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Preface

In December 2006 I posted my manuscript Vector Analysis for Computer Graphics to Springer

and looked forward to a short rest before embarking upon another book. But whilst surfing

the Internet, and probably before my manuscript had reached its destination, I discovered a

strange topic called geometric algebra. Advocates of geometric algebra (GA) were claiming that

a revolution was coming and that the cross product was dead. I couldn’t believe my eyes. I had

just written a book about vectors extolling the power and benefits of the cross product, and now

moves were afoot to have it banished! I continued to investigate GA and was amazed that a Google

search revealed over 2 million entries. I started to read up the subject and discovered that GA

was a Clifford algebra which had a natural affinity with geometry. It appeared that Prof. David

Hestenes [14] had invented geometric calculus and successfully applied it to classical and quantum

mechanics, electrodynamics, projective and conformal geometry. Chris Doran, Anthony and Joan

Lasenby at Cambridge University had continued this research and were a driving force behind its

understanding, dissemination and application to computer graphics. It seems that if I had been

attending SIGGRAPH regularly, I would have been aware of these developments, but alas that was

not the case, and I had a lot of catching up to do.

As I started reading various technical papers, especially by Hestenes, Doran and the Lasenbys,

I realized the importance of the subject and the need to understand it. Slowly I was drawn into

a world of complex numbers, antisymmetric operators, non-commutative products, conformal

space, null vectors and the promise of elegance in CGI algorithms. I would be able to divide, rotate

and reflect vectors with an ease never before known.

As I was finding it so difficult to understand GA, probably other people would also be finding

it difficult, and then I realized the title of my next book: Geometric Algebra for Computer Graphics.

But how could I write about a subject of which I knew nothing? This was a real challenge and

became the driving force that has kept me working day and night for the past year. I took every

opportunity to read about the subject: in bed, on planes, trains and boats; whilst waiting at the

dentist and even waiting whilst my car was being serviced!

Before embarking on my summer vacation this year (2007) I bought a copy of Doran &

Lasenby’s excellent book Geometric Algebra for Physicists and took it, and my embryonic man-

uscript, with me to the south of France. My wife and I stayed at the Hotel Horizon in Cabris,

overlooking Grasse and Cannes on the Côtes d’Azur. Previous guests have included authors,

philosophers and musicians such as Leonard Bernstein, Jean-Paul Sartre, Simone de Beauvoir,

Gregory Peck and Antoine de St. Exupèry whose names have been carved into table tops in the
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viii Preface

bar. Now that I have spent a few days at Hotel Horizon studying bivectors, trivectors and multi-

vector products, I am looking forward to seeing my name cut into a table top when I return next

year!

This book is a linear narrative of how I came to understand geometric algebra. For example,

when I started writing the manuscript, conformal geometry were no more than two words, about

which, I knew I would eventually have to master and write a chapter. The conformal model has

been the most challenging topic I have ever had to describe. To say that I understand conformal

geometry would be an overstatement. I understand the action of the algebra but I do not have a

complete picture in my mind of 5D Minkowski space which is the backdrop for the conformal

model. I admire the authors who have written so confidently about the conformal model, not only

for their mathematical skills but their visual skills to visualize what is happening at a geometric

level.

When I first started to read about GA I was aware of the complex features of the algebra, in that

certain elements had imaginary qualities. Initially, I thought that this would be a major stumbling

block, but having now completed the manuscript, the imaginary side of GA is a red herring. If

one accepts that some algebraic elements square to −1, that is all there is to it. Consequently, do

not be put off by this aspect of the algebra.

Another, stumbling block that retarded my progress in the early days was the representation

at a programming level of bivectors, trivectors, quadvectors, etc. I recall spending many days

walking my dog Monty trying to resolve this problem. Monty, a Westie, whose knowledge of

Clifford algebra was only slightly less than my own, made no contribution whatsoever, but this

daily mental and physical exercise eventually made the penny drop and I realized that bivectors,

trivectors, quadvectors, etc., were just names recording a numerical value within the algebra. Why

had I found it so difficult? Why had this not been explicitly described by other authors? If only

someone had told me, I could have avoided this unnecessary mental anguish. But, in retrospect,

the mental pain of learning about GA single-handed, has provided me with some degree of

confidence when talking about the subject. In fact, in September 2007, I organized a one-day

Workshop on GA in London where Dr. Hugh Vincent, Dr. Chris Doran, Dr. Joan Lasenby and me

gave presentations to an audience from the computer animation and computer games sectors. It

was extremely successful.

I have structured this book such that the first six chapters provide the reader with some essential

background material covering complex algebra, vector algebra, quaternion algebra and geometric

conventions. These can be skipped if you are already familiar with theses topics. Chapter 7 goes into

the history of geometric algebra, but I was already prepared for this as I had read Michael Crowe’s

fantastic book A History of Vector Analysis. In fact, this book is so good I have read it at least four

times! Chapter 8 describes the geometric product, which was introduced by Clifford and is central

to GA. Chapter 9 explores how GA handles reflections and rotations. Chapter 10 shows how GA

is used to solve various problems in 2D and 3D geometry. Chapter 11 describes the conformal

model. Chapter 12 is a short review of some typical applications of GA and Chapter 13 identifies

important programming tools for GA. Finally, chapter 14 draws the book to a conclusion.

I am not a mathematician, just a humble consumer of mathematics, and whenever I read a

book about mathematics I need to see examples, which is why I have included so many in this

book. It is so tempting to write:

“It is obvious that Eq. (12.56) is the required rotor”,

for very often it is not obvious that this equation is a rotor, or even how it is used in practice.

Therefore, whenever I have introduced an equation, I have shown its derivation and its application.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Preface ix

I would like to thank Dr. Hugh Vincent for reading through an early manuscript and offering

some constructive feedback. I would also like to thank Dr. Chris Doran for taking the time to

read the manuscript and advising me on numerous inconsistencies, and Dr. Joan Lasenby for her

responsive, supportive emails when I had lost my way in untangling conformal null vectors. Once

again I would like to acknowledge Chris Doran and Anthony Lasenby’s excellent book Geometric

Algebra for Physicists. I could not have written this book without their book. I also must not

forget to thank Helen Desmond and Beverley Ford, General Manager of Springer, UK, for their

continuous support, memorable lunches and transforming my manuscript into such a beautiful

book.

Although I have done my best to ensure that the book is error free, if there are any

inconsistencies, I apologize, as they are entirely my fault.

Finally, I must remind the reader that this book is intended only as a gentle introduction to

GA. Hopefully, it will provide a bridge that will ease the understanding of technical papers and

books about GA, where the subject is covered at a more formal and rigorous level.

Ringwood, UK John Vince
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1 Introduction

1.1 Aims and objectives of this book

The aim of this book is to provide the reader with a gentle introduction to the embryonic subject

of geometric algebra (GA). The GA books that currently exist are either directed at physicists or

assume that their readers possess a formal understanding of mathematics. To my knowledge, this

is the first book that introduces GA without overwhelming the reader with the formalism of linear

algebra that supports the subject. The real objective of the book is to make the reader familiar

with the concepts of GA. Hopefully on completing the book readers will be able to read more

advanced books and technical papers.

1.2 Mathematics for CGI software

Anyone who has written software for computer animation or computer games will know the

wide range of mathematical tools needed to implement the algorithms for resolving 2D and

3D geometric problems. Perhaps one of the most important mathematical tools is the matrix

transform, where it is difficult to imagine how one could get by without using

[

x ′

y ′

]

=
[

cos θ −sin θ

sin θ cos θ

] [

x

y

]

(1.1)

to rotate a point about the origin. Although matrices exploit the ability to represent a transform

as an array of numbers, the origin of these numbers is linear algebra. Matrix notation simply

introduces a degree of elegance that permits the solution to a problem to be addressed at a higher

symbolic level, without becoming bogged down in the longhand notation of algebra. Even writing

1



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 Geometric algebra for computer graphics

down an array of numbers eventually becomes tedious, and a further substitution can be made

by giving names to the transforms such as

S =

⎡

⎢

⎢

⎣

Sx 0 0 0

0 Sy 0 0

0 0 Sz 0

0 0 0 1

⎤

⎥

⎥

⎦

T =

⎡

⎢

⎢

⎣

1 0 0 Tx

0 1 0 Ty

0 0 1 Tz

0 0 0 1

⎤

⎥

⎥

⎦

(1.2)

which permits us to write their product as P = ST . At this stage we have basically created another

algebra with its own axioms and embellishments such as [[P]]−1 and [[P]]T .

When the algebra of matrices is combined with the algebra of vectors, quaternions, analytic

geometry, barycentric coordinates, etc., one realizes the wide range of algebraic notation employed

in CGI. Fortunately, this notation is relatively easy to understand and master and has even been

incorporated at a hardware level in graphics cards. GA reveals that matrices, determinants, com-

plex numbers, quaternions and vectors are all closely related, which must have an impact upon

the design of CGI algorithms.

As you will discover, the notation of GA is rather elegant, even though the underlying algebra

is fussy. But we mortals should not be concerned with any inherent fussiness, just in the same way

that matrix multiplication or inversion does not prevent us from using matrices. Any complexity

associated with GA is readily hidden inside software so that programmers can develop solutions

using high-level controls and commands.

1.3 The book’s structure

This book is designed to be read in a linear fashion. Chapters 2 to 5 review elementary, complex,

vector and quaternion algebra. These chapters are very concise and have been included to provide

a unified reference source when some of their features are discussed in later chapters. Those

readers already familiar with these topics should consider starting at chapter 6 where geometric

conventions such as clockwise and anticlockwise traditions, left and right-handed axial systems

are reviewed.

Chapter 7 introduces the reader to the reasons why GA has surfaced in the 21st century rather

than the 19th century when it was discovered. Researching this material was very enlightening

and brought home the existence of politics in mathematical and scientific progress. GA could

have easily become established at the end of the 19th century, but influential mathematicians and

scientists of the day decided between them the direction vector analysis would take in future years.

Fortunately, enlightened people such as Clifford and Hestenes know a good idea when they see

one, and their personal tenacity and dedication have ensured that Grassmann’s original ideas have

prevailed.

Chapter 8 covers the geometric product, which combine the inner and outer products into a

single non-commutative new vector product. Discovering this for the first time is something I will

always remember, as its simplicity and structure make one wonder why it took so long to come

to become part of everyday vector analysis. Initially, I was cautious of the outer product portion

of the geometric product as it possesses imaginary qualities, and I thought that this would be a

dominant feature of GA. However, eventually you will discover that elements that square to −1

are so natural you will wonder what all the fuss is about.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Introduction 3

Chapter 9 applies GA to calculating reflections and rotations, which is where the power and

elegance of the notation emerges. Chapter 10 applies GA to a variety of simple geometric problems

encountered in computer graphics. It is far from exhaustive, but illustrates alternative approaches

to geometric problem solving.

Chapter 11 addresses the conformal model developed by David Hestenes et al. Its use of 5D

Minkowski space is a recent development and has natural applications to quantum physics and

electrodynamics, but is also being applied to computer graphics. This chapter introduces the

reader to the basic concepts, and there is a wide range of technical literature awaiting those

readers possessing the appropriate mathematical skills.

Chapter 12 reviews how GA is being compared to existing approaches to algorithm design

and the programming implications of GA. Chapter 13 identifies programming tools for GA, and

chapter 14 summarizes the book’s aims and objectives.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2 Elementary
Algebra

2.1 Introduction

The evolution of algebra can be traced back to a treatise called Al-Kitab al-Jabr wa-l-Muqabala

written by the Persian mathematician, Muhammed ibn Mūsā al-Khowārizmı̄ [circa 780–850].

An English translation of the title is The Compendious Book on Calculation by Completion and

Balancing. It is highly probable that the word algebra descended from the middle words of the

title al-Jabr.

It took a few centuries of experimentation before today’s notation emerged. For instance, Robert

Recorde [1] [1510–1558] was an academic at Oxford University and seems to be the first person

to employ the word ‘algebra’ in his book Pathway to Knowledge. He also introduced the equality

sign ‘=’ in 1557 in his book Whetstone of Witte.

The German mathematician, Johannes Widman [2] [1462–1498], is credited with using the

symbols‘+’and‘−’ for the first time in his book on arithmetic in 1489. The English mathematician,

William Oughtred [3] [1574–1660] introduced the ‘×’ symbol to represent multiplication, not to

mention his invention of an early form of the slide rule.

Today, algebra is a major branch of mathematics and allows us to write mathematical statements

in the form:

<LHS> = <RHS>

where the left-hand-side (LHS) and right-hand-side (RHS) expressions are manipulated to resolve

the value of some variable. For example, given

ax2 + bx + c = 0 (2.1)

a solution for x is given by

x = −b ±
√

b2 − 4ac

2a
(2.2)

which is derived by applying the axioms of elementary algebra.

Let us remind ourselves of these rules.

5



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 Geometric algebra for computer graphics

2.2 Numbers, variables and arithmetic operators

To begin with, we acknowledge the existence of different sets of numbers such as natural numbers

N, integers Z, reals R, rationals Q, irrationals, etc., and the role of variables such as x , y , z , . . . etc.

to stand in for numbers whose values are not stated explicitly, such as

x2 = 16 (2.3)

which implies that

x = ±4. (2.4)

Next, we introduce the binary operators +, −, × and / to represent addition, subtraction,

multiplication and division respectively.

2.3 Closure

Closure is a property that relates the result of a binary operation to the original operands. For

example, if we add an integer to an integer the result is an integer, which secures closure for this

operation. However, if we divide an integer by an integer, the result is not necessarily an integer,

and closure fails. For instance,

3/4 = 0.75 (2.5)

for although the numerator and denominator are integers, the result is a real quantity. This is not

a problem that should worry us — simply something of which we should be aware.

2.4 Identity element

The identity element is a useful feature of any algebra and helps simplify algebraic expressions or

invoke an analytical strategy. So let’s find the identity elements for the four binary operators.

If λ (lambda) is the identity element and � (omega) is a binary operator then the following

two rules must be satisfied:

x�λ = x (2.6)

and

λ�x = x . (2.7)

In the case of addition λ = 0 because

x + 0 = x (2.8)

and

0 + x = x . (2.9)

But in the case of subtraction, if λ = 0

x − 0 = x (2.10)

but

0 − x = −x (2.11)

which fails.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elementary algebra 7

In the case of multiplication, λ = 1 because

x × 1 = x (2.12)

and

1 × x = x . (2.13)

But in the case of division, if λ = 1

x/1 = x (2.14)

but

1/x �= x (2.15)

which fails. Similarly, if λ = 0 then

x/0 = ∞ (2.16)

which fails, and

0/x = 0 (2.17)

which also fails.

2.5 Inverse element

The inverse element is a powerful analytical tool for solving equations and inverting functions. In

the case of addition, the inverse of x is −x , whilst the inverse of −x is x which ensures that

x + (−x) = 0 (2.18)

and

−x + x = 0. (2.19)

In the case of multiplication, the inverse of x is 1/x , and the inverse of 1/x is x , which ensures

that

x

(

1

x

)

= 1 (2.20)

and
(

1

x

)

x = 1. (2.21)

The inverse element is related to the identity element as follows:

x�x−1 = λ (2.22)

where λ is the identity element. For addition λ = 0 and for multiplication λ = 1.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 Geometric algebra for computer graphics

2.6 The associative law

When we add or multiply three or more numbers together the final result is independent of

their order, which doesn’t seem surprising. However, it is not true for subtraction or division. In

general, the associative law is summarized as:

a + (b + c) = (a + b) + c (2.23)

or

a(bc) = (ab)c . (2.24)

We take for granted this last axiom where it is possible to associate different pairs of products, but

it is extremely useful as its existence permits division within the algebra. Later on, we will discover

that GA is also associative, which permits us to divide by vectors.

To see why subtraction and division fail, consider the following simple examples:

9 − (8 − 2) �= (9 − 8) − 2 (2.25)

and

9/(9/3) �= (9/9)/3. (2.26)

2.7 The commutative law

When we add or multiply two numbers the final result is independent of their sequence. This,

too, may not seem surprising, but matrices and vectors anticommute when multiplied. The

commutative law is summarized as:

a + b = b + a (2.27)

and

ab = ba. (2.28)

To see why subtraction and division fail, consider the following simple examples:

6 − 2 �= 2 − 6 (2.29)

and

9/3 �= 3/9. (2.30)

2.8 The distributive law

The distributive law of multiplication over addition is best summarized as:

a(b + c) = ab + ac (2.31)

and

(b + c)a = ba + ca. (2.32)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Elementary algebra 9

2.9 Summary

The above laws are the axioms for elementary algebra and are expressed formally as follows:

Given u, u1, u2, u3 ∈ R: (2.33)

Closure

For all u1 and u2

addition u1 + u2 ∈ R (2.34)

multiplication u1u2 ∈ R. (2.35)

Identity

For each u there is an identity element 0 and 1 such that

addition u + 0 = 0 + u = u (2.36)

multiplication 1u = u. (2.37)

Inverse

For each u there is an inverse element −u and 1/u such that

addition u + (−u) = −u + u = 0 (2.38)

multiplication u

(

1

u

)

=
(

1

u

)

u = 1 (u �= 0) . (2.39)

Associativity

For all u1, u2 and u3

addition (u1 + u2) + u3 = u1 + (u2 + u3) (2.40)

multiplication u1(u2u3) = (u1u2)u3. (2.41)

Commutativity

For all u1 and u2

addition u1 + u2 = u2 + u1 (2.42)

multiplication u1u2 = u2u1. (2.43)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 Geometric algebra for computer graphics

Distributivity

For all u1, u2 and u3

u1(u2 + u3) = u1u2 + u1u3 (2.44)

(u1 + u2)u3 = u1u3 + u2u3. (2.45)

This chapter on elementary algebra reminds us that a group of axioms are behind any algebra

and later on we will discover that GA has its own set of axioms, some of which are familiar and

others not so familiar. It is also important to know which aspects of an algebra are closed or not, so

that we know what to expect when computing products. Finally, an algebra that is associative for

products supports division, which is very useful for solving algebraic problems. The next chapter

explores the algebra of complex numbers.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3 Complex
Algebra

3.1 Introduction

On the whole, elementary algebra is relatively consistent. However, division does cause problems

when the divisor is zero, or when both numerator and denominator equal zero. We must also

be careful with square-roots, especially when using negative numbers, because, by definition, the

square of a real number is a positive real number. This, however, did not prevent mathematicians

from finding a way around such an inconvenience — for in the 16th century, Girolamo Cardano

[1501–1576] and Rafael Bombelli [1526–1572] were trying to make sense of this irreducible object.

It was Bombelli who demonstrated that
√−1 could be embraced by elementary algebra so long

as such objects were left undisturbed. Eventually, in 1777 the brilliant German mathematician,

Leonhard Euler [1707–1783], introduced the symbol i to stand in for
√−1 which permitted

expressions such as 2 + √−3 to be expressed as 2 + i
√

3. This gave birth to complex numbers

which have the form:

a + ib or a + bi. (3.1)

The role of the ‘+’ sign in this context is rather strange as it is impossible to coalesce the two

terms into a single value. Perhaps the conjunction ‘&’ would be more appropriate (a & ib) or just

a simple comma (a, b), where the second element implies a multiplication by i, but we are where

we are, and the ‘+’ sign is probably here to stay, and does not appear to cause any problems.

It is also rather unfortunate that i or
√−1 are referred to as imaginary quantities, as there

is nothing imaginary about them — i just has the useful feature that i2 = −1. We have René

Descartes to blame for this.

3.2 Complex numbers

A complex number takes the form

z = a + ib (3.2)
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12 Geometric algebra for computer graphics

where

a is the real part,

b is the imaginary part, and

i =
√

−1.

Either part may be zero, which implies that the set of real numbers R is a subset of complex

numbers C.

The symbol i is regarded as if it were a normal algebraic quantity, but has the property that

i2 = −1. It is also worth pointing out the following pattern:

i0 = 1 i1 = i i2 = −1 i3 = −i i4 = 1 i5 = i . . . (3.3)

which hints at i’s ability to perform a rotation — but more of this later.

i also commutes with scalars, which permits us to write ai or ia.

3.3 Complex arithmetic

Complex numbers obey all the laws of elementary algebra, as illustrated by the following examples.

Addition/subtraction

(a1 + ib1) ± (a2 + ib2) = (a1 ± a2) + i(b1 ± b2). (3.4)

For example

(4 + i3) + (2 − i5) = 6 − i2. (3.5)

Multiplication

(a1 + ib1)(a2 + ib2) = (a1a2 + i2b1b2 + ia1b2 + ib1a2). (3.6)

But as i2 = −1

(a1 + ib1)(a2 + ib2) = (a1a2 − b1b2) + i(a1b2 + b1a2). (3.7)

For example

(2 + i3)(3 − i2) = 12 + i5. (3.8)

Division presents a slight problem as it is not immediately obvious how to expand

z1

z2

= a1 + ib1

a2 + ib2

. (3.9)

Fortunately, help is at hand in the form of the conjugate of a complex number, which involves

a simple sign reversal. For example, the conjugate of z = a + ib is z∗ = a − ib, which, when

multiplied together, produces a real quantity:

zz∗ = (a + ib)(a − ib) = a2 + b2 (3.10)

the imaginary part vanishes into thin air!



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complex algebra 13

Therefore, we can write Eq. (3.9) as

z1

z2

· z∗
2

z∗
2

= a1 + ib1

a2 + ib2

· a2 − ib2

a2 − ib2

(3.11)

which effectively multiplies the equation by 1 but at the same time ensures that the denominator

dissolves into a real quantity:

z1

z2

= a1 + ib1

a2 + ib2

· a2 − ib2

a2 − ib2

z1

z2

= (a1a2 + b1b2) + i(a2b1 − a1b2)

a2
2 + b2

2

z1

z2

=
(

a1a2 + b1b2

a2
2 + b2

2

)

+ i

(

a2b1 − a1b2

a2
2 + b2

2

)

(3.12)

which is a complex number. For example

(4 + i2)

(3 + i2)
= (4 + i2)

(3 + i2)
· (3 − i2)

(3 − i2)

= 16 − i2

9 + 4

(4 + i2)

(3 + i2)
=
(

16

13

)

− i

(

2

13

)

. (3.13)

Now let’s form the product of two complex numbers using the conjugate for one of the numbers:

z1 = a1 + ib1 (3.14)

z2 = a2 + ib2 (3.15)

z∗
2 = a2 − ib2 (3.16)

z1z∗
2 = (a1 + ib1)(a2 − ib2)

z1z∗
2 = (a1a2 + b1b2) + i(a2b1 − a1b2). (3.17)

The scalar part of Eq. (3.17) (a1a2 + b1b2) is the familiar scalar product of two vectors, but the

imaginary part (a2b1 − a1b2) has the form of a determinant:

∣

∣

∣

∣

a2 b2

a1 b1

∣

∣

∣

∣

(3.18)

which is an area. In fact, it is the area of a parallelogram formed by the two vectors z1 and z2 as

shown in Fig. 3.1:

z1 =
[

a1

b1

]

z2 =
[

a2

b2

]

. (3.19)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14 Geometric algebra for computer graphics

Z1

Z2

Z21

z1

z2

b1

b2

a1 a2

Y

XO

Figure 3.1.

The area of the shaded triangle �OZ2Z1 is half the area of the parallelogram (OZ2Z21Z1):

area �OZ2Z1 = a2b1 − 1
2
a2b2 − 1

2
a1b1 − 1

2
(a2 − a1)(b1 − b2) (3.20)

area (OZ2Z21Z1) = 2 × �OZ2Z1 = 2a2b1 − a2b2 − a1b1 − a2b1 + a2b2 + a1b1 − a1b2 (3.21)

area (OZ2Z21Z1) = a2b1 − a1b2. (3.22)

Therefore, the magnitude of the imaginary part of Eq. (3.17) is the area of the parallelogram

formed by z1 and z2.

Note that by reversing the vectors, the area becomes

area (OZ1Z21Z2) = a1b2 − a2b1 (3.23)

which reverses the sign of the area.

Before moving on, let’s summarize in tabular form the rules for multiplying scalar and imagi-

nary quantities (Table 3.1). This is a trivial task for complex arithmetic, but when we come to GA

such tabulations are non-trivial and very important in understanding how the algebra functions.

Table 3.1

× β (scalar) i

α (scalar) αβ iα

i iβ −1

The axioms associated with complex numbers are as follows:

Given z , z1, z2, z3 ∈ C:



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complex algebra 15

Closure

For all z1 and z2

addition z1 + z2 ∈ C (3.24)

multiplication z1z2 ∈ C. (3.25)

Identity

For each z there is an identity element 0 and 1 such that:

addition z + 0 = 0 + z = z (0 = 0 + 0i) (3.26)

multiplication z (1) = (1) z = z (1 = 1 + 0i) . (3.27)

Inverse

For each z there is an inverse element −z and 1/z such that:

addition z + (−z) = −z + z = 0 (3.28)

multiplication z

(

1

z

)

=
(

1

z

)

z = 1 (z �= 0). (3.29)

Associativity

For all z1, z2 and z3

addition z1 + (z2 + z3) = (z1 + z2) + z3 (3.30)

multiplication z1(z2z3) = (z1z2)z3. (3.31)

Commutativity

For all z1 and z2

addition z1 + z2 = z2 + z1 (3.32)

multiplication z1z2 = z2z1. (3.33)

Distributivity

For all z1, z2 and z3

z1(z2 + z3) = z1z2 + z1z3 (3.34)

(z1 + z2)z3 = z1z3 + z2z3. (3.35)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

16 Geometric algebra for computer graphics

3.4 The complex plane

The English mathematician, John Wallis [1616–1703], published his De algebra tractatus in 1685

in which he described a method of representing complex numbers as points on a plane. Unfortu-

nately, his description was rather obtuse and failed to influence mathematicians of the day. Paul

Nahin’s book An Imaginary Tale: The Story of
√−1 [4] records that the Norwegian surveyor,

Caspar Wessel [1745–1818], was another person to discover the geometric interpretation of com-

plex numbers. His paper entitled “On the Analytic Representation of Direction: An Attempt” was

announced in 1797 and in 1799 was published in a local Danish journal with a small international

circulation, which ensured that his idea remained hidden for almost 100 years! Wessel’s paper was

discovered in 1895 by an antiquarian and its importance recognized by the Danish mathemati-

cian, Christian Juel [1855–1935], but it was too late — the Swiss-born writer, Jean-Robert Argand

[1768–1822], had also thought of the same idea in 1806, and it is Argand’s name that is associated

with the complex plane rather than Wessel’s.

The complex plane, or Argand diagram, uses two orthogonal axes to locate a complex number:

the horizontal axis is the real axis whilst the vertical axis is the imaginary axis. Figure 3.2 illustrates

this concept and shows how the complex number z = a + ib is viewed as a 2D point with

coordinates (a, b) or as a vector z with components [a b]T .

z a ib= +a

b

real

imaginary

z

θ

Figure 3.2.

The length of the position vector z pointing to z is called the modulus of the complex number

and written |z |, which makes

‖z‖ = |z | =
√

a2 + b2 (3.36)

and allows Eq. (3.10) to be written as

zz∗ = |z |2. (3.37)

The polar angle θ between the real axis and the position vector is identified using the inverse-

tangent function (tan−1). For the 1st and 4th quadrants, when a > 0

θ = tan−1(b/a) (3.38)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complex algebra 17

and for the 2nd and 3rd quadrants, when a < 0

θ = 180◦ + tan−1(b/a) (3.39)

z = a + ib ≡
(

√

a2 + b2, θ
)

= (|z |, θ). (3.40)

The angle θ is also called the argument of the complex number.

3.5 i as a rotor

Once Wessel had discovered a geometric interpretation for complex numbers, the rotational

qualities of i became apparent. To illustrate this, let’s trace the path of a complex number as

it is repeatedly multiplied by i. We start with a + ib. Multiplying this by i we obtain −b + ia.

Multiplying again we obtain −a − ib. Multiplying again we obtain b − ia, and finally a + ib.

After four multiplications we return to the original complex number. When these intermediate

numbers are located on an Argand diagram (Fig. 3.3) we see that each multiplication by i results

in an anticlockwise rotation of 90◦.

a ib+

real

i

−i

b ia− +

a ib− −

b ia−

Figure 3.3.

Multiplying a complex number by −i performs a clockwise rotation. For example

−i(a + ib) = −ia + b = b − ia (3.41)

which is confirmed by Fig. 3.3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

18 Geometric algebra for computer graphics

3.6 The product of two complex numbers

Referring to Fig. 3.2 we can see that

a

|z | = cos θ
b

|z | = sin θ (3.42)

therefore we can write z in Cartesian form as

z = a + ib = |z | cos θ + i|z | sin θ

z = |z |(cos θ + i sin θ). (3.43)

Using this notation, let us examine the geometric interpretation of multiplying two complex

numbers together. We start by defining two complex numbers in Cartesian form:

z1 = r1(cos θ + i sin θ) (3.44)

z2 = r2(cos α + i sin α) (3.45)

where r1 and r2 are their moduli.

Therefore,

z1z2 = r1r2(cos θ + i sin θ)(cos α + i sin α)

= r1r2(cos θ cos α − sin θ sin α) + i(sin θ cos α + cos θ sin α)

z1z2 = r1r2(cos(θ + α) + i sin(θ + α)) (3.46)

where we see that the resulting complex number has a modulus equal to the product of the moduli

of the original numbers, whilst the new argument is the sum of the original arguments.

For completeness, let’s calculate the product z1z∗
2 :

z1z∗
2 = r1r2(cos θ + i sin θ)(cos α − i sin α)

= r1r2(cos θ cos α + sin θ sin α) + i(sin θ cos α − cos θ sin α)

z1z∗
2 = r1r2(cos(θ − α) + i sin(θ − α)). (3.47)

If β is the angle between z1 and z2, then β = θ − α, and

z1z∗
2 = r1r2(cos β + i sin β).

Expanding, we obtain

z1z∗
2 = r1r2 cos β + ir1r2 sin β. (3.48)

We observe that the scalar part of Eq. (3.48) is the scalar product of two equivalent vectors, and

the imaginary part is the magnitude of the corresponding vector product, and represents the area

of the parallelogram formed by z1 and z2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complex algebra 19

3.7 Powers of complex numbers

Equation (3.47) can be used to illustrate what happens when a complex number is raised to some

power. To begin, we let r = r1 = r2 and α = θ , therefore

z2 = r2(cos 2θ + i sin 2θ) (3.49)

where the square term emerges as a 2θ term. This is no accident, and Abraham De Moivre

[1667–1754] proved that

zn = rn(cos nθ + i sin nθ). (3.50)

3.8 e, i, sin and cos

The Scottish mathematician and astronomer, David Gregory [1659–1708], published his first

major book in 1684, Exercitatio Geometrica de Dimensione Figurarum, in which he extended his

uncle’s work on the method of quadratures by infinite series [5]. After his death, some unpublished

papers on infinite series were discovered, and the same infinite series were later discovered in 1715

by the English mathematician, Brook Taylor [1685–1731]. Finally, in 1742, the Scottish professor

of mathematics, Colin Maclaurin [1698–1746], described in his Treatise of Fluxions a notation

that is continued in today’s textbooks.

Basically, a Taylor or Maclaurin series consists of an infinite number of terms which normally

converges as the number of terms is increased. For example, the base of the natural system of

logarithms is defined as

e = lim
n→∞

(

1 + 1

n

)n

(3.51)

but it can also be represented as an infinite series

e = lim
n→∞

(

1 + 1

1! + 1

2! + 1

3! + . . . + 1

n!

)

, (3.52)

and ex has the form

ex = lim
n→∞

(

1 + x

1! + x2

2! + x3

3! + . . . + xn

n!

)

. (3.53)

Similarly, it can be shown that

sin x = x − x3

3! + x5

5! − x7

7! . . . , (3.54)

cos x = 1 − x2

2! + x4

4! − x6

6! . . . , (3.55)

where x is in radians.

But what happens if we make x a complex number in Eq. (3.53)?

e ix = lim
n→∞

(

1 + ix

1! + i2x2

2! + i3x3

3! + . . . + inxn

n!

)

(3.56)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

20 Geometric algebra for computer graphics

which simplifies to

e ix = 1 + ix

1! − x2

2! − ix3

3! + x4

4! + ix5

5! . . . . (3.57)

Collecting up real and imaginary terms:

e ix = 1 − x2

2! + x4

4! − x6

6! . . . + i

(

x − x3

3! + x5

5! − x7

7! . . .

)

(3.58)

which we recognize as the sin and cos functions, therefore,

e ix = cos x + i sin x . (3.59)

When x = π we obtain

e iπ = cos π + i sin π

e iπ = −1 (3.60)

which is the beautiful relationship discovered by Euler. But apart from its elegance, it seems to

possess rotational properties; for if we multiply a complex number by e iπ its sign is reversed, i.e.

rotated by 180◦ or π radians. Similarly,

e i π
2 = cos(π/2) + i sin(π/2)

e i π
2 = i (3.61)

which is equivalent to a rotation of 90◦.

Equation (3.42) shows that a complex number can be represented as

z = r(cos θ + i sin θ) (3.62)

and as

e iθ = cos θ + i sin θ (3.63)

z = re iθ . (3.64)

This is interpreted as the real quantity r rotated through an angle θ .

We can rotate z through an angle φ to z ′ using:

z ′ = ze iφ = re iθ e iφ

and

z ′ = re i(θ+φ). (3.65)

These relationships form an important part of GA and should be understood before proceeding.

To conclude this section, let’s evaluate i i . Starting with Eq. (3.61) we have

i i =
(

e i π
2

)i

= e i2 π
2 (3.66)

therefore

i i = e− π
2 = 0.2078795 . . . , (3.67)

which is a real number!



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Complex algebra 21

3.9 Logarithm of a complex number

Now that we have discovered that complex numbers are intimately related to exponential e, it

must be possible to find the natural logarithm of a complex number. Now since

i = e i π
2 (3.68)

ln i = i
π

2
. (3.69)

However, this is the principal logarithm because if

z = r(cos θ + i sin θ) (3.70)

then

ln z = ln r + ln(cos θ + i sin θ)

= ln r + ln e iθ

and

ln z = ln r + iθ . (3.71)

But θ has an infinite number of forms:

θ + 2nπ (3.72)

therefore a complex number has infinitely many logarithms, differing by integer multiples of i2π .

As an example, to find the principal logarithm of z = 2 + i2, we begin by finding the modulus

of z :

|z | =
√

22 + 22 =
√

8 = 2
√

2. (3.73)

Next, we find the argument of z :

θ = arcsin
2

2
√

2
= 45◦ = π

4
. (3.74)

Therefore,

z = 2
√

2
(

cos
π

4
+ i sin

π

4

)

(3.75)

and

ln z = ln 2
√

2 + ln
(

cos
π

4
+ i sin

π

4

)

ln z = ln 2
√

2 + ln e i π
4

ln z = ln 2
√

2 + i
(π

4
± 2nπ

)

. (3.76)

The principal natural logarithm of z is

ln 2
√

2 + i
π

4
≈ 1.04 + i0.7854. (3.77)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

22 Geometric algebra for computer graphics

3.10 Summary

The algebra of complex numbers is closed for addition, subtraction, multiplication and division,

which is why it is such a powerful framework for solving problems. However, in spite of this

strength, it can still instil a sense of unease when we are faced with an answer that has real and

imaginary parts. One just has to accept that certain mathematical problems cannot have a pure

real solution, and the only way to express some sort of answer is to write it in two portions — real

and imaginary. Geometric algebra is also riddled with similar uncomfortable imaginary concepts,

and this chapter is an attempt to prepare the reader for these surprises.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4 Vector Algebra

4.1 Introduction

The evolution of vector analysis is an amazing story of intrigue, discovery, jealousy, prior art,

coincidence and human weaknesses, all of which are covered in Michael Crowe’s excellent book A

History of Vector Analysis [6]. No one mathematician can claim that he or she discovered vectors —

although the word vector was coined by the Irish physicist and mathematician, William Rowan

Hamilton [1805–1865]. However, long before Hamilton was born, the German diplomat and

natural philosopher, Gottfried Wilhelm Leibniz [1646–1716], had written to Christian Huygens

in 1679:

I have discovered certain elements of a new characteristic which is entirely

different from algebra and which will have great advantages in representing

to the mind, exactly and in a way faithful to its nature, even without figures,

everything which depends on sense perception. [7]

Although Leibniz had developed a system for annotating line segments with letters, he failed to

show how such geometric elements could be manipulated arithmetically. We had to wait for the

German mathematician,August Ferdinand Möbius [1790–1868], to publish his Der barycentrische

Calcul in 1827, which contained the foundations of vectors in the form of barycentric coordinates

[8]. In 1843 Möbius published Die Elemente der Mechanik des Himmels where he showed how

directed line segments could be added and subtracted.

Meanwhile, in Ireland, Hamilton was looking for a 3D equivalent of complex numbers.

Hamilton had started his search in 1830 and on October 16, 1843, he invented quaternions,

which contained two products that became central to vector analysis and eventually to GA.

It was not easy for Hamilton to convince fellow mathematicians to embrace his new algebra.

In fact, 47 years after his discovery, the third edition of Hamilton’s Treatise on Quaternions (1890)

contained a preface by Peter Tait who wrote about his surprise of “how little progress has recently

been made with the development of Quaternions.” [9] Tait openly blamed the mathematician,

Josiah Willard Gibbs [1839–1903], for “retarding” the development of quaternions in favor of his

own newly developed field of vector analysis.
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24 Geometric algebra for computer graphics

Gibbs’ book Elements of Vector Analysis [10] was printed in two parts in 1881 and 1884,

which laid the foundations for a notation that is used today. The symbols i, j and k of Hamilton

were dropped and replaced by the unit Cartesian vectors i, j and k, which are free from any

imaginary connotation. Hamilton’s quaternion products were renamed as the direct product and

the skew product. Today we know them as the scalar (dot) product and the vector (cross) product

respectively. With the support of scientists such as Oliver Heaviside, who applied vector analysis

to the study of electromagnetic theory, vectors became the preferred system of the day and

quaternions faded from the scene.

4.2 Vector quantities and their graphical representation

Elementary scalar algebra is used to solve most of our everyday problems, but when it comes

to manipulating forces, velocities, magnetic fields, etc., where both magnitude and direction are

mutually important, vectors provide an intuitive mathematical object for their encoding. Directed

line segments, in turn, provide a simple, yet effective, way of visualizing vectors, where magnitude

is represented by the line’s length and direction by the line’s orientation and arrow. Figure 4.1

shows the vector a in R2 formed from two points P and Q, where

P = (xp , yp) and Q = (xq , yq) (4.1)

and

a =
[

xq − xp

yq − yp

]

=
[

xa

ya

]

. (4.2)

The vector is directed from P to Q.

X

Y

P

Q

a

px qx

py

qy

ax

ay

Figure 4.1.

Consequently, given the vector a = [xa ya]T , its magnitude is

‖a‖ =
√

x2
a + y2

a . (4.3)

Similarly, the magnitude of the vector a = [xa ya za]T in R3 is

‖a‖ =
√

x2
a + y2

a + z2
a . (4.4)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vector algebra 25

A vector’s orientation is defined in terms of the cosines of the angles it forms with the Cartesian

axes as shown in Fig. 4.2:

cos α = xa

‖a‖ cos β = ya

‖a‖ cos χ = za

‖a‖ . (4.5)

X

Y

Z

α

β

χ

a

Figure 4.2.

The addition and subtraction of vectors is extremely simple as illustrated in Fig. 4.3, which

shows the vector operations a + b and a − b:

X

Y

b

−b

a

+a b

−a b

Figure 4.3.

Readers wishing to increase their knowledge beyond the contents of this chapter are recom-

mended to read Vector Spaces of the Open University’s Linear Algebra Block [11], which provided

the background for the following sections. Readers wanting to see how vector analysis is employed

in computer graphics are directed to the author’s book Vector Analysis for Computer Graphics [12].

4.3 Vector spaces

Vectors are mathematical objects that may or may not have a geometrical significance, and

although in this book we are interested in their application to geometry, they are fundamentally

an algebraic object devoid of any real-world geometric attributes.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

26 Geometric algebra for computer graphics

We begin with the term vector space which is nothing more than a set of elements called vectors.

The two most familiar Euclidean spaces are R2 and R3, where R2 is the set of ordered pairs of real

numbers, and R3 is the set of ordered triples of real numbers. Generalizing this definition, Rn is

the set of all ordered n-tuples, where an ordered n-tuple is a sequence of real numbers such as

(u1, u2, . . . , un), which permits us to define a vector as

u = (u1, u2, . . . , un) (4.6)

where n is a positive integer and describes the dimension of the vector space. When n > 3 it is

impossible to visualize the vector space, which is a limitation imposed by our brains rather than

a limit to the physical existence of such objects.

With such a general description of a vector space one can propose all sorts of strange spaces

that have as their elements: integers, complex numbers, matrices or even polynomials. So to pre-

vent the creation of useless spaces, the definition of a vector space is subject to specific algebraic

axioms, which we have already come across in our analysis of elementary algebra and complex

numbers: closure, identity, inverse, associativity, commutativity and distributivity. Thus, a real

vector space comprises a set of V elements (i.e. vectors) that are subject to vector addition and

scalar multiplication, such that the following axioms hold:

Given v, v1, v2, v3, 0 ∈ V and λ, ε ∈ R: (4.7)

Closure

For all v1, v2 and λ

addition v1 + v2 ∈ V (4.8)

multiplication λv ∈ V . (4.9)

Identity

For each v there is an identity element 0 and 1 such that:

addition v + 0 = 0 + v = v (4.10)

multiplication 1v = v. (4.11)

Inverse

For each v there is an inverse element −v such that:

addition v + (−v) = −v + v = 0. (4.12)

Associativity

For all v1, v2 and v3

addition (v1 + v2) + v3 = v1 + (v2 + v3). (4.13)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vector algebra 27

For all v, λ and ε

multiplication λ(εv) = (λε)v. (4.14)

Commutativity

For all v1 and v2

addition v1 + v2 = v2 + v1. (4.15)

Distributivity

For all v, v1, v2, λ and ε

λ(v1 + v2) = λv1 + λv2 (4.16)

(λ + ε)v = λv + εv. (4.17)

4.4 Linear combinations

The algebra of vector analysis employs a rich vocabulary of terms such as vector space, dimension,

ordered pairs, triples and n-tuples, direction cosines, linear combination, linearly dependent,

spanning sets, orthonormal basis, scalar and vector product. Geometric algebra possesses an even

richer vocabulary and fortunately builds upon the vocabulary of vector algebra, which is why it is

important to understand these terms. So let’s continue by explaining the rest of the terms starting

with linear combination.

Given two vectors a and b it is possible to construct a third vector c such that

c = λa + εb (4.18)

where λ, ε ∈ R.

The vector c is then said to be a linear combination of a and b.

As an example, let’s discover whether the vector (8, 11) is a linear combination of the vectors

(1, 1) and (2, 3).

If this is true, then

(8, 11) = λ(1, 1) + ε(2, 3) (4.19)

and

8 = λ + 2ε (4.20)

11 = λ + 3ε. (4.21)

Subtracting Eq. (4.20) from (4.21)

ε = 3. (4.22)

Substituting ε in Eq. (4.20)

8 = λ + 6 (4.23)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

28 Geometric algebra for computer graphics

and

λ = 2. (4.24)

Therefore,

(8, 11) = 2(1, 1) + 3(2, 3) (4.25)

which confirms that (8, 11) is a linear combination of the vectors (1, 1) and (2, 3).

Now let’s consider a second example where there is no linear relationship.

We pose the question: Is the vector (6, −2) a linear combination of the vectors (4, 4) and (2, 2)?

If it is, then

(6, −2) = λ(4, 4) + ε(2, 2) (4.26)

and

6 = 4λ + 2ε (4.27)

−2 = 4λ + 2ε. (4.28)

Equations (4.27) and (4.28) are irreconcilable as it is impossible to find values of λ and ε that

satisfy them, therefore the vector (6, −2) cannot be expressed as a linear combination of the

vectors (4, 4) and (2, 2). This condition is expressed formally as:

Given v1, v2, . . . vt ∈ V and λ1, λ2, . . . λt ∈ R. (4.29)

Then any vector of the form λ1v1 +λ2v2 + . . .+λt vt , is called a linear combination of the vectors

v1, v2, . . . vt and λ1v1 + λ2v2 + . . . + λt vt ∈ V .

4.5 Spanning sets

Accepting the fact that a vector can be a linear combination of a number of other vectors, the

idea of spanning sets arises when we pose the question: What is the set of all possible linear

combinations of these vectors? For example, could there be two vectors, which when linearly

combined in every possible combination, covers the Euclidean plane R2? Well, the answer to this

question is “yes” — there are two such vectors: (1, 0) and (0, 1).

