Introduction and Preliminaries

This chapter serves two purposes. The first purpose is to prepare the reader for a more systematic development in later chapters of the methods of real analysis through some introductory accounts of a few specific topics. The second purpose is, in view of the possible situation where some readers might not be conversant with basic concepts in elementary abstract analysis, to acquaint them with the fundamentals of abstract analysis. Nevertheless, readers are assumed to have some basic training in rigorous analysis as usually offered by courses in advanced calculus, and to have some acquaintance with the rudiments of linear algebra.

Throughout the book, the field of real numbers and that of complex numbers are denoted, respectively, by \mathbb{R} and \mathbb{C}, while the set of all positive integers and the set of all integers are denoted by \mathbb{N} and \mathbb{Z} respectively.

The standard set-theoretical terminology is assumed; but terminology and notations regarding mappings will now be briefly recalled. If T is a mapping from a set A into a set B (expressed by $T: A \rightarrow B), T(a)$ denotes the element in B which is associated with $a \in A$ under the mapping T; for a subset \mathbf{S} of \mathbf{A}, the set $\{T(x): x \in S\}$ is denoted by $T S$ and is called the image of S under T; thus $T\{a\}=\{T(a)\} . T(a)$ is sometimes simply written as $T a$ if no confusion is possible, and at times, an element a of a set and the set $\{a\}$ consisting of an element are not clearly distinguished as different objects. For example, $T a$ and $T\{a\}$ may not be distinguished and $T a$ is also called the image of a under T. A mapping $T: A \rightarrow B$ is said to be one-to-one or injective if $T a=T a^{\prime}$ leads to $a=a^{\prime}$, and is said to be surjective if $T A=B ; T$ is bijective if it is both injective and surjective. If $T A=B, T$ is also referred to as a mapping from A onto B. Mappings are also called maps. Synonyms for maps are operators and transformations. As usual, a map from a set into \mathbb{R} or \mathbb{C} is called a function.

Some convenient notations for operations on sets are now introduced. Regarding a family $\mathcal{F}=\left\{A_{\alpha}\right\}_{\alpha \in I}$ of sets indexed by an index set I, the union $\bigcup_{\alpha \in I} A_{\alpha}$ is also expressed by $\bigcup \mathcal{F}$; if A and B are sets in a vector space and α a scalar, the set $\{x+y: x \in A, y \in B\}$ is denoted by $A+B$, and the set $\{\alpha x: x \in A\}$ by αA.

1.1 Summability of systems of real numbers

Summability of systems of real numbers is a special case in the theory of integration, to be treated in Chapter 2, but it reveals many essential points of the theory.

For a set S, the family of all nonempty finite subsets of S will be denoted by $F(S)$. Consider now a system $\left\{c_{\alpha}\right\}_{\alpha \in I}$ of real numbers indexed by an index set I. The system $\left\{c_{\alpha}\right\}_{\alpha \in I}$ will be denoted simply by $\left\{c_{\alpha}\right\}$ if the index set I is assumed either explicitly or implicitly. The system is said to be summable if there is $\ell \in \mathbb{R}$, such that for any $\varepsilon>0$ there is $A \in F(I)$, with the property that whenever $B \in F(I)$ and $B \supset A$, then

$$
\begin{equation*}
\left|\sum_{\alpha \in B} c_{\alpha}-\ell\right|<\varepsilon \tag{1.1}
\end{equation*}
$$

Exercise 1.1.1 Show that if ℓ in the preceding definition exists, then it is unique.
If $\left\{c_{\alpha}\right\}$ is summable, the uniquely determined ℓ in the above definition is called the sum of $\left\{c_{\alpha}\right\}$ and is denoted by $\sum_{\alpha \in I} c_{\alpha}$.

Before we go further it is worthwhile remarking that the convergence of the series $\sum_{n=1}^{\infty} c_{n}$ depends on the order $1<2<3<\cdots$ and $\sum_{n \in \mathbb{N}} c_{n}$, if it exists, does not depend on how \mathbb{N} is ordered. Hence $\sum_{n \in \mathbb{N}} c_{n}$ may not exist while $\sum_{n=1}^{\infty} c_{n}$ exists. We will come back to this remark in Exercise 1.1.5.

Theorem 1.1.1 If $\left\{c_{\alpha}^{(1)}\right\}_{\alpha \in I}$ and $\left\{c_{\alpha}^{(2)}\right\}_{\alpha \in I}$ are summable, then so is $\left\{a c_{\alpha}^{(1)}+b c_{\alpha}^{(2)}\right\}_{\alpha \in I}$ for fixed real numbers a and b, and

$$
\sum_{\alpha \in I}\left(a c_{\alpha}^{(1)}+b c_{\alpha}^{(2)}\right)=a \sum_{\alpha \in I} c_{\alpha}^{(1)}+b \sum_{\alpha \in I} c_{\alpha}^{(2)} .
$$

Proof We may assume that $|a|+|b|>0$, and for convenience put $\sum_{\alpha \in I} c_{\alpha}^{(1)}=l_{1}$, $\sum_{\alpha \in I} c_{\alpha}^{(2)}=l_{2}$. Let $\varepsilon>0$ be given, there are A_{1} and A_{2} in $F(I)$ such that when B_{1}, B_{2} are in $F(I)$ with $B_{1} \supset A_{1}, B_{2} \supset A_{2}$, we have $\left|\sum_{\alpha \in B_{1}} c_{\alpha}^{(1)}-l_{1}\right|<$ $\frac{\varepsilon}{|a|+|b|}$ and $\left|\sum_{\alpha \in B_{2}} c_{\alpha}^{(2)}-l_{2}\right|<\frac{\varepsilon}{|a|+|b|}$. Choose now $A=A_{1} \cup A_{2}$, then for $B \in F(I)$ with $B \supset A$, we have $\left|\sum_{\alpha \in B}\left(a c_{\alpha}^{(1)}+b c_{\alpha}^{(2)}\right)-\left(a l_{1}+b l_{2}\right)\right| \leq|a|\left|\sum_{\alpha \in B} c_{\alpha}^{(1)}-l_{1}\right|+$ $|b|\left|\sum_{\alpha \in B} c_{\alpha}^{(2)}-l_{2}\right|<\frac{|a| \varepsilon}{|a|+|b|}+\frac{|b| \varepsilon}{|a|+|b|}=\varepsilon$. This shows that $\left\{a c_{\alpha}^{(1)}+b c_{\alpha}^{(2)}\right\}$ is summable and $\sum_{\alpha \in I}\left(a c_{\alpha}^{(1)}+b c_{\alpha}^{(2)}\right)=a l_{1}+b l_{2}$.

Theorem 1.1.2 If $c_{\alpha} \geq 0 \forall \alpha \in I$, then $\left\{c_{\alpha}\right\}$ is summable if and only if

$$
\begin{equation*}
\left\{\sum_{\alpha \in A} c_{\alpha}: A \in F(I)\right\} \tag{1.2}
\end{equation*}
$$

is bounded.

Proof That boundedness of (1.2) is necessary for $\left\{c_{\alpha}\right\}$ to be summable is left as an exercise. Now we show that boundedness of (1.2) is sufficient for $\left\{c_{\alpha}\right\}$ to be summable. Let ℓ be the least upper bound of $\left\{\sum_{\alpha \in A} c_{\alpha}: A \in F(I)\right\}$; for any $\varepsilon>0$ there is $A \in F(I)$ such that

$$
\begin{equation*}
0 \leq \ell-\sum_{\alpha \in A} c_{\alpha}<\varepsilon \tag{1.3}
\end{equation*}
$$

Let now $B \in F(I)$ and $B \supset A$, then

$$
\left|\sum_{\alpha \in B} c_{\alpha}-\ell\right|=\ell-\sum_{\alpha \in B} c_{\alpha} \leq \ell-\sum_{\alpha \in A} c_{\alpha}<\varepsilon .
$$

We note before moving on that if a subset S of \mathbb{R} is bounded from above, then the least upper bound of S exists uniquely and is denoted by $\sup S$; similarly, if S is bounded from below, then the greatest lower bound exists uniquely and is denoted by inf S. If $S=\left\{s_{\alpha}\right.$: $\alpha \in I\}$, then $\inf S$ and $\sup S$ are also expressed, respectively, by $\inf _{\alpha \in I} s_{\alpha}$ and $\sup _{\alpha \in I} s_{\alpha}$.

Exercise 1.1.2 Show that boundedness of (1.2) is necessary for $\left\{c_{\alpha}\right\}$ to be summable.
Because of Theorem 1.1.2, if $\left\{c_{\alpha}\right\}$ is a system of nonnegative real numbers and is not summable, then we write $\sum_{\alpha \in I} c_{\alpha}=+\infty$. Hence, $\sum_{\alpha \in I} c_{\alpha}$ always has a meaning if $\left\{c_{\alpha}\right\}$ is a system of nonnegative numbers.

Theorem 1.1.3 (Cauchy criterion) A system $\left\{c_{\alpha}\right\}$ is summable if and only iffor any $\varepsilon>0$ there is $A \in F(I)$, such that $\left|\sum_{\alpha \in B} c_{\alpha}\right|<\varepsilon$ whenever $B \in F(I)$ and $A \cap B=\emptyset$.

Proof Sufficiency: Choose $A \in F(I)$ such that $\left|\sum_{\alpha \in B} c_{\alpha}\right|<1$ for $B \in F(I)$, satisfying $A \cap B=\emptyset$, then obviously if $B \in F(I)$ with $B \cap A=\emptyset$, we have $\sum_{\alpha \in B} C_{\alpha}^{+}<1$, where $c_{\alpha}^{+}=c_{\alpha}$ or 0 according to whether $c_{\alpha} \geq 0$ or <0. Now, for $B \in F(I)$, we have

$$
\sum_{\alpha \in B} c_{\alpha}^{+}=\sum_{\alpha \in B \cap A} c_{\alpha}^{+}+\sum_{\alpha \in B \backslash A} c_{\alpha}^{+}<\sum_{\alpha \in A} c_{\alpha}^{+}+1,
$$

i.e., $\left\{\sum_{\alpha \in B} c_{\alpha}^{+}: B \in F(I)\right\}$ is bounded; hence by Theorem 1.1.2 $\left\{c_{\alpha}^{+}\right\}$is summable.

Similarly $\left\{c_{\alpha}^{-}\right\}$is summable, where $c_{\alpha}^{-}=-c_{\alpha}$ or 0 according to whether $c_{\alpha} \leq 0$ or >0. Now $c_{\alpha}=c_{\alpha}^{+}-c_{\alpha}^{-}$, hence $\left\{c_{\alpha}\right\}$ is summable by Theorem (1.1).

The necessary part is left for the reader to verify.
Exercise 1.1.3 Suppose that $\left\{c_{\alpha}\right\}_{\alpha \in I}$ is summable and that J is a nonempty subset of I. Show that (i) $\left\{c_{\alpha}\right\}_{\alpha \in J}$ is summable, and (ii) $\sum_{\alpha \in I} c_{\alpha}=\sum_{\alpha \in J} c_{\alpha}+\sum_{\alpha \in I \backslash J} c_{\alpha}$.
Exercise 1.1.4 Show that $\left\{c_{\alpha}\right\}$ is summable if and only if $\left\{\left|c_{\alpha}\right|\right\}$ is summable; show also that $\left\{c_{\alpha}\right\}$ is summable if and only if

$$
\left\{\left|\sum_{\alpha \in A} c_{\alpha}\right|: A \in F(I)\right\}
$$

is bounded.

Exercise 1.1.5 Show that $\left\{c_{\alpha}\right\}_{\alpha \in \mathbb{N}}$ is summable if and only if the series $\sum_{\alpha=1}^{\infty} c_{\alpha}$ is absolutely convergent. Show also that $\sum_{\alpha \in \mathbb{N}} c_{\alpha}=\sum_{\alpha=1}^{\infty} c_{\alpha}$ if $\left\{c_{\alpha}\right\}_{\alpha \in \mathbb{N}}$ is summable.

Exercise 1.1.6 Show that $\left\{c_{\alpha}\right\}_{\alpha \in I}$ is summable if and and only if (i) $\left\{\alpha \in I: c_{\alpha} \neq 0\right\}$ is finite or countable; and (ii) if $\left\{\alpha \in I: c_{\alpha} \neq 0\right\}=\left\{\alpha_{1}, \alpha_{2}, \ldots\right\}$ is infinite; then the series $\sum_{k=1}^{\infty} c_{\alpha_{k}}$ converges absolutely.

Exercise 1.1.7 Suppose that for each $n=1,2,3, \ldots$, there is $A_{n} \in F(I)$, with the property that for each $A \in F(I)$, there is a positive integer N such that $A \subset A_{n}$ for all $n \geq N$. Show that if $\left\{c_{\alpha}\right\}_{\alpha \in I}$ is summable, then

$$
\sum_{\alpha \in I} c_{\alpha}=\lim _{n \rightarrow \infty} \sum_{\alpha \in A_{n}} c_{\alpha}
$$

Give an example to show that it is possible that $\lim _{n \rightarrow \infty} \sum_{\alpha \in A_{n}} c_{\alpha}$ exists and is finite, but $\left\{c_{\alpha}\right\}$ is not summable.

Example 1.1.1 Suppose that $I=\bigcup_{n \in \mathbb{N}} I_{n}$, where I_{n} 's are pairwise disjoint. Let $\left\{c_{\alpha}\right\}_{\alpha \in I}$ be summable, then $\sum_{\alpha \in I} c_{\alpha}=\sum_{n \in \mathbb{N}}\left(\sum_{\alpha \in I_{n}} c_{\alpha}\right)$. By Exercise 1.1.4, we may assume that $c_{\alpha} \geq 0$ for all $\alpha \in I$. It follows from $\sum_{\alpha \in I} c_{\alpha}=\sup \left\{\sum_{\alpha \in A} c_{\alpha}: A \in\right.$ $F(I)\}$ that $\sum_{\alpha \in I} c_{\alpha} \leq \sum_{n \in \mathbb{N}}\left(\sum_{\alpha \in I_{n}} c_{\alpha}\right)$. It remains to be seen that $\sum_{\alpha \in I} c_{\alpha} \geq$ $\sum_{n \in \mathbb{N}}\left(\sum_{\alpha \in I_{n}} c_{\alpha}\right)$. Let $k \in \mathbb{N}$ and $\varepsilon>0$. For each $n=1, \ldots, k$, there is a finite set $A_{n} \subset I_{n}$ such that $\sum_{\alpha \in I_{n}} c_{\alpha}<\sum_{\alpha \in A_{n}} c_{\alpha}+\frac{\varepsilon}{k}$. Then, if we put $B_{k}=\bigcup_{n=1}^{k} A_{n}$, we have $\sum_{\alpha \in I} c_{\alpha} \geq \sum_{\alpha \in B_{k}} c_{\alpha}>\sum_{n=1}^{k}\left(\sum_{\alpha \in I_{n}} c_{\alpha}-\frac{\varepsilon}{k}\right)=\sum_{n=1}^{k}\left(\sum_{\alpha \in I_{n}} c_{\alpha}\right)-\varepsilon$; since $\varepsilon>0$ is arbitrary, $\sum_{\alpha \in I} c_{\alpha} \geq \sum_{n=1}^{k}\left(\sum_{\alpha \in I_{n}} c_{\alpha}\right)$ for each $k \in \mathbb{N}$. Now let $k \rightarrow \infty$ to obtain $\sum_{\alpha \in I} c_{\alpha} \geq \sum_{n \in \mathbb{N}}\left(\sum_{\alpha \in I_{n}} c_{\alpha}\right)$. Observe from the proof that $\left\{\sum_{\alpha \in I_{n}} c_{\alpha}\right\}_{n \in \mathbb{N}}$ is summable.

We shall recognize in Example 2.3.3 that summability considered in this section is the integrability with respect to the counting measure on I.

1.2 Double series

Let $I=\mathbb{N} \times \mathbb{N}=\{(i, j): i, j=1,2, \ldots\}$ and write $c_{i j}$ for $c_{(i, j)}$. When the summability of the system $\left\{c_{i j}\right\}$ is in question, the system $\left\{c_{i j}\right\}$ is referred to as a double series and is denoted by $\sum c_{i j}$. Hence the double series $\sum c_{i j}$ is summable if $\left\{c_{i j}\right\}=\left\{c_{(i, j)}\right\}$ is summable, and $\sum_{(i, j) \in I} c_{i j}$ is called the sum of the double series $\sum c_{i j}$.

For a double sequence $\left\{a_{m n}\right\}$, we say that $\lim _{m, n \rightarrow \infty} a_{m n}=\ell$, if for any $\varepsilon>0$ there is a positive integer N such that $\left|a_{m n}-\ell\right|<\varepsilon$ whenever $m, n \geq N$.

Theorem 1.2.1 If the double series $\sum c_{i j}$ is summable, then

$$
\sum_{(i, j) \in I} c_{i j}=\lim _{m, n \rightarrow \infty} \sum_{j=1}^{n} \sum_{i=1}^{m} c_{i j}=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} c_{i j}=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_{i j} .
$$

Proof We show first that $\sum_{(i, j) \in I} c_{i j}=\lim _{n, m \rightarrow \infty} \sum_{j=1}^{n} \sum_{i=1}^{m} c_{i j}$. Let $\ell=\sum_{(i, j) \in I} c_{i j}$.
Given $\varepsilon>0$, there is $A \in F(I)$ such that

$$
\left|\sum_{(i, j) \in B} c_{i j}-\ell\right|<\varepsilon
$$

whenever $B \in F(I)$ and $B \supset A$. Let $N=\max \{i \vee j:(i, j) \in A\}$, where $i \vee j$ is the larger of i and j. For $n, m \geq N$, let $B_{m n}=\{(i, j) \in I: 1 \leq i \leq m, 1 \leq j \leq n\}$, then $B_{m n} \in F(I)$ and $B_{m n} \supset A$, hence

$$
\left|\sum_{j=1}^{n} \sum_{i=1}^{m} c_{i j}-\ell\right|=\left|\sum_{(i, j) \in B_{n n}} c_{i j}-\ell\right|<\varepsilon .
$$

This means that $\ell=\lim _{m, n \rightarrow \infty} \sum_{j=1}^{n} \sum_{i=1}^{m} c_{i j}$.
Since $\sum_{(i, j) \in I} c_{i j}=\sum_{(i, j) \in I} c_{i j}^{+}-\sum_{(i, j) \in I} c_{i j}^{-}$, in the remaining part of the proof, we may assume that $c_{i j} \geq 0$ for all $(i, j) \in I$. Observe then that

$$
\ell=\sup _{n, m \geq 1} \sum_{j=1}^{n} \sum_{i=1}^{m} c_{i j} .
$$

Hence,

$$
\ell \geq \lim _{m \rightarrow \infty}\left(\sum_{j=1}^{n} \sum_{i=1}^{m} c_{i j}\right)=\sum_{j=1}^{n} \sum_{i=1}^{\infty} c_{i j}
$$

for each n and consequently

$$
\ell \geq \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} c_{i j} .
$$

On the other hand,

$$
\begin{aligned}
\ell & =\sup _{n, m \geq 1} \sum_{j=1}^{n} \sum_{i=1}^{m} c_{i j} \leq \sup _{n \geq 1}\left(\sum_{j=1}^{n} \sum_{i=1}^{\infty} c_{i j}\right)=\lim _{n \rightarrow \infty}\left(\sum_{j=1}^{n} \sum_{i=1}^{\infty} c_{i j}\right) \\
& =\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} c_{i j} .
\end{aligned}
$$

We have shown that $\ell=\sum_{j=1}^{\infty} \sum_{i=1}^{\infty} c_{i j}$; similarly,

$$
\ell=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_{i j}
$$

Example 1.2.1 If $\left\{a_{n}\right\}_{n \in \mathbb{N}}$ and $\left\{b_{n}\right\}_{n \in \mathbb{N}}$ are summable, then the double series $\sum a_{n} b_{m}$ is summable and $\sum_{(n, m) \in \mathbb{N} \times \mathbb{N}} a_{n} b_{m}=\left(\sum_{n \in \mathbb{N}} a_{n}\right)\left(\sum_{m \in \mathbb{N}} b_{m}\right)$. That $\sum a_{n} b_{m}$ is summable follows from Exercise 1.1.4 and the observation that $\left\{\sum_{(n, m) \in A}\left|a_{n} b_{m}\right|: A \in\right.$ $F(\mathbb{N} \times \mathbb{N})\}$ is bounded from above by $\left(\sum_{n \in \mathbb{N}}\left|a_{n}\right|\right) \cdot\left(\sum_{m \in \mathbb{N}}\left|b_{m}\right|\right)$. Then, by Theorem 1.2.1, $\sum_{(n, m) \in \mathbb{N} \times \mathbb{N}} a_{n} b_{m}=\sum_{n \in \mathbb{N}} \sum_{m \in \mathbb{N}} a_{n} b_{m}=\left(\sum_{n \in \mathbb{N}} a_{n}\right)\left(\sum_{m \in \mathbb{N}} b_{m}\right)$. For $k \geq 2$ in \mathbb{N}, put $A_{k}=\{(n, m) \in \mathbb{N} \times \mathbb{N}: n+m=k\}$; then $\sum_{(n, m) \in \mathbb{N} \times \mathbb{N}} a_{n} b_{m}=$ $\sum_{\substack{k \in \mathbb{N} \\ k \geq 2}}\left(\sum_{(n, m) \in A_{k}} a_{n m}\right)$ from Example 1.1.1. The system $\left\{\sum_{(n, m) \in A_{k}} a_{n} b_{m}\right\}_{k \geq 2}$ is called the product of $\left\{a_{n}\right\}$ and $\left\{b_{n}\right\}$; we have shown that the sum of the product is the product of the sums.

The following exercise complements Theorem 1.2.1.
Exercise 1.2.1 Copy the proof of Theorem 1.2.1 to show that if $c_{i j} \geq 0$ for all i and j in \mathbb{N}, then the conclusion of Theorem 1.2 .1 still holds, even if $\sum_{(i, j) \in I} c_{i j}=\infty$ (recall that for a system $\left\{c_{\alpha}\right\}$ of nonnegative numbers, $\sum_{\alpha} c_{\alpha}=\infty$ means that $\left\{c_{\alpha}\right\}$ is not summable).

Remark For i, j in \mathbb{N}, let

$$
c_{i j}= \begin{cases}1 & \text { if } i=j \\ -1 & \text { if } j=i+1 \\ 0 & \text { otherwise }\end{cases}
$$

then $\sum c_{i j}$ is not summable and $0=\sum_{i=1}^{\infty} \sum_{j=1}^{\infty} c_{i j} \neq \sum_{j=1}^{\infty} \sum_{i=1}^{\infty} c_{i j}=1$.

1.3 Coin tossing

A pair of symbols H and T, associated, respectively, with nonnegative numbers p and q such that $p+q=1$ is called a Bernoulli trial and is denoted by $B(p, q)$. A Bernoulli trial $B(p, q)$ is a mathematical model for the tossing of a coin, of which heads occur with probability p and tails turn out with probability q; this explains the symbols H and T. In particular, $B\left(\frac{1}{2}, \frac{1}{2}\right)$ models the tossing of a fair coin.

In this section, we consider the first step towards construction of a mathematical model for a sequence of tossing of a fair coin. For convenience, we replace H and T by 1 and 0 in this order; then an infinite sequence $\omega=\left(\omega_{1}, \omega_{2}, \ldots, \omega_{k}, \ldots\right)$ of 0 's and 1's represents a realization of a sequence of coin tossing. Let

$$
\Omega=\{0,1\}^{\infty}:=\left\{\omega=\left(\omega_{k}\right), \omega_{k}=0 \text { or } 1 \text { for each } k\right\}
$$

where we adopt the usual convention of expressing an infinite sequence $\left(\omega_{1}, \ldots, \omega_{k}, \ldots\right)$ by $\left(\omega_{k}\right)$ with the understanding that ω_{k} is the entry at the k-th position of the sequence. In terminology of probability theory, elements in Ω are called sample points of a sequence
of coin tossings and Ω is called the sample space of the sequence of tossings. Subsets of Ω will often be referred to as events. Now for $n \in \mathbb{N}$, let

$$
\Omega_{n}=\{0,1\}^{n}:=\left\{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right): \varepsilon_{j} \in\{0,1\}, j=1, \ldots, n\right\},
$$

and for $\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in \Omega_{n}$, call the set

$$
E\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)=\left\{\omega=\left(\omega_{k}\right) \in \Omega: \omega_{k}=\varepsilon_{k}, k=1, \ldots, n\right\}
$$

an elementary cylinder; but if n is to be emphasized, it is called an elementary cylinder of rank \mathbf{n}. A finite union of elementary cylinders is called a cylinder in Ω. Since intersection of two elementary cylinders is either empty or an elementary cylinder, every cylinder in Ω can be expressed as a disjoint union of elementary cylinders; in fact, if Z is a cylinder in Ω, there is $n \in \mathbb{N}$ and $H \subset \Omega_{n}$ such that

$$
Z=\bigcup\left\{E\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right):\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in H\right\}
$$

of which one notes that $E\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$'s are mutually disjoint. Of course, a cylinder Z can be expressed as above in many ways. We denote by \mathcal{Q} the family of all cylinders in Ω. Since $\Omega=E(0) \cup E(1), \Omega \in \mathcal{Q} ; \emptyset$ is also in \mathcal{Q}, because it is the union of an empty family of elementary cylinders.

Exercise 1.3.1 Show that \mathcal{Q} is an algebra of subsets of Ω, in the sense that \mathcal{Q} satisfies the following conditions: (i) $\Omega \in \mathcal{Q}$; (ii) if $Z \in \mathcal{Q}$, then $Z^{c}=\Omega \backslash Z$ is in \mathcal{Q}; and (iii) if Z_{1}, Z_{2} are in \mathcal{Q}, then $Z_{1} \cup Z_{2}$ is in \mathcal{Q}.

For an event Z in \mathcal{Q}, we define its probability $P(Z)$ as follows. First, for an elementary cylinder $C=E\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$, define $P(C)=\left(\frac{1}{2}\right)^{n}$; intuitively, this definition of $P(C)$ means that we consider the modeling of a sequence of independent tossing of a fair coin. Now if $Z \in \mathcal{Q}$ is given by

$$
Z=\bigcup\left\{E\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right):\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in H\right\},
$$

where $H \subset \Omega_{n}$, then define

$$
P(Z)=\sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in H} P\left(E\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)\right)=\# H \cdot 2^{-n}
$$

where $\# H$ is the number of elements in H. We claim that $P(Z)$ is well defined. Actually if Z is also given by

$$
Z=\bigcup\left\{E\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right):\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right) \in H^{\prime}\right\}
$$

where $H^{\prime} \subset \Omega_{m}$, then (assuming $m \geq n$) $H^{\prime}=\left\{\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right) \in \Omega_{m}:\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in\right.$ $H\}$ and therefore $\# H^{\prime}=\# H \cdot 2^{m-n}$; consequently

$$
\begin{aligned}
\sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right) \in H^{\prime}} P\left(E\left(\varepsilon_{1}, \ldots, \varepsilon_{m}\right)\right) & =\# H^{\prime} \cdot 2^{-m}=\# H \cdot 2^{m-n} \cdot 2^{-m} \\
& =\# H \cdot 2^{-n}=\sum_{\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right) \in H} P\left(E\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)\right),
\end{aligned}
$$

implying that the definition of $P(Z)$ is independent of how Z is expressed as a finite disjoint union of elementary cylinders of a given rank. We complete the definition of P by letting $P(\emptyset)=0$. Note that $P(\Omega)=1$.

Exercise 1.3.2

(i) Show that P is additive on \mathcal{Q}, i.e. $P\left(Z_{1} \cup Z_{2}\right)=P\left(Z_{1}\right)+P\left(Z_{2}\right)$ if Z_{1}, Z_{2} are disjoint elements of \mathcal{Q}.
(ii) For $k \in \mathbb{N}$ and $\varepsilon \in\{0,1\}$, put $E_{\varepsilon}^{k}=\left\{\omega \in \Omega: \omega_{k}=\varepsilon\right\}$. Show that

$$
P\left(E_{\varepsilon_{1}}^{k_{1}} \cap \cdots \cap E_{\varepsilon_{n}}^{k_{n}}\right)=\prod_{j=1}^{n} P\left(E_{\varepsilon_{j}}^{k_{j}}\right)=2^{-n}
$$

for any finite sequence $k_{1}<k_{2}<\cdots<k_{n}$ in \mathbb{N}.
From now on we write $d_{j}(\omega)=\omega_{j}, j=1,2, \ldots$, if $\omega=\left(\omega_{1}, \omega_{2}, \ldots\right) \in \Omega$; and for each n define a function S_{n} on Ω by

$$
S_{n}(\omega)=\sum_{j=1}^{n} d_{j}(\omega) .
$$

Exercise 1.3.3 Show that, for each $k=0,1,2, \ldots, n$, the set $\left\{S_{n}=k\right\}:=\{\omega \in \Omega$: $\left.S_{n}(\omega)=k\right\}$ is in \mathcal{Q} and

$$
P\left(\left\{S_{n}=k\right\}\right)=\binom{n}{k} \frac{1}{2^{n}},
$$

where $\binom{n}{k}=\frac{n!}{k!(n-k)!}$.
For a given realization ω of a sequence of independent coin tossing, $S_{n}(\omega)$ is the number of heads that appear in the first n tosses and $\frac{S_{n}(\omega)}{n}$ measures the relative frequency of appearance of heads in the first n tosses. Let

$$
E=\left\{\omega \in \Omega: \lim _{n \rightarrow \infty} \frac{S_{n}(\omega)}{n}=\frac{1}{2}\right\} ;
$$

E is easily seen to be not in \mathcal{Q}. Nevertheless, we expect that P can be extended to be defined on a larger family of sets than \mathcal{Q} in such a way that $P(A)$ can be interpreted as
the probability of event A, and such that $P(E)$ is defined with value 1 . We expect $P(E)=$ 1 , because this is what a fair coin is accounted for intuitively. Discussion of the subject matter of this section will be continued in Example 1.7.1, Example 2.1.1, Example 3.4.6, and Example 7.5.2; and eventually we shall answer positively to this expectation in the paragraph following Corollary 7.5.3.

1.4 Metric spaces and normed vector spaces

The usefulness of the concept of continuity has already surfaced in elementary analysis of functions defined on an interval. This section considers a structure on a set which allows one to speak of "nearness" for elements in the set, so that a concept of continuity can be defined for functions defined on the set, parallel to that for functions defined on an interval of the real line. We shall not treat the most general situation; instead, we consider the situation where an abstract concept of distance can be defined between elements of the set, because this situation abounds sufficiently for our purposes later. When the set considered is a vector space, it is natural to consider the case where the distance defined and the linear structure of the set mingle well, as in the case of a real line or Euclidean plane. This leads to the concept of normed vector spaces.

Let M be a nonempty set and let $\rho: M \times M \rightarrow[0,+\infty)$ satisfy (i) $\rho(x, y)=$ $\rho(y, x) \geq 0$ for all $x, y \in M$ and $\rho(x, y)=0$ if and only if $x=y$; (ii) $\rho(x, z) \leq \rho(x, y)+$ $\rho(y, z)$ for all x, y, and z in M. Such a ρ is then called a metric on M, and (M, ρ) is called a metric space. Usually we say that M is a metric space with metric ρ, or simply that M is a metric space when a certain metric ρ is explicitly or implicitly implied. For a nonempty subset S of M the restriction of ρ to $S \times S$ is a metric on S which will also be denoted by ρ. The metric space (S, ρ) is called a subspace of (M, ρ) and ρ is called the metric on S inherited from M. Unless stated otherwise, if S is a subset of a metric space M, S is equipped with the metric inherited from M. For a nonempty subset A of M, the diameter of A, denoted $\operatorname{diam} A$, is defined by

$$
\operatorname{diam} A:=\sup _{x, y \in A} \rho(x, y)
$$

while $\operatorname{diam} A=0$ if $A=\emptyset$.
A subset A of M is said to be bounded if $\operatorname{diam} A<\infty$. In other words, A is bounded if $\left\{\rho\left(x, x_{0}\right): x \in A\right\}$ is a bounded set in \mathbb{R} for every $x_{0} \in M$.

Elements of a metric space are often called points of the space.

