm/bm)}) — Fc'u),

so that the ch.f. E(exp{iucSn/bn}E(exp{iuc(Sm_l_n_,_p — Snip)/bn} l S))
of the sum of the extreme terms in the left side of (1) converges to
Fleu)f(c'u). It follows, by the convergence of types theorem, that there
exists a constant ¢ such that the ch.f. of eSmynyp/0n converges to
F(’u) = flcu)f(c’u) so that the limit law 1s stable.

Let P,  P. For every fixed k, we can replace Sp by Spyr — Sa In
lim |E (exp{iuSn/bn}) — E(exp{iuSn/bn} | X,) | so that, by ¢, this ex-

pression is bounded by Y2¢=% — 0 as # — . Therefore, the limit
ch.f. given X, reduces to the limit ch.f. under P, so does its expectation,

and the proof is terminated
COMPLEMENTS AND DETAILS

/. Let ® be the o-field in @ = [0, 1] of Borel sets B, with or without afhixes,
and let \ be the Lebesgue measure on ®. Let C C Q be a set of outer Lebesgue
measure 1 and inner Lebesgue measure 0. Take for pr. space (2, @, P), where
@ is the o-field of all sets of the form 4 = B,C + B:C° and P4 = INB: + 3AB..
Then PB = \B, PC = }, and there is no regular c.pr. given ®.



Chapter X

FROM INDEPENDENCE TO DEPENDENCE

ll

The problems in and the methods developed for the independence
case can be transposed to the general case. This permits us to enlarge
the domains of validity of the results obtained in the independence case
and also to realize the range of the methods.

In the last section of this chapter appears a different method—of in-
definite expectations—which leads to more general results for a.s. con-
vergence and is used extensively in the next chapter.

§31. CENTRAL ASYMPTOTIC PROBLEM
The Central Limit Problem 1s concerned with convergence of se-
kn
quences £(X,) of laws of sums X, = > X, of r.v.’s. In order to in-
k=1

vestigate this problem in the case of dependent summands, we have to
extend it to a Central Asymptotic Problem concerned with the compari-
son of the asymptotic behaviors (as » — ) of £(X,) and of suitably
chosen laws £(Y,). In fact, already in the case of independent sum-
mands, the investigation of the Central Limit Problem was based upon
the comparison of laws of sums with suitably chosen infinitely decom-
posable laws.

The tools we shall require are, naturally enough, extensions of those
used in the Central Limit Problem for independent summands. We
write

H=F -G, h=f—g, /":j“"ga

with the same affixes (if any) throughout, for differences of d.f.’s F, G

and corresponding ch.f.’s £, g and integral ch.f.’s £, §.
37
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31.1. Comparison of laws. In what follows we state properties which
erther result at once from those of d.f.’s and ch.f.’s or are obtained by
means of 1dentical arguments.

I. Every function H = F — G is bounded by 1 (in absolute value), is
continuous from the left, has a countable discontinuity set, and

H(x +0) = F(x + 0) — G(x + 0),

de=VarF-—-VarG, VarH=f|dH| < 2.

We write H,, > H (up to additive constants) when fgdHn — | gdH

for all g € Cy—the family of continuous functions on R vanishing at in-
finity. Note that in the case of d.f.”s, by the weak convergence criterion,
this convergence 1s their weak convergence.

The weak compactness theorem is valid for functions H: every sequence
H, 1s weakly compact.

We write H, — H when H, — H and f AH, — f dH.

The Helly-Bray theorem is not valid for functions H.
Its proof breaks down the moment we use convergence of variations,

since den -—->de does not entail f| dH, | —+f| dH |

I1. The functions h and h are defined by

Uz

h(u) =fe"“” dH(x), A(u) ==j:/z(v) dv =fe ‘ dH (x).

IxX

b on R is continuous and bounded by 2 but the relation | h| £ h(0) is
not valid.
The tnversion formula is valtd:
1 +U e-—iua — e-—-iub

H(a) — H(®) = Iim — —————— h(u) du.

U—w 2w J~U — U

N . . * w s o
The weak convergence criterion is valid: H, — H up to additive con-
stants if, and only if, A, — A.
The continuity theorem is valid: if h, — k continuous at ¥ = 0, then

H, - H up to additive constants and A& = k.
However, the converse is not valid, for the proof given for g_l.f.’s. breaks
down when the Helly-Bray theorem—which is no longer valid—is to be
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applied; for example, if A,(x) = ¢™*** — ¢T** then the sequence 4, does
not converge on R, while H,(x) = 1 for | x| < #» and =0 for | x| >

C
so that H,, — 1.

III. ExpansioN oF A. If § 15 a Borel set and O < 6§ S 1 then, pro-
vided the integrals exist,

1 I

| s | [ aH

m 7 '
o e Py P
j=l41 1! S | S

J'p .
b2 O [ an] el [ ][] an
ist g! ¢ o

where, if [ 2 1, then 0 <y =S 1, and, if ] =0, then 0 S v S 15 the s
depend only on their subscripls.

If the right side is infinite, the inequality is trivially true, If the right
side 1s finite, it follows from

h(u) =fe"'“"" dH (x) =de +Ig(e£“” — 1)dH +j;c(ei“” — 1)dH;

use limited expansions of ¢* of order / + v and m + &; and for / + v
=Quse|e™ —1| 52

We can now proceed to the comparison of sequences of laws. Two
sequences £(X,) and £(Y,) are said to be weakly equivalent, and we

write £(X,) ~ £(Y,), if the two sequences have the same weak limit
laws for same subsequences of subscripts; in other words, if £(Xx/) R £,
then £(Y,) = £ and conversely. We observe that £(X,/) S L

w s
means that F,» — F up to additive constants. We define complete

equivalence £(X,) ~ £(Y,) by replacing in what precedes “weakly”
by ‘“‘completely.”

In what foliows we use repeatedly properties I and II without fur-
ther comment.

A. WEAK EQUIVALENCE CRITERION. £(X,) ~ £(Y,) if, and only if,
F, -G, — 0 up to additive constants or fn — gn — O.

Proof. It suffices to consider F, — G,; the assertion with f, — £,
follows.

w s e
Let F, — G, — 0 up to additive constants. The weakly compact
w &
sequence F, contains subsequences F,. — F to which correspond
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subsequences Gn+ = Fnp — (Fpr — Gyr) S F up to additive con-
stants. It follows that £(X,) ~ £(Y5).

Conversely, let £(X,) ~ £(Y,). The weakly compact sequence
Fn — G, contains subsequences F,» — G, — some H and the weakly
compact sequence F,, contains subsequences F. — some F. By
hypothesis Gy — F up to additive constants and, hence, Fy»» — Gy
S H=F—F=0 up to additive constants. It follows that the

weakly compact sequence F, — G, = 0 up to additive constants.
The proof 1s concluded.

B. COMPLETE EQUIVALENCE CRITERION. Let the sequences £(X,) or
L(Yn) be completely compact. Then L£(X,) ~ £(Y,) if, and only if,
F, — G, = 0 up to additive constants or f, — gn — 0.

a & . c L

Proof. Since f, — gn — O implies that F, — G, — 0 up to addi-

tive constants, it suffices to prove the “if” assertion with ¥, — G, and
the “only 1f”” assertion with fn, — gn.

C —_—
If ¥, — G, — 0 up to additive constants, then to every completely
C
convergent subsequence F,» — some F there corresponds the subse-

quence G, — F up to additive constants, and conversely. It follows
that £(X,) ~ £(Ya).

If £(X,) ~ £(Y,), then one of the sequences f, or g, being completely
compact in the sense of convergence to continuous functions, the same
is true of both sequences and, hence, of the sequence fn — gn. If far —
gnr — h, then the sequence f,» contains a subsequence f,» — some f
and, by hypothesis, gn» — f. Therefore, far — gn» — & = 0—
unique limit element of the completely compact sequence fn — ga. It
follows that f, — g» — 0, and the proof is concluded.

ReMaRrk. In the proof of the “if” assertion we made use of the com-

C
plete compactness of £(X,) only to assert that F,, — some F. Let
us make the natural convention that, when neither of the sequences

£(X,) and £(Y,) has a complete limit element, then £(X7) ~ £(Y,).

Thus, F, — Gy = 0 up to additive constants implies that if the se-
quence £(X,) has no complete limit element the same is true of the
sequence £(Y5), and conversely. In other words, with the foregoing
convention the assumption of complete compactness is unnecessary for
the “if”’ assertion:
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If F, — G, = 0 up to additive constants, or fn — gn — 0, then
L(Xn) ~ £(Yn).

We shall frequently center the X, at some suitably chosen conditional
expectations £,. We observe that

CoroLLaRY. [If &, 5 0, then £(X, — £,) ~ £(X,).

This follows from the law-equivalence lemma.
31.2. Comparison of summands. Let

Xo=S X, Yo=SYu, k=1 kn
k k

an = XnO + tee + Xn,k-—-l + Yn,k+1 + tre + Yﬂ-.kn"‘l’
XnO = Yn.kn+1 = (.