The vector (1, 0) aligns with the x-axis, whilst (0, 1) aligns with the y-axis. Now if we combine

these as follows:

v = λ(1, 0) + ε(0, 1) (4.30)

where λ, ε ∈ R, then all possible values of v will cover R2, or {(1, 0), (0, 1)} spans R2. Alter-

natively, R2 is spanned by {(1, 0), (0, 1)}.
Obviously, different collections of vectors create different spans, and the problem arises as to

whether another vector is a member of a span.

Using the previous example, say we know that the set S is spanned by the vectors {(1, 1), (2, 3)}
i.e.

S = {(1, 1), (2, 3)} (4.31)

and we need to know whether (8, 11) is a member of 〈S〉.
We proceed as follows by writing

(8, 11) = λ(1, 1) + ε(2, 3) (4.32)

which we know reveals that λ = 2, ε = 3, and (8, 11) ∈ 〈S〉.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vector algebra 29

As another example, consider proving that {(1, 3), (2, −4)} is a spanning set for R2.

We proceed by noting that a vector (x , y) ∈ R2 given that x , y ∈ R. Therefore, we can write

(x , y) = λ(1, 3) + ε(2, −4) = (λ + 2ε, 3λ − 4ε). (4.33)

Equating corresponding coordinates

x = λ + 2ε (4.34)

y = 3λ − 4ε (4.35)

which makes

λ = 1

5
(2x + y) ε = 1

10
(3x − y) (4.36)

therefore,

(x , y) = 1

5
(2x + y)(1, 3) + 1

10
(3x − y)(2, −4). (4.37)

Which confirms that {(1, 3), (2, −4)} is a spanning set for R2. Or

〈{(1, 3), (2, −4)}〉 = R2. (4.38)

This relationship is expressed formally as:

Let v1, v2, . . . vt ∈ V and λ1, λ2, . . . λt ∈ R. (4.39)

If S = {v1, v2, . . . vt } then the span of S, 〈S〉, is the set of all possible linear combinations

λ1v1 + λ2v2 + . . . + λt vt , (4.40)

or

〈S〉 = {λ1v1 + λ2v2 + · · · + λt vt : λ1, λ2, . . . λt ∈ R}. (4.41)

4.6 Linear independence and dependence

A consequence of spanning sets is the idea of linear independence and dependence. For example,

let’s show that the following sets span R2:

{(1, 0), (1, 1)} and {(1, 0), (1, 1), (2, −2)}. (4.42)

We proceed by noting that given x , y ∈ R, a vector

(x , y) ∈ R2. (4.43)

Therefore, we can write

(x , y) = λ(1, 0) + ε(1, 1) = (λ + ε, ε). (4.44)

Equating corresponding coordinates

x = λ + ε (4.45)

y = ε (4.46)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

30 Geometric algebra for computer graphics

where

λ = x − y ε = y (4.47)

and

(x , y) = (x − y)(1, 0) + y(1, 1). (4.48)

Which confirms that {(1, 0), (1, 1)} spans R2.

Similarly, we can write

(x , y) = λ(1, 0) + ε(1, 1) + η(2, −2). (4.49)

Equating corresponding coordinates

x = λ + ε + 2η (4.50)

y = ε − 2η (4.51)

which creates a pair of simultaneous equations in three unknowns, which has an infinite number

of solutions, one of which is

λ = x − y ε = y η = 0 (4.52)

which implies that

(x , y) = (x − y)(1, 0) + y(1, 1) + 0(2, −2) (4.53)

and confirms that {(1, 0), (1, 1)} spans R2.

Another solution is

λ = x + y ε = 0 η = − 1
2
y (4.54)

which implies

(x , y) = (x + y)(1, 0) + 0(1, 1) − 1
2
y(2, −2) (4.55)

and confirms that {(1, 0), (2, −2)} also spans R2.

Either way, one of the original vectors is redundant, which poses the question: What is the

smallest number of vectors that spans a space? This is called the minimal spanning set.

The answer to this question is to discover whether one of the vectors is linearly dependent upon

the other vectors. In the above example, if we can show that the vector (2, −2) is linearly related

to {(1, 0), (1, 1)} then it is redundant.

We proceed as follows:

(2, −2) = λ(1, 0) + ε(1, 1) = (λ + ε, ε). (4.56)

Equating corresponding coordinates

λ + ε = 2 (4.57)

ε = −2 (4.58)

which makes

λ = 4 ε = −2 (4.59)

and

(2, −2) = 4(1, 0) − 2(1, 1) (4.60)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vector algebra 31

which can be substituted in Eq. (4.49):

(x , y) = λ(1, 0) + ε(1, 1) + η(4(1, 0) − 2(1, 1)). (4.61)

Simplifying

(x , y) = (λ + 4η)(1, 0) + (ε − 2η)(1, 1). (4.62)

Therefore, {(1, 0), (1, 1)} spans R2.

To identify whether a spanning set is minimal or not, we must establish whether any member

of the set is a linear combination of the others. Formally, this is defined as follows:

Given v1, v2, . . . vt ∈ V and λ1, λ2, . . . λt ∈ R. (4.63)

{v1, v2, . . . vt } is linearly dependent if λ1, λ2, . . . λt exist that are not all zero, such that

λ1v1 + λ2v2 + . . . + λt vt = 0 (4.64)

otherwise it is linearly independent.

Consequently, for a set of vectors to be a minimal spanning set for a vector space V , they must

be linearly independent. Furthermore, such a set is called a basis for the vector space V .

4.7 Standard bases

Because a vector space can have an infinite number of vector sets as its basis, it is tempt-

ing to enquire whether any preferred set exists? To which the answer is “yes”. For R2 they are

{(1, 0), (0, 1)} and for R3 they are {(1, 0, 0), (0, 1, 0), (0, 0, 1)}. In general, the standard basis for Rn

is the set of n vectors

{(1, 0, 0, . . . 0), (0, 1, 0, . . . 0), . . . , (0, 0, 0, . . . 1)}. (4.65)

4.8 Orthogonal bases

Orthogonal means at right-angles to, and an orthogonal basis implies that its vectors are at

right-angles. Thus if the basis vectors v1 = (x1, y1) and v2 = (x2, y2) are orthogonal if

x1x2 + y1y2 = 0. (4.66)

For example, the standard base for R3 is {(1, 0, 0), (0, 1, 0), (0, 0, 1)} which are orthogonal:

(1 × 0 × 0 + 0 × 1 × 0 + 0 × 0 × 1) = 0. (4.67)

Readers familiar with the scalar (dot) product will understand why this is so. We examine this

product in section 4.10.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

32 Geometric algebra for computer graphics

4.9 Dimension

When we use the word‘dimension’we normally associate it with physical space, which is apparently,

three-dimensional. In vector notation this corresponds to R3. As vector spaces may have any

number of dimensions, in this context, dimension means the number of vectors used in the basis

for the vector space.

4.10 Subspaces

Very often sets contain smaller subsets. For example, the set of integers N contains two subsets

NO and NE which are the odd and even integers respectively. The same concept arises in vector

spaces, where a vector space V contains a subset S, which is called a subspace if it satisfies all the

axioms associated with V . In general, these axioms are:

a. 0 ∈ S

b. S is closed under vector addition

c. S is closed under scalar multiplication

For example, the first axiom 0 ∈ S, ensures that any proper subset of R3 must include

• a zero-dimensional subset {0}
• a one-dimensional subset y = ax (a line through the origin)

• a two-dimensional subset z = ax + by (a plane through the origin).

For example, to show that the set of vectors

S = {(x , 4x) : x ∈ R} (4.68)

is a subspace of R3, we must demonstrate that the above axioms apply to the set S.

1st Axiom

When x = 0 then (x , 4x) = (0, 0) and 0 ∈ S.

2nd Axiom

Let v1 = (x1, 4x1) and v2 = (x2, 4x2), which belong to S.

Therefore,

v1 + v2 = (x1, 4x1) + (x2, 4x2)

v1 + v2 = (x1 + x2, 4(x1 + x2)) (4.69)

which is closed.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vector algebra 33

3rd Axiom

Let

v = (x , 4x) ∈ S and λ ∈ R. (4.70)

Therefore,

λv = λ(x , 4x) = (λx , 4(λx)) (4.71)

which is closed.

As all three axioms hold,

S = {(x , 4x) : x ∈ R} (4.72)

is a subspace of R3.

To demonstrate where a subset is not a subspace of R3, consider the set

S = {(x , y , x + y + 3) : x , y ∈ R}. (4.73)

This is obviously a plane and is defined by

z = x + y + 3. (4.74)

When x = y = 0, z = 3, and it fails the first axiom, and there is no need to investigate the other

two axioms.

4.11 Scalar product

There are two products associated with vectors: the scalar and the vector product. As the name

suggests the scalar product results in a scalar, and no chance of closing the algebra. By definition,

the scalar product for two vectors in R2 is

v1 · v2 = ‖v1‖‖v2‖ cos θ = x1x2 + y1y2 (4.75)

where

v1 =
[

x1

y1

]

and v2 =
[

x2

y2

]

(4.76)

and

θ is the angle between v1 and v2.

Similarly, for two vectors in R3

v1 · v2 = ‖v1‖‖v2‖ cos θ = x1x2 + y1y2 + z1z2 (4.77)

where

v1 =

⎡

⎣

x1

y1

z1

⎤

⎦ and v2 =

⎡

⎣

x2

y2

z2

⎤

⎦ (4.78)

and

θ is the angle between v1 and v2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

34 Geometric algebra for computer graphics

In general, for two vectors in Rn

v1 · v2 = ‖v1‖‖v2‖ cos θ = α1β1 + α2β2 + . . . + αnβn (4.79)

where

v1 =

⎡

⎢

⎢

⎢

⎣

α1

α2

...

αn

⎤

⎥

⎥

⎥

⎦

and v2 =

⎡

⎢

⎢

⎢

⎣

β1

β2

...

βn

⎤

⎥

⎥

⎥

⎦

(4.80)

and

θ is the angle between v1 and v2.

The product is also known as the dot product to reflect the ‘·’ used as the operator.

As an example, given two vectors

v1 =

⎡

⎣

1

2

3

⎤

⎦ v2 =

⎡

⎣

2

2

4

⎤

⎦ (4.81)

then

v1 · v2 = 1 × 2 + 2 × 2 + 3 × 4 = 18 (4.82)

and

‖v1‖ =
√

12 + 22 + 32 =
√

14 (4.83)

‖v2‖ =
√

22 + 22 + 42 =
√

24. (4.84)

Therefore, the angle between v1 and v2 is

θ = cos−1

(

18√
14

√
24

)

≈ 10.9◦. (4.85)

Before proceeding with the vector product, we need to examine two laws associated with the dot

product: the commutative and distributive laws and we also need to confirm the role of scalars.

Commutative Law a · b = b · a

As

a · b = ‖a‖‖b‖ cos θ (4.86)

the commutative law of scalar multiplication permits us to write Eq. (4.86) as

a · b = ‖b‖‖a‖ cos θ = b · a (4.87)

therefore,

a · b = b · a. (4.88)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vector algebra 35

Distributive Law a · (b + c) = a · b + a · c

Given

a = xa i + ya j + zak (4.89)

b = xbi + yb j + zbk (4.90)

c = xc i + yc j + zc k (4.91)

then

a · (b + c) = (xa i + ya j + zak) · ((xbi + yb j + zbk) + (xc i + yc j + zc k))

= (xa i + ya j + zak) · ((xb + xc)i + (yb + yc)j + (zb + zc)k)

= xa(xb + xc) + ya(yb + yc) + za(zb + zc)

a · (b + c) = (xaxb + xaxc + yayb) + (yayc + zazb + zazc) = a · b + a · c (4.92)

therefore,

a · (b + c) = a · b + a · c. (4.93)

4.12 Vector product

As the name suggests, the vector product results in a vector, which ensures closure, but it only

exists in R3. By definition, the vector product for two vectors is

v1 × v2 = v3 (4.94)

where

‖v3‖ = ‖v1‖‖v2‖ sin θ (4.95)

θ is the angle between v1 and v2

and

v3 is orthogonal to v1 and v2.

v3 is given by

v3 =
∣

∣

∣

∣

y1 z1

y2 z2

∣

∣

∣

∣

i +
∣

∣

∣

∣

z1 x1

z2 x2

∣

∣

∣

∣

j +
∣

∣

∣

∣

x1 y1

x2 y2

∣

∣

∣

∣

k. (4.96)

As an example, let’s find the vector orthogonal to v1 × v2 where

v1 =
[

1 0 0
]T

and v2 =
[

0 1 0
]T

. (4.97)

v3 =
∣

∣

∣

∣

0 0

1 0

∣

∣

∣

∣

i +
∣

∣

∣

∣

0 1

0 0

∣

∣

∣

∣

j +
∣

∣

∣

∣

1 0

0 1

∣

∣

∣

∣

k (4.98)

v3 = k (4.99)

which is correct.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

36 Geometric algebra for computer graphics

The vector product is also known as the cross product to reflect the ‘×’ symbol used as the

operator.

Commutative Law a × b �= b × a

The commutative law does not hold for the vector product.

Given

a × b =

∣

∣

∣

∣

∣

∣

i j k

xa ya za

xb yb zb

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

ya za

yb zb

∣

∣

∣

∣

i +
∣

∣

∣

∣

za xa

zb xb

∣

∣

∣

∣

j +
∣

∣

∣

∣

xa ya

xb yb

∣

∣

∣

∣

k

a × b = (yazb − ybza)i + (zaxb − zbxa)j + (xayb − xbya)k. (4.100)

Whereas

b × a =

∣

∣

∣

∣

∣

∣

i j k

xb yb zb

xa ya za

∣

∣

∣

∣

∣

∣

=
∣

∣

∣

∣

yb zb

ya za

∣

∣

∣

∣

i +
∣

∣

∣

∣

zb xb

za xa

∣

∣

∣

∣

j +
∣

∣

∣

∣

xb yb

xa ya

∣

∣

∣

∣

k

= (ybza − yazb)i + (zbxa − zaxb)j + (xbya − xayb)k

= −(yazb − ybza)i + (zaxb − zbxa)j + (xayb − xbya)k

b × a = −a × b (4.101)

therefore,

a × b = −b × a. (4.102)

Distributive Law a × (b + c) = a × b + a × c

Given

a = xa i + ya j + zak (4.103)

b = xbi + yb j + zbk (4.104)

c = xc i + yc j + zc k (4.105)

and

d = b + c = xd i + yd j + zd k (4.106)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Vector algebra 37

then

a × (b + c) = a × d =

∣

∣

∣

∣

∣

∣

i j k

xa ya za

xd yd zd

∣

∣

∣

∣

∣

∣

(4.107)

a × d =
∣

∣

∣

∣

ya za

yd zd

∣

∣

∣

∣

i +
∣

∣

∣

∣

za xa

zd xd

∣

∣

∣

∣

j +
∣

∣

∣

∣

xa ya

xd yd

∣

∣

∣

∣

k. (4.108)

Substituting b + c for d

a × (b + c) =
∣

∣

∣

∣

ya za

yb + yc zb + zc

∣

∣

∣

∣

i +
∣

∣

∣

∣

za xa

zb + zc xb + xc

∣

∣

∣

∣

j +
∣

∣

∣

∣

xa ya

xb + xc yb + yc

∣

∣

∣

∣

k

= (ya(zb + zc) − za(yb + yc))i

+ (za(xb + xc) − xa(zb + zc))j

+ (xa(yb + yc) − ya(xb + xc))k

= (yazb − ybza)i + (yazc − yc za)i

+ (zaxb − zbxa)j + (zaxc − zc xa)j

+ (xayb − xbya)k + (xayc − xc ya)k

a × (b + c) = a × b + a × c. (4.109)

4.13 Summary

In this chapter we have reviewed vectors and the axioms of vector algebra. Perhaps the most

important points to acknowledge are that the scalar product converts two vectors into a scalar;

the cross product anticommutes, and only works in R3. The next chapter reviews quaternions and

their associated algebra.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5 Quaternion
Algebra

5.1 Introduction

Quaternions are the result of one man’s determination to find the 3D equivalent of complex

numbers. Sir William Rowan Hamilton was the man, and in 1843 he revealed to the world his

discovery which had taken him over a decade to resolve.

Knowing that a complex number in R2 has the form

z = a + ib (5.1)

it is reasonable to presume that a complex number in R3 should take the form

z = a + ib + jc (5.2)

where i and j are unit imaginaries: i2 = j2 = −1. However, when two such objects are multiplied

together we have

z1z2 = (a1 + ib1 + jc1)(a2 + ib2 + jc2) (5.3)

which expands to

z1z2 = a1a2 + ia1b2 + ja1c2 + ib1a2 + i2b1b2 + ijb1c2 + jc1a2 + jic1b2 + j2c1c2. (5.4)

Substituting i2 = j2 = −1 into Eq. (5.4) and collecting up like terms we obtain

z1z2 = (a1a2 − b1b2 − c1c2) + i(a1b2 + b1a2) + j(a1c2 + c1a2) + ijb1c2 + jic1b2 (5.5)

which leaves the terms ij and ji undefined. These stumped Hamilton for many years, but his

tenacity won the day, and he eventually came up with an incredible idea which involved extending

the triple into a 4-tuple:

z = a + ib + jc + kd . (5.6)

When two such objects are multiplied together we have

z1z2 = (a1 + ib1 + jc1 + kd1)(a2 + ib2 + jc2 + kd2) (5.7)

39



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

40 Geometric algebra for computer graphics

which expands to

z1z2 = a1a2 + ia1b2 + ja1c2 + ka1d2

+ ib1a2 + i2b1b2 + ijb1c2 + ikb1d2

+ jc1a2 + jic1b2 + j2c1c2 + jkc1d2

+ kd1a2 + kid1b2 + kjd1c2 + k2d1d2. (5.8)

Substituting i2 = j2 = k2 = −1 in Eq. (5.8) and collecting up like terms we obtain

z1z2 = a1a2 − b1b2 − c1c2 − d1d2

+ i(a1b2 + b1a2) + j(a1c2 + c1a2) + k(a1d2 + d1a2)

+ ijb1c2 + ikb1d2 + jic1b2 + jkc1d2 + kid1b2 + kjd1c2. (5.9)

But this, too, has some undefined terms: ij , ik, ji, jk, ki, kj . However, Hamilton was a genius and

he resolved the problem by proposing the following rules:

ij = k jk = i ki = j ji = −k kj = −i ik = −j (5.10)

which when substituted into Eq. (5.9) produces

z1z2 = a1a2 − b1b2 − c1c2 − d1d2

+ i(a1b2 + b1a2) + j(a1c2 + c1a2) + k(a1d2 + d1a2)

+ kb1c2 − jb1d2 − kc1b2 + ic1d2 + jd1b2 − id1c2. (5.11)

Collecting up like terms we obtain

z1z2 = a1a2 − (b1b2 + c1c2 + d1d2)

+ i(a1b2 + b1a2 + c1d2 − d1c2)

+ j(a1c2 + c1a2 + d1b2 − b1d2)

+ k(a1d2 + d1a2 + b1c2 − c1b2). (5.12)

Although this does not have any undefined terms it can be tidied up as follows:

z1z2 = a1a2 − (b1b2 + c1c2 + d1d2)

+ a1(ib2 + jc2 + kd2) + a2(ib1 + jc1 + kd1)

+ i(c1d2 − d1c2) + j(d1b2 − b1d2) + k(b1c2 − c1b2) (5.13)

The last step is to write the original object as the sum of a scalar and a vector starting with:

z1 = s1 + v1 z2 = s2 + v2 (5.14)

and the following symmetry emerges:

z1z2 = s1s2 − v1 · v2 + s1 v2 + s2 v1 + v1 × v2. (5.15)

Hamilton called this object a ‘quaternion’ and gave the name ‘vector ’ to the imaginary portion.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quaternion algebra 41

The product v1 · v2 is equivalent to

b1b2 + c1c2 + d1d2 (5.16)

and became the scalar or dot product, whilst v1 × v2, which is equivalent to

i(c1d2 − d1c2) + j(d1b2 − b1d2) + k(b1c2 − c1b2) (5.17)

became the vector or cross product and led to the definitions:

v1 · v2 = ‖v1‖‖v2‖ cos θ (5.18)

and

v1 × v2 = v3 (5.19)

where

v3 = i(c1d2 − d1c2) + j(d1b2 − b1d2) + k(b1c2 − c1b2) (5.20)

and

‖v3‖ = ‖v1‖‖v2‖ sin θ (5.21)

where

θ is the angle between v1 and v2.

Strictly speaking, the i, j and k are unit imaginaries which obey Hamilton’s rules where

i2 = j2 = k2 = ijk = −1 (5.22)

ij = k jk = i ki = j ji = −k kj = −i ik = −j . (5.23)

However, when vector algebra became the preferred system over quaternion algebra, the i, j and

k terms became the Cartesian unit vectors i, j and k.

One very important feature of quaternion algebra is its anticommuting rules. Maintaining

order between the unit imaginaries is vital for the algebra to remain consistent, which is also a

feature of GA.

5.2 Adding quaternions

Two quaternions q1 and q2

q1 = s1 + ix1 + jy1 + kz1 (5.24)

q2 = s2 + ix2 + jy2 + kz2 (5.25)

are equal if, and only if, their corresponding terms are equal. Furthermore, like vectors, they can

be added or subtracted as follows:

q1 ± q2 = [(s1 ± s2) + i(x1 ± x2) + j(y1 ± y2) + k(z1 ± z2)]. (5.26)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

42 Geometric algebra for computer graphics

For example, given two quaternions

q1 = 1 + i2 + j3 + k4 (5.27)

q2 = 2 − i + j5 − k2 (5.28)

their sum is given by

q1 + q2 = 3 + i + j8 + k2. (5.29)

5.3 The quaternion product

Given two quaternions

q1 = s1 + v1 = s1 + ix1 + jy1 + kz1 (5.30)

q2 = s2 + v2 = s2 + ix2 + jy2 + kz2 (5.31)

their product is given by

q1q2 = s1s2 − v1 · v2 + s1v2 + s2v1 + v1 × v2 (5.32)

which is still a quaternion and ensures closure. However, the quaternion product anticommutes,

which we can prove by computing q2q1:

q2q1 = s2s1 − v2 · v1 + s2v1 + s1v2 + v2 × v1. (5.33)

The pure scalar terms s2s1, v2 · v1 and the products s2v1 and s1v2 commute, but the cross product

v2 × v1 anticommutes, therefore q1q2 �= q2q1.

For example, given the quaternions

q1 = 1 + i2 + j3 + k4 (5.34)

q2 = 2 − i + j5 − k2 (5.35)

their product q1q2 is

q1q2 = (1 + i2 + j3 + k4)(2 − i + j5 − k2) (5.36)

= [1 × 2 − (2 × (−1) + 3 × 5 + 4 × (−2))

+ 1(−i + j5 − k2) + 2(i2 + j3 + k4)

+ i(3 × (−2) − 4 × 5) + j(4 × (−1) − (−2) × 2) + k(2 × 5 − (−1) × 3)]
= −3 + i3 + j11 + k6 − i26 + k13

q1q2 = −3 − i23 + j11 + k19 (5.37)

which is a quaternion.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quaternion algebra 43

Whereas the product q2q1 is

q2q1 = (2 − i + j5 − k2)(1 + i2 + j3 + k4)

= [2 − ((−1) × 2 + 5 × 3 + (−2) × 4)

+ 2(i2 + j3 + k4) + 1(−i + j5 − k2)

+ i(5 × 4 − 3 × (−2)) + j((−2) × 2 − 4 × (−1)) + k((−1) × 3 − 2 × 5)]
q2q1 = −3 + i29 + j11 − k7 (5.38)

which is also a quaternion, but q2q1 �= q1q2.

5.4 The magnitude of a quaternion

Given the quaternion

q = s + ix + jy + kz (5.39)

its magnitude is defined as

‖q‖ =
√

s2 + x2 + y2 + z2. (5.40)

For example, given the quaternion

q = 1 + i2 + j3 + k4 (5.41)

‖q‖ =
√

12 + 22 + 32 + 42 =
√

30. (5.42)

5.5 The unit quaternion

Like vectors, quaternions have a unit form where the magnitude equals unity. For example, the

magnitude of the quaternion

q = 1 + i2 + j3 + k4 (5.43)

is

‖q‖ =
√

12 + 22 + 32 + 42 =
√

30 (5.44)

therefore, the unit quaternion q̂ equals

q̂ = 1

30
(1 + i2 + j3 + k4). (5.45)

5.6 The pure quaternion

Hamilton named a quaternion with a zero scalar term a pure quaternion. For example,

q1 = ix1 + jy1 + kz1 and q2 = ix2 + jy2 + kz2 (5.46)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

44 Geometric algebra for computer graphics

are pure quaternions. Let’s see what happen when we multiply them together:

q1q2 = (ix1 + jy1 + kz1)(ix2 + jy2 + kz2)

q1q2 = [−(x1x2 + y1y2 + z1z2) + i(y1z2 − y2z1) + j(z1x2 − z2x1) + k(x1y2 − x2y1)] (5.47)

which is no longer a pure quaternion, as a negative scalar term has emerged. Thus the algebra of

pure quaternions is not closed.

5.7 The conjugate of a quaternion

Given the quaternion

q = s + v

q = s + ix + jy + kz (5.48)

by definition, its conjugate is

q = s − v = s − (ix + jy + kz). (5.49)

For example, the quaternion

q = 1 + i2 + j3 + k4 (5.50)

its conjugate is

q = 1 − i2 − j3 − k4. (5.51)

5.8 The inverse quaternion

Given the quaternion

q = s + ix + jy + kz (5.52)

the inverse quaternion q−1 is

q−1 = s − ix − jy − kz

‖q‖2
(5.53)

because this satisfies the product

qq−1 = (s + ix + jy + kz)(s − ix − jy − kz)

‖q‖2
= 1. (5.54)

We can show that this is true by expanding the product as follows:

qq−1 =
(

s2 − isx − jsy − ksz + isx + x2 − ijxy − ikxz +
jsy − jixy + y2 − jkyz + ksz − kixz − kjyz + z2

)

/‖q‖2

= s2 + x2 + y2 + z2 − ijxy − ikxz − jixy − jkyz − kixz − kjyz

‖q‖2

qq−1 = s2 + x2 + y2 + z2

‖q‖2
= 1 (5.55)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Quaternion algebra 45

and confirms that the inverse quaternion q−1 is

q−1 = q

‖q‖2
. (5.56)

Because the unit imaginaries do not commute, we need to discover whether

qq−1 = q−1q. (5.57)

Expanding this product

q−1q = (s − ix − jy − kz)(s + ix + jy + kz)

‖q‖2

=
(

s2 + isx + jsy + ksz − isx + x2 − ijxy − ikxz−
jsy − jixy + y2 − jkyz − ksz − kixz − kjyz + z2

)

/‖q‖2

= s2 + x2 + y2 + z2 − ijxy − ikxz − jixy − jkyz − kixz − kjyz

‖q‖2

q−1q = s2 + x2 + y2 + z2

‖q‖2
= 1

therefore,

qq−1 = q−1q. (5.58)

5.9 Quaternion algebra

The axioms associated with quaternions are as follows:

Given q, q1, q2, q3 ∈ C: (5.59)

Closure

For all q1 and q2

addition q1 + q2 ∈ C (5.60)

multiplication q1q2 ∈ C. (5.61)

Identity

For each q there is an identity element 0 and 1 such that:

addition q + 0 = 0 + q = q (0 = 0 + i0 + j0 + k0) (5.62)

multiplication q(1) = (1)q = q (1 = 1 + i0 + j0 + k0). (5.63)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

46 Geometric algebra for computer graphics

Inverse

For each q there is an inverse element −q and q−1 such that:

addition q + (−q) = −q + q = 0 (5.64)

multiplication qq−1 = q−1q = 1 (q �= 0). (5.65)

Associativity

For all q1, q2 and q3

addition q1 + (q2 + q3) = (q1 + q2) + q3 (5.66)

multiplication q1(q2q3) = (q1q2)q3. (5.67)

Commutativity

For all q1 and q2

addition q1 + q2 = q2 + q1 (5.68)

multiplication q1q2 �= q2q1. (5.69)

Distributivity

For all q1, q2 and q3

q1(q2 + q3) = q1q2 + q1q3 (5.70)

(q1 + q2)q3 = q1q3 + q2q3. (5.71)

5.10 Rotating vectors using quaternions

One excellent application for quaternions is rotating vectors, and readers requiring an introduc-

tion to this topic are directed to the author’s book Mathematics for Computer Graphics [8].

It can be shown that a position vector p can be rotated about an axis û by an angle θ to p′ using

the following operation:

p′ = qpq−1 (5.72)

where

p = xi + y j + zk (5.73)

p = 0 + ix + jy + kz (5.74)

q = cos(θ/2) + sin(θ/2)û (5.75)

q−1 = cos(θ/2) − sin(θ/2)û (5.76)
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and the axis of rotation is

û = [xui + yu j + zuk] (‖û‖ = 1). (5.77)

This is best demonstrated through an example.

Let the point to be rotated be

P(0, 1, 1). (5.78)

Let the axis of rotation be

û = j. (5.79)

Let the angle of rotation be

θ = 90◦. (5.80)

Therefore,

p = 0 + i0 + j + k (5.81)

q = cos 45◦ + sin 45(i0 + j + k0)

q =
√

2

2
(1 + i0 + j + k0) (5.82)

q−1 = cos 45◦ − sin 45(i0 + j + k0)

q−1 =
√

2

2
(1 − i0 − j − k0). (5.83)

The rotated point is given by

p′ = qpq−1

p′ =
√

2

2
(1 + i0 + j + k0)(0 + i0 + j + k)

√
2

2
(1 − i0 − j − k0). (5.84)

This is best expanded in two steps, and zero imaginary terms are included for clarity.

qp followed by (qp)q−1.

Step 1

qp =
√

2

2
(1 + i0 + j + k0)(0 + i0 + j + k)

qp =
√

2

2
(−1 + i + j + k). (5.85)

Step 2

(qp)q−1 =
√

2

2
(−1 + i + j + k)

√
2

2
(1 − i0 − j − k0)

= 1

2
(−1 + 1 + j + i + j + k + i − k)

= 1

2
(0 + i2 + j2 + k0)

(qp)q−1 = 0 + i + j + k0. (5.86)

The coordinates of the rotated point are stored in the pure part of the quaternion: (1, 1, 0).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

48 Geometric algebra for computer graphics

5.11 Summary

Out of all the algebras we have so far considered, quaternion algebra paves the way to geometric

algebra. In fact, as we will soon discover, GA shows that quaternions are a left-handed system and

employ the concepts of GA. The good news is that if you understand quaternions, you will find it

much easier to understand GA.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6 Geometric
Conventions

6.1 Introduction

Algebra is a powerful numerical framework for solving real-world problems. But as mentioned

in chapter 3 we must be careful when manipulating the quantity zero and taking square-roots

of negative numbers. In this chapter we look at how geometric conventions give rise to negative

areas and volumes which we must understand before proceeding with GA.

Readers already familiar with computer graphics will understand the importance of using a

left-handed or right-handed axial system when designing computer programs. Failure to observe

a consistent axial model can result in reflected images or reversed rotations, so let’s begin by taking

a look at spatial conventions.

6.2 Clockwise and anticlockwise

The number line used to visualize the distribution of the set of real numbers R is conventionally

organized as shown in Fig. 6.1a, with negative values to the left and positive numbers to the right.

0 +1 +2 +3 +4 +5−1−2−3−4−5

0+1+2+3+4+5 −1 −2 −3 −4 −5

(a)

(b)

Figure 6.1.

Such a scheme is just a convention imposed upon us by previous civilizations. Even if the

opposite convention had evolved, as shown in Figure 6.1b, it would not have affected the way we

count or compute arithmetic operations. However, when we construct axial systems in R2 four

49



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

50 Geometric algebra for computer graphics

models are available, as shown in Fig. 6.2. But it we look closely at these axes, (c) is (b) rotated 180◦,

and (d) is (a) rotated 180◦, therefore, there are only two models: (a) and (b). So the important

question is: Does it make any difference?

X

Y

X

Y

X

Y

X

Y

(c)

(a) (b)

(d)

Figure 6.2.

The answer depends upon what we mean by ‘make any difference’. Obviously the slopes of

graphs will look different, angles will be reversed, etc., but the rules of trigonometry will still hold,

calculus will still work and areas will remain positive. But is the last statement true? Let’s find out.

The calculation of area is normally expressed as width x height, which results in an unsigned

number. But say we compute the area of a triangle using the following Cartesian coordinate

approach:

area = 1

2

∣

∣

∣

∣

∣

∣

x1 y1 1

x2 y2 1

x3 y3 1

∣

∣

∣

∣

∣

∣

= 1

2
(x1y2 + x2y3 + x3y1 − x1y3 − x2y1 − x3y2). (6.1)

Figure 6.3 shows a triangle with its vertices organized in an anticlockwise sequence relative to a

conventional axial system. Substituting the coordinates into Eq. (6.1) we obtain

area = 1

2

∣

∣

∣

∣

∣

∣

0 0 1

3 0 1

3 2 1

∣

∣

∣

∣

∣

∣

= 1

2
(0 + 6 + 0 − 0 − 0 − 0) = 3 (6.2)

and the result is +3 square units.
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X

Y

1

2

1

2 3

3
P

2
P

1
P

Figure 6.3.

If we transpose this triangle to an axial system where the positive x-axis is directed to the left

we obtain the scenario shown in Fig. 6.4.

X

Y

1

2

1

23

2
P

1
P

3
P

Figure 6.4.

Note that the triangle’s vertex sequence is no longeranticlockwise, but clockwise. The area is

still +3 square units, but the notion of clockwise and anticlockwise has been reversed. This, then,

is a problem if an algorithm or function is sensitive to the rotational sequence of vertices.

To demonstrate that Eq. (6.1) is sensitive to the rotational sequence of vertices, let’s reverse the

coordinate sequence of the triangle and recompute its area:

area = 1

2

∣

∣

∣

∣

∣

∣

0 0 1

3 2 1

3 0 1

∣

∣

∣

∣

∣

∣

= 1

2
(0 + 0 + 0 − 0 − 0 − 6)

area = −3 (6.3)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

52 Geometric algebra for computer graphics

this time the result is −3 square units. So, simply reversing the vertices of a polygon switches the

sign of its area.

So far, we have ignored one important convention — the fact that we are dealing with an ordered

pair of coordinates. The French mathematician, René Descartes [1596–1650], is recognized as the

inventor of Cartesian coordinates, and it is he who suggested the coordinate sequence: (x , y).

The actual letters are immaterial — what is important is that the horizontal coordinate is first

and the vertical coordinate second. If Descartes had proposed to retain a horizontal x-axis and

a vertical y-axis, and swap the ordered pair to (y , x), this would have swapped the relationship

between vertex sequence and sign of area. For example, if we swap the coordinates in Eq. (6.1) we

obtain:

area = 1

2

∣

∣

∣

∣

∣

∣

y1 x1 1

y2 x2 1

y3 x3 1

∣

∣

∣

∣

∣

∣

area = 1

2
(y1x2 + y2x3 + y3x1 − y1x3 − y2x1 − y3x2). (6.4)

Substituting the triangle’s coordinates we get

area = 1

2

∣

∣

∣

∣

∣

∣

0 0 1

0 3 1

2 3 1

∣

∣

∣

∣

∣

∣

area = 1

2
(0 + 0 + 0 − 0 − 0 − 6) = −3 (6.5)

which flips the sign negative.

From this we observe that, starting with an ordered pair (x , y) and an axial system using

horizontal (x) and vertical (y), an anticlockwise vertex sequence results in a positive area,otherwise

it is negative.

6.3 Left and right-handed axial systems

We also have two distinct axial systems in R3 called left or right-handed systems. If humans had

evolved with a single arm, and a single hand which had a central thumb in the middle of four

fingers, we would have had to find an alternative name to label the two types of R3 space. As it is,

this anthropomorphic label is convenient.

Consider, then, a 2D system of axes as shown in Fig. 6.2a. It can be extended into a 3D system

of axes by adding the z-axis in one of two directions, as shown in Fig. 6.5.

Figure 6.5a shows a right-handed system of axes, where using one’s right-hand, the thumb aligns

with the x-axis, the first-finger with the y-axis, and middle finger with the z-axis. Conversely,

Fig. 6.5b shows a left-handed system of axes, where a similar alignment only works with a left

hand. Either system works, but the right-hand system is widely used in computer graphics, which

makes the sharing of computer algorithms that much easier.

Having seen that algebra supports the idea of positive and negative area, could it be that volume

has a sign? Let’s find out.
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X

X

Y

Y

Z

Z

(a)

(b)

Figure 6.5.

The calculation of volume is normally expressed as area x extension, which results in an

unsigned number. However, if we compute the volume of a parallelpiped using the following

vector approach:

volume = a · (b × c) =

∣

∣

∣

∣

∣

∣

xa ya za

xb yb zb

xc yc zc

∣

∣

∣

∣

∣

∣

(6.6)

it is possible to retrieve a signed value depending on the configuration of the vectors.

a

b

c

Figure 6.6.

The parallelpiped shown in Fig. 6.6 is associated with Eq. (6.6) and can be expressed in coor-

dinates, rather than displacements. If we imagine that the vectors a, b and c are position vectors

pointing to three points P1(x1, y1, z1), P2(x2, y2, z2) and P3(x3, y3, z3) respectively, we can write Eq.

(6.6) as

volume =

∣

∣

∣

∣

∣

∣

x1 y1 z1

x2 y2 z2

x3 y3 z3

∣

∣

∣

∣

∣

∣

volume = x1y2z3 + x2y3z1 + x3y1z2 − x1y3z2 − x2y1z3 − x3y2z1. (6.7)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

54 Geometric algebra for computer graphics

Substituting the coordinates of the box shown in Figure 6.7 into Eq. (6.7) we obtain

volume =

∣

∣

∣

∣

∣

∣

0 1 0

0 0 2

3 0 0

∣

∣

∣

∣

∣

∣

volume = 0 + 0 + 6 − 0 − 0 − 0 = 6 (6.8)

and the result is +6 cubic units.

X

Y

Z

P1 (0, 1, 0)

P3 (3, 0, 0)

P2 (0, 0, 2)

Figure 6.7.

Note, that relative to the axial system, the vertices follow an anticlockwise path, which if reversed,

switches the volume negative. This is effected by swapping P2 and P3:

volume =

∣

∣

∣

∣

∣

∣

0 1 0

3 0 0

0 0 2

∣

∣

∣

∣

∣

∣

volume = 0 + 0 + 0 − 0 − 6 − 0 = −6. (6.9)

which flips the sign negative.

6.4 Summary

It is clear from the above examples that areas and volumes are signed quantities; what GA provides

is a coherent algebraic framework that supports the manipulation of directed lines, areas and

vectors, and any other higher-dimensional object.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

7 Geometric
Algebra

7.1 Introduction

In 1844 when Hamilton published his invention of quaternions, the German mathematician

and schoolteacher, Hermann Gunther Grassmann [1809–1877], published the first edition

of his geometric calculus Lineale Ausdehnungslehre, which offered an original algebra for

describing geometric operations. The word ‘Ausdehnungslehre’ translates as ‘theory of exten-

sion’ and the principal algebraic product of the theory was the exterior product. The notion

of extension is something that Euclid was aware of, in that the product of two lengths create

an area, and the product of a length and an area create a volume. Grassmann discovered an

algebra where his exterior product of vectors created areas, volumes and higher-dimensional

objects.

Being just a schoolteacher and standing in the shadow of Hamilton, who was knighted, and a

Fellow of the American Society of Arts and Sciences,

Fellow of the Society of Arts for Scotland,

Fellow of the Royal Astronomical Society of London,

Fellow of the Royal Northern Society of Antiquaries at Copenhagen,

Honorary Member of the Institute of France,

Honorary Member of the Imperial or Royal Academies of St. Petersburgh,

Berlin and Turin,

Honorary Member of the Royal Societies of Edinburgh and Dublin,

Honorary Member of the Cambridge Philosophical Society,

Honorary Member of the New York Historical Society,

Honorary Member of the Society of Natural Sciences at Lausanne,

Honorary Member of other Scientific Societies in British and Foreign Countries,

Andrews’ Professor of Astronomy in the University of Dublin, and

Royal Astronomer of Ireland,

it is not surprising that few people bothered to buy or read Grassmann’s book!
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56 Geometric algebra for computer graphics

Grassmann had not helped matters by writing a rather dense description of his geometric calcu-

lus. For in his book he presented new ideas on vector analysis, vector addition and subtraction, two

vector products and vector differentiation, all interwoven with his philosophy on pure thought

and existence. Not only that, it also applied to any number of dimensions [6].

In 1861 Grassmann published an updated version of his book with the title Die Aus-

dehnungslehre: Vollstanding und in streger Form bearbeitet, by which time he was Professor at

the Stettin Gymnasium. But in spite of this academic promotion, Grassmann had to pay for the

publishing costs, which covered a run of three-hundred books, and he died a few years later before

mathematicians realized that he had been a genius of the first order.

Eventually, the English mathematician, William Kingdom Clifford [1845–1879], recognized

the brilliance of Grassmann’s ideas and formalized what today has become known as geometric

algebra.

7.2 Foundations of geometric algebra

Basically, there are three ways authors approach an introduction to GA: The first group adopt an

abstract algebraic approach where axioms give rise to an algebra — a Clifford algebra — which

describe and resolve geometric problems in any number of dimensions. The second group starts

with some simple algebraic axioms and show how GA flows naturally from these axioms. The

third group take a vectorial approach and show how existing vector products lead to the principles

of GA. Either approach is valid, but the author’s personal preference is to support the second and

third approaches, which are explored in this chapter, and we begin by reviewing some important

ideas that should have emerged from the previous chapters. But one more point before we start.

To distinguish vectors from scalars it is common practice to embolden vector names. Indeed, this

convention was employed in the previous chapters. But in GA virtually everything is a vector

of some sort and some authors have abandoned this convention and identify vectorial quantities

using an italic font. Obviously, one has to be careful to distinguish scalars from vectorial quantities,

which is accomplished by using letters from the Greek alphabet for scalars.

In the every-day algebra of real numbers we are familiar with its associative, distributive and

commutative properties. In the algebra of complex numbers we make allowances for the fact that

i2 = −1 and that multiplying a complex number by i effectively rotates it anticlockwise 90◦ on

the complex plane. In vector algebra we discover that the vector product creates a third vector

perpendicular to the plane containing the original vectors, and is antisymmetric. Well, it just so

happens that GA is associative, distributive and involves an antisymmetric product, therefore we

should not be surprised that it also has imaginary properties.

7.3 Introduction to geometric algebra

7.3.1 Length, area and volume

In the physical world of 3D space we measure the linear extension or something, i.e. its length; its

planar coverage – its area; and its space filling capacity – its volume. This enables us to describe

a room as being 3 meters high, a floor as being 16 square meters, and a room’s volume being 48

cubic meters. It is difficult to think of a situation when in every-day parlance we would describe



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometric algebra 57

something as having a negative length, area or volume, but in mathematics, such entities do exist,

and GA provides a framework for their description.

Primarily, GA manipulates vectors, although scalar quantities are easily integrated into the

equations, but, for the moment, we will concentrate on the role vectors play within the algebra.

A single vector, independent of its spatial dimension, has two qualities: orientation and mag-

nitude. Its orientation is determined by the sign of its components, whilst its magnitude is

represented by its length, which in turn is derived from its components. A vector’s orientation is

reversed, simply by switching the signs of its components.

Figure 7.1.

The product of two vectors can be used to represent the area of a parallelogram as shown in

Fig. 7.1, where the area is given by

area = ‖a‖‖b‖ sin θ . (7.1)

Because ‖a‖ and ‖b‖ are scalars, their order is immaterial. Furthermore, we have assumed that the

angle θ is always positive, hence its sign is always positive, which is why area is normally regarded

as a positive quantity.

Grassmann was aware that mathematics, especially determinants, supported positive and neg-

ative areas and volumes, and wanted to exploit this feature. His solution was to create a vector

product that he called the outer product and written a ∧ b. The wedge symbol “∧” is why the

product is also known as the wedge product, and it is worth noting that this symbol is also used by

French mathematicians for the vector (cross) product. The outer product is sensitive to the order

of the vectors it manipulates, and permits us to distinguish between a ∧ b and b ∧ a. In fact, the

algebra ensures that

a ∧ b = −b ∧ a. (7.2)

Therefore, when using the outer product we must think carefully about their order, which is why

in chapter 6 we discussed the order of axial systems. This idea is developed in Fig. 7.2 where we

see the graphical difference between the two products.

