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PREFACE

e —— - - - - . —

This book 1s addressed to those who know the meaning of each word
in the title: none 1s defined in the text. The reader can estimate the
knowledge required by looking at Chapter O; he should not be dis-
couraged, however, if he finds some of i1ts material unfamiliar or the
presentation rather hurried.

Our objective 1s a systematic study of the ring C(X) of all real-valued
continuous functions on an arbitrary topological space X. We are con-
cerned with algebraic properties of C(X) and its subring C*(X) of
bounded functions and with the interplay between these properties and
the topology of the space X on which the functions are defined. Major
emphasis 1s placed on the study of ideals, especially maximal ideals, and
on their associated residue class rings. Problems of extending continuous
functions from a subspace to the entire space arise as a necessary adjunct
to this study and are dealt with in considerable detail.

The contents of the book fall naturally into three parts. The first,
comprising Chapters 1 through 5 and the beginning of Chapter 10,
presents the fundamental aspects of the subéect insofar as they can be
discussed without introducing the Stone-Cech compactification. In
Chapter 3, the study 1s reduced to the case of completely regular spaces.

In the second part, Chapters 6 through 11, the Stone-Cech compacti-
fication BX 1s constructed, investigated in great detail, and applied to
the study of C(X). The fundamental theorem of Gelfand and Kol-
mogoroft characterizing the maximal ideals 1s presented in Chapter 7;
1t falls out as a natural consequence of the particular way in which gX
was constructed in Chapter 6. Cech’s more familiar construction of B.X 1s
presented 1in Chapter 11. Chapter 8 deals with the “real’” maximal i1deals
in C(X) and the associated realcompact spaces (Q-spaces), introduced
by Hewitt.

The third part 1s devoted to various additional topics. The different
chapters in this section of the book are almost entirely independent of
one another, the main exception being Chapter 14 (Prime ideals), the

\'%
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middle third of which leans heavily on portions of Chapter 13. Moreover,
results depending upon BX are invoked at only a few places. Chapters
12, 15, and 16 include self-contained treatments of special subjects.
Chapter 12 deals with Ulam’s measure problem and the equivalent
question of whether a discrete space can fail to be realcompact. Chapter
15 presents the elements of the theory of uniform spaces (exclusively in
terms of pseudometrics); this chapter culminates in Shirota’s theorem
that the spaces that can admit a complete uniform structure are, barring
Ulam measures, precisely the realcompact spaces. Finally, Chapter 16
contains a small but significant portion of dimenston theory — as much
as 1s needed in order to derive Katetov’s algebraic characterization of
dimenston.

At the end of each chapter, there 1s a collection of problems, which
provide much additional detail about the material covered in the text.
The reader who wishes to master the subject should solve a good many
of them. The problems vary widely in purpose and importance, ranging
from mere exercises to detailed descriptions of pathological spaces that
serve as warning posts and clarify the boundaries of the theory. The
problems also vary widely in difficulty. The simpler ones can be solved
directly by applying the results developed in the text in the same chapter
(or principal theorems from earlier chapters). Those that depend upon
secondary results from earlier chapters or upon other problems are sup-
plied with references to those results. Problems whose solutions are not
straightforward are accompanied by hints; these are often given in the
form of assertions that themselves require proof. In cases of more than
ordinary complexity, the earlier parts of a problem have been designed
as preparation for the later parts.

The tamily C(X) can be regarded as an ordered space or as a topo-
logical space, and there 1s a substantial literature dealing with these
topics. Our own treatment of them is only incidental. The order structure
of C(X) is determined by the algebraic structure, and we study the
former as a tool for deriving information about the latter. Topologies
on C(X) are considered only in scattered problems and, in a rather
elementary way, in the last chapter. Algebras of complex-valued func-
tions, about which there is a very extensive literature, are not dealt with
here at all.

We have planned our book to serve both as a text for a graduate course
and as a treatise for the active mathematician. A number of results that
are presented as soon as they are provable can be given interesting alter-
native proofs by means of machinery developed later on; the student can
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profit from seeking such possibilities, which are not always pointed out.
At the end of the book, there are comments on the historical develop-
ment of the subject and references to original sources, listed in the
bibliography. The index has been prepared in an attempt to render the
book useful as a reference work.

Sections are numbered and problems are lettered consecutively within
each chapter, with the chapter number included. In Chapter 1, for
example, the sections are 1.1, 1.2, - - -, and the problems are 1A, 1B, ---.

L. G.
M. J.
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FOREWORD

0.1. 'The reader is presumed to have some background in general
topology and abstract algebra, to the extent, at least, of feeling at home
with the basic concepts. Here we set forth some conventions in
notation and terminology, and record some preliminary results.

The set (space, field) of real numbers 1s denoted by R. The reader is
expected to be familiar with the elementary set-theoretic and topological
properties of R.

The subset of rational numbers is denoted by Q, and the subset of
positive integers, {1, 2, - -}, by N.

The constant function, on any set, whose constant value 1s the real
number 7, i1s denoted by r. 'The symbols 1 and j, however, are reserved
for special meanings: 1 1s used for the identity function on R or its
subsets, and j denotes the sequence (1/7),, . n-

When dealing with rings of functions, one encounters each of the
concepts identity and inverse in two different senses. The use of
distinguishing terms 1s desirable in the interest of clarity. The choice
of the word identity to denote the mapping x — x on any set (e.g., 1
above) seems indicated overwhelmingly. For the multiplicative identity
in a ring, we shall use the term unity. The symbol a=1 1s the obvious
choice for the multiplicative inverse of a in a ring. For the inverse of a
mapping ¢, we introduce the symbol ¢*.

THEORY OF SETS

0.2. Mappings. Square brackets are used to indicate the image of a
set under a mapping:

plA] = {(;;x x € A}.
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For the inverse, we write

P (y) = {x: px = y},
and
¢ [B] = {x: px € B},

1.e., o [B] = U, 9 (y). When ¢ is known to be one-one, we write
x = @*(y) instead of {x} = @ (y).

When ¢ 1s known to be real-valued, 1t is referred to as a function, and
we write ¢(x) 1n place of px. 'This is for emphasis, not logical dis-

tinction.
The restriction of a mapping ¢ to a set S 1s denoted, as usual, by ¢|.S.

Let @ be a mapping from A into B and ¢ a mapping from B into E.
'The composite mapping from A into E 1s denoted by i o ¢:

(o p)(®) = P(ex) (x € 4).

The following abbreviations are useful for indicating unions or
intersections of families of sets:

U‘gp:USey’S’ ny=nSe.9’S'

The cardinal of S is denoted by |S|. Countable means finite or
denumerably infinite. The cardinal 2% is denoted by c¢. Some use
will be made of the elementary properties of cardinals and ordinals.

0.3. Finite intersection property. Let & be a nonempty family of
sets. & 1s said to have the finite [resp. countable] intersection property
provided that the intersection of any finite [resp. countable] number of
members of & 1s nonempty.

In order that % have the finite intersection property, it is not enough
that any fwo members of & have nonempty intersection. (E.g., let &
consist of the three sets {0, 1}, {0, 2}, and {1, 2}.)

As usual, a class i1s said to be closed under an operation when the
performance of the operation upon members of the class always yields
a member of the class. For example, % is closed under finite inter-
section provided that the intersection of any finite number (>0) of
members of ¥ is a member of <. Here 1t s enough that the inter-
section of any two members of & be in &, for the stated property then

follows by induction.
Thus, if @ ¢ &, and if the intersection of any two members of &

belongs to <, then, certainly, & has the finite intersection property.
In the text, obvious inductions that lead, as above, from two to finite,

will be taken for granted.
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0.4. Partially ordered sets. For a partial order, we include the
axiom that a < b and b < a implies a = b.

A mapping ¢ from a partially ordered set A into a partially ordered
set E 1s said to preserve order it a < b 1n A implies pa < ¢b in E.

A maximal element of A 1s an element a such that x = a implies
x = a. In contrast, the largest element of A—necessarily unique, if it
exists—is the element ¢ such that ¢ = x for all x e A. Minimal and
smallest are defined similarly.

In easily recognizable situations, this terminology is applied to a
class of sets, with the understanding that the partial order is that of set
inclusion. Examples are maximal chain (0.7), and maximal ideal (0.15).

0.5. Lattices. In a partially ordered set, the symbol a v b denotes
sup {a, b}, 1.e., the smallest element c—if one exists—such that ¢ = a and
¢ 2 b. Likewise, a A b stands for inf {a, b}.

When both a v b and a A b exist, for all a, b € A, then A i1s called a
lattice. A subset S 1s a sublattice of A provided that, for all x, y € S,
the elementsx v yand x A yof AbelongtoS. (Thus, itisnotenough
that x and y have a supremum and infimum i S.)

A mapping ¢ from a lattice A4 into a lattice E 1s a lattice homomorphism

into E provided that
p(a vV b)=9paVv epb and o¢(a A b) = pa A ¢b.

It follows that @[ A] 1s a sublattice of E.
A partially ordered set in which every nonempty subset has both a
supremum and an infimum is said to be lattice-complete.

0.6. Totally ordered sets. A subset S of a totally ordered set A is
said to be cofinal [resp. coinitial] if, for every x € A, there exists s € S
such that s = x [resp. s = x].

A totally ordered set 1s said to be Dedekind-complete provided that
every nonempty subset with an upper bound has a supremum-—or,
equivalently, every nonempty subset with a lower bound has an infimum.
(For example, R is Dedekind-complete, but not lattice-complete.)

Every totally ordered set A has an essentially unique Dedekind
completion B, characterized by the following properties: B is totally
ordered and Dedekind-complete; A i1s a subset of B; and no proper
subset of B that contains A is Dedekind-complete. Every element ¢ A4
is determined by a Dedekind cut of A. (For example, R is the Dedekind

completion of Q.)
0.7. A totally ordered set is often referred to as a chain.

HAUSDORFF’S MAXIMAL PRINCIPLE. FEvery partially ordered set
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contains a maximal chain (1.e., maximal in the class of all chains as
partially ordered by set inclusion). 'This proposition is equivalent to
the axiom of choice and to the well-ordering theorem. All three forms
will be used.

References. [B,, Chapters 1-3], [Bs, Chapters 2-3], [H,, pp. 45-83,
97-141], [K,, pp. 31-36], and [S;].

TOPOLOGY

0.8. Convergence will be described in terms of certain filter bases;
the details are all in the text, and no prior knowledge about filters is
required. The theory of nets 1s not used.

The closure of a set S 1n X 1s denoted by cl S or cly S, the interior by
int S or inty S.

The main classes of spaces to be considered are the completely
regular spaces and their subclass, the compact spaces. The terms
completely regular and compact, and also normal, will be applied to
Hausdorff spaces only. All three are defined in Chapter 3.

From Chapter 4 on, all given spaces are assumed to be completely regular.

We state here for emphasis that a Hausdorff space is said to be
compact provided that every family of closed sets with the finite inter-
section property has nonempty intersection—i.e., every open cover has
a finite subcover.

A mapping ¢ from X into Y 1s said to be closed if for every closed
subset A of X, ¢[A] 1s a closed setin Y. (It 1s not enough that [A] be
closed in [ X].) Open mapping 1s defined similarly.

0.9. A neighborhood of E is any set whose interior contains E.

LeEmMMA. If E and p have disjoint neighborhoods, for each p € F, and if
F 15 compact, then E and F have disjoint neighborhoods.

PROOF. Let U, and V, be disjoint neighborhoods of E and p,
respectively. A finite collection

(Voo V)
covers F. Then [, U, and |J, V,, are disjoint neighborhoods of E
and F.

0.10. CoroLLARY. In a Hausdorff space, a compact set and a point in
its complement have disjoint neighborhoods. Hence every compact set in a
Hausdorff space 1s closed.

PROOF. The first assertion is immediate from the lemma (with E
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the one-point set), and implies that the complement of a compact set
1S open.
More generally, we have:

0.11. CoRrOLLARY. Any two disjoint compact sets in a Hausdorff space
have disjoint neighborhoods.

PROOF. By the corollary, one set and each point of the other have
disjoint neighborhoods, and the lemma now yields the result.

0.12. Constant use will be made of the following elementary results.
If X 1sdensein 7, and V 1s open in 7, then

ClT(V n X) — ClT V.

A continuous mapping from a space X into a Hausdorff space 1s
determined by its values on any dense subset of X.

(a) Let X be dense in each of the Hausdorff spaces S and 1. If the
identity mapping on X has continuous extensions o from S into T, and
T from T into S, then o 1s a homeomorphism onto, and o = 7.

By way of proof, observe that the mapping 7 o 0 must be the 1dentity
on S, because its restriction to X is the identity on X. Similarly,
oo 71s the identity on 7. If os; = os,, then s; = 7(os,) = 7(0sy) = $,;
therefore o is one-one. For ¢t € 7' we have o(7t) = ¢; hence o 1s onto
and o< = 7 (whence o* 1s continuous).