To X and Y with or without affixes there correspond their d.f.’s F and
G and ch.fs f and g with same affixes if any; primes will denote cond;-
tioning by Znx, unless otherwise stated; for example,

F’nk = P[Xnk <X I an]; f’nk(u) = E’emxnk = E(emXﬂk an)-

For every fixed value of Z,;, the selected conditional d.f.’s and ch.f.’s
have all the properties of d.f.’s and ch.f.’s, and all properties of differ-

ences H =F — G, A =f — g given in the preceding subsection are
valid for the conditional differences H' = F' — G, A’ = f — ¢’.

We intend to compare the sequences £(X,) and £(Y,) through the
summands Xnr and Ynx. (Let us observe that it 1s frequently con-
venient to compare suitably selected partial sums, each partial sum to
be considered as a single summand.) We are at liberty to introduce
any suitable dependence between the sets {X,x} and {Yax}, provided
the laws of each of these sets are not modified and, in fact, provided
the sequences £(X,) and £(Y,) remain the same.

A. CoMPARISON THEOREM. £(X,) ~ £(Y,)
{f EEIf’nk—ankI""’O
k

or if, S being a Borel set fixed or not (depending on n and/or k or not),

(1) 2 E
k

f @dF i — dGw) | — 0, j 51,

(ll) Z Efgcl X IH-"'I dF’nk — dG’nk | — 0,
k
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1 1

Giy Y E f F@FP o —dGu) | — 0, j=l41,--,m,
S

k

(v) Y E f x| A — dGl| — 0, 0 < 6= 1 fixed.
k S

If | = 0 condition (1) disappears and 0 S v S 1;1f 1 = 1, then 0 < 4
= 1.

Proof. The first assertion follows by the complete convergence cri-
terion from the inequality

lfﬂ — gnl S % Elf’nk — g’nkl
given by

< Z EI Er(eiuXﬂk . eiuYnk) I
k

The second assertion follows then from the expansion 28.1 I1I, and the
theorem is proved.

It is important to observe that the theorem, and hence all which fol-
lows, remain valid with “finer” conditioning than by Z,;. In other
words, we can condition by any collection of Xni's and Yai’s of which
Z.i 1s a function. In particular, we can condition by the random vec-
tors Z’nk = (Xn,O: "% Xn.k-—-b Yn.k+1: "%y Yn.k,.+1.) or Z"'nk = (Xno +
R o Xn,k—l: Yn.;c+1 + .. -+ Yn.kn+1)'

First apPrOACH. To X, = ) Xn we make correspond Y, = X*, =
P

Y X*.r where the summands X*,; are independent, and independent
p

of the Xk, and £(X*,x) = £(Xar). Loosely speaking, £(X™*,) 1s ob-
tained from £(X,) by suppressing the dependence between summands.

If £(X,) ~ £(X*,), we say that the summands X, are asymptotically
independent. The foregoing equivalence and comparison theorems yield
conditions for asymptotic independence upon replacing g’ by f and G’
by F. We can thus transform the results of the investigation of the
Central Limit Problem in the case of independence. Furthermore, we
use the conditioning by the vector Z"nx. It is easily seen that, because
of the independence assumption, it reduces to conditioning by Xao +

.+++4 X, k—1. Asanexample, let us give a first exterision of Liapounov’s
theorem.
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< n. The condition-

Let Xk = Xk/.fn with EXk = O, Spt = Z 0’2Xk, k
ing 1s by X; 4+ -+ 4+ X1 k

B. UnDEeR LiarouNoOV’S CONDITION

> E| X |2t¢ — 0,

]
5n2+6 X
Y ] 1
;—-ZkEl E'Xi| >0 and "“EZEI E'X2—EX2|—0,

Sn° k

then 43(; Xi/sn) = N0, 1).

It suffices to apply the comparison theorem with / =0, m = 2, and
§ = R to X, and Y, = X*., use the 1nequality

Efl X l2+5l dF’nk — ank I é EEII Xnk |2+6 + El Xnk l2+5
= 2EI Xnk |2+6 ,

and apply Liapounov’s theorem to the X*,.

SEcoND APPROACH. We can obtain directly results which even in the
case of independence are more general than those we obtained for the
Central Limit Problem (since they pertain to the more general Central
Asymptotic Problem):

For every fixed n, the comparison summands Y,k are selected so that

—the Yar are independent and £(Y,) belongs to the family of limit laws
we seek to obtain
—the sets { Y} and { Xpx) are independent.

As an example, let us prove a Lindeberg type of normal convergence.

Let the X, be centered at their conditional expectations so that £EXn
= EE'X,r = 0, and set oni> = EXnil, o' ni> = E' X1

C. UNDER LINDEBERG'S CONDITION:

(1) Zf x2dF,; — O for every €> 0, and
ko|z|2e
(11) o2 = 3 onke S 0° < o for every n,
k
if
(iii) Y E|¢'ai® — okl | = 0,
k

then £(X,) ~ (0, on2).
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il

Proof. Since, by (1), as # — o and then ¢ — 0,

maxone < €€ 4+ 3 x° dF, . — 0.
k ko|z|Ze

it follows, by (ii), that

(1) Z a'nka S o* m:-x onk — O.

Take the summands Y,; to be mutually independent and normal
N(0, 0nr’), and take S = (—¢, +€),/ =y =1,m = 2,6 = 1. The com-
parison conditions for j = 1 and 2 are fulfilled, the first because of the
centering and the second because of (iii) and because the condition for

[ + « 13 tulfilled by (1) and (1) since

> E le dF' .. — dGJ,. I < D x? dF .. + ce? > a'nka — (.

k |z | e kv z|2e k

Finally, the condition for m + 6 is fulfilled by (i) and (1), since

S E | % |21 dF i — dGpi | S 2667
k

|z | <e
and e > 0 1s arbitrarily small. The theorem is proved.

The reader may proceed in a similar fashion and obtain or extend
other results of the case of independence.

*31.3. Weighted prob. laws. The second approach outlined in the
preceding subsection yields the same prob. laws as in the case of inde-
pendence. However, as we shall see, under similar but less restrictive
conditions, disappearance of independence brings forth not the same
prob. laws but their “weighted averages.”” The conditional law of a
r.v. X given a sub o-field ® of events is defined by the conditional d.f.
F® or the conditional ch.f. f®. The d.f. F and the ch.f. f are then given

b
4 F = EF® f= Ef®

If the conditioning o-field ® is induced by some measurable function 7
not necessarily finite, nor even necessarily numerical, then, denoting
by # the pr. distribution of ¥, we write

F = f F* i (s), f = f T 400

We say that # is the weight function of the parameter ¥V and F (or f) rep-
resents the weighted law over the family F* (or f7) of laws.
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Examples

1° A weighted law over the family of degenerate laws is of the form

Fur(a) = f 6% ATV (o)

where # on R is a d.f. In other words, if w is the ch.f. corresponding
to ¥, we simply have fwy = w. It follows that, if the only “weighted”
parameter is the shift-parameter, that is, the family of laws consists of

fo(u) = e**f(u), @ € R, then

fir(w) = [ (@) = wwy(w)

and the ‘“‘weighting” over the family reduces to the composition of a
law with that represented by f. In other words, the weighting of the
shift-parameter alone reduces to the composition of two laws and pre-
sents no new interest.

2° The limit laws which emerged in the development of pr. theory
are the normal, Poisson, and, more generally, the infinitely decomposa-
ble laws. The corresponding weighted laws are

weighted normal.:

olu’

fw(u) mfexp [fua — --2-'-] dW(a, 0'2)

weighted Potsson:

Fir () = fo exp N — 1)] IZ(N)

weighted infinitely decomposable:

Sfw (u) =fexp [{uc +fg(x, u) d¥(x)] dW (a, ¥)

and the functions ¥ on K

1UXx ) 1 + «2
1 4+ %2/ «°
are nondecreasing, continuous from the left, and of bounded variation.

If & degenerates at some element (a, o®) or (\) or (a, ¥), then we get
back the corresponding nonweighted laws. A systematic investigation,
with restrictions on a, say a constant (since any law is a weighted de-
generate), would be of great interest. We say only a few words about the
weighted symmetric stable laws.

where g(x, u) = (c’i"” -1 —
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A weighted symmetric stable 1s defined by

fw = [ expl=d ul/21 a0, 0<ys2
0 '

It is a Laplace-Stieltjes transform in | « {*. Hence, on account of the
known properties of such transforms,

a. There is a one-to-one correspondence between a weighted symmetric
stable and the weight d.f. defined up to additive constants. In particular,
a weighted symmetric stable reduces to a symmetric stable if, and only if, the
weight function is a degenerate d.f. of a r.v.

Furthermore, if 7, S W up to additive constants, then, by the ex-
tended Helly-Bray lemma and the fact that we can set #,(x) = O for
x <0,

forw) = [ exp [=el ul?/21a7a(0
0

—~ [ e =dl w2170 = fw ).
0

Conversely, let fw, — g. By the weak compactness theorem, there 1s
a d.f. # and a subsequence /', = W, so that, by what precedes,

g(u) =f exp [—c| u ["/21dW(c). But by a, g determines # up to
0

L » w L ]
additive constants. Hence #, — W up to additive constants and

g =fw. Thus

b. The limit elements of a sequence of weighted symmetric stable are
weighted symmetric stable with same exponent.