Example 1.4.1 Let $M=\mathbb{R}^{n}$ and for $x, y \in \mathbb{R}^{n}$ let $\rho(x, y)=|x-y|$, where $|x|=$ $\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}$ if $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. To show that ρ is a metric on \mathbb{R}^{n} we first establish the well-known Schwarz inequality: $|x \cdot y| \leq|x||y|$ if $x, y \in \mathbb{R}^{n}$, where, for $x=$ $\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ in $\mathbb{R}^{n}, x \cdot y:=\sum_{i=1}^{n} x_{i} y_{i}$ is called the inner product
of x and y. For this purpose we note first that for $x \in \mathbb{R}^{n},|x|^{2}=x \cdot x$ and that we may assume that $x \neq 0$ and $y \neq 0$, hence $|x|>0$ and $|y|>0$. For $t \in \mathbb{R}$, we have

$$
\begin{aligned}
0 & \leq|x+t y|^{2}=(x+t y) \cdot(x+t y)=|x|^{2}+2 t(x \cdot y)+t^{2}|y|^{2} \\
& =(|x|+t|y|)^{2}+2 t(x \cdot y-|x||y|)
\end{aligned}
$$

from which by taking $t=-|x| /|y|$ we obtain $x \cdot y \leq|x||y|$. Then $|x \cdot y| \leq|x||y|$ follows, because $-(x \cdot y) \leq|x||-y|=|x||y|$. Now for x, y, and z in \mathbb{R}^{n}, we have

$$
\begin{aligned}
\rho(x, z)^{2} & =|x-z|^{2}=|x-y+y-z|^{2}=|x-y|^{2}+2(x-y) \cdot(y-z)+|y-z|^{2} \\
& \leq|x-y|^{2}+2|x-y||y-z|+|y-z|^{2}=(|x-y|+|y-z|)^{2} \\
& =[\rho(x, y)+\rho(y, z)]^{2},
\end{aligned}
$$

i.e.

$$
\rho(x, z) \leq \rho(x, y)+\rho(y, z)
$$

Hence \mathbb{R}^{n} is a metric space with metric ρ defined above. This metric is called the Euclidean metric on \mathbb{R}^{n}. Unless stated otherwise, \mathbb{R}^{n} is considered as a metric space with this metric, then \mathbb{R}^{n} is called the n-dimensional Euclidean space.

Similarly, \mathbb{C}^{n} is a metric space, with the metric ρ defined by $\rho(\zeta, \eta)=\left(\sum_{j=1}^{n} \mid \zeta_{j}\right.$ $\left.\left.\eta_{j}\right|^{2}\right)^{1 / 2}$ for $\zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right)$ and $\eta=\left(\eta_{1}, \ldots, \eta_{2}\right)$ in $\mathbb{C}^{n} . \mathbb{C}^{n}$ with this metric is called the n-dimensional unitary space. This follows, as in the case of the Euclidean metric for \mathbb{R}^{n}, from the Schwarz inequality $|\zeta \cdot \eta| \leq|\zeta||\eta|$ for ζ, η in \mathbb{C}^{n}, where $\zeta \cdot \eta=$ $\sum_{j=1}^{n} \zeta_{j} \bar{\eta}_{j}$ and $|\zeta|=\left(\sum_{j=1}^{n}\left|\zeta_{j}\right|^{2}\right)^{\frac{1}{2}}$. As before, if $t \in \mathbb{R}$, we have

$$
\begin{aligned}
0 & \leq|\zeta+t \eta|^{2}=(\zeta+t \eta) \cdot(\zeta+t \eta)=|\zeta|^{2}+2 t \operatorname{Re} \zeta \cdot \eta+t^{2}|\eta|^{2} \\
& =(|\zeta|+t|\eta|)^{2}+2 t\{\operatorname{Re} \zeta \cdot \eta-|\zeta||\eta|\}
\end{aligned}
$$

from which we infer that $\operatorname{Re} \zeta \cdot \eta \leq|\zeta||\eta|$ by choosing $t=-|\zeta||\eta|^{-1}$ if $\eta \neq 0$. Then, $|\zeta \cdot \eta| \leq|\zeta||\eta|$ follows from replacing ζ by $e^{-i \theta} \zeta$ if $\zeta \cdot \eta=|\zeta \cdot \eta| e^{i \theta}$. Note that for a complex number $\alpha, \bar{\alpha}$ denotes the conjugate of α, while $\operatorname{Re} \alpha$ denotes the real part of α.

Example 1.4.2 For a closed finite interval $[a, b]$ in \mathbb{R}, let $C[a, b]$ denote the space of all real-valued continuous functions defined on $[a, b]$. For $f, g \in C[a, b]$, let $\rho(f, g)=$ $\max _{a \leq t \leq b}|f(t)-g(t)|$. It is easily verified that $C[a, b]$ is a metric space with metric ρ so defined. Unless stated otherwise, $C[a, b]$ is equipped with this metric, which is often referred to as the uniform metric on $C[a, b] . C[a, b]$ is also used to denote the space of all complex-valued continuous functions on $[a, b]$ with metric defined similarly. When $C[a, b]$ denotes the latter space, it shall be explicitly indicated.

Exercise 1.4.1 Show that \mathbb{R}^{n} is also a metric space, with metric ρ defined by $\rho(x, y)=$ $\max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|$ if $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$.

A map from \mathbb{N}, the set of all positive integers, to a set M is called a sequence in M or a sequence of elements of M. Such a sequence will be denoted by $\left\{x_{n}\right\}$, where x_{n}
is the image of the positive integer n under the mapping. If $\left\{x_{n}\right\}$ is a sequence in M, then $\left\{x_{n_{k}}\right\}$ is called a subsequence of $\left\{x_{n}\right\}$ if $n_{1}<n_{2}<\cdots<n_{k}<\cdots$ is a subsequence of $\{n\}$. A sequence $\left\{x_{n}\right\}$ in a metric space M is said to converge to $x \in M$ if for any $\varepsilon>0$ there is $n_{0} \in \mathbb{N}$ such that $\rho\left(x_{n}, x\right)<\varepsilon$ whenever $n \geq n_{0}$. Since x is uniquely determined, x is called the limit of $\left\{x_{n}\right\}$ and is denoted by $\lim _{n \rightarrow \infty} x_{n}$. That $x=\lim _{n \rightarrow \infty} x_{n}$ is often expressed by $x_{n} \rightarrow x$. If $\lim _{n \rightarrow \infty} x_{n}$ exists, then we say that $\left\{x_{n}\right\}$ converges in M and $\left\{x_{n}\right\}$ is referred to as a convergent sequence. A sequence $\left\{x_{n}\right\}$ in M is usually expressed by $\left\{x_{n}\right\} \subset M$ by abuse of notation, and therefore $\left\{x_{n}\right\}$ also denotes the range of the sequence $\left\{x_{n}\right\}$. A sequence in M is said to be bounded if its range is bounded.
Example 1.4.3 $\left\{f_{n}\right\} \subset C[a, b]$ converges if and only if $f_{n}(x)$ converges uniformly for $x \in[a, b]$.
A sequence $\left\{x_{n}\right\} \subset M$ is called a Cauchy sequence if for any $\varepsilon>0$, there is $n_{0} \in \mathbb{N}$ such that $\rho\left(x_{n}, x_{m}\right)<\varepsilon$ whenever $n, m \geq n_{0}$. Clearly, a Cauchy sequence is bounded.

Exercise 1.4.2 Show that if $\left\{x_{n}\right\} \subset M$ converges, then $\left\{x_{n}\right\}$ is a Cauchy sequence.
Exercise 1.4.3 Let $\left\{x_{n}\right\}$ be a Cauchy sequence. Show that if $\left\{x_{n}\right\}$ has a convergent subsequence, then $\left\{x_{n}\right\}$ converges.
A metric space M is called complete if every Cauchy sequence in M converges in M.
Exercise 1.4.4 Show that both \mathbb{R}^{n} and $C[a, b]$ are complete.
Exercise 1.4.5 If instead of the uniform metric we equip $C[a, b]$ with a new metric ρ^{\prime}, defined by

$$
\rho^{\prime}(f, g)=\int_{a}^{b}|f(t)-g(t)| d t
$$

for f, g in $C[a, b]$, show that $C[a, b]$ is not complete when considered as a metric space with metric ρ^{\prime}.

Exercise 1.4.6 Show that any nonempty set M can be considered as a complete metric space by defining $\rho(x, y)=0$ or 1 depending on $x=y$ or $x \neq y$. Such a metric ρ is said to be discrete.

Let M_{1}, M_{2} be metric spaces with metrics ρ_{1} and ρ_{2} respectively. A map $T: M_{1} \rightarrow$ M_{2} is said to be continuous at $x \in M_{1}$ if for any $\varepsilon>0$, there is $\delta>0$ such that $\rho_{2}(T(x), T(y))<\varepsilon$ whenever $\rho_{1}(x, y)<\delta$. If T is continuous at every point of M_{1}, then T is said to be continuous on M_{1} and is called a continuous map from M_{1} into M_{2}. A continuous map from a metric space M into \mathbb{R} or \mathbb{C} is called a continuous function on M and is generically denoted by f. The space of all continuous real(complex)-valued functions on a metric space M is denoted by $C(M) ; C(M)$ is a real- or complex vector space depending on whether the functions in question are real- or complex-valued.
A point x of a set A in a metric space is called an interior point of A if there is $\varepsilon>0$ such that $y \in A$ whenever $\rho(x, y)<\varepsilon$; the set of all interior points of A is denoted by \AA. A set G in a metric space M is said to be open if $\stackrel{\circ}{G}=G$. The complement of an open set is
called a closed set. For $x \in M$ and $r>0$, let $B_{r}(x)=\{y \in M: \rho(y, x)<r\}$ and $C_{r}(x)=$ $\{y \in M: \rho(y, x) \leq r\}$. It is easily verified that $B_{r}(x)$ is an open set and $C_{r}(x)$ is a closed set. $B_{r}(x)\left(C_{r}(x)\right)$ is usually referred to as the open (closed) ball centered at x and with radius r. A point $x \in M$ is said to be isolated if $B_{r}(x)=\{x\}$ for some $r>0$. A set $N \subset M$ is called a neighborhood of $x \in M$ if N contains an open set which contains x; similarly, if N contains an open set which contains a set A, then N is called a neighborhood of A. It is clear that a sequence $\left\{x_{n}\right\}$ in M converges to $x \in M$ if and only if, for any neighborhood N of x, there is $n_{0} \in \mathbb{N}$ such that $x_{n} \in N$ whenever $n \geq n_{0}$. One notes that if x_{0} is an isolated point of M, then any map T from M into any metric space is continuous at x_{0}.

Note that open sets depend on the metric ρ, and when ρ is to be emphasized, an open set in a metric space with metric ρ is more precisely said to be open w.r.t. ρ.
Exercise 1.4.7 Let M_{1}, M_{2} be metric spaces and let $T: M_{1} \rightarrow M_{2}$.
(i) Show that T is continuous at $x \in M_{1}$ if and only if, for any sequence $\left\{x_{n}\right\} \subset$ M_{1} with $\lim _{n \rightarrow \infty} x_{n}=x$, it holds that $\lim _{n \rightarrow \infty} T\left(x_{n}\right)=T(x)$ in M_{2}; also show that T is continuous at $x \in M_{1}$ if and only if, for every sequence $\left\{x_{n}\right\} \subset M_{1}$ with $\lim _{n \rightarrow \infty} x_{n}=x$, it holds that $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{k}}\right\}$ such that $\lim _{k \rightarrow \infty} T\left(x_{n_{k}}\right)=T(x)$.
(ii) Show that T is continuous at $x \in M_{1}$ if and only if, for any neighborhood N of $T(x)$ in M_{2}, the set $T^{-1} N=\left\{y \in M_{1}: T(y) \in N\right\}$ is a neighborhood of x in M_{1}.
(iii) Show that T is continuous on M_{1} if and only if for any open set $G_{2} \subset M_{2}, T^{-1} G_{2}$ is an open subset of M_{1}.

Exercise 1.4.8 Let \mathcal{T} be the family of all open subsets of a metric space M. Show that:
(i) \emptyset and M are in \mathcal{T};
(ii) $A, B \in \mathcal{T} \Rightarrow A \cap B \in \mathcal{T}$;
(iii) if $\left\{A_{i}\right\}_{i \in I} \subset \mathcal{T}$, then $\bigcup_{i \in I} A_{i} \in \mathcal{T}$, where I is any index set.

Suppose that $\left(M_{1}, \rho_{1}\right)$ and $\left(M_{2}, \rho_{2}\right)$ are metric spaces. Let $M_{1} \times M_{2}:=\{(x, y): x \in$ $\left.M_{1}, y \in M_{2}\right\}$ be the Cartesian product of M_{1} and M_{2}; define a metric ρ on $M_{1} \times M_{2}$ by

$$
\rho\left((x, y),\left(x^{\prime}, y^{\prime}\right)\right)=\rho_{1}\left(x, x^{\prime}\right)+\rho_{2}\left(y, y^{\prime}\right)
$$

for (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ in $M_{1} \times M_{2}$. It is easily verified that ρ is actually a metric on $M_{1} \times M_{2}$. With this metric $\rho, M_{1} \times M_{2}$ is called the product space of M_{1} and M_{2} as metric space.

Exercise 1.4.9 Let $M_{1} \times M_{2}$ be the product space of metric spaces M_{1} and M_{2}.
(i) For $A \subset M_{1}$ and $B \subset M_{2}$, show that $A \times B$ is open in $M_{1} \times M_{2}$ if and only if both A and B are open in M_{1} and M_{2} respectively.
(ii) Let G be an open set in $M_{1} \times M_{2}$; show that $G_{1}:=\left\{x \in M_{1}:(x, y) \in G\right.$ for some y in $\left.M_{2}\right\}$ and $G_{2}:=\left\{y \in M_{2}:(x, y) \in G\right.$ for some x in $\left.M_{1}\right\}$ are open in M_{1} and M_{2} respectively.

Let $\mathbb{K}=\mathbb{R}$ or \mathbb{C} and let E be a vector space over \mathbb{K}. Elements of \mathbb{K} are called scalars. Suppose that for each $x \in E$, there is a nonnegative number $\|x\|$ associated with it so that:
(i) $\|x\|=0$ if and only if x is the zero element of E;
(ii) $\|\alpha x\|=|\alpha|\|x\|$ for all $\alpha \in \mathbb{K}$ and $x \in E$;
(iii) $\|x+y\| \leq\|x\|+\|y\|$ for all x, y in E (triangle inequality).

Then E is called a normed vector space (abbreviated as n.v.s.) with norm $\|\cdot\|$, and $\|\cdot\|$ is called a norm on E.

If E is a n.v.s., for x, y in E, let

$$
\rho(x, y)=\|x-y\|,
$$

then ρ is a metric on E and is called the metric associated with norm $\|\cdot\|$. Unless stated otherwise, we always consider this metric for a n.v.s.. The n.v.s. E with norm $\|\cdot\|$ is denoted by $(E,\|\cdot\|)$ if the norm $\|\cdot\|$ is to be emphasized.

Lemma 1.4.1 Suppose that E is a n.v.s. and $x_{n} \rightarrow x$ in E, then $\|x\|=\lim _{n \rightarrow \infty}\left\|x_{n}\right\|$. In other words, $\|\cdot\|$ is a continuous function on E.

Proof The lemma follows from the following sequence of triangle inequalities:

$$
\left\|x_{n}\right\|-\left\|x_{n}-x\right\| \leq\|x\| \leq\left\|x_{n}\right\|+\left\|x_{n}-x\right\| .
$$

A normed vector space is called a Banach space if it is a complete metric space.
Both \mathbb{R}^{n} and $C[a, b]$ are Banach spaces, with norms given respectively by $\|x\|=$ $\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{\frac{1}{2}}$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$ and $\|f\|=\max _{a \leq t \leq b}|f(t)|$ for $f \in C[a, b]$. Similarly, the unitary space \mathbb{C}^{n} is a Banach space with norm $\|z\|=\left(\sum_{j=1}^{n}\left|z_{j}\right|^{2}\right)^{\frac{1}{2}}$ for $z=\left(z_{1}, \ldots, z_{n}\right)$ in \mathbb{C}^{n}. The norms defined above for \mathbb{R}^{n} and \mathbb{C}^{n} are called respectively the Euclidean norm and the unitary norm and are denoted by $|\cdot|$ in both cases, in accordance with the notations introduced in Example 1.4.1; note that their associated metrics are the metrics introduced for \mathbb{R}^{n} and C^{n} in Example 1.4.1. The norm defined for $C[a, b]$ is called the uniform norm; its associated metric is the uniform metric defined in Example 1.4.2.

A class of well-known Banach spaces, the l^{p} spaces, will be introduced in $\$ 1.6$. This class of Banach spaces anticipates the important and more general class of L^{p} spaces treated in Section 2.7 and in Chapter 6.

In the remaining part of this section, linear maps from a normed vector space E into a normed vector space F over the same field \mathbb{R} or \mathbb{C} are considered. Recall that a map T from a vector space E into a vector space F over the same field is said to be linear if $T(\alpha x+\beta y)=\alpha T(x)+\beta T(y)$, for all x, y in E and all scalars α, β. Linear maps are more often called linear transformations or linear operators.

Exercise 1.4.10 Suppose that T is a linear transformation from E into F. Show that T is continuous on E if and only if it is continuous at one point.

Theorem 1.4.1 Let T be a linear transformation from E into F, then T is continuous if and only if there is $C \geq 0$ such that

$$
\|T x\| \leq C\|x\|
$$

$$
\text { for all } x \in E .
$$

Proof If there is $C \geq 0$ such that $\|T x\| \leq C\|x\|$ holds for all $x \in E$, then T is obviously continuous at $x=0$ and hence by Exercise 1.4.10 is continuous on E.

Conversely, suppose that T is continuous on E, and is hence continuous at $x=0$. There is then $\delta>0$ such that if $\|x\| \leq \delta$, then $\|T x\| \leq 1$. Let now $x \in E$ and $x \neq 0$, then $\left\|\frac{\delta}{\|x\|} x\right\|=\delta$, so $\left\|T\left(\frac{\delta}{\|x\|} x\right)\right\| \leq 1$. Thus $\|T x\| \leq \frac{1}{\delta}\|x\|$. If we choose $C=\frac{1}{\delta}$, then $\|T x\| \leq C\|x\|$ for all $x \in E$.

From this theorem it follows that if T is a continuous linear transformation from E into F, then

$$
\|T\|:=\sup _{x \in E, x \neq 0} \frac{\|T x\|}{\|x\|}<+\infty
$$

and is the smallest C for which $\|T x\| \leq C\|x\|$ for all $x \in E .\|T\|$ is called the norm of T. Of course, $\|T\|$ can be defined for any linear transformation T from E into F; then $\|T x\| \leq\|T\|\|x\|$ holds always and T is continuous if and only if $\|T\|<+\infty$. Hence a continuous linear transformation is also called a bounded linear transformation.

Exercise 1.4.11 Show that $\|T\|=\sup _{x \in E,\|x\|=1}\|T x\|$.
Exercise 1.4.12 Let $L(E, F)$ be the space of all bounded linear transformations from E into F. Show that it is a normed vector space with norm $\|T\|$ for $T \in L(E, F)$ as previously defined.

Remark Any linear map T from a Euclidean space \mathbb{R}^{n} into a Euclidean space \mathbb{R}^{m} is continuous. This follows from the representation of T by a matrix $\left(a_{j k}\right), 1 \leq j \leq m, 1 \leq$ $k \leq n$, of real entries, in the sense that if $y=T x$, then $y_{j}=\sum_{k=1}^{n} a_{j k} x_{k}, j=1, \ldots, m$, where $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{m}\right)$, by observing that

$$
|y|^{2}=\sum_{j=1}^{m}\left(\sum_{k=1}^{n} a_{j k} x_{k}\right)^{2} \leq\left(\sum_{j=1}^{m} \sum_{k=1}^{n} a_{j k}^{2}\right)|x|^{2}
$$

Theorem 1.4.2 If F is a Banach space, then $L(E, F)$ is a Banach space.

Proof Let $\left\{T_{n}\right\}$ be a Cauchy sequence in $L(E, F)$. Since

$$
\left\|T_{n} x-T_{m} x\right\|=\left\|\left(T_{n}-T_{m}\right) x\right\| \leq\left\|T_{n}-T_{m}\right\| \cdot\|x\|,
$$

$\left\{T_{n} x\right\}$ is a Cauchy sequence in F for each $x \in E$. Since F is complete, $\lim _{n \rightarrow \infty} T_{n} x$ exists. Put $T x=\lim _{n \rightarrow \infty} T_{n} x$. T is obviously a linear transformation from E into F.

We claim now $T \in L(E, F)$. Since $\left\{T_{n}\right\}$ is Cauchy, $\left\|T_{n}\right\| \leq C$ for some $C>0$, and for all n. Now, from Lemma 1.4.1,

$$
\|T x\|=\lim _{n \rightarrow \infty}\left\|T_{n} x\right\| \leq\left(\sup _{n}\left\|T_{n}\right\|\right)\|x\| \leq C\|x\|
$$

for each $x \in E$. Hence T is a bounded linear transformation.
We show next, $\lim _{n \rightarrow \infty}\left\|T_{n}-T\right\|=0$. Given $\varepsilon>0$, there is n_{0} such that $\| T_{n}-$ $T_{m} \|<\varepsilon$ if $n, m \geq n_{0}$. Let $n \geq n_{0}$, we have

$$
\begin{aligned}
\left\|T_{n}-T\right\| & =\sup _{x \in E,\|x\|=1}\left\|T_{n} x-T x\right\| \\
& =\sup _{x \in E,\|x\|=1} \lim _{m \rightarrow \infty}\left\|T_{n} x-T_{m} x\right\| \\
& \leq \sup _{x \in E,\|x\|=1}\left(\sup _{m \geq n_{0}}\left\|T_{n}-T_{m}\right\|\right)\|x\| \\
& \leq \sup _{x \in E,\|x\|=1} \varepsilon\|x\|=\varepsilon ;
\end{aligned}
$$

this shows that $\lim _{n \rightarrow \infty}\left\|T_{n}-T\right\|=0$, or $\lim _{n \rightarrow \infty} T_{n}=T$. Thus the sequence $\left\{T_{n}\right\}$ has a limit in $L(E, F)$. Therefore $L(E, F)$ is complete.
$L(E, \mathbb{C})$, or $L(E, \mathbb{R})$, depending on whether E is a complex or a real vector space, is called the topological dual of E and is denoted by $E^{*} ; E^{*}$ is a Banach space. Elements of E^{*} are called bounded linear functionals on E.

When $E=F, L(E, F)$ is usually abbreviated to $L(E)$. For S, T in $L(E), S \circ T$ is in $L(E)$ and $\|S \circ T\| \leq\|S\| \cdot\|T\|$, as follows directly from definitions. Usually, we shall denote $S \circ T$ by $S T$; then for S, T, and U in $L(E),(S T) U=S(T U)$, and we may therefore denote $T T$ by $T^{2},(T T) T$ by T^{3}, \ldots etc. for $T \in L(E)$ free of misinterpretation. Note that $\left\|T^{k}\right\| \leq\|T\|^{k}$ for $T \in L(E)$ and $k \in \mathbb{N}$. For convenience, we put $T^{\circ}=1$, the identity map on E.

Exercise 1.4.13 Let S be a nonempty set and consider the vector space $B(S)$ of all bounded real(complex)-valued functions on S. Addition and multiplication by scalar in $B(S)$ are usual for functions. For $f \in B(S)$, let $\|f\|=\sup _{s \in S}|f(s)|$.
(i) Show that $(B(S),\|\cdot\|)$ is a Banach space.
(ii) For $a \in B(S)$, define $A: B(S) \rightarrow B(S)$ by $(A f)(s)=a(s) f(s), s \in S$. Show that A is a bounded linear transformation from $B(S)$ into itself and that $\|A\|=\|a\|$.

Exercise 1.4.14 Consider $C[0,1]$ and let $g \in C[0,1]$. Define a linear functional ℓ on $C[0,1]$ by

$$
\ell(f)=\int_{0}^{1} f(x) g(x) d x
$$

Show that $\ell \in C[0,1]^{*}$ and $\|\ell\|=\int_{0}^{1}|g(x)| d x$.
Exercise 1.4.15 Let g be a continuous function on $[0,1] \times[0,1]$ and for $f \in$ $C[0,1]$, let the function $T f$ be defined by $T f(x)=\int_{0}^{1} g(x, y) f(y) d y$. Show that $T \in$ $L(C[0,1])$ and $\|T\|=\max _{x \in[0,1]} \int_{0}^{1}|g(x, y)| d y$.
We now consider a series of elements in a n.v.s. E. A symbol of the form $\sum_{k=1}^{\infty} x_{k}$ with each x_{k} in E is called a series. For each $n \in \mathbb{N}, \sum_{k=1}^{n} x_{k}$ is called the n-th partial sum of the series $\sum_{k=1}^{\infty} x_{k}$. If it happens that $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} x_{k}$ exists in E, say x, then the series $\sum_{k=1}^{\infty} x_{k}$ is said to be convergent in E and x is called the sum of the series, $\sum_{k=1}^{\infty} x_{k}$, symbolically expressed by $x=\sum_{k=1}^{\infty} x_{k}$, i.e. when $\sum_{k=1}^{\infty} x_{k}$ converges, we attach a meaning to the symbol $\sum_{k=1}^{\infty} x_{k}$ by referring to it as $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} x_{k}$, or the sum of the series.
Theorem 1.4.3 Let $\left\{x_{k}\right\}$ be a sequence in a Banach space E such that $\sum_{k=1}^{\infty}\left\|x_{k}\right\|<\infty$. Then $\sum_{k=1}^{\infty} x_{k}$ converges in E.
Proof For $n \in \mathbb{N}$, let $y_{n}=\sum_{k=1}^{n} x_{k}$. Then for $m>n$ in \mathbb{N},

$$
\left\|y_{m}-y_{n}\right\|=\left\|\sum_{k=n+1}^{m} x_{k}\right\| \leq \sum_{k=n+1}^{m}\left\|x_{k}\right\| \rightarrow 0
$$

as $n \rightarrow \infty$. This means that $\left\{y_{n}\right\}$ is a Cauchy sequence in E, but the fact that E is complete implies that $\left\{y_{n}\right\}$ converges in E, i.e. $\lim _{n \rightarrow \infty} \sum_{k=1}^{n} x_{k}$ exists in E.
Exercise 1.4.16 Suppose that $\sum_{k=1}^{\infty} x_{k}$ is a convergent series in a n.v.s. E. Show that

$$
\left\|\sum_{k=1}^{\infty} x_{k}\right\| \leq \sum_{k=1}^{\infty}\left\|x_{k}\right\| .
$$

Exercise 1.4.17 Suppose that $\sum_{k=1}^{\infty} \alpha_{k}$ is a convergent series in \mathbb{R}.
(i) If x is an element of a n.v.s. E, show that $\sum_{k=1}^{\infty} \alpha_{k} x$ converges in E.
(ii) If $\left\{x_{k}\right\}$ is a bounded sequence in a Banach space E and $\sum_{k=1}^{\infty} \alpha_{k}$ is absolutely convergent, show that $\sum_{k=1}^{\infty} \alpha_{k} x_{k}$ converges in E.
The following example, which complements Theorem 1.4.3, illustrates a method to extract a convergent subsequence from a given sequence.
Example 1.4.4 If a series $\sum_{n=1}^{\infty} x_{n}$ in a n.v.s. E converges whenever $\sum_{n=1}^{\infty}\left\|x_{n}\right\|<\infty$, then E is a Banach space. To show this, let $\left\{y_{n}\right\}$ be a Cauchy sequence in E. Since $\left\{y_{n}\right\}$ is Cauchy, there is an increasing sequence $n_{1}<n_{2}<\cdots<n_{k}<\cdots$ in \mathbb{N} such that $\left\|y_{n_{k+1}}-y_{n_{k}}\right\|<\frac{1}{k^{2}}$ for each k. Then $\sum_{k=1}^{\infty}\left\|y_{n_{k+1}}-y_{n_{k}}\right\|<\infty$ and hence
$\sum_{k=1}^{\infty}\left(y_{n_{k+1}}-y_{n_{k}}\right)$ converges, which is equivalent to $\left\{y_{n_{k}}\right\}$ being a convergent sequence. We have shown that $\left\{y_{n}\right\}$ has a convergent subsequence; thus $\left\{y_{n}\right\}$ converges by Exercise 1.4.3 and E is therefore complete.

Remark We conclude this section with a remark on norms on a vector space E. Suppose that $\|\cdot\|^{\prime}$ and $\|\cdot\|^{\prime \prime}$ are different norms on a vector space E, in general, $\|\cdot\|^{\prime}$ and $\|\cdot\|^{\prime \prime}$ will generate different families of open sets; but a moment's reflection convinces us that $\|\cdot\|^{\prime}$ and $\|\cdot\|^{\prime \prime}$ generate the same family of open sets if and only if there is $c>0$ such that

$$
c\|x\|^{\prime \prime} \leq\|x\|^{\prime} \leq \frac{1}{c}\|x\|^{\prime \prime}
$$

for all x in E (in this case $\|\cdot\|^{\prime}$ and $\|\cdot\|^{\prime \prime}$ are said to be equivalent). We shall see in Proposition 1.7.2 that all norms on a finite-dimensional vector space are equivalent.

1.5 Semi-continuities

For real-valued functions, the fact that the real field \mathbb{R} is ordered plays an important role in the analysis of functions. In particular, for real-valued functions defined on a metric space, lower semi-continuity and upper semi-continuity are useful concepts that owe their existence to \mathbb{R} being ordered. Semi-continuities are our concern in this section. For a subset S of \mathbb{R} we shall adopt the convention that $\inf S=\infty$ and $\sup S=-\infty$ if S is empty; and that $\inf S=-\infty$ if S is not bounded from below, while $\sup S=\infty$ if S is not bounded from above.

For a sequence $x_{n}, n=1,2, \ldots$, of real numbers, let

$$
\begin{align*}
& \liminf _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty}\left(\inf _{k \geq n} x_{k}\right), \tag{1.4}\\
& \underset{n \rightarrow \infty}{\limsup x_{n}}=\lim _{n \rightarrow \infty}\left(\sup _{k \geq n} x_{k}\right) . \tag{1.5}
\end{align*}
$$

Notice that $\inf _{k \geq n} x_{k}$ is increasing and $\sup _{k \geq n} x_{k}$ is decreasing as n increases, hence both limits on the right-hand sides of (1.4) and (1.5) exist, although they may not be finite. Thus $\lim \inf _{n \rightarrow \infty} x_{n}$ and $\lim \sup _{n \rightarrow \infty} x_{n}$ always exist, and are called respectively the inferior limit and the superior limit of $\left\{x_{n}\right\}$. Clearly, $\lim \inf _{n \rightarrow \infty} x_{n} \leq \lim \sup _{n \rightarrow \infty} x_{n}$.

Exercise 1.5.1

(i) Show that $\lim _{n \rightarrow \infty} x_{n}$ exists if and only if $\lim _{\inf }^{n \rightarrow \infty} x_{n}=\lim \sup _{n \rightarrow \infty} x_{n}$, and $\lim _{n \rightarrow \infty} x_{n}$ is the common value $\lim \inf _{n \rightarrow \infty} x_{n}=\lim \sup _{n \rightarrow \infty} x_{n}$ if it exists.
(ii) Show that $\lim \inf _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \geq \lim \inf _{n \rightarrow \infty} x_{n}+\lim \inf _{n \rightarrow \infty} y_{n}\left(\limsup _{n \rightarrow \infty}\right.$ $\left.\left(x_{n}+y_{n}\right) \leq \lim \sup _{n \rightarrow \infty} x_{n}+\lim \sup _{n \rightarrow \infty} y_{n}\right)$, if $\lim \inf _{n \rightarrow \infty} x_{n}+\lim \inf _{n \rightarrow \infty}$ $y_{n}\left(\lim \sup _{n \rightarrow \infty} x_{n}+\lim \sup _{n \rightarrow \infty} y_{n}\right)$ is meaningful. Note that $\alpha+\beta$ is meaningful if at least one of α and β is finite, or if both α and β are either ∞ or $-\infty$.
(iii) Show that $\liminf _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \leq \liminf _{n \rightarrow \infty} x_{n}+\limsup _{n \rightarrow \infty} y_{n}$ if the righthand side is meaningful and that $\limsup _{n \rightarrow \infty}\left(x_{n}+y_{n}\right) \geq \lim \inf _{n \rightarrow \infty} x_{n}+$ $\lim \sup _{n \rightarrow \infty} y_{n}$ if the right-hand side is meaningful.