A continuous image of a compact space in a Hausdorff space 1is
compact. A closed set in a compact space is compact. A continuous
mapping of a compact space into a Hausdorff space is a closed mapping.
A one-one, continuous mapping of a compact space onto a Hausdorft
space 1s 2 homeomorphism.

0.13. A discrete subspace means a subspace that is discrete 1n its
relative topology—but not necessarily closed in the space. (For
example, {1/n},. 1s a discrete subspace of R.) The following result
will be needed 1in a number of proofs.

THEOREM. Every infinite Hausdorff space contains a copy of N (u.e., a
countably infinite, discrete subset).

PROOF. Given two distinct points, there is a neighborhood U of one
whose closure does not contain the other. Either U or X—cl U 1s
infinite. Hence there exists a point x,, and an infinite, open set V', such
that x, ¢ cl ;. Similarly, there exists x, € V4, and an infinite, open
set V', In V,, such that x, ¢ cl V,. The set {x,},.N, constructed
inductively in this way, is discrete.

References. [Bg, Chapter 1] and [K,, Chapters 1 and 3].
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ALGEBRA

0.14. Ideals and homomorphisms. In what follows, A will denote
a commutative ring having a unity element, i.e., an element 1, necessarily
unique, such that 1-a = afor all a. (However, much of the discussion
1s applicable to more general rings.)

A umnit of A 1s an element a that has a multiplicative inverse a1, i.e.,
an element such that aa=! = 1.

Ideal, unmodified, will always mean proper 1deal, i.e., a subring I # A
such that a € I implies xa € I for all x € A. 'Thus, an i1deal cannot
contain a unit.

Homomorphism, unmodified, will always mean rimg homomorphism.
The kernel of any nonzero homomorphism (i.e., the set of all elements
that map to 0)1sanideal. Conversely, every ideal I is the kernel of some
homomorphism. In particular, I is the kernel of the canonical homo-
morphism of A onto the residue class ring 4/I, 1.e., the homomorphism
under which the image of a is the residue class I + a. If Iis the kernel
of a homomorphism of A onto B, then A/I is isomorphic with B.

The intersection of any nonempty family of ideals is an ideal. The
smallest 1deal—perhaps improper—containing an ideal 7/ and an

element a 1s denoted by (7, a); 1t consists of all elements of the form
t + xa, wheretz e I and x € A.

0.15. Prime ideals and maximal ideals. An ideal P in A is prime if
ab e P impliesae Por b e P, 1.e., if A/P is an integral domain.

If M 1s a maximal 1deal (with respect to set inclusion), then a ¢ M
implies 1 € (M, a), sothat 1 = xa (mod M) for some x € A; conversely,
1 = xa (mod M) implies 1 € (M, a). Thus, an ideal M is maximal if
and only if A/M is a field. In particular, every maximal ideal is prime.

The union of any nonempty chain of ideals is an ideal. (That the
union 1s a proper subset of 4 follows from the presence of a unity element

in A.) The maximal principle (0.7) now implies that every ideal is

contained in a maximal ideal, and hence that every non-unit of A belongs
to some maximal ideal.

0.16 The following results about prime ideals will not be needed,
except incidentally, until Chapter 14.

THEOREM. Let I be an tdeal in A, and S a set that ts closed under
multiplication and disjoint from 1. There exists an ideal P containing I,

disjoint from S, and maximal with respect to this property. Such an ideal
is necessarily prime.
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PROOF. By the maximal principle, there exists a maximal chain & of
ideals containing 7 and disjoint from S. Define P = | &; then Pis an
ideal containing I, disjoint from .S, and maximal with respect to this
property. Leta ¢ Pand b ¢ P. Because of the maximality of P, there
exist s, t € S such that s € (P, a)and ¢t € (P, b). Then s = xa (mod P)
and ¢ = yb (mod P), for suitable x, y € A. Since S is closed under
multiplication, we have xyab = st # 0 (mod P). Theretore ab ¢ P.
This shows that P i1s prime.

0.17. CoRoLLARY. Let I be an ideal. If no power of a belongs to 1,
then there exists a prime ideal contarming I but not a.

0.18. CoROLLARY. The intersection of all the prime ideals containing
a given ideal I is precisely the set of all elements of which some power
belongs to 1.

PROOF. If there exists a prime ideal P containing / but not a, then
no power of a can belong to I, since no power of a belongs to P. Con-
versely, if no power of a belongs to /, then, by the preceding corollary,
some prime 1deal contains / but not a.

0.19. Partially ordered rings. Let a partial ordering relation be
defined on the ring A. Then A is called a partially ordered ring
provided that

a = bimplhesa + x 2 b + x for all x, and
a = 0and b = 0 implies ab = 0.

The following facts are evident: @ = b if and only if a — b 2 0;
az0ifandonlyif —a =0;ifa=randb =< s,thena + b =7 + s.

To define such a partial ordering relation, it is enough to specify the
elements = 0, subject to:

0 and—a = 0O 1if and only 1f ¢ = 0, and

.. A

0and b = 0 impliesa + b6 = 0 and ab = 0,

a
a

1\ Y

and then to definea = btomeana — b 2 0.
To establish that a homomorphism ¢ from A into a partially ordered
ring 1s order-preserving, it suffices to show that ¢ = 0 implies pa = 0.
If a v b exists, for all a and b, then a A b exists, and

aANb= —(—av —D).

Therefore, to establish that A 1s a lattice—in which case it 1s called a
lattice-ordered ring—it sufhces to show that a v b exists for each @ and 4.
In a lattice-ordered ring, |a| denotes the element a v —a; it satisfies

la| = 0 (see SA).
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To establish that A is totally ordered, it is enough to show that every
element 1s comparable with O.

0.20. Totally ordered integral domains. Let A be a totally ordered
integral domain. Squares of nonzero elements are positive. In
particular, 1 > 0, so that —1 < 0; therefore —1 has no square
root.

If 0 <a< b, then a < b® (where n e N). Hence a positive
element has at most one positive nt? root.

A contains a natural copy of the set of integers, in the form of the
elements m-1. When A is a totally ordered field, the elements m/n (i.e.,
(m-1)/(n-1)), where m 1s an integer and 7z € N, constitute a copy of the

rational field Q.

0.21. Ordered fields. (In referring to totally ordered fields, one

customarily drops the adverb.) An ordered field 1s said to be archi-
medean 1f the subset of integers 1s cofinal.

THEOREM. An ordered field is archimedean if and only if it is isomorphic
to a subfield of the ordered field R.

PROOF. Obviously, every subfield of R 1s archimedean. Con-
versely, let ' be any archimedean field. Given x < y 1n F| choose
n € N such that # > 1/(y — x), and let m be the smallest integer > nwx.
Then x < m/n < y. 'This shows that Q is dense in F| so that every
element of F is uniquely determined by a Dedekind cut of Q. Con-
sequently, F' is embeddable in R in a unique way as an ordered set.
Now, 1if » and s belong to the ordered field F, and if a, b, ¢, and d are
rationals satistyinga S r <bandc Ss<d,thena+c=s7r+s5<
b + d. It follows that sums in F—Ilike sums in R—are uniquely
determined by Dedekind cuts of Q. Products, likewise, are so de-
termined. 'This shows that the embedding of F i1s an 1somorphism.

0.22. Any nonzero homomorphism of a field is an isomorpﬁism.
For R, we can say more.

THEOREM. The only nonzero homomorphism of R into itself is the
identity.

PROOF. A real number 1s nonnegative if and only 1f it 1s a square.
Since any homomorphism takes squares to squares, it takes non-
negative numbers to nonnegative numbers, and therefore 1s order-
preserving. Now, if 8 is a nonzero homomorphism, then, because 37 =
(37)(81) for every r, we must have 81 = 1. It follows that 3 is the 1den-

tityon Q. As Q i1sdense in R, and 8 preserves order, 3 1s the 1dentity on
R as well.
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0.23. CoRroLLARY. There is at most one isomorphism from a ring onto
R. Any homomorphism onto R 1s uniquely determined by its kernel.

PROOF. If u and v are isomorphisms from the same ring onto R,
then 1t o b 1s an automorphism of R, and hence 1s the identity. 'There-
fore u = v.

Given homomorphisms 8 and t from a ring A onto R, with common
kernel I, we consider the associated isomorphisms 3 and t from A/ ontoR
(1.e., such that 3 = 30§ and t = to Y, where ¥ 1s the canonical homo-
morphism of A onto A/I). Since 3 = t, we have 3 = t.

References. [B,, Chapters 2 and 14], [B,, Chapter 1, and Chapter 6 pp.
1-34], [M,, Chapters 1 and 3], and [W,, § 14, 15, 19, and 20].



Chapter 1
FUNCTIONS ON A TOPOLOGICAL SPACE

1.1. The set C(X) of all continuous, real-valued functions on a
topological space X will be provided with an algebraic structure and an
order structure.

Since their definitions do not involve continuity, we begin by im-
posing these structures on the collection R< of all functions from X into
the set R of real numbers. Addition and multiplication are defined by
the formulas

(f + 8)x) = f(x) + g(x), and (fg)(x) = f(x)g(x).

It 1s obvious that both of the operations thus defined are associative
and commutative, and that the distributive law holds: these conclusions
are immediate consequences of the corresponding statements about the
field R.

In fact, 1t is clear that R¥X 1s a commutative ring with unity element
(provided that X i1s not empty). The zero element i1s the constant
function 0, and the unity element 1s the constant function 1. The
additive inverse —f of f 1s characterized by the formula

(=f)x) = —f(x).

The multiplicative inverse f~1—in case it exists—is characterized by
the formula

1x) =
17 = 75

1.2. 'The partial ordering on RX 1s defined by:
f = g if and only if f(x) = g(x) for all x € X.

That this 1s a partial ordering relation follows from the fact that R is
ordered. It 1s clear that for every A, f + h 2 g + h if and only if

f = g. Hence the ordering relation is invariant under translation. In
10
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addition, f =2 0 and g = 0 implies fg = 0. Therefore RX 1s a partially
ordered ring (0.19).
Next, for any f and g, the function & defined by the formula

k(x) = f(x) v g(x)
satisfies: k& = f and k& = g; furthermore, for all # such that 2 = f and
h =z g, we have A = k. 'Therefore f v g exists: 1t 1s k. Dually,
(f A g)x) = f(x) A g(x). Thus, RX is a lattice-ordered ring (0.19).
The function |f|, defined as f v —f, satisfies

|fl(x) = 1f(=)].

Of course, R is also totally ordered (so that 7 v s is simply max {r, s}),
but RX is not if X contains at least two points.

The ambiguous use of the various symbols, which refer sometimes
to R and sometimes to RX, should cause no difhculty.

1.3. The set of all continuous functions from the topological space X
into the topological space R is denoted by C(X)—or, for short, by C.

The sum of two continuous functions is, of course, continuous; so 1s
the product. And if f belongs to C, then so does —f. Therefore C(X)
iIs a commutative ring, a subring of RX. 'The constant function 1
belongs to C and 1s its unity element.

It is easy to see that if f is continuous, then the function |f| is also
continuous. Since

fve=2Yf+g+|f- &)
f, g€ C implies f v g e C. Therefore C 1s a sublattice of RX (0.5
and 0.19).
The symbol /7 (n € N) 1s used as in any ring. (Recall that N denotes
the set of positive integers.) If f = 0, then, more generally, f has a
unique, nonnegative 72 power (r € R, r > 0), denoted by f”and defined by

(%) = f(x) (x € X);

and if f 1s continuous, then f7, as a composition of two continuous
functions, 1s also continuous. In like manner, if z is odd (n € N), then
fl/m» may be defined as a function in C, for any f € C.

If the space X 1s discrete, then every function on X is continuous, so
that R¥ 1s the same as C(X). Conversely, if RX = C(X), then the
characteristic function of every set in X is continuous, which shows that
the space 1s discrete.

1.4. The subset C'* = C*¥(X) of C(X), consisting of all bounded

functions 1n C(X), 1s also closed under the algebraic and order opera-
tions discussed in 1.3. 'Therefore C* is a subring and sublattice of C.
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It can happen that the subring C*(X) 1s all of C(X )—1 €., every
function 1n C(X) 1s bounded. When this 1s the case, X 1s sald to be
pseudocompact. Every compact space 1s pseudocompact, as 1s well
known.

More generally, as we shall now prove, every countably compact space
1s pseudocompact. By definition, X 1s countably compact provided that
every family of closed sets with the finite intersection property has the
countable intersection property—i.e., every countable open cover has a
finite subcover. Suppose, now, that X 1s countably compact, and
consider any function f in C(X). The sets

{x: | f(®)| < nj,

for n € N, constitute a countable open cover of X. Hence a finite
subfamily covers X, 1.e., f 1s bounded.

A pseudocompact space need not be countably compact; see 51.

PROSPECTUS

1.5. A major objective of this book 1s to study relations between
topological properties of a space X and algebraic properties of C'(X) and
C*(X). It 1s obvious that each of these function rings 1s completely
determined by the space X. One of the main problems will be to specify
conditions under which, conversely, X is determined as a topological
space by the algebraic structure of C(X) or of C*(X). In other words,
what restrictions on X and Y, if any are needed at all, will allow us to
conclude that X 1s homeomorphic with Y, when we are given that C(Y)
1s 1somorphic with C(X), or, perhaps, that C*(Y') 1s isomorphic with
C*(X)?

