Summary

1 Dirichlet Beta Generating Functions

sech $x, \sec x$ and $\csc x$ can be expanded to Fourier series and Taylor series. And if the termwise higher order integration of these is carried out, Dirichlet Beta at a natural number are obtained.
Where, these are automorphisms which are expressed by lower betas. However, in this chapter, we stop those so far.
The work that obtain the non-automorphism formulas by removing lower betas from these is done in the next chapter
" 2 Formulas for Dirichlet Beta " .
In this chapter, we obtain the following polynomials from the beta generating functions of each family of sech, sec and csc . Where, Dirichlet Beta and Dirichlet Lambda are as follows.

$$
\beta(x)=\sum_{r=0}^{\infty} \frac{(-1)^{r}}{(2 r+1)^{x}}, \lambda(x)=\sum_{r=1}^{\infty} \frac{1}{(2 r-1)^{x}}
$$

Bernoulli numbers and Euler numbers are as follows.

$$
\begin{array}{ll}
B_{0}=1, & B_{2}=1 / 6, \\
E_{0}=-1 / 30, & B_{6}=1 / 42, B_{8}=-1 / 30, \cdots \\
E_{0}=1, & E_{2}=-1,
\end{array} E_{4}=5, \quad E_{6}=-61, \quad E_{8}=1385, \cdots .
$$

Harmonic number is $H_{s}=\sum_{t=1}^{s} 1 / t=\psi(1+s)+\gamma$

$$
\begin{aligned}
& \beta(n)=\sum_{r=0}^{\infty} \frac{(-1)^{r} e^{-(2 r+1) x}}{(2 r+1)^{n}}-\frac{(-1)^{n}}{2} \sum_{r=0}^{\infty} \frac{E_{2 r} x^{2 r+n}}{(2 r+n)!}-\sum_{s=1}^{n-1} \frac{(-1)^{s} x^{s}}{s!} \beta(n-s) \\
& \sum_{r=0}^{\infty} \frac{(-1)^{r} \sin \{(2 r+1) x\}}{(2 r+1)^{2 n+1}}-\frac{(-1)^{n}}{2} \sum_{r=0}^{\infty} \frac{\left|E_{2 r}\right| x^{2 n+1+2 r}}{(2 n+1+2 r)!}=\sum_{s=0}^{n-1} \frac{(-1)^{s} x^{2 s+1}}{(2 s+1)!} \beta(2 n-2 s) \\
& \sum_{r=0}^{\infty} \frac{(-1)^{r} \cos \{(2 r+1) x\}}{(2 r+1)^{2 n}}-\frac{(-1)^{n}}{2} \sum_{r=0}^{\infty} \frac{\left|E_{2 r}\right| x^{2 n+2 r}}{(2 n+2 r)!}=\sum_{s=0}^{n-1} \frac{(-1)^{s} x^{2 s}}{(2 s)!} \beta(2 n-2 s) \\
& \sum_{r=0}^{\infty} \frac{(-1)^{r} \cos \{(2 r+1) x\}}{(2 r+1)^{2 n+1}}=\sum_{s=0}^{n} \frac{(-1)^{s} x^{2 s}}{(2 s)!} \beta(2 n+1-2 s) \\
& \sum_{r=0}^{\infty} \frac{(-1)^{r} \sin \{(2 r+1) x\}}{(2 r+1)^{2 n}}=\sum_{s=0}^{n-1} \frac{(-1)^{s} x^{2 s+1}}{(2 s+1)!} \beta(2 n-1-2 s) \\
& \beta(2 n)=\frac{(-1)^{n}}{2(2 n-1)!}\left(\frac{\pi}{2}\right)^{2 n-1}\left(\log \frac{\pi}{4}-H_{2 n-1}\right) \\
& \quad+\frac{(-1)^{n}}{2} \sum_{r=1}^{\infty} \frac{\left(2^{2 r}-2\right)\left|B_{2 r}\right|}{2 r(2 r+2 n-1)!}\left(\frac{\pi}{2}\right)^{2 n-1+2 r} \\
& -\sum_{s=1}^{n-1} \frac{(-1)^{s}}{(2 s-1)!}\left(\frac{\pi}{2}\right)^{2 s-1} \lambda(2 n+1-2 s)
\end{aligned}
$$