Weighted stable laws appear in the case of sequences of exchangeable
r.v.’s since, by 27.2, 2°, they are conditionally independent given a
sub o-field and 23.4 applies under this conditioning. In a different
guise, weighted laws appear in the third approach where

The conditional laws &' (Vi) will be of the limit type obtained under
similar conditions in the independence case.

We use the following notation:

o ni(€) = f xdF' ks o'n(€) = 2 a'ni(e),
|z | <e k

2
a’nkz(e) =f x° dF' ar — (f xdF’nk) ’ O'Inz(f) = 2 U’nkz(f);
| z | <e | 2 | <e k

we drop the primes if F’ is replaced by ¥, and drop e if e = 400,
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Before we attack the extension of the more general i.d. case, let us
give, as an example, the extension of the historically important Lia-
pounov’s theorem.

A. Let the Xny be centered at their conditional expectations. If
Z EI Xnk |2+6 -—> O
k
fora d > 0, then £(X,) ~ L3 Yor) with £ (Vo) = N0, o’ ni?).
k

Proof. Take the Y, to be conditionally normal 9(0, ¢’,:?),-so that

the law of Y, is the weighted symmetric normal EN(0, ¢’,1°), and apply
the comparison theorem with § =R, /=0, m =2, and § < 1. The

comparison conditions for j = 1, 2 are fulfilled, since the corresponding
sums vanish, the first because of the centering and the second because

of E'Yi? = E'Xai2. The condition with m + § is fulfilled, since
EI Ynk |2+6 = EEII Ynk |2+6 — cEa_rnk2+6 < CEE’I Xnk |2+5
CEl Xoux |2+6

and hence
S E |5 dF'w — d6'ui| S (L +0) T B X4 = 0
k k

The theorem is proved.

Remark. If we add the hypothesis that the d.f. ', of ¢’,° con-
verges weakly to /7, then the sequence £(X,) converges to a weighted
symmetric normal. This limit law is that of a r.v. if, and only if, #,

= W, and then it is normal if, and only if, # degenerates. Similar
considerations apply to what follows.

We pass now to the limit weighted 1.d. laws. We require the notion
of conditional uniform asymptotic negligibility, for short uan’, defined by

max P’[| X.,,,;,,| > 7] LA 0 for every 7 > 0.
k

In the case of independent summands, the uan’ condition reduces to
the uan condition and in the general case implies it, since, by the domi-
nated convergence theorem,

max P[l Xnkl = 9] S E(n}cax P’[I Xnkl 2 1)) — 0.
k
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c. Under uan’ condition, for every ¢ > O

: P
(1) maxf | x|*dF'a — 0 for s> 0;
k | 2| <e
(11) maxj; | l x — a'nx(e) lde’nk = 0 for s=1;
k z | <e
(111) max v ax(u) = maxf(e'i"(”""'“"(‘” — 1) dF',, LA 0.
k k

Proof. Let0 < n < e Since

[ Jebarase crralas

assertion (i) follows by taking max and letting » — @ and then » — 0.
k

Assertion (i1) follows, on account of (i), from

| 2| <e

[ Jrmam@l a2 | Ll dF 27 |

and I a’nk(e) ls = Gs—ll a’nk(f) I

Finally, assertion (iii) follows, on account of (i1), from

I v ni(u4) I S 2]; 2 dF' i + I U | | x — o' ni(€) I dF’ ..

| z | <e
Let ua ’
€ log g’nk(u) = U nk(é) + v nk(u)-

d. 3 E|frar(u) — &'me(n) | S ¢ Zk: E| v ar(n) |2
k

This follows (upon dropping the subscripts 7, k) by l"y' [ < 2, hence
A7 £ 2 from

lf;(u) _ gr(u)l — le-iua’(e)fl(u) — oY (¥} ‘ — | 1 4+ v (u) — e'r’(u)l
< 3 y/(a) |2 7™ £ o () |2

B. Under uan’, if for every n

(i) 2 dFar(x) S ¢ <
ko x|z e
and

(i1) > Eo'ni’(e) S ¢ < o,
k
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C
then .,B(% X)) ~ JJ(}; Yoar) where the summands Y, are conditionally
1.d. with chf's g'ax.
Progf.  On account of (i), condition (ii) is equivalent to

(111) > E (¥ — a"uk())? dF (%) £ ¢’ < =
k

2l <e ’

since

% EJ jl‘:rl<e(x B a,nk(e))z dF’"k(x) — Ufnkz(e)

= 3, Ed'ni*(e) dF' . (x) £ é%¢'.

k |z |2 e

Therefore, upon substituting on (—e, +¢) the limited expansion of
order 2 of the integrand in v/, (),

S E| vm) | S Q4 ul) T f dFor
k kolz|Ze

2
U
+ '5' Z E (x - a,nk(e)z dF,nk
K

| 2| <e
2

u
< (2 + e| ul)c’—}——é-c”
so that, by ¢,

P
% El 'ank(u) |2 = mf-x | 'Y,nk(u) i Z El "Y’nk(u) | — Q.
k

But the left-hand side sum is a number and hence converges to O.

Thus, by d,
% E| frar(#) — g'ni(u) | — 0,

the comparison theorem in terms of ch.f.’s applies and, hence, £(3 X,.)
k

~ L£(2° Yar), where the summands Y, are conditionally 1.d. with ch.f.
p
g'nx and mutually independent. The theorem follows.

Remark. In the case of independence it can be shown that, under
uan condition, (1) and (1) hold when the sequences £(X,) or £(Y,) are

completely compact so that, then, £(X,) ~ £(Y,). This extends the
Central Limit theorem. The proof is left to the reader.

RanpoMm vEcTors. The extension to random vectors X,; can be ob-
tained as usual either by reinterpreting the symbols used or by making
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correspond to the random vectors Xy the r.v.’s vX,;—scalar products
of X.r and of an undetermined sure vector .

RanDoM NUMBER oF R.v.s. Let the number », of summands in the

nth sum Y X, be ar.v. Set
k=1

Pa(r) = Plyn =], P,(s) = gpn(f)
rs
and denote by E, the conditional expectation given », = . Assume
that the expressions below exist and are finite—they certainly do if

Ev, < o, Then
fn(u) - gn(u) = E(CXP [zu % Xnk] — €XPp [zu E Ynk])
k

= 2 Pa(n)E.(exp [iu 3 Xur] — exp [iu 3 Yail).
k=1

r=] k=1

But, when all the expectations are conditioned by », = 7, then the com-
parison theorem applies. Hence,

Er(eXP [iu Z Xnk] — €XPp [zu Z Ynk]) é Z Er‘ ffnk(u) T g,nk(u)\
1 1

k=1
and

o0

Ifn — &n I = ZPn(r){kélErlf’nk — &'nk “

r=]

e S S 2a(E | frk — g |

k=1 r2k

Write E,; for the operator 3 p,.(r)E,. The relation becomes
ra k

lfn — &n ! S E Enk!f,nk — g’nk l)
k=1
and, hence,

C. When the number of summands is random, the results obtained by
using the comparison theorem remain valid provided % E is replaced by

2 Pa(7) rZ E.or by ), Enk.

k=1 k

If v, 1s independent of the X, and Yk, then £, = E and hence £,; =
P,.(k)E, and it suffices to multiply F'nr and G'nx by Pa(k). If, more-
over, v, degenerates at k,, then P,(k) = 1 or 0, according as ¢ = &,
or k > k,, and, as is to be expected, we fall back on sure number &,
of summands.
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P

N 3 32. CENTERINGS, MARTINGALES, AND A.S. CONVERGENCE

- .,-32.1. Centerings. Conditions for a.s. convergence (and a.s. stability)
of sums of independent r.v.’s were obtained by means of centerings at
expectations or at medians. The methods continue to apply to the
general case, provided the centering quantities are conditioned and,
thus, become themselves r.v.’s. Furthermore, as has to be expected,
the conditions so obtained will be sufficient but no more necessary.
Since the proofs run parallel to those in the case of independence, we

shall be content with essentials and shall leave the complete transcrip-
tion of Chapter V to the reader.

Centering at conditional medians. We say that a r.v. u®X is a condi-
tional median of X given ®, where ® 1s a sub o-field of events, if

PPlX—18x20121 5 PPX - 18X = 0] as.

When independence is not assumed, the proof of inequality 17.1C breaks
down at the point where PA By 1s replaced by PAyPB;. Yet, if we
observe that PA By = E{l4,P (B | S1, <+, Sk)} and replace medians

u(Sr — §,) by conditional medians u(Sy — S» | S1, -+, Sk), then the
proof remains valid. Thus

A. ExTenpep P. Lévy INeQuAaLITY. If the sums Sy are centered at
conditional medians u(Sy — Sn | S1, +, Sk), then

Plmax|Si| = ¢ S 2P[| Sa | = €]
ksn
The propositions in 17.2 which result from P. Lévy’s inequality con-
tinue to hold with similar modifications. Let us state the most im-
portant one.

