
1  Gamma Function & Digamma Function

1.1  Gamma Function

  The gamma function is defined to be an extension of the factorial to real number arguments. By this,

for example, a definition of  (1/2) !  and the calculation is enabled.

1.1.1  Gauss expression

( )z  = lim
n z( )z+1 ( )z+2 ( )z+n

n! n z

(1.1)

Calculation.

  Deform ( )z-1 !  as follws

( )z-1 ! = 
z

z!
 = 

z
1


( )z+1 ( )z+2 ( )z+n

123 z ( )z+1 ( )z+2 ( )z+n

 = 
z( )z+1 ( )z+2 ( )z+n

n!( )n+1 ( )n+2 ( )n+z
 = 

z( )z+1 ( )z+2 ( )z+n

n!n z

n
( )n+1

n
( )n+2


n

( )n+z

Because natural number n  may be arbitrary,  when  n , as follows:

n
n+1

  1 , 
n

n+2
  1  , , 

n
n+z

  1

Hence

lim
n z( )z+1 ( )z+2 ( )z+n

n!n z

n
( )n+1

n
( )n+2


n

( )n+z

 = lim
n z( )z+1 ( )z+2 ( )z+n

n!n z

Since z  is already good in anything besides 0,-1,-2, ,  replacing function z -1 !   with  z ,

we obtain the desired expression

1.1.2  Euler expression

( )z = 
z
1
Π
n =1



  1+
n
1 z

 1+
n
z -1

(2.1)

Calculation.

  Further deform (1.1)  as follows

lim
n z( )z+1 ( )z+2 ( )z+n

n!n z

= lim
n z

1


( )z+1 ( )z+2 ( )z+n

123 n
 1

2


2
3
 

n-1
n z

= lim
n z

1


( )z+1 ( )z+2 ( )z+n

123 n
 1

2


2
3
 

n
n+1 z

   
n

n+1
  1
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= lim
n z

1


 1+
1
z  1+

2
z
 1+

n
z

  1+
1
1
 1+

2
1
 1+

n
1 z

= 
z
1
Π
n =1



  1+
n
1 z

 1+
n
z -1

1.1.3  Integral expression

( )z  = 
0


e-t t z-1 dt Re( )z >0 (3.1)

Proof.

n( )z  = 
0

n

 1-
n
t n

t z-1 dt (3.2)

Here

lim
n 1-

n
t n

 = e-t

so

lim
n0

n

 1-
n
t n

t z-1 dt = 
0


e-t t z-1 dt (3.3)

  Further, in (3.2)  let t = ns . Then because  t:0n  s:01 , dt = nds


0

n

 1-
n
t n

t z-1 dt = 
0

1

( )1-s n n z-1 sz-1 n ds = n z
0

1

( )1-s n sz-1 ds

= n z z
sz

( )1-s n

0

1

 + 
z

n zn 
0

1

( )1-s n-1 sz ds

= 
z

n zn  z+1
sz+1

( )1-s n-1

0

1

 + 
z( )z+1

n zn(n-1)
0

1

( )1-s n-2 s z+1 ds

 

= 
z( )z+1 ( )z+2 ( )z+n-1

n zn( )n-1 321 
0

1

sz+n-1 ds = 
z( )z+1 ( )z+2 ( )z+n

 n z n !

Hence

lim
n0

n

 1-
n
t n

t z-1 dt = lim
n z( )z+1 ( )z+2 ( )z+n

n! n z

Thus, from (1.1),(3.3),(3.4)  we obtain
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( )z  = 
0


e-t t z-1 dt Re( )z >0 (3.1)

1.1.4  Weierstrass expression

( )z
1

 = e  z z Π
n =1



 1+
n
z

 e
-

n

z

(4.1)

Calculation.

  We employ a reciprocal of Gauss expression (1.1). Then

 n zn!

z( )z+1 ( )z+2 ( )z+n
 =

n z

1
 z 1+

1
z  1+

2
z
  1+

n
z

= 
e log n  z

e
 1+

2

1
+

3

1
++

n

1
z

 z 1+
1
z

e-z 1+
2
z

e
-

2

z

  1+
n
z

e
-

n

z

= e
 1+

2

1
+

3

1
++

n

1
 - log n z

 z 1+
1
z

e-z 1+
2
z

e
-

2

z

  1+
n
z

e
-

n

z

 lim
n

 e
 1+

2

1
+

3

1
++

n

1
 - log n z

 z 1+
1
z

e-z 1+
2
z

e
-

2

z

  1+
n
z

e
-

n

z

= e z zΠ
n =1



 1+
n
z

 e
-

n

z

where  = lim
n 1+

2
1

+
3
1

++
n

1
 - log n

 ( )z
1

 = e  z z Π
n =1



 1+
n
z

 e
-

n

z

1.1.5  Properties of  the Gamma Function (The 1)

( )z+1  = z z (5.1)

