See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/1888563

The integrals in Gradshteyn and Ryzhik. Part 4: The Gamma function

Article · June 2007

Source: arXiv

CITATIONS	READS
9	84

1 author:

Victor H. Moll

Tulane University

2 PUBLICATIONS 10 CITATIONS

SEE PROFILE

THE INTEGRALS IN GRADSHTEYN AND RYZHIK. PART 4: THE GAMMA FUNCTION.

VICTOR H. MOLL

ABSTRACT. We present a systematic derivation of some definite integrals in the classical table of Gradshteyn and Ryzhik that can be reduced to the gamma function.

1. INTRODUCTION

The table of integrals [2] contains some evaluations that can be derived by elementary means from the *gamma function*, defined by

(1.1)
$$\Gamma(a) = \int_0^\infty x^{a-1} e^{-x} dx.$$

The convergence of the integral in (1.1) requires a > 0. The goal of this paper is to present some of these evaluations in a systematic manner. The techniques developed here will be employed in future publications. The reader will find in [1] analytic information about this important function.

The gamma function represents the extension of factorials to real parameters. The value

(1.2)
$$\Gamma(n) = (n-1)!, \text{ for } n \in \mathbb{N}$$

is elementary. On the other hand, the special value

(1.3)
$$\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$$

is equivalent to the well-known normal integral

(1.4)
$$\int_0^\infty \exp(-t^2) dt = \frac{1}{2} \Gamma\left(\frac{1}{2}\right)$$

The reader will find in [1] proofs of Legendre's duplication formula

(1.5)
$$\Gamma\left(x+\frac{1}{2}\right) = \frac{\Gamma(2x)\sqrt{\pi}}{\Gamma(x)\,2^{2x-1}}$$

that produces for $x = m \in \mathbb{N}$ the values

(1.6)
$$\Gamma\left(m+\frac{1}{2}\right) = \frac{\sqrt{\pi}}{2^{2m}} \frac{(2m)!}{m!}$$

This appears as 3.371 in [2].

Date: February 1, 2008.

¹⁹⁹¹ Mathematics Subject Classification. Primary 33.

Key words and phrases. Integrals.

VICTOR H. MOLL

2. The introduction of a parameter

The presence of a parameter in a definite integral provides great amount of flexibility. The change of variables $x = \mu t$ in (1.1) yields

(2.1)
$$\Gamma(a) = \mu^a \int_0^\infty t^{a-1} e^{-\mu t} dt.$$

This appears as **3.381.4** in [2] and the choice a = n + 1, with $n \in \mathbb{N}$, that reads

(2.2)
$$\int_0^\infty t^n e^{-\mu t} dt = n! \, \mu^{-n-1}$$

appears as 3.351.3.

The special case $a = m + \frac{1}{2}$, that appears as **3.371** in [2], yields

(2.3)
$$\int_0^\infty t^{m-\frac{1}{2}} e^{-\mu t} dt = \frac{\sqrt{\pi}}{2^{2m}} \frac{(2m)!}{m!} \mu^{-m-\frac{1}{2}},$$

is consistent with (1.6).

The combination

(2.4)
$$\int_0^\infty \frac{e^{-\nu x} - e^{-\mu x}}{x^{\rho+1}} \, dx = \frac{\mu^\rho - \nu^\rho}{\rho} \, \Gamma(1-\rho),$$

that appears as **3.434.1** in [2] can now be evaluated directly. The parameters are restricted by convergence: μ , $\nu > 0$ and $\rho < 1$. The integral **3.434.2**

(2.5)
$$\int_{0}^{\infty} \frac{e^{-\mu x} - e^{-\nu x}}{x} \, dx = \ln \frac{\nu}{\mu},$$

is obtained from (2.4) by passing to the limit as $\rho \to 0$. This is an example of *Frullani integrals* that will be discussed in a future publication.