Furthermore, if the termwise higher order differentiation of the Fourier series of each family of sech and sec are carried out, the following expressions are obtained.

$$
\begin{array}{rlrl}
\beta(-n) & =\frac{1}{2^{n+1}} \sum_{r=0}^{n}(-1)^{r}{ }_{n} K_{r} & n=1,2,3, \cdots \\
\beta(-2 n) & =\frac{1}{2^{2 n+1}} \sum_{r=0}^{2 n}(-1)^{r}{ }_{2 n} K_{r} & & n=1,2,3, \cdots \\
& =\frac{E_{2 n}}{2 n} & & n=1,2,3, \cdots
\end{array}
$$

Where, ${ }_{n} K_{r}$ is a kind of Eulderian Number and is defined as follows.

$$
{ }_{n} K_{r}=\sum_{k=0}^{r}(-1)^{k}\binom{n+1}{k}(2 r+1-2 k)^{n} \quad n=1,2,3, \cdots
$$

2 Formulas for Dirichlet Beta

Here, removing the lower betas from the the automorphism formulas in the previous chapter, we obtain the following non-automorphism formulas. Where, Bernoulli numbers and Euler numbers are as follows.

$$
\begin{array}{lll}
B_{0}=1, & B_{2}=1 / 6, & B_{4}=-1 / 30, \\
E_{0}=1, & E_{6}=1 / 42, & B_{8}=-1 / 30, \cdots \\
& E_{4}=5, & E_{6}=-61,
\end{array} E_{8}=1385, \cdots,
$$

And, gamma function and incomplete gamma function were as follows.

$$
\Gamma(p)=\int_{0}^{\infty} t^{p-1} e^{-t} d t \quad, \quad \Gamma(p, x)=\int_{x}^{\infty} t^{p-1} e^{-t} d t
$$

2.1 Formulas for Beta at natural number

For $0<x \leq \pi / 2$,

$$
\beta(n)=\sum_{r=0}^{\infty} \sum_{s=0}^{n-1} \frac{(2 r+1)^{s} X^{s}}{s!} \frac{(-1)^{r} e^{-(2 r+1) x}}{(2 r+1)^{n}}+\frac{x^{n}}{2} \sum_{r=0}^{\infty}\binom{-n}{2 r} \frac{E_{2 r} x^{2 r}}{(n+2 r)!}
$$

Especially,

$$
\begin{aligned}
& \beta(n)=\sum_{r=0}^{\infty} \sum_{s=0}^{n-1} \frac{(2 r+1)^{s}}{s!2^{s}} \frac{(-1)^{r} e^{-(r+1 / 2)}}{(2 r+1)^{n}}+\frac{1}{2^{n+1}} \sum_{r=0}^{\infty}\binom{-n}{2 r} \frac{E_{2 r}}{(n+2 r)!2^{2 r}} \\
& \beta(n)=\sum_{r=0}^{\infty} \sum_{s=0}^{n-1} \frac{(2 r+1)^{s}}{s!} \frac{(-1)^{r} e^{-(2 r+1)}}{(2 r+1)^{n}}+\frac{1}{2} \sum_{r=0}^{\infty}\binom{-n}{2 r} \frac{E_{2 r}}{(n+2 r)!}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \beta(4)=\sum_{r=0}^{\infty}\left\{1+\frac{2 r+1}{1!2^{1}}+\frac{(2 r+1)^{2}}{2!2^{2}}+\frac{(2 r+1)^{3}}{3!2^{3}}\right\} \frac{(-1)^{r} e^{-r-\frac{1}{2}}}{(2 r+1)^{4}}+\frac{1}{2^{5}} \sum_{r=0}^{\infty}\binom{-4}{2 r} \frac{E_{2 r}}{(4+2 r)!2^{2 r}} \\
& \beta(4)=\sum_{r=0}^{\infty}\left\{1+\frac{2 r+1}{1!}+\frac{(2 r+1)^{2}}{2!}+\frac{(2 r+1)^{3}}{3!}\right\} \frac{(-1)^{r} e^{-2 r-1}}{(2 r+1)^{4}}+\frac{1}{2} \sum_{r=0}^{\infty}\binom{-4}{2 r} \frac{E_{2 r}}{(4+2 r)!}
\end{aligned}
$$