Another type of problem 1s that of determining the class of topologlcal
spaces whose function rings satisfy some natural algebraic conditions,
or, conversely, of determining the effects on the function ring of imposing
some natural topological condition on the space. An example that
might fit into either classification 1s given in 1B: X 1s connected if and
only if C(X) 1s not a direct sum of proper subrings. Other classes of
problems are to discover algebraic properties common to all function

rings and to find relations between C'(X) and C*(X) for a given X.

INVARIANTS OF HOMOMORPHISMS

1.6. Even before embarking upon a detailed study of function rings,
we can observe quickly that several important properties of the family
of functions that may not seem to be determined by the ring structure are,
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in fact, so determined (see Notes). The most significant of these
properties 1s the order structure. To describe the order, 1t 1s enough to
specify the nonnegative functions; but the condition f = 0 1s simply the
algebraic requirement that f be a square, 1.e., f = k% for some k. It
follows, moreover, that |f| is determined algebraically: it is the unique
nonnegative square root of f2.

We have just proved that every isomorphism from C(Y') into C'(X)
preserves order. Moreover, if f 1s bounded and f = k2, then k& 1is
bounded ; hence an isomorphism from C*(Y) into C(X) also preserves
order. Here is a more conclusive result:

THEOREM. FEvery (ring) homomorphism t from C(Y) or C*(Y) wnto
C(X) ts a lattice homomorphism.

PROOF. Since g = [2 implies tg = (t/)2, t sends nonnegative func-
tions into nonnegative functions, i.e., t 1s order-preserving. Next,

(t|g])? = t(|2]?) = t(g?) = (tg)%

and since t|g| = 0, we have t|g| = |tg|]. Combining this with the
formula

(gvh+(gvh=g+h+|g— h,
we get

(g VA +tgvVvh=1tg+ th+ |tg —th| = (g v th) + (tg v th).

But t(¢ v #) and tg v th are real-valued functions (defined on X'), and
therefore t(g v h) = tg v th.

1.7. Boundedness of functions is another property determined by

the algebraic structure of C. More generally, we have the following
result.

THEOREM. FEvery (ving) homomorphism t from C(Y) or C*(Y) into
C(X) takes bounded functions to bounded functions.

PROOF. As with any homomorphism, t1 = t(1-1) = (t1)(t1), so that
the function {1 in C'(X) is an idempotent. Therefore 1t can assume no
values on X other than 0 or 1. Hence for each n» € N, the function

tn =t1 4+ ... 4+ tl
assumes no values other than 0 or n. Consider, now, any function g
in C*(Y). Since |g| £ n, for suitable n € N, we have [tg| £ tn < n.

1.8. CoroLLARY. If X is not pseudocompact, then C(X) 1s not a
homomorphic tmage of C*(Y), for any Y.

In particular, C(X) and C*(X) are isomorphic only if they are
identical.
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1.9. Another consequence of Theorem 1.7 i1s that an isomorphism
from C(Y) onto C(X) carries C*(Y) onto C*(X). This 1s also a

corollary of the next theorem.

THEOREM. Let t be a homomorphism from C(Y) into C(X) whose
image contains C*(X). Then t carries C*(Y) onto C*(X).

PROOF. We prove first that t1 = 1. Let 2 € C(Y) satisfy tk = 1;
then t1 = (tk)(t1) = t(k-1) = tk = 1. It follows that tn = n for each
n € N.

Now, given f e C*(X), we are to find g € C*(Y) such that tg = /.
Choose 2 e C(Y) for which th = f, and choose n € N satistying
f| £ n. Nowdefineg =(—nvh) A n. Then ge C*Y), and, by
Theorem 1.6, tg = (—n vf) A n = /.

ZERO-SETS

1.10. In studying relations between topological properties of a space

X and algebraic properties of C'(X), 1t 1s natural to look at the subsets
of X of the form

(a) f(r) = {xe X: f(x) = r} (fe C, r eR).

Clearly, these sets are closed.
We notice that if s 1s any real number, then

wif(%) =7} = x:(f — $)x) =7 — s,

Consequently, the family of sets of the form (a) obtained by allowing f
to run through all of C, and 7 through all of R, can also be obtained by
holding » fixed. The algebraic aspect of the situation points to the
choice of the number 0 as the fixed value of 7 to be considered.

The set f<(0) will be called the zero-set of f. We shall find it con-
venient to denote this set by Z( f), or, for clarity, by Z,(f):

Z(f) = Zx(f) = (x € X: f(x) = 0} (f € C(X)).

Any set that 1s a zero-set of some function in C(X) is called a zero-set

in X. Thus, Z is a mapping from the ring C onto the set of all zero-
sets 1n X.

Evidently, Z(f) = Z(|f]) = Z(f*) (for all n e N), Z(0) = X, and
Z(1) = 0. Furthermore,

Z(fg) = Z(f) U Z(g),

Z(f* + g% = Z(|f| + |8]) = Z(f) n Z(g).

and
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If feCand g = |[f| A 1,then g € C* and Z(g) = Z(f). Hence C
and C* yield the same zero-sets.
The formula

Z(f) = Muen tx € X: [f(x)] < 1/n}

shows that every zero-set is a G, 1.e., a countable intersection of open
sets. Conversely, in a normal space, every closed G, 1s a zero-set
(3D.3). This need not be so if the space is not normal, however

(3K.6). On the other hand, in a metric space, every closed set is a
zero-set, as it consists precisely of all points whose distance from it 1s

ZEero.
1.11. Cozero-sets. Every set of the form {x: f(x) = 0} 1s a zero-set:

{x:f(x) 2 0} = Z(f A 0) = Z(f - |f]).
{x:f(x) = 0} = Z(f v 0) = Z(f + |f}))

Thus, the open sets

pos f = {x: f(x) > 0}
neg f = {x: f(x) < 0} = pos (—f)

are cozero-sets, 1.e., complements of zero-sets. Conversely, every
cozero-set 1s of this form:

X — Z(f) = pos|f].

1.12. Umts. For a function f in C(X), f~! exists if and only if f
vanishes nowhere on X ; in other words,

fis a umt of C if and only if Z(f) = 0.

Likewise, tf f1s a unit of C'¥, then Z(f) = 0. 'The converse need not
hold, however, as the multiplicative inverse f~! of f in C may not be a
bounded function. In fact, the condition for C* is clearly the follow-
ing: a function f 1n C'* 1s a unit of C* 1f and only if it is bounded away
from zero, i.e., |f| = r for some r > 0.

Likewise,

and

1.13. ExampLEs. It is convenient to have examples of some specific
topological spaces to 1illustrate the notions that are being discussed. A
familiar, important example of a compact topological space is the closed
interval [0, 1] of R. As we know, C([0, 1]) = C*([0, 1]). Familiar
examples of noncompact spaces are R itself, the subspace Q of rational
numbers, and the subspace N of positive integers. Since N is discrete,
every real-valued function on N 1s continuous, so that C'(N) [resp.
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C”“(N)] 1s actually the ring of all [resp. all bounded] sequences of real

numbers.
The 1dentity function 1 on N, defined by 1(#) = n, belongs to C(N),
and it 1s unbounded, so that C(N) # C*(N). The zero-set Z(1) is

emply, of course, so that 11 exists; indeed,
i—! = j, the sequence (1/7n),.n-

Evidently, j € C*(N), that is to say, j i1s a bounded function. Finally,
Z(j) = 0, but1 = jt¢ C*¥N), and we have here perhaps the simplest
example of a function in C* whose zero-set 1s empty, but that 1s not a
unit of C'*.

1.14. For C’' < C(X), we write Z[C'] to designate the family of
zero-sets {Z(f):fe C’}. 'This 1s consistent with our notational

convention for the image of a set under a mapping. On the other hand,
the family Z[C(X)] of all zero-sets in X will also be denoted, for
simplicity, by Z(X).

We have observed that Z[C*(X)] is the same as Z(X), and that Z(X)
1s closed under the formation of finite unions and finite intersections.

(a) Z(X) 1s closed under countable intersection.

For, given f, € C, define g, = |f,| A 27", and let
g(x) = 2, &%) (x € X).

Since |g,| £ 2, the series converges uniformly, and therefore g is a
continuous function. Clearly,

Z(8) = Mnen Z(80) = Nnen Z(1)-

However, Z(X) need not be closed under infinite union. For
example, every one-element set in R 1s a zero-set in R, so that an infinite
union of zero-sets need not even be closed. Moreover, 1n a general
space, even a closed, countable union of zero-sets need not be a zero-set;
see 6P.5. Nor need Z(X) be closed under arbitrary intersection; see

4N.

1.15. Completely separated sets. 'T'wo subsets A and B of X are said
to be completely separated (from one another) in X 1if there exists a
function f in C*(X') such that

flA] = {0}, f[B]={1}, and 0 <f=<1.

Clearly, 1t is enough to find a function g in C(X) satisfying g(x) = 0 for
all x € Aand g(x) =2 1for x € B: for then (0 v g) A 1 has the required
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properties. And, of course, the numbers 0 and 1 may be replaced in
the definition by any real numbers » and s (with » < s).

It 1s plain that two sets contained (respectively) in completely
separated sets are completely separated, and that two sets are completely
separated if and only if their closures are.

When a zero-set Z i1s a neighborhood of a set A, we refer to Z as a
zero-set-neighborhood of A.

THEOREM. Two sets are completely separated if and only if they are
contained in disjoint zero-sets. Moreover, completely separated sets have
disjoint zero-set-neighborhoods.

PROOF. We begin with the sufhciency. If Z(f) n Z(g) = 0, then
| f| + |g| has no zeros, and we may define

Gl x
") = 7@+ e e

—in brief, A = | f|-(|f| + |g])~*. Then ke C(X), h[Z(f)] = {0}, and

hZ(g)] = {1}-
Conversely, if A and A’ are completely separated, there exists f € C(X)
such that f[A] = {0} and f[4A'] = {1}. 'The disjoint sets

F={x:f(x) Y}, F ={x:f(x)2 23}

are zero-set-neighborhoods of 4 and A’, respectively.
The following result will also be useful.

(a) If A and A" are completely separated, then there exist zero-sets
F and Z such that

Ac X —-Zc<cFcX - A.
For, with 4, A', f, and F as above, we simply take

Z = {x:f(x) 2 Y).

C-EMBEDDING AND C*-EMBEDDING

1.16. A major portion of our work will deal with the problem of
extending continuous functions. We shall say that a subspace S of X
1s C-embedded 1n X 1if every function in C(S) can be extended to a
function in C(X). Likewise, we say that S 1s C*-embedded in X if
every function in C*(.§) can be extended to a function in C*(X).

If a function f in C*(.S) has an extension g in C(X), then f also has a

bounded extension: if z is a bound for | f|,then(—n v g) A n belongs
to C*(X), and agrees with f on S. Thus, S 1s C*-embedded 1n X 1f
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and only 1if every function in C*(S) can be extended to a function 1n
C(X).

It 1s obvious thatif S € X < Y, and X 1s C-embedded in Y, then S
1s C-embedded in Y if and only if it 1s C-embedded in X. The cor-
responding transitivity is valid, of course, for C'*.

It 1s unusual for a subspace to be C*-embedded. For instance,
R — {0} is not C*-embedded in R: the function with value 1 for all
positive 7, and — 1 for negative 7, has no continuous extension. (Every
uniformly continuous function on R — {0}, however, does have a
continuous extension to R, as can be verified without difhiculty. The
result also follows from the general theory of uniform spaces (Chapter
15).) On the other hand, it is manifest that N, for example, is not only

C*-embedded in R, but even C-embedded.

1.17. 'The basic result about C*-embedding is Urysohn’s theorem,
which we state in the following general form.

URYSOHN’S EXTENSION THEOREM. A subspace S of X is C'*-embedded
in X 1f and only if any two completely separated sets in S are completely
separated in X.

PROOF. Necessity. If A and B are completely separated sets in S,
there exists a function f in C*(S) that is equal to 0 an 4 and 1 on B.
By hypothests, f has an extension to a function g in C*(X). Since g is
0 on A and 1 on B, these sets are completely separated in X.

Sufficiency. Let f, be a given function in C*(S). Then |f,| = m
for some m € N. For convenience of notation, define

=% (%) (neN)

Then |f;| £ m = 3r,. Inductively, given f, € C*(S), with | f,| = 3r,,
define
A, ={seS:f(s) £ —r,}, and B, = {se S:f,(s) 2 r,}.

Then A, and B, are completely separated 1n S, and so, by hypothesis,
they are completely separated in X. Accordingly, there exists a func-
tion g, in C*(X), equalto —7,on 4,, and to , on B,, and with |g| £ r,,.