The reader will be able to check **3.478.1**:

(2.6)
$$\int_0^\infty x^{\nu-1} \exp(-\mu x^p) \, dx = \frac{1}{p} \mu^{-\nu/p} \Gamma\left(\frac{\nu}{p}\right),$$

and 3.478.2:

(2.7)
$$\int_0^\infty x^{\nu-1} \left[1 - \exp(-\mu x^p)\right] dx = -\frac{1}{|p|} \mu^{-\nu/p} \Gamma\left(\frac{\nu}{p}\right)$$

by introducing appropriate parameter reduction.

The parameters can be used to prove many of the classical identities for $\Gamma(a)$.

Proposition 2.1. The gamma function satisfies

(2.8)
$$\Gamma(a+1) = a \, \Gamma(a)$$

Proof. Differentiate (2.1) with respect to μ to produce

(2.9)
$$0 = a\mu^{a-1} \int_0^\infty t^{a-1} e^{-\mu t} dt - \mu^a \int_0^\infty t^a e^{-\mu t} dt.$$

Now put $\mu = 1$ to obtain the result.

Differentiating (1.1) with respect to the parameter a yields

(2.10)
$$\Gamma'(a) = \int_0^\infty x^{a-1} e^{-x} \ln x \, dx.$$

Further differentiation introduces higher powers of $\ln x$:

(2.11)
$$\Gamma^{(n)}(a) = \int_0^\infty x^{a-1} e^{-x} (\ln x)^n dx.$$

In particular, for a = 1, we obtain:

(2.12)
$$\int_0^\infty (\ln x)^n e^{-x} dx = \Gamma^{(n)}(1).$$

The special case n = 1 yields

(2.13)
$$\int_{0}^{\infty} e^{-x} \ln x \, dx = \Gamma'(1)$$

The reader will find in [1], page 176 an elementary proof that $\Gamma'(1) = -\gamma$, where

(2.14)
$$\gamma := \lim_{n \to \infty} \sum_{k=1}^{n} \frac{1}{k} - \ln n$$

is Euler's constant. This is one of the fundamental numbers of Analysis.

On the other hand, differentiating (2.1) produces

(2.15)
$$\int_0^\infty x^{a-1} e^{-\mu x} \left(\ln x\right)^n \, dx = \left(\frac{\partial}{\partial a}\right)^n \left[\mu^{-a} \Gamma(a)\right]$$

that appears as 4.358.5 in [2]. Using Leibnitz's differentiation formula we obtain

(2.16)
$$\int_0^\infty x^{a-1} e^{-\mu x} \left(\ln x\right)^n \, dx = \mu^{-a} \sum_{k=0}^n (-1)^k \binom{n}{k} \left(\ln \mu\right)^k \Gamma^{(n-k)}(a).$$

In the special case a = 1 we obtain

(2.17)
$$\int_0^\infty e^{-\mu x} (\ln x)^n \, dx = \frac{1}{\mu} \sum_{k=0}^n (-1)^k \binom{n}{k} (\ln \mu)^k \Gamma^{(n-k)}(1).$$

The cases n = 1, 2, 3 appear as **4.331.1**, **4.335.1** and **4.335.3** respectively.

In order to obtain analytic expressions for the terms $\Gamma^{(n)}(1)$, it is convenient to introduce the *polygamma function*

(2.18)
$$\psi(x) = \frac{d}{dx} \ln \Gamma(x).$$

The derivatives of ψ satisfy

(2.19)
$$\psi^{(n)}(x) = (-1)^{n+1} n! \zeta(n+1, x),$$

where

(2.20)
$$\zeta(z,q) = \sum_{n=0}^{\infty} \frac{1}{(n+q)^z}$$

is the Hurwitz zeta function. In particular this gives

(2.21)
$$\psi^{(n)}(1) = (-1)^{n+1} n! \zeta(n+1).$$

The values of $\Gamma^{(n)}(1)$ can now be computed by recurrence via

(2.22)
$$\Gamma^{(n+1)}(1) = \sum_{k=0}^{n} \binom{n}{k} \Gamma^{(k)}(1) \psi^{(n-k)}(1),$$

obtained by differentiating $\Gamma'(x) = \psi(x)\Gamma(x)$.