2.2 Formulas for Beta at even number

For $0<x \leq \pi / 2$,

$$
\begin{aligned}
& \beta(2 n)= \sum_{r=0}^{\infty} \sum_{s=0}^{n-1} \frac{\left|E_{2 s}\right|\{(2 r+1) x\}^{2 s}}{(2 s)!} \frac{(-1)^{r} \cos \{(2 r+1) x\}}{(2 r+1)^{2 n}} \\
& \quad-\frac{(-1)^{n}}{2} \sum_{r=0}^{\infty}\left\{\sum_{s=0}^{n-1}\binom{2 n+2 r}{2 s} E_{2 s}\right\} \frac{\left|E_{2 r}\right| x^{2 n+2 r}}{(2 n+2 r)!} \\
& \beta(2 n)=-\frac{1}{x} \sum_{r=1}^{\infty} \sum_{s=0}^{n-1} \frac{(-1)^{s} B_{2 s}\left(2^{2 s}-2\right)\{(2 r+1) x\}^{2 s}}{(2 s)!} \frac{(-1)^{r} \sin \{(2 r+1) x\}}{(2 r+1)^{2 n+1}} \\
& \quad+(-1)^{n} \frac{x^{2 n}}{2} \sum_{r=1}^{\infty}\left\{\sum_{s=0}^{n-1} \frac{\left(2^{2 s}-2\right) B_{2 s}}{(2 s)!(2 n+1+2 r-2 s)!}\right\} \frac{\left|E_{2 r}\right| x^{2 r}}{2 r}
\end{aligned}
$$

Especially,

$$
\beta(2 n)=\frac{(-1)^{n-1}}{2} \sum_{r=0}^{\infty}\left\{\sum_{s=0}^{n-1}\binom{2 n+2 r}{2 s} E_{2 s}\right\} \frac{\left|E_{2 r}\right|}{(2 n+2 r)!}\left(\frac{\pi}{2}\right)^{2 n+2 r}
$$

Example

$$
\beta(4)=-\frac{1}{2} \sum_{r=0}^{\infty}\left\{\binom{4+2 r}{0} E_{0}+\binom{4+2 r}{2} E_{2}\right\} \frac{\left|E_{2 r}\right|}{(4+2 r)!}\left(\frac{\pi}{2}\right)^{4+2 r}
$$

$$
\beta(6)=\frac{1}{2} \sum_{r=0}^{\infty}\left\{\binom{6+2 r}{0} E_{0}+\binom{6+2 r}{2} E_{2}+\binom{6+2 r}{4} E_{4}\right\} \frac{\left|E_{2 r}\right|}{(6+2 r)!}\left(\frac{\pi}{2}\right)^{6+2 r}
$$

2.3 Formulas for Beta at odd number

For $0<x \leq \pi / 2$,

$$
\begin{aligned}
& \beta(2 n-1)=\sum_{r=0}^{\infty} \sum_{s=0}^{n-1} \frac{\left|E_{2 s}\right|\{(2 r+1) x\}^{2 s}}{(2 s)!} \frac{(-1)^{r} \cos \{(2 r+1) x\}}{(2 r+1)^{2 n-1}} \\
& \beta(2 n-1)=-\frac{1}{x} \sum_{r=0}^{\infty} \sum_{s=0}^{n-1} \frac{(-1)^{s} B_{2 s}\left(2^{2 s}-2\right)\{(2 r+1) x\}^{2 s}}{(2 s)!} \frac{(-1)^{r} \sin \{(2 r+1) x\}}{(2 r+1)^{2 n}}
\end{aligned}
$$

Especially,

$$
\beta(2 n-1)=\frac{\pi}{4} \frac{\left|E_{2 n-2}\right|}{(2 n-2)!}\left(\frac{\pi}{2}\right)^{2 n-2}
$$

2.4 Formulas for Beta at complex number

When p is a complex number such that $p \neq 1,0,-1,-2, \cdots$,
For $x=u+v i$ s.t. $0<|x| \leqq 2 \pi, u \geqq 0$,

$$
\beta(p)=\sum_{r=0}^{\infty} \frac{\Gamma p,(2 r+1) x\}}{\Gamma(p)} \frac{(-1)^{r}}{(2 r+1)^{p}}+\frac{x^{p}}{2} \sum_{r=0}^{\infty}\binom{-p}{2 r} \frac{E_{2 r} x^{2 r}}{\Gamma(p+1+2 r)}
$$