P
B. CONVERGENCE THEOREM. If the sequence of sums S§p, — §, then
there exists a sequence &, of conditional medians of suitably selected partial

P a.s.
sums such that £, — 0 and S, — & — 9.

ReMarK. Propositions much more similar to those of the case of
independence are obtainable by means of centerings at conditional ex-
pectations and, as we shall see in the next subsection, such centerings
provide an important dependence model—of “martingales,” which 1s a
“natural” generalization of that of consecutive sums of independent
r.v.'s centered at expectations. Yet the power of the centerings at
medians accompanying symmetrizations in the case of independence
leads one to think that it would be of interest to investigate in detail
the dependence model that such centerings provide.
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Centering at conditional expectations. We suppose that the r.v.s X,
are integrable so that c.exp.’s &, = E(X, | X1, *++y Xn_1) exist and
are finite; for » = 1 the conditioning disappears and ¢ = EX; a.s.

We have Et, = EX, and
Et,| X1, -+, Xaz1) = En ass.

Therefore, for m < n,

E{(Xn — tn)(Xn — &) | X1y +++) Xna]

= (Xm "' Em)E(Xn — &n l Xl, "t Xn—-l) = () d.S.,
so that
E(Xm — Em)(Xn — En) = 0

and, hence, .

-

> Xk — &) = X EXk — )%

k=1 k=1

)

We say that the r.v.’s X, of a sequence are centered at c.exp.’s given the
predecessors, if £, = 0 a.s. (Such centerings were first systematically

used by P. Lévy.) Thus

a. EXTENDED BIENAYME EQUALITY. [f the ruv.s X, of a sequence are
centered at c.exp.'s given the predecessors, then they are centered at exp.’s
and

PS8y, = Y. ¢*X.

k=1

In fact, moreis true. If¢, = 0 a.s. and 4,1 € ®(Xy, -+, Xn_1) is an
event defined in terms of X, - -+, Xa_1, then

E(Sn-——l-[An_l Xn l Xl, ey Xn—-l) = Sn—-l-[An.q E(Xn ‘ Xl, * Xn--—l)

= () a.s.
and, hence,

E(Sn—-llAn_l Xn) = 0.

Because of this orthogonality property, the proof of the right-hand side
of Kolmogorov’s inequality remains valid word for word. Thus

C. ExtenpEp KoLMoGoRrOV INEQUALITY. [fthern)s Xy, k=1, ..
n, are centered at c.exp.’s given the predecessors, then
1

n
Plmax | S| = ¢ S = > o* X
ksn € k==l
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The propositions in 16.3 which result from Kolmogorov’s inequality
and those in 16.4 hold with similar modifications. Let us state the most
important ones.

D. CoONVERGENCE THEOREM. If the series 3. o°Xn converges and the
series Y En converges a.s., then the series ), X, converges a.s.

More generally, if for some positive constant ¢ the series Y, P[| X, | = ]
and Y E{X. — E(Xo°| X1, -y Xn_1)}? converge and the series
S E(X.S| X1, -y Xa1) converges a.s., then the series Y, X, converges
a.s.

2
E. STABILITY THEOREM. [f ) a&jg" < o with b, T ®, then
| a.s.
— T { X — E(Xx| X1, -+ Xi—1)} — 0.
n k=1

Let X be ar.v. and let x vary on [0, +»). IfE|X| < w,r <2, P[| X,
S PlX|2x or P{Xa|2x|Xy, - Xam} SPX

X l X1, o0ty Xn—1} a.5., according asr £ 1 orr = 1, then

v IV

S (Xy — m) — O

1/r
n/ km'l

withme = 0 or E(Xp | X1, -+, Xi—1) according as 0 <r<lorl sr
< 2.

Let the r.v.’s X, of a sequence be centered at c.exp.’s given the pred-
ecessors. Since 81 = Xi, -+, Sa = X1 + -+ X, determine and are
determined by Xj, - -+, Xy, it follows that

E(Sn ‘ Sh "ty Sn—-l) = E(Sn—-l -+ Xn ‘ Sh "% Sn—-l)
St + EXn| Xu, -+, Xut) = Saiy ass.

This property of the sequence §, is called a “martingale” property.

Conversely, if a sequence S, has the martingale property, then setting
X, = Sn — Sn_1(So = 0), we have

E(Xn l Xl) "t Xn-—-l) - E(Sn - Sn—-l l Sh "% Sn—-l)
= 8,1 — Sh—1 = 0 as.

Thus, the martingale property characterizes consecutive sums of r.v.’s
centered at c.exp.’s given the predecessors. Since we are interested 1n
a.s. properties of such sums, it is “natural” to investigate them directly
~without writing them as sums.
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32.2. Martingales: generalities. A possible interpretation of a ‘“‘fair
game’’ is as follows: Let X, represent the debt or fortune of a gambler
at time s. The game is fair if the gambler’s expected fortune at time ¢,
given the past up to the time s < ¢, equals his fortune at time 5. To
this interpretation corresponds the concept of martingale. It has been
introduced and investigated in the form of consecutive sums by P. Lévy,
then studied by Ville and systematically explored by Doob—to whom
most of the results are due—and, finally, extended to “advantageous
games’’ or submartingales by Doob and, in a different formulation,
by Andersen and Jessen.

In this section we assume that, unless otherwise stated, the expecta-
tions of the r.v.’s under consideration exist, and denote by

®, = (B(Xh R Xn)) Cn = (B(Xm Xn-l-l) " '))
B =C = (B(Xl) X2) "')) C = n en)

the sub o-fields of events induced by the families of r.v.’s (X3, * -+, Xy),
(Xny, Xnt1, ), (X1, X3, --) and the tail of the sequence {X,},
respectively.

DeriNiTIONS. Let {X,, + € T} be a family of r.v.s un a set T
ordered by the relation “<,” and let ®;, = ®{Xy, ¢’ < ¢} be the sub
o-field of events induced by the subfamily of all the X;» with ¢’ < 4.

The family is said to be a martingale if, for every pair s < ¢,

X, = E®X, a.s., equivalently, i X, = . X, B: € R,
The martingale is said to be closed on the left or on the right according
as it has a first or a last member (it may have neither or both).
If in the foregoing definitions “=""is replaced by “=,” the family 1s
said to be a submartingale. If the inequality sign is reversed, 1t 1s a
supermartingale. Changing the X, into —X, interchanges “sub’’ and

“Super.,’

Note that the X, being r.v.’s, the above c.exp.’s are a.s. finite for martin-
gales while their negative parts are a.s. finite for submartingales.

We intend to investigate submartingales {Xn, 7 =1, 2, ...}, The
subscripts are ordered either by the relation “<” and then we have a

submartingale sequence X1, Xay * - (closed on the left by X;), or by
the relation “>" and then we have a submartingale reversed sequence

..+ Xo, X; (closed on the right by X;). Because of the basic smooth-
ing property of c.exp.’s the foregoing definitions reduce as follows. The

rv.)s Xo, n = 1,2, - form
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a martingale sequence, if X, = E(Xn 41 | X, ¢y, Xpn) a.s.,

a closed (by X) martingale sequence, if X, = E(Xpy1| X1, -+, X))
Xn = E(XI Xl, rery Xn) d4.S.,

a martingale reversed sequence, \f X411 = E(X, l Xnt+1y Xnt2y ** ) A,

a closed (by X) martingale reversed sequence, if Xny1 = E(X, | Xns1,

Xn+2) "ty X) d4.8., X = E(Xn l X) a.8.

For example, in the first case, B, C Bppypg S+ C Bp_y for m < n
and, by the basic smoothing property, we have

E®X, = EOnE®n+1 . L EBr1x = X, as.;

similarly in the other cases.

If, in the foregoing relations, “="" is replaced by “=,” martingales
become submartingales. s.

Examples
1° Let Xp=> Yy, n=12, -... If the r.v.’s Y are independent

k=1
with £Y; = 0, or dependent with E(Ykl Y, -, Yi_1) =0 as. for
k > 1, then, according to 29.1, the X, form a martingale sequence.

2° Let @, @2, - -+ be a sequence of sub o-fields of events and let
every X, be @,-measurable.

If@; C @ C--- and every X, = E*X,,, a.s., then the X, form
a martingale sequence, since 8, C @, and, by the smoothing property,

E(Ban+1 = E@nE&an+l = Xn 4.8.

Similarly, if @ € @, C--- and every X, = E™X, then the Xj
form a martingale sequence closed on the right by X. For example,
for any r.v. X and random sequence Y;, the sequence E(X | Yy, -+, YY)
is such a martingale.

Similarly, if @ D @; D--- and every X, = EX as., then the X,
form a martingale reversed sequence. For example, for any r.v. X and
random sequence Y,, the reversed sequence - -- E(X ‘ You, Yoat1, =)
o E(X| Yo, Y3y + ), E(X| Yy, Yy, --+) is a martingale.

Decomposition of submartingales. To simplify, we assume that the
r.v.’s below are integrable, and leave to the reader the discussion of the
case when their expectations exist but are not necessarily finite.