Figure 7.2a shows that a ∧ b creates an area from vectors a and b forming an anticlockwise

rotation, whereas Fig. 7.2b shows that b ∧ a creates an area from vectors b and a forming a

clockwise rotation. The directed circle is included to remind us of the area’s orientation.

From vector algebra we know that there are two important products: the scalar and the vector

product. The scalar product creates a non-zero scalar value when the associated vectors are not

perpendicular, and tells us something about the mutual alignment of the two vectors. Whereas,
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θ

a b∧

a

b

θ

b a∧

a

b

( )a ( )b

Figure 7.2.

the vector product creates a non-zero vector when the associated vectors are not parallel, and tells

us something about the area of the parallelogram formed by the two vectors.

GA adopts these two products but changes the interpretation of the vector product. Hamilton

interpreted the result a × b as a third vector c perpendicular to the plane containing a and b.

Although this interpretation works in three dimensions, it is ambiguous in higher dimensions.

Grassmann interpreted the result of the vector product in terms of its capacity to compute a

signed area, which is why he created the outer product.

7.4 The outer product

Now we already know that the magnitude of the vector product is given by

‖a × b‖ = ‖a‖‖b‖ sin θ (7.3)

where θ is the angle between the two vectors. The outer product preserves this value but abandons

the concept of a perpendicular vector. Instead, the value ‖a‖‖b‖ sin θ is retained as the signed

area formed by the two vectors.

Now although ‖a ∧ b‖ = ‖a‖‖b‖ sin θ , we must pose the question: What sort of object is a ∧b?

Well, for a start, it is not a vector, nor is it a simple scalar. In fact, we have to invent a new name,

which is always unsettling as it is difficult to relate it to things with which we are familiar. Where

the cross product a × b creates a vector, the outer product a ∧ b is called a bivector, which is a

totally new concept to grasp.

A bivector describes the orientation of a plane in terms of two vectors, and its magnitude is

the area of the parallelogram formed by the vectors. Reversing the vector sequence in the product

flips the sign of the area. The outer product has the same components as the cross product, but

instead of using the components to form a vector, they become the projective characteristics of a

planar surface.

We are very familiar with the concept of a vector and accept that it has magnitude and orienta-

tion, where its components are expressed using orthogonal basis vectors. Reversing the direction

of the vector reverses its components without changing its magnitude. Similarly, a bivector has



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometric algebra 59

magnitude and orientation, where its components are expressed in terms of areas projected onto

the bivectors formed by the orthogonal unit basis vectors. Reversing the direction of the bivector

reverses its components without changing its magnitude. This is illustrated later in this chapter.

For the moment, a bivector is just a name used to orient a planar area.

7.4.1 Some algebraic properties

Even with our sketchy knowledge of a bivector, it is possible to describe how the outer product

responds to parallel vectors. For example

‖a ∧ a‖ = ‖a‖‖a‖ sin 0◦ = 0. (7.4)

Although the outer product is antisymmetric, it behaves just like the scalar product when

multiplying a group of vectors:

scalar: a · (b + c) = a · b + a · c (7.5)

similarly

outer: a ∧ (b + c) = a ∧ b + a ∧ c . (7.6)

7.4.2 Visualizing the outer product

The cross product is easy to visualize: a × b = c , where c is orthogonal to the plane containing

a and b. The relative direction of c is determined by the right-hand rule where using one’s right

hand, where the thumb aligns with a, the first finger with b, and the middle finger aligns with c .

The magnitude of c equals ‖a‖‖b‖ sin θ , where θ is the angle between a and b, and equals the

area of the parallelogram formed by a and b. This relationship is shown in Fig. 7.3.

Figure 7.3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

60 Geometric algebra for computer graphics

Visualizing the outer product is slightly different. It is true that the magnitude ‖a ∧ b‖ is

‖a‖‖b‖ sin θ which represents the area of the parallelogram formed by a and b, but consider what

happens if we form the product a′ ∧ b where a′ = a + λb:

a′ ∧ b = (a + λb) ∧ b

= a ∧ b + λb ∧ b

a′ ∧ b = a ∧ b. (7.7)

Two other vectors generate the same bivector! Figure 7.4 illustrates what is happening.

Figure 7.4.

The area created by a′ ∧b is identical to that created by a ∧b, so there is no single parallelogram

that represents a ∧ b — there are an infinite number! So why bother trying to represent a ∧ b as

a parallelogram in the first place? Well, it was a starting point, but now that we have discovered

this feature of the outer product, why not substitute another shape such as a circle instead of

a parallelogram, and make the area of the circle equal to ‖a‖‖b‖ sin θ? That was a rhetorical

question, but a useful suggestion, and Fig. 7.5 shows what is implied.

Figure 7.5.

7.4.3 Orthogonal bases

GA works in any number of dimensions, and anticipating the need to embrace a large number

of dimensions we require a notation for the extended orthogonal axial systems. Conventionally, i

and j represent the unit basis vectors for R2, and i, j and k represent the unit basis vectors for R3.
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If we continue with this notation the alphabet cannot support very high-dimensional spaces. An

alternative convention is to use e1, e2, e3, . . . en to represent the orthogonal unit basis vectors.

Using this notation we define two vectors in R2 as

a = a1e1 + a2e2 (7.8)

b = b1e1 + b2e2. (7.9)

We can now state the outer product as

a ∧ b = (a1e1 + a2e2) ∧ (b1e1 + b2e2) (7.10)

which expands to

a ∧ b = a1b1(e1 ∧ e1) + a1b2(e1 ∧ e2) + a2b1(e2 ∧ e1) + a2b2(e2 ∧ e2). (7.11)

Substituting the following observations

e1 ∧ e1 = e2 ∧ e2 = 0 and e2 ∧ e1 = −e1 ∧ e2 (7.12)

we obtain

a ∧ b = a1b2(e1 ∧ e2) − a2b1(e1 ∧ e2) (7.13)

simplifying, we obtain

a ∧ b = (a1b2 − a2b1)(e1 ∧ e2). (7.14)

The scalar term a1b2 − a2b1 in Eq. (7.14) looks familiar — in fact, it is the magnitude of the

imaginary term of Eq. (3.17), the value of which equals ‖a‖‖b‖ sin θ , which is the area of the

parallelogram formed by a and b. So in this context, the outer product a ∧ b is a scalar area

multiplying the unit bivector e1 ∧ e2, which just means that the area is associated with the plane

defined by e1 ∧ e2. Figure 7.6 illustrates this relationship.

Figure 7.6.

Now let’s compute b ∧ a:

b ∧ a = (b1e1 + b2e2) ∧ (a1e1 + a2e2)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

62 Geometric algebra for computer graphics

which expands to

b ∧ a = a1b1(e1 ∧ e1) + a2b1(e1 ∧ e2) + a1b2(e2 ∧ e1) + a2b2(e2 ∧ e2). (7.15)

Substituting the following observations

e1 ∧ e1 = e2 ∧ e2 = 0 and e2 ∧ e1 = −e1 ∧ e2 (7.16)

we obtain

b ∧ a = a2b1(e1 ∧ e2) − a1b2(e1 ∧ e2). (7.17)

Simplifying, we obtain

b ∧ a = −(a1b2 − a2b1)(e1 ∧ e2) (7.18)

which confirms that b ∧ a = −a ∧ b.

Now let’s consider the outer product in R3:

a = a1e1 + a2e2 + a3e3 (7.19)

b = b1e1 + b2e2 + b3e3. (7.20)

The outer product is

a ∧ b = (a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3) (7.21)

which expands to

a ∧ b = a1b1(e1 ∧ e1) + a1b2(e1 ∧ e2) + a1b3(e1 ∧ e3) + a2b1(e2 ∧ e1) + a2b2(e2 ∧ e2)

+ a2b3(e2 ∧ e3) + a3b1(e3 ∧ e1) + a3b2(e3 ∧ e2) + a3b3(e3 ∧ e3). (7.22)

Substituting

e1 ∧ e1 = e2 ∧ e2 = e3 ∧ e3 = 0 (7.23)

and

e2 ∧ e1 = −e1 ∧ e2 e1 ∧ e3 = −e3 ∧ e1 e3 ∧ e2 = −e2 ∧ e3 (7.24)

we obtain

a ∧ b = a1b2(e1 ∧ e2) − a1b3(e3 ∧ e1) − a2b1(e1 ∧ e2)

+ a2b3(e2 ∧ e3) + a3b1(e3 ∧ e1) − a3b2(e2 ∧ e3). (7.25)

Simplifying, we obtain

a ∧ b = (a1b2 − a2b1)e1 ∧ e2 + (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1. (7.26)

You may be wondering why the unit basis bivectors in Eq. (7.26) have been chosen in this way,

especially e3 ∧ e1. This could easily be e1 ∧ e3. To understand why, refer to Fig. 7.7, which shows a

right-handed axial system and where each orthogonal plane is defined by its associated unit basis

bivectors.
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X

Y

Z

e1

e2

e3

1 2
e e∧

2 3
e e∧

3 1
e e∧

Figure 7.7.

Figure 7.7 also shows the orthogonal alignment of the Cartesian axes with the unit basis

bivectors:

the x-axis is orthogonal to e2 ∧ e3

the y-axis is orthogonal to e3 ∧ e1

the z-axis is orthogonal to e1 ∧ e2

and if Eq. (7.26) is rearranged in this sequence we obtain

a ∧ b = (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1 + (a1b2 − a2b1)e1 ∧ e2. (7.27)

Now let’s look at a definition of the cross product. We begin by declaring two vectors using the

conventional orthogonal unit basis vectors i, j and k:

a = a1i + a2j + a3k (7.28)

b = b1i + b2j + b3k. (7.29)

The cross product is

a × b = (a1i + a2j + a3k) × (b1i + b2j + b3k) (7.30)

which expands to

a × b = a1b1(i × i) + a1b2(i × j) + a1b3(i × k) + a2b1(j × i) + a2b2(j × j)

+ a2b3(j × k) + a3b1(k × i) + a3b2(k × j) + a3b3(k × k). (7.31)

The magnitude of the cross product is ‖a‖‖b‖ sin θ , which means that

i × i = j × j = k × k = 0. (7.32)

Therefore,

a × b = a1b2(i × j) + a1b3(i × k) + a2b1(j × i)

+ a2b3(j × k) + a3b1(k × i) + a3b2(k × j). (7.33)

Because the cross product is antisymmetric

j × i = −i × j k × j = −j × k i × k = −k × i. (7.34)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

64 Geometric algebra for computer graphics

Substituting these relationships:

a × b = a1b2(i × j) − a1b3(k × i) − a2b1(i × j)

+ a2b3(j × k) + a3b1(k × i) − a3b2(j × k). (7.35)

Collecting up like terms:

a × b = (a2b3 − a3b2)j × k + (a3b1 − a1b3)k × i + (a1b2 − a2b1)i × j. (7.36)

If we place Eqs. (7.27) and (7.36) together and substitute the e notation for i, j and k, we obtain

a ∧ b = (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1 + (a1b2 − a2b1)e1 ∧ e2 (7.37)

a × b = (a2b3 − a3b2)e2 × e3 + (a3b1 − a1b3)e3 × e1 + (a1b2 − a2b1)e1 × e2. (7.38)

In the cross product, the terms (a2b3 − a3b2), (a3b1 − a1b3) and (a1b2 − a2b1) are the components

of an orthogonal vector, whereas in the outer product they become signed areas projected onto

the planes defined by the unit bivectors e2 ∧ e3, e3 ∧ e1 and e1 ∧ e2. And in spite of there being

such similarity between the two equations, it would be dangerous to conclude that a ∧ b ≡ a × b.

What Hamilton had proposed was that

e2 × e3 = e1 e3 × e1 = e2 e1 × e2 = e3 (7.39)

which is fine for R3, but is ambiguous for higher dimensions. So, in GA we substitute the outer

product for the cross product and introduce the concept of a directed area, which holds for any

number of dimensions.

Before we reveal the imaginary nature of the outer product in the next chapter, consider the

scenario shown in Fig. 7.8. Two vectors a and b are shown forming a parallelogram created by

their outer product a ∧ b with parallel projections of the parallelogram projected onto the three

orthogonal planes. The projections will normally be parallelograms, but under some conditions

they could collapse to a line. Whatever happens, at least one will be a parallelogram.

We define two vectors as

a = a1e1 + a2e2 + a3e3 (7.40)

b = b1e1 + b2e2 + b3e3. (7.41)

Starting with the plane containing e1 and e2, which is defined by e1 ∧ e2, the projections of a and

b are a′′′ and b′′′, respectively, where

a′′′ = a1e1 + a2e2 (7.42)

b′′′ = b1e1 + b2e2. (7.43)

Therefore,

a′′′ ∧ b′′′ = (a1e1 + a2e2) ∧ (b1e1 + b2e2)

= a1b1(e1 ∧ e1) + a1b2(e1 ∧ e2) + a2b1(e2 ∧ e1) + a2b2(e2 ∧ e2)

a′′′ ∧ b′′′ = (a1b2 − a2b1)e1 ∧ e2 (7.44)

which is the last term in Eq. (7.27).
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Similarly, we can show that

a′ ∧ b′ = (a2b3 − a3b2)e2 ∧ e3 (7.45)

a′′ ∧ b′′ = (a3b1 − a1b3)e3 ∧ e1. (7.46)

Thus we see that instead of creating a new vector, the outer product projects the parallelogram

onto the three orthogonal planes to create three new bivectors, whose area is positive or negative.

The cross product, however, takes these areas and uses them to form a vector, which happens to

be orthogonal to the original parallelogram.

Figure 7.8.

To illustrate this concept, consider two vectors a and b

a = a1e1 + a2e2 + a3e3 (7.47)

b = b1e1 + b2e2 + b3e3 (7.48)

where

a1 = 1 a2 = 0 a3 = 1

b1 = 1 b2 = 1 b3 = 0 (7.49)

which makes

a = e1 + e3 b = e1 + e2. (7.50)

Using Eq. (7.26)

a ∧ b = (a1b2 − a2b1)e1 ∧ e2 + (a2b3 − a3b2)e2 ∧ e3 + (a3b1 − a1b3)e3 ∧ e1

a ∧ b = (1)e1 ∧ e2 + (−1)e2 ∧ e3 + (1)e3 ∧ e1. (7.51)

The signed area on the plane e1 ∧ e2 is +1 and is shown in Fig. 7.9. The projected area is shown

crosshatched.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

66 Geometric algebra for computer graphics

Figure 7.9.

Similarly, the signed area on the plane e2 ∧ e3 is −1 and is shown in Fig. 7.10. Note that the

direction of the projected area opposes the direction of e2 ∧ e3.

Figure 7.10.

And the signed area on the plane e3 ∧ e1 is +1, and is shown in Fig. 7.11.

Figure 7.11.

Now let’s compute the magnitude of the bivector a ∧ b.

To begin with, we need to know the angle between a and b, which is revealed using the dot

product:

θ = cos−1

(

a1b1 + a2b2 + a3b3

‖a‖‖b‖

)

θ = cos−1

(

1√
2
√

2

)

= 60◦. (7.52)
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Therefore,

‖a ∧ b‖ = ‖a‖‖b‖ sin 60◦

‖a ∧ b‖ =
√

2
√

2

√
3

2
=

√
3. (7.53)

The next question to pose is whether this value is related to the other three areas? Well the

answer is “yes”, and for a very good reason:

‖a ∧ b‖2 = (a1b2 − a2b1)
2 + (a2b3 − a3b2)

2 + (a3b1 − a1b3)
2 (7.54)

therefore, √
3

2 = (1)2 + (−1)2 + (1)2 = 3. (7.55)

Remember, that the cross product uses these coefficients as Cartesian components of the axial

vector and satisfy the Pythagorean rule:

‖a‖2 = a2
1 + a2

2 + a2
3 . (7.56)

To prove that this holds, we need to show that Eq. (7.54) is correct.

Expanding the LHS of Eq. (7.54):

‖a ∧ b‖2 = ‖a‖2‖b‖2 sin2 θ = ‖a‖2‖b‖2(1 − cos2 θ)

‖a ∧ b‖2 = ‖a‖2‖b‖2 − ‖a‖2‖b‖2 cos2 θ . (7.57)

From the dot product

cos2 θ = (a1b1 + a2b2 + a3b3)
2

‖a‖2‖b‖2
. (7.58)

Therefore,

‖a ∧ b‖2 = ‖a‖2‖b‖2 − (a1b1 − a2b2 − a3b3)
2

‖a ∧ b‖2 = (a2
1 + a2

2 + a2
3)(b2

1 + b2
2 + b2

3) − (a1b1 − a2b2 − a3b3)
2

and we obtain

‖a ∧ b‖2 = (a2
1 b2

2 − 2a1a2b1b2 + a2
2 b2

1) + (a2
2 b2

3 − 2a2a3b2b3 + a2
3 b2

2)

+ (a2
3 b2

1 − 2a3a1b3b1 + a2
1 b2

3)

‖a ∧ b‖2 = (a1b2 − a2b1)
2 + (a2b3 − a3b2)

2 + (a3b1 − a1b3)
2. (7.59)

Therefore, Eq. (7.54) is correct.

Now, as

‖a ∧ b‖ = ‖a‖‖b‖ sin θ (7.60)

‖a ∧ b‖2 = ‖a‖2‖b‖2 sin2 θ (7.61)
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and

‖a‖‖b‖ sin2 θ = (a1b2 − a2b1)
2 + (a2b3 − a3b2)

2 + (a3b1 − a1b3)
2 (7.62)

therefore

θ = sin−1

(
√

(a1b2 − a2b1)2 + (a2b3 − a3b2)2 + (a3b1 − a1b3)2

‖a‖‖b‖

)

. (7.63)

Substituting the values for the above example:

θ = sin−1

( √
3√

2
√

2

)

= 60◦. (7.64)

The beauty of the outer product is that it works in any number of dimensions. For example,

we can create two vectors in R4 as follows:

a = a1e1 + a2e2 + a3e3 + a4e4 (7.65)

b = b1e1 + b2e2 + b3e3 + b4e4 (7.66)

and form their outer product:

a ∧ b = (a1e1 + a2e2 + a3e3 + a4e4) ∧ (b1e1 + b2e2 + b3e3 + b4e4). (7.67)

This explodes into

a ∧ b = a1b1(e1 ∧ e1) + a1b2(e1 ∧ e2) + a1b3(e1 ∧ e3) + a1b4(e1 ∧ e4)

+ a2b1(e2 ∧ e1) + a2b2(e2 ∧ e2) + a2b3(e2 ∧ e3) + a2b4(e2 ∧ e4)

+ a3b1(e3 ∧ e1) + a3b2(e3 ∧ e2) + a3b3(e3 ∧ e3) + a3b4(e3 ∧ e4)

+ a4b1(e4 ∧ e1) + a4b2(e4 ∧ e2) + a4b3(e4 ∧ e3) + a4b4(e4 ∧ e4)

and collapses to

a ∧ b = (a1b2 − a2b1)(e1 ∧ e2) + (a2b3 − a3b2)(e2 ∧ e3) + (a3b1 − a1b3)(e3 ∧ e1)

+ (a1b4 − a4b1)(e1 ∧ e4) + (a2b4 − a4b2)(e2 ∧ e4) + (a3b4 − a4b3)(e3 ∧ e4) (7.68)

which resolves the outer product into six bivectors.
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These bivectors arise because there are six ways of making 2-tuples from four axes:

4C2 = 4!
(4 − 2)!2! = 6. (7.69)

In five dimensions there are 10 bivectors.

5C2 = 5!
(5 − 2)!2! = 10. (7.70)

As a final example, let’s consider two vectors in R4 and compute their outer product. The vectors

are

a = e1 + e3 + e4 (7.71)

b = e1 + e2 + e4. (7.72)

Then

‖a‖ =
√

3 ‖b‖ =
√

3 (7.73)

and the separating angle θ is

θ = cos−1

(

2

3

)

≃ 48.19◦. (7.74)

Similarly,

θ = sin−1

(√
5

3

)

≃ 48.19◦. (7.75)

Substituting the vectors into Eq. (7.68):

a ∧ b = (1)(e1 ∧ e2) + (−1)(e2 ∧ e3) + (1)(e3 ∧ e1) + (−1)(e2 ∧ e4) + (1)(e3 ∧ e4). (7.76)

Therefore, ‖a ∧ b‖ is given by

‖a ∧ b‖ = ‖a‖‖b‖ sin θ =
√

3
√

3 sin 48.19◦ ≃ 2.2361. (7.77)

Finally, let’s show that the R4 equivalent of Eq. (7.54) still holds:

‖a ∧ b‖2 = |a1b2 − a2b1|2 + |a2b3 − a3b2|2 + |a3b1 − a1b3|2

+ |a1b4 − a4b1|2 + |a2b4 − a4b2|2 + |a3b4 − a4b3|2

2.23612 = (1)2 + (−1)2 + (1)2 + (0)2 + (−1)2 + (1)2 = 5. (7.78)

7.5 The outer product in action

Later, we investigate a number of scenarios where the outer product is used to solve problems in

computer graphics, but at this point it is worth looking at three problems where it seems that we

have been using the outer product without knowing.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

70 Geometric algebra for computer graphics

7.5.1 Area of a triangle

There are many ways to find the area of a triangle, but the one proposed here uses a triangle’s vertex

coordinates, as shown in Fig. 7.12a. The triangle has vertices A, B, C defined in an anticlockwise

order, and its area is given by

area = 1

2

∣

∣

∣

∣

∣

∣

xA yA 1

xB yB 1

xC yC 1

∣

∣

∣

∣

∣

∣

. (7.79)

Using the coordinates from Fig. 7.12a we have

area = 1

2

∣

∣

∣

∣

∣

∣

0 2 1

3 1 1

3 3 1

∣

∣

∣

∣

∣

∣

(7.80)

area = 1

2
(9 + 6 − 6 − 3) = +3 (7.81)

which is correct. Note that reversing the triangle’s vertex sequence creates a negative area:

area = 1

2

∣

∣

∣

∣

∣

∣

0 2 1

3 3 1

3 1 1

∣

∣

∣

∣

∣

∣

area = 1

2
(3 + 6 − 6 − 9) = −3. (7.82)

We can prove Eq. (7.79) algebraically, and if we create the right diagram, outer products come to

our rescue. Figure 7.12b shows three position vectors a, b, c locating the vertices, which we use to

form three outer products. The first product a ∧ b computes the area of the parallelogram OBCA,

and 1
2
(a ∧ b) computes the area of the triangle �OBA. The sequence of the vertices O, A, B create

a clockwise outer product, which accounts for the negative signs in �OBA.

The second product b∧c computes the area of the parallelogram OBEC , and 1
2
(b ∧ c) computes

the area of the triangle �OBC . The sequence of the vertices O, B, C create an anticlockwise outer

product, which accounts for the positive signs in �OBC .

The third product c ∧ a computes the area of the parallelogram OCFA, and 1
2
(c ∧ a) computes

the area of the triangle �OCA. The sequence of the vertices O, C , A create an anticlockwise outer

product, which accounts for the positive signs in �OCA.

The sum of the three outer products is

1

2
(a ∧ b) + 1

2
(b ∧ c) + 1

2
(c ∧ a)

and creates three areas: two of the areas contribute toward the triangles �ABC and �OBA, whilst

the third area cancels the area of triangle �OBA, leaving behind the area of �ABC .
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Figure 7.12.

The sum of the outer products become

area �ABC = 1

2
[(a ∧ b) + (b ∧ c) + (c ∧ a)] (7.83)

which expand to

area �ABC = 1

2
(xAyB − yAxB + xByC − yBxC + xC yA − yC xA)

and

area �ABC = 1

2

∣

∣

∣

∣

∣

∣

xA yA 1

xB yB 1

xC yC 1

∣

∣

∣

∣

∣

∣

. (7.84)

What is useful about summing these outer products is that it works for any irregular shape.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

72 Geometric algebra for computer graphics

7.5.2 The sine rule

The traditional way of proving the sine rule is to take a triangle and drop a perpendicular from

one of its vertices onto the opposite side to form two right-angled triangles, from which we define

the sine ratio of two angles. Using Fig. 7.13 we can state that

H

B
= sin α and

H

A
= sin β (7.85)

from which we can write

B sin α = A sin β (7.86)

or
A

sin α
= B

sin β
. (7.87)

Using another vertex and an associated perpendicular we can show that

A

sin α
= B

sin β
= C

sin χ
. (7.88)

Figure 7.13.

Figure 7.14.

The GA approach is to remember that the outer product includes a sine function and computes

an area. Therefore, we develop Fig. 7.13 to include three vectors as shown in Fig. 7.14 where

A = ‖a‖ B = ‖b‖ C = ‖c‖ (7.89)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometric algebra 73

From the figure we observe that

area of �P1P2P3 = 1

2
‖a ∧ −c‖ = 1

2
AC sin β (7.90)

area of �P2P3P1 = 1

2
‖b ∧ −a‖ = 1

2
BA sin χ (7.91)

area of �P3P1P2 = 1

2
‖c ∧ −b‖ = 1

2
CB sin α. (7.92)

Therefore,

AC sin β = CB sin α = BA sin χ (7.93)

and
A

sin α
= B

sin β
= C

sin χ
. (7.94)

7.5.3 Intersection of two lines

The traditional way of calculating the intersection point of two lines in a plane is to define two

vectors as shown in Fig. 7.15, where

p = r + λa λ ∈ R (7.95)

p = s + εb ε ∈ R. (7.96)

Figure 7.15.

Therefore,

r + λa = s + εb. (7.97)

From Eq. (7.95) we can write

xr + λxa = xs + εxb (7.98)

yr + λya = ys + εyb . (7.99)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

74 Geometric algebra for computer graphics

To find λ we eliminate ε by multiplying Eq. (7.98) by yb and Eq. (7.99) by xb :

xr yb + λxayb = xsyb + εxbyb (7.100)

xbyr + λxbya = xbys + εxbyb . (7.101)

Subtracting Eq. (7.101) from Eq. (7.100):

xr yb − xbyr + λ(xayb − xbya) = xsyb − xbys (7.102)

where

λ = xb(yr − ys) − yb(xr − xs)

xayb − xbya

. (7.103)

Let’s test this with the following vectors

r = j a = 2i − j (7.104)

s = 2j b = 2i − 2j (7.105)

λ = 2(1 − 2) + 2(0 − 0)

−4 + 2
= −2

−2
= 1 (7.106)

therefore,

p = j + 2i − j = 2i (7.107)

and the point of intersection is (2, 0).

Another approach is to reason that

p = αa + βb (7.108)

therefore, we can write

xp = αxa + βxb (7.109)

yp = αya + βyb . (7.110)

To find α we eliminate β by multiplying Eq. (7.109) by yb and Eq. (7.110) by xb :

xpyb = αxayb + βxbyb (7.111)

xbyp = αxbya + βxbyb . (7.112)

Subtracting Eq. (7.112) from Eq. (7.111) we obtain

xpyb − xbyp = αxayb − αxbya = α(xayb − xbya) (7.113)

where

α = xpyb − xbyp

xayb − xbya

=

∣

∣

∣

∣

xp yp

xb yb

∣

∣

∣

∣

∣

∣

∣

∣

xa ya

xb yb

∣

∣

∣

∣

. (7.114)
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To find β we eliminate α by multiplying Eq. (7.109) by ya and Eq. (7.110) by xa :

xpya = αxaya + βxbya (7.115)

xayp = αxaya + βxayb . (7.116)

Subtracting Eq. (7.116) from Eq. (7.115) we obtain

xpya − xayp = βxbya − βxayb = β(xbya − xayb) (7.117)

where

β = xpya − xayp

xbya − xayb

=

∣

∣

∣

∣

xp yp

xa ya

∣

∣

∣

∣

∣

∣

∣

∣

xb yb

xa ya

∣

∣

∣

∣

. (7.118)

Using Eq. (7.114) and Eq. (7.118) we can rewrite Eq. (7.108) as

p =

∣

∣

∣

∣

xp yp

xb yb

∣

∣

∣

∣

∣

∣

∣

∣

xa ya

xb yb

∣

∣

∣

∣

a +

∣

∣

∣

∣

xp yp

xa ya

∣

∣

∣

∣

∣

∣

∣

∣

xb yb

xa ya

∣

∣

∣

∣

b. (7.119)

The problem with Eq. (7.119) is that the determinants reference the coordinates of the point we

are trying to discover. Nevertheless, let’s continue and write Eq. (7.119) using outer products

p = p ∧ b

a ∧ b
a + p ∧ a

b ∧ a
b. (7.120)

Figure 7.16a provides a graphical interpretation of part of Eq. (7.120) where the parallelogram

formed by the outer product p ∧a is identical to the outer product formed by r ∧a. Which means

that we can substitute r ∧ a for p ∧ a in Eq. (7.120):

p = p ∧ b

a ∧ b
a + r ∧ a

b ∧ a
b. (7.121)

Similarly, in Fig. 7.16b the parallelogram formed by the outer product p ∧ b is identical to the

outer product formed by s ∧ b. Which means that we can substitute s ∧ b for p ∧ b in Eq. (7.121):

p = s ∧ b

a ∧ b
a + r ∧ a

b ∧ a
b. (7.122)

The positions of R and S are not very important, as they could be anywhere along the two vectors,

even positioned as shown in Fig. 7.17:

In Fig. 7.17 the three parallelograms: OSTU , OVWR and OVXU have areas:

area OSTU = s ∧ b (7.123)

area OVWR = r ∧ a (7.124)

area OVXU = a ∧ b. (7.125)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

76 Geometric algebra for computer graphics

Figure 7.16.

Figure 7.17.

Simply by relocating S and R, we have created a convenient visual symmetry where

s = s ∧ b

a ∧ b
a (7.126)

and

r = r ∧ a

b ∧ a
b. (7.127)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometric algebra 77

Note how s ∧ b and a ∧ b are in the same sense, whilst r ∧ a and b ∧ a are in the opposite sense.

Observe, also, from Fig. (7.17) why
s

a
= s ∧ b

a ∧ b
(7.128)

and
r

b
= r ∧ a

b ∧ a
. (7.129)

It now becomes obvious that

p = s + r = s ∧ b

a ∧ b
a + r ∧ a

b ∧ a
b (7.130)

where the solution to the problem is based upon the ratios of areas of parallelograms!

Let’s test Eq. (7.130) using the same vectors above:

r = e2 a = 2e1 − e2 (7.131)

s = 2e2 b = 2e1 − 2e2 (7.132)

p = (2e2) ∧ (2e1 − 2e2)

(2e1 − e2) ∧ (2e1 − 2e2)
(2e1 − e2) + e2 ∧ (2e1 − e2)

(2e1 − 2e2) ∧ (2e1 − e2)
(2e1 − 2e2)

p = −4(e1 ∧ e2)

−4(e1 ∧ e2) + 2(e1 ∧ e2)
(2e1 − e2) + −2(e1 ∧ e2)

−2(e1 ∧ e2) + 4(e1 ∧ e2)
(2e1 − 2e2)

p = 2(2e1 − e2) − (2e1 − 2e2) = 2e1. (7.133)

Therefore, the point of intersection is (2, 0). Which is the same as the previous result.

We have spent some time exploring the above techniques, which in some cases are quite tedious.

However, the conformal model, which is explored in chapter 11, simplifies the whole process.

7.6 Summary

It seems that the outer product is a very natural way of describing the orientation of two vec-

tors, and has immediate applications in a variety of geometric problems. Let’s now examine the

properties of another product—the geometric product.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

8 The Geometric
Product

8.1 Introduction

Whenever we attempt to learn something completely new, all sorts of mental barriers are raised,

especially if the subject matter appears foreign or irrational. This often happens when we learn a

new language and wonder why its syntax differs from our own native language. Mathematics is a

minefield for such experiences, and as we explore the world of GA, don’t be surprised if you feel

uncomfortable or bewildered by its structure and ideas.

If this is the first time you have studied GA this chapter will be both challenging and exciting.

It will be challenging not because it is difficult, but because there is so much to remember as

the algebra unfolds. For example, some elements of the algebra commute, whilst others anti-

commute. Some functions are symmetric, whilst others are antisymmetric. Certain conditions

arise with orthogonal elements, and others arise with parallel elements, and there is a sense of

being overwhelmed by a world of axioms, rules and special conditions. It will be exciting as GA is

extremely rich in new concepts that will draw you into its strange world of symbol manipulation

that correspond with the world of space.

Basically, GA allows us manipulate scalars, vectors, areas and volumes using a simple and

consistent notation. Combinations of such elements are called multivectors, which may be added,

subtracted and multiplied. Adding or subtracting multivectors create no problems, as we simply

add or subtract like elements. What is strange, however, are the products. In vector algebra there

are only two products to consider: the inner product and the outer vector product. The inner

product creates a scalar, whilst the vector product creates another vector normal to the original

vectors. From these products arise all sorts of triple products such as:

(a · b)c a · (b × c) (a × b) × c a × (b × c) (8.1)

which are easy to interpret and visualize. On the other hand, GA employs a new product called

the geometric product, which operates upon multivectors containing scalars, vectors, areas and

volumes. Visualizing these products can be difficult. For example, how should we visualize the

product of two areas, or the product of a vector and a volume, or even the product of two

volumes? These are new concepts and take some getting used to. What is even more strange is that

79



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

80 Geometric algebra for computer graphics

the algebra involves imaginary elements, which, unlike the reasonably familiar i, do not always

commute with their neighbor. An unusual, but useful, feature of GA is that multivectors can be

divided by vectors, which is something conventional vector algebra is unable to do.

The problem now is how best to reveal this algebra? The approach taken in this chapter is

to split GA’s features in two: the first part explores GA in 2D space followed by 3D space. But

remember, the algebra can be applied to space of any number of dimensions. In the first part we

look at vectors, bivectors (areas), pseudoscalars, multivectors and their products in an R2 context.

We also discover how these products give rise to rotations, much in the same way that complex

numbers can be rotated. And because there is a close relationship between GA and complex

numbers, we look at how it is possible to move between the two systems. In the second part we

look at vectors, bivectors, trivectors (volumes), pseudoscalars, multivectors and their products in

an R3 context. We also discover how simple rotations arise from these products, and the close

relationship between GA and quaternions.

This said, let’s begin this journey with a description of Clifford’s geometric product.

8.2 Clifford’s definition of the geometric product

Clifford defined the geometric product of two vectors a and b as

ab = a · b + a ∧ b (8.2)

which is the sum of a scalar and a bivector. Now there is always a good reason why such definitions

are made, and it is far from arbitrary. In order to develop this new product we start by defining

the axioms associated with the algebra. These comprise an associative axiom, distributive axiom,

and a definition of a modulus.

For the moment, let’s put to one side what we have discovered about the outer product, and see

whether its properties emerge from the following axioms.

Associative axiom

a(bc) = (ab)c = abc (8.3)

(λa)b = λ(ab) = λab [λ ∈ R]. (8.4)

Distributive axiom
a(b + c) = ab + ac (8.5)

and

(b + c)a = ba + ca. (8.6)

Modulus
a2 = ±‖a‖2. (8.7)

From these axioms we can derive the meaning of the product ab. Just in case the product is

antisymmetric, we pay particular attention to the order of vectors.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 81

We begin with two vectors a and b and represent their sum as

c = a + b. (8.8)

Therefore,

c2 = (a + b)2 (8.9)

and

c2 = a2 + b2 + ab + ba. (8.10)

To simplify this relationship we investigate how Eq. (8.10) behaves when vectors a and b are

orthogonal, linearly dependent and linearly independent.

8.2.1 Orthogonal vectors

Figure 8.1.

With reference to Fig. 8.1, when

b⊥a

then

‖c‖2 = ‖a‖2 + ‖b‖2. (8.11)

Invoking the modulus axiom, we have

c2 = a2 + b2 (8.12)

which implies that in Eq. (8.10)

ab + ba = 0 (8.13)

or

ab = −ba (8.14)

which confirms that orthogonal vectors anticommute.

8.2.2 Linearly dependent vectors

With reference to Fig. 8.2, when

b ‖ a and b = λa where [λ ∈ R] (8.15)

ab = aλa = λaa = ba (8.16)

which confirms that linearly dependent vectors commute.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

82 Geometric algebra for computer graphics

Figure 8.2.

Invoking the modulus axiom we have

λaa = λa2 = λ‖a‖2 (8.17)

which is a scalar.

8.2.3 Linearly independent vectors

Figure 8.3.

With reference to Fig. 8.3

b = b‖ + b⊥. (8.18)

Therefore, we can write

ab = a(b‖ + b⊥) (8.19)

and

ab = ab‖ + ab⊥. (8.20)

Let’s examine the RHS products of Eq. (8.20):

ab‖: As a and b‖ are linearly dependent, ab‖ is a scalar. Furthermore,

ab‖ = ‖a‖‖b‖ cos θ = a · b (8.21)

which is defined as the inner product, or the inner product, and is symmetric.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 83

ab⊥: As a and b⊥ are orthogonal

ab⊥ = ‖a‖‖b‖ sin θ = a ∧ b (8.22)

which is defined as the outer product and is antisymmetric; i.e.

a ∧ b = −b ∧ a. (8.23)

The area of the parallelogram formed by a and b in Fig. 8.20 is

‖a‖‖b‖ sin θ . (8.24)

Therefore,

‖a ∧ b‖ = ‖a‖‖b‖ sin θ (8.25)

which enables us to write Eq. (8.20) as

ab = a · b + a ∧ b. (8.26)

The parallel and orthogonal components created by a · b and a ∧ b describe everything about the

vectors a and b, which is why Clifford combined them into his geometric product. Furthermore,

because these product components are linearly independent, the modulus of ab is computed using

the Pythagorean rule:

‖ab‖2 = ‖a · b‖2 + ‖a ∧ b‖2

‖ab‖2 = ‖a‖2‖b‖2 cos2 θ + ‖a‖2‖b‖2 sin2 θ

‖ab‖2 = ‖a‖2‖b‖2(cos2 θ + sin2 θ) (8.27)

‖ab‖ = ‖a‖‖b‖. (8.28)

Now we already know that a · b is a pure scalar and a ∧ b is a directed area, which we suspect has

an imaginary flavor. So it may seem strange adding two different mathematical objects together,

but no stranger than a complex number. Nevertheless, we still require a name for this new object,

which is a multivector and is described in section 8.5.

If we reverse the product to ba we have

ba = b · a + b ∧ a = a · b − a ∧ b. (8.29)

Note how the antisymmetry of the outer product introduces the negative sign.

Knowing that the geometric product is the sum of the inner and outer products, it is possible

to define the inner and outer products in terms of the geometric product as follows.

Subtracting Eq. (8.29) from Eq. (8.26) we obtain

ab − ba = (a · b + a ∧ b) − (a · b − a ∧ b) = 2(a ∧ b) (8.30)

therefore,

a ∧ b = 1

2
(ab − ba). (8.31)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

84 Geometric algebra for computer graphics

Similarly, adding Eq. (8.29) to Eq. (8.26) we obtain

ab + ba = 2a · b (8.32)

therefore,

a · b = 1

2
(ab + ba). (8.33)

These are important relationships and will be called upon frequently.

Now let’s explore the geometric product further using the unit basis vectors for R2.

8.2.4 The product of identical basis vectors

Before we begin exploring this product, it is worth introducing a shorthand notation that simplifies

our equations. Very often we have to write down a string of basis vectors such as e1e2e1 which can

also be written as e121, and saves space on the printed page. In general this is expressed as:

eiej ek ≡ eijk . (8.34)

So let’s start with the product e1e1:

e1e1 = e1 · e1 + e1 ∧ e1. (8.35)

Now we already know that e1 ∧ e1 = 0 and e1 · e1 = 1, which means that

e1e1 = e2
1 = 1. (8.36)

Similarly,

e2
2 = 1. (8.37)

8.2.5 The product of orthogonal basis vectors

Next, the product e1e2:

e1e2 = e1 · e2 + e1 ∧ e2. (8.38)

Again, we know that e1 · e2 = 0, which means that

e1e2 = e1 ∧ e2. (8.39)

So, whenever we find the unit bivector e1 ∧ e2 we can substitute e1e2 or e12.

Now let’s compute the product e2e1:

e2e1 = e2 · e1 + e2 ∧ e1 = e2 · e1 − e1 ∧ e2. (8.40)

But e2 · e1 = 0, therefore,

e2e1 = −e1 ∧ e2 = −e12. (8.41)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 85

8.2.6 The imaginary properties of the outer product

The imaginary properties of the outer product are revealed by evaluating the product (e1 ∧ e2)
2:

(e1 ∧ e2)
2 = (e1 ∧ e2)(e1 ∧ e2) = e1e2e1e2. (8.42)

But as

e2e1 = −e1e2 (8.43)

then

(e1 ∧ e2)
2 = −e1e1e2e2 = −e2

1e2
2. (8.44)

But as

e2
1 = e2

2 = 1 (8.45)

then

(e1 ∧ e2)
2 = −1. (8.46)

So the unit bivector possess the same qualities as imaginary i in that it squares to −1.

Now this has all sorts of ramifications as it suggests that GA is related to complex numbers and

possibly, quaternions, and could perform rotations in n-dimensions. At this point, the algebra

explodes into many paths, which will have to be explored in turn.

8.3 The unit bivector pseudoscalar

GA uses the term grade to distinguish its algebraic elements. For example, a scalar is grade-0, a

vector grade-1 and a bivector grade-2, etc. In each algebra, the highest grade element is called

the pseudoscalar and its grade equals the dimension of the associated space, which in R2 is the

bivector e1 ∧ e2 and is a two-dimensional element. Later on, we discover that the trivector in R3

is also called a pseudoscalar.

Because the pseudoscalar has imaginary properties, some authors use the lowercase i to repre-

sent it, whilst others opt for the uppercase I . The reason for this is that i is normally associated

with scalars, where there are no commuting problems. On the other hand, we will soon discover

that the pseudoscalar anticommutes with vectors in R2, and it is safer to employ the symbol I so

that its anticommuting properties do not get confused with those of i.

8.3.1 The rotational properties of the pseudoscalar

Now that we know that the unit bivector possesses imaginary properties, let’s confirm that it

rotates vectors in the same way we saw in section 7.2. We begin with the product e1I :

e1I = e1e1e2 = e2
1e2 = e2. (8.47)

Taking the result e2 and post-multiplying this by I :

e2I = e2e1e2 = e2(−e2e1) = −e2
2e1 = −e1. (8.48)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

86 Geometric algebra for computer graphics

Taking the result −e1 and post-multiplying this by I :

−e1I = −e1e1e2 = −e2
1e2 = −e2. (8.49)

Taking the result −e2 and multiplying this by I :

−e2I = −e2e1e2 = −e2(−e2e2) = e2
2e1 = e1 (8.50)

which brings us back to the starting point. Similarly, when the product is reversed, the direction

of rotation is reversed.

As a simple example of the algebra in action, consider post-multiplying a vector a by the

pseudoscalar I where

a = a1e1 + a2e2. (8.51)

Then

aI = ae1e2 = (a1e1 + a2e2)e1e2 = a1e2
1e2 + a2e2e1e2 (8.52)

and

aI = a1e2 − a2e2
2e1 = −a2e1 + a1e2 (8.53)

which has clearly rotated the vector 90◦ anticlockwise.

Pre-multiplying the vector a by I produces:

Ia = e1e2a = e1e2(a1e1 + a2e2) = a1e1e2e1 + a2e1e2
2 (8.54)

and

Ia = −a1e2 + a2e1 = a2e1 − a1e2 (8.55)

which has rotated the vector 90◦ clockwise.

Therefore,

aI = −Ia (8.56)

and confirms that in R2, the pseudoscalar and vectors anticommute.

These rotations are illustrated in Fig. 8.4.

Figure 8.4.
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8.4 Summary of the products

Table 8.1 summarizes the products we have encountered so far.