A real-valued function f defined on a metric space M with metric ρ is said to be lower semi-continuous (upper semi-continuous) at $x \in M$ if, for every sequence $\left\{x_{n}\right\}$ in M with $x=\lim _{n \rightarrow \infty} x_{n}, f(x) \leq \liminf _{n \rightarrow \infty} f\left(x_{n}\right)\left(f(x) \geq \limsup _{n \rightarrow \infty} f\left(x_{n}\right)\right)$ holds. Lower semi-continuity and upper semi-continuity will often be abbreviated as l.s.c. and u.s.c. respectively. It is clear that a function f is l.s.c. (u.s.c.) at x if and only if for any given $\varepsilon>0$ there is $\delta>0$ such that $f(y)>f(x)-\varepsilon(f(y)<f(x)+\varepsilon)$ if $\rho(y, x)<\delta$.

Exercise 1.5.2

(i) Show that f is lower semi-continuous (upper semi-continuous) at x if and only if

$$
f(x)=\lim _{\delta \searrow 0}\left[\inf _{y \in M, \rho(x, y)<\delta} f(y)\right]\left(f(x)=\lim _{\delta \searrow 0}\left[\sup _{y \in M, \rho(x, y)<\delta} f(y)\right]\right)
$$

(ii) show that f is continuous at x if and only if f is both lower semi-continuous and upper semi-continuous at x.

Because of the assertions of Exercise 1.5.2, if x is not an isolated point of M, we define $\lim \inf _{y \rightarrow x} f(y)$ and $\lim \sup _{y \rightarrow x} f(y)$ by

$$
\begin{aligned}
& \liminf _{y \rightarrow x} f(y)=\lim _{\delta \searrow 0}\left[\inf _{y \in M, 0<\rho(x, y)<\delta} f(y)\right] ; \\
& \limsup _{y \rightarrow x} f(y)=\lim _{\delta \searrow 0}\left[\sup _{y \in M, 0<\rho(x, y)<\delta} f(y)\right],
\end{aligned}
$$

since $\inf _{y \in M, 0<\rho(x, y)<\delta} f(y)$ increases as δ decreases and $\sup _{y \in M, 0<\rho(x, y)<\delta} f(y)$ decreases
 finite. If $\lim \inf _{y \rightarrow x} f(y)=\lim \sup _{y \rightarrow x} f(y)$, the common value is called the limit of $f(y)$ as $y \rightarrow x$ and is denoted by $\lim _{y \rightarrow x} f(y)$. Usually, $\lim _{y \rightarrow x} f(y)$ is simply called the limit of the function f at x. Note that $\liminf _{y \rightarrow x} f(y)$ and $\lim \sup _{y \rightarrow x} f(y)$ are defined if f is defined on a neighborhood of x with x excluded. If x is an isolated point of M and f is defined at x, then $\lim \inf _{y \rightarrow x} f(y)=\lim \sup _{y \rightarrow x} f(y)=\lim _{y \rightarrow x} f(y)=f(x)$ by definition.

Exercise 1.5.3

(i) Show that $\liminf _{y \rightarrow x} f(y) \leq \lim \sup _{y \rightarrow x} f(y)$ and that f is continuous at x if and only if $\lim _{y \rightarrow x} f(y)=f(x)$.
(ii) Show that f is l.s.c. (u.s.c.) at x if and only if $f(x) \leq \liminf _{y \rightarrow x} f(y)(f(x) \geq$ $\left.\lim \sup _{y \rightarrow x} f(y)\right)$.

If f is lower semi-continuous (upper semi-continuous) at every point of M, then f is said to be lower semi-continuous (upper semi-continuous) on M.

Exercise 1.5.4 Show that f is lower semi-continuous (upper semi-continuous) on M if and only if $\{x \in M: f(x)>\alpha\}(\{x \in M: f(x)<\alpha\})$ is open for every $\alpha \in \mathbb{R}$.
Exercise 1.5.5 Let $f_{\alpha}, \alpha \in I$, be a family of real-valued continuous functions defined on M and assume that $\sup _{\alpha \in I} f_{\alpha}(x)\left(\inf _{\alpha \in I} f_{\alpha}(x)\right)$ is finite for each $x \in M$; show that $\sup _{\alpha \in I} f_{\alpha}(x)\left(\inf _{\alpha \in I} f(x)\right)$ is lower (upper) semi-continuous on M.
Exercise 1.5.6 Suppose that f is a real-valued function defined on a metric space and assume that f is bounded from below on M, i.e. there is $c \in \mathbb{R}$ such that $f(z) \geq c$ for all $z \in M$. For each $k \in \mathbb{N}$ is defined a function f_{k} on M by

$$
f_{k}(x)=\inf _{z \in M}\{f(z)+k \rho(x, z)\}, \quad x \in M .
$$

(i) Show that $f_{k}(x)$ is finite for all $x \in M$ and

$$
\left|f_{k}(x)-f_{k}(y)\right| \leq k \rho(x, y)
$$

for all x, y in M.
(ii) Suppose that f is l.s.c. on M. Show that

$$
f(x)=\lim _{k \rightarrow \infty} f_{k}(x), \quad x \in M
$$

(iii) Show that f is 1.s.c. on M if and only if there is an increasing sequence $\left\{f_{k}\right\}$ of continuous functions on M such that

$$
f(x)=\lim _{k \rightarrow \infty} f_{k}(x)
$$

for all $x \in M$.
Exercise 1.5.7 A metric space M is called a compact space if every sequence in M has a subsequence which converges in M. Show that if f is lower semi-continuous (upper semi-continuous) on a compact metric space M, then f assumes its minimum (maximum) on M. (Hint: There is a sequence $\left\{x_{n}\right\}$ in M such that $\lim _{n \rightarrow \infty} f\left(x_{n}\right)=$ $\left.\inf _{x \in M} f(x)\right)$

1.6 The space $\ell^{p}(\mathbb{Z})$

The Banach spaces considered in this section are included in the more general class of L^{p} spaces, to be introduced in Section 2.7; but it is expedient to give a separate and direct treatment here without recourse to general theory of measure and integration.

Let \mathbb{Z} be the set of all integers and consider the space L of all real-valued functions defined on \mathbb{Z}. With the usual definition of addition of functions and multiplication of a
function by a scalar, L is a real vector space. For $f \in L$ and $j \in \mathbb{Z}$, if we denote $f(j)$ by f_{j}, then f can be identified with the two-way sequence $\left(f_{j}\right)_{j \in \mathbb{Z}}$ of real numbers and L is the space of all sequences $\left(a_{j}\right)_{j \in \mathbb{Z}}$ of real numbers. For $f \in L$ and $1 \leq p \leq \infty$, let

$$
\|f\|_{p}=\left\{\begin{array}{cl}
\left(\sum_{j \in \mathbb{Z}}|f(j)|^{p}\right)^{\frac{1}{p}} & \text { if } p<\infty \\
\sup _{j \in \mathbb{Z}}|f(j)| & \text { if } p=\infty
\end{array}\right.
$$

Now consider the space $\ell^{p}(\mathbb{Z}), 1 \leq p \leq \infty$, defined by

$$
\ell^{p}(\mathbb{Z})=\left\{f \in L:\|f\|_{p}<\infty\right\}
$$

Presently we shall prove that $\ell^{p}(\mathbb{Z})$ is a vector space and $\|\cdot\|_{p}$ is a norm on $\ell^{p}(\mathbb{Z})$, but for this purpose we first show an inequality which is a generalization of the Schwarz inequality and is called Hölder's inequality. Two extended real numbers $p, q \geq 1$ are called conjugate exponents if $\frac{1}{p}+\frac{1}{q}=1\left(\frac{1}{\infty}=0\right.$; for further arithmetic conventions regarding ∞ and $-\infty$, see the first paragraph of Section 2.2), while two nonnegative numbers α and β will be called a convex pair if $\alpha+\beta=1$.

Lemma 1.6.1 If α and β is a convex pair, then for any $0 \leq \zeta, \eta<\infty$ the following inequality holds:

$$
\begin{equation*}
\zeta^{\alpha} \eta^{\beta} \leq \alpha \zeta+\beta \eta \tag{1.6}
\end{equation*}
$$

Proof We may assume that $0<\alpha, \beta<1$ and $\zeta, \eta>0$.
Since $(1+x)^{\alpha} \leq \alpha x+1$, for $x \geq 0$, we have

$$
\begin{equation*}
y^{\alpha} \leq \alpha y+\beta, \quad y \geq 1 \tag{1.7}
\end{equation*}
$$

Now either $\zeta \eta^{-1} \geq 1$ or $\zeta^{-1} \eta \geq 1$; if $\zeta \eta^{-1} \geq 1$, take $y=\zeta \eta^{-1}$ in (1.7), while if $\zeta^{-1} \eta \geq 1$, take $y=\zeta^{-1} \eta$ in (1.7) with α and β interchanged, then proceed to (1.6).

Lemma 1.6.2 (Hölder's inequality) If $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$ are in \mathbb{R}^{n}, then for conjugate exponents p and q we have

$$
\sum_{j=1}^{n}\left|x_{j} y_{j}\right| \leq\|x\|_{p}\|y\|_{q}
$$

Remark Since an element x of \mathbb{R}^{n} can be identified with an element f of L by $f(1)=$ $x_{1}, \ldots, f(n)=x_{n}$, and $f(j)=0$ for other $j,\|x\|_{p}$ is defined.

Proof of Lemma 1.6.2 It is clear that if one of p and q is ∞, the lemma is trivial, hence we suppose that $1<p, q<\infty$. Since $\|x\|_{p}=0$ if and only if $x=0$, we may assume
that $\|x\|_{p}>0$ and $\|y\|_{p}>0$. For $1 \leq j \leq n$, choose $\zeta=\left(\frac{\left|x_{j}\right|}{\|x\|_{p}}\right)^{p}$ and $\eta=\left(\frac{\left|y_{j}\right|}{\|y\|_{q}}\right)^{q}$ in Lemma 1.6.1. with $\alpha=\frac{1}{p}$ and $\beta=\frac{1}{q}$, then

$$
\frac{\left|x_{j} y_{j}\right|}{\|x\|_{p}\|y\|_{q}} \leq \frac{1}{p} \frac{\left|x_{j}\right|^{p}}{\|x\|_{p}^{p}}+\frac{1}{q} \frac{\left|y_{j}\right|^{q}}{\|y\|_{q}^{q}},
$$

and consequently

$$
\sum_{j=1}^{n}\left|x_{j} y_{j}\right| \leq\|x\|_{p}\|y\|_{q}\left(\frac{1}{p}+\frac{1}{q}\right)=\|x\|_{p}\|y\|_{q} .
$$

Exercise 1.6.1 Suppose that $\alpha>0$ and $\beta>0$ is a convex pair. Show that

$$
\zeta^{\alpha} \eta^{\beta}=\alpha \zeta+\beta \eta, \zeta \geq 0, \eta \geq 0
$$

if and only if $\zeta=\eta$.
We are now in a position to prove that $\ell^{p}(\mathbb{Z})$ is a vector space and $\|\cdot\|_{p}$ is a norm on $\ell^{p}(\mathbb{Z})$. That $\|f\|_{p}=0$ if and only if $f=0$ and that $\lambda f \in \ell^{p}(\mathbb{Z})$ and $\|\lambda f\|_{p}=|\lambda|\|f\|_{p}$ for $\lambda \in \mathbb{R}$ and $f \in \ell^{p}(\mathbb{Z})$ are obvious. It only remains to show that $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$ for f, g in $\ell^{p}(\mathbb{Z})$. For this purpose, we may assume that $1<p<\infty$ and $\|f+g\|_{p}>0$. Under this assumption, there is $A \in F(\mathbb{Z})$ such that $\sum_{j \in A}|f(j)+g(j)|^{p}>0$. For such A, we have

$$
0<\sum_{j \in A}|f(j)+g(j)|^{p} \leq \sum_{j \in A}|f(j)+g(j)|^{p-1}(|f(j)|+|g(j)|)
$$

from which, by using Hölder's inequality (see Lemma 1.6.2.), we have

$$
\begin{aligned}
0 & <\sum_{j \in A}|f(j)+g(j)|^{p} \\
& \leq\left(\sum_{j \in A}|f(j)+g(j)|^{(p-1) q}\right)^{\frac{1}{q}}\left\{\left(\sum_{j \in A}|f(j)|^{p}\right)^{\frac{1}{p}}+\left(\sum_{j \in A}|g(j)|^{p}\right)^{\frac{1}{p}}\right\} \\
& \leq\left(\sum_{j \in A}|f(j)+g(j)|^{p}\right)^{\frac{1}{q}}\left(\|f\|_{p}+\|q\|_{p}\right),
\end{aligned}
$$

and thus, on dividing the last sequence of inequalities by $\left(\sum_{j \in A}|f(j)+g(j)|^{p}\right)^{\frac{1}{4}}$, we obtain

$$
\begin{equation*}
\left(\sum_{j \in A}|f(j)+g(j)|^{p}\right)^{\frac{1}{p}} \leq\|f\|_{p}+\|g\|_{p} \tag{1.8}
\end{equation*}
$$

Now observe that (1.8) holds for any $A \in F(\mathbb{Z})$. Taking the supremum on the left-hand side of (1.8) over $A \in F(\mathbb{Z})$, we see that $\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}$. Therefore, $\ell^{p}(\mathbb{Z})$ is a vector space and $\|\cdot\|_{p}$ is a norm on $\ell^{p}(\mathbb{Z})$. We shall always refer to $\ell^{p}(\mathbb{Z})$ as a normed vector space with this norm.

Exercise 1.6.2 Let $k_{1}<\cdots<k_{n}$ be a finite sequence in \mathbb{Z} of length n; define a map T from $\ell^{p}(\mathbb{Z})$ to the n-dimensional Euclidean \mathbb{R}^{n} by

$$
T(f)=\left(f\left(k_{1}\right), \ldots, f\left(k_{n}\right)\right), f \in \ell^{p}(\mathbb{Z})
$$

Show that T is continuous from $\ell^{p}(\mathbb{Z})$ onto \mathbb{R}^{n} and that the image under T of any open set in $\ell^{p}(\mathbb{Z})$ is an open set in \mathbb{R}^{n}.

Exercise 1.6.3 Suppose $1 \leq p<\infty$; show that $\left|a_{1}+\cdots+a_{n}\right|^{p} \leq n^{p-1} \sum_{j=1}^{n}\left|a_{j}\right|^{p}$ for a_{1}, \ldots, a_{n} in \mathbb{R}.

Exercise 1.6.4 Let $f_{1}, f_{2}, \ldots, f_{n}, \ldots$ be a Cauchy sequence in $\ell^{p}(\mathbb{Z})$; show that $\lim _{n \rightarrow \infty} f_{n}(j)$ exists and is finite for every $j \in \mathbb{Z}$.

Exercise 1.6.5 Show that $\ell^{\infty}(\mathbb{Z})$ is a Banach space.
Theorem 1.6.1 $\quad \ell^{p}(\mathbb{Z})$ is a Banach space for $1 \leq p \leq \infty$.
Proof The case $p=\infty$ is relatively easy and is left as an exercise (see Exercise 1.6.5). Consider now the case $1 \leq p<\infty$. Let $f_{1}, f_{2}, \ldots, f_{n}, \ldots$ be a Cauchy sequence in $\ell^{p}(\mathbb{Z})$, then $\lim _{n \rightarrow \infty} f_{n}(j)$ exists and is finite for each $j \in \mathbb{Z}$ (see Exercise 1.6.4), say $f(j)=\lim _{n \rightarrow \infty} f_{n}(j)$. We show first that $f \in \ell^{p}(\mathbb{Z})$. Since $f_{1}, f_{2}, \ldots, f_{n}, \ldots$ is a Cauchy sequence, it is necessarily bounded. Let $\left\|f_{n}\right\|_{p} \leq M$ for all n. There is $n_{0} \in \mathbb{N}$ such that

$$
\left\|f_{n}-f_{m}\right\|_{p}<1, n, m \geq n_{0}
$$

Now fix $m \geq n_{0}$ and let $A \in F(\mathbb{Z})$, then

$$
\begin{aligned}
\sum_{j \in A}|f(j)|^{p} & =\lim _{n \rightarrow \infty} \sum_{j \in A}\left|f_{n}(j)\right|^{p}=\lim _{n \rightarrow \infty} \sum_{j \in A}\left|f_{n}(j)-f_{m}(j)+f_{m}(j)\right|^{p} \\
& \leq \limsup _{n \rightarrow \infty} \sum_{j \in A}\left\{\left|f_{n}(j)-f_{m}(j)\right|+\left|f_{m}(j)\right|\right\}^{p}
\end{aligned}
$$

from which, by Exercise 1.6.3, we have

$$
\begin{aligned}
\sum_{j \in A}|f(j)|^{p} & \leq \limsup _{n \rightarrow \infty} 2^{p-1}\left\{\sum_{j \in A}\left|f_{n}(j)-f_{m}(j)\right|^{p}+\sum_{j \in A}\left|f_{m}(j)\right|^{p}\right\} \\
& \leq 2^{p-1}\left\{\limsup _{n \rightarrow \infty}\left\|f_{n}-f_{m}\right\|_{p}^{p}+\left\|f_{m}\right\|_{p}^{p}\right\} \\
& \leq 2^{p-1}\left\{1+M^{p}\right\}
\end{aligned}
$$

Thus,

$$
\sum_{j \in \mathbb{Z}}|f(j)|^{p}=\sup _{A \in F(\mathbb{Z})} \sum_{j \in A}|f(j)|^{p} \leq 2^{p-1}\left(1+M^{p}\right)<\infty
$$

which shows $f \in \ell^{p}(\mathbb{Z})$. We now claim $\lim _{n \rightarrow \infty} f_{n}=f$ in $\ell^{p}(\mathbb{Z})$. Actually, given $\varepsilon>0$, there is $N \in \mathbb{N}$ such that

$$
\left\|f_{n}-f_{m}\right\|_{p}<\varepsilon, n, m \geq N
$$

Now, for $n \geq N$ and $A \in F(\mathbb{Z})$,

$$
\begin{aligned}
\sum_{j \in A}\left|f(j)-f_{n}(j)\right|^{p} & =\lim _{m \rightarrow \infty} \sum_{j \in A}\left|f_{m}(j)-f_{n}(j)\right|^{p} \\
& \leq \liminf _{m \rightarrow \infty}\left\|f_{m}-f_{n}\right\|_{p}^{p} \leq \varepsilon^{p}
\end{aligned}
$$

which implies

$$
\left\|f-f_{n}\right\|_{p}^{p}=\sup _{A \in F(\mathbb{Z})} \sum_{j \in A}\left|f(j)-f_{n}(j)\right|^{p} \leq \varepsilon^{p},
$$

or

$$
\left\|f-f_{n}\right\|_{p} \leq \varepsilon, n \geq N
$$

In other words, $\lim _{n \rightarrow \infty} f_{n}=f$ in $\ell^{p}(\mathbb{Z})$. This shows that $\ell^{p}(\mathbb{Z})$ is complete and hence is a Banach space.
Exercise 1.6.6 Let f, g be in $\ell^{1}(\mathbb{Z})$.
(i) Show that $\{f(n-m) g(m)\}_{(n, m) \in \mathbb{Z} \times \mathbb{Z}}$ is summable and

$$
\sum_{(n, m) \in \mathbb{Z} \times \mathbb{Z}} f(n-m) g(m)=\sum_{n \in \mathbb{Z}} \sum_{m \in \mathbb{Z}} f(n-m) g(m) .
$$

(ii) Define $f * g(n)=\sum_{m \in \mathbb{Z}} f(n-m) g(m), n \in \mathbb{Z}$. Show that $f * g \in \ell^{1}(\mathbb{Z})$, $f * g=g * f$, and $\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}$.
Exercise 1.6.7 Suppose that $f \in l^{p}(\mathbb{Z})$ and $g \in l^{1}(\mathbb{Z})$. Show that $f * g$ can be defined similarly as in Exercise 1.6.6 (ii); then show that $f * g=g * f$, and

$$
\|f * g\|_{p} \leq\|f\|_{p}\|g\|_{1} .
$$

Remark For any nonempty set S and $1 \leq p \leq \infty$, the Banach space $\ell^{p}(S)$ can be defined in the same way that $\ell^{p}(\mathbb{Z})$ is defined. The first such space is the space $\ell^{2}(\mathbb{N})$ introduced by D. Hilbert in his study of the Fredholm theory of integral equations.

1.7 Compactness

This section is devoted to a study of compactness, introduced in Exercise 1.5.7. Existence of mathematical objects in analysis often involves arguments of compactness: for example, Exercise 1.5 .7 guarantees that if f is a lower semi-continuous function defined on a compact metric space M, then there exists $x_{0} \in M$ such that

$$
f\left(x_{0}\right)=\min _{x \in M} f(x)
$$

Recall from Exercise 1.5 .7 that a metric space M is called a compact space if every sequence in M has a subsequence which converges in M. One observes readily that a compact metric space is necessarily complete. There is a characterization of compact metric spaces which is often useful. To prepare for the statement of such a characterization, we call a point x_{0} of a metric space M a limit point of a set $A \subset M$ if every neighborhood of x_{0} contains a point of A other than x_{0}.

Exercise 1.7.1 Let A be a subset of a metric space M.
(i) Show that a point x_{0} is a limit point of A if and only if every neighborhood of x_{0} contains infinitely many points of A;
(ii) show that A is closed if and only if it contains all its limit points. Infer in particular that a finite set is closed.

Theorem 1.7.1 A metric space M is compact if and only if every infinite subset of M has a limit point.

Proof Suppose first that M is compact and let A be an infinite subset of M. We shall show that A has a limit point. Since A is infinite, there is a sequence $\left\{x_{n}\right\}$ in A formed of mutually different points. As M is compact, $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{k}}\right\}$ which converges to $x \in M$. Since $\left\{x_{n_{k}}\right\}$ is formed of mutually different points in A and $x=$ $\lim _{k \rightarrow \infty} x_{n_{k}}, x$ is a limit point of A. We have shown that if M is compact, then every infinite subset of M has a limit point.

Next, suppose that every infinite subset of M has a limit point. Let us show that M is compact. Suppose that $\left\{x_{n}\right\}$ is a sequence in M. If the range of the sequence $\left\{x_{n}\right\}$ is a finite set, then $x_{n_{1}}=x_{n_{2}}=\cdots=x_{n_{k}}=\cdots$ for some subsequence $\left\{n_{k}\right\}$ of $\{n\}$, and hence the subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$, being a constant sequence, converges. On the other hand, if the range of $\left\{x_{n}\right\}$ is infinite, then it has a limit point x. It is clear that x is the limit of a subsequence of $\left\{x_{n}\right\}$. Thus M is compact.

A subset K of a metric space is said to be compact if K is a compact metric space with metric inherited from M. From the Bolzano-Weierstrass theorem, which states that every bounded infinite subset of \mathbb{R} has a limit point, it follows that every bounded closed subset of \mathbb{R} is compact. Historically, the Bolzano-Weierstrass theorem is the genesis of the concept of compact sets.

Exercise 1.7.2 Suppose that $K_{1} \supset K_{2} \supset \cdots \supset K_{n} \supset K_{n+1} \supset \cdots$ is a decreasing sequence of nonempty compact sets in a metric space. Show that $\bigcap_{n} K_{n} \neq \emptyset$.

Exercise 1.7.3 Show that the Bolzano-Weierstrass theorem holds also for $\mathbb{R}^{k}, k \geq 2$ and then infer that every bounded closed subset of \mathbb{R}^{k} is compact. Show also that every bounded closed set in the unitary space \mathbb{C}^{k} is compact.

Exercise 1.7.4

(i) Show that compact subsets of a metric space are both bounded and closed.
(ii) Show that a subset of the Euclidean space \mathbb{R}^{k} or of the unitary space \mathbb{C}^{n} is compact if and only if it is both bounded and closed.
(iii) Let, for each $n \in \mathbb{Z}$, e_{n} be the element of $\mathcal{l}^{2}(\mathbb{Z})$ (see Section 1.6) such that $e_{n}(j)=\delta_{n j}, j \in \mathbb{Z}$. Show that $\left\{e_{n}\right\}_{n \in \mathbb{Z}}$ is a bounded and closed subset of $l^{2}(\mathbb{Z})$, but it is not compact. Recall that $\delta_{n j}$ is the Kronecker delta, defined by $\delta_{n j}=1$ or 0 according to whether $n=j$ or $n \neq j$.

Proposition 1.7.1 If T is a continuous map from a metric space M_{1} into a metric space M_{2}, then for every compact set K in $M_{1}, T K$ is a compact set in M_{2}, i.e. continuous images of compact sets are compact.

Proof Let K be a compact set in M_{1}; we may assume that K is nonempty. Suppose that $\left\{y_{n}\right\}$ is a sequence in $T K$; we have to show that $\left\{y_{n}\right\}$ has a subsequence which converges to an element in $T K$. For each $n \in \mathbb{N}$, pick $x_{n} \in K$ such that $y_{n}=T x_{n}$. Since K is compact, $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{k}}\right\}$ such that $x_{n_{k}} \rightarrow x \in K$. Since T is continuous, $y_{n_{k}}=T x_{n_{k}} \rightarrow T x$. Thus the subsequence $\left\{y_{n_{k}}\right\}$ of $\left\{y_{n}\right\}$ converges to an element in $T K$.

An interesting consequence of Proposition 1.7.1 is the following proposition concerning norms on a finite-dimensional vector space.

Proposition 1.7.2 If E is a finite-dimensional vector space, then any two norms $\|\cdot\|^{\prime}$ and $\|\cdot\|^{\prime \prime}$ on E are equivalent, in the sense that there is $c>0$ such that $c\|v\|^{\prime \prime} \leq\|v\|^{\prime} \leq$ $\frac{1}{c}\|v\|^{\prime \prime}$ for all $v \in E$.

Proof For definiteness we assume that E is a complex vector space. Let $n=\operatorname{dim} E$, and choose a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of E. Define a norm $\|\cdot\|$ on E by

$$
\|v\|=\left\{\sum_{j=1}^{n}\left|\alpha_{j}\right|^{2}\right\}^{1 / 2}
$$

if $v=\sum_{j=1}^{n} \alpha_{j} v_{j}$, where each $\alpha_{j} \in \mathbb{C}$. Let Γ be the set $\left\{v=\sum_{j=1}^{n} \alpha_{j} v_{j}: \sum_{j=1}^{n}\left|\alpha_{j}\right|^{2}=1\right\}$ in E. Define a map $T: \mathbb{C}^{n} \rightarrow E$ by

$$
T(\zeta)=\sum_{j=1}^{n} \zeta_{j} v_{j}, \quad \zeta=\left(\zeta_{1}, \ldots, \zeta_{n}\right) \in \mathbb{C}^{n}
$$

From $\|T(\zeta)-T(\eta)\|^{\prime} \leq \sum_{j=1}^{n}\left|\zeta_{j}-\eta_{j}\| \| v_{j}\left\|^{\prime} \leq \sqrt{n} \max _{1 \leq j \leq n}\right\| v_{j} \|^{\prime}\right| \zeta-\eta \mid$, where $|\zeta-\eta|$ is the norm of $\zeta-\eta$ in the unitary space \mathbb{C}^{n}, it follows that T is continuous from the unitary space \mathbb{C}^{n} into $\left(E,\|\cdot\|^{\prime}\right)$. Note that T is bijective. Since Γ is the image under T of the compact set $\left\{\zeta \in \mathbb{C}^{n}: \sum_{j=1}^{n}\left|\zeta_{j}\right|^{2}=1\right\}$ in \mathbb{C}^{n}, Γ is compact in $\left(E,\|\cdot\|^{\prime}\right)$, by Proposition 1.7.1. Now let $r=\inf _{v \in \Gamma}\|v\|^{\prime}$ and observe that since Γ is compact in $\left(E,\|\cdot\|^{\prime}\right)$ and Γ does not contain the zero element of $E, r=\min _{v \in \Gamma}\|v\|^{\prime}>0$; in other words, $\|v\|^{\prime} \geq r>0$ for all v with $\|v\|=1$. Now let $v \in E, v \neq 0$, then $\left\|\frac{v}{\|v\|}\right\|^{\prime} \geq r$ or $r\|v\| \leq\|v\|^{\prime}$. On the other hand, $\|v\|^{\prime} \leq$ $\sum_{j=1}^{n}\left|\alpha_{j}\right|\left\|v_{j}\right\|^{\prime} \leq \sqrt{n}\left(\max _{1 \leq j \leq n}\left\|v_{j}\right\|^{\prime}\right)\left\{\sum_{j=1}^{n}\left|\alpha_{j}\right|^{2}\right\}^{1 / 2}=\sqrt{n}\left(\max _{1 \leq j \leq n}\left\|v_{j}\right\|^{\prime}\right)\|v\|$, or, if we let $\sqrt{n}\left(\max _{1 \leq j \leq n}\left\|v_{j}\right\|^{\prime}\right)=R$, we have

$$
\|v\|^{\prime} \leq R\|v\|
$$

for all $v \in E$ (note: we write $v=\sum_{j=1}^{n} \alpha_{j} v_{j}$ for $v \in E$). We choose then $c^{\prime}>0$ such that $c^{\prime} \leq r$ and $\frac{1}{c^{\prime}} \geq R$, then

$$
c^{\prime}\|v\| \leq\|v\|^{\prime} \leq \frac{1}{c^{\prime}}\|v\|, \quad v \in E .
$$

Similarly, there is $c^{\prime \prime}>0$ such that

$$
c^{\prime \prime}\|v\| \leq\|v\|^{\prime \prime} \leq \frac{1}{c^{\prime \prime}}\|v\|, \quad v \in E .
$$

Then, for $v \in E$,

$$
c^{\prime} c^{\prime \prime}\|v\|^{\prime \prime} \leq c^{\prime}\|v\| \leq\|v\|^{\prime} \leq \frac{1}{c^{\prime}}\|v\| \leq \frac{1}{c^{\prime} c^{\prime \prime}}\|v\|^{\prime \prime}
$$

or

$$
c\|v\|^{\prime \prime} \leq\|v\|^{\prime} \leq \frac{1}{c}\|v\|^{\prime \prime},
$$

where $c=c^{\prime} c^{\prime \prime}>0$.
Corollary 1.7.1 Finite-dimensional vector subspaces of a n.v.s. E are all closed.
Proof For definiteness, assume that E is a real n.v.s. with norm $\|\cdot\|$. Consider any finite-dimensional vector subspace F of E, put $n=\operatorname{dimension~of~} F$ and choose a basis $\left\{v_{1}, \ldots, v_{n}\right\}$ of F. Define a new norm $\|\cdot\|^{\prime}$ on F as follows: for $u=\sum_{j=1}^{n} \alpha_{j} v_{j}$ where $\alpha_{1}, \ldots, \alpha_{n}$ are real numbers, let $\|u\|^{\prime}=\left(\sum_{j=1}^{n} \alpha_{j}^{2}\right)^{1 / 2}$. Clearly, $\|\cdot\|^{\prime}$ is a norm on F. Let T be the linear map from the Euclidean space \mathbb{R}^{n} onto F, defined by $T x=$ $\sum_{j=1}^{n} x_{j} v_{j}$ for $x=\left(x_{1}, \ldots, x_{n}\right)$. If we denote by $|\cdot|$ the Euclidean norm for \mathbb{R}^{n}, then $\|T x\|^{\prime}=|x|$. By Proposition 1.7.2, there is $c>0$ such that $c\|u\|^{\prime} \leq\|u\| \leq c^{-1}\|u\|^{\prime}$
for $u \in F$; consequently, $\|T x\| \leq c^{-1}\|T x\|^{\prime}=c^{-1}|x|$ for $x \in \mathbb{R}^{n}$ and hence T is a continuous map from \mathbb{R}^{n} into E. To show that F is closed in E, we have to show that if $\left\{u_{k}\right\}$ is a sequence in F which converges in E, then the limit is in F. Since $\left\{u_{k}\right\}$ converges, it is bounded, say $\left\|u_{k}\right\| \leq A$ for all k for some $A>0$. Now write $u_{k}=$ $\sum_{j=1}^{n} \alpha_{j}^{(k)} v_{j}$ and put $\alpha^{(k)}=\left(\alpha_{1}^{(k)}, \ldots, \alpha_{n}^{(k)}\right)$, then $u_{k}=T \alpha^{(k)}$ and $\left|\alpha^{(k)}\right|=\left\|u_{k}\right\|^{\prime} \leq$ $c^{-1}\left\|u_{k}\right\| \leq c^{-1} A$ for each k. Thus $\left\{u_{k}\right\}$ is contained in the image $K \subset F$ of the closed ball $\left\{x \in \mathbb{R}^{n}:|x| \leq c^{-1} A\right\}$ under T. Since closed balls in \mathbb{R}^{n} are compact, K is compact by Proposition 1.7.1 and is therefore closed in E. Now $\left\{u_{k}\right\} \subset K$ implies that its limit is in $K \subset F$. This shows that F is closed.