The values of f, and g, on 4, lie between — 37, and —7,; on B,, they
lie between 7,, and 37,; and, elsewhere on .S, they are between —7, and

r.. We now define
fn+1 :fn T gnIS’

and we have |f,.,| £ 2r,, i.e.,

Ifn+1| é 3rn+1

n.
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This completes the induction step. Now put

g(x) = 2, n &nl*) (x € X).

Because the series converges uniformly, this defines g as a continuous
function on X. Next, we observe that

(gl el +gn)|S= (fl _f2) sl (fn_fn+1)
=f1_fn+1'

Since the sequence (f,.:(s)) approaches 0 at every point s of .S, this
shows that g(s) = fy(s). Thus, g is an extension of f;. This completes
the proot.

In case X 1s a metric space, every closed set is a zero-set, so that any
two disjoint closed sets are completely separated. Now, if S is closed,
then closed sets in S are also closed in X ; therefore completely separated
sets 1n S have disjoint closures in X. It follows from the theorem
that every closed set in a metric space is C*-embedded. This result is
Tietze’s extension theorem. Urysohn’s generalization to normal spaces
will be discussed in Chapter 3.

In particular, every closed set in R is C*-embedded in R.

1.18. A C*-embedded subspace need not be C-embedded. Later

we shall see innumerable examples of this phenomenon. The simplest
1s given by the space 2 of 4M, which contains N as a dense, C*-embedded
subset that is not C-embedded. A more striking example 1s the pseudo-
compact space /A of 6P, which contains N as a closed, C*-embedded
subset ; since /1 1s pseudocompact, #o unbounded function on N can be
extended continuously to /.

The relation between C*-embedding and C-embedding 1s clarified
by the next theorem.

THEOREM. A C*-embedded subset is C-embedded 1f and only 1f it 1s

completely separated from every zero-set disjoint from it.

PROOF. Let S be C*-embedded in X.

Necessity. Given a zero-set Z(h) in X, disjoint from S, put f(s) =
1/h(s) for s € S. 'This defines f as a continuous function on S. Let g
be a continuous extension of f to all of X. Then gk belongs to C(X),
and 1s equal to 1 on S and to 0 on Z(A).

Sufficiency. Consider any function f in C(S). Then arctane f
belongs to C*(S), and so has an extension to a function g in C(X).
The set

Z={xeX:|g(x) = n/2}

belongs to Z(X), and 1s disjoint from S. By hypothesis, there 1s a
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function % in C(X) satisfying A[S] = {1}, #[Z] = {0}, and |A| = 1.
The function gh then agrees with arctan o fon S, and satisfies |(gh)(x)| <
w[2 for every x. Hence tan o (gh) is a real-valued, continuous extension

of f to all of X.

1.19. In particular, every closed set in R is C-embedded. This
leads to the following special sufficient condition for a set S in X to be

C-embedded.

THEOREM. If there exists a function in C(X) that carries S homeo-
morphically onto a closed set in R, then S 1s C-embedded in X.

PROOF. Let 4 denote the postulated function in C(X). Then
0 = (h|S)~ is a continuous mapping from H = A[S] onto S, with
0(h(s)) = s (for s € §). Consider, now, an arbitrary function f in C(.S).
The composition fo 0 belongs to C(H). ©Since H is closed in R, by
hypothesis, 1t is C-embedded, and so there is a function g in C(R) that
agrees with fo0 on H. Then go h is In C(X), and for all s € S, we

have

(8 © h)(s) = f(O(A(s))) = f(s),

1.e., g o h 1s an extension of f.

1.20. CoroLLARY. Let E < X, and suppose that some function h in

C(X) 1s unbounded on E. Then E contains a copy of N, C-embedded in X,
on which h approaches infinity.

1.21. CoroLLARY. X s pseudocompact if and only if 1t contains no
C-embedded copy of N.

N
\\

PROBLEMS

1A. CONTINUITY ON SUBSETS.
Let f € RX,
1. If the restriction of f to each of a finite number of closed sets, whose

union is X, is continuous, then f is continuous.
2. If the restriction of f to each of an arbitrary number of open sets, whose

union is X, 1s continuous, then f 1s continuous.

3. Let & be a family of closed sets whose union is X and such that every
point of X has a neighborhood that meets only finitely many members of ..
(& is then said to be locally finite.) If the restriction of f to each member of
& 1s continuous, then f 1s continuous.

1B. coMPONENTS OF X.

1. In C(X) (or C*(X)), all positive units have the same number of square
roots.
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2. X 1s connected if and only if 1 has exactly two square roots.

3. For finite m, X has m components if and only if 1 has 2™ square roots.
For infinite m, the statement 1s false. [Consider the subspace {1,%, - - -,
1/n, - -, 0} of R.]

4. X is connected if and only if 0 and 1 are the only idempotents in C(X).

5. If X 1s connected, then C(X) is not a direct sum of any two rings
(except trivially).

6. If X is the union of disjoint nonempty open sets A and B, then C(X) is
isomorphic to the direct sum of C'(A4) and C(B).

1C. C aAND C* FOR VARIOUS SUBSPACES OF R.

Consider the subspaces R, Q, N, and N* = {1,1,, ..-, 1/n, ---, 0} of
R, and the rings C and C* for each of these spaces. Each of these rings is
of cardinal ¢.

1. For each m £ X,, each ring on R, N, or N* contains a function having
exactly 2™ square roots. If a member of C'(Q) has more than one square
root, it has ¢ of them.

2. C(R) has just two idempotents, C'(IN*) has exactly X,, and C(Q) and
C(N) have c.

3. Every nonzero idempotent in C(Q) 1s a sum of two nonzero i1dem-
potents. In C(N), and in C(N*), some, but not all idempotents have this
property.

4. Except for the obvious identity C(N*) = C*(N*), no two of the rings in
question are isomorphic.

5. Each of C(Q) and C(N) is isomorphic with a direct sum of two copies of
itself. C(N*) 1s isomorphic with a direct sum of two subrings, just one of
which 1s 1somorphic with C(N¥*).

6. The ring C(R) is isomorphic with a proper subring. [Consider the
functions that are constant on [0,1].] But C'(R) has no proper summand.

1D. DIVISORS OF FUNCTIONS.

1. If Z(f) is a neighborhood of Z(g), then f is a multiple of g—that 1s,
f = hg for some h e C. Furthermore, if X — int Z(f) is compact, then %
can be chosen to be bounded. [Define A(x) = f(x)/g(x) for x ¢ int Z(f), and
h(x) = 0 for x € Z(f), and apply 1A.1.]

2. Construct an example in which Z(f) > Z(g), but f i1s not a multiple
of g.

3. If |f| < |g|” for some real » > 1, then f is a multiple of g. [Define
h(x) = f(x)/g(x) for x ¢ Z(g), and h(x) = O otherwise.] Hence if |f| < |g|,
then f7 1s a multiple of g for every » > 1 for which f7 is defined.

1E. uNITS.
1. Let fe C. There exists a positive unit # of C such that

(=1 VvV f)Al=u.
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2. The following are equivalent.
(1) For every f € C, there exists a unit # of C such that f = u|f|.
(2) For every g € C*, there exists a unit v of C* such that g = v|g|.
[(1) smplies (2). g = u|g| for some unit u of C; consider pos # and neg w.]
3. Describe the functions fin C(N) for which there exists a unit » of C'(N)
satisfying f = u|f|. Do the same for C(Q) and C(R).
4. Do the same for the equation f = k|f|, where & belongs to C but is not
necessarily a unit.

1F. C(-EMBEDDING.

1. Every C*-embedded zero-set 1s C-embedded.
2. Let S X ; if every zero-set in S 1s a zero-set in X, then S i1s C*-em-
bedded i1n X.

3. A discrete zero-set 1s C*—embedded if and only if all of its subsets
are zero-sets.

4. A subset S of R is C-embedded [resp. C*-embedded] if and only if 1t 1s
closed. [A point of cl § — § 1s the limit of a sequence in S.]

5. If a (nonempty) subset S of X i1s C-embedded in X, then C(S) 1s a
homomorphic image of C'(X). The corresponding result holds for C*.

1G. PSEUDOCOMPACT SPACES.

1. Any continuous image of a pseudocompact space 1s pseudocompact.

2. X 1s pseudocompact if and only if f[X] 1s compact for every f in C*(X).

3. Let X be a Hausdorff space. If, of any two disjoint closed sets, at least
one is compact, or even countably compact, then X is countably compact.
[A Hausdorfl space 1s countably compact if and only if every infinite set has a
limit point.] N

4. If, of any two disjoint zero-sets in X, at least one i1s compact, or even
pseudocompact, then X 1s pseudocompact. [If C # C¥*, then some function
f in C assumes the values 0 and 1 infinitely often on a C-embedded copy of
N.] (But X need not be countably compact; see 8.20.)

1H. BASICALLY AND EXTREMALLY DISCONNECTED SPACES.

A space X is said to be extremally disconnected if every open set has an
open closure; X 1is basically disconnected if every cozero-set has an open
closure. Hence any extremally disconnected space 1s basically disconnected.
(The converse fails; see 4N.)

1. X 1s extremally disconnected if and only if every pair of disjoint open
sets have disjoint closures. What is the analogous condition for basically
disconnected spaces?

2. In an extremally disconnected space, any two disjoint open sets are
completely separated. In a basically disconnected space, any two disjoint

cozero-sets are completely separated; equivalently, for every f € C, pos f and
neg f are completely separated.
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3. If X is basically disconnected, then for every f € C, there exists a unit »
of C such that f = u|f|.

4. Every dense subspace X of an extremally disconnected space T 1is
extremally disconnected. In fact, disjoint open sets in X have disjoint
open closures in 7.

5. Every open subspace of an extremally disconnected space is extremally
disconnected. (A closed subspace, however, need not even be basically
disconnected ; see 6W.)

6. X 1s extremally disconnected if and only if every open subspace is
C*-embedded. [Necessity. Apply Urysohn’s extension theorem, invoking

2. Sufficiency. Apply 1.}

1I. ALGEBRA HOMOMORPHISMS.

Let t be a (ring) homomorphism from C(Y) or C*(Y) into C(X).

1. tr = r-tl1 foreach» e R. [Foreach x € X, the mapping » — ({r)(x) is a
homomorphism from R into R, and hence is either the zero homomorphism
or the identity (0.22). Also, (t1)(x) = 0 or 1.]

2. t 1s an algebra homomorphism, i.e., t(rg) = r-tg for all » e R and

ge C(Y).

1J. PRESERVATION OR REDUCTION OF NORM.

For f € C*(X), define ||f| = sup,.x |f(x)|-

1. |fll = inf{r e R:|f] < r}.

2. If t is a nonzero homomorphism of C*(Y) into C*(X), then ||tr|| = |7|.
[11.1.]

3. tr < rforr = 01n R.

4. |tg]l < ||gll for every g € C*(Y). [Theorem 1.6.]

5. Iftg =< r,then tg < tr. [11.1]

6. If t is an ésomorphism into C*(X), then ||tg| = ||g| for all g € C*(Y).

[If | g|| > 7, then |g] # |g] A r.]



Chapter 2

IDEALS AND =z-FILTERS

2.1. Continuing our study of the relations between algebraic
properties of C(X) and topological properties of X, we now examine
the special features of the family of zero-sets of an ideal of functions.
Such a family turns out to possess properties analogous to those of a
filter ; this fact will play a central role in the development.

We recall that a proper subset I of C is an i1deal in C provided that /
is a subring such that gf € I whenever f € I, for arbitrary ge C. A
subset having these algebraic properties is a proper subset if and only if
it contains no unit. We shall occasionally refer to the ring C itself as an
improper ideal. Thus, the word ideal, unmodified, will always mean
proper ideal.

The intersection of any nonempty family of ideals is an 1deal. Every
ideal is embeddable in a maximal ideal. Every maximal ideal M 1s prime,
that 1s, if fg € M, then fe M or g € M.

The smallest ideal (perhaps improper) containing a given collection of
ideals /,- - -, and elements f,- - -, is denoted by

(],...,f,...)_

It consists of all elements of C expressible as (finite) sums 7 + - - - +
sf +---, wherez € I,---, and where s,- - - are arbitrary functions in C.
Corresponding remarks apply to C* (in fact, to any commutative

ring with unity element). Evidently, if J1sanidealin C,then/ n C*1s
an 1deal in C*.

2.2. A nonempty subfamily & of Z(X) 1s called a 2-filter on X
provided that

() 9¢ 7,
(1) if Z,, Z,e #,then Z, n Z,€ ¥ ; and

(i) f Ze F,2"' € £(X),and 2" o Z, then 2" € Z.
24
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By (111), X belongs to every 2-filter. Because of (111), (11) may be replaced
in the above list by

(n) if Z,, Z,€ &, then Z, n Z, contains a member of #.

Every family & of zero-sets that has the finite intersection property is
contained in a z-filter: the smallest such is the family & of all zero-sets
containing finite intersections of members of #. We say that %
generates the z-filter #. When 4 itself is closed under finite inter-
section, it 1s called a base for #.