Table 8.1

Products in R2

Type Product Absolute Value Notes

inner e1 · e1 1 e2 · e2 = e1 · e1

outer e1 ∧ e1 0 e2 ∧ e2 = e1 ∧ e1

geometric e2
1 1 e2

2 = e2
1

e1I = −I e1

inner e1 · e2 0 e2 · e1 = e1 · e2

outer e1 ∧ e2 1 e1 ∧ e2 = −(e2 ∧ e1)

geometric e1e2 1 e12 = −e21

e12 = I

I 2 = −1

inner a · a ‖ a ‖2

outer a ∧ a 0

geometric a2 ‖ a ‖2

inner a · b ‖ a ‖‖ b ‖ cos θ a · b = 1
2
(ab + ba)

a1b1 + a2b2

outer a ∧ b ‖ a ‖‖ b ‖ sin θ a ∧ b = 1
2
(ab − ba)

a1b2 − a2b1 a ∧ b = (a1b2 − a2b1)e1 ∧ e2

geometric ab ‖ a ‖‖ b ‖ ab = a · b + a ∧ b

aI = −Ia

8.5 Multivectors in R2

In Chapters 2, 3, 4 and 5 we reviewed four algebraic systems with their axioms and elements and

saw that elementary algebra supports scalars; complex algebra supports complex numbers (a scalar

and an imaginary); vector algebra supports vectors (n-tuples); and quaternion algebra supports

quaternions (a scalar and a vector). Clifford required that geometric algebra should support an

element containing scalars, vectors, bivectors and any other object that could be created using the

geometric product, which seems to be an impossible task. But his deep understanding of algebra

and geometry resulted in an object he called a multivector which can be added and multiplied

together just like any other element. For example, a multivector in R2 contains a scalar, vectors

and a bivector, whereas in R3 a multivector contains a scalar, vectors, bivectors and a trivector.

Higher-dimensional spaces contain similar combinations of scalar and vector-based objects.

The multivector elements that exist in R2 are scalars, vectors and bivectors, which are

summarized in Table 8.2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

88 Geometric algebra for computer graphics

Table 8.2

Element Symbol Grade

1 scalar λ 0

2 vectors {e1, e2} 1

1 unit bivector e1 ∧ e2 = e12 2

A multivector is defined as a linear combination of the graded elements associated with the

size of the linear space, which, in the case of R2 are scalars, vectors and bivectors. Therefore a

multivector A is defined as follows:

A = λ0 + λ1e1 + λ2e2 + λ3e12 [λi ∈ R] (8.57)

Note that we have substituted the geometric product for the outer product, as this is much more

convenient. Using arbitrary values, the following are possible multivectors:

A = 4 + 3e1 + 4e2 + 5e12 (8.58)

B = 3 + 2e1 + 3e2 + 4e12 (8.59)

which, allows us to write:

A + B = 7 + 5e1 + 7e2 + 9e12 (8.60)

and

A − B = 1 + e1 + e2 + e12. (8.61)

But what about the product AB? To answer this question, let’s define B in general terms and form

the product AB:

B = β0 + β1e1 + β2e2 + β3e12. (8.62)

Therefore,

AB = (λ0 + λ1e1 + λ2e2 + λ3e12)(β0 + β1e1 + β2e2 + β3e12). (8.63)

Expanding, we obtain

AB = λ0β0 + λ0β1e1 + λ0β2e2 + λ0βe12 + λ1β0e1 + λ1β1e2
1

+ λ1β2e12 + λ1βe112 + λ2β0e2 + λ2β1e21 + λ2β2e2
2

+ λ2βe212 + λ3β0e12 + λ3β1e121 + λ3β2e122 + λ3βe2
12. (8.64)

Substituting

e2
1 = e2

2 = 1 e21 = −e12 e2
12 = −1 (8.65)

and collecting up like terms:

AB = (λ0β0 + λ1β1 + λ2β2 − λ3β3) + (λ0β1 + λ1β0 + λ3β2 − λ2β3)e1

+ (λ0β2 + λ1β3 + λ2β0 − λ3β1)e2 + (λ0β3 + λ1β2 + λ3β0 − λ2β1)e12. (8.66)

Which confirms that the multivector product AB creates another multivector and consequently

forms a closed algebra.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 89

Using the above multivectors

AB = (4 + 3e1 + 4e2 + 5e12)(3 + 2e1 + 3e2 + 4e12) (8.67)

then

AB = 10 + 16e1 + 26e2 + 32e12. (8.68)

8.6 The relationship between bivectors, complex numbers and vectors

The geometric product reveals the relationship between bivectors and complex numbers, and is

demonstrated by computing the product of two vectors in R2.

Given two vectors a and b where

a = a1e1 + a2e2 (8.69)

b = b1e1 + b2e2 (8.70)

then

ab = (a1e1 + a2e2)(b1e1 + b2e2)

= a1b1e2
1 + a1b2e12 + a2b1e21 + a2b2e2

2

= a1b1 + a2b2 + a1b2e12 − a2b1e12

= (a1b1 + a2b2) + (a1b2 − a2b1)e12

ab = (a1b1 + a2b2) + (a1b2 − a2b1)I (8.71)

which is a complex number! Note that (a1b1 + a2b2) is a scalar whilst (a1b2 − a2b1)I is a bivector,

which means that we can form the equivalent of a complex number Z by combining a scalar and

a unit bivector as follows:

Z = a1 + a2e12 = a1 + a2I (8.72)

where a1 is the real part, and a2 is the imaginary part.

Furthermore, we can convert a vector a into a complex number Z as follows.

Given a vector a:

a = a1e1 + a2e2 (8.73)

then pre-multiplying a by e1 we obtain:

e1a = e1(a1e1 + a2e2) = a1e2
1 + a2e1e2 = a1 + a2I . (8.74)

Therefore,

e1a = Z . (8.75)

But what happens if we reverse e1 and a?

ae1 = (a1e1 + a2e2)e1 = a1e2
1 + a2e2e1 = a1 − a2I (8.76)

which we recognize as the complex conjugate. Therefore,

ae1 = Z †. (8.77)

(The dagger symbol † is sometimes used to represent the complex conjugate of a multivector).



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

90 Geometric algebra for computer graphics

8.7 Reversion

Reversing sequences of symbols happens to be a useful operation in GA. For instance, we may

wish to reverse the sequence of three vectors abc to cba, or swap two bivectors AB to BA. Whatever

the elements may be, the reversion operator performs this task and is used as follows:

(abc · · · d)∼ = (d · · · cba). (8.78)

The tilde superscript reminds us of this action, but other authors may employ the dagger symbol.

For any vectors a and b

(ab)∼ = (a · b + a ∧ b)∼

= a · b − b ∧ a

(ab)∼ = ba. (8.79)

Similarly, for any multivectors A and B

(AB)∼ = B̃Ã. (8.80)

Unfortunately, some reversions involve a sign change, and are summarized in Table 8.3.

Table 8.3

Blade k Sign

scalar 0 +
vector 1 +
bivector 2 −
trivector 3 −
4-vector 4 +
5-vector 5 +
6-vector 6 −
7-vector 7 −
etc.

This sign switching pattern is accommodated by the following formula:

Ãk = (−1)
k(k−1)

2 Ak . (8.81)

8.8 Rotations in R2

In chapter 3 we saw that a complex number z is rotated through an angle φ using

z ′ = ze iφ (8.82)

where

e iφ = cos φ + i sin φ. (8.83)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 91

But as i2 = I 2

e Iφ = cos φ + I sin φ. (8.84)

Therefore,

z ′ = ze Iφ . (8.85)

But a multivector consisting of a scalar and a bivector is identical to a complex number, which

means that we can write Eq. (8.85) as

Z ′ = Ze Iφ . (8.86)

So now let’s see how a vector is rotated using a similar operation.

Pre-multiplying Eq. (8.75) by e1 we obtain

e1e1v = e1Z (8.87)

and

v = e1Z . (8.88)

Let’s assume that there exists another vector v ′ with an associated multivector Z ′ such that

v ′ = e1Z ′. (8.89)

Substituting Eq. (8.86) we obtain

v ′ = e1Ze Iφ . (8.90)

Substituting Eq. (8.75) we obtain

v ′ = e1e1ve Iφ = ve Iφ (8.91)

which rotates the vector v through an angle φ to v ′.
Let’s illustrate Eq. (8.91) with an example.

Rotate v = e1 anticlockwise 90◦ in the plane e12:

v ′ = ve Iφ = e1(cos 90◦ + e12 sin 90◦)

v ′ = e1e12 = e2. (8.92)

Which is correct.

8.9 The vector-bivector product in R2

In section 8.3.1 we saw that a pseudoscalar rotates a vector 90◦ in the plane without scaling the

vector. Now let’s see what happens when we form the geometric product of a vector and a bivector.

For example, given a vector a and a bivector B where

a = a1e1 + a2e2 (8.93)

B = (b1e1 + b2e2) ∧ (c1e1 + c2e2) (8.94)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

92 Geometric algebra for computer graphics

then a′ is the product aB

a′ = aB

= (a1e1 + a2e2)((b1e1 + b2e2) ∧ (c1e1 + c2e2))

= (a1e1 + a2e2)(b1c1e1 ∧ e1 + b1c2e1 ∧ e2 + b2c1e2 ∧ e1 + b2c2e2 ∧ e2)

= (a1e1 + a2e2)(b1c2 − b2c1)e12

= a1(b1c2 − b2c1)e2
1e2 + a2(b1c2 − b2c1)e212

= a1(b1c2 − b2c1)e2 − a2(b1c2 − b2c1)e1

a′ = −a2(b1c2 − b2c1)e1 + a1(b1c2 − b2c1)e2. (8.95)

But

‖B‖ = b1c2 − b2c1. (8.96)

Therefore,

a′ = ‖B‖(−a2e1 + a1e2). (8.97)

It is clear from Eq. (8.97) that vector a has been rotated anticlockwise 90◦ and scaled by the

magnitude of the bivector B. Reversing the product reverses the direction of rotation:

a′ = Ba

= ((b1e1 + b2e2) ∧ (c1e1 + c2e2))(a1e1 + a2e2)

= (b1c2 − b2c1)e12(a1e1 + a2e2)

= a1(b1c2 − b2c1)e121 + a2(b1c2 − b2c1)e122

= −a1(b1c2 − b2c1)e2 + a2(b1c2 − b2c1)e1

= a2(b1c2 − b2c1)e1 − a1(b1c2 − b2c1)e2

a′ = ‖B‖(a2e1 − a1e2). (8.98)

Equation (8.98) confirms that a has been rotated clockwise 90◦ and scaled by the magnitude of

the bivector B.

8.10 Volumes and the trivector

By now you will have observed that geometric algebra is highly structured. We start with scalars,

which in various tuples create vectors, which in turn create bivectors and ultimately lead to

multivectors. The next element after the bivector is the trivector and is used to represent a directed

volume. Starting with a bivector a ∧ b, which represents a directed area, we can imagine that this

is moved along a third vector c to sweep out a parallelpiped as shown in Fig. 8.5 (a).

Remember that we are working with a right-handed axial system, and the bivector a ∧ b is

anticlockwise as viewed from inside the volume and moves along the direction of vector c to

create the trivector (a ∧ b) ∧ c . In Fig. 8.5 (b) the bivector b ∧ c is still anticlockwise as viewed

from inside the volume and moves along the direction of vector a to create the trivector (b ∧ c)∧a.
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Figure 8.5.

Finally, in Fig. 8.5 (c), the bivector c ∧ a is still anticlockwise as viewed from inside the volume

and moves along the direction of vector b to create the trivector (c ∧ a) ∧ b. It is obvious that the

three volumes are identical, which allows us to state

(a ∧ b) ∧ c = (b ∧ c) ∧ a = (c ∧ a) ∧ b. (8.99)

Although the volumes in Fig. 8.5 are rectangular parallelpipeds, the above reasoning still holds

for general parallelpipeds. In fact, just as the parallelogram helped us visualize the area comput-

ing powers of the bivector, the parallelpiped is just a useful object to illustrate the volumetric

computing powers of the trivector. However, any volume can be used to visualize a trivector.

When vectors a, b, c are described in terms of the unit basis vectors:

a = a1e1 + a2e2 + a3e3 (8.100)

b = b1e1 + b2e2 + b3e3 (8.101)

c = c1e1 + c2e2 + c3e3 (8.102)

and multiplied together using a ∧ b ∧ c , it is obvious that this will give rise to terms such as:

e1 ∧ e1 ∧ e1 = 0 (8.103)

e2 ∧ e2 ∧ e2 = 0 (8.104)

e3 ∧ e3 ∧ e3 = 0, etc. (8.105)

Furthermore, a variety of new terms arise involving triple outer products such as:

e1 ∧ e2 ∧ e3 (8.106)

e1 ∧ e2 ∧ e1 (8.107)

e1 ∧ e2 ∧ e2, etc. (8.108)

The product e1 ∧ e2 ∧ e3 is interpreted as:

‘sweep the unit bivector e1 ∧ e2 along the orthogonal vector e3 creating a volume represented

by the trivector e1 ∧ e2 ∧ e3.’

The product e1 ∧ e2 ∧ e1 is interpreted as:

‘sweep the unit bivector e1 ∧ e2 along one of its vectors: e1, which does not create a volume.’

The product e1 ∧ e2 ∧ e2 is interpreted as:

‘sweep the unit bivector e1 ∧ e2 along one of its vectors: e2, which also does not create a volume.’



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

94 Geometric algebra for computer graphics

Although these interpretations are correct, we require an algebraic explanation, which is

provided as follows.

For completeness, let’s expand the triple outer product:

a ∧ b ∧ c = (a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3) ∧ (c1e1 + c2e2 + c3e3)

=

⎛

⎝

a1b1e1 ∧ e1 + a1b2e1 ∧ e2 + a1b3e1 ∧ e3+
a2b1e2 ∧ e1 + a2b2e2 ∧ e2 + a2b3e2 ∧ e3+
a3b1e3 ∧ e1 + a3b2e3 ∧ e2 + a3b3e3 ∧ e3

⎞

⎠ ∧ (c1e1 + c2e2 + c3e3)

=
(

a1b2e1 ∧ e2 − a1b3e3 ∧ e1 − a2b1e1 ∧ e2+
a2b3e2 ∧ e3 + a3b1e3 ∧ e1 − a3b2e2 ∧ e3

)

∧ (c1e1 + c2e2 + c3e3)

a ∧ b ∧ c =
(

(a1b2 − a2b1)e1 ∧ e2 + (a2b3 − a3b2)e2 ∧ e3

+(a3b1 − a1b3)e3 ∧ e1

)

∧ (c1e1 + c2e2 + c3e3) (8.109)

At this point we can reject terms such as

e1 ∧ e2 ∧ e1, e1 ∧ e2 ∧ e2, e2 ∧ e3 ∧ e2 (8.110)

as they are zero volume elements, and means that we are left with the following trivector

coefficients:

a ∧ b ∧ c = (a1b2 − a2b1)c3e123 + (a2b3 − a3b2)c1e123 + (a3b1 − a1b3)c2e123

= ((a2b3 − a3b2)c1 + (a3b1 − a1b3)c2 + (a1b2 − a2b1)c3)e123

and

a ∧ b ∧ c =

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

e123 (8.111)

which we recognize as the volume of a parallelpiped. Thus a trivector computes a directed volume.

8.11 The unit trivector pseudoscalar

Earlier in this chapter we discovered that

(e1 ∧ e2)
2 = −1 (8.112)

and the name pseudoscalar was given to this product. Now let’s do the same for the trivector:

(e1 ∧ e2 ∧ e3)
2 = (e1e2e3)

2

= e1e2e3e1e2e3 = e1e2e1e3e3e2

(e1 ∧ e2 ∧ e3)
2 = e1e2e1e2 = −1 (8.113)

which shows that the unit trivector also possesses imaginary properties.

With this new-found knowledge, let’s compute the volume of a rectangular parallelpiped and a

general parallelpiped.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 95

We start by defining the edges of a box using the following vectors as shown in Fig. 8.6:

a = 2e1 b = 3e2 c = 4e3. (8.114)

Figure 8.6.

Its volume V is defined as

V = ‖a ∧ b ∧ c‖
= ‖2e1 ∧ 3e2 ∧ 4e3‖
= ‖24e1 ∧ e2 ∧ e3‖
= ‖24e123‖

V = ‖24I‖. (8.115)

Although the volume is represented as 24I , we are only interested in its magnitude, which is 24.

Hopefully, it is obvious that by reversing one of the vectors reverses the sign of the volume.

Figure 8.7.

For a second example, Fig. 8.7 illustrates a general parallelpiped where

a = 2e1 b = 0.5e1 + 2e2 c = 3e3. (8.116)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

96 Geometric algebra for computer graphics

Therefore, its volume V is given by

V = ‖a ∧ b ∧ c‖
= ‖2e1 ∧ (0.5e1 + 2e2) ∧ 3e3‖
= ‖4e12 ∧ 3e3‖
= ‖12e123‖

V = 12. (8.117)

At this point it is worth summarizing a pseudoscalar’s features. To begin with, the pseudoscalar

squares to −1:

I 2 = −1 (8.118)

which guarantees

‖I‖2 = 1. (8.119)

Secondly, the pseudoscalar defines orientation. For instance, the 2D unit bivector is defined by

e1 ∧ e2, and if any other bivector has the same sign as e1 ∧ e2 it shares the same orientation.

Similarly, the 3D unit trivector is defined by e1 ∧ e2 ∧ e3, and if any other trivector has the same

sign as e1 ∧ e2 ∧ e3 it shares the same orientation. Convention dictates that e1 ∧ e2 ∧ e3 describes

a right-handed system of axes.

8.12 The product of the unit basis vectors in R3

8.12.1 The product of identical basis vectors

The three unit basis vectors in R3 are e1, e2 and e3, and although it is self-evident, for the sake of

completeness, we will record that

e2
1 = e2

2 = e2
3 = 1. (8.120)

8.12.2 The product of orthogonal basis vectors

The third unit basis vector e3 gives rise to three orthogonal unit basis bivector combinations:

e12, e23 and e31. (8.121)

We already know that

e12 = e1 ∧ e2 (8.122)

and it should come as no surprise that

e23 = e2 ∧ e3 (8.123)

and

e31 = e3 ∧ e1. (8.124)
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8.12.3 The imaginary properties of the unit bivectors

In section 8.2.6 we discovered that

e2
12 = (e1 ∧ e2)

2 = −1 (8.125)

and the same pattern is repeated for R3:

e2
23 = (e2 ∧ e3)

2 = −1 (8.126)

and

e2
31 = (e3 ∧ e1)

2 = −1. (8.127)

8.13 The vector-unit bivector product in R3

In section 8.3.1 we discovered that pre-multiplying a vector in R2 by the pseudoscalar I = e12

rotates the vector clockwise 90◦ and post-multiplying rotates the vector anticlockwise 90◦. Let’s

see what happens when we multiply a vector in R3 by a unit bivector. We begin by defining a

vector and a unit bivector e12 = e1 ∧ e2

a = a1e1 + a2e2 + a3e3. (8.128)

Therefore,

e12a = a1e12e1 + a2e12e2 + a3e12e3

= −a1e2 + a2e1 + a3e123

e12a = a2e1 − a1e2 + a3e123. (8.129)

Equation (8.129) contains two elements:

a vector

a2e1 − a1e2 (8.130)

and a volume

a3e123. (8.131)

What has happened is this. The multiplier e12 has:

1. Rotated the projection of a on the bivector e1 ∧ e2, clockwise 90◦. (Fig. 8.8a)

2. Formed a volume of a3 by sweeping e1 ∧ e2 along e3. (Fig. 8.8b)

Reversing the product to ae12 produces

ae12 = a1e1e12 + a2e2e12 + a3e3e12

= a1e2 − a2e1 + a3e123

ae12 = −a2e1 + a1e2 + a3e123. (8.132)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

98 Geometric algebra for computer graphics

Figure 8.8.

Equation (8.13) confirms that the direction of rotation has been reversed to anticlockwise, whilst

the sign of the volume remains unchanged.

Similar results are obtained with the products with e23a and e31a:

e23a = a1e23e1 + a2e23e2 + a3e23e3

= a1e123 − a2e3 + a3e2

e23a = a3e2 − a2e3 + a1e123 (Figs. 8.9(a) and (b))

and

ae23 = −a3e2 + a2e3 + a1e123. (8.133)

and

e31a = a1e31e1 + a2e31e2 + a3e31e3

= a1e3 + a2e123 − a3e1

e31a = a1e3 − a3e1 + a2e123 (Figs. 8.10(a) and (b))

and

ae31 = −a1e3 + a3e1 + a2e123. (8.134)

These are interesting patterns, so let’s see what happens when the multiplying bivector is not a

unit bivector.
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Figure 8.9.

Figure 8.10.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

100 Geometric algebra for computer graphics

8.14 The vector-bivector product in R3

Our bivector B is defined by the outer product of two vectors, whose precise values are not

important, as any relevant combination will do. The vector a will have the form

a = a1e1 + a2e2 + a3e3. (8.135)

However, it is much more useful to express it in terms of two orthogonal components:

a = a‖ + a⊥ (8.136)

where a‖ is parallel with B and a⊥ is perpendicular to B. This scenario is shown in Fig. 8.11.

Figure 8.11.

Figure 8.11 shows an extra vector b which is orthogonal to a‖ and also lies in the plane B. The

value of b is chosen such that

a‖ ∧ b = B. (8.137)

Therefore, the geometric product a‖b is

a‖b = a‖ · b + a‖ ∧ b = a‖ ∧ b = B (8.138)

therefore,

B = a‖b. (8.139)

Now we explore the product of a vector and a bivector using a‖, a⊥ and B.

Starting with a‖B we obtain

a‖B = a‖(a‖b) = a2
‖b. (8.140)

But

a2
‖ = ‖a‖‖2. (8.141)

Therefore,

a‖B = ‖a‖‖2b (8.142)

which is a vector, and must lie in the plane B. In fact, Eq. (8.142) shows that when a vector and a

bivector are coplanar, their product rotates the vector 90◦ and scales it.
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Next, we investigate the product a⊥B:

a⊥B = a⊥(a‖b) = a⊥a‖b. (8.143)

With reference to Fig. 8.11, a⊥, a‖ and b are three orthogonal vectors, and can be visualized as

sweeping the bivector a⊥ ∧a‖ along vector b creating a volume represented by the trivector a⊥a‖b.

Using Eqs. (8.142) and (8.143) we can express the product aB as

aB = (a‖ + a⊥)B

= a‖B + a⊥B

aB = ‖a‖‖2b + a⊥a‖b (8.144)

which is the sum of a vector and a trivector. Although this will not always be the case, because

vector a could be orthogonal to bivector B, which only creates a trivector, in general, we can

predict that the product aB will contain two terms: a vector and a trivector.

We are now in a position to define the product aB in terms of the inner and outer products,

where there is a temptation to assume that it obeys the same rule for the geometric product of

two vectors:

aB = a · B + a ∧ B, (8.145)

which although is true, has to be proved.

We begin by declaring B as the outer product

B = b ∧ c . (8.146)

Therefore,

aB = a(b ∧ c). (8.147)

We now have to find a way of converting Eq. (8.147) into Eq. (8.145), which is achieved as follows:

Using the geometric product

b ∧ c = 1

2
(bc − cb) (8.148)

then

a(b ∧ c) = a
1

2
(bc − cb) = 1

2
(abc − acb). (8.149)

Similarly,

a · b = 1

2
(ab + ba) ⇒ ab = 2a · b − ba (8.150)

and

a · c = 1

2
(ac + ca) ⇒ ac = 2a · c − ca. (8.151)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

102 Geometric algebra for computer graphics

Substituting Eqs. (8.150) and (8.151) in Eq. (8.149)

a(b ∧ c) = 1

2
((2a · b − ba)c − (2a · c − ca)b)

= 1

2
(2(a · b)c − bac − 2(a · c)b + cab)

= (a · b)c − (a · c)b + 1

2
(cab − bac)

= (a · b)c − (a · c)b + 1

2
(abc + abc)

a(b ∧ c) = (a · b)c − (a · c)b + abc . (8.152)

Equation (8.152) shows that the product of a vector and a bivector (aB) creates two components:

a vector

(a · b)c − (a · c)b (8.153)

and a trivector

abc . (8.154)

Next, we will show that reversing the product (Ba) creates a vector

−(a · b)c + (a · c)b (8.155)

and a trivector

abc (8.156)

where the vector is reversed, and the trivector remains unaltered.

What we want to do now is arrange that some combination of aB and Ba forms a · B to create

the vector component, and another combination forms a ∧ B to create the trivector component.

We can isolate each part using the following subterfuge:

Reversing the product a(b ∧ c) to (b ∧ c)a

(b ∧ c)a = 1

2
(bc − cb)a = 1

2
(bca − cba). (8.157)

Now

c · a = 1

2
(ca + ac) ⇒ ca = 2a · c − ac (8.158)

and

b · a = 1

2
(ba + ab) ⇒ ba = 2a · b − ab. (8.159)
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Substituting Eqs. (8.158) and (8.159) in Eq. (8.157)

(b ∧ c)a = 1

2
(b(2a · c − ac) − c(2a · b − ab))

= 1

2
(2b(a · c) − bac − 2c(a · b) + cab)

= (a · c)b − (a · b)c + 1

2
(cab − bac)

= (a · c)b − (a · b)c + 1

2
(abc + abc)

(b ∧ c)a = (a · c)b − (a · b)c + abc . (8.160)

Subtracting Eq. (8.160) from Eq. (8.152)

a(b ∧ c) − (b ∧ c)a = 2(a · b)c − 2(a · c)b. (8.161)

Therefore,

(a · b)c − (a · c)b = 1

2
(aB − Ba). (8.162)

As 1
2
(aB − Ba) creates a vector, which is a lower grade object compared to a bivector, it is defined

using the dot symbol as:

a · B = 1

2
(aB − Ba) = (a · b)c − (a · c)b. (8.163)

Adding Eq. (8.160) and (8.152) together, we obtain

a(b ∧ c) + (b ∧ c)a = 2abc . (8.164)

Therefore,
1

2
(aB + Ba) = abc . (8.165)

As 1
2
(aB + Ba) creates a higher grade object compared to a bivector, it is defined using the outer

symbol as:

a ∧ B = 1

2
(aB + Ba) = abc . (8.166)

Combining Eqs. (8.163) and (8.166) we define the geometric product aB as

aB = a · B + a ∧ B (8.167)

aB = (a · b)c − (a · c)b + abc (8.168)

where

B = b ∧ c . (8.169)

Now let’s derive formulae for the reverse product Ba.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

104 Geometric algebra for computer graphics

Subtracting Eq. (8.168) from Eq. (8.160) we have

(b ∧ c)a − a(b ∧ c) = 2(a · c)b − 2(a · b)c (8.170)

therefore,
1

2
(Ba − aB) = (a · c)b − (a · b)c . (8.171)

As this is a grade lowering operation, it is defined as an inner product:

B · a = 1

2
(Ba − aB) = (a · c)b − (a · b)c . (8.172)

Adding Eq. (8.168) to Eq. (8.160) we have

(b ∧ c)a + a(b ∧ c) = 2abc (8.173)

therefore,
1

2
(Ba + aB) = abc . (8.174)

As this is a grade raising operation, it is defined as an outer product:

B ∧ a = 1

2
(Ba + aB) = abc . (8.175)

Therefore,

B · a + B ∧ a = 1

2
(Ba − aB) + 1

2
(Ba + aB) = Ba (8.176)

and

Ba = B · a + B ∧ a. (8.177)

Let’s bring these results to life with two simple examples.

We start with three vectors

a = 2e1 + e2 − e3 (8.178)

b = e1 − e2 + e3 (8.179)

c = 2e1 + 2e2 + e3. (8.180)

We now construct a bivector B:

B = b ∧ c = (e1 − e2 + e3) ∧ (2e1 + 2e2 + e3)

= 2e12 − e31 + 2e12 − e23 + 2e31 − 2e23

B = 4e12 − 3e23 + e31. (8.181)

Therefore,

aB = (2e1 + e2 − 2e3)(4e12 − 3e23 + e31)

= 8e2 − 6e123 − 2e3 − 4e1 − 3e3 + e123 − 8e123 − 6e2 − 2e1

aB = −6e1 + 2e2 − 5e3 − 13e123. (8.182)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 105

Similarly,

Ba = (4e12 − 3e23 + e31)(2e1 + e2 − 2e3)

= −8e2 + 4e1 − 8e123 − 6e123 + 3e3 + 6e2 + 2e3 + e123 + 2e1

Ba = 6e1 − 2e2 + 5e3 − 13e123. (8.183)

Now let’s calculate the inner and outer products.

The inner product:

a · B = 1

2
(aB − Ba)

= 1

2
(−6e1 + 2e2 − 5e3 − 13e123 − 6e1 + 2e2 − 5e3 + 13e123)

= 1

2
(−12e1 + 4e2 − 10e3)

a · B = −6e1 + 2e2 − 5e3. (8.184)

The outer product:

a ∧ B = 1

2
(aB + Ba)

= 1

2
(−6e1 + 2e2 − 5e3 − 13e123 + 6e1 − 2e2 + 5e3 − 13e123)

a ∧ B = −13e123. (8.185)

Thus

aB = a · B + a ∧ B

aB = −6e1 + 2e2 − 5e3 − 13e123. (8.186)

It is clear from these examples how the inner and outer products identify the two parts of the

geometric product.

In vector algebra the inner product is also known as the scalar product or dot product. Con-

versely, in geometric algebra we can create products between vectors, bivectors, trivectors, etc, and

any combination such as a vector and a bivector, or a bivector and trivector. Because these objects

have different grades, we require a new interpretation of the dot symbol, which also embraces

the original definition. Thus the dot product in Eq. (8.167) means the “lowest grade part of the

product.” Similarly, the outer product in Eq. (8.167) means the “highest grade part of the product.”

If you believe that you have seen the RHS of Eq. (8.163) before, you may recall from vector

algebra that

(b × c) × a = (a · b)c − (a · c)b (8.187)

and

a × (b × c) = (a · c)b − (a · b)c . (8.188)

Later in this chapter we show how GA can be used to derive these relationships.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

106 Geometric algebra for computer graphics

8.15 Unit bivector-bivector products in R3

In R3 we have to consider the possible products that exist between e12, e23 and e31. We already

know that

e2
12 = e2

23 = e2
31 = −1 (8.189)

and it is easy to show that

e12e23 = e13 = −e31 (8.190)

e23e31 = e21 = −e12 (8.191)

e31e12 = e32 = −e23 (8.192)

e12e31 = e23 (8.193)

e23e12 = e31 (8.194)

e31e23 = e12. (8.195)

Thus we see that unit bivectors anticommute.

These results are summarized in Table 8.4

Table 8.4

GP e12 e23 e31

e12 −1 −e31 e23

e23 e31 −1 −e12

e31 −e23 e12 −1

Accordingly, when we encounter an expression such as αe12βe23 we can rewrite it as

αβe12e23 = −αβe31. (8.196)

8.16 Unit vector-trivector product in R3

To begin with, let’s consider the products e1e123, e2e123 and e3e123:

e1e123 = e23 (8.197)

e2e123 = e31 (8.198)

e3e123 = e12. (8.199)

Similarly,

e123e1 = e23 (8.200)

e123e2 = e31 (8.201)

e123e3 = e12. (8.202)

Thus we see that vectors and trivectors commute.
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Let’s illustrate this with a simple example a5e123 where

a = 2e1 + 3e2 + 4e3. (8.203)

Therefore

a5e123 = (2e1 + 3e2 + 4e3)5e123

a5e123 = 20e12 + 10e23 + 15e31. (8.204)

The volumetric element has been reduced to three bivector terms.

8.17 Unit bivector-trivector product in R3

To begin, let’s consider the products e12e123, e23e123 and e31e123:

e12e123 = −e3 (8.205)

e23e123 = −e1 (8.206)

e31e123 = −e2. (8.207)

Similarly,

e123e12 = −e3 (8.208)

e123e23 = −e1 (8.209)

e123e31 = −e2. (8.210)

Thus we see that bivectors and trivectors commute.

Again, let’s illustrate this product with an example B5e123 where

B = 2e12 + 3e23 + 4e31. (8.211)

Therefore,

B5e123 = (2e12 + 3e23 + 4e31)5e123

B5e123 = −15e1 − 20e2 − 10e3. (8.212)

The volumetric element has been reduced to three vector terms.

8.18 Unit trivector-trivector product in R3

We have already discovered in section 8.10 that the square of the pseudoscalar equals −1.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

108 Geometric algebra for computer graphics

8.19 Higher products in R3

Having considered the product of two trivectors in R3, it is worth exploring the concept of

expanded outer products. For example, in R3, what is meant by

a ∧ b ∧ c ∧ d? (8.213)

We can resolve this question by reasoning that if a, b, c are not coplanar, then d must be a linear

combination of a, b, c :

d = λaa + λbb + λc c [λa , λb , λc ∈ R] (8.214)

therefore,

a ∧ b ∧ c ∧ d = a ∧ b ∧ c ∧ (λaa + λbb + λc c)

and

a ∧ b ∧ c ∧ d = λaa ∧ b ∧ c ∧ a + λba ∧ b ∧ c ∧ b + λc a ∧ b ∧ c ∧ c . (8.215)

Recall that

a ∧ b = −b ∧ a (8.216)

therefore,

a ∧ b ∧ c ∧ a = b ∧ a ∧ a ∧ c . (8.217)

But

a ∧ a = 0 (8.218)

therefore,

a ∧ b ∧ c ∧ a = 0. (8.219)

Similarly,

a ∧ b ∧ c ∧ b = a ∧ b ∧ c ∧ c = 0 (8.220)

therefore,

a ∧ b ∧ c ∧ d = 0. (8.221)

8.20 Blades

Now that we covered bivectors and trivectors and tentatively explored higher dimensions, it

appears that each space possesses a unique element created by the outer product. Starting with

vectors, the outer product produces bivectors, trivectors, and even quadvectors, and there is no

reason why higher n-vector elements cannot exist. Such a pattern was recognized by Hestenes

who proposed the name blade for these elements [14]. Thus a blade is any multivector that can

be formed as the outer product of a set of vectors. However, this definition has been widened by

some authors to embrace scalars as 0-blades, vectors as 1-blades, bivectors as 2-blades, etc.
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8.21 Duality transformation

An interesting relationship exists between blades and the pseudoscalar that is referred to as the

duality transformation. Consider the following products involving the pseudoscalar I = e1 ∧ e2

and 2D basis vectors:

I e1 = e1e2e1 = −e2 (8.222)

I e2 = e1e2e2 = e1 (8.223)

and

e1I = e1e1e2 = e2 (8.224)

e2I = e2e1e2 = −e1. (8.225)

Note that they anticommute. Now consider the following products involving the pseudoscalar

I = e1 ∧ e2 ∧ e3 and the 3D basis vectors:

I e1 = e1e2e3e1 = e2e3 (8.226)

I e2 = e1e2e3e2 = e3e1 (8.227)

I e3 = e1e2e3e3 = e1e2 (8.228)

and

e1I = e1e1e2e3 = e2e3 (8.229)

e2I = e2e1e2e3 = e3e1 (8.230)

e3I = e3e1e2e3 = e1e2. (8.231)

Note that they commute, and further analysis shows that spaces with an odd number of dimen-

sions, the pseudoscalar commutes will all vectors and multivectors, whereas spaces with an even

number of dimensions they anticommute. This relationship is summarized by the relationship:

InAr = (−1)r(n−1)Ar In . (8.232)

Doran and Lasenby [15] show how this relationship can be used to relate the inner and outer

products:

a · (Ar I ) = 1

2
(aAr I − (−1)n−r Ar Ia)

= 1

2
(aAr I − (−1)n−r(−1)n−1Ar aI )

= 1

2
(aAr + (−1)r Ar a)I

a · (Ar I ) = a ∧ Ar I . (8.233)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

110 Geometric algebra for computer graphics

The product aI is a grade lowering operation as a volumetric element is reduced into bivector

elements, and consequently is denoted using the dot product:

aI = a · I . (8.234)

Figure 8.12 shows the duality relationship between bivectors and vectors in 3D space.

Figure 8.12.

A convenient notation used to represent the dual of A is A∗.

8.22 Summary of products in R3

We are now in a position to summarize the above products in tabular form as shown in

Table 8.5.

Table 8.5

Inner product

Vectors commute a · b = b · a

Vectors and bivectors anticommute a · B = −B · a

a · B = 1
2
(aB − Ba)

a · B = (a · b)c − (a · c)b

B · a = 1
2
(Ba − aB)

B · a = (a · c)b − (a · b)c

Outer product

Vectors anticommute a ∧ b = −b ∧ a

Vectors and bivectors commute a ∧ B = B ∧ a

a ∧ B = 1
2
(aB + Ba)

a ∧ B = abc

B ∧ a = 1
2
(Ba + aB)

B ∧ a = abc
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Table 8.5 (continued)

Geometric product

Orthogonal vectors anticommute e12 = −e21

Orthogonal bivectors anticommute e12e23 = −e23e12

Bivectors square to −1 e2
12 = e2

23 = e2
31 = −1

Definition ab = a · b + a ∧ b

Vectors and bivectors anticommute aB = −Ba

aB = a · B + a ∧ B

aB = (a · b)c − (a · c)b + abc

Ba = B · a + B ∧ a

Ba = (a · c)b − (a · b)c + abc

Trivector commutes with all multivectors in the space aT = Ta BT = TB

The pseudoscalar e123 = I

Vectors and the pseudoscalar commute aI = Ia

aI = a · I

Duality transformation e23 = I e1

e31 = I e2

e12 = I e3

The trivector squares to −1 I 2 = −1

Where a and b are vectors, B is a bivector, and T is a trivector.

Table 8.6 summarizes the commutative rules that exist between vectors, bivectors and trivectors

when using the inner, outer and geometric products. The fact that every product is resolved in

terms of the table’s indices means that the product of two multivectors forms a closed algebra.

Table 8.6

GP λ e1 e2 e3 e12 e23 e31 e123

λ λ2 λe1 λe2 λe3 λe12 λe23 λe31 λe123

e1 λe1 1 e12 −e31 e2 e123 −e3 e23

e2 λe2 −e12 1 e23 −e1 e3 e123 e31

e3 λe3 e31 −e23 1 e123 −e2 e1 e12

e12 λe12 −e2 e1 e123 −1 −e31 e23 −e3

e23 λe23 e123 −e3 e2 e31 −1 −e12 −e1

e31 λe31 e3 e123 −e1 −e23 e12 −1 −e2

e123 λe123 e23 e31 e12 −e3 −e1 −e2 −1

8.23 Multivectors in R3

In section 8.5 we defined a multivector in R2 as a linear combination of scalars, vectors and

bivectors. We now extend this definition to include trivectors. Table 8.7 summarizes the elements

and confirms that we have 1 scalar, 3 vectors, 3 bivectors and 1 trivector.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

112 Geometric algebra for computer graphics

Table 8.7

Element Symbol Grade

1 scalar λ 0

3 vectors {e1, e2, e3} 1

3 bivectors e1 ∧ e2 = e12 2

e2 ∧ e3 = e23

e3 ∧ e1 = e31

1 trivector e123 3

For completeness, let’s form the product of two multivectors to demonstrate that we have a

closed algebra.

We begin by defining two multivectors A and B:

A = λ0 + λ1e1 + λ2e2 + λ3e12 + λ4e23 + λ5e31 + λ6e123 [λi ∈ R] (8.235)

B = β0 + β1e1 + β2e2 + β3e12 + β4e23 + β5e31 + β6e123 [βi ∈ R] (8.236)

Therefore,

AB = λ0(β0 + β1e1 + β2e2 + β3e12 + β4e23 + β5e31 + β6e123)

+ λ1e1(β0 + β1e1 + β2e2 + β3e12 + β4e23 + β5e31 + β6e123)

+ λ2e2(β0 + β1e1 + β2e2 + β3e12 + β4e23 + β5e31 + β6e123)

+ λ3e12(β0 + β1e1 + β2e2 + β3e12 + β4e23 + β5e31 + β6e123)

+ λ4e23(β0 + β1e1 + β2e2 + β3e12 + β4e23 + β5e31 + β6e123)

+ λ5e31(β0 + β1e1 + β2e2 + β3e12 + β4e23 + β5e31 + β6e123)

+ λ6e123(β0 + β1e1 + β2e2 + β3e12 + β4e23 + β5e31 + β6e123) (8.237)

expanding

AB = λ0β0 + λ0β1e1 + λ0β2e2 + λ0β3e12 + λ0β4e23 + λ0β5e31 + λ0β6e123 + λ1β0e1 + λ1β1

+ λ1β2e12 + λ1β3e2 + λ1β4e123 − λ1β5e3 + λ1β6e23 + λ2β0e2 − λ2β1e12 + λ2β2

− λ2β3e1 + λ2β4e3 + λ2β5e123 + λ2β6e31 + λ3β0e12 − λ3β1e2 + λ3β2e1 − λ3β3

− λ3β4e31 + λ3β5e23 − λ3β6e3 + λ4β0e23 + λ4β1e123 − λ4β2e3 + λ4β3e31 − λ4β4

− λ4β5e12 − λ4β6e1 + λ5β0e31 + λ5β1e3 + λ5β2e123 − λ5β3e23 + λ5β4e12 − λ5β5

− λ5β6e2 + λ6β0e123 + λ6β1e23 + λ6β2e31 − λ6β3e3 − λ6β4e1 − λ6β5e2 − λ6β6 (8.238)

simplifying and collecting up like terms

AB = λ0β0 + λ1β1 + λ2β2 − λ3β3 − λ4β4 − λ5β5 − λ6β6

+ (λ0β1 + λ1β0 − λ2β3 + λ3β2 − λ4β6 − λ6β4)e1

+ (λ0β2 + λ1β3 + λ2β0 − λ3β1 − λ5β6 − λ6β5)e2
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+ (−λ1β5 + λ2β4 − λ3β6 − λ4β2 + λ5β1 − λ6β3)e3

+ (λ0β3 + λ1β2 − λ2β1 + λ3β0 − λ4β5 + λ5β4)e12

+ (λ0β4 + λ1β6 + λ3β5 + λ4β0 − λ5β3 + λ6β1)e23

+ (λ0β5 + λ2β6 − λ3β4 + λ4β3 + λ5β0 + λ6β2)e31

+ (λ0β6 + λ1β4 + λ2β5 + λ4β1 + λ5β2 + λ6β0)e123 (8.239)

which is another multivector and forms a closed algebra.

A multivector that contains terms of only a single grade is said to be homogeneous.

You may have noticed an obvious pattern associated with the number of elements in each

multivector. Table 8.8 summarizes the number of elements for R2, R3 and R4 where it is obvious

that Pascal’s numbers are in control.

Table 8.8

Scalar Vector Bivector Trivector Quadvector

R2 1 2 1

R3 1 3 3 1

R4 1 4 6 4 1

As a multivector contains elements with a variety of grades, it is useful to isolate each grade

using the following notation: 〈A〉n , where n is the required grade. For example, given

A = 3 + 2e1 + e2 − 3e3 + 5e1 ∧ 2e2 + 7e123 (8.240)

then

〈A〉0 = 3 (8.241)

〈A〉1 = 2e1 + e2 − 3e3 (8.242)

〈A〉2 = 5e1 ∧ 2e2 (8.243)

〈A〉3 = 7e123. (8.244)

In the case of the geometric product

ab = a · b + a ∧ b (8.245)

〈ab〉0 = a · b (8.246)

〈ab〉2 = a ∧ b. (8.247)

8.24 Relationship between vector algebra and geometric algebra

We are now in a position to compare vector algebra with geometric algebra, especially with the

way vectors relate to complex numbers, and how rotations in the plane are effected.

Table 8.9 summarizes the two algebras beginning with a vector, the mapping from a vector into

a complex number, and the technique for rotating.
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Table 8.9

Vector Algebra Geometric Algebra

vector v = a1i + a2j vector v = a1e1 + a2e2

map a = a1 b = a2 map Z = e1v

complex number z = a + bi multivector Z = a1 + a2I

rotor z ′ = ze iφ rotor Z ′ = ZeIφ

v ′ = veIφ

90◦ rotor v ′ = −a2i + a1j 90◦ rotor v ′ = vI

8.25 Relationship between the outer product and the cross product

In chapter 7 we discovered the close similarity between the outer product and the cross product

and saw that the bivector coefficients for the outer product are identical to the coefficients for the

axial vector resulting from the cross product. We are now in a position to discover the algebraic

relationship between the two products.

Starting with two vectors a and b, their cross and outer products are

a × b =

∣

∣

∣

∣

∣

∣

e1 e2 e3

a1 a2 a3

b1 b2 b3

∣

∣

∣

∣

∣

∣

a × b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 (8.248)

and

a ∧ b = (a2b3 − a3b2)e23 + (a3b1 − a1b3)e31 + (a1b2 − a2b1)e12. (8.249)

Let’s see what happens when we pre-multiply Eq. (8.249) by the pseudoscalar e123:

e123(a ∧ b) = (a2b3 − a3b2)e123e23 + (a3b1 − a1b3)e123e31 + (a1b2 − a2b1)e123e12

e123(a ∧ b) = −(a2b3 − a3b2)e1 − (a3b1 − a1b3)e2 − (a1b2 − a2b1)e3. (8.250)

This has almost created the cross product in Eq. (8.248) apart from the inverted sign. So let’s

multiply Eq. (8.250) by −1:

−e123(a ∧ b) = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 (8.251)

which creates the cross product in Eq. (8.248). Thus we can state that

a × b = −e123(a ∧ b) or − I (a ∧ b). (8.252)

Therefore, given a bivector B, the vector v orthogonal to the planar surface is given by

v = −IB (8.253)

which is determined algebraically.