Using (2.19) the reader will be able to check the first few cases of (2.15), we employ the notation $\delta = \psi(a) - \ln \mu$:

$$\begin{aligned} \int_{0}^{\infty} x^{a-1} e^{-\mu x} \ln^{2} x \, dx &= \frac{\Gamma(a)}{\mu^{a}} \left\{ \delta^{2} + \zeta(2, a) \right\}, \\ \int_{0}^{\infty} x^{a-1} e^{-\mu x} \ln^{3} x \, dx &= \frac{\Gamma(a)}{\mu^{a}} \left\{ \delta^{3} + 3\zeta(2, a)\delta - 2\zeta(3, a) \right\}, \\ \int_{0}^{\infty} x^{a-1} e^{-\mu x} \ln^{4} x \, dx &= \frac{\Gamma(a)}{\mu^{a}} \left\{ \delta^{4} + 6\zeta(2, a)\delta^{2} - 8\zeta(3, a)\delta + 3\zeta^{2}(2, a) + 6\zeta(4, a) \right\} \end{aligned}$$

These appear as 4.358.2, 4.358.3 and 4.358.4, respectively.

3. Elementary changes of variables

The use of appropriate changes of variables yields, from the basic definition (1.1), the evaluation of more complicated definite integrals. For example, let $x = t^b$ to obtain, with c = ab - 1,

(3.1)
$$\int_0^\infty t^c \exp(-t^b) dt = \frac{1}{b} \Gamma\left(\frac{c+1}{b}\right)$$

The special case a = 1/b, that is c = 0, is

(3.2)
$$\int_0^\infty \exp(-t^b) dt = \frac{1}{b} \Gamma\left(\frac{1}{b}\right),$$

that appears as **3.326.1** in [2]. The special case b = 2 is the normal integral (1.4). We can now introduce an extra parameter via $t = s^{1/b}x$. This produces

(3.3)
$$\int_0^\infty x^m \exp(-sx^b) \, dx = \frac{\Gamma(a)}{s^a b}$$

with m = ab-1. This formula appears (at least) three times in [2]: **3.326.2**, **3.462.9** and **3.478.1**. Moreover, the case s = 1, c = (m + 1/2)n - 1 and b = n appears as **3.473**:

(3.4)
$$\int_0^\infty \exp(-x^n) x^{\left(m+\frac{1}{2}\right)n-1} \, dx = \frac{(2m-1)!!}{2^m n} \sqrt{\pi}.$$

The form given here can be established using (1.6).

Differentiating (3.3) with respect to the parameter m (keeping in mind that a = (m+1)/b), yields

(3.5)
$$\int_0^\infty x^m e^{-sx^b} \ln x \, dx = \frac{\Gamma(a)}{b^2 s^a} \left[\psi(a) - \ln s \right].$$

In particular, if b = 1 we obtain

(3.6)
$$\int_0^\infty x^m e^{-sx} \ln x \, dx = \frac{\Gamma(m+1)}{s^{m+1}} \left[\psi(m+1) - \ln s \right].$$

The case m = 0 and b = 2 gives

(3.7)
$$\int_0^\infty e^{-sx^2} \ln x \, dx = -\frac{\sqrt{\pi}}{4\sqrt{s}} \left(\gamma + \ln 4s\right),$$

where we have used $\psi(1/2) = -\gamma - 2 \ln 2$. This appears as **4.333** in [2].