Especially,

$$
\beta(p)=\sum_{r=0}^{\infty} \frac{\Gamma(p, 2 r+1)}{\Gamma(p)} \frac{(-1)^{r}}{(2 r+1)^{p}}+\frac{1}{2} \sum_{r=0}^{\infty}\binom{-p}{2 r} \frac{E_{2 r}}{\Gamma(p+1+2 r)}
$$

3 Global definition of Dirichlet Beta and Generalized Euler Number
Diriclet beta function is defined on the whole complex plane with patches as follows.

$$
\beta(p)= \begin{cases}\sum_{r=1}^{\infty} \frac{(-1)^{r-1}}{(2 r-1)^{p}} & \operatorname{Re}(p) \geqq 0 \\ \left(\frac{2}{\pi}\right)^{1-p} \cos \frac{p \pi}{2} \Gamma(1-p) \sum_{r=1}^{\infty} \frac{(-1)^{r-1}}{(2 r-1)^{1-p}} & \operatorname{Re}(p)<0\end{cases}
$$

This is inconvenient. so, we focus on the following sequence.

$$
{ }_{n} B_{r}=\sum_{s=0}^{r}(-1)^{r-s}{ }_{r} C_{s}\left(s-\frac{1}{2}\right)^{n} \quad r=0,1,2, \cdots, n
$$

Using this sequence, we can define Diriclet beta function on the whole complex plane as follows.

Definition 3.2.1

$$
\beta(p)=\sum_{r=1}^{\infty} \frac{1}{2^{r+1}} \sum_{s=1}^{r}(-1)^{s-1}\binom{r}{s}(2 s-1)^{-p}
$$

Furthermore, by using this sequence, Euler Number can be defined on the whole complex plane.
Definition 3.3.1

$$
E_{p}=\sum_{r=1}^{\infty} \frac{1}{2^{r}} \sum_{s=1}^{r}(-1)^{s-1}\binom{r}{s}(2 s-1)^{p}
$$

4 Completed Dirichlet Beta

In 4.1, symmetric functional equations are derived from functional equations.

Formula 4.1.1

$$
\begin{aligned}
& \left(\frac{2}{\sqrt{\pi}}\right)^{1+z} \Gamma\left(\frac{1}{2}+\frac{z}{2}\right) \beta(z)=\left(\frac{2}{\sqrt{\pi}}\right)^{2-z} \Gamma\left(\frac{1}{2}+\frac{1-z}{2}\right) \beta(1-z) \\
& \left(\frac{2}{\sqrt{\pi}}\right)^{\frac{3}{2}+z} \Gamma\left(\frac{3}{4}+\frac{z}{2}\right) \beta\left(\frac{1}{2}+z\right)=\left(\frac{2}{\sqrt{\pi}}\right)^{\frac{3}{2}-z} \Gamma\left(\frac{3}{4}-\frac{z}{2}\right) \beta\left(\frac{1}{2}-z\right)
\end{aligned}
$$

In 4.2, we define the completed Dirichlet beta functions $\omega(z), \Omega(z)$ as follows, respectively.

$$
\begin{aligned}
& \omega(z)=\left(\frac{2}{\sqrt{\pi}}\right)^{1+z} \Gamma\left(\frac{1+z}{2}\right) \beta(z) \\
& \Omega(z)=\left(\frac{2}{\sqrt{\pi}}\right)^{\frac{3}{2}+z} \Gamma\left\{\frac{1}{2}\left(\frac{3}{2}+z\right)\right\} \beta\left(\frac{1}{2}+z\right)
\end{aligned}
$$

Then, Formula 4.1.1 is expressed as follows.

$$
\begin{aligned}
& \omega(z)=\omega(1-z) \\
& \Omega(z)=\Omega(-z)
\end{aligned}
$$

From the latter, we can see that $\Omega(z)$ is an even function. Therefore, $\Omega(z)$ has the same properties as completed Riemann zeta function $\Xi(z)$. (See " 07 Completed Riemann Zeta ".) And, as in $\Xi(z)$, the following theorem holds.