The above definition is, of course, an analogue of the familiar defini-

tion of filter: a nonempty family of subsets of X, closed under the forma-
tion of finite intersections and of supersets, and that does not contain the

empty set. A z-filter 1s a topological object, while a filter 1s a purely
set-theoretic one. In a discrete space, every set 1s a zero-set, so that
filters and z-filters are the same in discrete spaces.

In any space X, the intersection with Z(X) of any filter 1s a z-filter.

Conversely, if #' 1s the smallest filter containing a given z-filter # (1.e.,
Z is a base for #'), then #' n Z(X) = £.

2.3. 'THEOREM.
(a) If I 1s an 1deal in C(X), then the family

| Z[1) = (Z(f):f e I
is a 3-filter on X.

(b) If &# 1s a z-filter on X, then the family

Z[#] = {f: Z(f) e F)
1s an ideal 1n C.

PROOF. (a). (1). Since / contains no unit, ) ¢ Z[[].

(1). Let Z,, Z,€ Z[I]. Let f,, o€l satisty Z, = Z(f,), Z, =
Z(f,). Since I is an 1deal, f,2 + f,2€ I. Hence

Z, N Zy = Z(f% + f,?) € Z[I].

(i11). Let Ze€ Z[I], and Z' € Z(X). Let fel, f'eC satisty
Z = Z(f), Z' = Z(f"). Since I is an 1deal, we have ff' € I. Hence 1if
/' o Z, then

7' =2 Z = Z(f) e Z[I].

(b). LetJ = Z<[#]. By 2.2(1), J contains no unit. Let f, g € J,
and let # € C. Then

Z(f —g) > 4(f).n 4(g) e Z,

by 2.2(11),and Z(hf) = Z(f)e &#. Hence Z(f — g)e & and Z(hf)e Z,
by 2,2(ii1). Therefore f — g e Jand Af € J. 'Thus, J1s an 1deal in C.
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REMARK. In particular, (f,g) # C if and only if Z(f) meets Z(g),
hence if and only if f2 + g2—or [f| + |g|—is not a unit of C.

2.4. Like any mapping, Z satisfies (for # < Z(X))
Z[Z[#]] =% and Z<[Z[I]] > L

The first relation implies that every z-filter 1s of the form Z[J] for some
ideal Jin C. In the second relation, the inclusion may be proper, as the
following example shows.

EXAMPLES. Consider the principal ideal 7 = (1) in C(R) (1 denoting
the identity function on R). This consists of all functions f in C(R)
such that f(x) = xg(x) for some g € C(R). In particular, every func-
tion in / vanishes at 0. Hence every zero-set in Z[/] contains the point
0. As a matter of fact, since Z[7] 1s a z-filter that includes the set {0},
it must be the family of all zero-sets containing 0. Additional prop-
erties of the ideal (1) are given in 2H.

The ideal M, = Z<[Z][I]] evidently consists of all functions in C(R)
that vanish at 0. Hence M, certainly contains /. However, M, # 1.
For instance, 1 e M, — I. That 1 € M, 1s obvious. Andif 1% € 1,
then 1% = gi for some g € C(R); but then g(x) = x=% for x # 0, so that
g cannot be continuous at 0.

Note that Z[M,] = Z][I], in spite of the fact that M, # I.

Finally, we observe that M|, is a maximal ideal. For, if f ¢ M, then
Z(f) 1s disjoint from Z(1), whence we have (M, f) @ (1, f) = C (see
2.3, REMARK).

The analogue of Theorem 2.3(a), with C'* in place of C, 1s false, in
general. If J1s an ideal in C*, then Z[J] does satisty the properties
(11) and (ii1) of a z-filter (as the proof of (a) shows); hawever, (1) need not
hold. For example, the set J of all sequences that converge to zero is
obviously an ideal in C*(N); but since j € J, and Z(j) = 0, it follows
that @ € Z[J], and hence that Z[J] 1s the family Z(N) of all subsets of
N. Observe that J is not an 1deal in C'; in fact, j 1s a unit of C.

2.5. By a z-ultrafilter on X is meant a maximal z-filter, 1.e., one not
contained in any other z-filter. Thus, a z-ultrafilter 1s a maximal
subfamily of Z(X) with the finite intersection property. It follows
from the maximal principle (0.7) that every subfamily of Z(X) with the
finite intersection property is contained in some z-ultrafilter.

In a discrete space, z-ultrafilters are the same as ultrafilters, 1.e.,
maximal filters.

'THEOREM.
(a) If M is a maximal ideal in C(X), then Z[M] is a z-ultrafilter on X.
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(b) If o 15 a z-ultrafilter on X, then Z<[ | is a maximal ideal in C.

The mapping Z 1s one-one from the set of all maximal ideals in C onto
the set of all z-ultrafilters.

PROOF. Since Z and Z< preserve inclusion, the result follows at
once from Theorem 2.3.

As we saw 1n 2.4, we cannot conclude that an 1deal 1s maximal from
the fact that its z-filter 1s maximal.

2.6, 'THEOREM.

(a) Let M be a maximal ideal in C(X); 1f Z(f) meets every member of
Z[MY], then f € M.

(b) Let & be a z-ultrafilter on X; 1f a zero-set Z meets every member
of A, then Z € A.

PROOF. By Theorem 2.5, the two statements are equivalent. In
(b), &/ U {Z}generates a z-filter. As this contains the maximal z-filter
&, 1t must be .

The properties stated in the theorem are, in fact, characteristic of
maximal ideals and z-filters: if a z-filter &7 contains every zero-set that
meets all members of &7, then, clearly, 27 1s a z-ultrafilter.

-IDEALS AND PRIME IDEALS

2.7. An ideal I in C(X) is called a z-ideal 1t Z(f) € Z[I] implies
f € I—that 1s to say, it I = Z~[Z][I]].

If # 1s a z-filter, then Z<[Z# ] 1s a z-1deal (since F = Z[Z<[F]]).
Hence if J1s any ideal in C, then I = Z<[Z[J]] 1s a z-1deal; clearly, I is
the smallest z-1deal containing J.

It 1s evident that every maximal ideal is a z-1deal.

The intersection of an arbitrary (nonempty) family of z-i1deals 1s a
z-1deal.

The mapping Z 1s one-one from the set of all z-1deals onto the set of
all z-filters. 'The discussion in 2.4 shows that the principal ideal (1) in
C'(R) is not a z-1deal. If S 1s a nonempty set, in any space X, then the
family of all functions in C'(X) that vanish everywhere on S is a z-1deal.

In C(N), every 1deal I 1s a z-1deal. For, suppose that Z(f) = Z(g),
where g € I. Define 4 as follows: A(n) = 0 for n € Z(g), and h(n) =
f(n)/g(n) tor n ¢ Z(g). Since N 1s discrete, ~ i1s continuous. Evi-
dently, f = hg. Therefore fe I. (Compare 1D.1.)

2.8. 'THEOREM. Every z-ideal in C(X) 1s an intersection of prime
ideals.
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PROOF. Z(f") = Z(f) for every n € N. Hence if [/ is any z-ideal,
then f» € I implies f € I. But this property characterizes [ as the inter-
section of all the prime i1deals containing 1t (0.13).

It 1s not obvious from the definition whether 2-1deals can be described
as algebraic objects in the ring C(X). It will turn out later that they
can be (see 4A.5). Some algebraic information has already been
obtained: every intersection of maximal ideals 1s a z-ideal, and every
z-1deal 1s an intersection of prime 1deals.

The converses are not true, however. As an example of a z-ideal
that 1s not an intersection of maximal 1deals, consider the set O, of all
functions f in C(R) for which Z(f) is a neighborhood of 0. Evidently,
O, is a z-1deal, and 1t 1s contained properly in the maximal ideal M, of
all functions that vanish at O (see 2.4). Note that every neighborhood
of 0 contains a zero-set-neighborhood of 0, 1.e., a member of Z[O,].
Now, if [ i1s any ideal containing O, then Z[O,] < Z[[]; hence every
member of Z[/] meets every neighborhood of 0, and therefore contains
0. It follows that I <« M,. 'This shows that M, is the on/y maximal
ideal containing O,. Therefore O, is not an intersection of maximal
1deals.

Incidentally, since O, 1s an intersection of prime i1deals—all of which
must be contained in M,—we have established the existence of non-
maximal, prime ideals in C'(R). h

In order to show that the converse of the theorem is not valid, 1t 1s
enough to find a single prime 1deal that 1s not a 2-ideal. A construction
1s outlined 1n 2G.1.

The next theorem clarifies to some extent the relation between prime
ideals and z-1deals.

2.9. THEOREM. For any z-ideal I in C, the following are equivalent.

(1) 1 1is prime.

(2) I contains a prime ideal.

(3) Forallg,he C,if gh =0, thenge lor h el

(4) For every f e C, there is a zero-set in Z[I] on which f does not
change sign.

PROOF. (1) implies (2). 'Trivial.

(2) implies (3). 1f I contains a prime ideal P, and gh = 0, then gh € P,
whence either g or 4 1s in P and hence in 1.

(3) implies (4). It suffices to observe that (f v 0)(f A 0) = 0 for
every f € C.

(4) implies (1). Given gh e I, consider the function |g| — |A].
By hypothesis, there is a zero-set Z of I on which |g| — |A| is
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nonnegative, say. Then every zero of ¢ on Z 1s a zero of A.
Hence

Zh) > Z n Zh) = Z n Z(gh) e Z|1I],
so that Z(h) € Z[I]. Since I is a z-ideal, h € I. Thus, I is prime.

2.10.
If J and J' are 1deals, neither containing the other, then J n J' 1s
not prime.
In fact, this holds in any commutative ring. For, whena € J — J' and
a €J' — J, then neither a nor a’ belongsto J n J',butaea" e J n J'.

EXAMPLE. We saw in 2.4 that the set of all functions in C(R) that
vanish at O 1s a maximal ideal. A similar proof shows that the set of all
functions vanishing at 1 is a maximal ideal. Let / denote the inter-
section of these 1deals, 1.e., 1 1s the z-1deal of all functions that vanish at
both 0 and 1. By the above, / is not prime. (In the proof, we may
take, for example,a = i,anda’ = 1 — 1.) By Theorem 2.9, the z-ideal
I contains no prime ideal.

The next theorem generalizes this result to arbitrary maximal ideals

in C(X), for any X.

2.11. 'THEOREM. Every prime ideal in C(X) is contained in a unique
maximal 1deal.

PROOF. We know that every ideal is contained in at least one maximal
ideal. If M and M’ are distinct maximal 1deals, their intersection is a
z-1deal (since M and M’ are z-1deals), but it 1s not prime (2.10); by
Theorem 2.9, M n M’ contains no prime ideal.

The corresponding theorem is valid for C*, but we shall not prove it
here. The conclusion will follow from the general result stated in

6.6(c).
2.12. By a prime z-filter, we shall mean a z-filter &# with the follow-

ing property: whenever the union of two zero-sets belongs to #, then
at least one of them belongs to #.

'T'HEOREM.

(a) If P 1s a prime ideal in C(X), then Z[P] 1s a prime z-filter.

(b) If & 1s a prime 3-filter, then Z<[F] is a prime z-1deal.

PROOF. (a). Let Q = Z<[Z[P]]. Then Z[Q] = Z[P],and Qisa

z-1deal containing the prime ideal P. By Theorem 2.9, O is prime.

Suppose, now, that Z(f) U Z(g) € Z[P]. 'This implies that Z(fg) €
Z[Q]; theretore fg belongs to the z-ideal (. Since Q i1s prime, i1t
contains f, say. Then Z(f) € Z[Q] = Z[P].
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(b). We know that the ideal P = Z<[#]1is a z-1deal. Suppose that
fg € P. Then

Z(fe) = Z(f) U Z(g) € Z[P] = F.

By hypothesis, Z(f), say, belongs to Z[P]. Then f belongs to the
z-1deal P.

2.13. It follows that a prime z-filter i1s contained i1n a unique
z-ultrafilter.

Since every maximal ideal in C is prime, every z-ultrafilter i1s a prime
z-filter. 'This can be seen more directly. If zero-sets Z and Z’ do not
belong to a z-ultrafilter 27, then, by Theorem 2.6(b), there exist A, A" €
o/ such that Z n A=2"n A" =0. Then Z U Z’ does not meet
the member A N A’ of &7, and hence does not belong to 7.

In a discrete space X, there is no difference between prime and
maximal, i.e., every prime filter % is an ultrafilter. For, it A ¢ %, then

X — A e %; hence A cannot be adjoined to %.

2.14. 'The correspondences between z-filters on X and ideals in
C(X) that have been established in this chapter are po\werful tools in the
study of C(X). These correspondences, which also occur 1n a rudi-
mentary form in C* (e.g., in Theorem 2.3(b), Z<[#] n C* is an 1deal
in C'*), are inconsequential there, as many of the theorems of the chapter
become false if C is replaced by C*.

However, there i1s another correspondence, between a certain class of
z-filters on X and ideals in C*(X), that leads to theorems quite analo-
gous to those for C. 'The requisite information is outlined 1in 2L.. It
is worth noting that the theory is far more complicated for C* than tor C.