An interesting example is b = m = 2. Using the values

(3.8)
$$\Gamma\left(\frac{3}{2}\right) = \sqrt{\pi}/2 \text{ and } \psi\left(\frac{3}{2}\right) = 2 - 2\ln 2 - \gamma$$

the expression (3.5) yields

(3.9)
$$\int_0^\infty x^2 e^{-sx^2} \ln x \, dx = \frac{1}{8s} (2 - \ln 4s - \gamma) \sqrt{\frac{\pi}{s}}.$$

The values of ψ at half-integers follow directly from (1.5). Formula (3.9) appears as **4.355.1** in [2]. Using (3.5) it is easy to verify

(3.10)
$$\int_0^\infty (\mu x^2 - n) x^{2n-1} e^{-\mu x^2} \ln x \, dx = \frac{(n-1)!}{4\mu^n},$$

and

(3.11)
$$\int_0^\infty (2\mu x^2 - 2n - 1) x^{2n} e^{-\mu x^2} \ln x \, dx = \frac{(2n - 1)!!}{2(2\mu)^n} \sqrt{\frac{\pi}{\mu}},$$

for $n \in \mathbb{N}$. These appear as, respectively, **4.355.3** and **4.355.4** in [2]. The term (2n-1)!! is the semi-factorial defined by

(3.12)
$$(2n-1)!! = (2n-1)(2n-3)\cdots 5\cdot 3\cdot 1.$$

Finally, formula **4.369.1** in [2]

(3.13)
$$\int_0^\infty x^{a-1} e^{-\mu x} \left[\psi(a) - \ln x \right] \, dx = \frac{\Gamma(a) \, \ln \mu}{\mu^a}$$

can be established by the methods developed here. The more ambitious reader will check that

$$\int_0^\infty x^{n-1} e^{-\mu x} \left\{ \left[\ln x - \frac{1}{2} \psi(n) \right]^2 - \frac{1}{2} \psi'(n) \right\} \, dx = \frac{(n-1)!}{\mu^n} \left\{ \left[\ln \mu - \frac{1}{2} \psi(n) \right]^2 + \frac{1}{2} \psi'(n) \right\}$$

that is 4.369.2 in [2].

We can also write (3.5) in the exponential scale to obtain

(3.14)
$$\int_{-\infty}^{\infty} t e^{mt} \exp\left(-s e^{bt}\right) dt = \frac{\Gamma(m/b)}{b^2 s^{m/b}} \left(\psi\left(\frac{m}{b}\right) - \ln s\right).$$

The special case b = m = 1 produces

(3.15)
$$\int_{-\infty}^{\infty} te^t \exp\left(-se^t\right) dt = -\frac{(\gamma + \ln s)}{s}$$

that appears as 3.481.1. The second special case, appearing as 3.481.2, is b = 2, m = 1, that yields

(3.16)
$$\int_{-\infty}^{\infty} te^t \exp\left(-se^{2t}\right) dt = -\frac{\sqrt{\pi}\left(\gamma + \ln 4s\right)}{4\sqrt{s}}.$$

This uses the value $\psi(1/2) = -(\gamma + 2 \ln 2)$.

There are many other possible changes of variables that lead to interesting evaluations. We conclude this section with one more: let $x = e^t$ to convert (1.1) into

(3.17)
$$\int_{-\infty}^{\infty} \exp\left(-e^x\right) e^{ax} dx = \Gamma(a).$$

This is **3.328** in [2].

As usual one should not prejudge the difficulty of a problem: the example 3.471.3 states that

(3.18)
$$\int_0^a x^{-\mu-1} (a-x)^{\mu-1} e^{-\beta/x} \, dx = \beta^{-\mu} a^{\mu-1} \Gamma(\mu) \, \exp\left(-\frac{\beta}{a}\right).$$

This can be reduced to the basic formula for the gamma function. Indeed, the change of variables $t = \beta/x$ produces

(3.19)
$$I = \beta^{-\mu} a^{\mu-1} \int_{\beta/a}^{\infty} \left(t - \beta/a\right)^{\mu-1} e^{-t} dt.$$

Now let $y = t - \beta/a$ to complete the evaluation. The table [2] writes μ instead of a: it seems to be a bad idea to have μ and u in the same formula, it leads to typographical errors that should be avoided.