( )1-z  = -z -z (5.1')

( )1  = ( )2  = 1 (5.2)

( )n+1  = n! n is a nonnegative integer (5.3)

( )z
( )z+n

 = z( )z+1 ( )z+2 ( )z+n-1 n is  a natural number (5.4)

( )z-n
( )z

 = ( )z-1 ( )z-2 ( )z-n n is a natural number (5.4')

( )-z-n
( )-z

 = ( )-1 -n

( )1+z
( )1+z+n

n is a nonnegative integer (5.5)

lim
n ( )n n z

( )z+n
 = 1 (5.6)
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Proof.

  From Gauss expression (1.1)

( )z
( )z+1

 = lim
n ( )z+1 ( )z+2 ( )z+n +1 n!n z

n!n z+1z( )z+1 ( )z+2 ( )z+n
 = lim

n
 z

z+n+1
n

 = z

Then (5.1) follows. And reversing the sign of (5.1), we obtain (5.1').

  Next,

Π
k=1

n

 1+
k
1

 e
-

k

1

 =  1+
1
1
 1+

2
1
  1+

n
1

e-1e
-

2

1

 e
-

n

n+1

= 
1
2


2
3
 

n
n+1

e
- 1+

2

1
+ +

n

1

 = 
n

( )n+1
eLog ne

- 1+
2

1
+ +

n

1

= 
n

( )n +1
e

- 1+
2

1
+ +

n

1
 - Log n

 Π
n =1



 1+
n
1

 e
-

n

1

 = lim
n

Π
k=1

n

 1+
k
1

 e
-

k

1

 = e-

Substitute this for Weierstrass expression (4.1) as follows.

( )1
1

 = e  1 1 Π
n =1



 1+
n
1

 e
-

n

1

 =  e  e- = 1

Hence ( )1 =1 , and from (5.1) ( )2 =1( )1 =1  i.e. (5.2)  follows.

  Substitute positive integer n for (5.1) one by one as follows.

( )n+1  = n( )n  = n( )n-1 ( )n-1  =  = n!( )1  = n!

i.e. (5.2) follows. And because ( )1 =0!  (5.3) holds also for  n =0 .

  From (5.1)

( )z
( )z+1

 = z , ( )z+1
( )z+2

 = z+1 ,   ( )z+n-1
( )z+n

 = z+n-1

Multiply these on each other as follows.

( )z
( )z+1

 ( )z+1
( )z+2

   ( )z+n-1
( )z+n

= z( )z+1 ( )z+2  ( )z+n-1

Hence (5.4) follows. and in (5.4) by replacing z  with z -n , (5.4')  follows. 

  Let replace z  with -z  in (5.4') ,  then

( )-z-n
( )-z

 = ( )-z-1 ( )-z-2 ( )-z-n

= ( )-1 -n( )z+1 ( )z+2 ( )z+n  = ( )-1 -n

( )1+z
( )1+z+n

This equation holds also for n =0.  Moreover, this equation holds obviously for the positive integer z .

Then,this quation includs a part of  Singular Point Formulas ( Later 1.3 ).

  From (5.4)

( )z+n  = z( )z+1 ( )z+2  ( )z+n-1  ( )z
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  = z( )z+1 ( )z+2  ( )z+n-1 ( )z+n  ( )z 
( )z+n

1

 lim
n ( )n-1 !n z

( )z+n
 = lim

n ( )n-1 !n z( )z+n

z( )z+1 ( )z+2  ( )z+n-1 ( )z+n  ( )z

= lim
n n!n z

z( )z+1 ( )z+2  ( )z+n-1 ( )z+n


z+n
n

( )z

= ( )z
1

1( )z  = 1

By substituting  n -1 != n for this, (5.6) follows. 

1.1.6  Properties of  the Gamma Function (The 2)

 n+
2
1

 = 
2n


( )2n-1 !!