Corollary 1.7.2 Suppose that F is an affine subspace of \mathbb{R}^{n}, then for each $x \in \mathbb{R}^{n}$, there is unique y in F such that $|x-y|=\min _{z \in F}|x-z|$. Furthermore, y is characterized by the condition that $(x-y) \cdot(z-y)=0$ for all $z \in F$.
Proof We need only consider the case that F is a proper affine subspace of \mathbb{R}^{n} and x is not in F. Since F is closed by Corollary 1.7.1, $\inf _{z \in F}|x-z|=l>0$. Let $K=\{z \in F:|x-z| \leq 2 l\}$, then $\inf _{z \in F}|x-z|=\inf _{z \in K}|x-z|$; but, since K is compact, there is $y \in K$ such that $l=\min _{z \in F}|x-z|=\min _{z \in K}|x-z|=|x-y|$. Consider now $z \in F$ and let $f(t)=|x-y+t(z-y)|^{2}=|x-y|^{2}+2 t(x-y) \cdot(z-y)+t^{2} \mid z-$ $\left.y\right|^{2}$ for $t \in \mathbb{R}$. Since f assumes minimum l^{2} at $t=0, f^{\prime}(0)=2(x-y) \cdot(z-y)=0$. Hence y satisfies the condition that $(x-y) \cdot(z-y)=0$ for all $z \in F$; on the other hand, if $y \in F$ satisfies the condition that $(x-y) \cdot(z-y)=0$ for all $z \in F$, then for any $z \in F$ we have $|x-z|^{2}=|x-y+y-z|^{2}=|x-y|^{2}+2(x-y) \cdot(y-z)+\mid y-$ $\left.z\right|^{2}=|x-y|^{2}+|y-z|^{2} \geq|x-y|^{2}$, i.e. $|x-y|=\min _{z \in F}|x-z|$. Thus, we have shown that there is $y \in F$ such that $|x-y|=\min _{z \in F}|x-z|$ and that y is characterized by the condition that $(x-y) \cdot(z-y)=0$ for all $z \in F$. It remains to show that y is unique. Let y and y^{\prime} in F satisfy $|x-y|=\left|x-y^{\prime}\right|=\min _{z \in F}|x-z|$, then

$$
(x-y) \cdot(z-y)=0, \quad\left(x-y^{\prime}\right) \cdot\left(z-y^{\prime}\right)=0
$$

for all z in F. Choose $z=y^{\prime}$ and y respectively in these equalities; we have

$$
(x-y) \cdot\left(y-y^{\prime}\right)=0, \quad\left(x-y^{\prime}\right) \cdot\left(y-y^{\prime}\right)=0
$$

subtract the first equality from the second; we have $\left(y-y^{\prime}\right) \cdot\left(y-y^{\prime}\right)=0=\left|y-y^{\prime}\right|^{2}$, implying $y=y^{\prime}$.
The map $x \mapsto y$, as asserted by Corollary 1.7.2, is called the orthogonal projection from \mathbb{R}^{n} onto F. If this map is denoted by P, then (1) $P x=x$ if and only if $x \in F$; (2) $P^{2}=P$; and (3) $\left|P x-P x^{\prime}\right| \leq\left|x-x^{\prime}\right|$. That (1) and (2) hold is fairly obvious. To see that (3) holds, observe firstly that

$$
\left(x-x^{\prime}-P x+P x^{\prime}\right) \cdot\left(P x-P x^{\prime}\right)=0
$$

from which it follows that $\left|P x-P x^{\prime}\right|^{2}=\left(x-x^{\prime}\right) \cdot\left(P x-P x^{\prime}\right) \leq\left|x-x^{\prime}\right|\left|P x-P x^{\prime}\right|$ and hence (3) holds. It follows from (3) that P is a continuous map.

Remark If F is a vector subspace of \mathbb{R}^{n}, then
(i) P is actually a linear map, as follows easily from the characterization that ($x-$ $P x) \cdot z=0$ for all $z \in F ;$
(ii) since $(x-P x) \cdot P x=0,|x|^{2}=|P x|^{2}+|x-P x|^{2}$ for every $x \in \mathbb{R}^{n}$; this last equality is called the Pythagoras relation.

Proposition 1.7.3 Suppose that T is an injective and continuous map from a compact metric space M_{1} into a metric space M_{2}. Then $T^{-1}: T M_{1} \rightarrow M_{1}$ is continuous.

Proof Let $y \in T M_{1}$ and $\left\{y_{n}\right\}$ be a sequence in $T M_{1}$ with $y=\lim _{n \rightarrow \infty} y_{n}$. To show that T^{-1} is continuous at y, we have to show that $\left\{y_{n}\right\}$ has a subsequence $\left\{y_{n_{k}}\right\}$ such that $\lim _{k \rightarrow \infty} T^{-1} y_{n_{k}}=T^{-1} y$ (cf. Exercise 1.4.7 (i)). Let $x_{n}=T^{-1} y_{n}$. Since M_{1} is compact, $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{k}}\right\}$ which converges to x in M_{1}. Now $y_{n_{k}}=T x_{n_{k}} \rightarrow T x$ entails that $T x=y$ and hence $\lim _{k \rightarrow \infty} T^{-1} y_{n_{k}}=\lim _{k \rightarrow \infty} x_{n_{k}}=x=T^{-1} y$.
We shall presently give a useful characterization of compact sets in a complete metric space corresponding to the characterization of compact sets in \mathbb{R}^{k} as bounded and closed sets (see Exercise 1.7.4 (ii)).

A finite family of open balls with radius $\varepsilon>0$ in a metric space M is called an ε-net for a subset A of M if its union contains A. A set A in a metric space is said to be totally bounded if for any $\varepsilon>0$ there is an ε-net for A.

Exercise 1.7.5

(i) Show that a set in \mathbb{R}^{n} is totally bounded if and only if it is bounded.
(ii) Show that a set A in a metric space is totally bounded if and only if for any $\varepsilon>0$ there is an ε-net for A whose balls have their centers in A.

Lemma 1.7.1 A subset A of a metric space M is totally bounded if and only if every sequence in A has a Cauchy subsequence. In particular, compact sets are totally bounded.

Proof Suppose that A is totally bounded and let $\left\{x_{n}\right\}$ be a sequence in A. There is a $\frac{1}{2}-$ net for A and hence one of its balls contains a subsequence $\left\{x_{n}^{(1)}\right\}$ of $\left\{x_{n}\right\}$. After the sequence $\left\{x_{n}^{(1)}\right\}$ is chosen, we then choose a $\frac{1}{4}$-net for A. As before one of the balls of this $\frac{1}{4}$-net contains a subsequence $\left\{x_{n}^{(2)}\right\}$ of $\left\{x_{n}^{(1)}\right\}$. We proceed in this way to obtain a sequence of subsequences, $\left\{x_{n}^{(1)}\right\},\left\{x_{n}^{(2)}\right\}, \ldots,\left\{x_{n}^{(k)}\right\}, \ldots$ of $\left\{x_{n}\right\}$, each of which is a subsequence of the preceding one, and for each k the sequence $\left\{x_{n}^{(k)}\right\}$ is contained in a ball of radius 2^{-k}. Now, $\left\{x_{n}^{(n)}\right\}$ is a subsequence of $\left\{x_{n}\right\}$. For each positive integer n_{0}, if $n>m \geq n_{0}$, both $x_{n}^{(n)}$ and $x_{m}^{(m)}$ are in a ball of radius $2^{-n_{0}}$, hence $\rho\left(x_{n}^{(n)}, x_{m}^{(m)}\right) \leq$ $2^{-n_{0}+1}$, from which it follows that $\left\{x_{n}^{(n)}\right\}$ is a Cauchy sequence. Thus each sequence in A has a Cauchy subsequence.

Next, suppose that each sequence in A has a Cauchy subsequence. We are going to show that A is totally bounded. Suppose to the contrary that for some $\varepsilon_{0}>0$, no ε_{0}-net for A exists. Choose $x_{1} \in A$, since $B_{\varepsilon_{0}}\left(x_{1}\right)$ does not cover A there is $x_{2} \in$ $A \backslash B_{\varepsilon_{0}}\left(x_{1}\right)$. Suppose that x_{1}, \ldots, x_{n} in A have been chosen so that $\rho\left(x_{i}, x_{j}\right) \geq \varepsilon_{0}$ for
$i, j \leq n$ and $i \neq j$, then choose $x_{n+1} \in A \backslash \bigcup_{i=1}^{n} B_{\varepsilon_{0}}\left(x_{i}\right)$. Such an x_{n+1} exists because $\left\{B_{\varepsilon_{0}}\left(x_{0}\right), \ldots, B_{\varepsilon_{0}}\left(x_{n}\right)\right\}$ is not an ε_{0}-net for A. But then $\rho\left(x_{i}, x_{j}\right) \geq \varepsilon_{0}$ for $i, j \leq n+1$ and $i \neq j$. By mathematical induction we have thus exhibited a sequence $\left\{x_{n}\right\}$ in A such that $\rho\left(x_{i}, x_{j}\right) \geq \varepsilon_{0}$ when $i \neq j$. Such a sequence can not have a Cauchy subsequence, this contradicts our assumption about A. Thus A is totally bounded.
Theorem 1.7.2 A subset K of a complete metric space M is compact if and only if K is closed and totally bounded.

Proof Suppose that K is compact, then K is closed. Since each sequence in K has a convergent subsequence which is therefore Cauchy, Lemma 1.7.1 implies that K is totally bounded. Next, suppose K is closed and totally bounded and let $\left\{x_{n}\right\}$ be a sequence in K, then $\left\{x_{n}\right\}$ has a Cauchy subsequence $\left\{x_{n}^{\prime}\right\}$ by Lemma 1.7.1. But since K is a closed subset of a complete metric space, it is complete and hence $\left\{x_{n}^{\prime}\right\}$ converges in K. This shows that K is compact.

Let A be a subset of a metric space; the smallest closed set which contains A is called the closure of A and is denoted by \bar{A}. Obviously, \bar{A} is the intersection of all those closed sets containing A. If $\bar{A}=M$, we say that A is dense in M, or that A is a dense subset of M. A metric space M is said to be separable if it contains a countable dense subset. A subset of a metric space is separable, if it is separable as a metric space; it is precompact, if its closure is compact.

Since the closure of a totally bounded set is totally bounded, Corollary 1.7.3 follows from Theorem 1.7.2 (see Exercise 1.7.6 and Exercise 1.7.7):

Corollary 1.7.3 A set in a complete metric space is precompact if and only if it is totally bounded.
Exercise 1.7.6 Show that the closure of a totally bounded set is totally bounded.
Exercise 1.7.7 Show that a set in a complete metric space is precompact if and only if it is totally bounded.

Exercise 1.7.8 Show that a totally bounded subset of a metric space is separable. In particular, a compact subset of a metric space is separable.
Example 1.7.1 (Sequence space) This example illustrates a method to construct a compact space from a sequence $\left(M_{k}, \rho_{k}\right), k=1,2, \ldots$, of compact metric spaces with $\operatorname{diam} M_{k} \leq C$ for all k. For such a sequence, put $M=\prod_{k=1}^{\infty} M_{k}=\{x=$ $\left.\left(x_{1}, \ldots, x_{k}, \ldots\right): x_{k} \in M_{k}, k=1,2, \ldots\right\}$. We shall often denote $x=\left(x_{1}, \ldots, x_{k}, \ldots\right)$ by $\left(x_{k}\right)$. For $x=\left(x_{k}\right), y=\left(y_{k}\right)$ in M, let

$$
\begin{equation*}
\rho(x, y)=\sum_{k=1}^{\infty} \frac{1}{k^{2}} \rho_{k}\left(x_{k}, y_{k}\right) . \tag{1.9}
\end{equation*}
$$

It is clear that ρ is a metric on M, and with this metric $\operatorname{diam} M \leq 2 C$. If $\left\{x^{(n)}\right\}_{n \in \mathbb{N}}$ is a sequence in M, and $x \in M$, then $\rho_{k}\left(x_{k}^{(n)}, x_{k}\right) \leq k^{2} \rho\left(x^{(n)}, x\right)$ for each k, from which it follows that if $\lim _{n \rightarrow \infty} x^{(n)}=x$ in M, then $\lim _{n \rightarrow \infty} x_{k}^{(n)}=x_{k}$ in M_{k} for
each k. Conversely, if $\lim _{n \rightarrow \infty} x_{k}^{(n)}=x_{k}$ for each k, we claim that $\lim _{n \rightarrow \infty} x^{(n)}=$ x in M. Let $\varepsilon>0$ be given. There is $k_{0} \in \mathbb{N}$ such that $\sum_{k=k_{0}+1}^{\infty} \frac{1}{k^{2}} \rho_{k}\left(x_{k}^{(n)}, x_{k}\right) \leq$ $C \sum_{k=k_{0}+1}^{\infty} \frac{1}{k^{2}}<\frac{\varepsilon}{2}$. Now, since $\lim _{n \rightarrow \infty} \rho_{k}\left(x_{k}^{(n)}, x_{k}\right)=0$ for $k=1, \ldots, k_{0}$, there is $L \in$ \mathbb{N} such that $\rho_{k}\left(x_{k}^{(n)}, x_{k}\right)<\frac{\varepsilon}{4}$ for $k=1, \ldots, k_{0}$, whenever $n \geq L$. Consequently, when $n \geq L$, we have

$$
\rho\left(x^{(n)}, x\right)=\sum_{k=1}^{k_{0}} \frac{1}{k^{2}} \rho_{k}\left(x_{k}^{(n)}, x_{k}\right)+\sum_{k=k_{0}+1}^{\infty} \frac{1}{k^{2}} \rho_{k}\left(x_{k}^{(n)}, x_{k}\right)<\frac{\varepsilon}{4} \sum_{k=1}^{k_{0}} \frac{1}{k^{2}}+\frac{\varepsilon}{2}<\varepsilon ;
$$

this means $\lim _{n \rightarrow \infty} x^{(n)}=x$. Thus, we have shown that $\lim _{n \rightarrow \infty} x^{(n)}=x$ in M if and only if $\lim _{n \rightarrow \infty} x_{k}^{(n)}=x_{k}$ in M_{k} for each k. We show now that M is compact. Suppose that $\left\{x^{(n)}\right\}$ is a sequence in M; we have to show that $\left\{x^{(n)}\right\}$ has a subsequence which converges in M. We achieve this by the well-known diagonalization procedure. Since M_{1} is compact $\left\{x_{1}^{(n)}\right\}$ has a subsequence $\left\{x_{1}^{\left(n_{j}^{(1)}\right)}\right\}$ which converges in M_{1} to, say, x_{1}; then $\left\{x_{2}^{\left(n_{j}^{(1)}\right)}\right\}$ has a subsequence $\left\{x_{2}^{\left(n_{j}^{(2)}\right)}\right\}$ which converges in M_{2} to x_{2}; continuing in this fashion, we obtain an array of subsequences of $\left\{x^{(n)}\right\}$:

$$
\begin{align*}
& x^{\left(n_{1}^{(1)}\right)}, x^{\left(n_{2}^{(1)}\right)}, \ldots, x^{\left(n_{j}^{(1)}\right)}, \ldots \\
& x^{\left(n_{1}^{(2)}\right)}, x^{\left(n_{2}^{(2)}\right)}, \ldots, x^{\left(n_{j}^{(2)}\right)}, \ldots \\
& \quad \vdots \tag{1.10}\\
& x^{\left(n_{1}^{(j)}\right)}, x^{\left(n_{2}^{(j)}\right)}, \ldots, x^{\left(n_{j}^{(j)}\right)}, \ldots
\end{align*}
$$

where each low contains the next one as a subsequence, and for each $k \in \mathbb{N}$,

$$
\begin{equation*}
\lim _{j \rightarrow \infty} x_{k}^{\left(n_{j}^{(k)}\right)}=x_{k} \quad\left(\text { in } M_{k}\right) \tag{1.11}
\end{equation*}
$$

Now, put $n_{j}=n_{j}^{(j)}, j=1,2, \ldots\left\{x^{\left(n_{j}\right)}\right\}$ is a subsequence of $\left\{x^{(n)}\right\}$ formed of the diagonal elements of the array (1.10). Observe that $\left\{x^{\left(n_{j}\right)}\right\}_{j \geq k}$ is a subsequence of $\left\{x^{\left(n_{j}^{(k)}\right)}\right\}$ for each k, therefore $\lim _{j \rightarrow \infty} x_{k}^{\left(n_{j}\right)}=x_{k}$ by (1.11) for each k, and consequently $\left\{x^{\left(n_{j}\right)}\right\}$ converges in M to $\left(x_{k}\right)$, as we have shown previously in this example. We have shown that $\left\{x^{(n)}\right\}$ has a converging subsequence in M. Thus M is compact. In particular, if each M_{k} is a finite set with discrete metric (see Exercise 1.4.6), then M is compact with metric given by (1.9). We have encountered such a space $\Omega=\{0,1\} \times\{0,1\} \times \cdots$ in Section 1.3, of which one observes readily that each set in the algebra \mathcal{Q} is a closed subset of Ω and is hence compact.

Remark In Example 1.7.1, the assumption that diam $M_{k} \leq C$ for all k is not necessary, because, if we replace each ρ_{k} by $\rho_{k}^{\prime}=\left(\operatorname{diam} M_{k}\right)^{-1} \rho_{k}$, then each $\left(M_{k}, \rho_{k}^{\prime}\right)$ is compact and
diam $M_{k} \leq 1$ w.r.t. the new metric ρ_{k}^{\prime}. Hence from any sequence $\left(M_{k}, \rho_{k}\right)$ of compact metric spaces, one can construct a compact sequence space as in Example 1.7.1.

Now we give a characterization of compact sets which is usually taken as the definition for compact sets in topological spaces.

A family $\left\{S_{\alpha}\right\}$ of subsets of a given set S is called a covering of a subset A of S if $A \subset$ $\bigcup_{\alpha} S_{\alpha}$; then we also say that $\left\{S_{\alpha}\right\}$ covers A. If S is a metric space and each set S_{α} is open, $\left\{S_{\alpha}\right\}$ is called an open covering of A if it covers A. A subset A of a metric space is said to have the finite covering property if every open covering of A has a finite subfamily which covers A.

Lemma 1.7.2 Let K be a compact subset of a metric space and suppose that $\left\{G_{\alpha}\right\}_{\alpha \in I}$ is an open covering of K, then there is $\delta>0$, called a Lebesgue number of K relative to $\left\{G_{\alpha}\right\}$, such that any subset A of K with $\operatorname{diam} A \leq \delta$ is contained in G_{α} for some $\alpha \in I$.

Proof Suppose the contrary. Then for each $n \in \mathbb{N}$ there is a subset A_{n} of K with diam $A_{n} \leq \frac{1}{n}$ such that A_{n} is contained in no G_{α}. Then choose $x_{n} \in A_{n}$. Since K is compact, the sequence $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{k}}\right\}$ which converges to $x \in K$. Let $x \in G_{\alpha_{0}}$, $\alpha_{0} \in I$, and choose $r>0$ so that $B_{r}(x) \subset G_{\alpha_{0}}$. If k is sufficiently large, $\frac{1}{n_{k}}<\frac{r}{2}$ and $x_{n_{k}} \in B_{\frac{r}{2}}(x)$; consequently $A_{n_{k}} \subset B_{r}(x) \subset G_{\alpha_{0}}$. This contradicts the fact that $A_{n_{k}}$ is contained in no G_{α}. The contradiction proves the lemma.

Theorem 1.7.3 A subset K of a metric space M is compact if and only if K has the finite covering property.

Proof Suppose first that K has the finite covering property. Consider a sequence $\left\{x_{n}\right\}$ in K; we shall show that $\left\{x_{n}\right\}$ has a subsequence which converges to a point in K. Suppose the contrary, then for each $x \in K$, there is an open ball B_{x} centered at x such that $x_{n} \in B_{x}$ for only finitely many n. $\left\{B_{x}\right\}_{x \in K}$ is an open covering of K, hence has a finite subfamily $\left\{B_{1}, \ldots, B_{l}\right\}$ which also covers K. Since $\bigcup_{j=1}^{l} B_{j} \supset K$ and $x_{n} \in B_{j}$ for only finitely many n for each $j, x_{n} \in K$ for only finitely many n, contradicting the fact that $\left\{x_{n}\right\}$ is a sequence in K. Thus $\left\{x_{n}\right\}$ has a subsequence which converges in K, showing that K is compact.

Next, suppose that K is compact. Let $\left\{G_{\alpha}\right\}$ be an open covering of K; we are going to show that $\left\{G_{\alpha}\right\}$ has a finite subfamily which also covers K. Choose a Lebesgue number $\delta>0$ of K relative to $\left\{G_{\alpha}\right\}$ according to Lemma 1.7.2. Since K is totally bounded by Lemma 1.7.1, there is an $\frac{\delta}{2}$-net $\left\{B_{1}, \ldots, B_{k}\right\}$ containing K. For $j=1, \ldots, k$, diam $K \cap B_{j} \leq \delta$ implies $K \cap B_{j} \subset G_{\alpha_{j}}$ for some α_{j}, and consequently $K \subset \bigcup_{j=1}^{k} G_{\alpha_{j}}$ i.e. $\left\{G_{\alpha_{1}}, \ldots, G_{\alpha_{k}}\right\}$ is a finite subfamily of $\left\{G_{\alpha}\right\}$ and it covers K. This shows that K has the finite covering property.

Corollary 1.7.4 (Finite intersection property) Let $\left\{K_{\alpha}\right\}_{\alpha \in I}$ be a family of compact sets in a metric space M with the property that intersection of any finite subfamily of $\left\{K_{\alpha}\right\}$ is nonempty. Then $\bigcap_{\alpha \in I} K_{\alpha} \neq \emptyset$.

Proof Suppose the contrary, that $\bigcap_{\alpha \in I} K_{\alpha}=\emptyset$. Choose and fix $\alpha_{0} \in I$. Then for $x \in K_{\alpha_{0}}$, there is $\alpha_{x} \in I$ such that $x \in K_{\alpha_{x}}^{c}$; hence $\left\{K_{\alpha}^{c}\right\}_{\alpha \in I}$ is an open covering of $K_{\alpha_{0}}$. There is therefore a finite set $\left\{\alpha_{1}, \ldots, \alpha_{k}\right\} \subset I$ such that $\bigcup_{j=1}^{k} K_{\alpha_{j}}^{c} \supset K_{\alpha_{0}}$, by Theorem 1.7.3; this last inclusion relation means that $K_{\alpha_{0}} \cap K_{\alpha_{1}} \cap \cdots \cap K_{\alpha_{k}}$ is empty, contradicting our assumption about the family $\left\{K_{\alpha}\right\}$. The contradiction proves the corollary.

Two applications of Theorem 1.7.3 will now be given; both concerned with the uniformity concept. Suppose that T is a map from a metric space M_{1} with metric ρ_{1} into a metric space M_{2} with metric ρ_{2}. Tis said to be uniformly continuous on M_{1} if for any given $\varepsilon>0$, there is $\delta>0$ such that $\rho_{2}(T x, T y)<\varepsilon$ whenever x and y are in M_{1} with $\rho_{1}(x, y)<\delta$. Obviously, if T is uniformly continuous on M_{1}, it is, a fortiori, continuous on M_{1}. A sequence $\left\{T_{n}\right\}$ of maps from M_{1} into M_{2} is said to converge pointwise to a map T from M_{1} into M_{2} if $T x=\lim _{n \rightarrow \infty} T_{n} x$ for each $x \in M_{1}$; it is said to converge uniformly to T on M_{1} if for any given $\varepsilon>0$, there is $n_{0} \in \mathbb{N}$ such that $\rho_{2}\left(T_{n} x, T x\right) \leq \varepsilon$ for every $x \in M_{1}$ whenever $n \geq n_{0}$.

Theorem 1.7.4 If T is a continuous map from a compact metric space M_{1} into a metric space M_{2}, then T is uniformly continuous on M_{1}.

Proof Let $\varepsilon>0$ be given, and let $x \in M_{1}$. Since T is continuous at x, there is $\delta_{x}>0$ such that $\rho_{2}(T y, T x)<\varepsilon / 2$ if $\rho_{1}(y, x)<\delta_{x}$. Consider $\left\{B_{\frac{1}{2} \delta_{x}}(x)\right\}_{x \in M_{1}}$; it is an open covering of M_{1}; by Theorem 1.7.3, it contains a finite subfamily, say $\left\{B_{\frac{1}{2} \delta_{x_{1}}}\left(x_{1}\right), \ldots, B_{\frac{1}{2} \delta_{x_{l}}}\left(x_{l}\right)\right\}$, which also covers M_{1}. Choose $\delta=\frac{1}{2} \min \left\{\delta_{x_{1}}, \ldots, \delta_{x_{1}}\right\}$. Suppose now that $x, y \in M_{1}$ with $\rho_{1}(x, y)<\delta$, and let $x \in B_{\frac{1}{2} \delta_{x j}}\left(x_{j}\right), \quad 1 \leq j \leq l$. Then $\rho_{1}\left(y, x_{j}\right) \leq \rho_{1}(x, y)+\rho_{1}\left(x, x_{j}\right)<\delta+\frac{1}{2} \delta_{x_{j}} \leq \delta_{x_{j}}$, hence $\rho_{2}\left(T y, T x_{j}\right)<\frac{\varepsilon}{2} ; \quad$ since $\quad x \in B_{\frac{1}{2} \delta_{x_{j}}}\left(x_{j}\right), \quad \rho_{2}\left(T x, T x_{j}\right)<\frac{\varepsilon}{2}$. Therefore, $\rho_{2}(T x, T y) \leq \rho_{2}\left(T x, T x_{j}\right)+\rho_{2}\left(T x_{j}, T y\right)<\varepsilon$. This shows that T is uniformly continuous.

Theorem 1.7.5 (Dini) Let $\left\{f_{n}\right\}$ be a sequence of real-valued continuousfunctions defined on a compact metric space M such that $f_{1}(x) \leq f_{2}(x) \leq \cdots \leq f_{n}(x) \leq \cdots$ and converges to a finite real number $f(x)$ for each $x \in M$. If, further, f is continuous on M, then the sequence $\left\{f_{n}\right\}$ converges uniformly to f on M.

Proof Given $\varepsilon>0$ and $x \in M$, there is $k_{x} \in \mathbb{N}$ such that $0 \leq f(x)-f_{k_{x}}(x)<\frac{\varepsilon}{3}$. Because both f and $f_{k_{x}}$ are continuous, there is an open ball $B(x)$ centered at x such that $|f(y)-f(x)|<\frac{\varepsilon}{3}$ and $\left|f_{k_{x}}(y)-f_{k_{x}}(x)\right|<\frac{\varepsilon}{3}$ whenever $y \in B(x)$; as a consequence, we have

$$
0 \leq f(y)-f_{k_{x}}(y) \leq|f(y)-f(x)|+\left|f(x)-f_{k_{x}}(x)\right|+\left|f_{k_{x}}(x)-f_{k_{x}}(y)\right|<\varepsilon
$$

whenever $y \in B(x)$, or

$$
\begin{equation*}
0 \leq f(y)-f_{k}(y)<\varepsilon \tag{1.12}
\end{equation*}
$$

whenever $y \in B(x)$ and $k \geq k_{x}$. Now $\{B(x): x \in M\}$ is an open covering of M; by Theorem 1.7.3 it has a finite subfamily, say $\left\{B\left(x_{1}\right), \ldots, B\left(x_{l}\right)\right\}$, which also covers M. Let $k_{0}=\max \left\{k_{x_{1}}, \ldots, k_{x_{1}}\right\}$; then for $y \in M$ and $k \geq k_{0}$, it follows from (1.12) that

$$
0 \leq f(y)-f_{k}(y)<\varepsilon
$$

because $y \in B\left(x_{j}\right)$ for some $1 \leq j \leq l$ and $k \geq k_{0} \geq k_{x_{j}}$. Thus the sequence $\left\{f_{n}\right\}$ converges to f uniformly on M.
We come now, in the final part of this section, to prove a historically important theorem characterizing precompact sets in the n.v.s. $C(X)$ of all continuous real(complex)valued functions defined on a compact metric space X with norm given by

$$
\|f\|=\sup _{x \in X}|f(x)|=\max _{x \in X}|f(x)|
$$

for $f \in C(X)$, where $\sup _{x \in X}|f(x)|=\max _{x \in X}|f(x)|$ is a consequence of Exercise 1.5.7. Clearly, $C(X)$ is a n.v.s. with norm given as such. For a compact metric space X, the norm given previously on $C(X)$ is implicitly assumed without further notice. Actually $C(X)$ is a Banach space; to show this we need a lemma.

Lemma 1.7.3 Let $\left\{f_{n}\right\}$ be a sequence of continuous functions defined on a metric space M. Suppose that $\left\{f_{n}\right\}$ converges uniformly to a functionf on M, thenf is continuous on M.

Proof Let $x \in M$. We shall show that f is continuous at x. Given $\varepsilon>0$, by the uniform convergence of $\left\{f_{n}\right\}$ to f on M there is $n_{0} \in \mathbb{N}$ such that $\left|f_{n_{0}}(y)-f(y)\right|<\frac{\varepsilon}{3}$ for all y in M. Since $f_{n_{0}}$ is continuous at x, there is $\delta>0$ such that $\left|f_{n_{0}}(y)-f_{n_{0}}(x)\right|<\frac{\varepsilon}{3}$ whenever $\rho(x, y)<\delta$. Hence if $\rho(x, y)<\delta$, then

$$
\begin{aligned}
|f(y)-f(x)| & \leq\left|f_{n_{0}}(y)-f(y)\right|+\left|f_{n_{0}}(y)-f_{n_{0}}(x)\right|+\left|f_{n_{0}}(x)-f(x)\right| \\
& <\frac{\varepsilon}{3}+\frac{\varepsilon}{3}+\frac{\varepsilon}{3}=\varepsilon,
\end{aligned}
$$

which shows that f is continuous at x.
Proposition 1.7.4 $C(X)$ is a Banach space.
Proof Let $\left\{f_{n}\right\}$ be a Cauchy sequence in $C(X)$; we have to show that $\left\{f_{n}\right\}$ converges in $C(X)$. Since $\left|f_{n}(x)-f_{m}(x)\right| \leq\left\|f_{n}-f_{m}\right\|$ for $x \in X,\left\{f_{n}(x)\right\}$ is a Cauchy sequence of scalars and hence converges to a scalar $f(x)$ for every x in X; thus as a sequence of functions, $\left\{f_{n}\right\}$ converges pointwise to a function f on X. Actually $\left\{f_{n}\right\}$ converges uniformly to f on X. Given $\varepsilon>0$, there is $n_{0} \in \mathbb{N}$ such that $\left\|f_{n}-f_{m}\right\|<\varepsilon$ whenever $n, m \geq n_{0}$, hence $\left|f_{n}(x)-f_{m}(x)\right|<\varepsilon$ for all x in X and $n, m \geq n_{0}$, and thus $\mid f_{n}(x)-$ $f(x) \mid \leq \varepsilon$ for all x in X if $n \geq n_{0}$, by letting $m \rightarrow \infty$. It follows then from Lemma 1.7.3 that $f \in C(X)$. We claim finally that $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|=0$, i.e. $\left\{f_{n}\right\}$ converges to f in $C(X)$. To see this, for $\varepsilon>0$ given choose $n_{0} \in \mathbb{N}$ as above, then $\left|f_{n}(x)-f(x)\right| \leq \varepsilon$
for all $x \in X$ and $n \geq n_{0}$; this means that $\sup _{x \in X}\left|f_{n}(x)-f(x)\right| \leq \varepsilon$ when $n \geq n_{0}$, or $\left\|f_{n}-f\right\| \leq \varepsilon$ when $n \geq n_{0}$. Thus $\lim _{n \rightarrow \infty}\left\|f_{n}-f\right\|=0$.
A family \mathcal{F} of functions defined on a metric space M is called an equicontinuous family if for each given $\varepsilon>0$ there is $\delta>0$ such that whenever $\rho(x, y)<\delta$, then $|f(x)-f(y)|<\varepsilon$ for all $f \in \mathcal{F}$. Note that functions in an equicontinuous family are necessarily uniformly continuous.