The development in 2L discloses a natural one-one correspondence
between the maximal ideals in C and those in C* (2L..16). In the text
itself, we will not arrive at this correspondence until Chapter 7, at which
time its significance will be clearer.

PROBLEMS

2A. BOUNDED FUNCTIONS IN IDEALS.

The functions f and (—1 VvV f) A 1 belong to exactly the same 1deals in
C. [1E.1.] Hence every ideal in C has a set of bounded generators.

2B. PRIME IDEALS.

1. An ideal P in C 1s prime if and only if P N C* 1s a prime 1deal in C*.
[1E.1.]
2. If P and Q are prime 1deals in C, or in C*, then PO = P n Q (by
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definition, the product IJ of two ideals is the smallest ideal containing all
products fg, where fe Iand g e J). [If fe P, then f% € P.] In particular,
P? = P. Hence M? = M for every maximal ideal M in C or C*.

3. Anideal I in a commutative ring is an intersection of prime ideals if and
only if a% € I implies a € 1.

2C. FUNCTIONS CONGRUENT TO CONSTANTS.

1. Let I be an 1deal in C; if f = r (mod I), then r € f[ X].
2. Let I be an 1deal in C*; if f = r (mod I), then 7 € clg f[X].

2D. =2-IDEALS.

1. Let I be a z-ideal in C, and suppose that f = r (mod I). If g(x) = 7
wherever f(x) = 7, then g = r (mod I).

2. If f2 + g2 belongs to a z-ideal I, then fe I and g € I.

3. It I and J are z-1deals, then IJ =1 n J. Compare 2B.2.

4. Z[(1, J)] 1s the set of all Z, N Z,, where Z, € Z[I] and Z, € Z[J].

2E. PRIME 2-FILTERS.

The following are equivalent for a z-filter #.

(1) &# 1s prime.

(2) Whenever the union of two zero-sets is all of X, at least one of them
belongs to .

(3) Given Z,, Z, € Z(X), there exists Z € # such that one of Z N Z,,
Z N Z, contains the other.

2F. FINITE SPACES.

Let X be a finite discrete space. In C(X):
1. f1s a multiple of g if and only if Z(f) > Z(g).
2. Every 1deal 1s a z-1deal.
3. Every ideal i1s principal, and, in fact, is generated by an idempotent.
4. Every ideal i1s an intersection of maximal ideals. The intersection of all
the maximal ideals is (0).
5. Every prime ideal 1s maximal.

2G. PRIME vs. 2-IDEALS IN C(R).

1. Select a function /1n C(R) such that /(0) = 0, while lim,_,, ["(x)/x = o0
for all n e N. Apply 0.17 to construct a prime ideal in C(R) that contains 1

but not /. This prime 1deal is not a z-ideal (and hence is not maximal).

2. Let O, denote the 1deal of all functions f in C'(R) for which Z(f) is a
neighborhood 0of 0. Define s in C'(R) as follows: s(x) = x sin (#/x) for x # 0,
and §(0) = 0. Then (O,, s) 1s not a 2-1deal; and the smallest 2-1deal con-
taining (Q,, §) 1s not prime.
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2H. THE IDENTITY FUNCTION 1 IN C(R).

1. The principal ideal (i) in C(R) consists precisely of all functions in C(R)
that vanish at 0 and have a derivative at 0. Hence every nonnegative func-
tion in (1) has a zero derivative at 0.

2. (i) 1s not a prime-ideal; in fact, (1)% # (i). (See 2B.2.)

3. The ideal (i, |i|) is not principal. [If (i, |i|]) = (d), there exist g, h € C
such thati = gd and |i| = hd. It follows that g(0) = #(0) = 0. Moreover,
there exist s, € C such that si + t|i| = d. Thisimpliesthatsg + th = 1, a

contradiction. ]
4. Exhibit a principal ideal containing (i, |i|).

2I. C(Q) anD C*(Q).

The set of all f in C(Q) for which lim, . f(x) = 0 1s not an 1deal in C(Q).
But the bounded functions in this set do constitute an ideal in C'*(Q).

2J. 1DEAL cHAINs IN C(R), C(Q), AND C(N).

1. Find a chain of 2-1deals in C'(R) (under set inclusion) that is in one-one,
order-preserving eorrespondence with R itself. )
2. Find a chain of z-ideals in C'(Q) in one-one, order-preserving cor-

respondence with R.
3. Do the same for C(N).

2K. 2-FILTERS AND C¥*,

If M is a maximal ideal in C*, and Z[M] 1s a =z-filter, then Z[M] 1s a
z-ultrafilter.

21.. e-FILTERS AND e-IDEALS.

This problem contains an outline for a theory of z-filters applicable to
C*. For fe C* and € > 0, we define

E(f) = f<ll—e ] = {&: |[f(®)] < &

Every such set 1s a zero-set; conversely, every zero-set is of this form:

Z(g) = E(e + |g|). For I < C¥*, we write
E(I) = (E(f):fe L, > O,
i.e., E(I) = |J. E[I]. Finally, for any family & of zero-sets, we define
E-(#) ={fe C*:. E(f) € # for all ¢ > 0},

that is, E~(#) = (). E.< [#].
1. F 5 E(E~«(F)) = | AE(f): Es(f) e F for all § > 0}. Note that the
inclusion may be proper, even when & 1s a z-filter. [Let # be the z-filter of

all zero-sets in R that contain 0.]
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2. A z-filter & 1s called an e-filter if E(E-(#)) = %. Hence & i1s an
e-filter if and only if, whenever Z € &, there exist f and e such that Ei(f) € #
for every 6 > 0, and Z = E_(f).

3. I < E~(E(l)) ={f: E(f)€ E(I)forall e > 0}. Note that the inclusion
may be proper, even when [ is an ideal. [Let I be the ideal of all functions in
C*(R) that vanish on a neighborhood of 0, and consider any function that
vanishes precisely at 0. Alternatively, take I = (j2) in C*(N), and consider

the function j.]
4. An ideal I in C* 1s called an e-ideal if E-(E(I)) = I. Hence I is an

e-ideal if and only if, whenever E(f) € E(I) for all ¢ > 0, then f € I. Inter-
sections of e-ideals are e-1deals.

5. If I'is an ideal in C*, then E([) is an e-filter. [Verify (1), (11") and (i11) of
2.2. For (), let Z(f') > E(f), where f" € C* and fe I, with f* = 0 and
f=0. Define g(x) =1tforxe E(f), and

g(x) = f'(x) + €/f(x)

for x ¢ E(f). Then ge C¥* and Z(f') = E(fg).] The corresponding
result holds in C.

6. If # is any z-filter, then E-(%) 1s an ideal in C*. Note, however, that
the corresponding result may fail in C, even if & is an e-filter. [Let &
consist of the complements of the finite sets in N, and consider the function j.]

7. I < Jimplies E(I) < E(J), and # < % implies E-(#) < E~(9).

8. If J 1s an e-ideal, then I < J if and only if E(I) < E(J). If # is an
e-filter, then # < % if and only if E-(#) < E~(9).

9. If # is any e-filter, then E-(&) is an e-1deal. If I is any ideal in C*,
then E~(E([)) 1s the smallest e-ideal containing I. In particular, every
maximal ideal in C* 15 an e-ideal.

10. For any z-filter 4, E(E—(%)) 1s the largest e-filter contained in .

11. If &7 1s a z-ultrafilter, and a zero-set Z meets every member of
E(E-(&7)), then Z € &/. [Theorems 2.6(b) and 1.15.]

12. A maximal e-filter 1s called an e-ultrafilter. Every e-filter 1s contained
in an e-ultrafilter.

13. 1f M* 1s a maximal 1deal in C*, then E(M¥*) is an e-ultrafilter; and if &
is an e-ultrafilter, then E—(&) is a maximal ideal in C*. [9.] Hence the
correspondence M* — E(M*) 1s one-one from the set of all maximal ideals
in C* onto the set of all e-ultrafilters.

14. The following property characterizes an ideal M* in C* as a maximal
1deal: given f € C'*, if every E_(f) meets every member of E(M*), then f € M*.
[(M*,f) = C* if and only if some Ef) fails to meet some member of
E(M¥).]

15. If &7 1s a z-ultrafilter, then it is the unique =z-ultrafilter containing
E(E-(&7)). [I11.] Moreover, E(E-(£7))is an e-ultrafilter, and it is the unique
one contained 1n /. [10.] Hence the correspondence &/ — E(E—(27)) is
one-one from the set of all z-ultrafilters onto the set of all e-ultrafilters.
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16. 1t <7 1s a z-ultrafilter, then E—(27) 1s the maximal 1deal
E~(E(E~(+)))
in C'*. Hence the correspondence
M — E-(Z[M])

1s one-one from the set of all maximal ideals in C onto the set of all maximal
tdeals in C*. Its inverse is the correspondence M* — Z<[.2/], where &7 1s
the unique z-ultrafilter containing the e-ultrafilter E(M*).

2M. THE UNIFORM NORM TOPOLOGY ON (%,

Let C’ be a subring of C'(X) on which a topology has been defined.
Then C’ 1s called a topological ring if both addition and ring multiplication
are continuous (from C’ x C’ into C’). If C’ contains the constant func-
tions, then it 1s a topological vector space if both addition and scalar multipli-
cation (the latter being the mapping (7, g) — rg from R x C’ into C’) are
continuous. If C'’ 1s both a topological ring and a topological vector space,
1t 1s called a topological algebra. \

By a norm is meant a mapping f— | f| into R, satisfying: || f|| = O,
If] = 0if andonlyif £ = O, |f + g] = /] + |el, and [#f] = 7I-I/]- A
metric d is defined from the norm, as usual, by: d(f,g)=|f—¢g|. A
Banach algebra is a complete normed algebra whose norm satisfies: || fg|| <
111l

1. In any topological ring, the closure of an ideal is either an ideal or the
whole ring.

2. A norm on C¥* is given by: | f| = sup,cx |f(x)]. The resulting metric
topology 1s called the uniform norm topology on C*. Convergence in this
topology 1s uniform convergence of the functions. A base for the neighbor-
hood system at g consists of all sets of the form

f:lg—fl = ¢ (€ > 0).

Equivalently, a base at g is given by all sets

{leg_.ﬂ éu}’

where u 1s a positive unit of C'*,

3. C* 1s a Banach algebra.

4. The closure of every ideal is a (proper) ideal. [If 1 € cl Z, then I con-
tains a unit.] Hence every maximal ideal 1s closed.

9. Every e-ideal (2L) 1s closed. (Hence every maximal ideal is closed.)
[Given g € cl I, and € > O, there exists f € I such that |[¢g — f| = e. Then
E,(g) @ E(f).] (It will be seen subsequently (6A.2) that every closed ideal
1s an 1ntersection of maximal ideals. It follows that the closed ideals are
precisely the e-ideals [2L.4].)

6. The topology of uniform convergence can also be defined on C, the
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neighborhood system at g being as described in 2. However, C will not be

either a topological ring or a topological vector space unless X is pseudo-
compact.

2N. THE m-TOPOLOGY ON C.

The m-topology is defined on C'(X) by taking as a base for the neighbor-
hood system at g all sets of the form

{fECZIg—fI éu}a

where u 1s a positive unit of C. The same topology results if it is required
further that » be a bounded function.

1. C 1s a topological ring.

2. The relative m-topology on C* contains the uniform norm topology
(2M), and the two coincide if and only if X 1s pseudocompact. In fact, when
X 1s not pseudocompact, the set of constant functions in C'* is discrete (in
the m-topology), so that C'* 1s not even a topological vector space.

3. The set of all units of C is open, and the mapping f— f~! is a homeo-
morphism of this set onto itself.

4. The subring C* 1s closed.

5. The closure of every ideal is a (proper) ideal. Hence every maximal
1deal 1s closed. Every maximal ideal in C* is closed.

6. Every closed 1deal in C 1s a 2-1deal. [Given Z(f) = Z(g), with g € I,
and given u, define A(x) = O for | f(x)| = u(x), and

Lo f@) + u(x)
# 8(x)
otherwise.]
7. In the ring C(R), the 2-1deal O, of all functions that vanish on a neigh-
borhood of 0 1s not closed. [i € cl O,.]



Chapter 3

COMPLETELY REGULAR SPACES

3.1. Up to this point in the text, we have not assumed any separation
axioms for the topological space on which our ring of continuous
functions 1s defined. Indeed, separation axioms were irrelevant to
most of the subjects discussed. We have now reached the stage where
separation properties of the space do enter in an essential way, so that
we are forced to make a decision about what class or classes of spaces
to consider. We have no desire to become involved in finding the
weakest axiom under which each theorem can be proved, but prefer, if
possible, to stick to a single class of topological spaces that is wide enough
to include all of the interesting spaces, and, at the same time, restrictive
enough to admit a significant theory of rings of continuous functions.