1° Let X;, X, --- be a sequence of r.v.s and set X'’y = 0

n

Xp=Xn+ X0y X'n=X{EX| X0 s Xe—1) — Xi1}.

k=2
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It follows that
E(X’n+1 l Xy, * 'y Xn) = X'n a.S.,

and hence

E(X’n-l-l‘ X’h R X’n, == X’u 4.S8.

Thus the sequence X'y, X’3, : -+ is a martingale. In particular, if the
sequence X, Xg, '+- I1s a submartingale, then every summand in X",
Is a.s. nonnegative. Therefore, a submartingale sequence X, is decom-

posable into a martingale sequence X', and an a.s. nonnegative and non-
decreasing sequence X'',; more precisely,

Xo=Xn+ X" EXap1| X1, -, Xn) = Xnas, 05 X", 1 as.

and, hence,
EXpn=EX'yw +EX"s, E|X's| S E| Xa|+ EX"s, 05 EX", 1.

Let sup E| X, | < . Then, it follows that X", and X", are integrable
and sup E| X’n | < o, sup EX", < ©. Thus0 = X", 1 X" a.s. finite,
and the study of the convergence of the submartingale sequence reduces
to that of the martingale sequence X’, with sup E| X', | < . More.
over, the limits, if any, differ by an integrable r.v.

2° Similarly, let the reversed sequence -:-- X,, X; be a submar.
tingale with £X; finite and set

Xo=Xn+ X" X"n=3 {EX| Xit1, Xigar -*+) — Xl

k=n

The summands of the Infinite sum are a.s. nonnegative, so that a.s.
0=<X",] with EX"1 = EX; —|lim EX, (the limit exists since,
clearly, EX1 = EXg _2_). Let Iim EX,; > —w so that EX"I 1S
finite. Then X"} 1s a.s. finite, 0 = X", | 0 a.s.;, and the study of the

convergence of the submartingale reversed sequence reduces to that of
the martingale reversed sequence - - - X’s, X’; with E‘ X' ‘ < 0 more-
over, the limit, if any, 1s the same.

The interpretation of a martingale as a sequence of fortunes of a
gambler raises the question whether in the long run (# — ) his for-
tune was or becomes stabilized, that is, whether there 1s convergence—
in some sense. To answer the question we require a few 1nequalities.

a. Let g be convex and continuous on R with g(+») = 4o. If EX
exists and E®BX > —w a.s., then g(E®X) £ E®(X) a.s.

For, if E®BX < = a.s. the conditional convexity inequality applies; other-
wise apply it to X, = Xlixc<n + 7lx2n and let n — .
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A. SUBMARTINGALE INEQUALITIES. Let the r.v.'s X; form a countable
méman‘inga/e Then

(i) the r.v’s X;T form a submartingale; and if the X; 2 0 a.s. or the
X; form a martmga/e, then, for every r 2 1, the | X;|" form a submar-
tingale.

(11) sfther.n.Y closes on the right the submartingale, then, for every ¢ > 0,

cPlsup X; > ¢] §f Y;

[sup Xi>c]

and if the X; 2 0 a.s. or the X; form a martingale then, for every r = 1,

¢"Plsup | X;| > (] gf Y|

[sup | Xj[>¢]

Proof. (1) follows from a by taking, respectively, g(¥) = xT, or
gx) =0 forx <0and g(x) =" forx =0, or g(x) = | » ]".

To prove (11), set 4; = [X; > ¢, the predecessors < ¢ ], so that B =
[sup X; > ¢] = 2 4; and, since Y closes the submartingale,

f Y=} Y=> E(Yl ; and the predecessors)
AJ

=221 X;2 2, cPA; = cPB,
Ay

so that, the first inequality 1s proved and the second follows on account
of (1).

32.3. Martingales : convergence and closure. The limit properties of
submartingales are summarized in the convergence theorem below.
The proof is based on an ingenious inequality due to Doob.

Let x¢, k =1, - -+, n, be finite numbers. The number % of crossings
from the left of the interval [a, 4] is the number of times that, starting
with x; and proceeding to x,, we pass from the left of the interval to its
right. More precisely, let

Xp, = 4, Xk, 2 0, Xy S 4, Xpg 2 0y ¢

where k; is the first subscript k, if any, such that x;, < 4, then k3 1s
the first subscript # > k, if any, such that x;, 2 4, and so on. If &j
is the last subscript so obtained, set #; = n + 1 for jo <j = n; if
there is none, then k) == k, = n + 1 Thus, to every k > ky, if

any, there corresponds an integer j determined by the values of X1, 0
x;._1 and such that k; < k < kjp1." For £ > 1, if k = ky set 4 = 0,
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and 1f & > k; set 7y = 0 or 1 according as the corresponding 5 is odd or
even. When k2 = », the number of crossings i1s the largest integer 4

such that kg < 7; when k3 > », the number of crossings 2 = 0,
Let 2 > 0. Ifk2h+1 S A, then

20k — xp—1) = (g — X)) + -0+ CT Xk) S (@ — b)A.

k=2

If k2h+1 > n, then

Efk(xk - -"'k—l) = (-"'k, - xkz) + e (xkgh_.l - xkz)...z) -+ (xn - xkzh)
k==2
S (@~-56)h+ (ko — a).

Let # = 0. Then the left-hand sum is null, and the first inequality
1s trivially true.
Thus, in either case

> ixx — xk—1) S (@ — A+ (xn — a)T.
k=2

Now, to r.v.’s X;, -+, X» we make correspond a r.v. H, and r.v.’s
I.(k > 1) determined by X, ---, Xx_1. We define them by H,(w)
= h, Ir(w) = i; for x, = X (w), * -+, ¥n = X, (w), w € @, where % and
i, are the numbers introduced above. The inequality established above
becomes

S Ii(Xe — Xi1) S @ — O)Hu+ (Xa —a)7

k=2

and, by taking expectations assumed finite, we have

) (Xi — Xx—y) S (e — O)EH, + E(X, — a)t.

k=2 ¢/ [Tr=1]
If X,, -+, X, is an integrable submartingale, then every left-hand 1n-
tegral is nonnegative and, hence,

(b — a)EH, = E(X, — a)t = sup E(Xi — a)™.
k<n
If E(X, — a)*T = o, the inequality 1s tr1v1ally true. If E(X, — &)™
< o, note that Hj 1s also the number of crossings of [0, 4 — 4] by the in-
tegrable submartingale (X; — a)t, - (X, — a)T. Itfollows that the

inequality i1s always true.
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Similarly, but proceeding from x, to x; instead of from x; to x,, if
X,, + -+, X} is a submartingale, then

(b —a)EH, S E(X; —a)tT =supE(X; — a)™.

ksn

To summarize (see also 36.2)

a. If Xy, +++y Xnor Xn, -+, X\ 15 a submartingale, then
(6 — a)EH, S supE(X; — a)™.

ksn

We are now 1n a position to prove the basic

A. SUBMARTINGALES CONVERGENCE THEOREM. Let the r.v.’s X, form
a submartingale sequence or reversed sequence.

(i) If sup EXaT < o, then X, 5 X < o with EX < sup EX,*
and E| X| < sup E| X, |.

(1) Xn — X where r = 1 if, and only if, the | X, | are uniformly in-
tegrable, and then X, - X.

Proof. 1° Since
(X, ©] = U dop with Az = [liminf X, < 2 < 4 < lim sup X,
a,b

where a, 4 vary over the denumerable set of all rationals, the divergence
set i1s null if, and only if, every set A4, p 1s null.

We apply the foregoing lemma to an arbitrary set 4,.5. Since H, T H
= o on Aap, this set is null, provided P[H = »] = 0; 1t will be so,
whether the submartingale is a sequence or a reversed sequence, pro-

vided
EH = sup EH, S sup E(X, — a)T/(6 — a) < .

Therefore, sup EX,T < « and hence sup E(X, — 2)T < o, for every

a2 € R, imply that X, 2 some X finite or not, and, by the Fatou-
Lebesgue theorem, E| X | < sup E| X, |.

It follows that X,* —— X7* and, by the same theorem, EX™' <
sup EX,T < w. Thus, Xt is integrable hence a.s. finite. Therefore,
upon modifying if necessary X+ hence X on a null set, we can take X
to be finite so that X £ X7 < . Also, £X exists and

EX < EXT SsupEX,™.

The first assertion is proved.
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2° If X, — X for some 7 = 1, then, by the L,-convergence theo-
rem, the | X, |" are uniformly integrable. Conversely, let the | X, |"
be uniformly integrable for some » = 1. Then the E| X, |", a fortiori
the E| X, | = EV"| X, |", are uniformly bounded. Therefore, by (i),

a.8. r
X, — X and, by the L,-convergence theorem, X, — X. The sec-
ond assertion 1s proved.

The foregoing convergence theorem yields

B. SUBMARTINGALES CLOSURE THEOREM. JZLetr = 1.
(1) Let { X} be a martingale or a nonnegative submartingale sequence or

reversed sequence. If Y € L, closes it on the right, then X, :r? X. If

sup E | Xn|" < o withr > 1, then such a Y exists.
(1) Let {Xn} be a (sub)martingale sequence or reversed sequence. If

X, — X, then Xn — X and X closes on the right, respectively, on the
left the (sub)martingale; in fact, X is the nearest of the closing r.v.'s.