Theorem 4.2.1

If Dirichlet beta function $\beta(z)$ has a non-trivial zero whose real part is not $1 / 2$, the one set consists of the following four.

$$
1 / 2+\alpha_{1} \pm i \delta_{1} \quad, \quad 1 / 2-\alpha_{1} \pm i \delta_{1} \quad\left(0<\alpha_{1}<1 / 2\right)
$$

05 Factorization of Completed Dirichlet Beta

In 5.1, the following Hadamard product is derived.

Formula 5.1.1

Let completed beta function be as follows.

$$
\omega(z)=\left(\frac{2}{\sqrt{\pi}}\right)^{1+z} \Gamma\left(\frac{1+z}{2}\right) \beta(z)
$$

When non-trivial zeros of $\beta(z)$ are $z_{k}=x_{k} \pm i y_{k} \quad k=1,2,3, \cdots$ and γ is Euler-Mascheroni constant, $\omega(z)$ is expressed by the Hadamard product as follows.

$$
\begin{aligned}
& \omega(z)=e^{\left(\frac{3 \log \pi}{2}-\frac{\gamma}{2}-\log 2-4 \log \Gamma\left(\frac{3}{4}\right)\right) z} \prod_{k=1}^{\infty}\left(1-\frac{z}{z_{k}}\right) e^{\frac{z}{z_{k}}} \\
& \omega(z)=e^{\left(\frac{3 \log \pi}{2}-\frac{\gamma}{2}-\log 2-4 \log \Gamma\left(\frac{3}{4}\right)\right) z} \prod_{n=1}^{\infty}\left(1-\frac{2 x_{n} z}{x_{n}^{2}+y_{n}^{2}}+\frac{z^{2}}{x_{n}^{2}+y_{n}^{2}}\right) e^{\frac{2 x_{n} z}{x_{n}^{2}+y_{n}^{2}}}
\end{aligned}
$$

And, the following special values are obtained.

$$
\prod_{n=1}^{\infty}\left(1-\frac{2 x_{n}-1}{x_{n}^{2}+y_{n}^{2}}\right) e^{\frac{2 x_{n}}{x_{n}^{2}+y_{n}^{2}}}=e^{4 \log \Gamma\left(\frac{3}{4}\right)+\frac{\gamma}{2}+\log 2-\frac{3 \log \pi}{2}}=1.08088915 \cdots
$$

$$
\prod_{n=1}^{\infty}\left\{1-\frac{1}{\left(x_{n}+i y_{n}\right)^{2}}\right\}\left\{1-\frac{1}{\left(x_{n}-i y_{n}\right)^{2}}\right\}=\omega(-1)=1.16624361 \cdots
$$

In 5.2, we consider how the formulas in the previous section are expressed when non-trivial zeros whose real part is $1 / 2$ and non-trivial zeros whose real part is not $1 / 2$ are mixed. Then, we obtain the following theorems.

Theorem 5.2.2

Let γ be Euler-Mascheroni constant, non-trivial zeros of Dirichlet beta function are $x_{n}+i y_{n} \quad n=1,2,3, \cdots$. Among them, zeros whose real part is $1 / 2$ are $1 / 2 \pm i y_{r} \quad r=1,2,3, \cdots$ and zeros whose real parts is not $1 / 2$ are $1 / 2 \pm \alpha_{s} \pm i \delta_{s}\left(0<\alpha_{s}<1 / 2\right) \quad s=1,2,3, \cdots$. Then the following expressions hold.

$$
\begin{aligned}
& \prod_{n=1}^{\infty}\left(1-\frac{2 x_{n}-1}{x_{n}^{2}+y_{n}^{2}}\right)=1 \\
& \sum_{n=1}^{\infty} \frac{2 x_{n}}{x_{n}^{2}+y_{n}^{2}}=\sum_{r=1}^{\infty} \frac{1}{1 / 4+y_{r}^{2}}+\sum_{s=1}\left\{\frac{1+2 \alpha_{s}}{\left(1 / 2+\alpha_{s}\right)^{2}+\delta_{s}^{2}}+\frac{1-2 \alpha_{s}}{\left(1 / 2-\alpha_{s}\right)^{2}+\delta_{s}^{2}}\right\} \\
& \sum_{n=1}^{\infty} \frac{2 x_{n}}{x_{n}^{2}+y_{n}^{2}}=4 \log \Gamma\left(\frac{3}{4}\right)+\frac{\gamma}{2}+\log 2-\frac{3 \log \pi}{2}=0.07778398 \cdots
\end{aligned}
$$