The class of completely regular spaces exactly fulfills this requirement.
A space X is said to be completely regular provided that it is 2 Hausdorff
space such that, whenever F' is a closed set and x is a point in its comple-
ment, there exists a function fe C(X) such that f(x) = 1 and f[F]
= {0}—in short, F and {x} are completely separated. A simple but
important consequence 1s that every subspace of a completely regular
space 1s completely regular. Another is this: in a completely regular
space, if f(x) = f(y) for all f € C, then x = y.

It 1s obvious that every metric space is completely regular. In
particular, R and all its subspaces are completely regular.

Since complete regularity is defined in terms of the existence of
continuous functions, 1t 1s not surprising that it should be a useful
concept in our study. What 1s remarkable i1s that completely regular
spaces have so many other desirable properties. For example, they are
precisely the subspaces of compact spaces (Theorems 3.14 and 6.5);
and they are precisely the spaces that admit Hausdorff uniform
structures (‘Theorem 15.6).

Normal spaces have additional properties that are useful in the study
36
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of rings of continuous functions. In view of this, it is remarkable how
little 1s gained by imposing upon a completely regular space X the
stronger condition of normality. The contents of this book will attest
to this fact—though 1t must be admitted that a good many of the results
to be presented were first proved for normal spaces.

We can disclose here the system for bypassing the additional hypo-
thesis that X be normal. The fundamental theorem about normal
spaces 1s Urysohn’s lemma (3.13), which states that any two disjoint
closed sets in a normal space are completely separated. In our work,
this result 1s applied essentially once—to yield the vital theorem that
every compact space 1s completely regular.

In dealing with arbitrary completely regular spaces, the key device
1s Theorem 1.15, which states that in any space, disjoint zero-sets are
completely separated. What makes this theorem so serviceable is that
every closed set in a completely regular space is an intersection of
zero-sets (Theorem 3.2).

It 1s well to point out two basic differences between Urysohn’s
lemma and Theorem 1.15. One concerns their content. Urysohn’s
lemma stands alone as a theorem whose conclusion asserts the existence
of a continuous function, but whose hypothesis provides no functions
to work from: in the proof, a function is constructed from ‘‘nothing.”

The second point concerns our application of these theorems. As
we have indicated, Urysohn’s lemma is indispensable—but will rarely
be referred to. For work with completely regular spaces, it is replaced
by Theorem 1.15, which will be invoked over and over again (often
without explicit mention). Notice that Urysohn’s lemma i1s not
replaced by Theorem 1.15 alone, but by the theorem as applied to
completely regular spaces. Complete separation, in terms of existing
functions, 1s provided by the theorem ; existence of the functions in the
first place 1s built into the definition of complete regularity.

Combination of Urysohn’s lemma with Urysohn’s extension
theorem (1.17) yields the conclusion that in a normal space, every
closed set 1s C*-embedded. In the absence of normality, the last
result can often be replaced by the fact that every compact set in a
completely regular space 1s C*-embedded (3.11(c)). The effectiveness
of this device is enhanced by the existence of a compactification of an
arbitrary completely regular space X, in which X 1s C'*-embedded
(Theorem 6.5). Incidentally, section 3.11 provides a good illustration
of how Theorem 1.15 is used.

That nothing can be achieved by considering a wrder class than the
completely regular spaces is the content of Theorem 3.9.
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3.2. It turns out that most of our topological considerations will be
expressed more conveniently in terms of closed sets than, as is more
commonly the case, in terms of open sets. The next theorem shows
why.

A collection Z of closed sets is a base for the closed sets if every closed
set 1n X 1s an intersection of members of %. Equivalently, & is a
base if whenever F is closed and x € X — F, there is a member of %
that contains F but not x.

THEOREM. A Hausdorff space X is completely regular if and only
if the family Z(X) of all zero-sets is a base for the closed sets.

PROOF. [Vecessity. Suppose that X is completely regular. Then
whenever F is a closed set and x € X — F, there exists f € C(X) such
f(x) =1 and f[F] ={0}. Then Z(f)> F, and x¢ Z(f). Con-
sequently, Z(X) is a base.

Suffictency. Suppose that Z(X) is a base. Then, whenever F is
a closed set and x € X — F, there is a zero-set, say Z(g), such that
Z(g) > F and x¢ Z(g). Write » = g(x). Then 7 # 0, and the
tunction f = gr—! belongs to C(X). Evidently, f(x) = 1 and f[F]
= {0}. 'Therefore the Hausdorff space X is completely regular.

As a matter of fact, we have, as in Theorem 1.15:

(a)  Every closed set F in a completely regular space is an intersection
of zero-set-neighborhoods of F.

(b)  Ewvery neighborhood of a point in a completely regular space contains
a zero-set-neighborhood of the point.

3.3. Weak topology. 1t is a triviality that the continuous functions
on X to R are determined by the topology of X. The foregoing theorem
says, in effect, that if X is completely regular, then the converse is also
true: its topology 1s determined by the continuous real-valued functions.

This last statement can be made precise by introducing the notion of
weak topology. Let X now be an abstract set, and consider an arbitrary
subtamily C' of RX. 'The weak topology induced by C' on X is defined
to be the smallest topology on X such that all functions in C’ are
continuous.

Let us see what this means. In order that a function fon X to R be
continuous, it is necessary and sufficient that the preimage under f of
each open set in R be open. Hence in order that every function in C’
be continuous, it is necessary and sufficient that all such preimages, for
all f € C’, be open. Let & denote the collection of all these preimages:
a subset U of X belongs to & if and only if there exist f € C’, and an
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openset V' in R, suchthat U = f<[V]. In particular, we always have
Xe (if C' 1s not empty), since X = f<[R] for any fe C".

But < need not be a topology for X—or even a base for a topology.
For example, if X is a three-element set {a, b, ¢}, and C’ = {[, g}, where
f(a) = g(b) = 0 and f(b) = f(c) = g(a) = g(c) = 1, then {c} is the
intersection of two members of & but contains no nonempty member

of &.
The weak topology generated by C’ is the smallest topology containing
the family <. Therefore, it is the topology for which & is a subbase.

3.4. 'To obtain the weak topology, it is not necessary to consider the
preimages of all the open sets in R: the preimages of basic open sets—in
fact, of subbasic open sets—already constitute a subbase for the weak

topology.
If we consider the base for R consisting of all the e-neighborhoods,

then we see that a subbasic system of neighborhoods for a point x 1n X
1s given by all sets of the form

(2) weX:|f(x) - f(»)] < ¢ (fel’ e>0).

Dually, we may work with closed sets. A family 1s a subbase for the
closed sets if the finite unions of its members constitute a base. Since
the closed rays form a subbase for the closed sets in R, their preimages,

(b) {x e X: f(x) = 7},

and
(b") {x e X: f(x) £ 7} (feC’,r eR),

form a subbase for the closed sets in X. In case —f belongs to C"’
whenever f does—for example, if C’ 1s an additive group—then the
sets 1n (b") are the same as those in (b).

3.5. Suppose, now, that X i1s given as a topological space. A
natural undertaking is to compare its topology with the weak topology
induced by some family C’ of functions. When the weak topology
turns out to coincide with the given one, we shall say that C’ determines
the topology of the space.

If C" = C, then every function in C’ is continuous in the given
topology (by definition of C). Therefore the weak topology is contained
in the given one.

In case C" = C or C' = C*, the sets (b) coincide with the zero-sets

of functions in C’. In fact,

wif(x) 21y =Z(f—1) A0
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so that every such set 1s a zero-set. Conversely, every zero-set has

this form:
Z(f) = {x: — |fl(x) = O}

Since the union of two zero-sets is again a zero-set, the subbase
Z[C] = Z[C*] 1s a base. We summarize all this in the following
theorem, which includes a reformulation of Theorem 3.2.

3.6. THEOREM. Let X be a topological space.

The famihes C(X) and C*(X) induce the same weak topology on X.
A base for its closed sets is the famitly Z(X) of all zero-sets. A basic
neighborhood system for a point x is given by the collection of all sets

weX:|f(x) —fM <  (feC* e>0),

Finally, if X is a Hausdorff space, then X 1s completely regular if and
only if its topology coincides with the weak topology induced by C and C*
(1.e., its topology is determined by C and C¥*).

3.7. 'This last result can be sharpened still further.

THEOREM. If X 1s a Hausdorff space whose topology 1s determined by
some subfamily C’ of RX, then X is completely regular.

PROOF. Clearly, every function in C’1s continuous, 1.e., C’ < C(X).
Hence the weak topology induced by C’ is contained in the weak
topology induced by C. But the latter topology is always contained in
the given topology on the space X. The hypothesis now implies that
the two coincide, and so, by Theorem 3.6, X is completely regular.

3.8. Since the continuous functions determine the topology of a
completely regular space, they determine the continuous mappings
into the space. Precisely:

THEOREM. Let C' be a subfamily of C(Y) that determines the topology
of Y. A mapping o from a space S into Y is continuous if and only if the
composite function g o o is in C(S) for every g € C".

PROOF. Necessity is obvious. To prove the sufhiciency—that o is
continuous—we look at what happens to subbasic closed sets in Y

under o+~. These are given, by hypothesis, as the sets of the form
g<[F], where g € C’, and F 1s a closed set in R. Now,

o [gF]] = (g°0)IF];
and this set is closed in S, since, by hypothesis, g o o 1s continuous.
Therefore o 1s continuous.

3.9. The next theorem eliminates any reason for considering rings
of continuous functions on other than completely regular spaces.
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THEOREM. For every topological space X, there exist a completely
regular space Y and a continuous mapping v of X onto Y, such that the
mapping g — g o 7 1s an 1somorphism of C( Y) onto C(X).

PROOF. Define x = ¥ in X to mean that f(x) = f(x") for every
fe C(X). Evidently, this is an equivalence relation. Let Y be the
set of all equivalence classes. We define a mapping 7 of X onto Y as
follows: 7x 1s the equivalence class that contains x.

With each f e C(X), associate a function g € RY as follows: g(y) is
the common value of f(x) at every point x € y. Thus, f = go 7. Let
C’ denote the family of all such functions g, i.e., g € C’ if and only if
gote C(X). Now endow Y with the weak topology induced by C"’.
By definition, every function in C"’ 1s continuous on Y, 1.e.,, C' < C(Y).
The continuity of 7 now follows from Theorem 3.8.

It 1s evident that if y and y’ are distinct points of Y, then there exists
g € C’' such that g(y) # g(y’). This proves that Y 1s a Hausdorft
space. Hence Y 1s completely regular, by Theorem 3.7.

Finally, consider any function 2 e C(Y). Since = 1s continuous,
hor is continuous on X. But this says that 2 e C’. Therefore,
C’'> C(Y). Thus, C' = C(Y); and 1t 1s clear that the mapping
g — g o 7 is an isomorphism. 'This completes the proot of the theorem.

It 1s equally clear that the mapping g — g o 7 1s a lattice 1somorphism
as well, and that it carries C*(Y) onto C*(X). These conclusions also
follow from Theorems 1.6 and 1.9.

We remark that 7 is not necessarily a quotient mapping, 1.e., the
topology on Y need not be the largest such that r 1s continuous; see
31.2 or 3].3.

As a consequence of the foregoing theorem, algebraic or lattice
properties that hold for all C(X) [resp. C*(X)], with X completely
regular, hold just as well for all C(X) [resp. C*(X)], with X arbitrary.
An example is the result that every residue class ring modulo a prime
ideal 1s totally ordered (Theorem 5.5). We shall make no systematic
attempt to distinguish between those results that are valid only for
completely regular spaces and those of more general validity.

Beginning with Chapter 4, we shall impose the blanket assumption
of complete regularity on all given spaces.

3.10. Products of completely regular spaces. We have defined the
weak topology induced by a family of real-valued functions. More
generally, let X be any set, and let @ be an arbitrary family of mappings
@, of X into topological spacesY ; then the weak topology induced by
® on X is, by definition, the smallest topology in which each ¢, 1s
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3.10

continuous. Again, when the weak topology coincides with a given
topology on X, we say that the latter is determined by ®@. Here, the
spaces Y, need not be all the same. In case each Y, is completely

a

regular, the family of all sets ¢ _<[Z_], where Z_is a zero-setin Y , and
@, € D, 1s a subbase for the closed sets in X.
A particular application is to product spaces. 'The product topology

on X = Xa X, may now be defined as the weak topology induced by

the family of all projections 7,: X — X,. When each X is completely
regular, the collection of all finite unions

Moy 1£1] U -+ U 7, [2,],

where Z), 1s a zero-set in X, is a base for the closed sets in X. We
notice that each such union is a zero-set, because

mo [Lx ()] = Zx(fe ).

/

We conclude that

(a)  An arbitrary product of completely regular spaces is completely
regular

(taking note of the simple fact that a product of Hausdorff spaces is a

Hausdorft space).
If we examine the proof of Theorem 3.8, we find that it does not

depend upon any special properties of R. Thus we have, more
generally:

(b)  Let @ be a family of mappings that determines the topology of a
space X. A mapping o from a space S into X s continuous if and
only if @ o o 15 continuous for every ¢ € ®.