For example, Fig. 8.13 shows two vectors a and b where

a = −e2 + e3 (8.254)

b = e1 − e2. (8.255)
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Figure 8.13.

The cross product is given by

a × b = c =

∣

∣

∣

∣

∣

∣

e1 e2 e3

0 −1 1

1 −1 0

∣

∣

∣

∣

∣

∣

= e1 + e2 + e3 (8.256)

which is expected from the symmetry of the vectors.

Now let’s compute c using Eq. (8.253):

B = a ∧ b

= (−e2 + e3) ∧ (e1 − e2)

= −e2 ∧ e1 + e2 ∧ e2 + e3 ∧ e1 − e3 ∧ e2

B = e12 + e31 + e23. (8.257)

Therefore,

c = −IB

= −e123(e12 + e31 + e23)

= e3 + e2 + e1

c = e1 + e2 + e3 (8.258)

which is identical to the previous result.

Now that we have a mechanism to move between GA and the cross product, we can prove

various identities in vector analysis using GA. For example, let’s expand the vector triple product

(a × b) × c .



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

116 Geometric algebra for computer graphics

Starting with a × b:

a × b = −I (a ∧ b)

= −e123(a1e1 + a2e2 + a3e3) ∧ (b1e1 + b2e2 + b3e3)

= −e123((a2b3 − a3b2)e23 + (a3b1 − a1b3)e31 + (a1b2 − a2b1)e12)

a × b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3 (8.259)

substitute λi for each coefficient

a × b = λ1e1 + λ2e2 + λ3e3. (8.260)

Expand (a × b) × c :

(a × b) × c = −I (λ1e1 + λ2e2 + λ3e3) ∧ (c1e1 + c2e2 + c3e3)

= −e123((λ2c3 − λ3c2)e23 + (λ3c1 − λ1c3)e31 + (λ1c2 − λ2c1)e12)

(a × b) × c = (λ2c3 − λ3c2)e1 + (λ3c1 − λ1c3)e2 + (λ1c2 − λ2c1)e3.

Re-substitute for each λi

(a × b) × c = ((a3b1 − a1b3)c3 − (a1b2 − a2b1)c2)e1

+ ((a1b2 − a2b1)c1 − (a2b3 − a3b2)c3)e2

+ ((a2b3 − a3b2)c2 − (a3b1 − a1b3)c1)e3. (8.261)

Rearrange the order

(a × b) × c = (a2c2 + a3c3)b1e1 + (a1c1 + a3c3)b2e2(a1c1 + a2c2)b3e3

− ((b2c2 + b3c3)a1e1 + (b1c1 + b3c3)a2e2 + (b1c1 + b2c2)a3e3) (8.262)

Now we add the following zero term to complete the inner products:

(a1c1)b1e1 + (a2c2)b2e2 + (a3c3)b3e3 − (b1c1)a1e1 − (b2c2)a2e2 − (b3c3)a3e3 = 0 (8.263)

(a × b) × c = (a1c1 + a2c2 + a3c3)b1e1 + (a1c1 + a2c2 + a3c3)b2e2(a1c1 + a2c2 + a3c3)b3e3

− ((b1c1 + b2c2 + b3c3)a1e1 + (b1c1 + b2c2 + b3c3)a2e2 + (b1c1 + b2c2 + b3c3)a3e3) (8.264)

therefore,

(a × b) × c = (a · c)b − (b · c)a. (8.265)

8.26 Relationship between geometric algebra and quaternions

In chapter 6 we reviewed the ideas behind quaternions and saw that a quaternion is defined as

the sum of a scalar and a vector, where Hamilton’s imaginaries i, j and k obey the product rules

shown in Table 8.10.
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Table 8.10

i j k

i −1 k −j

j −k −1 i

k j −i −1

and ijk = −1.

If we let

B1 = e2 ∧ e3 (8.266)

B2 = e3 ∧ e1 (8.267)

B3 = e1 ∧ e2 (8.268)

the bivector products obey the rules shown in Table 8.11.

Table 8.11

B1 B2 B3

B1 −1 −B3 B2

B2 B3 −1 −B1

B3 −B2 B1 −1

and

B1B2B3 = +1. (8.269)

The subtle difference between Table 8.10 and Table 8.11 is that, apart from the diagonal, the signs

are reversed, which suggests that there is a difference in the handedness of the axial systems.

To confirm this, Fig. 8.14 shows a left-handed set of bivectors, which obey the rules shown in

Table 8.12.

Figure 8.14.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

118 Geometric algebra for computer graphics

Table 8.12

B1 B2 B3

B1 −1 B3 −B2

B2 −B3 −1 B1

B3 B2 −B1 −1

We can see from Tables 8.10 and 8.12 the intimate relationship between Hamilton’s imaginaries

and a left-handed set of bivectors, which is elegantly described by Chris Doran and Anthony

Lasenby in their book Geometric Algebra for Physicists [14]. What is strange, is that even the greatest

mathematicians can misinterpret their discoveries, and what is so ironic is that Grassmann’s alge-

bra embraced vectors, bivectors and quaternions and would have changed the path of mathematics

had it been adopted at the time.

8.27 Inverse of a vector

Associative algebras such as the algebra of real numbers and complex numbers permit division.

For example, if

αβ = δ (8.270)

then

α = δβ−1. (8.271)

Similarly, given these complex numbers

(a + ib)(c + id) = e + if (8.272)

then we can state that

(a + ib) = (e + if )(c + id)−1. (8.273)

And as geometric algebra is associative, we can divide by vectors. For example, given that a

multivector B = ab, then we can multiply throughout by b and state that

Bb = (ab)b = ab2 (8.274)

which means that

B
b

b2
= a (8.275)

or

Bb−1 = a (8.276)

where

b−1 = b

b2
= b

‖b‖2
. (8.277)

We can illustrate this with an example.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 119

Two vectors a and b are given by

a = 3e1 + 4e2 (8.278)

b = e1 + e2 (8.279)

and a multivector B is given by

B = ab

= (3e1 + 4e2)(e1 + e2)

= 3 + 3e12 − 4e12 + 4

B = 7 − e12. (8.280)

Now let’s compute b−1

b−1 = b

b2

= e1 + e2

‖
√

e2
1 + e2

2‖2

b−1 = 1

2
(e1 + e2). (8.281)

Therefore, we can recover a from B as follows:

a = Bb−1

= 1

2
(7 − e12)(e1 + e2)

= 1

2
(7e1 + 7e2 − e12e1 − e12e2)

= 1

2
(7e1 + 7e2 + e2 − e1)

a = 3e1 + 4e2 (8.282)

which is correct.

Next, we consider a multivector C = abc , where

a = 3e1 + 4e2 (8.283)

b = e1 + e2 (8.284)

c = e3. (8.285)

Therefore,

C = (3e1 + 4e2)(e1 + e2)e3

= (3e2
1 + 3e12 − 4e12 + 4e2

2)e3

= (7 − e12)e3

C = 7e3 − e123. (8.286)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

120 Geometric algebra for computer graphics

Now, if we are given c , we can find the bivector term as follows:

ab = Cc−1

= Cc

‖a‖2

= (7e3 − e123)e3

ab = 7 − e12 (8.287)

which is correct.

8.28 The meet operation

For all sorts of reasons we are always interested in the intersections of lines, planes, spheres,

cylinders, etc., and GA’s meet operation provides a way of calculating such intersections. For

example, the meet of A and B is written A ∨ B, and without proof, is defined as

A ∨ B = A∗ · B. (8.288)

To illustrate how this operation works we first examine the intersections of the three basis 2-blades,

followed by the intersection of two arbitrary blades.

Figure 8.15.

Figure 8.15 shows the three basis 2-blades B1, B2, B3, and it is obvious that

B1 ∨ B2 = e2 B2 ∨ B3 = e3 B3 ∨ B1 = e1. (8.289)

Now let’s demonstrate how the meet operation confirms this result.

B1 = e1 ∧ e2 B2 = e2 ∧ e3 B3 = e3 ∧ e1. (8.290)

Therefore,

B1 ∨ B2 = B∗
1 · B2

= (e123e12) · e23

B1 ∨ B2 = −e3 · e23. (8.291)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 121

Using the identity a · B = 1
2
(aB − Ba)

B1 ∨ B2 = 1

2
(−e323 + e233)

B1 ∨ B2 = e2. (8.292)

Similarly,

B2 ∨ B3 = B∗
2 · B3

= (e123e23) · e31

= −e1 · e31

= 1

2
(−e131 + e311)

B2 ∨ B3 = e3 (8.293)

and

B3 ∨ B1 = B∗
3 · B1

= (e123e31) · e12

= −e2 · e12

= 1

2
(−e212 + e122)

B3 ∨ B1 = e1. (8.294)

Figure 8.16.

The next example is shown in Fig. 8.16 where one of the planes is away from the origin. The

meet of the two blades A and B is a line passing through the two points (1, 0, 0) and (0, 1, 0),

whose direction vector is given by ±(e1 − e2). Let’s compute the product A∗ · B to confirm this

prediction.

Given

a = e1 − e3 (8.295)

b = e2 − e3 (8.296)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

122 Geometric algebra for computer graphics

A = a ∧ b

= (e1 − e3) ∧ (e2 − e3)

A = e12 − e13 − e32 (8.297)

B = e12 (8.298)

then

A ∨ B = A∗ · B

= e123(e12 − e13 − e32) · e12

A ∨ B = (−e3 − e2 − e1) · e12. (8.299)

Expand using a · B = 〈aB〉1

A ∨ B = 〈(−e3 − e2 − e1)e12〉1

A ∨ B = e1 − e2 (8.300)

which is correct.

We explore other applications of the meet operation in the following chapters.

8.29 Summary

This chapter has covered a large number of topics, which, if understood completely, can be

summarized as follows:

Geometric algebra provides a coordinate free, algebraic framework for describing geometry in

any number of dimensions. At the heart of the algebra is an associative, geometric product which

has real and imaginary parts and is defined as the sum of the inner and outer products. It is also

invertible. The inner product is the familiar inner product a · b whereas the outer product is

defined as the outer product a ∧ b. Thus the geometric product of two vectors is defined as

ab = a · b + a ∧ b. (8.301)

The outer product defines a directed area, which, unlike the cross product, exists in space of any

number of dimensions. However, like the cross product, it is antisymmetric:

a ∧ b = −b ∧ a. (8.302)

The outer product creates a new entity called a bivector, which is a directed area defined by a pair

of vectors. In R2 there is only one unit bivector: e1 ∧ e2 = e12, whereas in R3 there are three:

e1 ∧ e2, e2 ∧ e3 and e3 ∧ e1. Thus, the outer product of two vectors in R2 is represented as

a ∧ b = λ1(e1 ∧ e2) {λ1 ∈ R} (8.303)

and in R3 it is represented as

a ∧ b = λ1(e1 ∧ e2) + λ2(e2 ∧ e3) + λ3(e3 ∧ e1) {λ1, λ2, λ3 ∈ R}. (8.304)

In R3 the outer product of three vectors a ∧ b ∧ c (i.e. a trivector) represents a directed volume.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The geometric product 123

It is possible to linearly combine scalars, vectors, bivectors and trivectors to create multivectors

that form a closed algebra. These elements possess a natural hierarchy which is described in terms

of their grade where scalars are grade 0, vectors are grade 1, bivectors are grade 2, and trivectors

are grade 3. The inner product has grade reducing qualities as it transforms two vectors into a

scalar, whereas the outer product has grade raising qualities as it transforms two vectors into a

bivector.

The inner and outer products can be defined in terms of the geometric product using

a · b = 1

2
(ab + ba) (8.305)

and

a ∧ b = 1

2
(ab − ba). (8.306)

The axioms defining the algebra are

a(bc) = (ab)c (8.307)

a(b + c) = ab + ac (8.308)

(b + c)a = ba + ca (8.309)

λa = aλ (8.310)

a2 = ±‖a‖2. (8.311)

An unusual feature of geometric algebra is that the highest graded element for any space (bivector

for R2, trivector for R3) squares to −1, which introduces imaginary features to multivectors. These

elements are called pseudoscalars.

Multivectors can be added, subtracted, multiplied together and even divided by a vector. When

adding or subtracting multivectors, like elements are combined individually. However, the product

of two multivectors is computed using the rules summarized in Table 8.5.

The number of elements belonging to a multivector is determined by the number of combi-

nations of n elements selected p at a time nCp . For example, in R2 we have 1 scalar, 2 unit basis

vectors and 1 unit bivector. Whereas in R3, we have 1 scalar, three unit basis vectors, three unit

bivectors and 1 unit trivector. In R4 we have 1 scalar, 4 unit basis vectors, 6 unit bivectors, 4 unit

trivectors and 1 unit quadvector.

In R2 the product of a unit bivector (pseudoscalar) I and a vector rotate the vector 90◦. For

example

e1I = e2 (8.312)

whereas

I e1 = −e2. (8.313)

In R3 premultiplying a vector by a bivector performs two operations:

• first, it rotates the projection of the vector on the bivector clockwise 90◦

• second, it creates a volume by sweeping the bivector along the perpendicular component of the

vector.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

124 Geometric algebra for computer graphics

In R3 premultiplying a vector by a trivector creates a multivector consisting of bivector terms. In

the case of the unit basis vectors we have

e123e1 = e23 (8.314)

e123e2 = e31 (8.315)

e123e3 = e12. (8.316)

Apart from the rotations described above, GA contains some powerful 3D rotation features that

are described in the following chapter.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

9 Reflections
and Rotations

9.1 Introduction

Rotating objects and virtual cameras are central to computer animation and computer games and

are traditionally effected using matrix transforms representing Euler angle rotations. For example,

to rotate a 2D point about the origin we use
[

x ′

y ′

]

=
[

cos θ −sinθ

sin θ cos θ

] [

x

y

]

. (9.1)

To rotate a 3D point about the origin we use one transform for each axis:

to rotate about the x-axis
⎡

⎣

x ′

y ′

z ′

⎤

⎦ =

⎡

⎣

1 0 0

0 cos(pitch) −sin(pitch)

0 sin(pitch) cos(pitch)

⎤

⎦

⎡

⎣

x

y

z

⎤

⎦ (9.2)

to rotate about the y-axis
⎡

⎣

x ′

y ′

z ′

⎤

⎦ =

⎡

⎣

cos(yaw) 0 sin(yaw)

0 1 0

−sin(yaw) 0 cos(yaw)

⎤

⎦

⎡

⎣

x

y

z

⎤

⎦ (9.3)

and to rotate about the z-axis
⎡

⎣

x ′

y ′

z ′

⎤

⎦ =

⎡

⎣

cos(roll) −sin(roll) 0

sin(roll) cos(roll) 0

0 0 1

⎤

⎦

⎡

⎣

x

y

z

⎤

⎦. (9.4)

These rotations are not very intuitive to use, especially when we need to rotate points about an

arbitrary axis, for which the following transform is used:
⎡

⎣

x ′

y ′

z ′

⎤

⎦ =

⎡

⎣

a2K + cos θ abK − c sin θ acK + b sin θ

abK + c sin θ b2K + cos θ bcK − a sin θ

acK − b sin θ bcK + a sin θ c2K + cos θ

⎤

⎦

⎡

⎣

x

y

z

⎤

⎦ (9.5)
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126 Geometric algebra for computer graphics

where

K = 1 − cos θ (9.6)

and the axis of rotation is defined by

v̂ = ai + bj + ck. (9.7)

In recent years, Hamilton’s quaternions have been embraced by the computer animation and

games communities where a point P is rotated to P ′, through an angle θ , about an axis v̂ using

the pure quaternion q. The process involves the following steps:

1. Convert the point P(x , y , z) to a pure quaternion p:

p = [0 + xi + y j + zk]. (9.8)

2. Define the axis of rotation as a unit vector v̂ :

v̂ = [xv i + yv j + zv k]. (9.9)

3. Define the transforming quaternion q:

q = [cos(θ/2) + sin(θ/2)v̂]. (9.10)

4. Define the inverse of the transforming quaternion q−1:

q−1 = [cos(θ/2) − sin(θ/2)v̂]. (9.11)

5. Compute p′:

p′ = qpq−1. (9.12)

6. Unpack (x ′, y ′, z ′) from p′:

p′ = [0 + x ′i + y ′j + z ′k]. (9.13)

Given a quaternion [w + xi + y j + zk], its equivalent matrix is

⎡

⎣

1 − 2(y2 + z2) 2(xy − wz) 2(xz + wy)

2(xy + wz) 1 − 2(x2 + z2) 2(yz − wx)

2(xz − wy) 2(yz + wx) 1 − 2(x2 + y2)

⎤

⎦ (9.14)

where

w2 + x2 + y2 + z2 = 1. (9.15)

We saw in the previous chapter that there is a strong relationship between quaternions and GA,

and in this chapter this relationship is further strengthened when we examine how GA implements

reflections and rotations.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 127

9.2 Reflections

9.2.1 Reflecting vectors

Solving problems using vector algebra is not always straight forward, for much depends upon

the nature of the diagram used to annotate the relevant vectors. For instance, say we are given a

mirror whose orientation is defined by an orthogonal unit vector n̂, and the task is to find the

reflection of the vector a in the mirror. Figure 9.1 shows the advantages of placing the vector so

that its tail touches the mirror. It then becomes obvious that the vector’s head is a distance a · n̂

in front of the mirror, which means that the head of the reflected vector a′ is an equal distance

behind the mirror. Thus, we can write the following vector equation for a′ as

a′ = a − (2a · n̂)n̂ (9.16)

which is rather succinct.

Figure 9.1.

Now let’s solve the problem using GA.

Figure 9.2 shows the same diagram, but annotated differently.

Figure 9.2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

128 Geometric algebra for computer graphics

As the mirror’s surface normal is defined as a unit vector, then n̂2 = 1, which permits us to

write

a = n̂2a = n̂(n̂a) (9.17)

and substituting the geometric product we have

a = n̂(n̂ · a + n̂ ∧ a). (9.18)

From Fig. 9.2 it is obvious that

a = a⊥ + a‖ (9.19)

and

a‖ = (n̂ · a)n̂. (9.20)

Therefore,

a = n̂(n̂ ∧ a) + a‖

which means that

a⊥ = n̂(n̂ ∧ a). (9.21)

From Fig. 9.2 it is also obvious that

a′ = a⊥ − a‖. (9.22)

Substituting Eqs. (9.20) and (9.21) in Eq. (9.22) we have

a′ = n̂(n̂ ∧ a) − (n̂ · a)n̂.

Reordering the products we get

a′ = −(n̂ · a)n̂ + n̂(n̂ ∧ a). (9.23)

Recalling from the previous chapter that vectors and bivectors anticommute, i.e. aB = −Ba,

therefore,

n̂(n̂ ∧ a) = −(n̂ ∧ a)n̂ (9.24)

which means that we can write Eq. (9.23) as

a′ = −(n̂ · a)n̂ − (n̂ ∧ a)n̂ (9.25)

which simplifies to

a′ = −((n̂ · a) + (n̂ ∧ a))n̂. (9.26)

The reason behind the above strategy was to create the geometric product n̂a within Eq. (9.26),

which now simplifies to

a′ = −n̂an̂. (9.27)

This sandwiching effect is reminiscent of the structure for using quaternions to rotate vectors, and

will become even more obvious when we consider rotations. For the moment, let’s test Eq. (9.27)

with an example.

Figure 9.3 shows a vector a with reflection a′ in the plane defined by e12, with surface normal

n̂ = e3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 129

Figure 9.3.

If, for example,

a = e1 + 2e2 + 2e3 (9.28)

then, from Fig. 9.3 it is obvious that its reflection is

a′ = e1 + 2e2 − 2e3. (9.29)

We can confirm this result using Eq. (9.27):

a′ = −n̂an̂

= −e3(e1 + 2e2 + 2e3)e3

= −(e313 + 2e323 + 2e333)

a′ = e1 + 2e2 − 2e3. (9.30)

It is important to note that this reflection formula assumes that the line and plane intersect at the

origin. Now let’s investigate what happens when a bivector is reflected.

9.2.2 Reflecting bivectors

As a bivector is formed from a pair of vectors, its reflection must be formed from the reflections

of its vectors, as shown in Fig. 9.4.

If B = a ∧ b then its reflection is B′ = a′ ∧ b′ where a′ and b′ are the reflections of the original

vectors. Algebraically, we proceed as follows using Eq. (9.27):

a′ = −n̂an̂ (9.31)

and

b′ = −n̂bn̂. (9.32)

Therefore,
B′ = (−n̂an̂) ∧ (−n̂bn̂)

B′ = (n̂an̂) ∧ (n̂bn̂). (9.33)

But we know that

B = a ∧ b = 1

2
(ab − ba) (9.34)
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Figure 9.4.

therefore,

B′ = 1

2
(n̂an̂n̂bn̂ − n̂bn̂n̂an̂)

= 1

2
(n̂abn̂ − n̂ban̂)

= 1

2
n̂(ab − ba)n̂

B′ = n̂Bn̂ (9.35)

which, apart from the minus sign, is identical to the equation for reflecting a vector.

Again, it’s worth testing the action of Eq. (9.35) with an example.

Figure 9.5 shows a bivector B = a ∧ b reflected in the plane defined by n̂ = e3.

Figure 9.5.

If

a = e1 + 2e2 + 2e3 (9.36)

and

b = e1 + 2e3 (9.37)

then

B = (e1 + 2e2 + 2e3) ∧ (e1 + 2e3). (9.38)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 131

To save time evaluating outer products, the following aide-mémoire reminds us how to calculate

the coefficients of the bivector terms.

e1 e2 e3

m m1 m2 m3

n n1 n2 n3

m ∧ n x = m2n3 − m3n2 y = m3n1 − m1n3 z = m1n2 − m2n1

e23 e31 e12

therefore,

e1 e2 e3

a 1 2 2

b 1 0 2

B 4 0 −2

e23 e31 e12

and

B = −2e12 + 4e23. (9.39)

Now let’s calculate the reflections of a and b.

From Eq. (9.30)

a′ = e1 + 2e2 − 2e3. (9.40)

From Eq. (9.27)

b′ = −n̂bn̂

= −e3(e1 + 2e3)e3

b′ = e1 − 2e3. (9.41)

Therefore,

B′ = a′ ∧ b′

= (e1 + 2e2 − 2e3) ∧ (e1 − 2e3)

e1 e2 e3

a′ 1 2 −2

b′ 1 0 −2

B′ −4 0 −2

e23 e31 e12

and

B′ = −2e12 − 4e23. (9.42)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

132 Geometric algebra for computer graphics

Comparing Eq. (9.39) and Eq. (9.42) we see that the sign of the unit basis bivector e23 coefficient

has flipped.

Alternatively, we can calculate B′ using Eq. (9.35):

B′ = n̂Bn̂

= e3(−2e1 ∧ e2 + 4e2 ∧ e3)e3

= e3(−2e12 + 4e23)e3

= −2e3123 + 4e3233

B′ = −2e12 − 4e23. (9.43)

It should be obvious from Fig. 9.5 why the coefficients of e12 and e23 are negative, and why the

coefficient of e31 is zero.

9.2.3 Reflecting trivectors

Finally, let’s examine how trivectors behave when reflected in a mirror. Experience confirms that

when we hold up our right hand in front of a mirror, we see a reflection identical to an image of

our left hand – and vice versa. Therefore, a set of right-handed orthogonal axes should appear

reflected as a left-handed set, as shown in Fig. 9.6. We can confirm this algebraically as follows:

Figure 9.6.

Starting with the unit trivector, which is also a pseudoscalar:

I = e1 ∧ e2 ∧ e3 (9.44)

its reflection consists of three reflected unit vectors:

−n̂e1n̂ −n̂e2n̂ −n̂e3n̂ (9.45)

which form the reflected unit trivector

(−n̂e1n̂) ∧ (−n̂e2n̂) ∧ (−n̂e3n̂). (9.46)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 133

Expanding the first two terms of Eq. (9.46) using a ∧ b = 1
2
(ab − ba) we have:

(−n̂e1n̂) ∧ (−n̂e2n̂) = 1

2
((−n̂e1n̂)(−n̂e2n̂) − (−n̂e2n̂)(−n̂e1n̂))

= 1

2
(n̂e12n̂ − n̂e21n̂)

= 1

2
(n̂e12n̂ + n̂e12n̂)

therefore,

(−n̂e1n̂) ∧ (−n̂e2n̂) = n̂e12n̂. (9.47)

Expanding the rest of Eq. (9.46) we have

(n̂e12n̂) ∧ (−n̂e3n̂) (9.48)

and using B ∧ a = 1
2
(Ba + aB) we have:

n̂e12n̂ ∧ (−n̂e3n̂) = 1

2
((n̂e12n̂) ∧ (−n̂e3n̂) + (−n̂e3n̂) ∧ (n̂e12n̂))

= 1

2
((n̂e12n̂)(−n̂e3n̂) + (−n̂e3n̂)(n̂e12n̂))

= 1

2
(−n̂e123n̂ − n̂e312n̂)

= −n̂e123n̂

therefore,

(−n̂e1n̂) ∧ (−n̂e2n̂) ∧ (−n̂e3n̂) = −n̂I n̂ (9.49)

where I is the pseudoscalar, which commutes with vectors. Therefore,

(−n̂e1n̂) ∧ (−n̂e2n̂) ∧ (−n̂e3n̂) = −n̂n̂I = −I . (9.50)

Equation (9.50) confirms that the sign of the trivector’s reflection has switched from positive to

negative, as predicted.

It is possible to show that the reflection of a general trivector behaves in exactly the same way.

9.3 Rotations

9.3.1 Rotating by double reflecting

The reason why we started with reflections is that they provide a way to rotate vectors. To illustrate

this, consider Fig. 9.7(a) showing a mirror m and a vector a forming an angle α with the mirror.

By the laws of reflection, a’s reflection is b forming an equal angle α on the other side of the

mirror. Now consider Fig. 9.7(b) which shows two superimposed mirrors m and n, where a’s

reflection in m is b, and b’s reflection in n is c , which must coincide with a. We can reason that



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

134 Geometric algebra for computer graphics

as the separating angle between the mirrors is 0◦, the separating angle between a and its double

reflection c is also 0◦.

Figure 9.7.

Now consider Fig. 9.7(c) where the two mirrors m and n are separated by an angle θ . Vector a’s

reflection is still b, whilst b’s reflection in n has rotated anticlockwise to c . By inspection, the angle

of rotation between b and n is θ + α, which places c at an angle θ + α on the opposite side of

n. The interesting result about this double mirror arrangement is that the angle between a and

c is 2θ , exactly double the angle between the mirrors. Now let’s make a subtle substitution by

representing the mirror m by a perpendicular unit vector m̂, and mirror n by a perpendicular unit

vector n̂. This in no way changes the geometry, but allows us to describe the double reflection

using GA. We will also define the plane supporting the mirrors by the outer product m̂ ∧ n̂, as

this represents the order of the mirrors.

Vector a’s reflection b is given by

b = −m̂am̂ (9.51)

which, in turn, is reflected in n to create c :

c = −n̂bn̂

= −n̂(−m̂am̂)n̂

c = n̂m̂am̂n̂. (9.52)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 135

Substituting R = n̂m̂ in Eq. (9.52) we have

c = RaR̃ (9.53)

where R̃ = m̂n̂, the reverse product of R.

Although this description is based on an imaginary 2D scenario, it works in any number of

dimensions, however, we are particularly interested in R3.

Figure 9.8 shows two mirrors m and n represented by their normal vectors m̂ and n̂, separated

by an angle θ . Vector a’s reflection is still b, and b’s reflection in n is still c , and effectively, a has

been rotated 2θ to c .

Figure 9.8.

To illustrate this double reflection, consider the two mirrors shown in Fig. 9.9 with normal

vectors

m̂ = −e3 (9.54)

n̂ = −e1. (9.55)

Figure 9.9.

If the vector a is

a = e1 + e2 + e3 (9.56)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

136 Geometric algebra for computer graphics

then

R = n̂m̂

R = (−e1)(−e3) = e13 (9.57)

and

R̃ = m̂n̂

R̃ = (−e3)(−e1) = e31. (9.58)

Therefore,

c = RaR̃

= e13(e1 + e2 + e3)e31

= (−e3 + e132 + e1)e31

= −e1 + e2 − e3

c = −e1 + e2 − e3 (9.59)

which is as expected.

We have seen from the previous examples that the mirrors and the angle of rotation are

controlled by the bivector associated with the plane perpendicular to the mirrors, so let’s drop the

idea of mirrors and reflections and adopt the idea of rotating vectors using a bivector.

Figure 9.10 shows two vectors m and n forming the bivector m ∧ n directed anticlockwise. As

the internal angle of the bivector is 60◦, vector a will be rotated 120◦ anticlockwise, which we can

predict will be e1 + e3. Now let’s construct the geometric products to perform the rotation.

Figure 9.10.
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First we define the unit vectors m̂ and n̂:

m̂ = 1√
2
(e1 − e3) (9.60)

n̂ = 1√
2
(e2 − e3) (9.61)

and

a = e2 + e3. (9.62)

Therefore,

R = n̂m̂

= 1

2
(e2 − e3)(e1 − e3)

R = 1

2
(e21 − e23 − e31 + 1) (9.63)

and

n̂m̂a = 1

2
(e21 − e23 − e31 + 1)(e2 + e3)

= 1

2
(e212 + e213 − e232 − e233 − e312 − e313 + e2 + e3)

= 1

2
(−e1 − e123 + e3 − e2 − e123 + e1 + e2 + e3)

n̂m̂a = e3 − e123. (9.64)

Now we compute the reverse product

R̃ = m̂n̂

= 1

2
(e1 − e3)(e2 − e3)

R̃ = 1

2
(e12 − e13 − e32 + 1) (9.65)

and

RaR̃ = 1

2
(e3 − e123)(e12 − e13 − e32 + 1)

= 1

2
(e312 − e313 − e332 + e3 − e12312 + e12313 + e12332 − e123)

RaR̃ = e1 + e3 (9.66)

which confirms our prediction.
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9.3.2 Rotors

Much of mathematics is about patterns, especially in formulae. One such pattern is about to

emerge, and whoever discovered it deserves some sort of recognition. In chapter 3 we saw that a

complex number is rotated in the complex plane by multiplying it by e iθ , which is equivalent to

cos θ + i sin θ . We are about to discover that a multivector can also be rotated in a plane defined

by a unit bivector, which plays a similar role to the imaginary i.

As sandwiching a multivector between R and R̃ results in a rotation, R is called a rotor, much

like e iθ . What is strange, though, is that the bivector defining the plane is m̂ ∧ n̂, whilst the rotor

sequence is R = n̂m̂. The vectors are switched, and we will have to watch out for this.

We start the process as follows:

R = n̂m̂ (9.67)

which, using the geometric product, expands to

R = n̂ · m̂ + n̂ ∧ m̂. (9.68)

But

n̂ · m̂ = ‖n̂‖‖m̂‖ cos θ = cos θ (9.69)

therefore,

R = cos θ + n̂ ∧ m̂. (9.70)

This is where we begin looking for a pattern. We already know that

e iθ = cos θ + i sin θ (9.71)

so could it be that R has a similar structure? To find the answer to this question consider the

following expansion (m̂ ∧ n̂)2 using

m̂ ∧ n̂ = m̂n̂ − m̂ · n̂

and

m̂ ∧ n̂ = m̂ · n̂ − n̂m̂. (9.72)

Therefore,

(m̂ ∧ n̂)2 = (m̂n̂ − m̂ · n̂)(m̂ · n̂ − n̂m̂)

= m̂n̂(m̂ · n̂) − m̂n̂2m̂ − (m̂ · n̂)2 + n̂m̂(m̂ · n̂)

= m̂ · n̂(m̂n̂ + n̂m̂) − m̂n̂2m̂ − (m̂ · n̂)2

(m̂ ∧ n̂)2 = −m̂2n̂2 − (m̂ · n̂)2. (9.73)

But as

(m̂ · n̂)2 = ‖m̂‖2‖n̂‖2 cos2 θ (9.74)

and

m̂2n̂2 = ‖m̂‖2‖n̂‖2 (9.75)
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then

(m̂ ∧ n̂)2 = −‖m̂‖2‖n̂‖2 − ‖m̂‖2‖n̂‖2 cos2 θ

= −1 − cos2 θ

(m̂ ∧ n̂)2 = − sin2 θ . (9.76)

Note the imaginary feature of this result, which can be interpreted as follows:

m̂ ∧ n̂ = B̂ sin θ (9.77)

where B̂ is the unit bivector in the m̂ ∧ n̂ plane where B̂2 = −1.

Similarly,

n̂ ∧ m̂ = −B̂ sin θ (9.78)

which can be substituted in Eq. (9.70)

R = cos θ − B̂ sin θ (9.79)

which has a similar structure to Eq. (9.71) apart from a negative imaginary component.

We can convert Eq. (9.79) to its exponential form as follows:

R = exp(−B̂θ). (9.80)

Remembering that the double reflection technique doubles the angle of rotation, we must

compensate for this by halving the original angle:

R = exp(−B̂θ/2). (9.81)

Similarly,

R̃ = exp(B̂θ/2) (9.82)

which enables us to write the result

c = e−B̂θ/2ae B̂θ/2. (9.83)

More generally, the vector a is rotated through an angle θ in the plane defined by the unit bivector

B̂ using

a′ = e−B̂θ/2ae B̂θ/2. (9.84)

So now we have two ways of visualizing a rotor: either as a bivector or as an exponential, which is

readily represented as

exp(−B̂θ/2) = cos(θ/2) − B̂ sin(θ/2) (9.85)

Therefore, we can rewrite Eq. (9.84) as

a′ = (cos(θ/2) − B̂ sin(θ/2))a(cos(θ/2) + B̂ sin(θ/2)). (9.86)

Let’s test Eq. (9.86) with an example.

Figure 9.11 shows two vectors m and n forming a bivector m ∧ n. The angle of rotation is 120◦,

which means that the vector a = e2 + e3 will be rotated to a′ = e1 + e3 as shown in Fig. 9.12.
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Figure 9.11.

Figure 9.12.

Using Eq. (9.86) we have

a′ = (cos 60◦ − B̂ sin 60◦)(e2 + e3)(cos 60◦ + B̂ sin 60◦)

=
(

1

2
− B̂

√
3/2

)

(e2 + e3)

(

1

2
+ B̂

√
3/2

)

a′ = 1

4

(

1 − B̂
√

3
)

(e2 + e3)
(

1 + B̂
√

3
)

. (9.87)

Given that

m = e1 − e3 (9.88)

and

n = e2 − e3 (9.89)
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we evaluate the outer product using our aide-mémoire.

e1 e2 e3

m 1 0 −1

n 0 1 −1

m ∧ n x = 1 y = 1 z = 1

e23 e31 e12

where

m ∧ n = e23 + e31 + e12. (9.90)

But we require a unit bivector, which makes

B̂ = 1√
3
(e23 + e31 + e12). (9.91)

Therefore,

a′ = 1

4
(1 − e23 − e31 − e12)(e2 + e3)(1 + e23 + e31 + e12)

= 1

4
(e2 + e3 − e232 − e233 − e312 − e313 − e122 − e123)(1 + e23 + e31 + e12)

= 1

2
(e3 − e123)(1 + e23 + e31 + e12)

= 1

2
(e3 + e323 + e331 + e312 − e123 − e12323 − e12331 − e12312)

a′ = e1 + e3 (9.92)

which is what we predicted.

9.3.3 Rotor matrix

Another way of implementing a rotor is using a matrix, which is created as follows. We begin with

the bivector defining the plane m ∧ n, about which the rotation is effected, where

m = m1e1 + m2e2 + m3e3 (9.93)

and

n = n1e1 + n2e2 + n3e3. (9.94)

Notice in the following how the bivectors are associated with their perpendicular axes.

Therefore,

R = mn

R = w + xe23 + ye31 + ze12 (9.95)
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and

R̃ = nm

R̃ = w − xe23 − ye31 − ze12 (9.96)

where

w2 + x2 + y2 + z2 = 1 (9.97)

and x , y and z are computed using the outer product aide-mémoire.

We derive the matrix [[R]] representing RaR̃ by expanding the individual elements for

Re1R̃, Re2R̃ and Re3R̃:

Re1R̃ = (w + xe23 + ye31 + ze12)e1(w − xe23 − ye31 − ze12)

= (we1 + xe123 + ye3 − ze2)(w − xe23 − ye31 − ze12)

Re1R̃ = (w2 + x2 − y2 − z2)e1 + 2(−wz + xy)e2 + 2(wy + xz)e3. (9.98)

The first term is simplified by substituting

w2 + x2 = 1 − y2 − z2 (9.99)

Re1R̃ = (1 − 2(y2 + z2))e1 + 2(xy − wz)e2 + 2(xz + wy)e3. (9.100)

Next is Re2R̃

Re2R̃ = (w + xe23 + ye31 + ze12)e2(w − xe23 − ye31 − ze12)

= (we2 − xe3 + ye123 + ze1)(w − xe23 − ye31 − ze12)

Re2R̃ = 2(xy + wz)e1 + (w2 − x2 + y2 − z2)e2 + 2(yz − wx)e3. (9.101)

Substituting

w2 + y2 = 1 − x2 − z2 (9.102)

Re2R̃ = 2(xy + wz)e1 + (1 − 2(x2 + z2))e2 + 2(yz − wx)e3. (9.103)

Finally Re3R̃

Re3R̃ = (w + xe23 + ye31 + ze12)e3(w − xe23 − ye31 − ze12)

= (we3 + xe2 − ye1 + ze123)(w − xe23 − ye31 − ze12)

Re3R̃ = 2(xz − wy)e1 + 2(yz + wx)e2 + (w2 − x2 − y2 + z2)e3. (9.104)

Substituting

w2 + z2 = 1 − x2 − y2 (9.105)

Re3R̃ = 2(xz − wy)e1 + 2(yz + wx)e2 + (1 − 2(x2 + y2))e3. (9.106)
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Therefore, the final matrix is

[[R]] =

⎡

⎣

1 − 2(y2 + z2) 2(xy − wz) 2(xz + wy)

2(xy + wz) 1 − 2(x2 + z2) 2(yz − wx)

2(xz − wy) 2(yz + wx) 1 − 2(x2 + y2)

⎤

⎦ (9.107)

which is also used in its transposed form. Notice that it is identical to the matrix representing a

quaternion. (Eq. (9.52)).

Let’s illustrate this matrix using the previous example.

Figure 9.11 shows the bivector m ∧ n which will be used to rotate the vector a through an

angle 120◦.

Given the following vectors:

m = e1 − e3 (9.108)

n = e2 − e3 (9.109)

a = e2 + e3 (9.110)

then

m · n = (e1 − e3) · (e2 − e3) = 1 (9.111)

and

m ∧ n = e23 + e31 + e12. (9.112)

Therefore,

R = mn

= m · n + m ∧ n

R = 1 + e23 + e31 + e12. (9.113)

But this has to be normalized, which makes the scaling factor 1
2

and in matrix form using Eq.

(9.107) becomes

[[R]] =

⎡

⎣

0 0 1

1 0 0

0 1 0

⎤

⎦. (9.114)

Multiplying vector a by this matrix we have

a′ =

⎡

⎣

0 0 1

1 0 0

0 1 0

⎤

⎦ ·

⎡

⎣

0

1

1

⎤

⎦ =

⎡

⎣

1

0

1

⎤

⎦ (9.115)

which shows that a′ is now pointing to (1, 0, 1).

If a′ is subjected to the same rotation we obtain

a′′ =

⎡

⎣

0 0 1

1 0 0

0 1 0

⎤

⎦ ·

⎡

⎣

1

0

1

⎤

⎦ =

⎡

⎣

1

1

0

⎤

⎦ (9.116)
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which shows that a′′ is now pointing to (1, 1, 0).

If a′′ is subjected to the same rotation we should return to the original vector:

a =

⎡

⎣

0 0 1

1 0 0

0 1 0

⎤

⎦ ·

⎡

⎣

1

1

0

⎤

⎦ =

⎡

⎣

0

1

1

⎤

⎦ (9.117)

which does reassuringly, brings us back to the original vector a. These rotations are shown in

Fig. 9.12.

This seems too good to be true! So let’s test it with another example. This time, let’s reverse the

bivector as shown in Fig. 9.13, where the bivector creates a clockwise rotation of 45◦.

Figure 9.13.

Given the following vectors:

m = −e1 (9.118)

n = −e1 + e2 (9.119)

a = e2 + e3. (9.120)

e1 e2 e3

m −1 0 0

n −1 1 0

m ∧ n x = 0 y = 0 z = −1

e23 e31 e12

Therefore,

m · n = (−e1) · (−e1 + e2) = 1 (9.121)

and

m ∧ n = −e12. (9.122)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 145

Therefore,

R = mn = m · n + m ∧ n

R = 1 − e12. (9.123)

But this has to be normalized, which makes the scaling factor 1/
√

2 and in matrix form using

Eq. (9.107) becomes

[[R]] =

⎡

⎣

0 1 0

−1 0 0

0 0 1

⎤

⎦. (9.124)

Multiplying vector a by this matrix we have

a′ =

⎡

⎣

0 1 0

−1 0 0

0 0 1

⎤

⎦ ·

⎡

⎣

0

1

1

⎤

⎦ =

⎡

⎣

1

0

1

⎤

⎦ (9.125)

which shows that a′ is now pointing to (1, 0, 1).

If a′ is subjected to the same rotation we obtain

a′′ =

⎡

⎣

0 1 0

−1 0 0

0 0 1

⎤

⎦ ·

⎡

⎣

1

0

1

⎤

⎦ =

⎡

⎣

0

−1

1

⎤

⎦ (9.126)

which shows that a′′ is now pointing to (0, −1, 1).

If a′′ is subjected to the same rotation we obtain

a′′′ =

⎡

⎣

0 1 0

−1 0 0

0 0 1

⎤

⎦ ·

⎡

⎣

0

−1

1

⎤

⎦ =

⎡

⎣

−1

0

1

⎤

⎦. (9.127)

Finally, If a′′′ is subjected to the same rotation we obtain

a =

⎡

⎣

0 1 0

−1 0 0

0 0 1

⎤

⎦ ·

⎡

⎣

−1

0

1

⎤

⎦ =

⎡

⎣

0

1

1

⎤

⎦ . (9.128)

which again reassuringly, brings us back to the original vector a. These rotations are shown in

Fig. 9.14.

So once again, we see how close GA is to the algebra discovered by Hamilton. And even

though Grassmann had discovered many of the ideas outlined above, he was unable to persuade

mathematicians of the day to adopt his algebra, and it was left to Clifford to unify both men’s

work. Furthermore, it has taken several decades for GA to be applied seriously to science and

physics, and only during the past decade has GA found application within computer graphics.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

146 Geometric algebra for computer graphics

Figure 9.14.

Figure 9.15.

9.3.4 Building rotors

In the previous section we discovered how to rotate a vector using a bivector. In this section

we investigate how to derive the rotor that rotates one vector into another vector. Figure 9.15(a)

illustrates the problem, where we see two vectors a and b in the plane defined by a ∧ b, and the

objective is to find a rotor R that rotates a into b.

To do this, we bisect the angle θ between the two vectors and create a mid-vector n using

n = â + b̂

‖â + b̂‖
. (9.129)

Perpendicular to vector n is a reflector ln which is used to create a reflection of â: −nân, as shown

in Fig. 9.15(b), which must equal −b̂. But rather than use

b̂ = nân (9.130)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 147

we create a reflection about the line lb perpendicular to b̂:

b̂ = −b̂(−nân)b̂

b̂ = b̂nânb̂ (9.131)

which enables us to define b̂n as the rotor:

R = b̂n (9.132)

and

b̂ = RâR̃. (9.133)

We now have a geometric product which expands to

R = b̂n

= b̂

(

â + b̂

‖â + b̂‖

)

R = 1 + b̂â

‖â + b̂‖
. (9.134)

We can simply the denominator to avoid unnecessary arithmetic by the following subterfuge.