The theorem that follows is not only historically important, but is also useful in the theory of differential equations.

Theorem 1.7.6 (Arzelà-Ascoli) If X is a compact metric space, a subset K of $C(X)$ is precompact if and only if it is bounded in $C(X)$ and equicontinuous as a family of functions on X.

Proof Suppose that K is precompact. Since $C(X)$ is complete, as asserted by Proposition 1.7.4, K is totally bounded by Corollary 1.7.3. Let $\varepsilon>0$ and let f_{1}, \ldots, f_{n} be the centers of an $\frac{\varepsilon}{3}$-net for K. Since f_{1}, \ldots, f_{n} are uniformly continuous on X, by Theorem 1.7.4, there is $\delta>0$ such that

$$
\left|f_{i}(x)-f_{i}(y)\right|<\frac{\varepsilon}{3}
$$

for $i=1, \ldots, n$ when $\rho(x, y)<\delta$. Consider now $f \in K$ and choose $j \in\{1, \ldots, n\}$ so that

$$
\sup _{x \in X}\left|f(x)-f_{j}(x)\right|<\frac{\varepsilon}{3}
$$

such j exists because f_{1}, \ldots, f_{n} are centers of an $\frac{\varepsilon}{3}$-net for K. Then if $\rho(x, y)<\delta$, we have

$$
\begin{aligned}
|f(x)-f(y)| & \leq\left|f(x)-f_{j}(x)\right|+\left|f_{j}(x)-f_{j}(y)\right|+\left|f_{j}(y)-f(y)\right| \\
& <\frac{2}{3} \varepsilon+\left|f_{j}(x)-f_{j}(y)\right|<\varepsilon
\end{aligned}
$$

and therefor K is equicontinuous. Since K is totally bounded, it is bounded in $C(X)$.
Conversely, suppose that K is bounded in $C(X)$ and is equicontinuous as a family of functions on X. Let $\varepsilon>0$. Choose $\delta>0$ such that $|f(x)-f(y)|<\frac{\varepsilon}{4}$ for $f \in K$ when $f(x, y)<\delta$. As X is compact, there is a δ-net for X with centers x_{1}, \ldots, x_{n}. For simplicity's sake, in the argument that follows we assume that functions in $C(X)$ are real-valued; the corresponding argument when $C(X)$ consists of complex-valued functions will be clear. Since K is bounded in $C(X)$, there is $L>0$ so that $|f(x)| \leq L$ for all $f \in K$ and all $x \in X$. Divide the interval $[-L, L]$ into k equal parts by the partition

$$
y_{0}=-L<y_{1}<\cdots<y_{k}=L
$$

where k is chosen so that $\left|y_{i}-y_{i+1}\right|<\frac{\varepsilon}{4}$ for $i=0, \ldots, k-1$. We say that an n-tuple $\left(y_{i_{1}}, \ldots, y_{i_{n}}\right)$ of numbers y_{0}, \ldots, y_{k} is admissible if for some $f \in K$ the following inequalities hold:

$$
\begin{equation*}
\left|f\left(x_{j}\right)-y_{i_{j}}\right|<\frac{\varepsilon}{4}, \quad j=1, \ldots, n \tag{1.13}
\end{equation*}
$$

Clearly, for each $f \in K$ there is an n-tuple $\left(y_{i_{1}}, \ldots, y_{i_{n}}\right)$ so that (1.13) holds. Hence the set Y of all admissible n-tuples is nonempty. Note that Y is finite. For each n-tuple $y=\left(y_{i_{1}}, \ldots, y_{i_{n}}\right)$ in Y choose and fix an $f_{y} \in K$ so that (1.13) holds, with f replaced by f_{y}. Let now $f \in K$. Choose $y=\left(y_{i_{1}}, \ldots, y_{i_{n}}\right)$ in Y such that (1.13) holds. For $x \in X$ choose $x_{j}, 1 \leq j \leq n$, so that $\rho\left(x, x_{j}\right)<\delta$. Then

$$
\left|f(x)-f_{y}(x)\right| \leq\left|f(x)-f\left(x_{j}\right)\right|+\left|f\left(x_{j}\right)-y_{i_{j}}\right|+\left|y_{i_{j}}-f_{y}\left(x_{j}\right)\right|+\left|f_{y}\left(x_{j}\right)-f_{y}(x)\right|
$$

from which we infer that $\left\|f-f_{y}\right\|<\varepsilon$ from the fact that both f and f_{y} satisfy (1.13) as well as from the way $\delta>0$ is chosen. Thus $\left\{B_{\varepsilon}\left(f_{y}\right): y \in Y\right\}$ is an ε-net for K. We have shown that K is totally bounded. Hence K is precompact by Corollary 1.7.3.

Example 1.7.2 Let $K=\left\{f \in C^{1}[0,1]: f(0)=a\right.$ and $\left.\left|f^{\prime}\right| \leq g\right\}$, where $a \in \mathbb{R}$ and g is a nonnegative continuous function on $[0,1]$. It is clear from Theorem 1.7.6 that K is a precompact set in $C[0,1]$.

1.8 Extension of continuous functions

We consider in this section the question of when a continuous real-valued function defined on a subset of a metric space can be extended continuously to the whole space.

Lemma 1.8.1 (Uryson) Let A, B be nonempty disjoint closed sets in a metric space M, then there is a continuous function defined on M such that $0 \leq f \leq 1, f=0$ on A, and $f=1$ on B.

Proof For a set $S \subset M$, the function $x \mapsto \rho(x, S):=\inf _{z \in S} \rho(x, z)$ is continuous on M. This follows from the obvious inequality

$$
|\rho(x, S)-\rho(y, S)| \leq \rho(x, y)
$$

for x, y in M. Since A and B are disjoint closed sets, $\rho(x, A)+\rho(x, B)>0$ for $x \in M$, we may then define $f: M \rightarrow \mathbb{R}$ by

$$
f(x)=\frac{\rho(x, A)}{\rho(x, A)+\rho(x, B)}, \quad x \in M
$$

Clearly f is continuous and is the function to be sought.

Corollary 1.8.1 Let A and B be nonempty disjoint closed sets in a metric space M; then for any pair $\alpha<\beta$ of real numbers, there is a continuous function f defined on M such that $\alpha \leq f \leq \beta, f=\alpha$ on A, and $f=\beta$ on B.

Exercise 1.8.1 Prove Corollary 1.8.1.
Theorem 1.8.1 (Tietze) Suppose that g is a bounded continuous function defined on a closed set C in a metric space M, and let $\gamma=\sup _{x \in C}|g(x)|$. Then there is a continuous function f defined on M such that $f=g$ on C and $\sup _{x \in M}|f(x)|=\gamma$.

Proof We may assume that $M \backslash C$ contains infinitely many points, because otherwise M consists only of points from C and a finite number of isolated points, in which case the theorem is trivial. Then we may pick any two points x_{1} and x_{2} outside C, define $g\left(x_{1}\right)=-\gamma, g\left(x_{2}\right)=\gamma$, and replace C by $C \cup\left\{x_{1}, x_{2}\right\}$. Thus we may assume that $\min _{x \in C} g(x)=-\gamma$ and $\max _{x \in C} g(x)=\gamma$.

Now let $A=\left\{x \in C: g(x) \leq-\frac{\gamma}{3}\right\}, B=\left\{x \in C: g(x) \geq \frac{\gamma}{3}\right\}$, then A and B are disjoint nonempty closed sets. By Corollary 1.8.1 there is a continuous function f_{1} on M such that $\left|f_{1}\right| \leq \frac{\gamma}{3}, f_{1}=-\frac{\gamma}{3}$ on A and $f_{1}=\frac{\gamma}{3}$ on B. It is readily verified that $\left|g-f_{1}\right| \leq$ $\frac{2}{3} \gamma$ on C. Note that $\min _{x \in C}\left\{g(x)-f_{1}(x)\right\}=-\frac{2}{3} \gamma$ and $\max _{x \in C}\left\{g(x)-f_{1}(x)\right\}=\frac{2}{3} \gamma$.

Repeat the argument of the last paragraph with g replaced by $g-f_{1}$ and γ by $\frac{2}{3} \gamma$; we obtain a continuous function f_{2} on M such that $\left|f_{2}\right| \leq \frac{1}{3} \cdot \frac{2}{3} \gamma$ and $\left|g-f_{1}-f_{2}\right| \leq$ $\left(\frac{2}{3}\right)^{2} \gamma$ on C. Continuing in this fashion, we obtain a sequence $\left\{f_{n}\right\}$ of continuous functions on M such that $\left|f_{n}\right| \leq \frac{1}{3}\left(\frac{2}{3}\right)^{n-1} \gamma$ and $\left|g-\sum_{j=1}^{n} f_{j}\right| \leq\left(\frac{2}{3}\right)^{n} \gamma$ on C. It follows then that $\sum_{n} f_{n}$ converges uniformly to a continuous function f on M and $f=g$ on C. Now, $|f| \leq \sum_{j=1}^{\infty}\left|f_{j}\right| \leq \sum_{j=1}^{\infty} \frac{1}{3}\left(\frac{2}{3}\right)^{j-1} \gamma=\gamma$.

Remark The function g in Theorem 1.8 .1 is usually called an extension of the function f, while f is called the restriction of g on C and is often denoted as $\left.g\right|_{C}$.

1.9 Connectedness

A metric space M is said to be connected if any nonempty subset of M which is both open and closed is M itself. Obviously any discrete space cannot be connected except when it consists of only one point. A subset of a metric space M is called connected if it is connected as a metric space with its metric inherited from M.

Exercise 1.9.1 Show that a metric space M is connected if and only if it cannot be expressed as a disjoint union of two nonempty subsets, both of which are open.

Theorem 1.9.1 A finite closed interval in \mathbb{R} is connected.
Proof Let the interval be $I=[a, b],-\infty<a, b<\infty$. Suppose that I is not connected, then $I=A \cup B$, where $A \cap B=\emptyset$ and both A and B are nonempty open and closed in I. We may suppose $a \in A$. Since B is bounded below by $a, \inf B \in I$. Since B is closed in $I, \inf B \in B$ and hence cannot be in A, which implies $a<\inf B$. Thus $(a, \inf B) \subset A$,
and $\inf B$ is a limit point of A, but that A is closed $\operatorname{implies} \inf B$ is in A, a contradiction.

Exercise 1.9.2

(i) Modify the arguments in the proof of Theorem 1.9.1 to show that any interval in \mathbb{R} is connected whether it is finite or infinite and whether it is closed, open, or half-open.
(ii) Show that a subset A of \mathbb{R} is connected if and only if for any pair $x<y$ of elements in $A,[x, y] \subset A$. Conclude then that connected sets in \mathbb{R} are intervals.

Exercise 1.9.3 Show that every open set in \mathbb{R} is a disjoint union of at most countably many open intervals.

1.10 Locally compact spaces

An account of compact sets in a locally compact metric space will now be given in regard to construction of some useful continuous functions relating to compact sets.

A metric space X is called a locally compact space if every x in X has a compact neighborhood. Clearly, \mathbb{R}^{n} with the Euclidean metric is a locally compact space. We observe the following two facts for a locally compact space X :
(i) If K is a compact subset of X, then K has a compact neighborhood.
(ii) If K is a compact subset of X and $x \in X \backslash K$, then K has a compact neighborhood W_{x} not containing x.

To see (i), consider the open covering $\left\{\dot{U}_{x}\right\}_{x \in K}$, where U_{x} is a compact neighborhood of x, and extract from it a finite subcovering $\left\{\stackrel{\circ}{U}_{x_{1}}, \ldots, \stackrel{\circ}{U}_{x_{k}}\right\}$ of K; then $\bigcup_{j=1}^{k} U_{x_{j}}$ is a compact neighborhood of K. Now if $x \in X \backslash K$, put $\delta=\operatorname{dist}(x, K)>0$; then $W_{x}=$ $V \cap\left\{y \in X: \operatorname{dist}(y, K) \leq \frac{1}{2} \delta\right\}$ is a compact neighborhood of K not containing x, where V is a compact neighborhood of K as asserted in (i); thus (ii) holds.

Lemma 1.10.1 Suppose that K is a compact subset of a locally compact space X and is contained in an open set G. Then K has a compact neighborhood V contained in G.

Proof Because of (i) we may assume that $X \backslash G \neq \emptyset$. For each $x \in X$ let W_{x} be a compact neighborhood of K not containing x, as in (ii), and consider the family $\mathcal{F}=$ $\left\{W_{x} \cap G^{c}: x \in G^{c}\right\}$ of compact sets; Clearly, $\cap \mathcal{F}=\emptyset$ and by the finite intersection property (Corollary 1.7.4) there are x_{1}, \ldots, x_{k} in G^{c} such that $\bigcap_{j=1}^{k}\left\{W_{x_{j}} \cap G^{c}\right\}=$ $\left[\bigcap_{j=1}^{k} W_{x_{j}}\right] \cap G^{c}=\emptyset$. We infer then from the last set relation that $V=\bigcap_{j=1}^{k} W_{x_{j}}$ is a compact neighborhood of K contained in G.

Lemma 1.10.2 Let $\mathcal{F}=\left\{G_{1}, \ldots, G_{n}\right\}$ be a finite open covering of a compact set K in a locally compact space X; then there are compact sets K_{1}, \ldots, K_{n} in X such that $K_{j} \subset G_{j}$ for each $j=1, \ldots, n$ and $K \subset \bigcup_{j=1}^{n} K_{j}$.

Proof For $x \in K$, there is $j, 1 \leq j \leq n$, such that $x \in G_{j}$; then Lemma 1.10.1 implies that x has a compact neighborhood $V_{x} \subset G_{j}$. Since $\left\{\stackrel{\circ}{V}_{x}: x \in K\right\}$ is an open covering of K, there are x_{1}, \ldots, x_{k} in K such that $\bigcup_{j=1}^{k} \stackrel{\circ}{V}_{x_{j}} \supset K$. For each $j=1, \ldots, n$, let $\mathcal{F}_{j}=$ $\left\{V_{x_{i}}: V_{x_{i}} \subset G_{j}\right\}$ and put $K_{j}=\bigcup \mathcal{F}_{j}$; then K_{j} is a compact set $\subset G_{j}$ and $\bigcup_{j=1}^{n} K_{j}=$ $\bigcup_{i=1}^{k} V_{x_{i}} \supset K$.

Remark In Lemma 1.10.2, some of the K_{j} 's might be empty; but if \mathcal{F} has the property that every one of its proper subfamily is not a covering of K, then each K_{j} is nonempty.

For a function f defined on a metric space X, we shall denote by supp f the closure of the set $\{x \in X: f(x) \neq 0\}$. If suppf (which is called the support of f) is compact, f is called a function with compact support. The family of all continuous functions with compact support in a metric space X is denoted by $C_{c}(X)$. Note that $C_{c}(X)$ is a real or complex vector space depending on whether real-valued or complex-valued functions are considered. For an open set G in a metric space X, the family of all continuous functions f on X with compact support such that $0 \leq f \leq 1$ and supp $f \subset G$ is to be denoted by $U_{c}(G)$.

Corollary 1.10.1 Suppose that K is a compact set contained in an open set G of a locally compact space X. Then there is f in $U_{c}(G)$ such that $f=1$ on K.

Proof K has a compact neighborhood V contained in G by Lemma 1.10.1; then K and $\stackrel{\circ}{V}^{c}$ are disjoint closed subsets of X. Using the Uryson lemma (Lemma 1.8.1), we find a continuous function f on X such that $0 \leq f \leq 1, f=0$ on $\stackrel{\circ}{V}^{c}$, and $f=1$ on K. Since $\operatorname{supp} f \subset V \subset G, f \in U_{c}(G)$.

Suppose now that K is a compact set in a metric space X and $\mathcal{F}=\left\{G_{1}, \ldots, G_{n}\right\}$ is a finite open covering of K, then a collection $\left\{u_{1}, \ldots, u_{n}\right\}$ of continuous functions is called a partition of unity of K subordinate to \mathcal{F} if $u_{j} \in U_{c}\left(G_{j}\right)$ for each $j=1, \ldots, n$ and $\sum_{j=1}^{n} u_{j}(x)=1$ for all $x \in K$.

Theorem 1.10.1 (Partition of unity) Suppose that K is a compact set in a locally compact metric space X and that \mathcal{F} is a finite open covering of K. Then K has a partition of unity subordinate to \mathcal{F}.

Proof Let $\mathcal{F}=\left\{G_{1}, \ldots, G_{n}\right\}$. There are compact sets K_{1}, \ldots, K_{n} such that $K_{j} \subset G_{j}$ for each j and $K \subset \bigcup_{j=1}^{n} K_{j}$, by Lemma 1.10.2. For each $j=1, \ldots, n$, it then follows from Corollary 1.10.1 that there is a $f_{j} \in U_{c}\left(G_{j}\right)$ such that $f_{j}=1$ on K_{j}. Define functions u_{1}, \ldots, u_{n} by

$$
u_{1}=f_{1}, u_{2}=\left(1-f_{1}\right) f_{2}, \ldots, u_{n}=\left(1-f_{1}\right) \cdots\left(1-f_{n-1}\right) f_{n} .
$$

Then, $u_{j} \in U_{c}\left(G_{j}\right), j=1, \ldots, n$. Now

$$
\begin{equation*}
\sum_{j=1}^{n} u_{j}=1-\left(1-f_{1}\right) \cdots\left(1-f_{n}\right), \tag{1.14}
\end{equation*}
$$

as can be verified from $u_{1}=1-\left(1-f_{1}\right)$, $u_{1}+u_{2}=1-\left(1-f_{1}\right)\left(1-f_{2}\right)$, and so on. If $x \in K$, then $x \in K_{j}$ for some j and therefore $\left(1-f_{1}(x)\right) \cdots\left(1-f_{n}(x)\right)=0$; consequently $\sum_{j=1}^{n} u_{j}(x)=1$, by (1.14).

A Glimpse of Measure and Integration

This chapter gives a quick but precise exposition of the essentials of measure and integration so that an overall view of the subject is provided at the outset.
Preliminaries on various types of families of sets and set functions defined on them are covered in the first section, for later use in this chapter as well as in subsequent chapters.

The important L^{p} spaces are also introduced in this chapter for the reader to have an early appreciation of the power of the basic convergence theorems, which, together with the Egoroff theorem, reveal convincingly the relevance of σ-additivity of measures.

2.1 Families of sets and set functions

Sets considered in this section are subsets of a given fixed set Ω, which is sometimes referred to as a universal set; the family of all subsets of Ω is called the power set of Ω and is denoted by 2^{Ω}. A function τ defined on a nonempty family Φ of subsets of Ω and taking complex or extended real values is called a set function. If the empty set $\phi \in \Phi$, we always require that $\tau(\phi)=0$. But hereafter in this chapter a set function τ is always assumed to take only nonnegative extended real values; and it is said to be finite if $\tau(A)$ is finite for $A \in \Phi$, while it is σ-finite if there is a sequence $\left\{A_{n}\right\} \subset \Phi$ such that $\bigcup \Phi \subset$ $\bigcup_{n} A_{n}$ and $\tau\left(A_{n}\right)<\infty$ for each n. A set function τ is monotone if $\tau(A) \leq \tau(B)$ for A, B in Φ with $A \subset B$. A monotone set function τ with domain Φ is said to be continuous from below at $A \in \Phi$, if for every increasing sequence $\left\{A_{n}\right\} \subset \Phi$ with $A=\bigcup_{n} A_{n}$ the equality $\tau(A)=\lim _{n \rightarrow \infty} \tau\left(A_{n}\right)$ holds. Note that since τ is monotone, $\lim _{n \rightarrow \infty} \tau\left(A_{n}\right)$ exists. The set function τ is continuous from below on $\boldsymbol{\Phi}$ if it is continuous from below at every $A \in \Phi$. A set function with ϕ in its domain is called a premeasure on Ω.

A family \mathcal{P} of subsets of Ω is called a π-system on Ω if $A \cap B \in \mathcal{P}$ whenever A and B are in \mathcal{P}. The families $\{(-\infty, \alpha]: \alpha \in \mathbb{R}\}$ and $\{(a, b):-\infty<a \leq b<\infty\}$ are π-systems on \mathbb{R}.

A family \mathcal{A} of subsets of Ω is called an algebra on Ω if
(a_{1}) $\Omega \in \mathcal{A}$;
(a_{2}) if $A \in \mathcal{A}$, then $A^{c}:=\Omega \backslash A$ is in \mathcal{A};
(a3) $A \cup B \in \mathcal{A}$ whenever A and B are in \mathcal{A}.
It is readily seen that if $\left\{A_{1}, \ldots, A_{n}\right\}$ is any finite subfamily of an algebra \mathcal{A}, then $\bigcup_{j=1}^{n} A_{j} \in \mathcal{A}$, and consequently $\bigcap_{j=1}^{n} A_{j} \in \mathcal{A}$, because $\left(\bigcap_{j=1}^{n} A_{j}\right)^{c}=\bigcup_{j=1}^{n} A_{j}^{c}$. One also notes that if A, B are in \mathcal{A}, then $A \backslash B:=A \cap B^{c}$ is in \mathcal{A}.

A family Σ of subsets of Ω is called a σ-algebra on Ω if it is an algebra on Ω and if $\left\{A_{n}\right\}$ is a sequence in Σ; then $\bigcup_{n} A_{n} \in \Sigma$. Since $\left(\bigcap_{n} A_{n}\right)^{c}=\bigcup_{n} A_{n}^{c}, \bigcap_{n} A_{n} \in \Sigma$ if $\left\{A_{n}\right\}$ is a sequence in a σ-algebra Σ.

A family \mathcal{L} of subsets of Ω is called a λ-system on Ω if the following conditions hold for \mathcal{L} :
(λ_{1}) $\Omega \in \mathcal{L}$;
(λ_{2}) if $A \in \mathcal{L}$, then $A^{c} \in \mathcal{L}$;
$\left(\lambda_{3}\right)$ if $\left\{A_{n}\right\}$ is a disjoint sequence in \mathcal{L}, then $\bigcup_{n} A_{n} \in \mathcal{L}$.
Observe that if \mathcal{L} is a λ-system on Ω and if A, B are in \mathcal{L} with $A \subset B$, then $B \backslash A \in \mathcal{L}$, because $B \backslash A=A^{c} \cap B=\left(A \cup B^{c}\right)^{c}$.
Π-systems, λ-systems, algebras, and σ-algebras on Ω will often be simply referred to as π-systems, λ-systems, algebras, and σ-algebras if Ω is clearly implied in a statement.

We state without proof a trivial lemma for later reference.
Lemma 2.1.1 A family of subsets of Ω is a σ-algebra on Ω if and only if it is both a π-system and a λ-system on Ω.

Since the intersection of any collection of λ-systems on Ω is a λ-system, for any family Φ of subsets of Ω the smallest λ-system on Ω containing Φ exists and is denoted by $\lambda(\Phi)$. Similarly, the smallest σ-algebra on Ω containing Φ exists and is denoted by $\sigma(\Phi)$. We note that $\lambda(\Phi) \subset \sigma(\Phi)$ always, because any σ-algebra is a λ-system.

A λ-system satisfies a set of conditions which is a little weaker than that for a σ-algebra; but it turns out that often the set of conditions for λ-systems is much easier to verify than that for σ-algebras. The following theorem was first discovered by W . Sierpinski, and has been shown to be very useful in probability theory by E.B. Dynkin. It is now often referred to as the $(\boldsymbol{\pi}-\lambda)$ Theorem.

Theorem 2.1.1 ($\pi-\lambda$ Theorem) If \mathcal{P} is a π-system on Ω, then $\lambda(\mathcal{P})=\sigma(\mathcal{P})$.
Proof Let $\mathcal{L}_{0}=\lambda(\mathcal{P})$. If \mathcal{L}_{0} is a π-system, then \mathcal{L}_{0} is a σ-algebra, by Lemma 2.1.1, consequently $\mathcal{L}_{0} \supset \sigma(\mathcal{P})$; but since $\mathcal{L}_{0}=\lambda(\mathcal{P}) \subset \sigma(\mathcal{P})$, we have $\lambda(\mathcal{P})=\sigma(\mathcal{P})$. It remains therefore to show that \mathcal{L}_{0} is a π-system. For $A \in \mathcal{L}_{0}$, let

$$
\mathcal{L}_{A}=\left\{B \subset \Omega: A \cap B \in \mathcal{L}_{0}\right\} .
$$

To show that \mathcal{L}_{0} is a π-system is to show that $\mathcal{L}_{A} \supset \mathcal{L}_{0}$ for every $A \in \mathcal{L}_{0}$. Clearly, \mathcal{L}_{A} is a λ-system. Observe then that if $B \in \mathcal{P}$, then $\mathcal{L}_{B} \supset \mathcal{P}$, since \mathcal{P} is a π-system, and hence \mathcal{L}_{B} is a λ-system containing \mathcal{P}. Therefore, $\mathcal{L}_{B} \supset \mathcal{L}_{0}$ if $B \in \mathcal{P}$, this means that $A \cap B \in \mathcal{L}_{0}$ if $A \in \mathcal{L}_{0}$ and $B \in \mathcal{P}$, or $\mathcal{L}_{A} \supset \mathcal{P}$ if $A \in \mathcal{L}_{0}$. Since \mathcal{L}_{A} is a λ-system, we then have $\mathcal{L}_{A} \supset \mathcal{L}_{0}$ for $A \in \mathcal{L}_{0}$. Thus \mathcal{L}_{0} is a π-system and the theorem is proved.

We reiterate that hereafter in this chapter set functions are assumed to take nonnegative extended real values.

We shall call a set function μ defined on an algebra \mathcal{A} on Ω an additive set function if $\mu(A \cup B)=\mu(A)+\mu(B)$ whenever $A, B \in \mathcal{A}$ and $A \cap B=\phi$. Recall that $\mu(\phi)=0$. An additive set function μ on an algebra \mathcal{A} is σ-additive if

$$
\mu\left(\bigcup_{n} A_{n}\right)=\sum_{n} \mu\left(A_{n}\right),
$$

whenever $\left\{A_{n}\right\}$ is a disjoint sequence in \mathcal{A} with $\bigcup_{n} A_{n} \in \mathcal{A}$.
Exercise 2.1.1 Let μ be an additive set function defined on an algebra \mathcal{A} on Ω.
(i) Show that μ is monotone.
(ii) Show that if A_{1}, \ldots, A_{n} are in \mathcal{A}, then $\mu\left(\bigcup_{j=1}^{n} A_{j}\right) \leq \sum_{j=1}^{n} \mu\left(A_{j}\right)$.
(iii) Show that μ is σ-additive if and only if μ is continuous from below on \mathcal{A}.
(iv) Show that if $\left\{A_{j}\right\}_{j=1}^{\infty} \subset \mathcal{A}$ with $\bigcup_{j=1}^{\infty} A_{j} \in \mathcal{A}$, then $\mu\left(\bigcup_{j=1}^{\infty} A_{j}\right) \leq \sum_{j=1}^{\infty} \mu\left(A_{j}\right)$ if μ is σ-additive on \mathcal{A}.
Theorem 2.1.2 Suppose that Ω is a compact metric space and \mathcal{A} is an algebra of compact subsets of Ω. If μ is an additive set function on \mathcal{A}, then μ is σ-additive.

Proof To show that μ is σ-additive is to show that if $A_{1} \subset A_{2} \subset \cdots$ is an increasing sequence in \mathcal{A} such that $\bigcup_{n} A_{n} \in \mathcal{A}$, then $\mu\left(\bigcup_{n} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$ (cf. Exercise 2.1.1 (iii)). Let $A=\bigcup_{n} A_{n}$ and put $C_{n}=A \backslash A_{n}$ for each n, then $\bigcap_{n} C_{n}=\emptyset$. We claim that $\lim _{n \rightarrow \infty} \mu\left(C_{n}\right)=0$. If not, then $\mu\left(C_{n}\right) \geq \lim _{n \rightarrow \infty} \mu\left(C_{n}\right)>0$ implies that $C_{n} \neq \emptyset$ for all n. Then $\bigcap_{n} C_{n} \neq \emptyset$, by Exercise 1.7.2, contradicting the fact that $\bigcap_{n} C_{n}=\emptyset$. Now, $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)=\lim _{n \rightarrow \infty}\left\{\mu\left(A_{n}\right)+\mu\left(C_{n}\right)\right\}=\mu(A)$.

Example 2.1.1 Consider the sequence space $\Omega=\{0,1\} \times\{0,1\} \times \cdots$ and the additive set function P defined on the algebra \mathcal{Q} of all cylinders in Ω (cf. Section 1.3). We have seen in Example 1.7.1 that Ω is compact with a suitable metric and that sets in \mathcal{Q} are compact, hence P is a σ-additive set function on \mathcal{Q}, by Theorem 2.1.2.
A σ-additive set function μ defined on a σ-algebra Σ on Ω is called a measure on Σ.
Exercise 2.1.2 Let μ be a σ-additive set function defined on an algebra \mathcal{A} on Ω with $\mu(\Omega)<\infty$. Suppose that μ_{1} and μ_{2} are measures defined on a σ-algebra $\Sigma \supset \mathcal{A}$, with the property that $\mu_{1}(A)=\mu_{2}(A)=\mu(A)$ for $A \in \mathcal{A}$. Show that $\mu_{1}(B)=\mu_{2}(B)$ for $B \in \sigma(\mathcal{A})$. (Hint: show that $\mathcal{L}=\left\{B \in \Sigma: \mu_{1}(B)=\mu_{2}(B)\right\}$ is a λ-system.)

2.2 Measurable spaces and measurable functions

A function f defined on a set Ω and taking values in $[-\infty, \infty]:=\{-\infty\} \cup \mathbb{R} \cup\{\infty\}$ is said to be extended real-valued. The sets $[-\infty, \infty]$ and $[0, \infty]:=[0, \infty) \cup\{\infty\}$ will often also be denoted as $\overline{\mathbb{R}}$ and $\overline{\mathbb{R}}^{+}$respectively, while $[0, \infty)$ will also be denoted as \mathbb{R}^{+}. Since, except where explicitly specified otherwise, functions considered are extended real-valued; we shall often call an extended real-valued function defined on Ω simply a function on Ω; while if f takes values in \mathbb{R}, f is said to be real-valued or finite-valued. We recall some usual conventions concerning algebraic operations involving infinity symbols ∞ and $-\infty$: $\infty+\infty=\infty,-\infty+(-\infty)=-\infty, a+\infty=-(a-\infty)=\infty$ if a is a finite number, while for an extended real number $a, a \cdot \infty=(-a) \cdot(-\infty)=\infty$, or $-\infty$, depending on whether $a>0$ or $a<0$, and $0 \cdot \infty=0 \cdot(-\infty)=0$. The symbol ∞ is sometimes written $+\infty$ for emphasis. We shall also adopt the convention that $(-\infty)^{-1}=(\infty)^{-1}=0$, but then $\frac{\infty}{\infty}, \frac{-\infty}{-\infty}, \frac{\infty}{-\infty}$ and $\frac{-\infty}{\infty}$ are considered not to be defined. We also observe that $\infty-\infty$ and $\infty+(-\infty)$ are not defined.

An ordered pair (Ω, Σ) is called a measurable space if Ω is a nonempty set and Σ is a σ-algebra on Ω.