 2
1

-n  = ( )-1 n

( )2n-1 !!
2n 

 n+
3
1

 = 
3n

147( )3n-2
 3

1

 n+
3
2

 = 
3n

258( )3n-1
 3

2

 n+
4
1

 = 
4n

159( )4n-3
 4

1

 n+
4
3

 = 
4n

3711( )4n-1
 4

3

( )z ( )-z  = -
z sinz


 , ( )z ( )1-z  = 
sinz


 2
1

+z  2
1

-z  = 
cosz


 , ( )1+z ( )1-z  = 
sinz
z

( )2z  = 


22z-1

( )z  z+
2
1

( )3z  = 
2

33z-1/2

( )z  z+
3
1

 z+
3
2

Proof.:  Omitted.

1.1.7  Logarithmic Function & Gamma Function


x

x+1

( )z
 '( )z

dz = log x (7.1)
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1

n+1

( )z
 '( )z

dz = log( )n! (7.2)

Calculation.

  Just do logarithm integral calculus obediently, as follows:


x

x+1

( )z
 '( )z

dz = [log( )z ]x
x+1 = log( )x+1  - log( )x

 = log x( )x  - log( )x  = log x+ log( )x - log( )x

 = log x
Also


1

n+1

( )z
 '( )z

dz = [log( )z ]1
n+1 = log( )n+1  - log( )1

 = log( )n!  -  log1

 = log( )n!

1.1.8  2nd order differential calculus of the Gamma Function

( )z
"( )z

 =  ( )z
 '( )z

'

 +  ( )z
 '( )z

2

= Σ
n =0



( )n+ z 2

1
 +  ( )z

 '( )z
2

(8.1)

Calculation.

 ( )z
  '( )z

'

 = 
( )z 2

 "( )z ( )z  -   '( )z 2

 = ( )z
  "( )z

 -  ( )z
 '( )z 2

From this

( )z
"( )z

 =   ( )z
 '( )z

'

 +  ( )z
 '( )z

2

On the other hand, from next section (2.8 Trigamma Function)

 ( )z
 '( )z '

 = 
dz
d ( )z  = Σ

n =0



( )z+ n 2

1

Hence (8.1) follows.

1.1.9  Spcial Values of  the Gamma Function

  From properties of the gamma function ( 1.1.5 , 1.1.6 ),  the following special values are obtained.

Because these are used frequently, we write here.

(1)  The 1

( )0     = 

( )1     = 1 , ( )2        = 1
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 2
1

 = 
20

-1!!
  =  ,  2

3
   = 

21

1!!
  = 

2
1



 2
5

 = 
22

3!!
  = 

4
3

  ,  2
7

   = 
23

5!!
  = 

8
15



 2
9

 = 
24

7!!
  = 

16
105

 ,  2
11

 = 
25

9!!
  = 

32
945



 3
1

 = 2.678938 ,  3
2

   = 1.354118

 4
1

 = 3.625600 ,  4
3

   = 1.225417

(2)  The 2

 -
2
1

 = -
1!!
21

  = -2       ,  -
2
3

 = 
3!!
22

  =  
3
4



 -
2
5

 = -
5!!
23

  = -
15
8

     ,  -
2
7

 = 
7!!
24

  = 
105
16



 -
2
9

 = -
9!!
25

  = -
945
32

   ,  -
2
11

 = 
11!!
26
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1.2  Digamma Function

1.2.1  The definition of  the Digamma Function

  1st order derivative of the logarithm of the gamma function ( )z is called Digamma Function, and is defined

in the following expression.

( )z = 
dz
d

log( )z  = ( )z
 '( )z

(1.0)

( )z = 
0



 t
e-t

-
1-e-t

e-zt

dt (integral expression) (1.0')

  In addition, the derivative more than 2nd order are callecd Trigamma ,Tetragamma, Pentagamma, etc.,

and generaly, n th order derivative is called Polygamma Function.

  These are dnoted like( )0
 z ,( )1

 z ,( )2
 z ,  ,( )n

 z including the digamma, and named

generally with Psi Function.

1.2.2  Properties of  the Digamma Function

( )z  = - -
z
1

+ Σ
n =1



 n
1

-
n+ z

1
 = lim

n log n -Σ
k=0

n

k+ z
1

(2.1)

( )1 =  -  , ( )2  = 1-  (2.2)

( )z+1  = ( )z  + 
z
1

 = -  + Σ
n =1



 n
1

-
n + z

1
(2.3)

( )z+n  = ( )z  + Σ
k=0

n -1

z+k
1

  , ( )z-n  = ( )z  - Σ
k=1

n

z-k
1

(2.4)

( )1+n  =  - + Σ
k=1

n

k
1

(2.5)

 2
1

 = -  - 2log2 (2.6)

 2
1

  n  = - - 2log 2 + 2Σ
k=0

n -1

2k+1
1

(2.7)

 ( )1 ( )z  = 
dz
d ( )z  = Σ

n =0



( )z+ n 2

1
(Trigamma Function) (2.8)

where    = 0.577215664901532860606512090082402431042

Proof

  Let invers Weierstrass expression in the previous section (1.1.4 ) as follows.