Figure 9.16 shows part of the geometry associated with vectors â and b̂, where we see that

d = cos(θ/2), which means that using the half-angle identity

cos(θ/2) =
√

1 + cos θ

2
(9.135)

we have

‖â + b̂‖ = 2d

= 2 cos(θ/2)

‖â + b̂‖ =
√

2(1 + cos θ). (9.136)

This permits us to substitute

cos θ = â · b̂ (9.137)

and

R = 1 + b̂â
√

2(1 + b̂ · â)

(9.138)

which has the effect of rotating â to b̂.

In chapter 3 we showed that a complex number is rotated through an angle θ in the complex

plane using

z ′ = ze iθ . (9.139)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

148 Geometric algebra for computer graphics

Figure 9.16.

Could it be that in the above scenario that â can be rotated into b̂ using a similar formula? In fact,

the answer is “yes”, and we can prove it as follows. Using Eq. (9.138) we have

Râ = (1 + b̂â)â
√

2(1 + b̂ · â)

Râ = â + b̂
√

2(1 + b̂ · â)

(9.140)

and

R̃ = 1 + âb̂
√

2(1 + b̂ · â)

(9.141)

therefore

âR̃ = â(1 + âb̂)
√

2(1 + b̂ · â)

âR̃ = â + b̂
√

2(1 + b̂ · â)

(9.142)

and

Râ = âR̃. (9.143)

Equation (9.143) confirms that pre-multiplying a vector by a rotor is equivalent to post-

multiplying it by the rotor’s inverse, which leads to

R2â = âR̃2

= RâR̃

R2â = b̂. (9.144)

But we showed above in Eq. (9.81) that

R = exp(−B̂θ/2) (9.145)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 149

where B̂ is the unit bivector representing the plane of rotation. Therefore, applying the rules of

exponentiation to Eq. (9.144) we have

R2 =
(

e−B̂θ/2
)2

= e−B̂θ

R2 = exp(−B̂θ). (9.146)

From Eq. (9.144) we have

b̂ = R2â

= exp(−B̂θ)â

= âe B̂θ

b̂ = â(cos θ + B̂ sin θ). (9.147)

Let’s illustrate this process with an example.

Figure 9.17 shows two vectors

â = e1 b̂ = e2 (9.148)

which belong to the plane defined by B̂ = e12. The separating angle is π/2 radians. Using

Eq. (9.147) we have

b̂ = e1ee12 π/2

= e1(cos(π/2) + e12 sin(π/2))

b̂ = e1e12 = e2 (9.149)

which is correct.

Now let’s try another combination, as shown in Figure 9.18 using vectors

â = e1 b̂ = −e1. (9.150)

Figure 9.17.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

150 Geometric algebra for computer graphics

Figure 9.18.

Using Eq. (9.147) we have

b̂ = e1ee12 π

= e1(cos π + e12 sin π)

b̂ = −e1 (9.151)

which is correct.

9.3.5 Interpolating rotors

Interpolating scalars is a trivial exercise and is readily implemented using the linear interpolant

s = s1(1 − λ) + s2λ 0 ≤ λ ≤ 1. (9.152)

And there is no reason why we cannot use the same equation for interpolating two vectors:

v = v1(1 − λ) + v2λ 0 ≤ λ ≤ 1 (9.153)

apart from the fact that the magnitude of the interpolated vector is not preserved, and could

collapse to zero under some conditions. To overcome this problem a slerp (spherical linear

interpolant) [8] is used

v = sin((1 − λ)θ)

sin θ
v1 + sin(λθ)

sin θ
v2 0 ≤ λ ≤ 1 (9.154)

where θ is the angle between two vectors or quaternions, which preserves the integrity of their

magnitude during the interpolation.

Fortunately, this slerp can also be used to interpolate between two rotors as follows:

R = sin((1 − λ)θ/2)

sin(θ/2)
R1 + sin(λθ/2)

sin(θ/2)
R2 0 ≤ λ ≤ 1 (9.155)

where θ is the angle of rotation. An example will quickly reveal the action of Eq. (9.155).

Figure 9.19 shows a vector a = e1 and a plane of rotation defined by the bivector e12. We

will now design an interpolant that will interpolate between two rotors using the scalar λ, where

0 ≤ λ ≤ 1.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 151

Figure 9.19.

We begin by defining the two rotors R1 and R2, where R1 is the rotor locating a and R2 rotates

a to a′. Using Eq. (9.85)

R = cos(θ/2) − B̂ sin(θ/2) (9.156)

then

R1 = cos 0◦ − e12 sin 0◦

R1 = 1 (9.157)

and

R2 = cos 45◦ − e12 sin 45◦

R2 =
√

2/2(1 − e12). (9.158)

Therefore, R1 and R2 can be substituted in Eq. (9.155) to produce

R = sin((1 − λ)45◦)

sin(45◦)
+ sin(λ45◦)

sin(45◦)

√
2(1 − e12)

2
. (9.159)

We can see from Eq. (9.159) that when λ = 0, R0 = 1, and when λ = 1,

R1 =
√

2/2(1 − e12). (9.160)

Using R0 to rotate vector a we have

a′ = R0aR̃0 = a (9.161)

which is expected.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

152 Geometric algebra for computer graphics

Using R1 to rotate a we have

a′ = R1aR̃1

=
√

2/2(1 − e12)a
√

2/2(1 + e12)

= 1

2
(1 − e12)e1(1 + e12)

a′ = 1

2
(e1 + e2)(1 + e12) (9.162)

and

a′ = 1

2
(e1 + e2 + e2 − e1)

a′ = e2 (9.163)

which is also correct.

Now let’s compute a half-way rotor when λ = 1
2
.

R 1
2

= sin(45◦/2)

sin(45◦)
+ sin(45◦/2)

sin(45◦)

√
2(1 − e12)

2

= sin(45◦/2)

sin(45◦)

(

1 +
√

2(1 − e12)

2

)

R 1
2

≃ 0.9238 − 0.3827e12. (9.164)

Using R 1
2

to rotate a we have

a′ ≃ (0.9239 − 0.3827e12)e1(0.9239 + 0.3827e12)

Table 9.1

Action Algebra

Reflecting a vector a′ = −n̂an̂

Reflecting a bivector B′ = n̂Bn̂

Reflecting a trivector T ′ = −n̂T n̂

Rotating a vector a′ = RaR̃

Rotor R = exp(−B̂θ/2) = cos(θ/2) − B̂ sin(θ/2)

Rotor matrix [[R]] =

⎡

⎣

1 − 2(y2 + z2) 2(xy − wz) 2(xz + wy)

2(xy + wz) 1 − 2(x2 + z2) 2(yz − wx)

2(xz − wy) 2(yz + wx) 1 − 2(x2 + y2)

⎤

⎦

where w2 + z2 = 1 − x2 − y2.

Interpolating between two rotors R = sin((1 − λ)θ/2)

sin(θ/2)
R1 + sin(λθ/2)

sin(θ/2)
R2 0 ≤ λ ≤ 1



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Reflections and rotations 153

and

a′ ≃ 0.7071e1 + 0.7071e2 (9.165)

which shows that a has been rotated 45◦ anticlockwise.

Hopefully, the reader is convinced that the interpolant works for all other values of λ!

9.4 Summary

Reflections and rotations are one of GA’s strengths and it is interesting to discover a notation

that does not require an explicit matrix transform, even though one is lurking just beneath the

surface. Finally, one must be extremely careful to ensure that the correct sign is used for the

different blades. Table 9.1 summarizes most of the important formulae associated with reflections

and rotations.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10 Geometric
Algebra and
Geometry

10.1 Introduction

In this chapter we explore how GA can be used to resolve simple geometric problems in computer

graphics. This is not to persuade you to adopt these methods, rather demonstrate that GA can

be used alongside classic vectorial techniques. The classic vectorial approach often depends upon

the scalar and cross products and normal vectors to lines and planes. The GA approach is to avoid

such vectors and work with the inner, outer and geometric products, bivectors and trivectors.

To begin, we investigate how the outer product can be used to test whether a point is inside a

triangle.

10.2 Point inside a triangle

10.2.1 Point inside a 2D triangle

Various methods exist to determine whether a point is inside the boundary of a 2D triangle, but

let’s examine one that employs the outer product.

Figure 10.1 shows a triangle �P1P2P3 with a fourth point P0 that may or may not be inside

the triangle’s boundary. Note that the vectors v12, v23, v31 form an anticlockwise path through the

points P1, P2, P3.

The vectors are:

v12 = [6 1]T v23 = [−3 2]T v31 = [−3 − 3]T

v10 = [3 2]T v20 = [−3 1]T v30 = [0 − 1]T . (10.1)

We now form the outer products

v12 ∧ v10 v23 ∧ v20 v31 ∧ v30 (10.2)
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156 Geometric algebra for computer graphics

Figure 10.1.

and compare their signs. If they are all positive, i.e. they align with the sign of e1 ∧ e2, P0 is inside

the triangle’s boundary. Let’s compute these products for the triangle in Fig. 10.1.

v12 ∧ v10 =
∣

∣

∣

∣

6 1

3 2

∣

∣

∣

∣

= 9 (10.3)

v23 ∧ v20 =
∣

∣

∣

∣

−3 2

−3 1

∣

∣

∣

∣

= 3 (10.4)

v31 ∧ v30 =
∣

∣

∣

∣

−3 −3

0 −1

∣

∣

∣

∣

= 3 (10.5)

and as they are all positive, the point P0 is inside the triangle’s boundary.

Basically, what we are doing is computing the area of the parallelogram formed by the pairs of

vectors.

Figure 10.2 shows the point P0 positioned on the boundary of the triangle, which produces the

following vectors and outer products:

v10 = [2 2]T v20 = [−4 1]T v30 = [−1 −]T . (10.6)

v12 ∧ v10 =
∣

∣

∣

∣

6 1

2 2

∣

∣

∣

∣

= 10 (10.7)

v23 ∧ v20 =
∣

∣

∣

∣

−3 2

−4 1

∣

∣

∣

∣

= 5 (10.8)

v31 ∧ v30 =
∣

∣

∣

∣

−3 −3

−1 −1

∣

∣

∣

∣

= 0. (10.9)

The third outer product is zero and confirms that P0 is on the boundary.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometric algebra and geometry 157

Figure 10.2.

Figure 10.3.

Finally, Fig. 10.3 shows the point P0 outside the triangle, which produces the following vectors

and outer products:

v10 = [5 0]T v20 = [−1 − 1]T v30 = [2 − 3]T . (10.10)

v12 ∧ v10 =
∣

∣

∣

∣

6 1

5 0

∣

∣

∣

∣

= −5 (10.11)

v23 ∧ v20 =
∣

∣

∣

∣

−3 2

−1 −1

∣

∣

∣

∣

= 5 (10.12)

v31 ∧ v30 =
∣

∣

∣

∣

−3 −3

2 −3

∣

∣

∣

∣

= 15. (10.13)

The first outer product is negative and confirms that the point is outside the triangle.

Note that the sum of the products remains constant at 15, which is twice the triangle’s area.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

158 Geometric algebra for computer graphics

10.2.2 Point inside a 3D triangle

To prove that a point is inside a 3D triangle we use a similar technique to that used for a 2D

triangle. But before we start, we must make sure that the point resides on the triangle’s plane,

which is accomplished by computing the trivector associated with the points.

Figure 10.4 shows a triangle �P1P2P3 with a fourth point P0. First, we take two vectors a, b

from the triangle and associate them with another vector c to the point P0.

Figure 10.4.

The outer product a ∧ b computes the area of the parallelogram associated with the vectors

a, b, which when wedged with c computes the swept volume:

volume = a ∧ b ∧ c (10.14)

volume =

∣

∣

∣

∣

∣

∣

a1 b1 c1

a2 b2 c2

a3 b3 c3

∣

∣

∣

∣

∣

∣

e123. (10.15)

A zero volume implies that the point is coplanar with the bivector. If this test is passed we can

proceed to the second step.

In the 2D case there was only one bivector plane to consider, however, in the 3D case we have 3

basis bivectors: e1 ∧ e2, e2 ∧ e3, e3 ∧ e1. To illustrate this, consider the scenario shown in Fig. 10.5.

Computing the three outer products as before:

v12 ∧ v10 v23 ∧ v20 v31 ∧ v30 (10.16)

each one will contain three basis bivectors e1 ∧ e2, e2 ∧ e3, e3 ∧ e1. And as we are only interested

in their signs we can write them as follows:

v12 ∧ v10 = α12e12 + α23e23 + α31e31 (10.17)

v23 ∧ v20 = β12e12 + β23e23 + β31e31 (10.18)

v31 ∧ v30 = χ12e12 + χ23e23 + χ31e31. (10.19)

Let’s illustrate this with three examples.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometric algebra and geometry 159

Figure 10.5.

Figure 10.6.

Figure 10.6 shows a triangle leaning against the three axes. The points and vectors are as follows:

P1(3, 0, 0) P2(0, 2, 0) P3(0, 0, 1)

v12 = [−3 2 0]T v23 = [0 −2 1]T v31 = [3 0 −1]T . (10.20)

Although we do not require the plane equation, it is useful to confirm that P0(1, 1, 1
6
) is on the

plane:

2x + 3y + 6z − 6 = 0. (10.21)

Next we compute the vectors v10, v20, v30:

v10 =
[

−2 1
1

6

]T

v20 =
[

1 −1
1

6

]T

v30 =
[

1 1 −5

6

]T

. (10.22)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

160 Geometric algebra for computer graphics

Now we can compute the bivector coefficients:

v12 ∧ v10 = (−3e1 + 2e2) ∧
(

−2e1 + e2 + 1

6
e3

)

v12 ∧ v10 = e12 + 1

3
e23 + 1

2
e31 (10.23)

v23 ∧ v20 = (−2e2 + e3) ∧
(

e1 − e2 + 1

6
e3

)

v23 ∧ v20 = 2e12 + 2

3
e23 + e31 (10.24)

v31 ∧ v30 = (3e1 − e3) ∧
(

e1 + e2 − 5

6
e3

)

v31 ∧ v30 = 3e12 + e23 + 3

2
e31. (10.25)

Equations (10.23), (10.24) and (10.25) identify the relevant coefficients and Table 10.1 shows

them in tabular form for clarity. From the table we can see that every column has consistent signs,

which confirm that the point is inside the triangle.

Table 10.1

bivector e12 e23 e31

v12 ∧ v10 1 1
3

1
2

v23 ∧ v20 2 2
3

1

v31 ∧ v30 3 1 3
2

Now let’s repeat the exercise for the scenario shown in Fig. 10.7. This time the test point is

P0(1, 1, 0) which is on the border and generates the vectors:

v10 = [−2 1 0]T v20 = [1 −1 0]T v30 = [1 1 −1]T . (10.26)

and the following outer products:

v12 ∧ v10 = (−3e1 + 2e2) ∧ (−2e1 + e2)

v12 ∧ v10 = e12 (10.27)

v23 ∧ v20 = (−2e2 + e3) ∧ (e1 − e2)

v23 ∧ v20 = 2e12 + e23 + e31 (10.28)

v31 ∧ v30 = (3e1 − e3) ∧ (e1 + e2 − e3)

v31 ∧ v30 = 3e12 + e23 + 2e31. (10.29)
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Figure 10.7.

The coefficients are shown in Table 10.2

Table 10.2

bivector e12 e23 e31

v12 ∧ v10 1 0 0

v23 ∧ v20 2 1 1

v31 ∧ v30 3 1 2

The two zeros in the v12 ∧ v10 row confirm that P0 is on the v12 edge.

Finally, let’s position P0 such that it is still on the plane, but outside the triangle’s boundary.

Figure 10.8 shows the scenario with P0(2, 2, − 2
3
) which is outside the triangle and generates the

vectors:

v10 =
[

−1 2 −2

3

]T

v20 =
[

2 0 −2

3

]T

v30 =
[

2 2 −5

3

]T

. (10.30)

and the following outer products:

v12 ∧ v10 = (−3e1 + 2e2) ∧
(

−e1 + 2e2 − 2

3
e3

)

v12 ∧ v10 = −4e12 − 4

3
e23 − 2e31 (10.31)

v23 ∧ v20 = (−2e2 + e3) ∧
(

2e1 − 2

3
e3

)

v23 ∧ v20 = 4e12 + 4

3
e23 + 2e31 (10.32)

v31 ∧ v30 = (3e1 − e3) ∧
(

2e1 + 2e2 − 5

3
e3

)

v31 ∧ v30 = 6e12 + 3e31 + 2e23 (10.33)

Once more, the bivector coefficients are shown in Table 10.3 for clarity.
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Figure 10.8.

Table 10.3

bivector e12 e23 e31

v12 ∧ v10 −4 −4

3
−2

v23 ∧ v20 4
4

3
2

v31 ∧ v30 6 3 2

The negative signs in the v12 ∧ v10 row confirm that P0 is outside the triangle’s boundary.

Note that the sum of the coefficients in each table is constant at 11 = (6 + 2 + 3), which

confirms the consistency of our calculations. The area of the triangle is related to these values as

follows:

area =
√

62 + 22 + 32 = 7. (10.34)

10.3 The relationship between bivectors and direction cosines

Direction cosines [8] are the cosines of angles between a vector and the basis unit vectors as shown

in Fig. 10.9.

They are particularly useful for transforming the coordinates of a point in one axial system to

another. For instance, a point (x , y , z) in [e1e2e3] has coordinates (x ′, y ′, z ′) in [e′
1e′

2e′
3] defined by

⎡

⎣

x ′

y ′

z ′

⎤

⎦ =

⎡

⎣

r11 r12 r13

r21 r22 r23

r31 r32 r33

⎤

⎦

⎡

⎣

x

y

z

⎤

⎦ (10.35)

where

r11 r12 r13 are the direction cosines for e′
1

r21 r22 r23 are the direction cosines for e′
2

r31 r32 r33 are the direction cosines for e′
3.
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Figure 10.9.

As an example, consider the two axial systems shown in Fig. 10.10.

Figure 10.10.

The direction cosines are as shown using the following transformation:

⎡

⎣

x ′

y ′

z ′

⎤

⎦ =

⎡

⎣

0 1 0

−1 0 0

0 0 1

⎤

⎦

⎡

⎣

x

y

z

⎤

⎦ (10.36)

and if we substitute the point (1, 1, 1) we obtain (1, −1, 1):

⎡

⎣

1

−1

1

⎤

⎦ =

⎡

⎣

0 1 0

−1 0 0

0 0 1

⎤

⎦

⎡

⎣

1

1

1

⎤

⎦. (10.37)

Their relationship with bivectors is revealed using the dual operation.

With reference to Fig. 10.11 we associate three vectors with the rotated axes as follows:

v ′
1 = e2 v ′

2 = −e1 v ′
3 = e3 (10.38)
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Figure 10.11.

and form the following outer products:

v ′
1 ∧ v ′

2 = e2 ∧ (−e1) = e12 (10.39)

v ′
2 ∧ v ′

3 = (−e1) ∧ e3 = e31 (10.40)

v ′
3 ∧ v ′

1 = e3 ∧ e2 = −e23. (10.41)

Each outer product contains only one basis bivector, the other basis bivectors are zero, which is

due to the example chosen. But if we rewrite the products and include the zero coefficients we

obtain:

v ′
1 ∧ v ′

2 = 1e12 + 0e23 + 0e31 (10.42)

v ′
2 ∧ v ′

3 = 0e12 + 0e23 + 1e31 (10.43)

v ′
3 ∧ v ′

1 = 0e12 − 1e23 + 0e31. (10.44)

For clarity, Table 10.4 shows the bivector coefficients:

Table 10.4

bivector e12 e23 e31

v ′
1 ∧ v ′

2 1 0 0

v ′
2 ∧ v ′

3 0 0 1

v ′
3 ∧ v ′

1 0 −1 0

We have nine coefficients which must have some relationship with the direction cosine trans-

formation, but they appear to be in the wrong order! However, if we take the dual of all the

elements and put them in the conventional order as shown in Table 10.5, this reveals the direction

cosine transformation.
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Table 10.5

bivector e1 = (e23)
∗ e2 = (e31)

∗ e3 = (e12)
∗

v ′
1 = (v ′

2 ∧ v ′
3)

∗ 0 1 0

v ′
2 = (v ′

3 ∧ v ′
1)

∗ −1 0 0

v ′
3 = (v ′

1 ∧ v ′
2)

∗ 0 0 1

Figure 10.12.

To demonstrate this once more, consider the scenario shown in Fig. 10.12. The vectors

representing the new axial system are:

v ′
1 = −e2 v ′

2 = −e3 v ′
3 = e1 (10.45)

and their outer products are

v ′
1 ∧ v ′

2 = 0e12 + 1e23 + 0e31 (10.46)

v ′
2 ∧ v ′

3 = 0e12 + 0e23 − 1e31 (10.47)

v ′
3 ∧ v ′

1 = −1e12 + 0e23 + 0e31. (10.48)

Table 10.6 shows the individual coefficients, which when subjected to the dual operation reveals

the following direction cosine transform:

⎡

⎣

−1

−1

0

⎤

⎦ =

⎡

⎣

0 −1 0

0 0 −1

1 0 0

⎤

⎦

⎡

⎣

0

1

1

⎤

⎦ . (10.49)

Table 10.6

bivector e12 e23 e31

v ′
1 ∧ v ′

2 0 1 0

v ′
2 ∧ v ′

3 0 0 −1

v ′
3 ∧ v ′

1 −1 0 0
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There is no need to invoke the dual operation as the transform comes direct from the outer

products:

v ′
1 ∧ v ′

2 = r33e12 + r31e23 + r32e31 (10.50)

v ′
2 ∧ v ′

3 = r13e12 + r11e23 + r12e31 (10.51)

v ′
3 ∧ v ′

1 = r23e12 + r21e23 + r22e31. (10.52)

10.4 Lines and planes

10.4.1 Relative orientation of a point and a line

The standard parametric equation for a straight line is

p = t + λv (10.53)

where

p points to any point P on the line

t points to a known point T on the line

v is the line’s direction vector, and

λ ∈ R.

Figure 10.13 shows this scenario.

Figure 10.13.

A GA approach using the outer product allows us to determine whether points are on or off

the line. Fig. 10.14 shows two known points T and P and the associated direction vector v where

v = p − t . (10.54)
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Figure 10.14.

Multiplying Eq. (10.54) by v using the outer product, we obtain

v ∧ v = v ∧ (p − t ) (10.55)

and as v ∧ v = 0, then

v ∧ (p − t ) = 0. (10.56)

This conclusion could have easily been realized without the algebra.

Equation (10.56) can now be used to determine whether another point Q is on the line:

v ∧ (q − t ) = 0 (10.57)

Using the following points:

T (−1, 1) P(1, 2) Q(3, 3) (10.58)

and the associated vectors:

t = −e1 + e2 (10.59)

p = e1 + 2e2 (10.60)

v = p − t = 2e1 + e2 (10.61)

q = 3e1 + 3e2 (10.62)

then

v ∧ (q − t ) = (2e1 + e2) ∧ ((3e1 + 3e2) − (−e1 + e2))

= (2e1 + e2) ∧ (4e1 + 2e2)

= 4e12 + 4e21 = 4e12 − 4e12

v ∧ (q − t ) = 0. (10.63)

The zero result confirms that Q is on the line, as shown in Fig. 10.15. Although this is an example

in R2, it obviously applies to R3.
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Figure 10.15.

The following examples, however, apply only to R2, and concern the orientation of a point

relative to a line. For example, let’s change the location of Q to (3, 2) as shown in Fig. 10.16.

Figure 10.16.

Equation (10.56) can be used to determine the orientation of Q relative to the line, i.e., whether

Q is to the right or left, relative to the line’s direction. Substituting the new value of q in Eq.

(10.57) we obtain

v ∧ (q − t ) = (2e1 + e2) ∧ ((3e1 + 2e2) − (−e1 + e2))

= (2e1 + e2) ∧ (4e1 + e2)

v ∧ (q − t ) = 2e12 − 4e12 = −2e12. (10.64)

The negative result confirms that the orientation of the blade v ∧ (q − t ) opposes the reference

blade e1 ∧ e2, and is to the right of the line moving from T to P , whilst the value of 2 represents

twice the area of the triangle �TPQ.

For completeness, let’s move Q to (2, 3) which is to the left of the line:

v ∧ (q − t ) = (2e1 + e2) ∧ ((2e1 + 3e2) − (−e1 + e2))

= (2e1 + e2) ∧ (3e1 + 2e2)

= 4e12 − 3e12

v ∧ (q − t ) = e12. (10.65)
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The positive result confirms that the orientation of the blade v ∧ (q − t ) matches the reference

blade e1 ∧ e2, and is to the left of the line moving from T to P , whilst the value 1 represents twice

the area of the triangle �TPQ.

10.4.2 Relative orientation of a point and a plane

Having solved the relative orientation of a point and a line, we now discover that a similar solution

resolves the relationship between a point and a plane. Figure 10.17 shows the scenario where a

plane defined by the blade A intersects the points T and P , which allows us to write

v = p − t . (10.66)

Figure 10.17.

Multiplying Eq. (10.66) by A using the outer product, we obtain

A ∧ v = A ∧ (p − t ) (10.67)

and because v is parallel to the bivector, A ∧ v = 0, and

A ∧ (p − t ) = 0. (10.68)

Equation (10.68) can also be used to determine whether another point Q is on the plane:

A ∧ (q − t ) = 0. (10.69)

Let’s test Eq. (10.69) with the scenario shown in Fig. 10.18.

Given

a = e1 − e3 (10.70)

b = e2 − e3 (10.71)

t = e3 (10.72)

q = 1

2
e1 + 1

2
e2 (10.73)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

170 Geometric algebra for computer graphics

Figure 10.18.

then the bivector A is

A = a ∧ b

= (e1 − e3) ∧ (e2 − e3)

= e12 − e13 − e32

A = e12 + e23 + e31. (10.74)

Therefore,

A ∧ (q − t ) = (e12 + e23 + e31) ∧
((

1

2
e1 + 1

2
e2

)

− e3

)

= −e123 + 1

2
e231 + 1

2
e312

= −e123 + 1

2
e123 + 1

2
e123

A ∧ (q − t ) = 0. (10.75)

The zero result confirms that Q is on the blade A.

Now let’s move Q to (1, 1, 0) which is clearly above the plane:

A ∧ (q − t ) = (e12 + e23 + e31) ∧ ((e1 + e2) − e3)

= −e123 + e231 + e312

= −e123 + e123 + e123

A ∧ (q − t ) = e123. (10.76)

The positive result confirms that Q is above the blade.
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Finally, let’s move Q to (0, 0, 0) which is clearly below the plane:

A ∧ (q − t ) = (e12 + e23 + e31) ∧ (−e3)

A ∧ (q − t ) = −e123. (10.77)

The negative result confirms that Q is below the blade. Thus we have a simple mechanism for

determining the orientation of a point relative to a plane.

10.4.3 Shortest distance from a point to a plane

Deriving the equation for the shortest distance from a point to a plane using vector analysis is

determined by the definition of the plane. For example, using the plane equation

ax + by + cz = δ (10.78)

where the unit surface normal is

n̂ = ai + bj + ck

δ is the perpendicular distance from the origin to the plane

p is the position vector for the given point P , and

q is the position vector for the nearest point Q on the plane,

then q is given by

q = p − ((n̂ · p) − δ)n̂, (10.79)

and the distance between P and Q is ‖p − q‖.

However, if we define the plane using a unit normal vector n̂, and a point T on the plane with

position vector t , then q is given by

q = p − n̂ · (p − t )n̂. (10.80)

Before proceeding with a GA solution, let’s demonstrate that Eqs. (10.79) and (10.80) give identical

results. For example, Fig. 10.19 shows a plane, whose equation is

x + y + z = 1 (10.81)

therefore

n̂ =
√

3

3
(i + j + k) (10.82)

and

δ =
√

3

3
. (10.83)
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Figure 10.19.

If we let the point P be (1, 1, 1), then

q = p − ((n̂ · p) − δ)n̂

= (i + j + k) −
(√

3

3
(i + j + k) · (i + j + k) −

√
3

3

) √
3

3
(i + j + k)

= (i + j + k) −
(

√
3 −

√
3

3

) √
3

3
(i + j + k)

q = 1

3
(i + j + k). (10.84)

The distance between P and Q is

‖p − q‖ =
∥

∥

∥

∥

(i + j + k) − 1

3
(i + j + k)

∥

∥

∥

∥

‖p − q‖ = 2

3

√
3. (10.85)

which is correct.

Using Eq. (10.80), the plane’s unit normal vector is

n̂ =
√

3

3
(i + j + k) (10.86)

with the point T on the plane equal to (1, 0, 0). Therefore,

q = p − n̂ · (p − t )n̂

= (i + j + k) −
(√

3

3
(i + j + k) · (i + j + k − i)

) √
3

3
(i + j + k)
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= (i + j + k) − 2

3
(i + j + k)

q = 1

3
(i + j + k) (10.87)

which gives the same distance as above.

Now let’s investigate a GA approach using the outer product.

Figure 10.20 shows a blade A containing two points T and Q with their respective position

vectors t and q. Q is the point on the blade nearest to the point P which makes the vector

d = q − p perpendicular to A.

Figure 10.20.

From Fig. 10.20, we see that

d = p − t − v (10.88)

and

A ∧ v = 0 (10.89)

and that ‖d‖ is the distance of P to the blade. So, the objective is to secure a value for d , which is

achieved using the geometric product Ad :

Ad = A · d + A ∧ d . (10.90)

But as d is perpendicular to A, A · d = 0, therefore,

Ad = A ∧ d . (10.91)

To reveal d , we pre-multiply both sides by A−1

A−1Ad = A−1(A ∧ d) (10.92)

therefore,

d = A−1(A ∧ d). (10.93)
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Substituting Eq. (10.88) in Eq. (10.93) we obtain

d = A−1(A ∧ (p − t − v)). (10.94)

Expanding

d = A−1(A ∧ p − A ∧ t − A ∧ v) (10.95)

and

d = A−1(A ∧ (p − t )). (10.96)

Let’s test Eq. (10.96) with the previous example, as shown in Fig. 10.21.

Figure 10.21.

Given the following vectors

a = e1 − e3 (10.97)

b = e2 − e3 (10.98)

t = e3 (10.99)

then

A = a ∧ b

= (e1 − e3) ∧ (e2 − e3)

A = e12 − e13 − e32. (10.100)

The inverse of A is determined as follows:

A−1 = − A

‖A‖2

= −e12 − e13 − e32

3

A−1 = 1

3
(e13 + e32 − e12). (10.101)
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Let the point T be (0, 0, 1) and P be (1, 1, 1), therefore,

t = e3 (10.102)

and

p = e1 + e2 + e3. (10.103)

Now we can compute d :

d = A−1(A ∧ (p − t ))

= 1

3
(e13 + e32 − e12)((e12 − e13 − e32) ∧ (e1 + e2 + e3 − e3))

= 1

3
(e13 + e32 − e12)(−e132 − e321)

= −2

3
(e13 + e32 − e12)e132

= −2

3
(e13132 + e32132 − e12132)

= −2

3
(−e2 − e1 − e3)

d = 2

3
(e1 + e2 + e3). (10.104)

Therefore, the distance from P to the blade is ‖d‖ = 2
3

√
3, which is correct.

The point Q is given by

q = p − d

q = (e1 + e2 + e3) − 2

3
(e1 + e2 + e3) (10.105)

and

q = 1

3
(e1 + e2 + e3) (10.106)

which makes Q( 1
3
, 1

3
, 1

3
).

10.4.4 A line intersecting a plane

A classic vectorial approach to solve the intersection between a line and a plane is to define the

line parametrically as follows:

p = t + λv (10.107)

where

p is the position vector for any point P on the line

t is the position vector for a point T on the line

v is the line’s direction vector, and

λ ∈ R.
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The plane is defined using

ax + by + cz = δ (10.108)

where the normal vector is

n = ai + bj + ck, and (10.109)

δ is the perpendicular distance from the origin to the plane

when ‖n‖ = 1.

The position vector p for the intersection point P is given by

p = t +
(

δ − n · t

n · v

)

v . (10.110)

For example, consider the scenario shown in Fig. 10.22.

Figure 10.22.

The plane equation is

x + y + z = 1 (10.111)

therefore,

n = i + j + k (10.112)

and

δ = 1. (10.113)

The point T is (0, 1, 1) and t = j + k.

The line’s direction vector is

v = 1

2
i − 1

2
j − k. (10.114)
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Therefore,

p = t +
(

δ − n · t

n · v

)

v

= (j + k) +
(

1 − (i + j + k) · (j + k)

(i + j + k) · ( 1
2
i − 1

2
j − k)

)

(

1

2
i − 1

2
j − k

)

= (j + k) +
(−1

−1

)(

1

2
i − 1

2
j − k

)

p = 1

2
i + 1

2
j (10.115)

which makes Q( 1
2
, 1

2
, 0).

Now let’s explore a GA approach to this problem. Figure 10.23 shows a blade A intersected by

a line represented by the parametric equation

p = t + λv . (10.116)

Figure 10.23.

The 2-blade is represented by A and a known point Q on the blade. From Fig. 10.23 we can see

that

u = p − q (10.117)

and

A ∧ u = 0 (10.118)

therefore,

A ∧ (p − q) = 0. (10.119)

Substituting Eq. (10.116) in Eq. (10.119) we have

A ∧ (t + λv − q) = 0

A ∧ (t − q) + A ∧ λv = 0 (10.120)
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therefore,

λ = A ∧ (q − t )

A ∧ v
(10.121)

and

p = t +
(

A ∧ (q − t )

A ∧ v

)

v . (10.122)

Let’s test Eq. (10.122) using the example above as shown in Fig. 10.24.

Figure 10.24.

The vectors are as follows:

q = e1 (10.123)

a = e1 − e3 (10.124)

b = e2 − e3 (10.125)

then

A = a ∧ b

= (e1 − e3) ∧ (e2 − e3)

A = e12 − e13 − e32. (10.126)

The point T is (0, 1, 1) and t = e2 + e3.

The point Q is (1, 0, 0) and q = e1.

The line’s direction vector is

v = 1

2
e1 − 1

2
e2 − e3. (10.127)
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Therefore,

p = t +
(

A ∧ (q − t )

A ∧ v

)

v

= (e2 + e3) +
(

(e12 − e13 − e32) ∧ (e1 − e2 − e3)

(e12 − e13 − e32) ∧ ( 1
2
e1 − 1

2
e2 − e3)

)

(

1

2
e1 − 1

2
e2 − e3

)

= (e2 + e3) +
(

−e123 + e132 − e321

−e123 + 1
2
e132 − 1

2
e321

)

(

1

2
e1 − 1

2
e2 − e3

)

= (e2 + e3) +
(

1

2
e1 − 1

2
e2 − e3

)

p = 1

2
e1 + 1

2
e2 (10.128)

which makes Q( 1
2
, 1

2
, 0).

10.5 Perspective projection

Calculating the perspective projection of an object is relatively easy and normally only requires

the use of similar triangles. For example, Fig. 10.25 shows a typical scenario where the observer

is positioned at the origin gazing along the z-axis. The image plane is located orthogonal to the

gaze direction and a distance d from the origin.

Figure 10.25.

We can now make the following observations:

xp

x
= zp

d
(10.129)

and
yp

y
= zp

d
(10.130)
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which leads to:

x = d
xp

zp

and y = d
yp

zp

. (10.131)

Figure 10.26 shows how we would approach the problem using vectors.

Figure 10.26.

With reference to Fig. 10.26 we can state that

q = d + r (10.132)

and

q = λp (10.133)

therefore,

λp = d + r . (10.134)

Multiplying Eq. (10.134) by d using the inner product we obtain:

λd · p = d · (d + r)

λd · p = d · d + d · r . (10.135)

But as d · r = 0

λd · p = d · d (10.136)

and

λ = d · d

d · p
(10.137)

therefore,

q =
(

d · d

d · p

)

p. (10.138)

Now let’s see how we could employ the outer product.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometric algebra and geometry 181

As we are dealing with a projection onto a plane, we can treat the plane as a 2-blade and

represent it as

A = e1 ∧ e2 = e12. (10.139)

Therefore,

A ∧ r = A ∧ (q − d) = 0 (10.140)

A ∧ q = A ∧ d = λA ∧ p (10.141)

λ = A ∧ d

A ∧ p
(10.142)

and

q =
(

A ∧ d

A ∧ p

)

p. (10.143)

Now let’s test Eqs. (10.138) and (10.143) with an example.

Given a point P(10, 10, 20) and d = 10 we have, using Eq. (10.138)

q =
(

d · d

d · p

)

p

= 10k · 10k

10k · (10i + 10j + 20k)
(10i + 10j + 20k)

= 100

200
(10i + 10j + 20k)

q = 5i + 5j + 10k (10.144)

giving

Q(5, 5, 10).

Or using Eq. (10.143)

q =
(

A ∧ d

A ∧ p

)

p

=
(

e12 ∧ 10e3

e12 ∧ (10e1 + 10e2 + 20e3)

)

(10e1 + 10e2 + 20e3)

= 10e123

20e123

(10e1 + 10e2 + 20e3)

q = 5e1 + 5e2 + 10e3 (10.145)

giving

Q(5, 5, 10).

Now let’s explore another approach that introduces homogeneous coordinates.

Figure 10.27 shows the point P ’s position vector p intersecting an image plane orthogonal to

the gaze vector n. The point of intersection Q is determined as follows:

n + q = λp. (10.146)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

182 Geometric algebra for computer graphics

Figure 10.27.

Multiplying Eq. (10.146) by n using the inner product we obtain

n · n + q · n = λp · n (10.147)

but as q · n = 0

λ = n2

p · n
(10.148)

therefore,

q = n2p

p · n
− n

q = n2p − (p · n)n

p · n
. (10.149)

If we make n2 = 1, then

λ = 1

p · n
(10.150)

and

q = p − (p · n)n

p · n
. (10.151)

Using the geometric product

p · n = pn − p ∧ n (10.152)

therefore,

q = p − (pn − p ∧ n)n

p · n

= p − pnn + (p ∧ n)n

p · n



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometric algebra and geometry 183

and

q =
(

p ∧ n

p · n

)

n. (10.153)

Equation (10.153) contains a 2-blade B, where

B = p ∧ n

p · n
(10.154)

and a vector n. The bivector represents the 2-D line OQ on the image plane, and if we set the

vector n = e3, we establish an orthogonal axial system.

Now, say for example

p = p1e1 + p2e2 + p3e3 (10.155)

then

B = (p1e1 + p2e2 + p3e3) ∧ e3

(p1e1 + p2e2 + p3e3) · e3

= p1e13 + p2e23

p3

B = p1

p3

e13 + p2

p3

e23. (10.156)

Substituting Eq. (10.156) in Eq. (10.153) we have

q =
(

p1

p3

e13 + p2

p3

e23

)

e3

q = p1

p3

e1 + p2

p3

e2 (10.157)

which confirms the previous results.

Rather innocently, we have stumbled across the idea of homogeneous coordinates, which we

expand upon in the next section. But before we do, let’s explore how the outer product can be

used for back-face removal.

10.6 Back-face removal

To minimize processing time, back-facing polygons are sometimes removed prior to rendering.

A traditional technique for achieving this is to compute the angle between a polygon’s normal

vector n and the vector back to the observer v , as shown in Fig. 10.28.

Figure 10.28.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

184 Geometric algebra for computer graphics

In fact, by computing the dot product n · v , we can discover if the angle between n and v equals

or exceeds 90◦. Thus if n · v ≤ 0 the polygon is invisible to the observer.

Another way is to choose two edges as vectors and project them onto the image plane. The sign

of the projected outer product determines whether the convex polygon is forward- or back-facing.

For example, Fig. 10.29 shows a convex polygon whose vertices are anticlockwise when forward

facing, therefore, by definition, the outer product v1 ∧ v2 is positive. However, as the polygon

is facing away from the observer, the outer product v ′
1 ∧ v ′

2 is negative, and the polygon can be

ignored. This technique was used in the author’s PICASO computer animation system in 1970.

Figure 10.29.

10.7 Homogeneous coordinates

10.7.1 Introduction

Homogeneous space is a useful subterfuge employed in the design of CGI algorithms to provide an

inclusive mathematical environment where scaling, shearing, reflection, rotation and translating

transforms can be integrated. Normally, a point in R2 is represented by its coordinates (x , y).

However, if we embed this space in one with an extra dimension, there are an infinite range of

values for this third coordinate. This is readily overcome by representing the point as (wx , wy , w),

then we can set w to any non-zero value. In fact, w = 1 is a rather useful value.

Figure 10.30 shows such a scenario where P(x , y) is to be translated to Q(x + �x , y + �y). The

transformation to achieve this is

Q =

⎡

⎣

1 0 �x

0 1 �y

0 0 1

⎤

⎦

⎡

⎣

x

y

1

⎤

⎦. (10.158)

The point P can also be rotated and scaled relative to (0, 0, 1) using the following transformations:

R =

⎡

⎣

cos θ − sin θ 0

sin θ cos θ 0

0 0 1

⎤

⎦ (10.159)
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Figure 10.30.

S =

⎡

⎣

Sx 0 0

0 Sy 0

0 0 1

⎤

⎦ . (10.160)

There are two important consequences for adopting this notation: the first is that the transforms

can be multiplied together; the second is that it applies to any dimensional space. Consequently,

points in R3 are extended to (x , y , z , 1), which, unfortunately, is impossible to illustrate accurately.

Homogeneous space offers similar advantages to GA, where the convention is to employ e or e0

to represent the homogeneous coordinate. The latter notation is adopted in this book. Let’s begin

by embedding the Euclidean plane in a three-dimensional space, as shown in Fig. 10.31.

Figure 10.31.

The extra dimension creates three orthogonal bivectors: e1 ∧e2, e2 ∧e0 and e0 ∧e1, which means

that

e1 · e2 = e2 · e0 = e0 · e1 = 0 (10.161)

and

e1 · e1 = ‖e1‖ = e2 · e2 = ‖e2‖ = e0 · e0 = ‖e0‖ = 1. (10.162)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

186 Geometric algebra for computer graphics

10.7.2 Representing 2D lines in 3D homogeneous space

Recall that to represent a line passing through the points T and P with a direction vector v

(Fig. 10.13) we use the equation

p = t + λv . (10.163)

Although this is reasonably easy to use, GA provides an alternative approach, which gives lines

and their manipulation a new lease of life.

Figure 10.32 shows how two homogeneous points P and Q are used to define a line using their

outer product ph ∧ qh . This is sufficient to define the line, which is represented by the intersection

of the bivector ph ∧ qh and the Euclidean plane, which is orthogonal to the e0 axis. At first, this

seems too good to be true, so let’s illustrate why this is so.

Figure 10.32.

We define P and Q as follows:

P = (xp , yp , 1) and Q = ((xp + �x), (yp + �y), 1) (10.164)

where Q is displaced from P by (�x , �y).

The homogeneous position vectors ph and qh are

ph = xpe1 + ype2 + e0 (10.165)

qh = (xp + �x)e1 + (yp + �y)e2 + e0 (10.166)

therefore,

ph ∧ qh = ph ∧ ((xp + �x)e1 + (yp + �y)e2 + e0)

= ph ∧ (ph + �x e1 + �y e2 + e0)

= ph ∧ (�x e1 + �y e2 + e0)

= (xpe1 + ype2 + e0) ∧ (�x e1 + �y e2 + e0)

ph ∧ qh = (xp�y − yp�x)e12 + �x e01 + �y e02. (10.167)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometric algebra and geometry 187

There are three coefficients for the three basis bivectors e12, e01 and e02:

(xp�y − yp�x), �x and �y . (10.168)

Encoded within these coefficients is the line’s equation, and as a consequence, the perpendicular

vector from the origin to the line. First, let’s show how the line equation is encoded.

Equation (10.167) seems to possess a structure that arises with line equations, and is worth

investigating further.

Figure 10.33.

Figure 10.33 shows a line passing through two points P(xp , yp) and Q(xq , yq). From the figure

we can see that
y − yp

x − xp

= �y

�x

(10.169)

and

(y − yp)�x = (x − xp)�y (10.170)

y�x − yp�x = x�y − xp�y (10.171)

x�y − y�x − (xp�y − yp�x) = 0. (10.172)

Equation (10.172) looks extremely similar to Eq. (10.167) and we can increase the similarity by

taking the dual of Eq. (10.167):

(ph ∧ qh)
∗ = ((xp�y − yp�x)e12 + �x e01 + �y e02)e021

= (xp�y − yp�x)e12021 + �x e01021 + �y e02021

= (xp�y − yp�x)e0 + �x e2 − �y e1.