Formula 5.2.3 (Special values)

When non-trivial zeros of Dirichlet beta function are $x_{k} \pm i y_{k} \quad k=1,2,3, \cdots$, the following expressions hold.

$$
\begin{aligned}
& \prod_{n=1}^{\infty}\left(1-\frac{1}{x_{n}+i y_{n}}\right)\left(1-\frac{1}{x_{n}-i y_{n}}\right)=1 \\
& \prod_{n=1}^{\infty}\left(1+\frac{1}{x_{n}+i y_{n}}\right)\left(1+\frac{1}{x_{n}-i y_{n}}\right)=\omega(-1)=1.1662436 \cdots
\end{aligned}
$$

Theorem 5.2.4

Let non-trivial zeros of Dirichlet beta function are $x_{n}+i y_{n} \quad n=1,2,3, \cdots$ and γ be Euler-Mascheroni constant. If the following expression holds, non-trivial zeros whose real parts is not $1 / 2$ do not exist.

$$
\sum_{n=1}^{\infty} \frac{1}{1 / 4+y_{n}^{2}}=4 \log \Gamma\left(\frac{3}{4}\right)+\frac{\gamma}{2}+\log 2-\frac{3 \log \pi}{2}=0.07778398 \cdots
$$

Incidentally, when this was calculated using $10000 y_{r}$, both sides coincided with the decimal point 3 digits.

In 5.3 , we show that $\omega(z)$ is factored completely.

Theorem 5.3.1 (Factorization of $\omega(z)$)

Let Dirichlet beta function be $\beta(z)$, the non-trivial zeros are $z_{n}=x_{n} \pm i y_{n} \quad n=1,2,3, \cdots$ and completed beta function be as follows.

$$
\omega(z)=\left(\frac{2}{\sqrt{\pi}}\right)^{1+z} \Gamma\left(\frac{1+z}{2}\right) \beta(z)
$$

Then, $\omega(z)$ is factorized as follows.

$$
\omega(z)=\prod_{n=1}^{\infty}\left(1-\frac{2 x_{n} z}{x_{n}^{2}+y_{n}^{2}}+\frac{z^{2}}{x_{n}^{2}+y_{n}^{2}}\right)
$$

In 5.4 , we first derive the factorization of $\Omega(z)$.

Theorem 5.4.1 (Factorization of $\Omega(z)$)
Let Dirichlet beta function be $\beta(z)$, the non-trivial zeros are $z_{n}=x_{n} \pm i y_{n} \quad n=1,2,3, \cdots$ and completed beta function be as follows.

$$
\Omega(z)=\left(\frac{2}{\sqrt{\pi}}\right)^{\frac{3}{2}+z} \Gamma\left\{\frac{1}{2}\left(\frac{3}{2}+z\right)\right\} \beta\left(\frac{1}{2}+z\right)
$$

Then, $\Omega(\mathrm{z})$ is factorized as follows.

$$
\begin{aligned}
& \Omega(z)=\Omega(0) \prod_{n=1}^{\infty}\left\{1-\frac{2\left(x_{n}-1 / 2\right) z}{\left(x_{n}-1 / 2\right)^{2}+y_{n}^{2}}+\frac{z^{2}}{\left(x_{n}-1 / 2\right)^{2}+y_{n}^{2}}\right\} \\
& \text { Where, } \Omega(0)=\prod_{n=1}^{\infty} \frac{\left(x_{n}-1 / 2\right)^{2}+y_{n}^{2}}{x_{n}^{2}+y_{n}^{2}}=\left(\frac{2}{\sqrt{\pi}}\right)^{3 / 2} \Gamma\left(\frac{3}{4}\right) \beta\left(\frac{1}{2}\right)=0.98071361 \cdots
\end{aligned}
$$

And, using this theorem and Theorem 4.2.1 in the previous section, we obtaine the following theorem.