( )z  = e- zz-1Π
n =1

  n+z
n

e n

z

And differentiate the logarithm of this with respect to z, then
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( )z
 '( )z

 = -
e- z

 e-rz

 - 
z-1

z-2

 + Σ
n =1



ez/n

ez/n/n
 - Σ

n =1



n /( )n+ z
n /( )n+ z 2

 = -  - 
z
1

 + Σ
n =1



 n
1

-
n+ z

1

Hence the first half of  (2.1) follows.

 Next,

-  - 
z
1

 + Σ
n =1



 n
1

-
n+ z

1
 = - + Σ

n =1



n
1

 - Σ
n =0



n+ z
1

     = - lim
n Σ

k=1

n

k
1

 - log n  + Σ
n =1



n
1

 - Σ
n =0



n + z
1

    = lim
n log n - Σ

k=0

n

k+ z
1

Hence the latter half of  (2.1) follows.

  Substitute z=1, z=2  for the first half of  (2.1), then

( )1  = -  - 
1
1

+
1
1

-
2
1

+
2
1

-
3
1

+
3
1

-
4
1

+ = -

( )2  = -  - 
2
1

+
1
1

-
3
1

+
2
1

-
4
1

+
3
1

-
5
1

+
4
1

-
6
1

+

     = 1 -   -  2
1

+
3
1

+
4
1

+  +  2
1

+
3
1

+
4
1

+  = 1 - 

Thus (2.2) follows.

  Differentiate both side of ( )z+1 = z z  (the previous (5.1))  with respect to z , then

 '( )z+1  = z ' z +  z
Divide both side of this by ( )z+1 = z z , then

( )z+1
 '( )z+1

 = ( )z
 '( )z

 + 
z
1

 , i.e. ( )z+1  = ( )z  + 
z
1

Hence the first half of  (2.3) follows, and by substituting (2.1) for this, the latter half of  (2.3) 

follows.

  Next, substitute z+1, z+2, , z+n -1and z,  z-1, , z-n for (2.3) sequentially; then

( )z+1  - ( )z  = 
z
1

     , ( )z  - ( )z-1  = 
z-1
1

( )z+2  - ( )z+1  = 
z+1
1

     , ( )z-1  - ( )z-2  = 
z-2
1



( )z+n  - ( )z+n-1  = 
z+n-1

1
 , ( )z-n+1  - ( )z-n  = 

z-n
1

Add these on each other, then
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( )z+n  - ( )z  = Σ
k=0

n -1

z+k
1

      , ( )z  - ( )z-n  = Σ
k=1

n

z-k
1

Hence (2.4) follows.

  Substitute z =1  for the first half of  (2.4); then 

( )1+n  = ( )1  + Σ
k=0

n -1

1+k
1

= - + Σ
k=1

n

k
1

Hence (2.5) follows.

  Substitute z =1/2  for (2.1) ; then

 2
1

 = -  + Σ
k=1



k
1

 - Σ
k=0



2k+1
2

 = -  + 2Σ
k=1



2k
1

 - 2Σ
k=0



2k+1
1

   = -  - 2Σ
k=1



k
( )-1 k-1

 = -  - 2 log2

Hence (2.6) follows.

  Substitute z =1/2  n  for (2.1) ; then

 2
1

+n  = -  + Σ
k=1



k
1

 - Σ
k=0



k+
2
1

+n

1

= -  + 2Σ
k=1



2k
1

 - 2Σ
k=0



2k+1+2n
1

 - 2Σ
k=0

n -1

2k+1
1

 + 2Σ
k=0

n -1

2k+1
1

= -  + 2Σ
k=1



2k
1

 - 2Σ
k=0



2k+1
1

 + 2Σ
k=0

n -1

2k+1
1

= -  - 2 log2 + 2Σ
k=1

n

2k-1
1

 2
1

-n  = -  + Σ
k=1



k
1

 - Σ
k=0



k+
2
1

-n

1
= - +2Σ

k=1



2k
1

-2Σ
k=0



2k+1-2n
1

= -  + 2Σ
k=1



2k
1

 - 2Σ
k=0

n -1

2k+1-2n
1

 - 2Σ
k=n



2k+1-2n
1

= -  + 2Σ
k=1



2k
1

 + 2Σ
k=1

n

2k-1
1

 - 2Σ
k=1



2k+1
1

= -  - 2 log2 + 2Σ
k=1

n

2k-1
1

Hence (2.7) follows.