Another simple change of variables gives the evaluation of **3.324.2**:

(3.20)
$$\int_{-\infty}^{\infty} e^{-(x-b/x)^{2n}} dx = \frac{1}{n} \Gamma\left(\frac{1}{2n}\right).$$

The symmetry yields

(3.21)
$$I = 2 \int_0^\infty e^{-(x-b/x)^{2n}} dx.$$

The change of variables t = b/x yields, using b > 0,

(3.22)
$$I = 2b \int_0^\infty e^{-(t-b/t)^{2n}} \frac{dt}{t^2}$$

The average of these forms produces

(3.23)
$$I = \int_0^\infty e^{-(x-b/x)^{2n}} \left(1 + \frac{b}{x^2}\right) dx$$

Finally, the change of variables u = x - b/x gives the result. Indeed, let u = x - b/x and observe that u is increasing when b > 0. This restriction is missing in the table. Then we get

(3.24)
$$I = 2 \int_0^\infty e^{-u^{2n}} du.$$

This can now be evaluated via $v = u^{2n}$.

Note. In the case b < 0 the change of variables u = x - b/x has an inverse with two branches, splitting at $x = \sqrt{-b}$. Then we write

(3.25)
$$I := 2 \int_0^\infty e^{-(x-b/x)^{2n}} dx$$
$$= 2 \int_0^{\sqrt{-b}} e^{-(x-b/x)^{2n}} dx + 2 \int_{\sqrt{-b}}^\infty e^{-(x-b/x)^{2n}} dx.$$

The change of variables u = x - b/x is now used in each of the integrals to produce

(3.26)
$$I = 2 \int_{2\sqrt{-b}}^{\infty} \frac{u \exp(-u^{2n}) du}{\sqrt{u^2 + 4b}}$$

The change of variables $z = \sqrt{u^2 + 4b}$ yields

(3.27)
$$I = 2 \int_0^\infty \exp\left(-(z^2 - 4b)^n\right).$$

We are unable to simplify it any further.

4. The logarithmic scale

Euler prefered the version

(4.1)
$$\Gamma(a) = \int_0^1 \left(\ln\frac{1}{u}\right)^{a-1} du$$

We will write this as

(4.2)
$$\Gamma(a) = \int_0^1 \left(-\ln u\right)^{a-1} \, du$$

for better spacing. Many of the evaluations in [2] follow this form. Section 4.215 in [2] consists of four examples: the first one, 4.215.1 is (4.1) itself. The second one, labeled 4.215.2 and written as

(4.3)
$$\int_0^1 \frac{dx}{\left(-\ln x\right)^{\mu}} = \frac{\pi}{\Gamma(\mu)} \operatorname{cosec} \,\mu\pi,$$

is evaluated as $\Gamma(1-\mu)$ by (4.1). The identity

(4.4)
$$\Gamma(\mu)\Gamma(1-\mu) = \frac{\pi}{\sin \pi \mu}$$

yields the given form. The reader will find in [1] a proof of this identity. The section concludes with the special values

(4.5)
$$\int_{0}^{1} \sqrt{-\ln x} \, dx = \frac{\sqrt{\pi}}{2}$$

as 4.215.3 and 4.215.4:

(4.6)
$$\int_0^1 \frac{dx}{\sqrt{-\ln x}} = \sqrt{\pi}$$

Both of them are special cases of (4.1).

The reader should check the evaluations 4.269.3:

(4.7)
$$\int_0^1 x^{p-1} \sqrt{-\ln x} \, dx = \frac{1}{2} \sqrt{\frac{\pi}{p^3}},$$

and 4.269.4:

(4.8)
$$\int_{0}^{1} \frac{x^{p-1} dx}{\sqrt{-\ln x}} = \sqrt{\frac{\pi}{p}}$$

by reducing them to (2.1). Also 4.272.5, 4.272.6 and 4.272.7

(4.9)
$$\int_{1}^{\infty} (\ln x)^{p} \frac{dx}{x^{2}} = \Gamma(1+p),$$
$$\int_{0}^{1} (-\ln x)^{\mu-1} x^{\nu-1} dx = \frac{1}{\nu^{\mu}} \Gamma(\mu),$$
$$\int_{0}^{1} (-\ln x)^{n-\frac{1}{2}} x^{\nu-1} dx = \frac{(2n-1)!!}{(2\nu)^{n}} \sqrt{\frac{\pi}{\nu}},$$

can be evaluated directly in terms of the gamma function.