Proof. 1° Let YE L, close {X,}. Set B, = [| X,.| > ¢] so that
B =[sup| X.|>c= U B, and use 29.2A. Since ¢'PB §f| Y|
B

S EY|"<® and fl X, |" §f| Y|", it follows that, as ¢ — =,
Ba B
PB — 0, hence f‘ Y|" — 0, and the | X, |" are uniformly integrable.
B

Thus A applies, and X, — X.

If sup E| Xn|" < o with »> 1, then, by 9.4C, Cor. 2, and by A,
X. 5 X. Since E| X|" < sup E| X.|" and, by (ii), X closes {Xa},

(i) is proved, provided we prove (ii);

7° Let the assumptions of (i) hold. Then X - X implies that

Xn 2 X and also, by A, that X, —5 X. Thus we can pass to the

limit under the integration sign, as follows:
In the submartingale sequence case, we have, for every B, € ®a,

Xn é Xn+m,
Bn Bn
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and, by letting m — o, we obtain
X, < f X=| E™X
Bn B, B,

Therefore, X, = E®X as., that is, the submartingale sequence is
c}osed on the right by X. If a r.v. Y also closes the sequence on the
right, that is, for every B, € ®,,

f Xn+m é Y)
n B,

then, by letting m — o, we obtain

fX§ y.
n By

Therefore, on every ®, and hence on [J ®,, the indefinite integral of
Y — X (it exists since X is integrable) is a o-finite measure and, by the
extension theorem, determines a o-finite measure on ®. Thus, the in-
definite integral of ¥ — X on ® is nonnegative, that is, for every

B € ®,
fngY-.-:fE@Y.
B B B

Since X is equivalent to a ®-measurable function, 1t follows that X =

E®Y a.s. and hence the submartingale X, Xz, -+, X is closed on the
right by Y; that is, X is the “nearest” of the closing r.v.’s.
Similarly, in the case of a submartingale reversed sequence, for every

C € ®(X) (C € since X is C-measurable), as m — =,

fX*-—an+m.<_=an=fE(Xn|X),
C C C C

so that X is a closing r.v. on the left and if Y is another closing r.v., then

for C € ®&(Y)
j;YéfCXn —-rLX=LE(XlY)

so that Y closes on the left the submartingale X, ---, 4?(?, X;. Finally,
for martingales all foregoing inequalities become equalities. The proof

is terminated.
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Various cases. Let us put together the properties of the various

types of martingales and submartingales which are contained in 29.2A
and 29.3A and B. In what follows » = 1.

I MARTINGALE SEQUENCE X, Xa, °

Inequalities:

EX,=EX;=-; EX\" SEX;," <. E| X||"SE|Xz|"s---
Convergence. If llm EX,t < « or lim EX,” < o, then X, X
< +®or > —w,
Closure. The martingale is closed on the right by a rv. Y € L, if,
and only if, the l X, | are uniformly integrable; then X, -?-) X and X

is the nearest of the closing r.v.'s. In particular, the mar'ingale is closed
by a r.v. € L, when lim E| X, | < o withr > 1.

II SUBMARTINGALE SEQUENCE X, X, ' -
Inequalities:
EX,SEX;s-; EX; P SEX;T s+
X,20as. = EX{"SEX,"s---.

Convergence. Iflim EX,T < =, then X, 5 X < w. If
sup El Xn l < %,
in particular if either every X, < 0 a.s. or every X, = 0a.s.and him [ EX, l
< w, then Xn —> X finite. 5
Closure. If the | Xn " are uniformly integrable, then X, — X € Ly
and X is the nearest of closing r.v.’s. If every Xn 2 0 a.s., then the Xy

are uniformly integrable, if, and only if, there is a closing on the right r.v.
Y € L., and there is one when lim EX,” < o withr > 1.

II1 MARTINGALE REVERSED SEQUENCE - - -, Xg, X1

Inequalities:

= EX, = EXy; - S EXoT SEXiY; S EX| S E X

Convergence. If EXFT < o or EX; < =, then X, — A < @
or > — o, respectively.

Closure. If EI X l" <& o, then X, 1:—> X € L, and X 15 the nearest

of the closing r.v.’s.
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IV SUBMARTINGALE REVERSED SEQUENCE - - -, X3, Xi.
Inequalities:
...< EX, S EXy; ---5 EX,t 5 EXiT;
every X, 2 0as. = - . < EXp," < EX,'.

Convergence. If EX|T < o, then X, = X < o,
Closure. If the ‘ X, "' are uniformly integrable, then X, _a;_) X € L,
and X is the nearest of the closing r.v.’s. In particular, X, —?Tsé X if and

only if sup E| X, | < =, equivalently, E| X, | < =, lm EX, > — .
(see 36.1¢).

ReEMARK. By using the decomposition of submartingales given in
29.2, we can deduce their properties from those of martingales:

1° Let X;, X3, -+ be a submartingale sequence with sup E| Xn‘
< o, Then X, = X'y, + X", where X’;, X'z, -+ -'1s a martingale se-
quence with sup E‘ X’n‘ <o and 0 £ X", TX"” finite a.s. There-

fore, X', — X' finite and X, 3 X=X + X" finite.
2° Let --- X, X; be a submartingale reversed sequence with
EI X1 | < o and lmEX, > —». Then X, = X', + X", where ---

X', X'1 1s a martingale reversed sequence with El X'y ‘ < o and 0 £
a.8s.

X", 10 as., EX"; < ». Therefore X'y —> X' and X, — X'.
32.4. Applications. We use now the properties of martingales in order

to extend various properties obtained in the case of independence. In
general, we shall revert to P. Lévy’s form of martingale sequences

Xa = 3 Y with E(Yy4y | Yy, -+, Yi) = Oas.; then ®, = ®(Xy, - - -,

X,) = ®(Yy, -+, Yn), and we set By = {0, Q}.

We shall have use for a truncation of subscripts, first introduced by
P. Lévy and which transforms martingales into martingales. Let v be
an integer-valued measurable function, finite or not, and such that the
events [v > n] are defined on the first # terms of a sequence Y;, Yy, - -
of r.v.’s, that is, [v > n] € ®,. We set Y', = Yolp>,, so that ®(Y"y,
"%y Y’n) C ®,and E(Yn+1 ‘ Yl: "t Yn) = I[z; n<1] E(Yn+1 ‘ Yla' "y
Y,). Thus, if every E(Yn41l| Yy, -+, Ya) = O ass., then E(Y', 41| Yh,

n
.+, Y,) = 0 a.s., and the martingale sequence X, =k21 Y, is trans-
formed by the above “»-truncation” into the martingale sequence

X'n =Y Y. Observe that, the ®, being closed under countable oper-
k=1
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ations, we have
> E€ER, @ pSnEC R @ v=n€CB®, n=12---.

I. ZEro-ONE LAWS. The zero-one laws of the case of independence
extend as follows:

Let Y, Yy, Y2, -+- be r.v.’s and apply 29.3A. The sequence Z, =
E(Yl Yy, -+, Y,) is a martingale closed on the right by Y whose ex-
pectation is assumed to exist, say, EY' < . Since every EZ,T <

EY' and hence sup EZ,* < =, it fngows that Z, — Z < . If
E|Y|" < » for some » 2 1, then Z, —r> Z=EY|Y,Ys, ). If

' a.8. :
moreover, Y is defined on the Y5, then Z, —> Y. To summarize

A IfEY <o, thn EY|Yy, -, Ya) — Z<w, IfE Y| <w

for some r 2 1, then E(Y‘ Yi, -, Yn a—:> E(Y‘ Y, Yo, ), which
reduces a.s. to Y when Y is defined on the Y.

We specialize now these properties. If Y = Ip where the event B 1s
defined on the Y,, whence B is a “property’’ of the sequence, then
PB|Yy, -+, Ya) — Ip. (P.Lévy.)

In more intuitive terms

The sequence P(B| Yy, -+, Yan) of c.pr’s of a property B of the se-
quence Yy, Yo, - + -, given the first n terms of the sequence, converges a.s.
to 1 or to O according as the sequence has or has not this property.

In particular, if P(B‘ Yy, -++, Y,.) = PB a.s. for every value of »

(or for a sequence of values of #), then PB = Ip a.s. (Kolmogorov.)
In more intuitive terms

a. [f the c.pr. of a property of a sequence of r.v.’s, given any finite num-
ber of its terms, degenerates into a constant, then, a.s., the property 1s e1ther
sure or tmpossible.

Also Borel’s zero-one law extends as follows: Let By, B, --- be a

sequence of events and set ®, = ®(/p,, -+, /p,). The two events
[ Ig < ] and (X P®-1B_ < «] are equivalent (P. Lévy). In more

intultive terms

b. The number of occurrences of the events B, is a.s. finite or infinite
according as the series of their c.pr.’s 3. P®-'B, is a.s. finite or infinite.