  Finally,

dz
d ( )z  = 

dz
d  - -

z
1

+ Σ
n =1



 n
1

-
n + z

1

    = 
z2

1
 +Σ

n =1



( )n+z 2

1
 = Σ

n =0



( )n+ z 2

1

Hence (2.8) follows.
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1.2.3  Spcial values of the Digamma Function

 From properties of the digamma function (1.2.2 ), the following special values are obtained.

(1)  The 1

( )0 =  -
( )1 =  -  , ( )2  = -  + 1

( )3 =  -  + 
2
3

 , ( )4  = -  + 
6
11

( )5 =  -  + 
4
5

 , ( )6  = -  + 
20
29

( )7 =  -  + 
60
97

 , ( )8  = -  + 
420
739

(2)  The 2

 2
1

= - - 2log2

 2
3

=  -
2
1

=  - - 2 log2 + 2

 2
5

=  -
2
3

=  - - 2 log2 + 2
3
4

 2
7

=  -
2
5

=  - - 2 log2 + 2
15
23

 2
9

=  -
2
7

=  - - 2 log2 + 2
105
176

 2
11

=  -
2
9

=  - - 2 log2 + 2
315
563

 2
13

=  -
2
11

=  - - 2 log2 + 2
3465
6508
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1.3  Singular Point Formulas

Formula 1.3.1

  When ( )z , ( )z , m( )z  denote gamma function, digamma function and polygamma function

respectively,  following expressions hold for n=0,1,2,3, .

( )-n
( )0

 = ( )-1 n( )1+n  = ( )-1 n n! (1.1)

( )-m
( )-n

 = ( )-1 m-n

n!
m!

 m=0,1,2,3, (1.2)

( )-n
( )-n

 = ( )-1 n+1n! (1.3)

 -( )n+1
( )-n

 = 1 (1.4)

m -( )n +1
m( )-n

 = 1  m( )z =
dzm

d m

( )z (1.5)

Proof

  From Gauss expression ( 1.1.1 ), the following expression holds.

( )z
( )z+1

 = lim
n n!n z ( )z+1 ( )z+2 ( )z+n+1

n!n z+1 z( )z+1 ( )z+2 ( )z+n

When z = -1,-2 , this expression becomes the indeterminate form, and the value is not decided.

Now assume z -1 , -2 ,   ,  then z +1 , z +2 ,  , z +n  become nonzero all. 

Hence, we can divide the numerator and the denominator by z +1 , z +2 , , z +n  as follows: 

( )z
( )z+1

 = lim
n z+n+1

n z
 = lim

n

n
z

+1+
n
1

z
 = z (1.0)

Here substitute z =0  for this; then

( )z
( )z+1

 = ( )0
( )1

 = 0

  Because we have supposed it to be z  -1 , we cannot substitute z =-1  for (1.0). 

Therefore let z -1 . Then

lim
z-1 ( )z

( )z+1
 = ( )-1

( )0
 = -1

Similarly let z -2,-3, , -k,  , then

( )-2
( )-1

 = -2, ( )-3
( )-2

 = -3,  , ( )-k
( )-k+1

 = -k, 

Multiply these from 1 to k ;  then

( )-k
( )0

 = ( )-1
( )0

( )-2
( )-1

 ( )-k
( )-k+1

 =  ( )-1 kk! = ( )-1 k( )1+k
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Replacing k  with n  gives (1.1).  And using this 

( )-m
( )-n

 = ( )0
( )-n

( )-m
( )0

 = 
( )-1 n n!

( )-1 m m!
 = ( )-1 m-n

n!
m!

i.e. we obtain (1.2). This expression also holds for m=0, n =0 .