Differentiating (4.1) with respect to a yields 4.229.4 in [2]:

(4.10)
$$\int_0^1 \ln(-\ln x) (-\ln x)^{a-1} dx = \Gamma'(a) = \psi(a)\Gamma(a),$$

with $\psi(a)$ defined in (2.18). The special case a = 1 is **4.229.1**:

(4.11)
$$\int_{0}^{1} \ln(-\ln x) \, dx = -\gamma,$$

and

(4.12)
$$\int_0^1 \ln(-\ln x) \, \frac{dx}{\sqrt{-\ln x}} = -(\gamma + 2\ln 2)\sqrt{\pi},$$

that appears as **4.229.3**, is obtained by using the values $\Gamma\left(\frac{1}{2}\right) = \sqrt{\pi}$ and $\psi\left(\frac{1}{2}\right) = -(\gamma + 2\ln 2)$.

The same type of arguments confirms 4.325.11

(4.13)
$$\int_0^1 \ln(-\ln x) \, \frac{x^{\mu-1} \, dx}{\sqrt{-\ln x}} = -(\gamma + \ln 4\mu) \sqrt{\frac{\pi}{\mu}}$$

and 4.325.12:

(4.14)
$$\int_0^1 \ln(-\ln x) \ (-\ln x)^{\mu-1} \ x^{\nu-1} \ dx = \frac{1}{\nu^{\mu}} \Gamma(\mu) \left[\psi(\mu) - \ln \nu \right].$$

In particular, when $\mu = 1$ we obtain 4.325.8:

(4.15)
$$\int_0^1 \ln(-\ln x) \, x^{\nu-1} \, dx = -\frac{1}{\nu} \left(\gamma + \ln \nu\right).$$

5. The presence of fake parameters

There are many formulas in [2] that contain parameters. For example, 3.461.2 states that

(5.1)
$$\int_0^\infty x^{2n} e^{-px^2} dx = \frac{(2n-1)!!}{2(2p)^n} \sqrt{\frac{\pi}{p}}$$

and **3.461.3** states that

(5.2)
$$\int_0^\infty x^{2n+1} e^{-px^2} dx = \frac{n!}{2p^{n+1}}.$$

8

The change of variables $t = px^2$ eliminates the *fake* parameter *p* and reduces **3.461.2** to

(5.3)
$$\int_{0}^{\infty} t^{n-\frac{1}{2}} e^{-t} dt = \frac{(2n-1)!!}{2^{n}} \sqrt{\pi}$$

and **3.461.3** to

(5.4)
$$\int_0^\infty t^n e^{-t} dt = n!$$

These are now evaluated by identifying them with $\Gamma(n+\frac{1}{2})$ and $\Gamma(n+1)$, respectively.

A second way to introduce fake parameters is to shift the integral (2.1) via s = t + b to produce

(5.5)
$$\int_{b}^{\infty} (s-b)^{a-1} e^{-s\mu} \, ds = \mu^{-a} e^{-\mu b} \Gamma(a).$$

This appears as 3.382.2 in [2].

There are many more integrals in [2] that can be reduced to the gamma function. These will be reported in a future publication.

Acknowledgments. The author wishes to thank Luis Medina for a careful reading of an earlier version of the paper. The partial support of NSF-DMS 0409968 is also acknowledged.

References

- G. Boros and V. Moll. Irresistible Integrals. Cambridge University Press, New York, 1st edition, 2004.
- [2] I. S. Gradshteyn and I. M. Ryzhik. *Table of Integrals, Series, and Products.* Edited by A. Jeffrey and D. Zwillinger. Academic Press, New York, 6th edition, 2000.

DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LA 70118 E-mail address: vhm@math.tulane.edu