Rearranging the terms, we have

(ph ∧ qh)
∗ = e1�y − e2�x − e0(xp�y − yp�x). (10.173)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

188 Geometric algebra for computer graphics

This implies that when we take the dual of the bivector ph ∧ qh , the three coefficients of the

homogeneous orthogonal axes have a one-to-one correspondence with the parameters of the line

equation passing through the original points P and Q. For example, Fig. 10.32 shows that

p = e1 + 2e2 (10.174)

q = 3e1 + 3e2 (10.175)

which makes

�x = 2 and �y = 1.

Therefore, using Eq. (10.167) we have

ph ∧ qh = (xp�y − yp�x)e12 + �x e01 − �y e20

= −3e12 + 2e01 − e20

ph ∧ qh = −e20 + 2e01 − 3e12. (10.176)

Whereas, using the dual of the bivector in Eq. (10.173) we have

(ph ∧ qh)
∗ = e1 − 2e2 + 3e0. (10.177)

Which means that the line equation for PQ is

x − 2y + 3 = 0 (10.178)

which is correct!

Just to convince you, consider the scenario shown in Fig. 10.34 where

p = e1 + 3e2 (10.179)

q = 3e1 + 2e2 (10.180)

which makes

�x = 2 and �y = −1.

Figure 10.34.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometric algebra and geometry 189

Therefore, using Eq. (10.167) we have

ph ∧ qh = (xp�y − yp�x)e12 + �x e01 − �y e20

= −7e12 + 2e01 + e20

ph ∧ qh = e20 + 2e01 − 7e12. (10.181)

Whereas, using the dual of the bivector in Eq. (10.173) we have

(ph ∧ qh)
∗ = −e1 − 2e2 + 7e0. (10.182)

Which means that the line equation for PQ is

−x − 2y + 7 = 0 (10.183)

which is also correct!

Now let’s demonstrate that p ∧ q also encodes the vector perpendicular to the line from the

origin. For example, consider the scenario shown in Fig. 10.35 where we have two points P and

Q with position vectors p and q respectively. The line’s direction vector is v = q − p.

Figure 10.35.

Now say we translate points P and Q along the line by λv , then their new position vectors

become

p + λv and q + λv (10.184)

and their outer product is

(p + λv) ∧ (q + λv) = p ∧ q + λp ∧ v + λv ∧ q

= p ∧ q + λv ∧ q − λv ∧ p

= p ∧ q + λv ∧ (q − p)

= p ∧ q + λv ∧ v

(p + λv) ∧ (q + λv) = p ∧ q. (10.185)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

190 Geometric algebra for computer graphics

Which proves a very important feature of the outer product: the outer product of two points,

returns the same result, no matter how the two points are moved along the line in tandem.

Consequently, we can identify two points D and E on the line such that v = e − d , as shown in

Fig. 10.36.

Figure 10.36.

Therefore, using the geometric product

dv = d · v + d ∧ v (10.186)

dv = d ∧ v = p ∧ v (10.187)

and

d = p ∧ v

v

= p ∧ (q − p)

q − p

d = p ∧ q

q − p
. (10.188)

Let’s apply Eq. (10.188) to the previous example where

p = e1 + 3e2 (10.189)

q = 3e1 + 2e2 (10.190)

as shown in Fig. 10.34.

d = p ∧ q

q − p

= (e1 + 3e2) ∧ (3e1 + 2e2)

(3e1 + 2e2) − (e1 + 3e2)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometric algebra and geometry 191

= −7e12

2e1 − e2

= −7e12(
2e1 − e2

5
)

d = 7

5
e1 − 14

5
e2 (10.191)

and

δ = ‖d‖

= ‖7

5
e1 − 14

5
e2‖

δ = 7√
5

. (10.192)

This can be confirmed from the line equation

−x − 2y + 7 = 0 (10.193)

where, given

ax + by + c = 0 (10.194)

δ = |c |√
a2 + b2

= 7√
5

. (10.195)

Another advantage of this homogeneous representation is that a line can be rotated simply by

rotating its bivector. For example, to rotate PQ 180◦ to P ′Q ′ we sandwich the bivector between e12

and ẽ12 as follows:

P ′Q ′ = e12(ph ∧ qh)e21. (10.196)

Using the bivector illustrated in Fig. 10.32

ph ∧ qh = −3e12 + 2e01 − e20 (10.197)

p′
h ∧ q′

h = e12(−3e12 + 2e01 − e20)e21

= −3e121221 + 2e120121 − e122021

p′
h ∧ q′

h = −3e12 − 2e01 + e20. (10.198)

The projection of p′
h ∧ q′

h on the Euclidean plane is the same as ph ∧ qh , whilst the signs of the

other coefficients are reversed, which is expected. And just in case you are not convinced that this

is so, let’s rotate PQ 180◦ to P ′Q ′ and compute its bivector.

We have

P ′(−1, −2, 1) and Q ′(−3, −3, 1), (10.199)

therefore,

p′
h = −e1 − 2e2 + e0 (10.200)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

192 Geometric algebra for computer graphics

and

q′
h = −3e1 − 3e2 + e0 (10.201)

therefore,

p′
h ∧ q′

h = (−e1 − 2e2 + e0) ∧ (−3e1 − 3e2 + e0)

p′
h ∧ q′

h = −3e12 − 2e01 + e20. (10.202)

Which is reassuring!

To complete this example, let’s find the equation of this rotated line:

(p′
h ∧ q′

h)
∗ = (−3e12 − 2e01 + e20)e021

= −3e12021 − 2e01021 + e20021

(p′
h ∧ q′

h)
∗ = e1 − 2e2 − 3e0 (10.203)

which means that the equation for the line P ′Q ′ is

x − 2y − 3 = 0 (10.204)

which is correct.

10.7.3 Intersection of two lines in R2

Computing the intersection point of two lines in R2 is relatively easy. For example, if the lines are

defined by the line equations

a1x + b1y + c1 = 0 (10.205)

a2x + b2y + c2 = 0 (10.206)

using Cramer’s rule, the intersection point is

xi = c2b1 − c1b2

a1b2 − a2b1

and yi = a2c1 − a1c2

a1b2 − a2b1

. (10.207)

The lines are parallel if

a1b2 − a2b1 = 0. (10.208)

For example, the two lines in Fig. 10.37 have equations

PQ: − x + y − 1 = 0 (10.209)

RS: x + y − 7 = 0 (10.210)

which makes their intersection point

xi = −7 + 1

−2
= 3 and yi = −1 − 7

−2
= 4 (10.211)

and is correct.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometric algebra and geometry 193

Figure 10.37.

The GA homogeneous approach provides an alternative solution using a common notation

and without invoking Cramer’s rule! But before we look at this, we need to remind ourselves of

some notation.

In chapter 8 we discovered that

aB = a · B + a ∧ B (10.212)

where a · B represents the lowest grade part of the product and a ∧ B is the highest grade part of

the product. More generally, given a vector a and a multivector Ar , whose highest grade element

is r , we can write:

aAr = 〈aAr〉r−1 + 〈aAr〉r+1. (10.213)

This means that the geometric product creates two parts: the inner product, consisting of those

elements with a grade lower than r , and the outer product, consisting of those elements with a

grade higher than r :

a · Ar = 〈aAr〉r−1 (10.214)

a ∧ Ar = 〈aAr〉r+1. (10.215)

We use this relationship in the next example.

Figure 10.38 shows the homogeneous model where the four points are identified by their

position vectors:

ph = e1 + 2e2 + e0 (10.216)

qh = 4e1 + 5e2 + e0 (10.217)

rh = 2e1 + 5e2 + e0 (10.218)

sh = 4e1 + 3e2 + e0. (10.219)

The intersection point is given by:

(ph ∧ qh) ∨ (rh ∧ sh) = (ph ∧ qh)
∗ · (rh ∧ sh) (10.220)
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Figure 10.38.

First, let’s calculate the two bivectors:

ph ∧ qh = (e1 + 2e2 + e0) ∧ (4e1 + 5e2 + e0)

ph ∧ qh = −3e12 − 3e20 + 3e01 (10.221)

rh ∧ sh = (2e1 + 5e2 + e0) ∧ (4e1 + 3e2 + e0)

rh ∧ sh = −14e12 + 2e20 + 2e01 (10.222)

Next we compute the dual (ph ∧ qh)
∗:

(ph ∧ qh)
∗ = e012(−3e12 − 3e20 + 3e01)

(ph ∧ qh)
∗ = 3e0 + 3e1 − 3e2. (10.223)

As the inner product (ph ∧ qh)
∗ · (rh ∧ sh) involves a vector and a bivector we invoke Eq. (10.220),

which only requires a cross-product to be computed:

e0 e1 e2

(ph ∧ qh)
∗ 3 3 −3

rh ∧ sh −14 2 2

12 36 48

(ph ∧ qh)
∗ · (rh ∧ sh) = 12e0 + 36e1 + 48e2. (10.224)

The 12e0 term is the homogeneous scaling factor, which means that we must divide the result

by 12:

3e1 + 4e2 + e0 (10.225)

and implies that the point of intersection is (3, 4). What could be simpler?
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10.7.4 Representing 3D lines in 4D homogeneous space

Having seen how to embed the Euclidean plane in a 3D homogeneous space, we now consider

embedding Euclidean space in a 4D homogeneous space. Although it is impossible to illustrate

this concept diagrammatically, the mathematical solution is trivial, as it requires only extending

3D coordinates (x , y , z) with an extra coordinate, which, for convenience, is chosen as 1. However,

as in the 3D case, if after any calculations we arrive at a point with coordinates (wx , wy , wz , w),

we divide throughout by w to return to the original space.

Figure 10.39.

Figure 10.39 attempts to depict Euclidean space and the fourth dimension e0 which is orthog-

onal to the three basis vectors e1, e2 and e3, and consequently, every vector within this space. Two

points P and Q will then have homogeneous position vectors ph and qh respectively, together

with their local position vectors p and q. We can now create a bivector ph ∧ qh which resolves

the 4D parallelogram into six orthogonal bivector projections. Why six, you may ask? Well, the

extra dimension e0 can be combined orthogonally with e1, e2 and e3, making the following basis

bivectors:

e12, e23, e31, e10, e20, e30. (10.226)

Although the first three bivectors follow a right-handed system, the remaining three bivectors have

an arbitrary axial sequence because 4D space is not handed in the accepted sense. To illustrate

the process, let’s compute the outer product of two position vectors for the points P(2, 1, 2) and

Q(4, 3, 4). In homogeneous space they become P(2, 1, 2, 1) and Q(4, 3, 4, 1) with position vectors

ph = 2e1 + e2 + 2e3 + e0 (10.227)

qh = 4e1 + 3e2 + 4e3 + e0. (10.228)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

196 Geometric algebra for computer graphics

The outer product ph ∧ qh is

ph ∧ qh = (2e1 + e2 + 2e3 + e0) ∧ (4e1 + 3e2 + 4e3 + e0)

= 6e12 + 8e13 + 2e10 + 4e21 + 4e23 + e20 + 8e31 + 6e32 + 2e30 + 4e01 + 3e02 + 4e03

ph ∧ qh = 2e12 − 2e23 − 2e10 − 2e20 − 2e30. (10.229)

As it happens, it appears that there are only five coefficients, but that is because one of the six is

zero.

10.7.5 Representing lines and planes in 4D homogeneous space

Perhaps the simplest way of representing a plane in homogeneous space is by taking three points

on the plane and computing their outer product. For example, given the points P , Q and R, the

outer product of their homogeneous position vectors ph , qh and rh respectively, is ph ∧ qh ∧ rh ,

and describes the plane completely. For example, Figure 10.40 shows a triangle with coordinates

P(0, 0, 1), Q(1, 0, 0) and R(0, 1, 0), and homogeneous position vectors:

ph = e3 + e0 (10.230)

qh = e1 + e0 (10.231)

rh = e2 + e0. (10.232)

Therefore, their outer product π is

π = ph ∧ qh ∧ rh

= (e3 + e0) ∧ (e1 + e0) ∧ (e2 + e0)

= (e31 + e30 + e01) ∧ (e2 + e0)

= e312 + e310 + e302 + e012

π = e123 + e310 − e320 + e120. (10.233)

Anticipating that we will require the dual of π , let’s compute it now:

π∗ = e0123A = e0123(e123 + e310 − e320 + e120)

= e0123123 + e0123310 − e0123320 + e0123120

= −e0 + e2 + e1 + e3

π∗ = e1 + e2 + e3 − e0. (10.234)

Similarly, the line SQ is completely described by the outer product of its homogeneous vectors.

As shown in Fig. 10.40 this product is

l = sh ∧ qh (10.235)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Geometric algebra and geometry 197

Figure 10.40.

and is defined by

sh ∧ qh = (e1 + e2 + e0) ∧ (e1 + e0)

= e10 + e21 + e20 + e01

sh ∧ qh = e21 + e20. (10.236)

So, let’s exploit these definitions and compute the intersection between the line and the plane

using the meet operator, which is given by

π∗ · l = (e1 + e2 + e3 − e0) · (e21 + e20). (10.237)

Once more, we have the inner product of a vector and bivector, which is evaluated by extracting

the vector portion of the geometric product (Eq. (10.214)).

π∗ · l = 〈π∗l〉1

= 〈(e1 + e2 + e3 − e0)(e21 + e20)〉1

= 〈e121 + e120 + e221 + e220 + e321 + e320 − e021 − e020〉1

= 〈−e2 + e120 + e1 + e0 + e321 + e320 + e120 + e2〉1

π∗ · l = e1 + e0. (10.238)

As the coefficient of e0 is unity, there is no homogeneous scaling, and the intersection point is 1

on the e1 axis, which is correct.

10.8 Summary

Hopefully, the variety of examples in this chapter have demonstrated the potential of GA as a

problem-solving tool. Obviously, much work needs to be done to identify elegant solutions to

these problems and there is plenty of scope for authors wishing to explore new ways of solving

geometric problems.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11 Conformal
Geometry

11.1 Introduction

In this chapter we examine briefly the conformal model, which is an alternative space to Euclidean

space for solving 3D geometric problems. Various arguments have been proposed for adopting

this model such as, conformal space:

• is homogeneous and consequently removes the origin as being a special point

• supports points and lines at infinity

• provides a single geometric mechanism for representing lines, circles, planes and spheres, which

introduces a rare quality of elegance to problem solving

• enjoys all the normal features of Euclidean space.

A model of space that possesses such a range of positive features sounds too good to be true! But

remember, in mathematics there is no such thing as a free lunch. So what price must we pay for

this model?

11.1.1 Spatial dimension

Although the humble Euclidean space R3 requires a unique point called the origin, the space is

easy to visualize and design meaningful drawings of 3D geometric scenes. Whereas conformal

space requires five dimensions, which precludes any true form of mental visualization and graphic

illustration. Furthermore, one of the dimensions has, what is called a negative signature, which

transforms the space into a Minkowski space.

11.1.2 Algebraic underpinning

The toolkit employed by CGI programmers is a ‘rag bag’ of formulae, transforms, vectors and 2D/

3D geometric theorems, which are relatively easy to learn, even without strong mathematical skills.
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200 Geometric algebra for computer graphics

Whereas the conformal model draws on concepts such as hyperplanes, hyperspheres, bijective

mappings, projective splits, which are all on top of the new notation introduced by GA.

11.1.3 Mathematical language and notation

To illustrate the abstractness of the language and notation, here are two extracts from recent

publications:

“– if they intersect, the intersection (s1 ∧ s2)
∼ is an (n − 2)-plane. When both s̃1 and

s̃2 are hyperspaces, the intersection corresponds to the (n − 2)-space (s1 ∧ s2)In in Rn ,

where Ir is the unit pseudoscalar of Rn ; otherwise the intersection is in the hyperspace

(e0 · (s1 ∧ s2))
∼ and has the same normal and distance from the origin as the hyperplane

(Ps1∧s2(e0))
∼.

– if they are parallel, the distance between them is |e0 · P⊥
s2
(s1)|/|s1|.”

[17] page 48

“ log(TtRIφSγ ) = γ

1 − eγ
((t ∧ I)/I)∞/2 + T(1−eγ R2)−1(t⌋I)/I[−Iφ/2 + γ o ∧ ∞/2]”

[18] page 474

11.1.4 Protection

The conformal model is covered by the following US Patent:

US Patent 6,853,964

System for encoding and manipulating models of objects

United States Patent 6853964

David Hestenes, Hongbo Li, Alyn Rockwood

Abstract:

A method models an object composed of one or more components. Data are input to

a memory of a computer system for each component of the object. The data include

Cartesian coordinates expressed in Euclidean space of a plurality of points x of each

component. Each component point x is encoded as a vector x in a general homogeneous

space by x = (x + 1/2x.sup.2 e + e.sub.∗)E = xE − 1/2x.sup.2e+ e.sub.∗, where e and

e.sub.∗ are basis null vectors of a Minkowski space E. General homogeneous operators

are associated with each data point to generate a model of the object. The general

homogeneous operators are applied to each encoded point of the associated component

for each component to manipulate the model of the object.

Licences to employ this system for commercial purposes are available through the patent

holders, although there are no restrictions for academic research and educational use.

All of the above may be a small price to pay for the benefits associated with the conformal

model, and I will do my best to explain the model in this chapter.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conformal geometry 201

11.2 Stereographic projection

Computer graphics uses projective geometry to create an environment where scaling, shearing,

rotation and translation transforms are combined seamlessly. In spite of the obvious advantages

of projective space, there are some disadvantages. For example, the ratio of lengths along a line

are not preserved, neither is the concept of betweenness, as illustrated in Fig. 11.1.

Figure 11.1.

However, the cross-ratio of four points is preserved under all projective transformations. For

example, given four collinear points A, B, C , D on some plane, then their cross ratio is given by

(ABCD) = AC/CB

AD/DB
. (11.1)

Figure 11.2 shows two sets of points A, B, C , D and A′, B′, C ′, D ′ whose cross ratios are identical:

AC/CB

AD/DB
= A′C ′/C ′B′

A′D ′/D ′B′ . (11.2)

If, for example

AB = 2 BC = 4 CD = 2 (11.3)

then

(ABCD) = 6/4

8/6
= 36/32 = 9/8 (11.4)

which also applies for A′, B′, C ′, D ′.
The cross ratio is used in CGI to extract 3D information from 2D images and it is important

that this ratio is preserved under all sorts of projections.

In the 1820s, the German mathematician August Ferdinand Möbius [1790–1868] discovered a

geometry that preserves ratios of lengths along lines, and maps lines to lines and parallel lines to

parallel lines. Möbius called this affine geometry because projected figures retain a close affinity to

the original figures [16]. Möbius is also known for his transformations which have the property of



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

202 Geometric algebra for computer graphics

Figure 11.2.

preserving the magnitude and orientation of angles and map generalized circles into generalized

circles.

The reason we are interested in projective geometry at this point is because the conformal

model employs the stereographic projection to convert points in Euclidean space to conformal

space, and vice versa. We can derive the mapping functions using a variety of techniques such as

3D geometry, vector analysis or geometric algebra, but perhaps the most useful is vector analysis

as this can be generalized to higher dimensions.

Figure 11.3 shows a unit radius hemisphere positioned on the complex plane such that the

origin of the complex plane coincides with the sphere’s centre. The line connecting the North

Pole N to a point X on the plane must intersect the sphere at P , which provides the mechanism

for relating points on the plane to corresponding points on the sphere. This configuration is called

the Riemann sphere, after the German mathematician Georg Riemann [1826–1866].

Figure 11.3.

Figure 11.4 shows the unit sphere and three points A, P , X with their position vectors a, p, x

respectively. From the figure it is obvious that

p = a + λ(x − a) λ ∈ R. (11.5)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conformal geometry 203

Figure 11.4.

We also know that

a · x = 0 a · a = p · p = 1. (11.6)

Squaring both sides using the dot product we have

p · p = (a + λ(x − a)) · (a + λ(x − a)) (11.7)

= a · a + 2λa · (x − a) + λ2(x − a) · (x − a)

1 = 1 − 2λ + λ2(1 + x · x)

λ = 2

1 + x · x
. (11.8)

Substituting λ in Eq. (11.4) we have

p = a +
(

2

1 + x · x

)

(x − a)

= a(1 + x · x) + 2(x − a)

1 + x · x

p = (x · x)a + 2x − a

1 + x · x
. (11.9)

Writing Eq. (11.9) using the geometric product, we have

p = x2a + 2x − a

1 + x2
. (11.10)

The stereographic projection ensures that circles on the sphere map onto generalized circles on

the plane as shown in Fig. 11.5.

Furthermore, if the circle on the sphere passes through the North Pole it creates a circle of

infinite radius and effectively creates a straight line as shown in Fig. 11.6. The North Pole is

mapped onto a circle of infinite radius concentric with the sphere, and is the point on the sphere

corresponding to a point at infinity on the line. It can also be shown that the angle between two

circles on the sphere equals the angle between the lines on the plane, which is the conformal

property that is exploited in GA.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

204 Geometric algebra for computer graphics

Figure 11.5.

Figure 11.6.

11.3 Signatures and null vectors

Vectors in Euclidean space generally have a magnitude and direction, and satisfy the dot product

n · n = ‖n‖2. This arises because 3D Euclidean space employs basis vectors whose dot products

e1 · e1 = e2 · e2 = e3 · e3 = 1. But there is no absolute reason why such a rule should always prevail.

In fact, the Russian mathematician Hermann Minkowski [1864–1909] laid the mathematical

foundations for Einstein’s Special and General Theories of Relativity by abandoning this rule.

Minkowski’s four-dimensional spacetime has a set of orthogonal basis vectors {e1, e2, e3, e4} where

e1 ·e1 = e2 ·e2 = e3 ·e3 = 1 but e4 ·e4 = −1. The positive and negative values define the signature of

the space and denoted R3,1 which is also known as Minkowski space. In general, the signature of a

space is normally denoted Rp,q where p is the number of positive dimensions and q the number of

negative dimensions. One of the results of having a space with mixed signatures is the possibility

of null vectors. And although null vectors possess all the normal attributes associated with vectors,

because the space in which they are embedded possesses mixed signatures, the absolute value of

a squared vector is zero.

In conformal geometry points in space of signature Rp,q are represented as null vectors in a

space of signature Rp+1,q+1, which means that points in Euclidean space R3,0 are represented by



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conformal geometry 205

null vectors in a space with signature R4,1. Thus we are working in a five-dimensional space which

permits the modeling of lines, circles, spheres and planes. However, it just so happens that lines

are circles with an infinite radius, and planes are spheres with an infinite radius.

In terms of Eq. (11.8), if we introduce an extra vector ē which has a negative signature:

p′ = x2a + 2x − a

1 + x2
+ ē

p′ = (x2 − 1)a + 2x + (1 + x2)ē

1 + x2
(11.11)

we can show that this transforms the vector into a null vector by squaring the numerator using

the dot product as follows:

p′ · p′ = (x2 − 1)2a · a + 2(x2 − 1)a · x + (x2 − 1)(1 + x2)a · ē +
2(x2 − 1)x · a + 4x · x + 2(1 + x2)x · ē +
(1 + x2)(x2 − 1)ē · a + 2(1 + x2)ē · x + (1 + x2)2ē2. (11.12)

However

a · a = 1 ē · ē = −1 a · x = a · ē = x · ē = 0 (11.13)

therefore,

p′ · p′ = (x2 − 1)2 + 4x2 − (1 + x2)2

= x4 − 2x2 + 1 + 4x2 − 1 − 2x2 − x4

p′ · p′ = 0. (11.14)

Having proved that the vector is null also shows that it is homogeneous, which means that it can

be scaled, especially by its denominator, which produces the final conformal vector equation

X = (x2 − 1)a + 2x + (1 + x2)ē, (11.15)

well almost!

The above reasoning was based upon Fig. 11.4 which is concerned with the mapping between

a plane and a hemisphere. But even if we had started with the mapping between a semicircle and

a line, a similar equation would have resulted. In fact, the nature of the analysis permits us to

generalize the result to higher dimensions.

Let’s now rewrite Eq. (11.15) in a form that reflects the notation employed in most GA

publications. We start by expanding the terms as follows:

X = x2a − a + 2x + ē + x2ē

X = x2(a + ē) + 2x − (a − ē). (11.16)

Next we substitute e = a where e has a positive signature, then

n = e + ē and n̄ = e − ē (11.17)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

206 Geometric algebra for computer graphics

and

X = 2x + x2n − n̄ (11.18)

which is the conformal representation of the Euclidean vector x .

For example, if

x = e1 + 2e2 + 3e3 (11.19)

then

X = 2e1 + 4e2 + 6e3 + (1 + 4 + 9)n − n

X = 2e1 + 4e2 + 6e3 + 14n − n. (11.20)

A possible source of confusion arises in the different notation employed by mathematicians. For

example, Table 11.1 summarizes the notation from three publications. However, there is nothing

to stop us scaling Eq. (11.18) by 1
2
:

X = 1

2
(2x + x2n − n) (11.21)

which almost brings the equations into line. Fortunately, the inconsistency in the last term makes

no difference to the equation’s validity. Dorst, Fontijne & Mann [18] (page 360) do note that

“standards have not quite been established yet” which is why such conflicts have arisen. For

this book, I will employ Eq. (11.21) as it avoids a range of scaling factors when the equation is

manipulated.

Table 11.1

Authors Publication Infinity Vector Origin Vector Map

Li, Hestenes & Rockwood [17] p33 e e0 x = x + 1
2

x2e + e0

Dorst, Fontijne & Mann [18] p360 ∞ o p = p + 1
2

p2∞ + o

Doran & Lasenby [15] p353 n n X = 2x + x2n − n

As mentioned at the start of this chapter, visualizing 5D space is impossible. But wouldn’t it be

nice if we could have some inkling of what is happening? Well, most authors who have written

about this model suggest that the diagram shown in Fig. 11.7 is a useful mental model. The three

dimensions of Euclidean space are compressed into one dimension depicted by R3, which permits

the diagrammatic representation of the other two dimensions e and e, together with n and n. The

cone represents the set of null vectors defined by Eq. (11.21). Intersections between the cone and

other geometric elements reveal points, lines, circles and spheres. In the author’s opinion, at this

stage, very little extra understanding is gained by struggling to relate conformal algebra with a 5D

visual interpretation.

Before continuing, let’s investigate the following products:

n · n = (e + e) · (e + e)

= e · e + 2e · e + e · e

n · n = 1 + 0 − 1 = 0 (11.22)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conformal geometry 207

Figure 11.7.

n · n = (e − e) · (e − e)

= e · e − 2e · e + e · e

n · n = 1 − 0 − 1 = 0 (11.23)

n · xi = n · xi = 0 (11.24)

n · n = (e + e) · (e − e)

= e · e − e · e

n · n = 1 + 1 = 2 (11.25)

n ∧ n = (e + e) ∧ (e − e)

= −2e ∧ e

n ∧ n = −2ee. (11.26)

All the products are shown in Table 11.2.

Table 11.2

GP e ei e

e 1 −eie ee

ei eie 1 eie

e −ee −eie −1

· e ei e

e 1 0 0

ei 0 1 0

e 0 0 −1

∧ e ei e

e 0 −ei ∧ e e ∧ e

ei ei ∧ e 0 ei ∧ e

e −e ∧ e −ei ∧ e 0

GP n ei n

n 0 −ein 2 − 2ee

ei ein 1 ein

n 2 + 2ee −ein 0

· n ei n

n 0 0 2

ei 0 1 0

n 2 0 0

∧ n ei n

n 0 −ei ∧ n −2ee

ei ei ∧ n 0 ei ∧ n

n 2ee −ei ∧ n 0



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

208 Geometric algebra for computer graphics

Here are some other products that will arise later on in this chapter:

(nn + nn) = (e + e)(e − e) + (e − e)(e + e) = 4 (11.27)

(nn + nn) = (e − e)(e + e) + (e + e)(e − e) = 4 (11.28)

nnn = (e + e)(e − e)(e + e) = 4n (11.29)

nnn = (e − e)(e + e)(e − e) = 4n. (11.30)

We must now try to discover the geometric meaning of n and n. Starting with n and using

Eq. (11.21), if we let x point to the origin in R3, then

X = −1

2
n (11.31)

which implies that n also points to the origin.

Next n, which emerges using the following subterfuge: First we take the inner product X · n:

X · n = 1

2
(2x · n + x2(n · n) − n · n) = x2 (11.32)

therefore,

2
X

X · n
= 2

⎛

⎜

⎝

1

2
(2x + x2n − n)

x2

⎞

⎟

⎠

2
X

X · n
= n + 2x − n

x2
. (11.33)

We can see from Eq. (11.33) that as x2 → ∞, the fraction 2x−n

x2 → 0, which means that n points

to infinity, which is required for the stereographic projection.

Equation (11.21) has something new to reveal, especially when we use it to take the inner

product of two null vectors. For example, given two null vectors

X1 = 1

2
(2x1 + x2

1 n − n) (11.34)

X2 = 1

2
(2x2 + x2

2 n − n) (11.35)

then

X1 · X2 = 1

4
(2x1 + x2

1 n − n) · (2x2 + x2
2 n − n)

X1 · X2 = 1

4
(4x1 · x2 + 2x2

2 n · x1 − 2x1 · n

+ 2x2
1 x2 · n + x2

1 x2
2 n · n − x2

1 n · n

− 2n · x2 − x2
2 n · n + n · n) (11.36)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conformal geometry 209

but

n · n = n · n = n · xi = n · xi = 0, n · n = 2 (11.37)

therefore,

X1 · X2 = x1 · x2 − 1

2
x2

1 − 1

2
x2

2

X1 · X2 = −1

2
(x1 − x2)

2. (11.38)

The (x1 − x2) term is a vector between the two points and obviously encodes the Euclidean distance

between them. This is rather fortunate, and confirms that angles and distances are invariant in

conformal space.

Equation (11.21) possesses a convenient quality in that

−X · n = −1

2
(2x + x2n − n) · n = 1. (11.39)

Thus when working with arbitrary null vectors we can normalize them by dividing by −X · n. For

example, say we started with Eq. (11.21) and after various calculations arrived at the null vector

X = 24e + 40e + 32e1 + 32e2, (11.40)

the terms 32e1 + 32e2 only refer to original Euclidean coordinates if X is normalized, by dividing

by −X · n:

−X · n = −(24e + 40e + 32e1 + 32e2) · (e + e)

= −24 + 40

−X · n = 16. (11.41)

Therefore, the normalized form of X is

X̂ = 1

16
(24e + 40e + 32e1 + 32e2)

X̂ = 3

2
e + 5

2
e + 2e1 + 2e2 (11.42)

which implies that 2e1 + 2e2 refers to a true point in Euclidean space.

The normalization value depends upon the equation used to represent the null vector. For

instance, if we employed

X = 2x + x2n − n (11.43)

then

−X · n = (2x + x2n − n) · n = 2. (11.44)

11.4 The basis blades for the conformal model

Knowing that the conformal model involves five dimensions, the basis for any multivector includes

32 elements: 1 scalar, 5 vectors, 10 bivectors, 10 trivectors, 5 quadvectors and 1 pseudoscalar. These

are listed in Table 11.3.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

210 Geometric algebra for computer graphics

Table 11.3

Grade Name Blades

0 1 scalar 1

1 5 vectors e1, e2, e3, n, n

2 10 bivectors e1 ∧ e2, e2 ∧ e3, e3 ∧ e1, e1 ∧ n, e2 ∧ n,

e3 ∧ n, e1 ∧ n, e2 ∧ n, e3 ∧ n, n ∧ n

3 10 trivectors e1 ∧ e2 ∧ e3, e1 ∧ e2 ∧ n, e1 ∧ e2 ∧ n, e1 ∧ e3 ∧ n,

e1 ∧ e3 ∧ n, e1 ∧ n ∧ n, e2 ∧ e3 ∧ n, e2 ∧ e3 ∧ n,

e2 ∧ n ∧ n, e3 ∧ n ∧ n

4 5 quadvectors e1 ∧ e2 ∧ e3 ∧ n, e1 ∧ e2 ∧ e3 ∧ n, e1 ∧ e2 ∧ n ∧ n,

e1 ∧ e3 ∧ n ∧ n, e2 ∧ e3 ∧ n ∧ n

5 1 pseudoscalar e1 ∧ e2 ∧ e3 ∧ n ∧ n

11.5 Representing geometric objects

The standard geometric primitives used in GA comprise a point, point pair, line, circle, plane and

sphere. GA provides two ways to describe them: one using the null cone inner product and the

null cone outer product. For instance, a circle can be defined by the intersection of two spheres,

and also by the outer product of three distinct points, and if we move one of the points to infinity,

we form a line. Let’s examine these primitives starting with points.

11.5.1 Points

Using Eq. (11.21):

X = 1

2
(2x + x2n − n) (11.45)

where

−X · n = 1. (11.46)

If we set x to the origin (0, 0, 0) then x2 = 0 and

X = −1

2
n (11.47)

which, by definition, is the conformal origin. Similarly, if we set x to the point (0, 2, 0) we have

X = 1

2
(4e2 + 4n − n)

X = 2e2 + 2n − 1

2
n. (11.48)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conformal geometry 211

Furthermore, if we take the inner product X · X , we should get a zero answer, as the distance

between two identical points is zero:

X · X =
(

2e2 + 2n − 1

2
n

)

·
(

2e2 + 2n − 1

2
n

)

= 4e2 · e2 + 4e2 · n − e2 · n + 4n · e2

+ 4n · n − n · n − n · e2 − n · n + 1

4
n · n

X · X = 4 − 2 − 2 = 0 (11.49)

which confirms our prediction and enables us to define a point as

P = 1

2
(2x + x2n − n). (11.50)

11.5.2 Point pair

We now know that a single point in Euclidean space is represented by a null vector in conformal

space, and we also know that

X1 · X1 = 0 (11.51)

and

X1 · X2 = −1

2
(x1 − x2)

2 (11.52)

where the inner product is a measure of distance between two points. It turns out that the outer

product of two points encodes the geometry associated with a pair of points. For example, consider

two Euclidean points x1, x2 represented as null vectors

X1 = 1

2

(

2x1 + x2
1 n − n

)

(11.53)

X2 = 1

2

(

2x2 + x2
2 n − n

)

(11.54)

then

X1 ∧ X2 = 1

4

(

2x1 + x2
1 n − n

)

∧
(

2x2 + x2
2 n − n

)

= x1 ∧ x2 + 1

2
x2

2 x1 ∧ n − 1

2
x1 ∧ n + 1

2
x2

1 n ∧ x2

− 1

4
x2

1 n ∧ n − 1

2
n ∧ x2 − 1

4
x2

2 n ∧ n

X1 ∧ X2 = x1 ∧ x2 + 1

2

(

x2
2 x1 − x2

1 x2

)

∧ n

+ 1

2
(x2 − x1) ∧ n + 1

4

(

x2
2 − x2

1

)

n ∧ n.

(11.55)

It is obvious that Eq. (11.55) directly stores the outer product of the original two points, together

with seven other bivectors formed by the Euclidean basis vectors with n and n.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

212 Geometric algebra for computer graphics

11.5.3 Lines

A line in the conformal model is defined as

L = P1 ∧ P2 ∧ n (11.56)

where P1 and P2 are two points on the line, and n is the point at infinity. Let’s see what happens

when we substitute two points

P1 = 1

2

(

2x1 + x2
1 n − n

)

(11.57)

P2 = 1

2

(

2x2 + x2
2 n − n

)

. (11.58)

But as P1 and P2 are to be wedged with n, the n terms can be dropped, as they create zero elements:

L = 1

4
(2x1 − n) ∧ (2x2 − n) ∧ n

= 1

4
(4x1 ∧ x2 − 2x1 ∧ n + 2x2 ∧ n) ∧ n

= x1 ∧ x2 ∧ n + 1

2
x1 ∧ n ∧ n − 1

2
x2 ∧ n ∧ n

L = x1 ∧ x2 ∧ n − 1

2
(x2 − x1) ∧ n ∧ n. (11.59)

The first trivector term encodes the bivector x1 ∧ x2 which is a measure of the area formed by

the two vectors and the origin. When x2 = λx1, i.e. the line connecting P1 and P2 passes through

the origin, the trivector collapses to zero. The second trivector term encodes the direction vector

representing the line. For example, to represent a line parallel with the x axis we can let P1 = n

and P2 be the point (1, 0, 0). Thus using Eq. (11.59) we have

L = n ∧ e1 ∧ n − 1

2
(e1 − n) ∧ n ∧ n

= n ∧ e1 ∧ n − 1

2
e1 ∧ n ∧ n

L = 1

2
e1 ∧ n ∧ n (11.60)

We can rewrite Eq. (11.60) in terms of e and e as follows:

L = −e1ee. (11.61)

Thus we can see that the original Euclidean line is recognizable within this conformal description.

Before moving on, let’s try two other points x1 = (1, 1, 0) x2 = (1, 2, 0):

L = (e1 + e2) ∧ (e1 + 2e2) ∧ n − 1

2
e2 ∧ n ∧ n

= e1 ∧ e2 ∧ n − 1

2
e2 ∧ n ∧ n

L = e1e2 ∧ n + e2ee. (11.62)

Once more, it is possible to recognize the original line’s characteristics.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conformal geometry 213

Now let’s see what happens if we introduce a third point X , which must also have a null vector

representation i.e. X 2 = 0 then L ∧ X = 0. We can demonstrate this using the last example with

x = (1, 3, 0), which is on the same line:

L ∧ X =
(

e1 ∧ e2 ∧ n − 1

2
e2 ∧ n ∧ n

)

∧ 1

2
(2e1 + 6e2 + 10n − n)

L ∧ X = −1

2
e1 ∧ e2 ∧ n ∧ n + 1

2
e1 ∧ e2 ∧ n ∧ n = 0. (11.63)

Finally, if we chose a point that is not on the line, e.g. the origin, then

L ∧ X =
(

e1 ∧ e2 ∧ n − 1

2
e2 ∧ n ∧ n

)

∧ 1

2
(−n)

L ∧ X = e1e2ee (11.64)

which is confirmation.

11.5.4 Circles

One of the reasons for using the conformal model is to exploit the point at infinity, which has the

effect of straightening circles into lines, and spheres into planes. Knowing that a line is represented

by

L = P1 ∧ P2 ∧ n (11.65)

a circle then becomes

L = P1 ∧ P2 ∧ P3 (11.66)

where P1, P2, P3 are three points on the circle.

Let’s investigate this equation where

x1 = e1 P1 = 1

2
(2e1 + n − n) (11.67)

x2 = e2 P2 = 1

2
(2e2 + n − n) (11.68)

x3 = −e1 P3 = 1

2
(−2e1 + n − n) (11.69)

as shown in Fig. 11.8.

Then the circle C is given by

C = 1

2
(2e1 + n − n) ∧ 1

2
(2e2 + n − n) ∧ 1

2
(−2e1 + n − n)

= (e1 + e) ∧ (e2 + e) ∧ (−e1 + e)

= (e1 ∧ e2 + e1 ∧ e − e2 ∧ e) ∧ (−e1 + e)

= e1 ∧ e2 ∧ e + e2 ∧ e ∧ e1

C = 2e1e2e. (11.70)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

214 Geometric algebra for computer graphics

Figure 11.8.

The homogeneous multiplier 2 has no geometric significance and can be ignored. Therefore, the

circle is given by

C = e1e2e (11.71)

The radius of the circle is given by

ρ2 = −C2

(C ∧ n)2
(11.72)

which in the above example is

ρ2 = −e1e2ee1e2e

(e1e2e ∧ n)2

= −e1e2ee1e2e

e1e2eee1e2ee

ρ2 = −e1e2ee1e2e

e1e2ee1e2ee2
(11.73)

remember that we can cancel vectors:

ρ2 = −1

e2
= 1 (11.74)

which returns a unit radius.

The circle’s centre is given by

CnC (11.75)

which in the above example is

CnC = (e1e2e)n(e1e2e)

= (e1e2e)n(e1e2e)

CnC = −ene. (11.76)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conformal geometry 215

But this is a reflection condition, and with reference to Fig. 11.7 shows that −ene is equivalent to

reflecting n in e, which makes

CnC = −n (11.77)

which is the null vector for the origin, and the circle’s centre.

Figure 11.9.

Just to show how the algebra behaves in a more normal setting, consider the situation shown

in Fig. 11.9 where the radius is 2 and the centre is 2e1.

x1 = 4e1 P1 = 1

2
(8e1 + 16n − n) (11.78)

x2 = 2e1 + 2e2 P2 = 1

2
(4e1 + 4e2 + 8n − n) (11.79)

x3 = 0 P3 = −1

2
n. (11.80)

Therefore,

C = P1 ∧ P2 ∧ P3

= 1

2
(8e1 + 16n − n) ∧ 1

2
(4e1 + 4e2 + 8n − n) ∧

(

−1

2
n

)

C = −4e1 ∧ e2 ∧ n + 8e2 ∧ n ∧ n. (11.81)

Substituting

n = e + e n = e − e (11.82)

we obtain

C = 4(−e1e2e + e1e2e − 4e2ee). (11.83)

It follows

C ∧ n = −4(2e1e2ee). (11.84)

Therefore

ρ2 = −42(−e1e2e + e1e2e − 4e2ee)(−e1e2e + e1e2e − 4e2ee)

42(2e1e2ee)(2e1e2ee)

ρ2 = − 16

−4
= 4 (11.85)

and the radius ρ = 2.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

216 Geometric algebra for computer graphics

The circle’s centre is given by

CnC = 42(−e1e2e + e1e2e − 4e2ee)n(−e1e2e + e1e2e − 4e2ee)

= 42(−e1e2e + e1e2e − 4e2ee)(e + e)(−e1e2e + e1e2e − 4e2ee)

= 42(12e + 20e + 16e1)

CnC = 64(3e + 5e + 4e1). (11.86)

Before extracting the e1 coordinate we must normalize the null vector by dividing CnC by

−(CnC) · n:

CnC = 3e + 5e + 4e1

−(3e + 5e + 4e1) · (e + e)

= 3e + 5e + 4e1

−3 + 5

CnC = 3

2
e + 5

2
e + 2e1 (11.87)

which confirms that the centre is 2e1.

11.5.5 Planes

A plane in the conformal model is defined as

π = P1 ∧ P2 ∧ P3 ∧ n (11.88)

where P1, P2, P3 are three points on the plane, and n is the point at infinity. This time we see a

quadvector encodes a plane. We can represent the plane e1 ∧ e2 by letting P1 be the point (1, 0, 0),

P2 be the point (0, 1, 0) and P3 is the origin. We can drop the n terms in P1 and P2 as they are

being wedged with n and create zero terms.

π = 1

2
(2e1 − n) ∧ 1

2
(2e2 − n) ∧ −1

2
n ∧ n

=
(

e1 − 1

2
n

)

∧
(

e2 − 1

2
n

)

∧ −1

2
n ∧ n

=
(

e1e2 − 1

2
e1 ∧ n + 1

2
e2 ∧ n

)

∧ −1

2
n ∧ n

= −1

2
e1e2 ∧ n ∧ n

π = e1e2ee (11.89)

which is a quadvector formed by the bivector e1 ∧ e2 the infinity and origin vectors.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conformal geometry 217

If we introduce a fourth point Xon the plane, which also has a null vector representation, i.e.

X 2 = 0, then π ∧ X = 0. For example, the point (1, 1, 0) is on the plane and

X = 1

2
(2e1 + 2e2 + 2n − n) (11.90)

and

π ∧ X = (e1e2ee) ∧ 1

2
(2e1 + 2e2 + 2n − n)

π ∧ X = (e1e2ee) ∧ 1

2
(2e1 + 2e2 + e + 3e) = 0. (11.91)

There is no need to demonstrate that a point off the bivector creates a non-zero answer.

11.5.6 Spheres

A sphere is defined as

S = P1 ∧ P2 ∧ P3 ∧ P4 (11.92)

and using the points for a unit radius sphere centered at the origin, as shown in Fig. 11.10 we have:

x1 = e1 P1 = 1

2
(2e1 + n − n) = e1 + e (11.93)

x2 = e2 P2 = 1

2
(2e2 + n − n) = e2 + e (11.94)

x3 = e3 P3 = 1

2
(2e3 + n − n) = e3 + e (11.95)

x4 = −e1 P4 = 1

2
(−2e1 + n − n) = −e1 + e (11.96)

S = (e1 + e) ∧ (e2 + e) ∧ (e3 + e) ∧ (−e1 + e)

= (e1 ∧ e2 + e1 ∧ e − e2 ∧ e) ∧ (−e3 ∧ e1 + e3 ∧ e + e1 ∧ e)

Figure 11.10.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

218 Geometric algebra for computer graphics

= e1 ∧ e2 ∧ e3 ∧ e

S = e1e2e3e. (11.97)

The radius of the sphere is given by

ρ2 = −S2

(S ∧ n)2
(11.98)

which in the above example is

ρ2 = − e1e2e3ee1e2e3e

(e1e2e3e ∧ (e + e))2

ρ2 = − 1

−1
= 1 (11.99)

and is correct.