  Next

( )z  = lim
n z( )z+1 ( )z+2 ( )z+n

n!  n z

( )z  = 
dz

d log( )z
 = lim

n log n -  z
1

+
z+1
1

+
z+2
1

++
z+n
1

From these two expressions

( )z
( )z

 = lim
n

z( )z+1 ( )z+2 ( )z+n

n!  n z

log n -  z
1

+
z+1
1

+
z+2
1

++
z+n
1

Assum z0  and  multiply z +k   k =0,1,2,  by numerator and denominator; then

   
( )z
( )z = lim

n

z( )z+1 ( )z+k-1 1( )z+k+1 ( )z+n

n!  n z

( )z+k log n - z
z+k

+
z+1
z+k

++
z+k-1

z+k
+1+

z+k+1
z+k

++
z+n
z+k

Here let z-k   k =0,1,2, , then as follows.

( )-k
( )-k

= lim
n

( )-k ( )-2 ( )-1 1 12( )n-k

n!  n -k

0log n - -k
0

+
-k+1

0
++

-1
0

+1+
1
0

++
n
0

= lim
n

 -
n!  n -k

( )-k ( )-2 ( )-1 1 12( )n-k

  Calculate this in detail ;

When z-k   k =0

( )-k
( )-k

 = lim
n

-
n!

n 0n!
 = 1

When z-k   k =1,2,3, 

( )-k
( )-k

= lim
n

 ( )-1 k+1k!
( )n-k+1 ( )n-k+2 ( )n-k+k

n k

 = lim
n

 ( )-1 k+1k!

 1-
n
k

+
n
1
 1-

n
k

+
n
2

 1-
n
k

+
n
k

1
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 = ( )-1 k+1k!
Hence  Replacing k  with n gives (1.3).  

  Next using (1.2),(1.3) 

 -( )n+1
( )-n

 = ( )-n
( )-n

 -( )n+1
( )-n

 -( )n+1
  -( )n+1

      = ( )-1 n+1n! -( )n+1
( )-1 n+2( )n+1 !

1
 = 1

Thus we obtain (1.4).

  Finally,

m( )z  = ( )-1 m+1m! zm+1

1
+

( )z+1 m+1

1
+

( )z+2 m+1

1
+ 

From this

m( )-z

m -( )z+1
 = 

( )-z m+1

1
+

( )-z+1 m+1

1
+

( )-z+2 m+1

1
+ 

( )-z-1 m+1

1
+

( )-z m+1

1
+

( )-z+1 m+1

1
+

( )-z+2 m+1

1
+ 

Assuming z0 , denominator is also non-zero and positive. Then

m( )-z

m -( )z+1
 = 1 + 

( )-z m+1

1
+

( )-z+1 m+1

1
+  +

( )-z+n m+1

1
+ 

( )-z-1 m+1

1

Let zn  then 
 -z +n m+1

1
 . Therefor the summation of terms after 

 -z +n +1 m+1

1

converges to a finite value.  m>0 . Consequently, second term in the right hand side converges to 0.

Thus

m( )-n

m -( )n +1
 = lim

zn m( )-z

m -( )z+1
 = 1

i.e. (1.5)  was poroved.

Examples

  The results actually calculated with computational software are as follows.
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Significance of these formulas

  z =0,-1,-2 are singular points (pole of order 1). The value of these functions is  . Nevertheless,

the arbitrary ratio of  z , z on these points is removable singular point. esides, all those ratios reduce 

to the integer or the reciprocal number of the integer.  formulas (1.1) (1.4)  mentioned above insists on this.

For exsample

( )-7
( )-3

  = ( )0
( )-3

( )-7
( )0

 = 
-3!
-7!

 = 840

( )-7
( )-3

 = ( )-7
( )-3

( )-7
( )-7

 = 
-3!
-7!

( )-1 87!

1
 = 

6
1

( )-5
( )-8

 = ( )-8
( )-8

( )-5
( )-8

 = ( )-1 98!
8!
-5!

 = 120

etc.

  These are phenomena which is peculiar to the gamma function and the digamma function and do not occur

in the polygamma functon more than the trigamma function.

For example,  if we adopt the ratio1 z /0 z of  the trigamma functkion and the digamma function, 

z =0,-1,-3,  are all poles of order 1 of this function (ratio) , and generaly, if  we adopt the ratio 

m z  /n z    m>n , z =0,-1,-2,-3,  become poles of order  m-n .  Functions more than

the trigamma are right different from Functions less than the digamma in a dimension.

  What I can say in polygamma functions more than the trigamma is only that the ratio of polygamma functions

of the same dimension becomes 1 in z =0,-1,-2,-3,  entirely.

  It is indispensable for Super Calculus ( non-integer order calculus ) of  the power function and  the logarithmic

function that the ratio between singular points of the gamma function or the digamma function is a rational 

number.

2003.12.19

K. Kono

Alien's Mathematics
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