Given a measurable space (Ω, Σ), a function f on Ω is called Σ-measurable if $\{x \in \Omega: f(x)>\alpha\} \in \Sigma$ for every $\alpha \in \mathbb{R}$. A Σ-measurable function will simply be called measurable if the measurable space (Ω, Σ) is clearly implied. More generally, a function is said to be measurable on $A \in \Sigma$ if its domain of definition contains A and if $\{x \in A: f(x)>\alpha\} \in \Sigma$ for every $\alpha \in \mathbb{R}$. Observe that a function is Σ-measurable if and only if $\{x \in \Omega: f(x)>\alpha\} \in \Sigma$ for all $\alpha \in \overline{\mathbb{R}}$. This is clear, because $\{x \in \Omega$: $f(x)>\infty\}=\phi$ and $\{x \in \Omega: f(x)>-\infty\}=\bigcup_{n \in \mathbb{N}}\{x \in \Omega: f(x)>-n\}$. For notational simplicity, we shall presently introduce simplified notations for sets like $\{x \in \Omega$: $f(x)>\alpha\}$. For a set $C \subset \overline{\mathbb{R}}$ and a function f on Ω, the set $\{x \in \Omega: f(x) \in C\}$ will be denoted simply as $\{f \in C\}$. With this notation, f is Σ-measurable if $\{f \in(\alpha, \infty]\} \in \Sigma$ for all $\alpha \in \mathbb{R} .\{f \in(\alpha, \infty]\}$ will also be denoted as $\{f>\alpha\}$. Similarly, for $\alpha \leq \beta$ in $\overline{\mathbb{R}}$, the sets $\{f \in(\alpha, \beta)\},\{f \in(\alpha, \beta]\},\{f \in[\alpha, \beta)\}$ and $\{f \in[\alpha, \beta]\}$ in this order will be denoted as $\{\alpha<f<\beta\},\{\alpha<f \leq \beta\},\{\alpha \leq f<\beta\}$, and $\{\alpha \leq f \leq \beta\}$ respectively.

Constant functions are certainly measurable functions; after constant functions, measurable functions of the simplest structure are the simple functions that will now be introduced. For $A \subset \Omega$, we denote by I_{A} the function defined by $I_{A}(x)=1$ or 0 , according to whether $x \in A$ or not. The function I_{A} is called the indicator function of the set A; clearly, I_{A} is measurable if and only if $A \in \Sigma$. A function of the form $\sum_{j=1}^{k} \alpha_{j} I_{A_{j}}, k \in \mathbb{N}$, $\alpha_{j} \in \mathbb{R}, A_{j} \in \Sigma$, is called a simple function. One can verify directly that simple functions are measurable and form a real vector space of functions.

For a metric space M we shall denote by $\mathcal{B}(M)$ the smallest σ-algebra on M containing all open subsets of M and call a $\mathcal{B}(M)$-measurable function defined on M a Borel measurable function (or simply a Borel function). It is easily seen that a monotone increasing (decreasing) function defined on an interval of \mathbb{R} is Borel measurable. One also verifies readily that lower semi-continuous functions and upper semi-continuous functions are Borel measurable. Sets in $\mathcal{B}(M)$ are called Borel sets in M and $\mathcal{B}(M)$ is usually referred to as the Borel field on $M . \mathcal{B}(\mathbb{R})$ will be simply denoted by \mathcal{B}. The smallest

44 | A Glimpse of Measure and Integration

σ-algebra on $\overline{\mathbb{R}}$ containing all open subsets of \mathbb{R} as well as sets of the form $(\alpha, \infty]$ for all $\alpha \in \mathbb{R}$ is denoted by $\overline{\mathcal{B}}$. Sets in $\overline{\mathcal{B}}$ are called Borel sets in $\overline{\mathbb{R}}$. For $n \geq 2, \mathcal{B}\left(\mathbb{R}^{n}\right)$ is simply denoted by \mathcal{B}^{n}.

Example 2.2.1 Let $\left\{f_{n}\right\}$ be a sequence of real-valued continuous functions defined on a metric space M, and let $C=\left\{x \in M: \lim _{n \rightarrow \infty} f_{n}(x)\right.$ exists $\}$. Then $C=\bigcap_{k \in \mathbb{N}} \bigcup_{l \in \mathbb{N}} \bigcap_{n, m \geq l} A_{n m}^{(k)}$, where for k, m, n in $\mathbb{N}, A_{n m}^{(k)}=\left\{x \in M: \mid f_{n}(x)-\right.$ $\left.f_{m}(x) \left\lvert\,<\frac{1}{k}\right.\right\}$. Since each $A_{n m}^{(k)}$ is open, C is a Borel set in M.
Given a measurable space (Ω, Σ), a function defined on Ω is often referred to as a function on (Ω, Σ), by abuse of language, if the role of Σ is to be emphasized; in particular, a measurable function on (Ω, Σ) means a Σ-measurable function defined on Ω.

Remark If f is a measurable function, then $\{f \geq \alpha\}=\bigcap_{m \in \mathbb{N}}\left\{f>\alpha-\frac{1}{m}\right\}$ is in Σ; similarly, $\{f<\alpha\}=\bigcup_{m \in \mathbb{N}}\left\{f \leq \alpha-\frac{1}{m}\right\}$ is in Σ, because each $\left\{f \leq \alpha-\frac{1}{m}\right\}=\{f>\alpha-$ $\left.\frac{1}{m}\right\}^{c}$ is in Σ.

Exercise 2.2.1

(i) Show that $\overline{\mathcal{B}}$ is the smallest σ-algebra on $\overline{\mathbb{R}}$ containing $\{(\alpha, \infty]: \alpha \in \mathbb{R}\}$.
(ii) Let (Ω, Σ) be a measurable space. Show that a function f on Ω is Σ-measurable if and only if $\{f \in B\} \in \Sigma$ for all $B \in \overline{\mathcal{B}}$.
(iii) Let (Ω, Σ) be a measurable space. Show that if f is a finite-valued function on Ω, then f is Σ-measurable if and only if $\{f \in B\} \in \Sigma$ for all $B \in \mathcal{B}$.

For a family $\left\{f_{\alpha}\right\}$ of functions defined on a set Ω, define functions $\inf _{\alpha} f_{\alpha}$ and $\sup _{\alpha} f_{\alpha}$ by

$$
\left(\inf _{\alpha} f_{\alpha}\right)(x)=\inf _{\alpha} f_{\alpha}(x) ; \quad\left(\sup _{\alpha} f_{\alpha}\right)(x)=\sup _{\alpha} f_{\alpha}(x)
$$

for $x \in \Omega . \operatorname{Inf}_{\alpha} f_{\alpha}$ and $\sup _{\alpha} f_{\alpha}$ are sometimes expressed respectively by $\bigwedge_{\alpha} f_{\alpha}$ and $\bigvee_{\alpha} f_{\alpha}$. If $\left\{f_{n}\right\}$ is a sequence of functions defined on Ω, define functions $\liminf _{n \rightarrow \infty} f_{n}$ and $\lim \sup _{n \rightarrow \infty} f_{n}$ by

$$
\left(\liminf _{n \rightarrow \infty} f_{n}\right)(x)=\lim _{n \rightarrow \infty}\left(\inf _{m \geq n} f_{m}(x)\right) ; \quad\left(\limsup _{n \rightarrow \infty} f_{n}\right)(x)=\lim _{n \rightarrow \infty}\left(\sup _{m \geq n} f_{m}(x)\right)
$$

for $x \in \Omega$. Since uncertainty is not likely, $\left(\liminf _{n \rightarrow \infty} f_{n}\right)(x)$ and $\left(\lim \sup _{n \rightarrow \infty} f_{n}\right)(x)$ will be simply written as $\lim \inf _{n \rightarrow \infty} f_{n}(x)$ and $\lim \sup _{n \rightarrow \infty} f_{n}(x)$ respectively.

Naturally, if $\lim _{\inf }^{n \rightarrow \infty} f_{n}(x)=\lim \sup _{n \rightarrow \infty} f_{n}(x)$, the common value is denoted by $\lim _{n \rightarrow \infty} f_{n}(x)$ and we say that the sequence $\left\{f_{n}\right\}$ converges at x. If $\left\{f_{n}\right\}$ converges at all $x \in A \subset \Omega$, and if we define a function f on A by $f(x)=\lim _{n \rightarrow \infty} f_{n}(x)$, then we say that the sequence $\left\{f_{n}\right\}$ converges pointwise on A to f (notationally, $f_{n} \rightarrow f$ on A).

Exercise 2.2.2 Let (Ω, Σ) be a measurable space and $\left\{f_{n}\right\}$ a sequence of measurable functions on Ω.
(i) Show that both $\inf _{n} f_{n}$ and $\sup _{n} f_{n}$ are measurable functions on Ω. (Hint: $\left.\left\{\inf _{n} f_{n}>\alpha\right\}=\bigcup_{m} \bigcap_{n}\left\{f_{n}>\alpha+\frac{1}{m}\right\}.\right)$
(ii) Show that both $\lim \inf _{n \rightarrow \infty} f_{n}$ and $\lim \sup _{n \rightarrow \infty} f_{n}$ are measurable functions on Ω.
(iii) Show that $\left\{x \in \Omega: \liminf _{n \rightarrow \infty} f_{n}(x)=\lim \sup _{n \rightarrow \infty} f_{n}(x)\right\} \in \Sigma$.
(iv) Show that iflim $\lim _{n \rightarrow \infty} f_{n}(x)$ exists for all $x \in \Omega$, then $f=\lim _{n \rightarrow \infty} f_{n}$ is measurable.

Exercise 2.2.3 Let f be measurable. For each positive integer n, let $A^{(n)}=\{f<-n\}$, $C^{(n)}=\{f \geq n\}, B_{i}^{(n)}=\left\{-n+\frac{i}{n} \leq f<-n+\frac{i+1}{n}\right\}, i=0,1,2, \ldots, 2 n^{2}-1$, and let

$$
g_{n}=-n I_{A^{(n)}}+\sum_{i=0}^{2 n^{2}-1}\left(-n+\frac{i}{n}\right) I_{B_{i}^{(n)}}+n I_{C^{(n)}} .
$$

Show that $g_{n} \rightarrow f$ pointwise and show that if f, g are measurable, then $f g$ is measurable; furthermore if $g \neq 0$ everywhere on X, then f / g is also measurable.

Exercise 2.2.4 Let (Ω, Σ) be a measurable space and f, g measurable functions on Ω. Then $f+g$ is defined on Ω if and only if $\{f(x), g(x)\} \neq\{-\infty, \infty\}$ for all $x \in \Omega$. Show that if $f+g$ is defined on Ω, then $f+g$ is measurable. (Hint: $\{f+g>\alpha\}=$ $\bigcup_{q \in \mathbb{Q}}\{f>q\} \cap\{g>\alpha-q\}$ for $\alpha \in \mathbb{R}$, where \mathbb{Q} is the set of all rational numbers.)

Since for a measurable function f on Ω and $\lambda \in \mathbb{R}, \lambda f$ is clearly measurable, we infer from Exercise 2.2.4 that the space of all finite-valued measurable functions is a real vector space which contains the space of all simple functions as a vector subspace.

To conclude this section, we present a useful representation for nonnegative measurable functions.

Theorem 2.2.1 Suppose that (Ω, Σ) is a measurable space and f is a nonnegative measurable function defined on Ω, then there is a sequence $\left\{A_{j}\right\}_{j=1}^{\infty} \subset \Sigma$ such that

$$
\begin{equation*}
f(\omega)=\sum_{j=1}^{\infty} \frac{1}{j} I_{A_{j}}(\omega) \tag{2.1}
\end{equation*}
$$

for all $\omega \in \Omega$.
Proof Define sets $A_{1}, \ldots, A_{j}, \ldots$ recursively as follows: $A_{1}=\{f \geq 1\}, A_{2}=\left\{f \geq \frac{1}{2}+\right.$ $\left.I_{A_{1}}\right\}, \ldots, A_{j}=\left\{f \geq \frac{1}{j}+\sum_{k<j} \frac{1}{k} I_{A_{k}}\right\}, \ldots$. Clearly each A_{j} is in Σ. We now show that (2.1) holds for $\omega \in \Omega$.

Observe first, that $\omega \in \Omega \backslash \bigcup_{j=1}^{\infty} A_{j}$ if and only if $f(\omega)=0$ and that when $\omega \in \Omega \backslash$ $\bigcup_{j=1}^{\infty} A_{j}$, both sides of (2.1) are equal to zero. It remains to show that (2.1) holds for $\omega \in \bigcup_{j=1}^{\infty} A_{j}$.

For $\omega \in \bigcup_{j=1}^{\infty} A_{j}$, we distinguish two cases:
[Case 1] $\omega \in A_{j}$ for only finitely many j.
Let j_{0} be the largest j such that $\omega \in A_{j}$. Then,

$$
f(\omega) \geq \frac{1}{j_{0}}+\sum_{k<j_{0}} \frac{1}{k} I_{A_{k}}(\omega)=\sum_{k=1}^{j_{0}} \frac{1}{k} I_{A_{k}}(\omega)=\sum_{k=1}^{\infty} \frac{1}{k} I_{A_{k}}(\omega) ;
$$

on the other hand, for $j>j_{0}$,

$$
f(\omega)<\frac{1}{j}+\sum_{k<j} \frac{1}{k} I_{A_{k}}(\omega)=\frac{1}{j}+\sum_{k=1}^{\infty} \frac{1}{k} I_{A_{k}}(\omega) ;
$$

hence, by letting $j \rightarrow \infty$, we have

$$
f(\omega) \leq \sum_{k=1}^{\infty} \frac{1}{k} I_{A_{k}}(\omega)
$$

Thus (2.1) holds in this case.
[Case 2] $\omega \in A_{j}$ for infinitely many j.
For infinitely many j, we have

$$
f(\omega) \geq \frac{1}{j}+\sum_{k<j} \frac{1}{k} I_{A_{k}}(\omega)=\sum_{k=1}^{j} \frac{1}{k} I_{A_{k}}(\omega) ;
$$

let $j \rightarrow \infty$ through such j 's, it follows that

$$
\begin{equation*}
f(\omega) \geq \sum_{k=1}^{\infty} \frac{1}{k} I_{A_{k}}(\omega) \tag{2.2}
\end{equation*}
$$

Now either $\omega \in A_{j}$ for $j \geq N$ for some $N \in \mathbb{N}$ or $\omega \notin A_{j}$ for infinitely many j. In the former case,

$$
f(\omega) \geq \sum_{k=1}^{\infty} \frac{1}{k} I_{A_{k}}(\omega) \geq \sum_{k=N}^{\infty} \frac{1}{k}=\infty
$$

thus $f(\omega)=\infty=\sum_{k=1}^{\infty} \frac{1}{k} I_{A_{k}}(\omega)$; in the latter case,

$$
f(\omega)<\frac{1}{j}+\sum_{k<j} \frac{1}{k} I_{A_{k}}(\omega)
$$

for infinitely many j and hence when $j \rightarrow \infty$ through such j 's, it follows that

$$
f(\omega) \leq \sum_{k=1}^{\infty} \frac{1}{k} I_{A_{k}}(\omega)
$$

which together with (2.2) shows that (2.1) holds.

Corollary 2.2.1 Iff is a nonnegative measurable function, then there is a nondecreasing sequence $\left\{s_{n}\right\}$ of nonnegative simple functions which converges to f pointwise.
Proof Let $\left\{A_{j}\right\}$ be the sequence of measurable sets in Theorem 2.2.1. Choose the sequence $\left\{s_{n}\right\}$ defined by

$$
s_{n}=\sum_{j=1}^{n} \frac{1}{j} I_{A_{j}} .
$$

Exercise 2.2.5 Let f be a measurable function; show that there is a sequence $\left\{f_{n}\right\}$ of simple functions such that $\left|f_{n}\right| \leq|f|$ and $f_{n}(\omega) \rightarrow f(\omega)$ for all $\omega \in \Omega$.

2.3 Measure space and integration

A triple (Ω, Σ, μ) is called a measure space if (Ω, Σ) is a measurable space and μ is a measure on Σ. When $\mu(\Omega)=1,(\Omega, \Sigma, \mu)$ is called a probability space, and in this case μ is usually denoted by P.

Example 2.3.1 Let Ω be an arbitrary nonempty set and for $A \subset \Omega$ let $\mu(A)$ be the cardinality of A if A is finite; otherwise let $\mu(A)=\infty$. Obviously μ is a measure on 2^{Ω}, the σ-algebra of all subsets of Ω, and is called the counting measure on Ω. The measure space ($\Omega, 2^{\Omega}, \mu$) will be called the measure space with counting measure on Ω.

Example 2.3.2 Let Ω be a countable set, say $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{n}, \ldots\right\}$, and $\left\{p_{n}\right\}$ a sequence of nonnegative real numbers with $\sum_{n=1}^{\infty} p_{n}=1$. For $A \subset \Omega$, let $\mathbb{N}(A)=$ $\left\{n \in \mathbb{N}: \omega_{n} \in A\right\}$ and $\mu(A)=\sum_{n \in \mathbb{N}(A)} p_{n}$; then the measure space $\left(\Omega, 2^{\Omega}, \mu\right)$ is called a discrete probability space.

Given a measure space (Ω, Σ, μ), measurable functions are extended real-valued functions measurable in reference to the measurable space (Ω, Σ).

We now fix a measure space (Ω, Σ, μ) and define the integral for certain measurable functions. Recall that a simple function is a finite linear combination of indicator functions of sets in Σ. Clearly if f is a simple function, then $f=\sum_{i=1}^{k} \alpha_{i} I_{A_{i}}$, where $\alpha_{1}, \ldots, \alpha_{k}$ are the different values assumed by f and $A_{i}=\left\{f=\alpha_{i}\right\}$; we define then

$$
\begin{equation*}
\int_{\Omega} f d \mu=\sum_{i=1}^{k} \alpha_{i} \mu\left(A_{i}\right) \tag{2.3}
\end{equation*}
$$

if the right-hand side of (2.3) has a meaning. It is easy to see that if $\int_{\Omega} f d \mu$ is defined and f is expressed as $f=\sum_{i=1}^{l} \beta_{i} I_{B_{i}}$, where B_{1}, \ldots, B_{l} are in Σ and are disjoint, then

$$
\int_{\Omega} f d \mu=\sum_{i=1}^{l} \beta_{i} \mu\left(B_{i}\right)
$$

In particular, $\int_{\Omega} f d \mu$ has a meaning if f is simple and nonnegative, although it is possible that $\int_{\Omega} f d \mu=+\infty$.

If f is measurable and nonnegative, define

$$
\int_{\Omega} f d \mu=\sup \int_{\Omega} g d \mu
$$

where the supremum is taken over all simple functions g with $0 \leq g \leq f$. Obviously, if f is nonnegative and simple, this definition coincides with the previously defined $\int_{\Omega} f d \mu$ for simple functions.

For a function f defined on a set Ω, define nonnegative functions f^{+}and f^{-}by

$$
\begin{aligned}
f^{+}(x) & =f(x) \text { if } f(x) \geq 0, \\
& =0 \text { otherwise; } \\
f^{-}(x) & =-f(x) \text { if } f(x) \leq 0, \\
& =0 \text { otherwise. }
\end{aligned}
$$

Then $f=f^{+}-f^{-}$and $|f|=f^{+}+f^{-}$; furthermore, if f is measurable on a measurable space (Ω, Σ), then both f^{+}and f^{-}are measurable.

Return now to the discourse interrupted by the last paragraph and let f be a measurable function. Define

$$
\int_{\Omega} f d \mu=\int_{\Omega} f^{+} d \mu-\int_{\Omega} f^{-} d \mu
$$

if the right-hand side has a meaning. In this case, $\int_{\Omega} f d \mu$ is said to exist and is called the integral of f. One notes that if f is a simple function this definition of $\int_{\Omega} f d \mu$ coincides with that given by (2.3). If $\int_{\Omega} f d \mu$ is finite, then f is said to be integrable. Integrability and the integral of a measurable function so defined will be referred to more precisely as μ-integrability and the μ-integral respectively, if the measure μ is to be emphasized. It will be shown later that a measurable function f is integrable if and only if $|f|$ is integrable (see Theorem 2.5.3).

Suppose that f is a measurable function and $A \in \Sigma$; if $\int_{\Omega} f I_{A} d \mu$ exists, it is denoted by $\int_{A} f d \mu$ and is called the integral of f over A. Obviously, if $\int_{\Omega} f d \mu$ exists, then $\int_{A} f d \mu$ exists for all $A \in \Sigma$.

Example 2.3.3 Let Ω be an arbitrary set and consider the counting measure μ on Ω; then every function f on Ω is measurable and f is integrable if and only if $f(x)$ is finite for $x \in \Omega$ and $\{f(x)\}_{x \in \Omega}$ is summable.

Example 2.3.4 Consider the discrete probability space of Example 2.3.2. Let f be a function on Ω. Since every subset of Ω is measurable, f is measurable and is called a random variable. If $\int_{\Omega} f d \mu$ exists, it is called the expectation of f. It is easily verified that f is integrable if and only if $\left\{f\left(\omega_{n}\right) p_{n}\right\}_{n \in \mathbb{N}}$ is summable.

Exercise 2.3.1 If f and g are nonnegative simple functions and $\alpha, \beta \geq 0$, show that

$$
\int_{\Omega}(\alpha f+\beta g) d \mu=\alpha \int_{\Omega} f d \mu+\beta \int_{\Omega} g d \mu .
$$

Exercise 2.3.2 If $f \leq g$ are two nonnegative measurable functions, show that $\int_{\Omega} f d \mu \leq$ $\int_{\Omega} g d \mu$.

Exercise 2.3.3 Suppose that f and g are measurable functions such that $f \leq g$, and suppose that $\int_{\Omega} g^{+} d \mu<\infty$. Show that $\int_{\Omega_{2}} f d \mu$ exists and $\int_{\Omega} f d \mu \leq \int_{\Omega} g d \mu$.
Exercise 2.3.4 Let f be a measurable function on a measure space (Ω, Σ, μ) and for each $k \in \mathbb{N}$ let $A_{k}=\left\{2^{k-1} \leq|f|<2^{k}\right\}$. Show that f is integrable if and only if $\sum_{k=1}^{\infty} 2^{k-1} \mu\left(A_{k}\right)<\infty$ and $\mu(\{|f|=\infty\})=0$.

Example 2.3.5 Suppose that f is a nonnegative measurable function and $0 \leq p<r<$ $q<\infty$. Then $\int_{\Omega} f^{r} d \mu \leq \int_{\Omega} f^{p} d \mu+\int_{\Omega} f^{q} d \mu$. Actually, if we let $A=\{f \leq 1\}$ and $B=\{f>1\}$, then $\int_{\Omega} f^{r} d \mu=\int_{\Omega} I_{A} f^{r} d \mu+\int_{\Omega} I_{B} f^{r} d \mu \leq \int_{\Omega} I_{A} f^{p} d \mu+\int_{\Omega} I_{B} f^{q} d \mu \leq$ $\int_{\Omega} f^{p} d \mu+\int_{\Omega} f^{q} d \mu$.

2.4 Egoroff theorem and monotone convergence theorem

Suppose that Ω is a set and $\left\{A_{n}\right\}_{n=1}^{\infty}$ is a sequence of subsets of Ω, define

$$
\begin{aligned}
& \limsup _{n \rightarrow \infty} A_{n}=\bigcap_{n \in \mathbb{N}} \bigcup_{k \geq n} A_{k} ; \\
& \liminf _{n \rightarrow \infty} A_{n}=\bigcup_{n \in \mathbb{N}} \bigcap_{k \geq n} A_{k} .
\end{aligned}
$$

If $\lim \sup _{n \rightarrow \infty} A_{n}=\liminf n_{n \rightarrow \infty} A_{n}$, then we say that the limit of the sequence $\left\{A_{n}\right\}$ exists and has the common set as its limit, which is denoted by $\lim _{n \rightarrow \infty} A_{n}$. In particular, if $A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset A_{n+1} \subset \cdots$ i.e. $\left\{A_{n}\right\}$ is monotone increasing, or $A_{1} \supset A_{2} \supset \cdots \supset A_{n} \supset A_{n+1} \supset \cdots$ i.e. $\left\{A_{n}\right\}$ is monotone decreasing, then $\lim _{n \rightarrow \infty} A_{n}$ exists and equals $\bigcup_{n \in \mathbb{N}} A_{n}$ or $\bigcap_{n \in \mathbb{N}} A_{n}$ according to whether $\left\{A_{n}\right\}$ is monotone increasing or monotone decreasing. Hence $\lim \sup _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty} \bigcup_{k \geq n} A_{k}$ and $\liminf _{n \rightarrow \infty} A_{n}=\lim _{n \rightarrow \infty} \bigcap_{k \geq n} A_{k}$.

Exercise 2.4.1 Let $\left\{A_{n}\right\}_{n=1}^{\infty} \subset 2^{\Omega}$, where Ω is an arbitrary set, and let $B=$ $\lim \inf _{n \rightarrow \infty} A_{n}, C=\lim \sup _{n \rightarrow \infty} A_{n}$. Show that for each $x \in \Omega$ we have

$$
I_{B}(x)=\liminf _{n \rightarrow \infty} I_{A_{n}}(x) \text { and } I_{C}(x)=\underset{n \rightarrow \infty}{\lim \sup } I_{A_{n}}(x)
$$

In the following, a measure space (Ω, Σ, μ) is considered and fixed throughout.
Lemma 2.4.1 (Monotone limit lemma) Let $\left\{A_{n}\right\}_{n=1}^{\infty} \subset \Sigma$ be monotone increasing, then

$$
\mu\left(\lim _{n \rightarrow \infty} A_{n}\right)=\mu\left(\bigcup_{n} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

Proof For each positive integer n let $B_{n}=A_{n} \backslash A_{n-1}$, where we put $A_{0}=\emptyset$, and for convenience let $A=\bigcup_{n} A_{n}$. Then $A_{n}=\bigcup_{k=1}^{n} B_{k}$ and $A=\bigcup_{k} B_{k}$. Since $\left\{B_{k}\right\}$ is disjoint, we have

$$
\mu(A)=\sum_{k=1}^{\infty} \mu\left(B_{k}\right)=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \mu\left(B_{k}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

Corollary 2.4.1 Let $\left\{A_{n}\right\}_{n=1}^{\infty} \subset \Sigma$ be monotone decreasing and $\mu\left(A_{1}\right)<\infty$, then

$$
\mu\left(\lim _{n \rightarrow \infty} A_{n}\right)=\mu\left(\bigcap_{n} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

Proof For each positive integer n let $B_{n}=A_{1} \backslash A_{n}$, and for convenience let $A=\bigcap_{n} A_{n}$. Then $\left\{B_{k}\right\}$ is monotone increasing and $A_{1} \backslash A=\bigcup_{k} B_{k}$. From Lemma 2.4.1, we have

$$
\mu\left(A_{1} \backslash A\right)=\mu\left(\bigcup_{k} B_{k}\right)=\lim _{n \rightarrow \infty} \mu\left(B_{n}\right)
$$

But $\mu\left(A_{1} \backslash A\right)=\mu\left(A_{1}\right)-\mu(A)$ and $\mu\left(B_{n}\right)=\mu\left(A_{1}\right)-\mu\left(A_{n}\right)$; this completes the proof of the corollary.

Remark In Corollary 2.4.1 one may assume that $\mu\left(A_{n}\right)<\infty$ for some n, instead of $\mu\left(A_{1}\right)<\infty$.

Exercise 2.4.2 Let (Ω, Σ, μ) be a measure space. Suppose $\left\{A_{n}\right\}_{n \in \mathbb{N}} \subset \Sigma$.
(i) Show that $\mu\left(\liminf _{n \rightarrow \infty} A_{n}\right) \leq \liminf _{n \rightarrow \infty} \mu\left(A_{n}\right)$.
(ii) If $\mu\left(\bigcup_{j \geq n} A_{j}\right)<+\infty$ for some n, then show that $\mu\left(\lim _{\sup _{n \rightarrow \infty}} A_{n}\right) \geq$ $\lim \sup _{n \rightarrow \infty} \mu\left(A_{n}\right)$.
(iii) If the limit of $\left\{A_{n}\right\}$ exists and $\mu\left(\bigcup_{j \geq n} A_{j}\right)<\infty$ for some n, show that $\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)$ exists and

$$
\mu\left(\lim _{n \rightarrow \infty} A_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

Theorem 2.4.1 (Egoroff theorem) If $\left\{f_{n}\right\}$ is a sequence of measurable functions and $f_{n} \rightarrow f$ with finite limit on $A \in \Sigma$, where $\mu(A)<+\infty$, then for any given $\varepsilon>0$, there is $B \in \Sigma$ with $B \subset A$, such that $\mu(A \backslash B)<\varepsilon$ and $f_{n} \rightarrow f$ uniformly on B.

Proof

[Step 1] We claim that for $\varepsilon>0, \eta>0$, there is integer $N>0$ and $C \in \Sigma$ such that $C \subset A, \mu(A \backslash C)<\varepsilon$, and $\sup _{x \in C}\left|f(x)-f_{n}(x)\right| \leq \eta$ whenever $n \geq N$.

To show this, for each n let $C_{n}=\bigcap_{m \geq n}\left\{x \in A:\left|f(x)-f_{m}(x)\right| \leq \eta\right\}$. Then $C_{n} \nearrow A$. Since $\mu(A)<\infty$, there is N such that $\mu\left(A \backslash C_{N}\right)=\mu(A)-$ $\mu\left(C_{N}\right)<\varepsilon$ by Lemma 2.4.1. Take $C=C_{N}$.
[Step 2] Now given $\varepsilon>0$. By [Step 1] for each positive integer m there is integer N_{m} and $C_{m} \subset A$ with $C_{m} \in \Sigma$ such that

$$
\mu\left(A \backslash C_{m}\right)<\varepsilon / 2^{m}
$$

and

$$
\sup _{x \in C_{m}}\left|f(x)-f_{n}(x)\right| \leq \frac{1}{m}
$$

whenever $n \geq N_{m}$.
Take $B=\bigcap_{m=1}^{\infty} C_{m}$, then $\mu(A \backslash B)=\mu\left(\bigcup_{m=1}^{\infty}\left(A \backslash C_{m}\right)\right)<\varepsilon$. Given $\sigma>0$, choose $m_{0} \in \mathbb{N}$ such that $\frac{1}{m_{0}}<\sigma$. Then for $n \geq N_{m_{0}}$, we have $\left|f(x)-f_{n}(x)\right| \leq \frac{1}{m_{0}}<\sigma$ for all $x \in B$, because $B \subset C_{m_{0}}$. This shows that $f_{n} \rightarrow f$ uniformly on B.

In plain language, Theorem 2.4.1 says that convergence of a sequence of measurable functions on a set of finite measure implies approximate uniform convergence. From its proof, one sees clearly that σ-additivity of μ plays a salient role through Lemma 2.4.1. The following theorem which is called the monotone convergence theorem reveals the distinguished feature of σ-additivity of measure μ through integrals.

Example 2.4.1 Suppose $\mu(\Omega)<\infty$ and $\left\{f_{n}\right\}$ is a sequence of real-valued measurable functions such that $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ exists and is finite for μ-a.e. x in Ω. For each $k \in \mathbb{N}$, by the Egoroff theorem there is $B_{k} \in \Sigma$ such that $\mu\left(\Omega \backslash B_{k}\right)<\frac{1}{k}$ and $f_{n}(x) \rightarrow f(x)$ uniformly for $x \in B_{k}$. Put $\mathbb{Z}=\Omega \backslash \bigcup_{k} B_{k}$, then $\mu(\mathbb{Z}) \leq \mu\left(\Omega \backslash B_{k}\right)<\frac{1}{k}$ for all k and hence $\mu(\mathbb{Z})=0$. Therefore we have shown that there are $B_{1}, B_{2}, \ldots, \mathbb{Z}$ in Σ with $\mu(\mathbb{Z})=0$ such that $\Omega=\bigcup_{k} B_{k} \cup \mathbb{Z}$ and $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ uniformly on each B_{k}.

Exercise 2.4.3 Show that the conclusion in Example 2.4.1 still holds if (Ω, Σ, μ) is σ-finite.