The sphere’s centre is given by

ε = SnS = (e1e2e3e)n(e1e2e3e)

= e1e2e3ene1e2e3e

ε = −ene. (11.100)

But this is the same reflection condition found with the circle and is equivalent to reflecting n in

e and makes

ε = −n (11.101)

which is the null vector for the origin and the sphere’s centre.

11.6 Conformal transformations

The inspiration for this section is Doran and Lasenby [15] where readers will find a rigorous

description of conformal transformations. In the following section I will provide readers with an

outline of the concepts with some relevant examples.

The transforms we normally encounter in Euclidean space comprise translation, rotation and

scaling, and are normally implemented using matrices. Such transforms are available in conformal

space but are implemented using rotors. To clarify the following description, Euclidean vector

space is referred to as V(p, q).

11.6.1 Translations

In chapter 9 we discovered that a rotor has the form

R = e−B̂θ/2 (11.102)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conformal geometry 219

where B̂ is a unit bivector and θ is the angle of rotation. In the conformal model, a rotor takes the

form

R = ena/2 (11.103)

where n is the null infinity vector and a is a vector in V(p, q). These vectors are orthogonal,

therefore a · n = 0 and the product na represents a bivector, but it is null:

(na)2 = nana = −anna = 0. (11.104)

Equation (11.103) can be expanded using the Taylor series:

ex = 1 + x

1! + x2

2! + x3

3! · · · (11.105)

however, when x = na/2, something nice happens – the series terminates after the second term,

simply because the null vector creates a zero value. Therefore,

Ta = ena/2 = 1 + na

2
. (11.106)

We have already discovered that rotors work like quaternions, where a vector is sandwiched

between two quaternions, one of which is the reverse of the other. Fortunately, in conformal space

the same model prevails. For example, the rotor Ta is used as follows:

TaxT̃a . (11.107)

In fact, let’s see how the above expands:

TaxT̃a =
(

1 + na

2

)

x
(

1 − na

2

)

= x + 1

2
nax − 1

2
xna − 1

4
naxna

TaxT̃a = x + 1

2
nax + 1

2
nxa. (11.108)

But

a · x = 1

2
(ax + xa) (11.109)

therefore,

TaxT̃a = x + n(a · x). (11.110)

It is also worth exploring what this rotor does to the null vectors n and n:

TanT̃a =
(

1 + na

2

)

n
(

1 − na

2

)

=
(

n + nan

2

) (

1 − na

2

)

= n + nan

2
− nna

2
− nanna

4

TanT̃a = n − n2a

2
− n2a

2
− nan2a

4
= n. (11.111)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

220 Geometric algebra for computer graphics

Similarly,

TanT̃a =
(

1 + na

2

)

n
(

1 − na

2

)

=
(

n + nan

2

)

(

1 − na

2

)

= n − nna

2
+ nan

2
− nanna

4

= n − (nn + nn)a

2
+ nnna2

4

TanT̃a = n − 2a − a2n. (11.112)

To summarize:

TaxT̃a = x + n(a · x) (11.113)

TanT̃a = n (11.114)

TanT̃a = n − 2a − a2n. (11.115)

The reason why we have computed these products is that they cover all the terms found in the

conformal null vector:

F(x) = 2x + x2n − n (11.116)

which means that we can combine the above results to evaluate TaF(x)T̃a :

TaF(x)T̃a = Ta(2x)T̃a + Ta(x2n)T̃a − TanT̃a

= 2(x + n(a · x)) + x2n − n + 2a + a2n

= 2x + 2n(a · x) + x2n − n + 2a + a2n

TaF(x)T̃a = 2(x + a) + (x + a)2n − n. (11.117)

Equation (11.117) looks familiar. In fact it has a structure identical to Eq. (11.116) apart from

x + a replaces the original x . The geometric interpretation is that x has been translated by a! Let’s

illustrate exactly how this operates.

Consider an object located at (1, 0, 0) which is to be translated by 2e2. This can be undertaken

within conformal space using the following steps:

1st Convert the point to be translated to a null vector:

(1, 0, 0) → 1

2
(2e1 + n − n). (11.118)

2nd Create the rotor

(

1 + 2ne2

2

)

· · ·
(

1 − 2ne2

2

)

= (1 + ne2) · · · (1 − ne2). (11.119)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conformal geometry 221

3rd Combine the above elements

TaF(x)T̃a = 1

2
(1 + ne2)(2e1 + n − n)(1 − ne2)

= 1

2
(2e1 + n − n + 2ne2e1 − ne2n)(1 − ne2)

= 1

2

(

2e1 + n − n + 2ne2e1 − ne2n − 2e1ne2+
nne2 − 2ne2e1ne2 − ne2nne2

)

= 1

2
(2e1 + n − n̄ + e2(nn̄ + n̄n) + e2nn̄ne2)

= 1

2
(2e1 + n − n̄ + 4e2 + e24ne2)

TaF(x)T̃a = e1 + 2e2 + 5

2
n − 1

2
n̄, (11.120)

which is correct.

Now the above may seem a rather convoluted way of adding 2e2 to e1 to produce e1 + 2e2,

but this example does not reflect what conformal transformations about. So let’s examine how

rotations are implemented.

11.6.2 Rotations

We have seen that rotations in GA take the form

x ′ = RxR̃ (11.121)

where the vector x is rotated about the origin. The rotor R takes the form

R = cos(θ/2) − B̂ sin(θ/2) (11.122)

where B̂ is a unit bivector and θ is the angle of rotation. For example, to rotate the point 3e1 about

the origin 180◦ in the plane e3e1, the rotor is

R = cos 90◦ − e3e1 sin 90◦

R = e1e3. (11.123)

The point 3e1 is rotated as follows:

x ′ = e1e3(3e1)e3e1

= 3e1e3e1e3e1

x ′ = −3e1. (11.124)

But say we wanted to rotate the point about 2e1 in the same plane? Well, if we were using matrices,

we would translate the point −2e1, perform the rotation about the origin, and translate back 2e1.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

222 Geometric algebra for computer graphics

Now the extremely useful feature of the conformal model is that the operations of translation and

rotation are integrated in a rather elegant way, as we will now discover.

To begin with, conformal rotations use the same technique of sandwiching a conformal vector

using

x ′ = RF(x)R̃ (11.125)

where F(x) represents the null vector. For instance, using the above example we proceed as follows:

x ′ = e1e3F(3e1)e3e1

= e1e3

1

2
(6e1 + 9n − n̄)e3e1

= 1

2
(6e1e3e1 + 9e1e3n − e1e3n̄)e3e1

= 1

2
(−6e3e3e1 + 9e1e3ne3e1 − e1e3n̄e3e1)

= 1

2
(−6e1 − 9n − n̄)

x ′ = −3e1 − 5e − 4ē (11.126)

and we see that the point 3e1 has indeed been rotated to −3e1. Now let’s see what needs to be done

if we offset the axis of rotation.

We begin by translating the conformal null vector back to the origin by the required distance:

T−aF(x)T̃−a . (11.127)

Next, we rotate it about the origin:

R(T−aF(x)T̃−a)R̃ (11.128)

Then, we translate it back to where it came from:

F(x ′) = Ta(R(T−aF(x)T̃−a)R̃)T̃a . (11.129)

The parentheses are included to clarify the process, but they are not important in this associative

expression:

F(x ′) = TaRT−aF(x)T̃−aR̃T̃a . (11.130)

However, we can introduce some new parentheses to reveal an interesting pattern:

F(x ′) = (TaRT−a)F(x)(T̃−aR̃T̃a) (11.131)

A useful equality is that T−a ≡ T̃a therefore we have:

F(x ′) = (TaRT̃a)F(x)(T̃−aR̃T̃−a) (11.132)

or if we let

R = TaRT̃a and R̃ = T̃−aR̃T̃−a (11.133)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conformal geometry 223

Figure 11.11.

then

F(x ′) = RF(x)R̃. (11.134)

The important discovery here is that the rotor R incorporates a rotation and a translation, which

we will illustrate with an example.

Consider the scenario shown in Fig. 11.11 where the point 3e1 is rotated 180◦ about the point

2e2 in the plane e3 ∧ e1. The rotors are defined as follows:

a = 2e1 x = 3e1 (11.135)

Ta = 1 + 1

2
na = 1 + ne1 Ra = e1e3 T̃a = 1 + 1

2
an = 1 + e1n.

Therefore,

R = TaRaT̃a = (1 + ne1)e1e3(1 + e1n)

= e1e3 + ne3 + e1e3e1n

R = e1e3 − 2e3n (11.136)

and

R̃ = e3e1 + 2e3n. (11.137)

Now we compute

RF(3e1)R̃ = (e1e3 − 2e3n)
1

2
(6e1 + 9n − n̄)(e3e1 + 2e3n)

= 1

2
(−6e3 + 9e1e3n − e1e3n̄ − 12e1ne3 + 2e3nn̄)(e3e1 + 2e3n)

= 1

2
(−6e3 − 3e1e3n − e1e3n̄ + 2e3nn̄)(e3e1 + 2e3n)

= 1

2

(

−6e1 − 3e1e3ne3e1 − e1e3n̄e3e1 + 2e3nn̄e3e1−
12n − 2e1e3n̄e3n + 4e3nn̄e3n

)

= 1

2
(−6e1 − 15n − n̄ + 2nn̄e1 + 2e1n̄n + 4nn̄n)

= 1

2
(2e1 + n − n̄)
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= 1

2
(2e1 + 2ē)

RF(x)R̃ = e1 + ē (11.138)

therefore, the rotated point is e1, which is correct.

11.6.3 Dilations

The term dilation refers to the stretching of vectors and contraction refers to the shrinking of

vectors. However, we can accommodate both operations by treating stretching as dilations greater

than 1, and shrinking as dilations less than 1. So what we want to find now is a rotor that performs

this operation. Doran and Lasenby [15] offer the following argument:

We start with the premise that a dilation relative to the origin is effected by

x ′ = e−αx , where α ∈ R. (11.139)

As e−α is a scalar, it cannot alter the angle of x , therefore it is a conformal operation. The null

vector representing x ′ is given by

F(x ′) = 2e−αx + (e−α)2x2n − n̄

F(x ′) = e−α(2x + e−αx2n − eαn̄). (11.140)

Therefore, we require a map to ensure

n �→ e−αn and n̄ �→ eαn̄. (11.141)

Fortunately such a map exists and takes the form of a rotor Dα using

DαF(x)D̃α . (11.142)

The rotor Dα is defined as

Dα = eαN/2 = cosh(α/2) + sinh(α/2)N (11.143)

where, with reference to Table 11.2, N is defined as

N = eē = 1

2
n̄ ∧ n. (11.144)

Before showing how the rotor works, we require the following products in the proof:

nN = (e + ē)eē = n. (11.145)

N n = eē(e + ē) = −n (11.146)

n̄N = (e − ē)eē = −n̄ (11.147)

N n̄ = eē(e − ē) = n̄ (11.148)

N 2 = (eē)2 = 1. (11.149)
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Notice that n and N , and n̄ and N anticommute, which permits us to write

DαnD̃α = D2
αn and Dαn̄D̃α = D2

αn̄. (11.150)

We can now prove the action of the rotor as follows:

DαnD̃α = D2
αn = (cosh(α/2) + sinh(α/2)N )2n

= (cosh2
(α/2) + sinh2

(α/2))n − 2 cosh(α/2) sinh(α/2)n

= (cosh α − sinh α)n

DαnD̃α = e−αn. (11.151)

Similarly,

Dαn̄D̃α = D2
αn̄ = (cosh(α/2) + sinh(α/2)N )2n̄

= (cosh2
(α/2) + sinh2

(α/2))n̄ + 2 cosh(α/2) sinh(α/2)n̄

= (cosh α + sinh α)n̄

Dαn̄D̃α = eαn̄ (11.152)

which confirms that Eq. (11.143) is the desired rotor.

Consequently, we can write

F(e−αx) = e−αDαF(x)D̃α . (11.153)

For example, if we wanted to dilate the vector by a factor of 2, we compute eα = 1
2

which makes

α = ln(0.5) = −0.693.

From this

Dα = cosh(−0.693/2) + sinh(−0.693/2)N (11.154)

and

D̃α = cosh(−0.693/2) − sinh(−0.693/2)N (11.155)

this ensures that the following expression holds.

F(2x) = e0.693DαF(x)D̃α . (11.156)

A dilation about an arbitrary point is achieved by including the translation rotor Ta :

D ′
α = TaDαT̃a = eαN ′/2, (11.157)

where

N ′ = TaN T̃a . (11.158)

But

n̄ ∧ n = (e − ē) ∧ (e + ē)

= 2eē

n̄ ∧ n = 2N (11.159)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

226 Geometric algebra for computer graphics

therefore

N = 1

2
n̄ ∧ n (11.160)

and

N ′ = 1

2
Ta n̄ ∧ nT̃a

N ′ = 1

2
Ta n̄T̃a ∧ T nT̃a . (11.161)

Substituting Eqs. (11.114) and (11.115) in Eq. (11.161) we have

N ′ = −1

2
F(a) ∧ n = −1

2
A ∧ n (11.162)

where A = F(a). Therefore, the rotor D ′
α is given by

D ′
α = eαN ′/2

= e−αA∧n/4

D ′
α = exp(−αA ∧ n/4). (11.163)

Even this can be tidied up to

D ′
α = exp

(

α

2

A ∧ n

A · n

)

. (11.164)

11.6.4 Reflections

In chapter 9 we discovered that GA handles reflections in a rather elegant fashion:

a′ = −n̂an̂ (11.165)

where a is the vector to be reflected and n̂ is the unit normal vector of the reflector. However, there

is one proviso with this formula – the vector and plane must intersect the origin. The conformal

model overcomes this restriction as we will discover, but first, let’s examine planes and lines that

intersect the origin.

Figure 11.12 shows three points

(0, 0, 0) (−e3, e2, 0) (e3, e2, 0) (11.166)

on a plane defined by

π = P1 ∧ P2 ∧ P3 ∧ n (11.167)

where the three null vectors are

P1 = −1

2
n̄ (11.168)

P2 = 1

2
(2e2 − 2e3 + 2n − n̄) = e2 − e3 + n − 1

2
n̄ (11.169)

P3 = 1

2
(2e2 + 2e3 + 2n − n̄) = e2 + e3 + n − 1

2
n̄. (11.170)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conformal geometry 227

Figure 11.12.

The plane is

π = −1

2
n̄ ∧
(

e2 − e3 + n − 1

2
n̄

)

∧
(

e2 + e3 + n − 1

2
n̄

)

∧ n

=
(

−1

2
n̄ ∧ e2 + 1

2
n̄ ∧ e3 − 1

2
n̄ ∧ n

)

∧
(

e2 ∧ n + e3 ∧ n − 1

2
n̄ ∧ n

)

= −1

2
n̄ ∧ e2 ∧ e3 ∧ n + 1

2
n̄ ∧ e3 ∧ e2 ∧ n

π = e2 ∧ e3 ∧ n ∧ n̄. (11.171)

But as n ∧ n̄ = −2eē, then

π = −e2e3eē. (11.172)

The plane equation contains two parts: −e2e3 and eē. This construction is typical of a plane

intersecting the origin, for as soon as the plane is displaced away from the origin, new terms

appear. Now let’s consider lines intersecting the origin.

Figure 11.13 shows two points

(0, 0, 0) (e1, e2, 0) (11.173)

Figure 11.13.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

228 Geometric algebra for computer graphics

on a line intersecting the origin, defined by

L = P1 ∧ P2 ∧ n (11.174)

where the two null vectors are

P1 = −1

2
n̄ (11.175)

P2 = 1

2
(2e1 + 2e2 + 2n − n̄) = e1 + e2 + n − 1

2
n̄. (11.176)

The line is

L = −n̄ ∧
(

e1 + e2 + n − 1

2
n̄

)

∧ n

= −n̄ ∧ e1 ∧ n − n̄ ∧ e2 ∧ n

L = −(e1 + e2) ∧ n ∧ n̄. (11.177)

But as n ∧ n̄ = −2eē, then

L = 2(e1 + e2)eē. (11.178)

The line equation contains two parts: 2(e1 + e2) and eē. This construction is also typical of a line

intersecting the origin, for as soon as the line is displaced away from the origin, new terms appear.

In the conformal model the reflection of a line in a plane is achieved using

L′ = πLπ . (11.179)

We can readily illustrate this using the above plane and line formulae:

L′ = πLπ = (−e2e3eē)(2(e1 + e2)eē)(−e2e3eē).

= 2e2e3eē(e1 + e2)eēe2e3eē

= 2e2e3eē(e1 + e2)e2e3

= 2(e2e3eēe1e2e3 + e2e3eēe2e2e3)

= 2(−e1eē + e2eē)

L′ = 2(−e1 + e2)eē. (11.180)

The line has been reflected in the plane and clearly intersects the origin. Now here is the surprise:

This reflection formula also works for lines and planes that do not intersect the origin! To illustrate

this, consider the scenario shown in Fig. 11.14.

The figure shows a line L defined by the points P4, P5, whilst the plane π is defined by points

P1, P2, P3. In fact, we have already calculated the plane’s conformal equation:

π = −e2e3eē. (11.181)

The line’s points are

(0, e2, 0) (e1, 2e2, 0) (11.182)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Conformal geometry 229

Figure 11.14.

where the two null vectors are

P1 = 1

2
(2e2 + n − n̄) (11.183)

P2 = 1

2
(2e1 + 4e2 + 5n − n̄). (11.184)

However, as P1 and P2 are to be wedged with n, the n terms can be dropped as they create zero

terms:

P1 = e2 − 1

2
n̄ (11.185)

P2 = e1 + 2e2 − 1

2
n̄. (11.186)

The conformal line is

L =
(

e2 − 1

2
n̄

)

∧
(

e1 + 2e2 − 1

2
n̄

)

∧ n

= e2e1 ∧ n − 1

2
e2 ∧ n̄ ∧ n − 1

2
n̄ ∧ e1 ∧ n − n̄ ∧ e2 ∧ n

= e2e1 ∧ n − 1

2
(e1 + e2) ∧ n ∧ n̄

L = e2e1(e + ē) + (e1 + e2)eē. (11.187)

π = e2e3eē. (11.188)

The reflected line is L′ and calculated as follows:

L′ = πLπ

L′ = (e2e3eē)(e2e1(e + ē) + (e1 + e2)eē)(e2e3eē)

which reduces to

L′ = e1e2(e + ē) + (−e1 + e2)eē (11.189)

where we see the e1 component reversed, creating the reflection.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

230 Geometric algebra for computer graphics

11.6.5 Intersections

The following formulae are given without proof:

The intersection of two lines in a plane, where the lines are encoded by the trivectors L1 and L2

in the geometric space G(3, 1) is given by:

B =
(

L∗
1 ∧ L∗

2

)∗ = I (L1 × L2) (11.190)

where I is the conformal pseudoscalar.

The intersection of a line and a surface, where the line is encoded by a 3-blade, and a plane or

sphere by a 4-blade, is given by

B = (P∗ ∧ L∗)∗ = (IP) · L = I (P × L). (11.191)

11.7 Summary

The objective of this chapter was not to write a rigorous, axiomatic description of the conformal

model, rather a rudimentary introduction to the ideas and concepts employed supported by some

examples. Hopefully, it will make life easier if you wish to delve deeper into this strange geometric

world. I cannot deny that this has been a challenging chapter to write. In fact, if it had not been

for Chris Doran and Anthony Lasenby’s book [15] it would have never been written!



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

12 Applications
of Geometric
Algebra

12.1 Introduction

In the previous chapters we have seen how GA is easily used to solve various geometric problems

in 2D and 3D, and obviously there are no restrictions for the algebra – after all, it is just an algebra

for vectorial quantities. It is difficult to think of an area of CGI where vectors are not used –

and sometimes when GA has been used, there are minor considerations of efficiency in execution

time, although there is general agreement that it outperforms all other approaches for analytic

elegance, and it is just a question of time before GA will be applied to all aspects of CGI.

In this chapter we explore a few more examples of how GA is providing new approaches to

familiar problems.

12.2 3D Linear transformations

Ron Goldman has revealed how a family of linear transformations can be derived using a general

vector equation [19]. The technique assumes the existence of two non-zero vectors a and b, subject

to the conditions expressed in Eqs. (12.1), (12.2) and (12.3):

a · b �= 0 (12.1)

a · x = λ λ ∈ R (12.2)

b × x = c (12.3)

where the unknown vector x is given by

x = λb + c × a

a · b
. (12.4)

An example provided by Goldman computes the reflection of a line in an arbitrary plane.

Figure 12.1 shows a plane π with its unit normal vector a, the vector to be reflected v and its

reflection v ′ in the plane.
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232 Geometric algebra for computer graphics

Figure 12.1.

Using Goldman’s vector names, we make the following substitutions:

x = v ′ (12.5)

b = a (12.6)

a = b = a (12.7)

which enables us to rewrite Eqs. (12.1), (12.2) and (12.3) as:

a · a �= 0 (12.8)

a · v ′ = λ λ ∈ R (12.9)

a × v ′ = c . (12.10)

From Fig. 12.1 we can reason that

a · v ′ = −a · v (12.11)

and

a × v = a × v ′ (12.12)

which allows us to define λ and a × v ′ in terms of the known vectors:

λ = −a · v (12.13)

c = a × v ′ = a × v . (12.14)

We are now in a position to evaluate Eq. (12.4):

λb + c × a

a · b
= (−a · v)a + (a × v) × a

a · a
(12.15)

v ′ = (−a · v)a + (a × v) × a. (12.16)

Using the triple product identity [12] allows us to simplify our partial solution

(a × b) × c = (a · c)b − (b · c)a (12.17)

v ′ = (−a · v)a + (a · a)v − (v · a)a (12.18)

v ′ = v − 2(a · v)a, (12.19)

which is the well-known formula for computing the reflection of a vector [20].



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Applications of geometric algebra 233

Hua Zhang et al. have developed Goldman’s idea further, using GA [21]. To begin with, the

plane is defined by the bivector B:

B = a ∧ x (12.20)

where x is the unknown vector and

a · x = λ. (12.21)

Therefore, using the geometric product we have

ax = a · x + a ∧ x = λ + B (12.22)

and

x = λ + B

a
. (12.23)

Zhang et al. show that there is a correspondence between Eq. (12.4) and Eq. (12.23) and identify

the relationship as follows:

To begin, Eq. (12.4) is rearranged to include the definition of c :

λb + c × a

a · b
= λb + (b × x) × a

a · b
, (12.24)

and the triple product identity substituted

= λb + (b · a)x − (a · x)b

a · b
. (12.25)

Next, Eq. (12.23) is rearranged to introduce a geometric product

λ + B

a
= a(λ + B)

aa
= λa + aB

a2
(12.26)

and expanded becomes:

= λa + a · B + a ∧ B

‖a‖2
(12.27)

then the bivector is substituted:

= λa + a · (a ∧ x) + a ∧ (a ∧ x)

‖a‖2
(12.28)

λ + B

a
= λa + (a · a)x − (a · x)a

‖a‖2
. (12.29)

Comparing Eq. (12.25) with (12.29) we observe that they are identical if a = b, which, with

this proviso, means that Eq. (12.23) can be used to resolve certain linear transformations. Let’s

demonstrate how Eq. (12.23) is used in practice to solve a scale and refraction transform.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

234 Geometric algebra for computer graphics

12.2.1 Scale transform

Figure 12.2 shows a unit vector a which is to be scaled by a factor ε. Vectors v and v ′ reside in the

plane π containing a, such that v identifies the head of a, and v ′ identifies the head of εa.

Figure 12.2.

As we know vectors a and v , we define the bivector as

B = a ∧ v = a ∧ v ′. (12.30)

The objective now is to discover the value of v ′.
We equate

x = v ′ (12.31)

and

λ = a · v ′ = ε(a · v). (12.32)

Substituting v ′, λ and B in Eq. (12.23) produces

v ′ = a−1(λ + B) = a−1(ε(a · v) + a ∧ v). (12.33)

Multiplying throughout by a/a gives:

v ′ = ε(a · v)a + a(a ∧ v). (12.34)

Expanding the geometric product:

v ′ = ε(a · v)a + a · (a ∧ v) + a ∧ (a ∧ v). (12.35)

Applying the identity:

a · (b ∧ c) = (a · b)c − (a · c)b (12.36)

v ′ = ε(a · v)a + (a · a)v − (a · v)a (12.37)

we obtain

v ′ = v + (ε − 1)(a · v)a. (12.38)

Let’s apply Eq. (12.38) to the example shown in Fig. 12.3.
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Figure 12.3.

From the figure we see that

ε = 2 (12.39)

a = 1√
5
(2e1 + e2) (12.40)

v = e1 + 3e2 (12.41)

a · v = 1√
5
(2e1 + e2) · (e1 + 3e2)

a · v = 5√
5

(12.42)

v ′ = v + (ε − 1)(a · v)a

= e1 + 3e2 + 5√
5

1√
5
(2e1 + e2)

= e1 + 3e2 + 2e1 + e2

v ′ = 3e1 + 4e2 (12.43)

which is correct.

12.2.2 Refraction transform

Refraction is the bending of light rays when they pass from one medium to another. Changes in

the propagation speed alter the direction of the ray’s associated wavefront and is measured by the

refractive indices associated with the two media. In this example airµm1 is the absolute refractive

index for the medium m1 above the plane, and airµm2 is the absolute refractive index for the

medium m2 below the plane. Figure 12.4 shows the incident ray v and the refracted ray vR with

their respective angles of incidence and refraction α and β. All vectors are unit vectors.

The illustrated scenario is described by Snell’s law:

sin α

sin β
= airµm2

airµm1

= 1

µ
. (12.44)



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

236 Geometric algebra for computer graphics

Figure 12.4.

Squaring Eq. (12.44) and rearranging the terms, we have

µ2 sin2 α = sin2 β. (12.45)

Substituting the following identities in Eq. (12.45) we have

sin2 β = 1 − cos2 β (12.46)

and

sin2 α = 1 − cos2 α (12.47)

cos2 β = 1 − µ2(1 − cos2 α) (12.48)

and

cos β =
√

1 − µ2(1 − cos2 α) (12.49)

but

a · v = cos α (12.50)

cos β =
√

1 − µ2(1 − (a · v)2). (12.51)

Introducing the outer product, we note that

a ∧ v = ‖a‖‖v‖ sin α (12.52)

and

a ∧ vR = ‖a‖‖vR‖ sin β (12.53)

therefore

a ∧ vR = sin β

sin α
(a ∧ v). (12.54)

We are now in a position to invoke Eq. (12.5):

x = a−1(λ + B) (12.55)
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where

x = vR (12.56)

λ = − cos β (12.57)

B = sin β

sin α
(a ∧ v) = µ(a ∧ v) (12.58)

vR = a−1(− cos β + µ(a ∧ v)). (12.59)

Multiplying throughout by a/a we have

vR = −a cos β + µa(a ∧ v) (12.60)

and expanding the geometric product we obtain

vR = −a cos β + µ(a · (a ∧ v) + a ∧ (a ∧ v)). (12.61)

But

a · (b ∧ c) = (a · b)c − (a · c)b (12.62)

therefore,

vR = −a cos β + µ((a · a)v − (a · v)a)

= −a cos β + µ(v − (a · v)a)

vR = (− cos β − µ(a · v))a + µv . (12.63)

Substituting Eq. (12.45) in (12.63) we have

vR =
(

−
√

1 − µ2(1 − (a · v)2) − µ(a · v)

)

a + µv (12.64)

which is the desired result.

Let’s test Eq. (12.64) using the refraction caused when light moves from water to glass, where

airµwater = 1.33 and airµglass = 1.5

Given the following vectors and µ:

a = e2 (12.65)

v = 1√
2
(e1 − e2) (12.66)

µ = 1.5/1.33 = 1.13 (12.67)

vR =

⎛

⎝−

√

√

√

√1 − 1.132

(

1 −
(

1√
2

)2
)

− 1.13

(

1√
2

)

⎞

⎠ e2 + 1.13

(

1√
2
(e1 − e2)

)

(12.68)

=
(

−
√

1 − 1.132 × 0.5 − 1.13

(

1√
2

))

e2 + 1.13

(

1√
2
(e1 − e2)

)

= (−0.6 − 0.8)e2 + 0.8e1 − 0.8e2

vR = 0.8e1 − 2.2e2. (12.69)

Figure 12.5 shows the incident and refracted vectors.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

238 Geometric algebra for computer graphics

Figure 12.5.

12.3 Rigid-body pose control

Richard Wareham and Joan Lasenby have reported on their work on rigid-body pose and position

interpolation using GA [22]. Their algorithm employs rotors within the conformal model that are

interpolated resulting in smooth interpolation of displacements and rotations. Their approach

lends itself to piece-wise linear interpolation and quadratic interpolation. The first part of their

paper proves that “any displacement of Euclidean geometry can be mapped smoothly onto a

linear sub-space of the bivectors”, where the three bivectors e1 ∧ e2, e2 ∧ e3, e3 ∧ e1 representing

the orthogonal planes identify a set of target poses {P1, P2, . . . , Pn}. Associated with these poses

is a set of rotors which transform an origin pose to the target poses {R1, R2, . . . , Rn} which are

mapped onto a set of bivectors {l(R1), l(R2), . . . , l(Rn)}. Whatever interpolation scheme is chosen,

an interpolated bivector B′
λ is revealed from which is computed a pose using exp(B′

λ).

When using piece-wise interpolation the following steps are used:

1. Compute the rotor �Rn that moves from the current rotor Rn to the next rotor Rn+1 in the

interpolation sequence:

Rn+1 = (�Rn)Rn (12.70)

�Rn = Rn+1R̃n . (12.71)

2. Find the bivector �Bn that generates

�Rn = exp(�Bn). (12.72)

3. Form a rotor interpolating between Rn and Rn+1:

Rn,λ = exp(λ�Bn)Rn (12.73)
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where

λ ∈ [0, 1] and Rn,0 = Rn and Rn,1 = Rn+1. (12.74)

A potential weakness with this form of piece-wise interpolation is that the interpolated poses only

takes into consideration two key poses, which can cause abrupt changes in direction. An alternative

interpolation strategy is to use quadratic interpolation where a quadratic is fitted through three

interpolation poses {B1, B2, B3} with the interpolating parameter λ ∈ [−1, +1]:

B′
λ =
(

B3 + B1

2
− B2

)

λ2 + B3 − B1

2
λ + B2 (12.75)

giving

B′
−1 = B1, B′

0 = B2 and B′
+1 = B3. (12.76)

This time the interpolated poses still pass through the key poses but enjoy a smooth transition as

they anticipate the next pose in the sequence.

Table 12.1

Algebra Line representation Line-plane intersection

3D linear algebra p = q + λu

q: vector from origin to point on the line. qi = ql − ((ql · n) − δ)u

u · n
u: direction of the line ql : point on the line

u: direction of the line

n: normal vector of plane

δ: distance of plane to origin

3D geometric algebra p = q + λu

q: vector from origin to point on the line. qi = ql − ((ql ∧ p)∗ − δ)u

(u ∧ B)∗

u: direction of the line ql : point on the line

u: direction of the line

B: Bivector of the plane

δ: distance of plane to origin

4D linear algebra l = (�q1 − �q2 : �q1 × �q2) l = (�u : �v) : line

q1 = (�q1 : 1), q2 = (�q2 : 1) : two points p = [�n : δ]

qi =
( �v × �n + δ�u

�u · �n : 1

)

4D geometric algebra l = q1 ∧ q2 qi = p∗ · l

q1, q2: two points l, p: line, plane

Conformal model l = q1 ∧ q2 ∧ n q ∧ n = p∗ · l

q1, q2: two points l, p: line, plane

n: point at infinity n: point at infinity plus one flat

point decomposition, if required.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

240 Geometric algebra for computer graphics

12.4 Ray tracing

Ray tracing provides a perfect environment for evaluating new algorithms, as it involves a range

of geometric primitives, ray casting, reflections and refraction calculations. Daniel Fontijne and

Leo Dorst have reported on their implementation of a GA software package [23].

Their evaluation compares five ways of implementing a ray tracer: 3D linear algebra, 3D geo-

metric algebra, 4D linear algebra, 4D geometric algebra and the conformal model. Table 12.1 lists

the geometric representations used for lines and line-plane intersection.

Needless to say, the 3D linear algebra algorithm reported the fastest rendering time and the

conformal model the longest. However, these are early days for GA and execution times are only

part of the efficiency equation. It is extremely difficult to measure an algorithm’s elegance and the

ease with which it can be used, but they are extremely important considerations.

12.5 Summary

In this chapter and chapters 9 and 10 we have explored a wide range of applications for GA. The

solutions may have appeared verbose, but this is because I deliberately worked through the algebra

to show how it behaves at each stage. A normal linear algebra approach could have also appeared

tedious if every step of a matrix operation had been shown. Therefore, it is wrong to make any

judgments about the efficiency of GA by comparing the relative size of the two approaches.

The purpose of the examples was to show the algebraic reasoning that is adopted when solving

different types of problem. For example, we have seen how useful it is to divide an expression

by a single or multiple vectors. Similarly, multiplying an expression by a vector using the inner

or outer product can be a useful way of removing unwanted elements. What is important is to

acquire a toolkit of problem solving strategies that can be applied whenever a problem arises.

Traditional linear algebra underpins most of the algorithms employed in computer graphics.

The algebra works, it is fast, accurate, stable and easy to use. Consequently, any beneficial features

that GA possesses must be strong enough to convince a community that is entrenched in doing

things in a particular way. If it could be shown that GA algorithms reduced execution time,

reduced memory requirement and were easy to design, it would be like pushing at an open

door. Unfortunately, at the moment, none of these are true, which is not surprising. GA is still

relatively young, and time is needed to assemble a coherent body of work that will convince the

CGI community that they can benefit by moving across to this alternative approach to problem

solving.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

13 Programming
Tools for
Geometric Algebra

13.1 Introduction

Geometric algebra has only recently been embraced by the computer graphics community with

major centers of research at Cambridge University (UK), University of Amsterdam (Netherlands)

and MPI Saarbruecken (Germany). Research at Cambridge University focuses on the areas of

physics, computer vision, motion analysis and computer graphics [24], [25], [26], [27], [28], [29].

Research at the University of Amsterdam is in computer science and computer graphics [30],

[31], [32], [33], [34], [35], [36], [37], [38], [39], whilst pose estimation and marker-less motion

capture is investigated at MPI Saarbruecken [40], [41], [42].

As mentioned in the Preface, the Internet is a rich source of material for anyone wanting to learn

about GA – most of the information is extremely good although some websites are unreadable.

Nevertheless, what is important is the level of interest being taken in an algebraic system; this is

extremely healthy, and will help resolve the notation and future use of the algebra. This process

is much more democratic than what happened in the late 19th century when the nature of vector

analysis was decided by a few influential people.

In this brief chapter I draw the reader’s attention to some of the software tools available to

programmers wanting to embrace GA.

13.2 Programming implications

Integrating 3D/4D linear algebra within a programming environment is a trivial task. Points, lines,

planes, spheres, planar-bounded volumes, vectors and transforms all have simple descriptions, and

it is relatively easy to establish a library of algorithms that permit the efficient manipulation of

these geometric and algebraic elements. Furthermore, as execution speed is always an important

parameter in measuring the success of new code, especially in real-time applications, programmers

have no choice but to “hack” their code to release the very last ounce of speed. Consequently, the

apparent relative simplicity associated with the high-level mathematical description crumbles

away as one approaches the binary reality of executable code.
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242 Geometric algebra for computer graphics

One of the reasons why geometric algebra is being positively promoted within computer graph-

ics is the coherence it brings when designing algorithms. For example, reflections are expressed

as

a′ = −n̂an̂ (13.1)

and rotations as

a′ = RaR̃. (13.2)

One could not ask for anything simpler. However, this high-level simplicity is only skin deep,

for beneath this symbolic surface resides a world of vectors, bivectors, trivectors, quadvectors,

pseudoscalars, inner, outer, geometric products, meets, joins, duals, reverses, versors, rotors and

blades, all hungry for memory and processing time. So one immediate issue is how best to

represent all of these elements – on the one hand we must minimize memory storage and maintain

readability, and the on the other hand maximize execution speed.

13.3 Programming tools

For programmers interested in designing GA algorithms, a wide variety of programming tools is

available and comprise everything from symbolic algebraic systems to interactive environments.

Systems like Maple [43], Mathematica [44] and MatLab [45] provide environments where alge-

braic expressions are evaluated and readily converted into images. There are also websites such as

[46] where Maple tutorials are available to teach Clifford algebra. GABLE is a MatLab GA Tutorial

although it is no longer supported. The authors have moved on to C++, however the system can

still be downloaded [47].

A very important piece of software is GAIGEN (GA Implementation Generator) developed by

Fontijne, Bouma and Dorst [37]. Gaigen 2 is a C++ implementation of GA and GAViewer is an

interactive progam for teaching GA. Both systems can be downloaded from:

http://www.geometricalgebra.net.

C. Perwass has written a software program called CLUCalc [48] which can visualize the

geometric interpretation of many algebraic entities. This is available from:

http://www.clucalc.info.

13.4 Summary

Grassmann and Clifford had no access to computers and computer graphic software and possibly

their interpretation of GA was algebraic rather than visual. Perhaps an algebraic approach is the

most effective way of maintaining the mathematical rigor required by GA, but this is a problem

for those of us who think in pictures rather than in symbols. Those readers possessing strong

mathematical skills will be able to pick up the rest of GA without any graphical aids whatsoever,

and I am certain that the above computer graphic systems will be extremely useful in bringing

linear subspaces, conformal space meets, joins and intersections alive for many readers.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

14 Conclusion

The aim of this book was to offer a gentle introduction to geometric algebra through the eyes of

a consumer of mathematics, rather than through the eyes of a mathematician. To begin with, I

do not possess the eyes of a mathematician, therefore I could not have written a book that would

have met the rigorous standards required by the mathematical community. However, having

taught mathematics to hundreds of students who graduated and became programmers within

the computer animation and computer games sectors, I know that there are busy people out there

who need to use mathematics to solve their everyday problems. This is the community with whom

I want to communicate.

If you have managed to read and understand the previous dozen chapters you will have appre-

ciated the importance of GA. There is no doubt that GA unifies various branches of mathematics

and brings an exciting degree of clarity to physics, which will keep academics and researchers busy

for many decades to come. However, before GA is universally embraced, mathematicians must

agree on a notation that is adopted universally. A major frustration that accompanied the research

for this book was the wide range and conflicting notation adopted by different authors. This must

be resolved fast. Then the task of drawing up a coherent axiomatic description of GA must begin.

GA has changed my life and will probably change yours, and in time, could change the entire

CG sector. I do hope that in the future, more mathematicians will work with CG experts to create

a GA toolset that will transform the way we currently solve geometric problems.
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Index

addition

quaternions, 41

vectors, 25

algebra

complex numbers, 15

geometric, 55

origin, 5

quaternion, 45

vector, 23

anticlockwise, 49

area, 49

signed, 65

triangle, 70

Argand diagram, 16

associative law

algebra, 8

complex algebra, 15

geometric algebra, 80

quaternion algebra, 46

vector algebra, 26

axial system

change of, 163

left-handed, 52

right-handed, 52, 92

back-facing polygon, 183

basis

blades for conformal model, 209

orthogonal, 31, 60

standard, 31

vectors, 84

binary operators, 6

bivector, 58, 89

inverse, 174

products, 97, 106

reflections, 129

blades, 108

Clifford, William, 56, 80

clockwise, 49

closure

algebra, 6

complex algebra, 15

vector algebra, 26

quaternion algebra, 42, 45

commutative law

algebra, 8

complex algebra, 15

quaternion algebra, 46

vector algebra, 27, 34, 36

complex number

algebra, 11

argument, 17

arithmetic, 12

as a rotator, 17

conjugate, 12

graphical interpretation, 17

logarithm, 21

modulus, 16

plane, 16

power of, 19

product, 18
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250 Index

conformal

circles, 213

dilations, 224

geometry, 199

intersections, 230

lines, 212

model, 199

patent, 200

planes, 216

point pair, 211

points, 210

reflections, 226

rotations, 221

spheres, 217

transformations, 218

translation, 218

Cramer’s rule, 192

cross product, 35, 114

cross-ratio, 201

determinant, 13

dilations, 224

dimension, 26, 32, 199

direction cosines, 162

distributive law

algebra, 8

complex algebra, 15

geometric algebra, 80

quaternion algebra, 46

vector algebra, 27, 34, 36

dot product, 34

duality transform, 109, 187, 189

exponential, 19, 139, 219

GAIGEN, 242

geometric algebra, 55, 79

applications, 231

programming implications, 241

programming tools, 242

geometric conventions, 50

geometric product, 79

Gibbs, Josiah, 23

grade, 85, 103

lowering, 105

raising, 105

Grassmann, Hermann, 55

Hamilton, William, 23, 39, 55

Hestenes, David, 108, 200

homogeneous coordinates,

184, 193

identity element

algebra, 6

complex algebra, 15

quaternion algebra, 45

vector algebra, 26

inside

a 2D triangle, 155

a 3D triangle, 158

interpolating

linear, 239

quadratic, 239

rotors, 150

scalars, 150

vectors, 150

intersection/ intersections

lines, 73, 230

line and a plane, 197

inverse

bivector, 174

vector, 118

inverse element

algebra, 7

complex number,15

quaternion, 46

Li, Hongbo, 200

line/ lines

in 3D homogeneous space, 186

in 4D homogeneous space, 186

intersecting, 192

intersecting a plane, 175

parametric equation, 177

linear interpolation, 239

magnitude

vector, 24

meet operation, 120

Minkowski, Hermann, 204

Minkowski space, 204

Möbius, 23, 201

modulus, 16, 80, 83

multivector, 79, 83, 87, 111

homogeneous, 113

null vector, 204

outer product, 57, 65, 69, 114



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Index 251

parallelogram

area, 13

perspective projection, 179

plane/ planes

intersecting, 120

point/ points

at infinity, 203

betweeness, 201

cross-ratio, 201

inside a 2D triangle, 155

inside a 3D triangle, 158

point on a line, 166

point on a plane, 170

shortest distance, 171, 191

point pair, 211

product/ products

antisymmetric, 63

basis vectors, 84

bivector, 91

geometric, 79

outer, 57

scalar, 33, 41

vector, 22, 35

wedge, 50

programming tools, 242

projection

perspective, 179

stereographic, 201

pseudoscalar, 85, 94

rotational properties, 85

quaternions

addition, 41

algebra, 45

as rotators, 126

complex conjugate, 44

definition, 40

geometric algebra, 116

Hamilton’s rules, 41

interpolation, 150

inverse, 44

magnitude, 43

matrix, 126

product, 41

pure, 43

rotating a vector, 46

subtracting, 41

unit, 43

ray tracing, 240

reflection/ reflections, 125, 127

conformal, 226

double, 133

line off a plane, 229

point in a plane, 229, 232

refraction, 235

reversion, 90

Riemann, Georg, 202

Riemann sphere, 202

rigid-body pose control, 238

Rockwood, Alyn, 200

rotating a vector, 46

rotations, 90, 125, 133

rotors, 138, 220

building, 146

interpolating, 150

matrix, 141

scalar product, 33, 41

signature, 204

sine rule, 72

Snell’s law, 235

spherical interpolation, 150

subtraction, vectors, 25

transformations

change of axes, 63

perspective, 179

pitch, 125

refraction, 235

roll, 125

scale, 234

yaw, 125

triple products, 79, 115

trivector, 93

products, 106

reflections, 132

vector/ vectors, 24

addition, 25

algebra, 23

basis, 84, 96

bivector product, 91

Cartesian, 41, 67

direction, 24

dot product, 34

interpolating, 150

inverse, 118

length, 24



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

252 Index

linear combinations, 27

linear dependence, 29, 81

linear independence, 29, 82

magnitude, 24

minimal spanning set, 29

null, 204

orthogonal, 81, 84

orthogonal bases, 31

outer product, 57, 69

product, 22, 35

reflecting, 127

representation, 24

rotating, 137

rotating about an axis, 46

scalar product, 33, 41

space, 25

spanning set, 28

spherical interpolation,

150

standard bases, 31

subspaces, 32

subtraction, 25

triple product, 79, 115

vector product, 35, 41, 57

wedge product, 57

volume

parallelpiped, 53

trivector, 93

wedge product, 57