Proof. The sequence X, = kZIYk where Yy = I, — P®-1B, (hence

| Yi| = 1as.)isamartingale. Leta>Obea finite number and define
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v by v =n]=[sup Xy S 4, X, >a], [v =] =[sup X, <4a]. The

k<n

n
v-truncated sequence X', = 2, Y’; 1s a martingale bounded above by
k=1

a + 1, and hence X', — X’ finite.

Since X, = X', on [sup X, < 4] and 2 > 0 is an arbitrary finite
number, 1t follows that X, — X finite on [sup X, < «] except for a
null event. Since changing the X, into — X, preserves the martin-
gale property, it follows that X, — X finite on [inf X,, > — ] except

for a null event.

ButO0 < X751 and 0 £ 3 P®-'B, T a.s. so that both sequences

k=1 k=1
have a.s. a limit, finite or not. If one of them 1s finite and the other 1s
infinite, then sup X,(w) = +« or inf X,(w) = —w. Thus both limits
are a.s. simultaneously either finite or infinite. The assertion 1s proved.

n
II. CoNvERGENCE oF SERIES. Let X, = ) Y, form a martingale
k=1

sequence. According to 29.2A
P[supl Xkl >c] £ El X, l"/c", r 2 1.
kEn

For r = 2, the summands are orthogonal, EX,% = Y EY,° the in-
k=1

equality reduces to the extended Kolmogorov inequality and yields
the results of 29.1. The martingales convergence properties yleld more,
but the assumptions to be made are not easily expressed in terms of
the summands. However, the »-truncation method yields a direct ex-
tension of the convergence property established in the case of inde-
pendent and uniformly bounded summands, as follows (P. Lévy):

If the summands of the martingale sequence X, = 3, Yy are uniformly
kel

bounded (| Yi| S ¢ < ), then X, = X finste if, and only if, the
series 3. E®-1Y,2 is a.s. finste.

Proof. Let a >0 be a finite number and define » by [v = n] =
[supl X | < a, 1 an > a], [v = ] = [sup | X,,l < a]. The sequence
k<n

n
X', =Y Y% of v-truncated summands is a martingale bounded by
=1

a 4+ ¢ < », and hence X', = X’ for every r 2 1. In particular, for

ry = 2, we have E.X)'2 = E EY’nz < ®, SO that the series E E@"—ly’nz’




66 FROM INDEPENDENCE TO DEPENDENCE [Sec. 32}

whose expectation EX'? is finite, is a.s. finite. Since E®-1y" 2 =
E®-Y,2 on [v = n] and vanishes on [y < #], it follows that the series
> E®-1Y,2 is a.s. finite on [y = ®] = [sup| X,.| < 4]. Since a is arbi-
trary, this series 1s a.s. finite on [X, — X finite].

Conversely, define v by

n—1 n
[v = n] = [ EEG"‘"‘Ykz < a, E:E(B""“‘Yk2 > a]v
k=1

k=1
b = »] = [> E*'Y,? < 4].

The corresponding sequence of »-truncated sums 1s a martingale bounded
by a. Upon taking the expectations, it follows that

E)|lX,.|<EX2 < EY.2Sa+ ¢

so that, by 29.3A, X', =5 X finite; and, as above, X, 5 X finite
on [ P**-'Y,2 < ©]. The proof is terminated.

n
III. STRONG LAWS OF LARGE NUMBERS. Let X, = Y Y, where the
k=1

Yy are “conditionally exchangeable’” with respect to addition (implied
by ordinary exchangeability), that is, for every » and £ £ »,

E(Yi| Xy Xns1, -+) = E(Y1| Xy Xna1s - ++) ass.
According to 29.3B, if E| X; |” < » for some r = 1, then

E(Yl ‘ Xn) Xn-}-l: ° e ) ; EGYI.

Therefore
X, X, |
_—'=E('—_ Xn)Xn+1) ) = = ZE(Yk‘Xn)Xn+1)"')
n n |

= E(Yy| Xno Xngs, -++) — E°Y1.

To summarize

If X, = 2. Y, where the Yy, are exchangeable and E‘ Y, "' < o for some
k=1

n a.s. ©
r 21, then — —? E~Y].
n

IV. InpePpENDENCE. The foregoing results, in fact all the results of
this chapter, were obtained under the guidance but not by the use of
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similar results in the case of independence. Thus we have new proofs
of the latter under the supplementary assumptions of independence.
First consider results in I. Proposition a reduces to the zero-one law
for tail events on sequences Y, of independent r.v.’s; since any tail
event B € €, = ®(Yr411, Ynys --:) whatever be n, and ®, and €,
are independent o-fields, it follows that P®*B = PB a.s. whatever be
n. Similarly, proposition b reduces to the Borel zero-one criterion, since

then P**-'B, = PB,, a.s.

Now, let X, = 3> Y, where the summands are independent r.v.’s
k=1

centered at expectations. Then, in II, the inequality extends Kolmogo-
rov’s inequality for » = 2 to any r 2 1, while the proposition proved
there reduces to the fact that, when the summands are uniformly
bounded, the series 3_ Y, converges a.s. if, and only if, it converges in
g.m. (r = 2). As for III, it yields Kolmogorov’s strong law of large
numbers, since then the tail o-field 1s {@, @} a.s. and the limit is a tail
function.

To summarize, as had to be expected, the results in I, II, and III
provide the basic convergence properties of the case of independence,
but nothing new. However, if we do not limit ourselves to results ex-
pressed in terms of summands, we get more (Marcinkiewicz).

n

A. Let X, = D Y} be consecutive sums of independent r.v.’s centered at
k=1

expectations, and let r =2 1. Then X, XL if, and only i,

r

X, & X

Proof. If X, — X, then, by 29.3B, X, -5 X€L, Conversely,

let X, — X € L,. Since r = 1, the r.v. X is integrable. Since, for
every p, Xn1p — Xn is independent of Xj, - - -, X, it follows that X —
X, is independent of Xj, - - -, X,, so that

EX = B X - X))+ E*X,=EX - X, + X. = EX+ X, as.

But X, = X, while, by IA, E®X = X, Therefore, EX =0 so
that E®X = X, a.s. and the martingale sequence X, 1s closed by

X € L. Thus, theorem 29.3B applies and, hence, X, — X. The

proof is terminated.
*32.5. Indefinite expectations and a.s. convergence. Convergence

properties of martingales and, hence, all the applications of the pre-

i Al
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ceding subsection are but particular cases of a convergence theorem

that we establish now.
We consider sequences X, of r.v.’s whose indefinite expectations ¢,

defined by
on(d) = f X, A€ a,
A

exist. We recall that 8 = ®&(X;, X5, ---) 1s the minimal o-field over
the field ® = |J (X, ---, X,), and € = [ B(X,, Xni1, ) Is
the tail o-field of the sequence X,. We introduce the following hy-

pothesis.

(H): There exists a set function ¢ on C such that, as n — © and then

m _')-w,

2. 0k(BmkC) — o(C'C)
k=m

whatever be the disjoint in k events Bpy € ®{Xm, -+, Xi} such that

> Bmir — C' and whatever be the tail events C and C'.

k=m

If the foregoing events B,x are replaced by disjoint in k& events
By, € ®{ Xy, ---, X,}, the so modified hypothesis will be denoted by

(H').
a. Basic INeQuaLiTiES. Under (H) or (H'),
o(C,C) S aP(C,C) and ¢(CyC) 2 bP(CyC)

whatever be the tasl event C and whatever be the finite numbers a, b in the

tail events B
C, = [liminf X, < a], C, = [lim sup X. > 4.

Proof. leta < a,|aasm — o and set
Bmm = [Xm < aﬂl]) Bmk = [Xm g Cmy *°°) Xk——l -2— Gm, Xk < ay la

so that, as #» — o and then m — o,

Y Bur = [ Inf X < am] = Coo

k=m msksn

Since, for every event C,

E: ou(BmiC) = 2 ch < amP( 2 Bka)'

Kk =xm kK==m Bﬂ‘k Kkz==m
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it follows, upon letting # — « and then m — o, that (H) entails
@(gac) = aP(C,0).

The same inequality is entailed by (H’) upon setting By, = [X,, = G
©* vy Xk41 2 @my Xk < am], and the first asserted inequality is proved.
The second one follows by changing the X, into —X, and 2 into —&.
The proof is complete.

A. Basic CONVERGENCE THEOREM. Under (H) or (H), X, - X
a.s. finite above or below according as ¢ is bounded above or below. If,

: .. : a.s. d
moreover, ¢ on C 15 o-additive and o-finite, then X, — X = d]f a.s.
4
Sinite.
do

7P denotes the @-measurable function whose indefinite integral is the
C

P o-continuous part ¢, of ¢, and P, is the restriction of P to @.
Proof. Since the set D = [lim inf X, # lim sup X,] of divergence of

the sequence X, can be written as a denumerable union D = |J C,,

where _
Cav = [llm inf X, < ¢ < & < lim sup X,)]

and a, 6(a < b) vary over all rationals, it suffices to prove that every
event Cgp 1s null. But, by taking C = C,p in the basic inequality so
that _
__C_’aCab = CbCab = Cab)
it follows that
bPCop = o(Cap) = 4PCab,

and, since & > a, we have PCgp = 0. Thus, if X = lim X,, on D° and

a.s. .
we set, say, X = 0 on D, then X, — X where X is a @-measurable
function—not necessarily finite. If ¢ < ¢ < =, then, taking C = Q in
the second basic inequality, we have, for every finite 4 > 0,

P[X = 4] = Pllimsup X, = +»] < PC, S ¢c/6 - 0 as & — oo,

so that X < 4 a.s. Similarly when ¢ is bounded below, and the first
assertion is proved.