Theorem 2.4.2 (Monotone convergence theorem) Let $\left\{f_{n}\right\}$ be a monotone nondecreasing sequence of nonnegative measurable functions. Then

$$
\int_{\Omega} \lim _{n \rightarrow \infty} f_{n} d \mu=\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu .
$$

Proof Put $f=\lim _{n \rightarrow \infty} f_{n}$; then $f_{n} \leq f$ for all n. Since $\int_{\Omega} f_{1} d \mu \leq \int_{\Omega} f_{2} d \mu \leq \cdots \leq$ $\int_{\Omega} f_{n} d \mu \leq \cdots \leq \int_{\Omega} f d \mu$, we have

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu \leq \int_{\Omega} f d \mu
$$

It remains to show that $\int_{\Omega} f d \mu \leq \lim _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu$. For this, it suffices to show that $\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu \geq \lambda$ for each finite real number $\lambda<\int_{\Omega} f d \mu$. For such a λ, there is a simple function $g=\sum_{j=1}^{l} \alpha_{i} I_{A_{j}}$ such that $0 \leq g \leq f$ and $\int_{\Omega} g d \mu=\sum_{j=1}^{n} \alpha_{j} \mu\left(A_{j}\right)>\lambda$. In the above expression for g, we may assume that $\alpha_{1}, \ldots, \alpha_{l}$ are the different positive values taken by g, and hence A_{1}, \ldots, A_{l} are disjoint sets in Σ. Then $\alpha_{j} \leq f$ on each A_{j}. Choose $\varepsilon>0$ small enough so that $\alpha_{j}-\varepsilon>0$, $j=1, \ldots, l$. For each $j=1, \ldots, l$ and positive integer n, let $A_{j}^{(n)}=\left\{x \in A_{j}: f_{n}(x)>\right.$ $\left.\alpha_{j}-\varepsilon\right\}$ and define $g_{n}=\sum_{j=1}^{l}\left(\alpha_{j}-\varepsilon\right) I_{A_{j}^{(n)}}$; then $0 \leq g_{n} \leq f_{n}$ and hence

$$
\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu \geq \lim _{n \rightarrow \infty} \sum_{j=1}^{l}\left(\alpha_{j}-\varepsilon\right) \mu\left(A_{j}^{(n)}\right)=\sum_{j=1}^{l}\left(\alpha_{j}-\varepsilon\right) \mu\left(A_{j}\right),
$$

because for each $j, A_{j}^{(n)}$ is a nondecreasing sequence with A_{j} as its limit. It follows then that $\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu \geq \sum_{j=1}^{l} \alpha_{j} \mu\left(A_{j}\right)$ by letting $\varepsilon \searrow 0$. The proof is complete.

Exercise 2.4.4

(i) If f and g are nonnegative measurable functions and $\alpha, \beta \geq 0$, show that

$$
\int_{\Omega}(\alpha f+\beta g) d \mu=\alpha \int_{\Omega} f d \mu+\beta \int_{\Omega} g d \mu .
$$

(ii) Suppose that f is integrable and $\alpha \in \mathbb{R}$. Show that $\int_{\Omega} \alpha f d \mu=\alpha \int_{\Omega} f d \mu$.

2.5 Concepts related to sets of measure zero

We now make some remarks on concepts connected with measure zero sets (as previously, a measure space (Ω, Σ, μ) is considered and fixed). For this purpose, a subset A of Ω is called a null set (or more precisely $\boldsymbol{\mu}$-null set), if $A \subset B \in \Sigma$ and $\mu(B)=0$.

Note that countable unions of null sets are null sets. Let $A=\{x \in \Omega: x$ does not have a property P \}, if A is a null set, we say that the property P holds almost everywhere on Ω (or simply P holds almost everywhere). For example, if outside a null set, f is finite, then we say that f is finite almost everywhere; also if $\lim _{n \rightarrow \infty} f_{n}(x)=f(x)$ exists for each x outside a null set, then we say that f_{n} converges almost everywhere. If a property P holds almost everywhere, we simply say that P holds a.e. (more precisely, μ-almost everywhere or μ-a.e. if other measures might also be in question). Two measurable functions f and g are said to be equivalent if $f=g$ a.e. Clearly, if f and g are equivalent and if the integral of one of them exists, then both of their integrals exist and are equal. If g is equivalent to f, g is sometimes referred to as a version of f.

As we shall see, functions which appear naturally are often not defined at every point of Ω. The most important case is when they are defined outside null sets. A function f is said to be defined a.e. on Ω if f is defined on $\Omega \backslash A$, with A being a null set; and f is measurable if f is measurable on $\Omega \backslash N$ for some measurable null set $N \supset A$, or, equivalently, if a new function \hat{f} is defined by $\hat{f}(x)=f(x)$ for $x \in \Omega \backslash N$ and $\hat{f}(x)=0$ for $x \in N$, then \hat{f} is measurable. Hence, a measurable function f which is defined a.e. on Ω can be considered as defined on Ω if it is replaced by one of \hat{f} defined above; this is legitimate because any pair of such functions \hat{f} are equivalent measurable functions.

Exercise 2.5.1 Show that if f is measurable, then $\{f=+\infty\}$ and $\{f=-\infty\}$ are in Σ. Show also that if f is integrable, then f is finite a.e.

All the results we have established so far remain true if the pointwise conditions are replaced by conditions held almost everywhere. For example:

Theorem 2.5.1 (Egoroff theorem) If a sequence $\left\{f_{n}\right\}$ of almost everywhere finite measurable functions converges a.e. to a finite function f on A, where $A \in \Sigma$, and $\mu(A)<+\infty$, then for every $\varepsilon>0$, there is $B \in \Sigma, B \subset A$ such that $\mu(A \backslash B)<\varepsilon$ and $f_{n} \rightarrow f$ uniformly on B.

Theorem 2.5.2 (Monotone convergence theorem) Let $\left\{f_{n}\right\}$ be a sequence of measurable functions which are nonnegative and nondecreasing a.e., then

$$
\int_{\Omega} \lim _{n \rightarrow \infty} f_{n} d \mu=\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu
$$

From Theorem 2.5.2 and Exercise 2.4.4 (i) there follows the following corollary.

Corollary 2.5.1 If $\left\{f_{n}\right\}$ is a sequence of a.e. nonnegative measurable functions, then

$$
\int_{\Omega} \sum_{n=1}^{\infty} f_{n} d \mu=\sum_{n=1}^{\infty} \int_{\Omega} f_{n} d \mu
$$

Exercise 2.5.2 Let f be a measurable function. Prove the following statements:
(i) Suppose that $\int_{\Omega} f d \mu$ exists, i.e. $\int_{\Omega} f d \mu=\int_{\Omega} f^{+} d \mu-\int_{\Omega} f^{-} d \mu$, where the righthand side has a meaning. If $f=f_{1}-f_{2}$ where f_{1} and f_{2} are nonnegative and measurable, then

$$
\int_{\Omega} f d \mu=\int_{\Omega} f_{1} d \mu-\int_{\Omega} f_{2} d \mu
$$

if the right-hand side has a meaning.
(ii) $\int_{\Omega} f d \mu$ exists if and only if $f=f_{1}-f_{2}$ for some nonnegative measurable functions f_{1} and f_{2}, such that $\int_{\Omega} f_{1} d \mu-\int_{\Omega} f_{2} d \mu$ is meaningful. (Hint: for f_{1} and f_{2} as above, observe that $f^{+} \leq f_{1}$ and $f^{-} \leq f_{2}$.)
(iii) If f, g are measurable functions such that $\int_{\Omega} f d \mu, \int_{\Omega} g d \mu, \int_{\Omega} f d \mu+\int_{\Omega} g d \mu$ are meaningful, then $f+g$ is defined a.e. and

$$
\int_{\Omega}(f+g) d \mu=\int_{\Omega} f d \mu+\int_{\Omega} g d \mu
$$

In particular, this holds true if f and g are integrable.
Exercise 2.5.3 Show that Theorem 2.5.2 still holds if $\left\{f_{n}\right\}$ is a sequence of measurable functions bounded from below by an integrable function a.e. and is nondecreasing a.e. (Hint: show first that f_{n}^{-}is integrable and hence $\int_{\Omega} f_{n} d \mu$ is meaningful for each n.)

Exercise 2.5.4 If $f \geq 0$ a.e. and is measurable, then show that $\int_{\Omega} f d \mu=0$ if and only if $f=0$ a.e.
Exercise 2.5.5 (Beppo-Levi) Let $\left\{f_{n}\right\}$ be a monotone increasing sequence of integrable functions such that $\sup _{n} \int f_{n} d \mu<+\infty$. Let $f=\lim _{n \rightarrow \infty} f_{n}$. Show that $-\infty<$ $f<+\infty$ a.e., f is integrable, and $\lim _{n \rightarrow \infty} \int\left|f_{n}-f\right| d \mu=0$.

The following theorems follow from Exercise 2.5.2 (iii) and Exercise 2.4.4 (ii):
Theorem 2.5.3 A measurable function f is integrable if and only if $|f|$ is integrable.
Theorem 2.5.4 Suppose that f and g are integrable and α, β are finite real numbers, then

$$
\int_{\Omega}(\alpha f+\beta g) d \mu=\alpha \int_{\Omega} f d \mu+\beta \int_{\Omega} g d \mu .
$$

In particular, iff $\leq g$ a.e. then $\int_{\Omega} f d \mu \leq \int_{\Omega} g d \mu$.
Exercise 2.5.6 Suppose that (Ω, Σ, μ) is a finite measure space and f a measurable function on Ω. For $k \in \mathbb{N}$ let $\omega_{k}:=\mu(\{|f|>k\})$. Show that f is integrable if and only if $\sum_{k=1}^{\infty} \omega_{k}<\infty$. (Hint: show that $\sum_{k=1}^{\infty} \omega_{k} \leq \int_{\Omega}|f| d \mu \leq \sum_{k=1}^{\infty} \omega_{k}+\mu(\Omega)$.)

Exercise 2.5.7 Suppose that f is a nonnegative measurable function. Let $v: \Sigma \rightarrow$ $[0,+\infty]$ be defined by $v(A)=\int_{A} f d \mu:=\int_{\Omega} f I_{A} d \mu$; show that (Ω, Σ, v) is a measure space and if $g \geq 0$ is Σ-measurable, then $\int_{\Omega} g d \nu=\int_{\Omega} g f d \mu$ (this fact is usually
expressed by $d v=f d \mu)$. Show also that a measurable function g is v-integrable if and only if $g f$ is μ-integrable.

Exercise 2.5.8 Suppose that f is a nonnegative integrable function. Show that for every $\varepsilon>0$, there is $A \in \Sigma$ with $\mu(A)<+\infty$, such that

$$
\int_{A} f d \mu>\int_{\Omega} f d \mu-\varepsilon
$$

Exercise 2.5.9 Let (Ω, Σ, μ) be a measure space, and $\left\{A_{k}\right\}_{k=1}^{\infty} \subset \Sigma$.
(i) Show that if $\sum_{k=1}^{\infty} \mu\left(A_{k}\right)<\infty$, then $\mu\left(\lim \sup _{k \rightarrow \infty} A_{k}\right)=0$.
(ii) Show that if f is integrable, then

$$
\int_{\substack{\limsup A_{k} \\ k \rightarrow \infty}} f d \mu=\lim _{k \rightarrow \infty} \int_{\bigcup_{j=k}^{\infty} A_{j}} f d \mu .
$$

(iii) Let f be integrable and $\varepsilon>0$. Show that there is $\delta>0$ such that if $A \in \Sigma$ and $\mu(A)<\delta$, then $\int_{A}|f| d \mu<\varepsilon$.
(Hint: suppose the contrary. Then for each k, there is $A_{k} \in \Sigma$ such that $\mu\left(A_{k}\right)<\frac{1}{k^{2}}$ and $\int_{A_{k}}|f| d \mu \geq \varepsilon$. Then apply (i) and (ii).)

Exercise 2.5.10 Let (Ω, Σ, μ) be a measure space and f a measurable function on Ω. Define a σ-algebra $\sigma(f)$ on Ω by

$$
\sigma(f)=\left\{f^{-1} B: B \in \overline{\mathcal{B}}\right\} .
$$

(i) Suppose that $\int_{\Omega} f d \mu$ exists and $\int_{A} f d \mu=0$ for all $A \in \sigma(f)$. Show that $f=0$ a.e.
(ii) Suppose now that f is integrable and g is $\sigma(f)$-measurable on Ω such that

$$
\int_{A} g d \mu=\int_{A} f d \mu
$$

for all $A \in \sigma(f)$. Show that there is a null set N in $\sigma(f)$ such that $g=f$ on $\Omega \backslash N$.

2.6 Fatou Iemma and Lebesgue dominated convergence theorem

It is indicated in Section 2.4 that the monotone convergence theorem reveals the distinguished feature of σ-additivity of measure through integrals. We now present two consequences of the monotone convergence theorem which manifest behaviors of integral under limit processes. These are the Fatou lemma and Lebesgue dominated convergence theorem (hereafter abbreviated as LDCT).

Theorem 2.6.1 (Fatou lemma) Let $\left\{f_{n}\right\}$ be a sequence of extended real-valued measurable functions which is bounded from below by an integrable function. Then

$$
\int_{\Omega} \liminf _{n \rightarrow \infty} d \mu \leq \liminf _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu
$$

Proof Let $g_{n}=\inf _{k \geq n} f_{k}$, then g_{n} is nondecreasing and is bounded from below by an integrable function. By the monotone convergence theorem (see Exercise 2.5.3),

$$
\begin{aligned}
\int_{\Omega} \liminf _{n \rightarrow \infty} d \mu & =\int_{\Omega} \lim _{n \rightarrow \infty} g_{n} d \mu \\
& =\lim _{n \rightarrow \infty} \int_{\Omega} g_{n} d \mu \leq \liminf _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu .
\end{aligned}
$$

Exercise 2.6.1 Show that if $\left\{f_{n}\right\}$ is bounded from above by an integrable function, then

$$
\int_{\Omega} \limsup _{n \rightarrow \infty} f_{n} d \mu \geq \limsup _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu .
$$

Later, both Theorem 2.6.1 and the statement shown in Exercise 2.6.1 will be referred to as the Fatou lemma. One notes that Theorem 2.6 .1 is equivalent to a particular case of itself, with $\left\{f_{n}\right\}$ being a sequence of nonnegative measurable functions. This particular case is the original form of the Fatou lemma.

Theorem 2.6.2 (Lebesgue dominated convergence theorem (LDCT)) If $f_{n} n=$ $1,2, \ldots$ and f are measurable functions and $f_{n} \rightarrow f$ a.e. Suppose further that $\left|f_{n}\right| \leq g$ a.e. for all n with g being an integrable function. Then

$$
\int_{\Omega} f d \mu=\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu
$$

Proof $\left\{f_{n}\right\}$ is bounded from below and from above by integrable functions. Hence, by the Fatou lemma,

$$
\limsup _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu \leq \int_{\Omega} \lim _{n \rightarrow \infty} f_{n} d \mu \leq \liminf _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu
$$

and consequently

$$
\int_{\Omega} \lim _{n \rightarrow \infty} f_{n} d \mu=\lim _{n \rightarrow \infty} \int_{\Omega} f_{n} d \mu
$$

The Lebesgue dominated convergence theorem will henceforth be abbreviated as LDCT.

Exercise 2.6.2 Show that under the same conditions as in LDCT we have

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left|f_{n}-f\right| d \mu=0
$$

Example 2.6.1 Let $\left\{f_{n}\right\}$ be a sequence of nonnegative integrable functions such that $f_{1}(x) \geq \cdots \geq f_{n}(x) \geq f_{n+1}(x) \geq \cdots$ and $\lim _{n \rightarrow \infty} f_{n}(x)=0$ for μ-a.e. x in Ω; then $\sum_{n=1}^{\infty}(-1)^{n+1} f_{n}$ is integrable and $\int_{\Omega} \sum_{n=1}^{\infty}(-1)^{n+1} f_{n} d \mu=\sum_{n=1}^{\infty}(-1)^{n+1} \int_{\Omega} f_{n} d \mu$. Note first, from the well-known alternating series's estimate $\left|\sum_{n=l}^{l+p}(-1)^{n+1} f_{n}(x)\right| \leq f_{l}(x)$ for μ-a.e. x and any l, p in \mathbb{N}, that $\sum_{n=1}^{\infty}(-1)^{n+1} f(x)$ converges for μ-a.e. x. Since $\left|\sum_{n=1}^{k}(-1)^{n+1} f_{n}(x)\right| \leq f_{1}(x)$ for μ-a.e. x and $k \in \mathbb{N}$, our assertion follows from LDCT.

Exercise 2.6.3 Let $\left\{f_{k}\right\}$ and $\left\{g_{k}\right\}$ be sequences of integrable functions such that $\left|f_{k}\right| \leq g_{k}$ a.e. on Ω for each $k \in \mathbb{N}$. Suppose that $\left\{f_{k}\right\}$ and $\left\{g_{k}\right\}$ converge a.e. to f and g respectively, and that g is integrable and $\int_{\Omega} g d \mu=\lim _{k \rightarrow \infty} \int_{\Omega} g_{k} d \mu$. Show that f is integrable and $\int_{\Omega} f d \mu=\lim _{k \rightarrow \infty} \int_{\Omega} f_{k} d \mu$. (Hint: apply the Fatou lemma to the sequences $\left\{g_{k}+f_{k}\right\}$ and $\left\{g_{k}-f_{k}\right\}$.)
Exercise 2.6.4 Suppose that $\left\{f_{n}\right\}$ is a sequence of measurable functions on (Ω, Σ, μ). Show that if $\int_{\Omega} \sum_{n=1}^{\infty}\left|f_{n}\right| d \mu<\infty$, then $\sum_{n=1}^{\infty} f_{n}(x)$ converges and is finite for a.e. x, $\sum_{n=1}^{\infty} f_{n}$ is integrable, and

$$
\int_{\Omega} \sum_{n=1}^{\infty} f_{n} d \mu=\sum_{n=1}^{\infty} \int_{\Omega} f_{n} d \mu
$$

Exercise 2.6.5 A family $\left\{f_{\alpha}\right\}$ of integrable functions on a finite measure space (Ω, Σ, μ) is called uniformly integrable if for any $\varepsilon>0$, there is $\delta>0$ such that if $A \subset \Sigma$ with $\mu(A) \leq \delta$, then $\int_{A}\left|f_{\alpha}\right| d \mu \leq \varepsilon$ for all α. Show that if $\left\{f_{n}\right\}$ is a uniformly integrable sequence of functions on Ω which converges a.e. to an integrable function f on Ω, then

$$
\lim _{n \rightarrow \infty} \int_{\Omega}\left|f_{n}-f\right| d \mu=0
$$

2.7 The space $L^{p}(\Omega, \Sigma, \mu)$

Associated with a measure space (Ω, Σ, μ) is a family $\left\{L^{p}(\Omega, \Sigma, \mu)\right\}_{p \geq 1}$ of Banach spaces which plays an important role in many fields of mathematics. The introduction and first properties of spaces $L^{p}(\Omega, \Sigma, \mu), p \geq 1$, are our concern in this section. A more advanced account of these spaces will be given in Chapter 6 , when Ω is an open set in \mathbb{R}^{n}.

For a measurable function f, let

$$
\begin{aligned}
\|f\|_{p} & =\left(\int_{\Omega}|f|^{p} d \mu\right)^{1 / p} \text { if } 0<p<+\infty ; \\
\|f\|_{\infty} & =\inf \{M \geq 0:|f| \leq M \text { a.e. }\} .
\end{aligned}
$$

$\|f\|_{p}$ is called the L^{p}-norm of $f ;\|f\|_{\infty}$ is also called the essential sup-norm of f.

Exercise 2.7.1 Show that $|f| \leq\|f\|_{\infty}$ a.e.

Recall that if $p, q \geq 1$ are such that $\frac{1}{p}+\frac{1}{q}=1$, then they are called conjugate exponents.

Theorem 2.7.1 (Hölder's inequality) If $p, q \geq 1$ are conjugate exponents, then

$$
\int_{\Omega}|f g| d \mu=\|f g\|_{1} \leq\|f\|_{p}\|g\|_{q}
$$

for any measurable functions f and g.

Proof We may assume that $0<\|f\|_{p},\|g\|_{q}<+\infty$, hence $|f|,|g|<\infty$ a.e. We may further assume that $1<p, q<\infty$. Now let $\zeta=\left(\frac{|f|}{\|f\|_{p}}\right)^{p}, \eta=\left(\frac{|g|}{\|g\|_{q}}\right)^{q}, \alpha=\frac{1}{p}$, and $\beta=\frac{1}{q}$ in Lemma 1.6.1; we have

$$
\frac{|f||g|}{\|f\|_{p}\|g\|_{q}} \leq \frac{1}{p} \frac{|f|^{p}}{\|f\|_{p}^{p}}+\frac{1}{q} \frac{|g|^{q}}{\|g\|_{q}^{q}}
$$

a.e. on Ω, from which on integrating both sides we complete the proof.

Exercise 2.7.2 Suppose that $1<p, q<\infty$ are conjugate exponents and $\|f\|_{p},\|g\|_{q}$ are both finite. Show that $\|f g\|_{1}=\|f\|_{p}\|g\|_{q}$ if and only if either $\|f\|_{p}\|q\|_{q}=0$ or $|g|^{q}=$ $\lambda|f|^{p}$ a.e. for some $\lambda>0$. (Hint: use Exercise 1.6.1.)

The following example is a variation of Hölder's inequality.

Example 2.7.1 Let p, q, and r be positive numbers satisfying $\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$, and suppose that f and g are measurable functions. Since $1=\frac{r}{p}+\frac{r}{q}, \frac{p}{r}$ and $\frac{q}{r}$ are conjugate exponents; then, $\int_{\Omega}|f g|^{r} d \mu=\int_{\Omega}\left(|f|^{p}\right)^{\frac{r}{p}}\left(|g|^{q}\right)^{\frac{r}{q}} d \mu \leq\left(\int_{\Omega}|f|^{p} d \mu\right)^{\frac{r}{p}}\left(\int_{\Omega}|g|^{q} d \mu\right)^{\frac{r}{q}}$, by Hölder's inequality. Hence, $\|f g\|_{r} \leq\|f\|_{p}\|g\|_{q}$. When $r=1$, this is Hölder's inequality.

Theorem 2.7.2 (Minkowski's inequality) Let f, g be measurable, $1 \leq p \leq+\infty$, then

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

whenever $f+g$ is meaningful a.e. on Ω.

Proof This is obvious when $p=1$ or $+\infty$. We now consider the case $1<p<+\infty$, then

$$
\begin{aligned}
\|f+g\|_{p}^{p} & =\int_{\Omega}|f+g|^{p} d \mu=\int_{\Omega}|f+g|^{p-1}|f+g| d \mu \\
& \leq \int_{\Omega}|f+g|^{p-1}|f| d \mu+\int_{\Omega}|f+g|^{p-1}|g| d \mu \\
& \leq\left[\int_{\Omega}|f+g|^{(p-1) q} d \mu\right]^{1 / q}\left\{\|f\|_{p}+\|g\|_{p}\right\} \\
& =\|f+g\|_{p}^{p / q}\left\{\|f\|_{p}+\|g\|_{p}\right\},
\end{aligned}
$$

by Hölder's inequality, where $\frac{1}{p}+\frac{1}{q}=1$. The theorem follows by dividing extreme ends of the above sequence of inequalities by $\|f+g\|_{p}^{p-1}$, because we may assume that $0<\|f+g\|_{p}<\infty$.

Exercise 2.7.3 Verify the last statement of the proof of Theorem 2.7.2. (Hint: show that if $\|f\|_{p}+\|g\|_{p}<+\infty$, then $\|f+g\|_{p}<+\infty$ by using Exercise 1.6.3.)
Exercise 2.7.4 Suppose $1<p<\infty$ and both $\|f\|_{p}$ and $\|g\|_{p}$ are finite. Show that

$$
\|f+g\|_{p}=\|f\|_{p}+\|g\|_{p}
$$

if and only if either $\|f\|_{p}\|g\|_{p}=0$ or $g=\lambda f$ a.e. for some $\lambda>0$.
Let now $\mathcal{L}^{p}(\Omega, \Sigma, \mu)$ be the family of all measurable functions f with $\|f\|_{p}<+\infty$. From the Minkowski inequality, it is readily seen that $\mathcal{L}^{p}(\Omega, \Sigma, \mu)$ is a real vector space. If we let

$$
\mathcal{N}=\left\{f \in \mathcal{L}^{p}(\Omega, \Sigma, \mu):\|f\|_{p}=0\right\},
$$

then $f \in \mathcal{N}$ if and only if $f=0$ a.e. on Ω. Now consider the space $L^{p}(\Omega, \Sigma, \mu)=$ $\mathcal{L}^{p}(\Omega, \Sigma, \mu) / \mathcal{N}$; then $L^{p}(\Omega, \Sigma, \mu)$ is a vector space which consists of equivalence classes of $\mathcal{L}^{p}(\Omega, \Sigma, \mu)$ w.r.t. the equivalence relation \sim, defined by $f \sim g$ if and only if $f=g$ a.e. on Ω.

We shall allow ourselves the liberty of not distinguishing between a class of functions in $L^{p}(\Omega, \Sigma, \mu)$ and a function representing the class; hence, by $f \in L^{p}(\Omega, \Sigma, \mu)$ we shall mean that f is to be considered as a class of equivalent functions in $L^{p}(\Omega, \Sigma, \mu)$ as well as any function from that class.

For $f \in L^{p}(\Omega, \Sigma, \mu)$, let

$$
\|f\|_{p}=\left(\int_{\Omega}|f|^{p} d \mu\right)^{1 / p} \text { if } 1 \leq p<+\infty
$$

and

$$
\|f\|_{\infty}=\text { essential sup-norm of } f
$$

Remember that in the definition above, f on the left-hand side is a class of function and f on the right-hand side is a function representing that class. We note that the above definition is well defined. $\|f\|_{p}$ is called the L^{p}-norm of f in $L^{p}(\Omega, \Sigma, \mu)$.
$L^{p}(\Omega, \Sigma, \mu)$ is called the L^{p} space of the measure space (Ω, Σ, μ), and is often more compactly denoted by $L^{p}(\Omega)$ or $L^{p}(\mu)$ when Σ and μ are assumed to be known, or when Ω and Σ are assumed to be known.

Example 2.7.2 One notes readily that the space $\ell^{p}(S)$ introduced in the remark at the end of Section 1.6 is the L^{p} space of the measure space with counting measure on S. It is easily verified that if S is infinite, then $\ell^{p}(S) \subsetneq \ell^{q}(S)$ if $1 \leq p<q$.

Exercise 2.7.5 Suppose that the measure space (Ω, Σ, μ) is finite and $f \in$ $L^{\infty}(\Omega, \Sigma, \mu)$.
(i) Show that $\left(\frac{1}{\mu(\Omega)} \int_{\Omega}|f|^{p} d \mu\right)^{1 / p} \leq\left(\frac{1}{\mu(\Omega)} \int_{\Omega}|f|^{p^{\prime}} d \mu\right)^{1 / p^{\prime}}$, if $1 \leq p \leq p^{\prime}<\infty$.
(ii) Show that $\lim _{p \rightarrow \infty}\left(\frac{1}{\mu(\Omega)} \int_{\Omega}|f|^{p} d \mu\right)^{1 / p}=\|f\|_{\infty}$.

Exercise 2.7.6 Suppose that $\left\{f_{k}\right\}$ is a sequence in $L^{p}(\Omega, \Sigma, \mu)$ and that $\left\{f_{k}\right\}$ converges a.e. to $f \in L^{p}(\Omega, \Sigma, \mu)$ with $\|f\|_{p}=\lim _{k \rightarrow \infty}\left\|f_{k}\right\|_{p}(1 \leq p<\infty)$. Show that $\left\{f_{k}\right\}$ converges in $L^{p}(\Omega, \Sigma, \mu)$ to f. (Hint: cf. Exercise 2.6 .3 or observe that $2^{p-1}\left(|f|^{p}+\right.$ $\left.\left|f_{k}\right|^{p}\right)-\left|f-f_{k}\right|^{p} \geq 0$.)

Theorem 2.7.3 $L^{p}(\Omega, \Sigma, \mu)$ with norm $\|\cdot\|_{p}$ is a Banach space.
Proof This is obvious when $p=+\infty$, if one notes that when $\left\{f_{n}\right\}$ is a Cauchy sequence in $L^{\infty}(\Omega, \Sigma, \mu)$, there is a measurable null set N such that $\sup _{\omega \in \Omega \backslash N}\left|f_{n}(\omega)-f_{m}(\omega)\right| \leq$ $\left\|f_{n}-f_{m}\right\|_{\infty}$ for all n, m in \mathbb{N}.

Assume now that $1 \leq p<+\infty$ and let $\left\{f_{n}\right\}$ be a Cauchy sequence in $L^{p}(\Omega, \Sigma, \mu)$. There is an increasing sequence $\left\{n_{k}\right\}_{k=1}^{\infty}$ of positive integers such that $\left\|f_{n_{k+1}}-f_{n_{k}}\right\|_{p} \leq$ $2^{-k}, k=1,2, \ldots$. Put $g=\sum_{k=1}^{\infty}\left|f_{n_{k+1}}-f_{n_{k}}\right| ;$ monotone convergence theorem and Minkowski inequality imply

$$
\begin{aligned}
\|g\|_{p}^{p} & =\int_{\Omega}\left(\sum_{k=1}^{\infty}\left|f_{n_{k+1}}-f_{n_{k}}\right|\right)^{p} d \mu=\int_{\Omega} \lim _{l \rightarrow \infty}\left(\sum_{k=1}^{l}\left|f_{n_{k+1}}-f_{n_{k}}\right|\right)^{p} d \mu \\
& =\lim _{l \rightarrow \infty} \int_{\Omega}\left(\sum_{k=1}^{l}\left|f_{n_{k+1}}-f_{n_{k}}\right|\right)^{p} d \mu=\lim _{l \rightarrow \infty}\left\|\sum_{k=1}^{l} \mid f_{n_{k+1}}-f_{n_{k} k}\right\|_{p}^{p} \\
& \leq \lim _{l \rightarrow \infty}\left(\sum_{k=1}^{l}\left\|f_{n_{k+1}}-f_{n_{k}}\right\|_{p}\right)^{p}=\left(\sum_{k=1}^{\infty}\left\|f_{n_{k+1}}-f_{n_{k}}\right\|_{p}\right)^{p} \leq 1,
\end{aligned}
$$

hence, $g \in L^{p}(\Omega, \Sigma, \mu)$. Observe that if $g(x)<\infty$, then $\sum_{j=1}^{\infty} \mid f_{n_{j+1}}(x)-$ $f_{n_{j}}(x) \mid<\infty$ and for $k>l$, we have

$$
\left|f_{n_{k}}(x)-f_{n_{l}}(x)\right|=\left|\sum_{j=l}^{k-1}\left(f_{n_{j+1}}(x)-f_{n_{j}}(x)\right)\right| \leq \sum_{j=l}^{k-1}\left|f_{n_{j+1}}(x)-f_{n_{j}}(x)\right| \rightarrow 0
$$

as $l \rightarrow \infty$. This means that $\left\{f_{n_{k}}(x)\right\}$ is a Cauchy sequence in \mathbb{R}. Hence, $f_{n_{k}} \rightarrow f$ a.e. with f being finite a.e. But $\left|f_{n_{k}}\right| \leq\left|f_{n_{1}}\right|+g, k=1,2, \ldots$, implies that $f \in L^{p}(\Omega, \Sigma, \mu)$. Now $\left|f_{n_{k}}-f\right|^{p} \leq\left(|f|+\left|f_{n_{1}}\right|+g\right)^{p}$ a.e.; thus by LDCT we know that $\left\|f_{n_{k}}-f\right\|_{p} \rightarrow$ 0 as $k \rightarrow \infty$; this fact, together with $\left\{f_{n}\right\}$ being a Cauchy sequence, implies that $\left\|f_{n}-f\right\|_{p} \rightarrow 0$ as $n \rightarrow \infty$. Hence $L^{p}(\Omega, \Sigma, \mu)$ is complete.

Exercise 2.7.7 Suppose that $\left\{f_{k}\right\}$ is a sequence in $L^{p}(\Omega, \Sigma, \mu), 1 \leq p<\infty$ such that $\left|f_{k}\right| \leq g$ a.e. for each k for some $g \in L^{p}(\Omega, \Sigma, \mu)$. Assume that $\lim _{k \rightarrow \infty} f_{k}=f$ a.e. Show that $f \in L^{p}(\Omega, \Sigma, \mu)$ and $\lim _{k \rightarrow \infty}\left\|f_{k}-f\right\|_{p}=0$.

Exercise 2.7.8 Let $f \in L^{p}(\Omega, \Sigma, \mu), 1 \leq p<\infty$. Show that for any $\varepsilon>0$, there is a bounded function g in $L^{P}(\Omega, \Sigma, \mu)$ such that $\|f-g\|_{p}<\varepsilon$. (Hint: choose g as a truncated function of f, i.e., for some $M>0, g(x)=f(x)$ if $|f(x)| \leq M$, and $g(x)=0$ otherwise.)