Theorem 5.4.4

When Dirichlet beta function is $\beta(z)$ and the non-trivial zeros are $z_{n}=x_{n} \pm i y_{n} \quad n=1,2,3, \cdots$,
If the following expression holds, non-trivial zeros whose real parts is not $1 / 2$ do not exist.

$$
\begin{equation*}
\prod_{r=1}^{\infty} \frac{y_{r}^{2}}{1 / 4+y_{r}^{2}}=\left(\frac{2}{\sqrt{\pi}}\right)^{3 / 2} \Gamma\left(\frac{3}{4}\right) \beta\left(\frac{1}{2}\right)=0.98071361 \cdots \tag{0}
\end{equation*}
$$

Incidentally, when this was calculated using $10000 y_{r}$, both sides coincided with the decimal point 4 digits.

06 Zeros on the Critical Line of Dirichlet Beta

In 6.1, substituting $z=0+i y$ for the completed Dirichlet beta $\Omega(z)$,

$$
\Omega_{h}(z)=\left(\frac{2}{\sqrt{\pi}}\right)^{\frac{3}{2}+i y} \Gamma\left\{\frac{1}{2}\left(\frac{3}{2}+i y\right)\right\} \beta\left(\frac{1}{2}+i y\right)
$$

We use this to calculate the zeros on the critical line. However, this function is too small in absolute value and can only find the zeros up to $y=917$.
So we normalize $\Omega_{h}(y)$ and define the following sign function.

$$
\operatorname{sgn}(y)=-\frac{\Omega_{h}(y)}{\left|\Omega_{h}(y)\right|}=-\left(\frac{2}{\sqrt{\pi}}\right)^{i y} \frac{\Gamma\left\{\frac{1}{2}\left(\frac{3}{2}+i y\right)\right\} \beta\left(\frac{1}{2}+i y\right)}{\left|\Gamma\left\{\frac{1}{2}\left(\frac{3}{2}+i y\right)\right\} \beta\left(\frac{1}{2}+i y\right)\right|}
$$

Using this sign function $\operatorname{sgn}(y)$, we can find the zeros at large y.

In 6.2, multiplying this sign function $\operatorname{sgn}(y)$ by the absolute value of the Dirichlet beta $\beta(1 / 2+i y)$, we obtain a smooth function $B(y)$.

$$
B(y)=\operatorname{sgn}(y)\left|\beta\left(\frac{1}{2}+i y\right)\right|=-\left(\frac{2}{\sqrt{\pi}}\right)^{i y} \frac{\Gamma\left\{\frac{1}{2}\left(\frac{3}{2}+i y\right)\right\}}{\left|\Gamma\left\{\frac{1}{2}\left(\frac{3}{2}+i y\right)\right\}\right|} \beta\left(\frac{1}{2}+i y\right)
$$

Using this $B(y)$ function, we can find the zeros on the critical line of $\beta(z)$ by the intersection of the curve and the y-axis In 6.3, first, a lemma is prepared.

Lemma

When $f(z)$ is a complex function defined on the domain D, the following expression holds.

$$
e^{i \operatorname{Im} \log f(z)}=\frac{f(z)}{|f(z)|}
$$

Applying this lemma to the gamma function in the 6.2 ,

$$
\begin{aligned}
B(y) & =-\left(\frac{2}{\sqrt{\pi}}\right)^{i y} \frac{\Gamma\left\{\frac{1}{2}\left(\frac{3}{2}+i y\right)\right\}}{\left|\Gamma\left\{\frac{1}{2}\left(\frac{3}{2}+i y\right)\right\}\right|} \beta\left(\frac{1}{2}+i y\right) \\
& =-\left(\frac{2}{\sqrt{\pi}}\right)^{i y} e^{i \operatorname{Im} \log \Gamma\left\{\frac{1}{2}\left(\frac{3}{2}+i y\right)\right\}} \beta\left(\frac{1}{2}+i y\right) \\
& =-e^{i\left[\operatorname{Im} \log \Gamma\left\{\frac{1}{2}\left(\frac{3}{2}+i y\right)\right\}-\frac{y}{2} \log \frac{\pi}{4}\right]} \beta\left(\frac{1}{2}+i y\right)
\end{aligned}
$$

From this, we obtain

$$
B(y)=-e^{i \theta(y)} \beta\left(\frac{1}{2}+i y\right) \quad \text { where, } \quad \theta(y)=\operatorname{Im} \log \Gamma\left\{\frac{1}{2}\left(\frac{3}{2}+i y\right)\right\}-\frac{y}{2} \log \frac{\pi}{4}
$$

This is Riemann-Siegel style B function.
2012.04.13
:
2019.03.27 Updated