Let now ¢ be o-additive and o-finite. By taking, if necessary, a de-
numerable partition of Q into events of ¢-finite measure, 1t sufhices as
usual to prove the last assertion for ¢ on @ ¢-additive and finite, hence
bounded. Then X is a.s. finite, and we can take X to be finite by in-
cluding the null event [X = =] in the null event D and setting, say,

X =0o0n D.
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Let
k k+ 1
Cnr = '2';§X< o ’ =O,:{=1,:|=2,...
and set
to L
X’n = E '""ICnh
K 2z =00 2‘"-
so that

1
X’n§X<X’n+—2-; on D°.

On the other hand, the basic inequalities with C replaced by CC,.D¢
k+1 k

o o respectively, become

A k + 1
7 P(CCuD) S ¢(CCuD) S — = P(CCuD)

and 4,6 replaced by

so that, by summing over &, we obtain

1
X’n S #‘?(CDG) S X'n -+ '2';'

C D¢ CD¢

1 1
oCD) = S| XS o(CDY) + -

2*  Jepe

It follows that

and, letting # — oo,

f X=[ X=oCD)=¢(C), Cce.
C CD¢

Since X is @C-measurable, the last assertion is proved.

Variant. 1t may happen that ¢ is defined on the o-field ® of the
whole sequence X, and at the same time (H) or (H’) continues to hold
when arbitrary C € @ are replaced by arbitrary B € ®. The so modi-
fied hypotheses will be denoted by (Hy) and (H’y), respectively. The
same proofs continue to apply with B’s instead of C’s and we obtain

aq. Under (Ho) or (H’o),
0(CoB) < aP(Co,B), #(CsB) = 6P(CyB)

whatever be B € ® and the finite numbers a, b.

A,. Under (Hy) or (H'y), Xa =5 X as. finite above or below accord-

ing as ¢ 1is bounded above or below. If, moreover, ¢ on ® is g-additive and

o-finite, then X, =5 X = ae a.s. finite.
dPg
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CoroLLARY 1. Let ¢ on By be a o-finite signed measure, so that it deter-
mines its o-additive and o-finite extension ¢ on ®.

If (H) or (H') hold when C € @ are replaced by By € By, then X, —>

do :
X = 2Pa a.s. finite.

Proof. The basic inequalities hold with C € @ replaced by B, € ®,.

Therefore, by continuity of P and ¢, they hold with B € ® and the
above variant applies.

CoRrROLLARY 2. Let ¢ on ®g be a o-finite signed measure. If, given any
e > 0, for k sufficiently large

| ox(B) — ¢(B) | < «PB
whaiever &6’ B C (B(Xk’ Xk‘l'l’ © e )(B € (B(Xl) IR Xk))) then Xn -t-‘:)
X = ¢ (__‘.?'_@.'i_)
"~ dPe\dPg/ "

Proof. In the first case, hypothesis (H’) holds, since ¢ extends to ®
and, for m sufficiently large,

2_ ek(BraC) — 90( ZBknC) Se) PB,,C=e—0
kz=m k==m kz=m

as n — o, then m — o, and then ¢ — 0. Theorem A applies, and
the assertion 1s proved. Similarly, in the second case, hypothesis (Hy)
holds, and theorem A, applies.

APPLICATION TO MARTINGALES. 1° Let the r.v.’s X, form a martin-
gale sequence or a martingale reversed sequence, closed by a r.v. Y
whose expectation exists, that 1s, X, = E(Y‘ Xy, -+, Xn) a.s. or Xn
= E(Y‘ Xny Xnt1, -+ ) a.s. Then Corollary 2 applies with ¢ indefinite
integral of Y; in fact, in each case Eg X, = EgY = ¢(B)/PB. Thus

Xn =5 X =EYor E®Y, respectively.

2° Let the r.v.’s X, with sup E| X, | < ¢ < » form a martingale
sequence. Take for pr. space the “sample pr. space,” that is, the range
space of the sequence together with its Borel field @, and the pr. dis-
tribution P, of the sequence. Then ®(X;, -, X,) is the o-field @,
of all Borel cylinders whose bases are Borel sets in the range space of
(X3, -+, X»). Since the X, form a martingale sequence, we have
on(Arn) = ony1(A,) =--- for every 4, € @, and, hence, ¢, — ¢ on
@o—the field of all Borel cylinders in the range space. We apply the
extension 4.3A, 2°. Since the indefinite expectations @, of | X, | are
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bounded by ¢, and form a nondecreasing sequence, it follows that
lim @, exists and is bounded and os-additive on @¢. A fortiori, ¢ is

bounded and s-additive on @. Thus, Corollary 2 applies and X, —>
_ %
~ dPg’
We seek now necessary and sufficient conditions for a.s. convergence
of sequences X, of r.v.’s.

B. DOMINATED CONVERGENCE CRITERION. Let | X, | £ Y integrabie.

Then X, X (necessarily integrable) if, and only if, (H) or (H') or
(Ho) or (H’o) holds.

Thus, if | X, | S Y integrable and X, = X, then all the hypotheses

H are equivalent.
Proof. The “if” assertion is contained in A and A,. Conversely, let

a.s. . . . .
X, — X with indefinite expectation ¢ so that, for every € > O,

PB,=P[sup | Xz —X|=2¢ —>0 as m — .

mSksn

Whatever be the disjoint events By € ® varying or not with m and #
n

and whatever be B € ® such that ) By — B, upon summing over

k=m
= m, ---, n the relations

ox(Br) — o(Bi) =Lk(Xk — X) =Lk3 (Xx — X) + iy (Xx — X),

it follows from | Xj | < Y integrable that

T (B — o(B) | S PBS+2[ Y+|o(Z B — (B

k=m k==m

Letting # — o, then m — «, and then ¢ — 0, the “only 1f” asser-
tion follows.

C. CONVERGENCE CRITERION. A sequence X, of r.v.’s converges a.s. to
a r.v. if, and only if, for every € > Q there exist events B, with PB, > 1 — e
on which | Xn| S Yo integrable and (H) or (H') or (Ho) or (H'o) holds.

Proof. If for en )0 asm — , we have ‘ Xn ‘ < Y, integrable and,
say, (H) holds on B, = B,,; then by B, the sequence X, converges to
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a r.v. on B, — N, where N,, are null events; hence it converges to a
rv.on U Bm — U Nn. Since, for every integer m’,

PUBnz=PBp 21— e,

it follows that P |J B,, = 1 and the “if”” assertion 1s proved.
Conversely, let X, 2% X r.v. and apply Egorov’s theorem which

. . ¢
asserts that for every € > 0 there exists an event B with PB < 5 such

that X, — X uniformly on B°. Let » and ¢ > 0 be sufficiently large

so that, on the one hand, | X,| <| X| + 1 on B° and, on the other
hand,

PC=P[|Xl>c]<-—;-

Then ‘ Xn‘ < ¢+ 1 on B°C® and, by B, (H) holds. Since
1 — PB°C°= P(BUC) = PB+ PC < e

the “only if”’ assertion i1s proved.

COMPLEMENTS AND DETAILS

/. Let Sn =k21Xk where E(anXb * 0y Xn--l) = 0 a.s. (Xo = O) and

E(X.2| Xy, ++-, Xno1) = 02X, ass. Find conditions for degenerate and for
normal convergence of suitably normed sums.

2. Take one by one the results relative to the degenerate, the normal, and
the Poisson convergence obtained in the case of independent summands, and
transpose them to the case of dependent summands by using successively the
various approaches given and illustrated in the text.

3. Let Svu = D Xk, Xo = 0. The summands are independent with common
k=l

ch.f. f and finite 2 = EX,, o? = ¢?X,. The v, are integer-valued r.v.’s inde-
pendent of all the summands with p. = Plv, = k], k=0, 1, ---, and with
finite an = Evn, Ba® = oW, Set o,2 =025, and let g. be the chf. of

(S"u - Evn)/a'n- Then
gn(u) = f pare"tanulonfi(u/an), oa* = anc? + a’Bat.
k=0

Let 0,2 —» o, 3,2 = O(0.?). Then g.(«) is of the form

2
— ti.. (1—{:“2)

gn(u) = /z(c,.u)e 2 + 0(1), Cn = anﬁn/an-

If also 428, = o(a.), then ga.(u) — e~#*2
If also £(V,.) ~ ‘.'TL(an, 61’12), then oe(Svn) it m(aan) Ta%).
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