When X 1s given as a product space, this assumes the following
tamiliar form:

(c) A mapping o from a space into a product X = Xa X 15 continuous
if and only if =, o o is continuous for each projection =,

3.11. Complete separation of compact sets. We recall that a Haus-
dorft space is said to be compact provided that every family of closed
sets with the finite intersection property has nonempty intersection.

The separation properties in a completely regular space yield the
following fundamental results.

(a)  In a completely regular space, any two disjoint closed sets, one of
which 1s compact, are completely separated.

Suppose that 4 and A’ are disjoint closed sets, with A compact. For
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each x € A4, choose disjoint zero-sets Z, and Z’,, with Z, a neighbor-
hood of x, and Z’', > A’. The cover {Z,}, . 4 of the compact set A

has a finite subcover, say

(7

xl’ o o

" an}
Then A and A’ are contained in the disjoint zero-sets
Zey U --UZ, and Z', n - nZ°,

respectively.

(b)  In a completely regular space, every G4 containing a compact set S
contains a zero-set containing S.

A G,-set A has the form (), .n U,, where each U, is open. If A > S,
then S 1s completely separated from X — U,, and so there 1s a zero-set

F, satisfying S < F, € U,. 'Then
S<,F, < 4;

and (), F,, as a countable intersection of zero-sets, 1s a zero-set.

In particular, every compact G, in a completely regular space s a
zero-set. Special case: every Gs-point 1s a zero-set.

Compact is an absolute topological concept, not relative (like closed):
a compact space 1s compact in any embedding. Let S be a compact
subspace of a completely regular space X. Completely separated sets
in S have disjoint closures in S. As these closures are compact, they
are, by (a), completely separated in X. Urysohn’s extension theorem

(1.17) now yields:
(c)  Every compact set in a completely regular space is C-embedded.

3.12. Normal spaces. A Hausdorff space X is said to be normal
provided that any two disjoint closed sets have disjoint neighborhoods.
Thus, X is normal if and only if every neighborhood of a closed set
contains a closed neighborhood of the set. The crucial result about
normal spaces is Urysohn’s lemma, which states that disjoint closed
sets are completely separated. We begin with the following preliminary
result.

LEMMA. Let X be an arbitrary space, and let R, be any dense subset
of the real line R. Suppose that open sets U, of X are defined, for all
r € Ry, such that

UrUr":X’ anr:ﬂ,
and
cl U, € U, whenever r < s.
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Then the formula
f(x) =inf{re R,: xe U,} (x € X)

defines f as a continuous function on X.

PROOF. The hypotheses regarding union and intersection imply
that f(x) 1s well defined as a real number. Ewvidently, x € U, implies
f(x) £ 7, and f(x) < r impliesx € U,. Also, x € cl U, implies x € U,
for all s > 7, so that f(x) = . Now, fix a in X. Since R, 1s dense
in R, the intervals [7, s], where 7, s € R, and » < f(a) < s, form a base
for the neighborhoods of f(a). The preceding remarks show that for
any such 7 and s, U, — cl U, 1s a neighborhood of a, and that f(x)

LY

[7, s] for every x 1n that neighborhood. Therefore f is continuous at a.

3.13. URYSOHN’S LEMMA. Any two disjoint closed sets in a normal
space are completely separated. Hence every normal space is completely
regular.

PROOF. Let A and B be disjoint closed sets in a normal space X.
We define open sets U, for all rational 7, as follows.

First, take U, = @ for all » < 0, and U, = X for r > 1.

Next, put U, = X — Bj; then U, is a neighborhood of A. Since X
1s normal, U, contains a closed neighborhood of A4 ; we choose U, (open)
sothat A <« Uyand cl U, < U,.

Now enumerate the rationals in [0, 1] in a sequence (7,),.n, With
r, = land 7, = 0. Inductively, tor each n > 2, we choose U, (open)

so that clU, < U, and cl U, < U, whenever r, <7, <7 and

R, | < n.

The sets U, (» € Q) satisty the hypotheses of Lemma 3.12. Clearly,
the continuous function f provided by the lemma is equal to 0 on A,
and to 1 on B.

In a nonnormal space, two closed sets with disjoint neighborhoods
can fail to be completely separated ; see 8J.4 or 8L.95.

3.14. Compact spaces; compactification.
THEOREM. Every subspace of a compact space is completely regular.

PROOF. Corollary 0.11 shows that a compact space is normal. By
Urysohn’s lemma, 1t 1s completely regular, and therefore all its sub-
spaces are completely regular.

By a compactification of a space X, we shall mean a compact space 1n
which X 1s dense. Thus, if X is already compact, 1t is its only com-
pactification.

We have referred to the fact that the completely regular spaces are
precisely the subsets of compact spaces. What amounts to the same
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thing: they are just those spaces that have compactifications—for, 1f T
1s a compact space containing X, then cl, X 1s a compactification of X.
We have just proved that every subspace of a compact space 1s com-
pletely regular. The converse result—that every completely regular
space does have a compactification—will be proved in detail later

(Chapter 6 or Chapter 11).

3.15. Locally compact spaces. A Hausdorft space is said to be
locally compact provided that every point has a compact neighborhood ;
it follows that every neighborhood of a point contains a compact
neighborhood of the point. Every locally compact, noncompact space
X has a so-called one-point compactification X*, defined as follows: one
new point is adjoined to X, X is an open subspace of X*, and the
complements of compact subsets of X form a base of neighborhoods
for the adjoined point. One verifies without difficulty that X* is
indeed a compactification of X. Thus, every locally compact space s
completely regular.

Let X be a subspace of a Hausdorft space 7.

(@)  If T s locally compact, and X 1s open in T, then X 1s locally

compact.

Indeed, for each x € X, the neighborhood X of x contains a compact
neighborhood of x.

(b)  If X s dense in T, then every compact neighborhood in X of a
point p € X is a neighborhood in T of p.

L.et U be the interior of a compact neighborhood of p in X. Then
cl, U is compact, hence closed in 7, so that cl, U = cly U. Let IV be
an open set in 7 such that V' n X = U. Since X 1s dense, we have
cly V=clpy U < X, sothat V = U.

This has the following corollaries.

(c)  If Xisdensein T, and p 1s an 1solated point of X, then p 1s 1solated
in 1.
(d)  If X is locally compact and dense in T, then X 1s open in T.

CONVERGENCE OF =z-FILTERS

3.16. 'The remainder of this chapter contains an outline of a theory
of convergence of =z-filters on a completely regular space. It 1s
analogous to the standard theory of convergence of filters or filter bases
on an arbitrary Hausdorfl space.

Let X be a completely regular space. A point p € X 1s said to be a
cluster point of a z-filter & if every neighborhood of p meets every
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member of &#. Thus, since the members of &# are closed sets, p 1s a
cluster point of Z if and only if p € [} Z.

[f S 1s a nonempty subset of X, then cl .S 1s the set of all cluster points
of the z-filter & of all zero-sets containing S, because the zero-sets in
the completely regular space X form a base for the closed sets.

The z-filter & is said to converge to the limit p 1f every neighborhood
of p contains a member of #. Obviously, if # converges to p, then p
1s a cluster point of #. We recall that in the completely regular space
X, every neighborhood of p contains a zero-set-neighborhood of »

(3.2(b)). Thus:

(a) & converges to p if and only 1f # contains the z-}‘ilter of all zero-
set-neighborhoods of p.

Examples of z-filters on R that converge to 0 are provided by the
families of all zero-sets Z in R satistying the respective conditions:
(1): Z 1s a neighborhood of 0; (11): there exists € > 0 such that Z contains
the interval [0, €]; (111): there exists € > 0 such that Z contains [ — ¢, 0];
(iv): 1/n € Z for all but finitely many n e N; (v): 0 € Z. By 2.4 (or
3.18(b)), the last of these 1s a z-ultrafilter, and it is the only z-ultrafilter
that converges to 0.

(b)  If p is a cluster point of F , then at least one z-ultrafilter containing
F converges to p.

Let & denote the z-filter of all zero-set-neighborhoods of p. Then
& U & has the finite intersection property, and so it is embeddable in a
z-ultrafilter &/. Since &/ contains &, it converges to p.

In particular, a z-ultrafilter converges to any cluster point.

3.17. If # converges to p in a completely regular space, then
% = {p}. (Thus, a z-filter has at most one limit.) The converse
1s not true. For example, let # consist of all subsets of N that contain
the point 1, and whose complements are finite; then ()& = {1},
although # does not converge to 1.

The converse 1s valid, however, 1n the case of a z-ultrafilter, as we
have seen. More generally, it holds for any prime z-filter:

THEOREM. Let X be a completely regular space, let p € X, and let #
be a prime z-filter on X. The following are equivalent.

(1) p is a cluster point of & .

(2) & converges to p.

(3) NZ = -

PROOF. It sufhices to show that (1) implies (2). Let V' be any
zero-set-neighborhood of p. Since X 1s completely regular, V' contains
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wl— A

a neighborhood of p of the form X — Z, where Z is a zero-set. Since
VU Z = X, either I or Z belongs to the prime z-filter . But Z
cannot belong to #, because p ¢ Z. So V e %#. Thus, # converges

to p (3.16(a)).

3.18. It follows that in a completely regular space, a prime z2-filter,
and, 1n particular, a z-ultrafilter, can have at most one cluster point.
It need not have any. For instance, the family of all zero-sets in R
whose complements are bounded i1s a z-filter without a cluster point.
Obviously, any z-ultrafilter containing it (and there are such, by the
maximal principle) also has no cluster point.

The family of all zero-sets containing a given point p 1s denoted by
A,. Obviously, A, is a 3-filter. Because any zero-set not containing p
1s completely separated from {p}, A, i1s actually a z-ultrafilter. It
follows from Theorem 3.17 that the z-ultrafilters A, (p € X) are
precisely the convergent ones on X. We shall now prove this directly.

(a)  p s a cluster point of a z-filter F if and only 1f F < A,,.

For, p 1s a cluster point of # if and only if p belongs to every member of
Z# . Immediate consequences of this proposition are:

(b) A, s the unique z-ultrafilter converging to p.

It 1s to be noted that {p} need not be a zero-set and hence need not
belong to A,; see 4N.1.

(c)  Distinct z-ultrafilters cannot have a common cluster point.

Any z-ultrafilter containing a z-filter converging to p also converges
to p. Hence

(d)  If & s a z-filter converging to p, then A, is the unique z-ultrafilter
contaiming & .

By definition, a point p 1s a cluster point of a filter & if every neighbor-
hood of p meets every member of # ; and & converges to the limit p if 1t
contains the filter of all neighborhoods of p. In contrast to (c), distinct
ultrafilters can have a common cluster point. On the one-point
compactification

N* = N U {w}

of N, let # be the filter of all sets that contain all but a finite number of
the even integers, and &’ those containing all but finitely many odd
integers. Any ultrafilters % and %’ containing & and &, respectively,
are distinct, but both converge to w. Note that # and &’ are not
z-filters on N*: their only members that are zero-sets are those con-
taining w.
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PROBLEMS

3A. ZERO-DIVISORS, UNITS, SQUARE ROOTS.

Let X be a completely regular space containing more than one point.
1. C*(X), and hence C'(X), contains zero-divisors (l1.e., it is not an integral
domain).
2. C*, and hence C, contains nonconstant units. _
3. Let m be an infinite cardinal, and let X be the one-point compactification
of the discrete space of power m. In C(X), 1 has just m square roots.

3B. COUNTABLE SETS.

Let X be a completely regular space.

1. A countable set disjoint from a closed set F is disjoint from some zero-
set containing F.

2. A C-embedded countable set S 1s completely separated from every
disjoint closed set. [Theorem 1.18.] (This is false if S 1s uncountable
(5.13) or if S 1s only C*-embedded (4M), even if S 1s closed (8.20 and 6P).)

3. Any C-embedded countable set is closed. [Apply 2 to each point not
in the set.] (An uncountable C-embedded set need not be closed (5.13); the
appropriate generalization is in 8A.1.)

4. Any two countable sets, neither of which meets the closure of the other,
are contained in disjoint cozero-sets. [ Inductively, choose a suitable closed
neighborhood of each point, alternating between the two sets.] (But the
given sets need not be completely separated, even if they are closed; see 8].4.)

5. A countable, completely regular space is normal. (More generally,
see 3D.4.)

3C. G4-POINTS OF A COMPLETELY REGULAR SPACE.

Let p be a G4point of a completely regular space X, and let S =
X — {p}
1. If g e C*¥(S), h e C(X), and A(p) = O, then g-(4|S) has a continuous
extension to all of X.
2. 1f Z 1s a zero-set in S, then cly Z is a zero-set in X. [Let Z = Z(f),
with 0 < f < 1. ‘Let {p} = Z(h), with 0 < 2 < 1 and A[Z] = {1} in case
péclZ Considerg=forg=1-—f]

3. NORMAL SPACES.

1. The following are equivalent for any Hausdorff space X.
(1) X s normal.
(2) Any two disjoint closed sets are completely separated.
(3) Ever