Exercise 2.7.9 Suppose that $\left\{f_{k}\right\}$ is a sequence in $L^{p}(\Omega, \Sigma, \mu)$ with $\sum_{k=1}^{\infty}\left\|f_{k}\right\|_{p}<\infty$. Show that $\sum_{k=1}^{\infty} f_{k}$ converges and is finite a.e. on Ω and is in $L^{p}(\Omega, \Sigma, \mu)$ with $\left\|\sum_{k=1}^{\infty} f_{k}\right\|_{p} \leq \sum_{k=1}^{\infty}\left\|f_{k}\right\|_{p}$.
Exercise 2.7.10 Suppose that $\left\{f_{n}\right\}$ is a convergent sequence in $L^{p}(\Omega, \Sigma, \mu), p \geq 1$. Show that $\left\{f_{n}\right\}$ has a subsequence which converges a.e. on Ω. (Hint: there is a subsequence $\left\{f_{n_{k}}\right\}$ of $\left\{f_{n}\right\}$ such that $\sum_{k=2}^{\infty}\left\|f_{n_{k}}-f_{n_{k-1}}\right\|_{p}<\infty$.)
Exercise 2.7.11 If $\mu(\Omega)<\infty$, show that $L^{q}(\Omega, \Sigma, \mu) \subset L^{p}(\Omega, \Sigma, \mu)$ for $1 \leq p<q$. Show also that for $f \in L^{p}(\Omega, \Sigma, \mu),\|f\|_{p} \leq\|f\|_{q} \mu(\Omega)^{\frac{1}{p}-\frac{1}{q}}$ for $q \geq p$.
Exercise 2.7.12 Suppose that $1 \leq p<r$. Show that for any q strictly between p and r, $L^{q}(\Omega, \Sigma, \mu) \subset L^{p}(\Omega, \Sigma, \mu)+L^{r}(\Omega, \Sigma, \mu)$.

2.8 Miscellaneous remarks

Some remarks complementing discussions presented so far in this chapter are now in order.

2.8.1 Restriction of measure spaces

If Σ is a σ-algebra on Ω and $A \in \Sigma$, then the family $\Sigma \mid A:=\{B \cap A: B \in \Sigma\}$ is a σ-algebra on A, called the restriction of Σ to A. If, further, (Ω, Σ, μ) is a measure space, the measure space $(A, \Sigma \mid A, \mu)$ is called the restriction to A of the original one. Since
$\Sigma \mid A \subset \Sigma, \mu$ is defined on $\Sigma \mid A$, and hence $(A, \Sigma \mid A, \mu)$ is indeed a measure space with μ being understood to be restricted to $\Sigma \mid A$. Suppose now f is a Σ-measurable function on $\Omega,\left.f\right|_{A}$ is then clearly a $\Sigma \mid A$-measurable function on A, and if $\int_{\Omega} f d \mu$ exists, so does $\left.\int_{A} f\right|_{A} d \mu$, and $\left.\int_{A} f\right|_{A} d \mu$ is obviously the same as $\int_{A} f d \mu:=\int_{\Omega} f I_{A} d \mu$ (cf. Exercise 2.5.7). But it might happen that $\left.\int_{A} f\right|_{A} d \mu$ exists without $\int_{\Omega} f d \mu$ being defined, suggesting that it is convenient sometimes to consider $(A, \Sigma \mid A, \mu)$ instead of (Ω, Σ, μ); when this happens, it will be clear from the context and one does not revert to the formal procedure described previously.

2.8.2 Measurable maps

Suppose (Ω, Σ) and $(\widehat{\Omega}, \widehat{\Sigma})$ are measurable spaces. We say that a map T from Ω into $\widehat{\Omega}$ is measurable (more precisely, $\boldsymbol{\Sigma} \mid \widehat{\boldsymbol{\Sigma}}$-measurable) if $T^{-1} A \in \Sigma$ for every $A \in \widehat{\Sigma}$. In particular, if $\widehat{\Omega}=\overline{\mathbb{R}}$ and $\widehat{\Sigma}=\overline{\mathcal{B}}$, then T is what we call a measurable function on Ω. If (Ω, Σ, μ) and $(\widehat{\Omega}, \widehat{\Sigma}, \hat{\mu})$ are measure spaces, then a measurable map T from Ω into $\widehat{\Omega}$ is measure preserving if $\mu\left(T^{-1} A\right)=\hat{\mu}(A)$ for every $A \in \widehat{\Sigma}$. Now, iff is a measurable function on $\widehat{\Omega}$ and T is a measure-preserving map from Ω into $\widehat{\Omega}$, then $f \circ T$ is measurable on Ω; furthermore, $\int_{\widehat{\Omega}} f d \hat{\mu}$ exists if and only if $\int_{\Omega} f \circ T d \mu$ exists, and

$$
\int_{\widehat{\Omega}} f d \hat{\mu}=\int_{\Omega} f \circ T d \mu
$$

if either side exists. This is easily verified, if f is nonnegative; in the general case, one needs only to note that $f \circ T=f^{+} \circ T-f^{-} \circ T$.

We note at this point that if the measurable space structure of (Ω, Σ) and $(\widehat{\Omega}, \widehat{\Sigma})$ is to be emphasized, a map $T: \Omega \rightarrow \widehat{\Omega}$ will also be called, by abuse of language, a map from (Ω, Σ) to ($\widehat{\Omega}, \widehat{\Sigma}$), and a measurable map from (Ω, Σ) to $(\widehat{\Omega}, \widehat{\Sigma})$ means a $\Sigma \mid \widehat{\Sigma}$ measurable map from Ω to $\widehat{\Omega}$.

It is readily verified that if (Ω_{i}, Σ_{i}) is a measurable space for $i=1,2,3$ and T_{i} is a measurable map from $\left(\Omega_{i}, \Sigma_{i}\right)$ to $\left(\Omega_{i+1}, \Sigma_{i+1}\right)$ for $i=1,2$, then $T_{2} \circ T_{1}$ is a measurable map from $\left(\Omega_{1}, \Sigma_{1}\right)$ to $\left(\Omega_{3}, \Sigma_{3}\right)$; in particular, if f is a measurable function on (Ω, Σ) and g a Borel function on $\overline{\mathbb{R}}$, then $g \circ f$ is a measurable function on (Ω, Σ). In words, this means that a Borel function of a measurable function is measurable; however, we shall see in Example 4.7.2 that a measurable function of a continuous function may not be measurable.

2.8.3 Complete measure spaces

A measure space (Ω, Σ, μ) is complete if every null set is in Σ. One can construct a complete measure space $(\Omega, \bar{\Sigma}, \bar{\mu})$ from a measure space (Ω, Σ, μ) in the following way. Let $\bar{\Sigma}=\{B \subset \Omega: \exists C, D$ in Σ such that $C \subset B \subset D$ and $\mu(D \backslash C)=0\}$. It is clear that $\bar{\Sigma}$ is a σ-algebra on Ω. Now define a set function $\bar{\mu}$ on $\bar{\Sigma}$ by

$$
\begin{equation*}
\bar{\mu}(B)=\mu(C), \tag{2.4}
\end{equation*}
$$

if $C \subset B \subset D$, where C and D are in Σ with $\mu(D \backslash C)=0$. We claim that (2.4) is well defined; this amounts to showing that if \widehat{C}, \widehat{D} are in Σ such that $\widehat{C} \subset B \subset \widehat{D}$ and $\mu(\widehat{D} \backslash \widehat{C})=0$, then $\mu(\widehat{C})=\mu(C)$. Now from $C \cup \widehat{C} \subset B \subset D$ and $\mu(D \backslash[C \cup \widehat{C}]) \leq$ $\mu(D \backslash C)=0$, we infer that $\mu(C \cup \widehat{C})=\mu(D)=\mu(C)$. Similarly, $\mu(C \cup \widehat{C})=\mu(\widehat{C})$; hence $\mu(\widehat{C})=\mu(C)$ as claimed. $\bar{\mu}$ is obviously a measure on $\bar{\Sigma}$. Suppose $B \in \bar{\Sigma}$ with $\bar{\mu}(B)=0$ and consider $S \subset B$. There are C and D in Σ such that $C \subset B \subset D$, $\mu(D \backslash C)=0$, and $\mu(C)=0$. Observe that $\mu(D)=0$. Since $\emptyset \subset S \subset D$ and $\mu(D \backslash \emptyset)=$ $\mu(D)=0, S \in \bar{\Sigma}$. This means that $(\Omega, \bar{\Sigma}, \bar{\mu})$ is complete. When (Ω, Σ, μ) is complete, one sees readily that $(\Omega, \bar{\Sigma}, \bar{\mu})$ is the same as (Ω, Σ, μ). The measure space $(\Omega, \bar{\Sigma}, \bar{\mu})$ is called the completion of (Ω, Σ, μ). Clearly, $\Sigma \subset \bar{\Sigma}$ and $\bar{\mu}$ is an extension of μ.
Exercise 2.8.1 Show that iff is $\bar{\Sigma}$-measurable, then there is a Σ-measurable function \hat{f} such that $f=\hat{f} \bar{\mu}$-a.e. and that f is $\bar{\mu}$-integrable if and only if \hat{f} is μ-integrable.

2.8.4 Integral of complex-valued functions

So far only real-valued functions are considered in regard to measurability and integration; now a brief account will be given for complex-valued functions.

A complex-valued function f defined on a set Ω can be expressed as

$$
f=f_{1}+i f_{2},
$$

where f_{1} and f_{2} are finite real-valued functions defined by

$$
\begin{aligned}
& f_{1}(\omega)=\text { real part of } f(\omega) \\
& f_{2}(\omega)=\text { imaginary part of } f(\omega)
\end{aligned}
$$

for $\omega \in \Omega$. Usually f_{1} and f_{2} are denoted respectively by $\operatorname{Re} f$ and $\operatorname{Im} f$. If now (Ω, Σ, μ) is a measure space, f is said to be measurable (more precisely, Σ-measurable), if both $\operatorname{Re} f$ and $\operatorname{Im} f$ are measurable.

Exercise 2.8.2 Show that a complex-valued function f defined on Ω is measurable if and only if it is $\Sigma \mid \mathcal{B}(\mathbb{C})$-measurable; where $\mathcal{B}(\mathbb{C})$ is the σ-algebra generated by the family of all open subsets of the complex field \mathbb{C}.

If both $\operatorname{Re} f$ and $\operatorname{Im} f$ are integrable, f is said to be integrable and the integral $\int_{\Omega} f d \mu$ of f is defined as $\int_{\Omega} \operatorname{Re} f d \mu+i \int_{\Omega} \operatorname{Im} f d \mu$. Obviously, f is integrable if and only if $|f|$ is integrable, where $|f|$ is the function defined by $|f|(\omega)=|f(\omega)|=\left\{\operatorname{Re} f(\omega)^{2}+\operatorname{Im} f(\omega)^{2}\right\}^{\frac{1}{2}}$ for $\omega \in \Omega$. One verifies easily that $\left|\int_{\Omega} f d \mu\right| \leq \int_{\Omega}|f| d \mu$, if f is integrable, and that if f and g are integrable, then $\alpha f+\beta g$ are integrable and $\int_{\Omega}(\alpha f+\beta g) d \mu=\alpha \int_{\Omega} f d \mu+\beta \int_{\Omega} g d \mu$ for any complex numbers α and β. For a complex-valued measurable function f, its L^{p}-norm $\|f\|_{p}, p \geq 1$, is defined by

$$
\|f\|_{p}=\||f|\|_{p} .
$$

64 | A Glimpse of Measure and Integration

Then Hölder inequality holds for complex-valued measurable functions, i.e.

$$
\int_{\Omega}|f g| d \mu \leq\|f\|_{p} \cdot\|g\|_{q},
$$

where p, q are conjugate exponents; in particular,

$$
\left|\int_{\Omega} f g d \mu\right| \leq\|f\|_{p} \cdot\|g\|_{q}
$$

if $f g$ is integrable. What also holds true is the Minkowski inequality,

$$
\|f+g\|_{p} \leq\|f\|_{p}+\|g\|_{p}
$$

as can easily be verified. It is to be noted that since f and g are complex-valued, $f+g$ is defined on Ω.

Now consider the space $\mathcal{L}^{p}(\Omega, \Sigma, \mu)$ of all complex-valued measurable functions f such that $\|f\|_{p}<\infty$. It follows from the Minkowski inequality that $\mathcal{L}^{p}(\Omega, \Sigma, \mu)$ is a complex vector space. As in Section 2.7, if we let $L^{p}(\Omega, \Sigma, \mu)$ be the quotient space $\mathcal{L}^{p}(\Omega, \Sigma, \mu) / \mathcal{N}$, where \mathcal{N} is the vector subspace of $\mathcal{L}^{p}(\Omega, \Sigma, \mu)$ consisting of all those functions which are zero-valued almost everywhere. For $[f]=f+\mathcal{N}, f \in \mathcal{L}^{p}(\Omega, \Sigma, \mu)$, let $\|[f]\|_{p}=\|f\|_{p}$, then $\|[f]\|_{p}$ is well defined and $L^{p}(\Omega, \Sigma, \mu)$ is a complex Banach space with this norm. As before, for $f \in \mathcal{L}^{p}(\Omega, \Sigma, \mu),[f]$ will also be denoted by f, and $\|[f]\|_{p}$ by $\|f\|_{p}$; thus f may denote an element either of $\mathcal{L}^{p}(\Omega, \Sigma, \mu)$ or of $L^{p}(\Omega, \Sigma, \mu)$ as occasion prompts, and no confusion is possible.

Henceforth, $L^{p}(\Omega, \Sigma, \mu)$ will denote a real or complex Banach space as the situation suggests.

Construction of Measures

Measure spaces provide a framework for classifying functions and for construction of certain spaces of functions which prove to be useful in various disciplines of mathematics; but appropriate measure spaces have to be available beforehand.

We therefore devote this early chapter to construction of measure spaces. A general method, the inception of which began with the introduction of the Lebesgue measure on \mathbb{R} and Lebesgue measurable sets in \mathbb{R} by \mathbf{H}. Lebesgue, will be treated firstly. This is the method of outer measure. We shall follow the approach of C. Carathéodory, which defines measurable sets without introducing the concept of inner measure of Lebesgue. Construction of measure spaces from given ones by various operations will be considered in Chapter 4.

3.1 Outer measures

A nonnegative set function μ defined for all subsets A of a given set Ω is called an outer measure on Ω if it is monotone and σ-subadditive, i.e. (i) $\mu(\emptyset)=0$; (ii) $0 \leq \mu(A) \leq$ $\mu(B)$ if $A \subset B$; and (iii) $\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sum_{n=1}^{\infty} \mu\left(A_{n}\right)$, where $\left\{A_{n}\right\}_{n=1}^{\infty}$ is any sequence of subsets of Ω. Recall that a set function is required to take zero as its value at \emptyset if \emptyset is in its domain of definition; (ii) is the condition of monotony; and condition (iii) is σ subadditivity. A nonnegative set function τ is said to be $\boldsymbol{\sigma}$-subadditive if $\tau\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq$ $\sum_{n=1}^{\infty} \tau\left(A_{n}\right)$ whenever A_{1}, A_{2}, \ldots and $\bigcup_{n=1}^{\infty} A_{n}$ are in its domain of definition.

An outer measure μ on Ω is usually simply called a measure on Ω. Sometimes we also say that μ measures Ω. We emphasize that a measure on a set Ω and a measure on a σ algebra on Ω are different objects; the former is an outer measure which is in general not σ-additive on 2^{Ω}.

Let μ be an outer measure on Ω. Following Carathéodory, we say that a subset A of Ω is μ-measurable if

$$
\begin{equation*}
\mu(B)=\mu(B \cap A)+\mu\left(B \cap A^{c}\right) \tag{3.1}
\end{equation*}
$$

for all $B \subset \Omega$ i.e., if for any $C \subset A$ and $D \subset A^{c}$ we have

$$
\mu(C \cup D)=\mu(C)+\mu(D)
$$

Remark Since $\mu(B) \leq \mu(B \cap A)+\mu\left(B \cap A^{c}\right)$, (3.1) is equivalent to

$$
\begin{equation*}
\mu(B) \geq \mu(B \cap A)+\mu\left(B \cap A^{c}\right) . \tag{3.2}
\end{equation*}
$$

It is easily verified that Ω is μ-measurable and that if $\mu(A)=0$, then A is μ-measurable.

Example 3.1.1 Let $\mu: 2^{\Omega} \mapsto[0,+\infty]$ be defined by

$$
\begin{aligned}
\mu(A) & =\text { cardinality of } A \text { if } A \text { is a finite set } ; \\
& =\infty \text { otherwise. }
\end{aligned}
$$

Obviously, μ is an outer measure on Ω (recall that μ is called the counting measure on Ω), and that every subset of Ω is μ-measurable. It happens that μ is a measure on 2^{Ω}.

Exercise 3.1.1 Let $S \subset 2^{\Omega}$ have the following properties:
(i) $\emptyset \in S$, (ii) if $A \in S$ and $B \subset A$, then $B \in S$, and (iii) if $\left\{A_{n}\right\}_{n=1}^{\infty} \subset S$, then $\bigcup_{n} A_{n} \in S$.

Define $\mu: 2^{\Omega} \mapsto[0, \infty]$ by

$$
\mu(A)=\left\{\begin{array}{cc}
0 \quad \text { if } A \in S \\
+\infty & \text { otherwise }
\end{array}\right.
$$

Show that μ is an outer measure on Ω. What are the μ-measurable subsets of Ω ? If now $v: 2^{\Omega} \rightarrow[0,1]$ is defined by

$$
\begin{aligned}
v(A) & =0 \text { if } A \in S, \\
& =1 \text { otherwise },
\end{aligned}
$$

then v is an outer measure on Ω. What are the v-measurable subsets of Ω ?
Exercise 3.1.2 Let (Ω, Σ, μ) be a measure space and w a nonnegative measurable function. For $A \subset \Omega$, define $\mu_{w}(A)=\inf \left\{\int_{B} w d \mu: B \in \Sigma, A \subset B\right\}$. Show that μ_{w} measures Ω and every set in Σ is μ_{w}-measurable.

Suppose that μ is an outer measure on Ω and $A \subset \Omega$, then the restriction of μ to A denoted by $\mu\lfloor A$ is defined by

$$
\mu\lfloor A(B)=\mu(A \cap B)
$$

for $B \subset \Omega$.

Exercise 3.1.3 Let μ measure Ω.
(i) Show that $A \subset \Omega$ is μ-measurable if and only if A is $\mu\lfloor B$-measurable for every subset B of Ω.
(ii) Show that A is $\mu\lfloor A$-measurable as well as every μ-measurable set.

Exercise 3.1.4 Suppose that μ measures Ω and that A is a μ-measurable subset of Ω. Show that for any $B \subset \Omega, \mu(A)+\mu(B)=\mu(A \cup B)+\mu(A \cap B)$. (Hint: evaluate $\mu(B)$ and $\mu(A \cup B)$ by using the definition of μ-measurability for A.)
Exercise 3.1.5 Let μ be an outer measure on Ω. For $A \subset \Omega$, define

$$
\begin{aligned}
& \mu_{e}(A):=\inf \{\mu(B): A \subset B, B \text { is } \mu \text {-measurable }\} ; \\
& \mu_{i}(A):=\sup \{\mu(B): B \subset A, B \text { is } \mu \text {-measurable }\} .
\end{aligned}
$$

Show that if $\mu(A)<\infty$, then A is μ-measurable if and only if $\mu_{e}(A)=\mu_{i}(A)$.

3.2 Lebesgue outer measure on \mathbb{R}

We construct in this section the Lebesgue outer measure on \mathbb{R}. This measure opens the way for the development of modern theory of measure and integration.

For an open finite interval $I=(a, b)$, let $|I|=b-a$ be the length of I. If A is a subset of \mathbb{R}, we denote by $\Lambda(A)$ the set of all numbers of the form $\sum_{n=1}^{\infty}\left|I_{n}\right|$, where $\left\{I_{n}\right\}$ is a sequence of open finite intervals such that $\bigcup_{n} I_{n} \supset A$, and let

$$
\lambda(A)=\inf \Lambda(A) .
$$

Theorem 3.2.1 The set function λ is an outer measure on \mathbb{R}.
Proof Let $\varepsilon>0$, and for each n let I_{n} be an open interval of length $\varepsilon / 2^{n}$; then since $\bigcup I_{n} \supset \phi$, we have

$$
\lambda(\phi) \leq \sum_{n=1}^{\infty}\left|I_{n}\right|=\varepsilon \sum_{n=1}^{\infty} 2^{-n}=\varepsilon ;
$$

thus $\lambda(\phi)=0$. If $A \subset B$, then $\Lambda(A) \supset \Lambda(B)$, and hence $\lambda(A) \leq \lambda(B)$. It remains to show that if $\left\{A_{k}\right\}$ is a sequence of subsets of \mathbb{R}, then

$$
\lambda\left(\bigcup_{k} A_{k}\right) \leq \sum_{k=1}^{\infty} \lambda\left(A_{k}\right) .
$$

For this purpose, we may obviously assume that $\lambda\left(A_{k}\right)<\infty$ for all k. Now let $\varepsilon>0$ be given; for each k there is $\lambda_{k} \in \Lambda\left(A_{k}\right)$ such that

$$
\lambda\left(A_{k}\right) \leq \lambda_{k}<\lambda\left(A_{k}\right)+\frac{\varepsilon}{2^{k}} .
$$

Let $\lambda_{k}=\sum_{n=1}^{\infty}\left|I_{n}^{(k)}\right|$, where $\left\{I_{n}^{(k)}\right\}_{n}$ is a sequence of open intervals such that $\bigcup_{n=1}^{\infty} I_{n}^{(k)} \supset A_{k}$. Then, $\bigcup_{n, k=1}^{\infty} I_{n}^{(k)} \supset \bigcup_{k=1}^{\infty} A_{k}$, hence (cf. Section 1.2),

$$
\begin{aligned}
\sum_{n, k}\left|I_{n}^{(k)}\right| & =\sum_{k=1}^{\infty} \sum_{n=1}^{\infty}\left|I_{n}^{(k)}\right|=\sum_{k=1}^{\infty} \lambda_{k}<\sum_{k=1}^{\infty}\left\{\lambda\left(A_{k}\right)+\frac{\varepsilon}{2^{k}}\right\} \\
& =\sum_{k=1}^{\infty} \lambda\left(A_{k}\right)+\varepsilon
\end{aligned}
$$

but since $\sum_{n, k}\left|I_{n}^{(k)}\right| \in \Lambda\left(\bigcup_{k=1}^{\infty} A_{k}\right), \lambda\left(\bigcup_{k=1}^{\infty} A_{k}\right) \leq \sum_{n, k}\left|I_{n}^{(k)}\right|<\sum_{k=1}^{\infty} \lambda\left(A_{k}\right)+\varepsilon$. Now let ε decrease to zero; we obtain

$$
\lambda\left(\bigcup_{k=1}^{\infty} A_{k}\right) \leq \sum_{k=1}^{\infty} \lambda\left(A_{k}\right)
$$

This proves that λ is an outer measure on \mathbb{R}.
The measure λ is called the Lebesgue measure on \mathbb{R}. We shall show later that λ admits a fairly large class of λ-measurable sets, but, for the moment, we content ourselves by showing that every finite open interval I is λ-measurable and $\lambda(I)=|I|$. For this purpose, we prove first a lemma which foresees the method of Carathéodory outer measures, to be introduced in Section 3.5.

Lemma 3.2.1 For each $\varepsilon>0$, and $A \subset \mathbb{R}$, let $\Lambda_{\varepsilon}(A)$ be the set of all numbers of the form $\sum_{n=1}^{\infty}\left|I_{n}\right|$, where $\left\{I_{n}\right\}$ is a sequence of open intervals such that $A \subset \bigcup_{n} I_{n}$ and $\left|I_{n}\right|<\varepsilon$ for each n. Then $\lambda(A)=\inf \Lambda_{\varepsilon}(A)$.

Proof Since $\Lambda_{\varepsilon}(A) \subset \Lambda(A), \lambda(A) \leq \inf \Lambda_{\varepsilon}(A)$. Observe now for any finite interval I and $\delta>0$, there are a finite number $I^{(1)}, \ldots, I^{(k)}$ of open intervals such that $I \subset \bigcup_{j=1}^{k} I^{(j)},\left|I^{(j)}\right|<\varepsilon, j=1, \ldots, k$, and $\sum_{j=1}^{k}\left|I^{(j)}\right|<|I|+\delta$. Suppose that $\left\{I_{n}\right\}$ is a sequence of open intervals such that $\bigcup I_{n} \supset A$; then for any $\delta>0$ and each n, let $I_{n}^{(1)}, \ldots, I_{n}^{\left(k_{n}\right)}$ be open intervals such that $\left|I_{n}^{(j)}\right|<\varepsilon, j=1, \ldots, k_{n}, I_{n} \subset \bigcup_{j=1}^{k_{n}} I_{n}^{(j)}$, and $\sum_{j=1}^{k_{n}}\left|I_{n}^{(j)}\right|<\left|I_{n}\right|+\delta / 2^{n}$. Obviously, $\alpha=\sum_{n=1}^{\infty} \sum_{j=1}^{k_{n}}\left|I_{n}^{(j)}\right|$ is in $\Lambda_{\varepsilon}(A)$ and $\alpha<$ $\sum_{n=1}^{\infty}\left|I_{n}\right|+\delta$. We have shown that given $\delta>0$, for $\beta \in \Lambda(A)$ there is $\alpha \in \Lambda_{\varepsilon}(A)$ such that $\alpha<\beta+\delta$. This, means that $\inf \Lambda_{\varepsilon}(A) \leq \lambda(A)+\delta$; let $\delta \searrow 0$, we have $\inf \Lambda_{\varepsilon}(A) \leq \lambda(A)$. Hence, $\lambda(A)=\inf \Lambda_{\varepsilon}(A)$.

Proposition 3.2.1 Every finite open interval I is λ-measurable and $\lambda(I)=|I|$.
Proof Let $I=(a, b)$ and, for $0<\varepsilon<\frac{1}{2}(b-a)$, let $J=(a+\varepsilon, b-\varepsilon)$. For a subset A of \mathbb{R}, consider any sequence $\left\{I_{n}\right\}$ of open intervals with $\left|I_{n}\right|<\varepsilon$ for all n and $A \subset$ $\bigcup_{n=1}^{\infty} I_{n}$. Let $\vartheta_{1}=\left\{n: I_{n} \cap J \neq \phi\right\}$ and $\vartheta_{2}=\left\{n: I_{n} \cap\left(A \cap I^{c}\right) \neq \phi\right\}$, then $\vartheta_{1} \cap \vartheta_{2}=$ ϕ and

$$
\sum_{n=1}^{\infty}\left|I_{n}\right| \geq \sum_{n \in \vartheta_{1}}\left|I_{n}\right|+\sum_{n \in \vartheta_{2}}\left|I_{n}\right| \geq \lambda(A \cap J)+\lambda\left(A \cap I^{c}\right)
$$

from which it follows, by Lemma 3.2.1, that

$$
\lambda(A) \geq \lambda(A \cap J)+\lambda\left(A \cap I^{c}\right)
$$

But it is clear that

$$
\lambda(A \cap I) \leq \lambda(A \cap J)+2 \varepsilon,
$$

hence,

$$
\lambda(A) \geq \lambda(A \cap I)+\lambda\left(A \cap I^{c}\right)-2 \varepsilon .
$$

Let $\varepsilon \searrow 0$; we have

$$
\lambda(A) \geq \lambda(A \cap I)+\lambda\left(A \cap I^{c}\right)
$$

Therefore I is λ-measurable.
To show that $\lambda(I)=|I|$, we observe first that $\lambda(I) \leq|I|$. It remains to show that $\lambda(I) \geq|I|$. For this purpose, we claim first that if I_{1}, \ldots, I_{k} are finite open intervals such that $\bigcup_{j=1}^{k} I_{j} \supset J$, where J is a closed interval, then $\sum_{j=1}^{k}\left|I_{j}\right| \geq|J|$. This claim follows by induction on k : if $k=1$, this claim obviously holds; suppose that the claim holds for $k-1$ and assume as we may that I_{k} contains the right endpoint of J, then $\bigcup_{j=1}^{k-1} I_{j} \supset J \backslash I_{k}$ and hence by our induction hypotheses,

$$
\sum_{j=1}^{k-1}\left|I_{j}\right| \geq\left|J \backslash I_{k}\right|
$$

thus,

$$
|J| \leq\left|J \backslash I_{k}\right|+\left|I_{k}\right| \leq \sum_{j=1}^{k}\left|I_{j}\right|
$$

Let now $\left\{I_{n}\right\}$ be any sequence of finite open intervals with $I \subset \bigcup_{n=1}^{\infty} I_{n}$. Consider any closed interval J in I. Since J is compact, there is $k \in \mathbb{N}$ such that $\bigcup_{j=1}^{k} I_{j} \supset J$. From the claim just established, we have

$$
|J| \leq \sum_{j=1}^{k}\left|I_{j}\right| \leq \sum_{j=1}^{\infty}\left|I_{j}\right|
$$

hence, $|J| \leq \inf \Lambda(I)=\lambda(I)$. Since $|J|$ can be chosen as close to $|I|$ as one wishes, $|I| \leq \lambda(I)$. This proves the proposition.

Exercise 3.2.1 Show that any finite closed interval J is λ-measurable and $\lambda(J)=|J|$. (Hint: $\lambda(\{x\})=0$ for $x \in \mathbb{R}$.)

Exercise 3.2.2 Show that sets of the form (a, ∞) or $(-\infty, a)$ are λ-measurable.
Exercise 3.2.3 Let $A \subset \mathbb{R}$. Show that there is a sequence $\left\{G_{n}\right\}$ of open sets containing A such that $\lambda(A)=\lambda\left(\bigcap_{n=1}^{\infty} G_{n}\right)$.

3.3Σ-algebra of measurable sets

Suppose that μ is an outer measure on Ω in this section. We reiterate that an outer measure on a set is also simply called a measure on the set.

Proposition 3.3.1 If A is μ-measurable, then so is $\Omega \backslash A=A^{c}$.
Proof Obvious.
Proposition 3.3.2 If A_{1}, A_{2} are μ-measurable, then so is $A_{1} \cup A_{2}$.
Proof Let $B \subset \Omega$, then

$$
\begin{aligned}
& \qquad \begin{aligned}
\mu(B) & =\mu\left(B \cap A_{1}\right)+\mu\left(B \cap A_{1}^{c}\right) \\
& =\mu\left(B \cap A_{1}\right)+\mu\left(\left(B \cap A_{1}^{c}\right) \cap A_{2}\right)+\mu\left(\left(B \cap A_{1}^{c}\right) \cap A_{2}^{c}\right) \\
& \geq \mu\left(B \cap\left(A_{1} \cup A_{2}\right)\right)+\mu\left(B \cap\left(A_{1} \cup A_{2}\right)^{c}\right),
\end{aligned} \\
& \text { because } B \cap\left(A_{1} \cup A_{2}\right)=\left(B \cap A_{1}\right) \cup\left(B \cap A_{2}\right)=\left(B \cap A_{1}\right) \cup\left(B \cap A_{1}^{c} \cap A_{2}\right) .
\end{aligned}
$$

Remark By induction, the union of finitely many μ-measurable sets is μ-measurable. This fact, together with Proposition 3.3.1, implies that the intersection of finitely many μ-measurable sets is μ-measurable.

Proposition 3.3.3 If $\left\{A_{j}\right\}_{j=1}^{\infty}$ is a disjoint sequence of μ-measurable sets in Ω and $B \subset \Omega$, then

$$
\mu\left(B \cap\left\{\bigcup_{j=1}^{\infty} A_{j}\right\}\right)=\sum_{j=1}^{\infty} \mu\left(B \cap A_{j}\right)
$$

Proof Let n be a positive integer, then, since $\bigcup_{j=1}^{n-1} A_{j}$ is μ-measurable, we have

$$
\begin{aligned}
\mu\left(B \cap\left\{\bigcup_{j=1}^{n} A_{j}\right\}\right) & =\mu\left(B \cap\left\{\bigcup_{j=1}^{n} A_{j}\right\} \cap\left\{\bigcup_{j=1}^{n-1} A_{j}\right\}\right)+\mu\left(B \cap\left\{\bigcup_{j=1}^{n} A_{j}\right\} \cap\left\{\bigcup_{j=1}^{n-1} A_{j}\right\}^{c}\right) \\
& =\mu\left(B \cap\left\{\bigcup_{j=1}^{n-1} A_{j}\right\}\right)+\mu\left(B \cap A_{n}\right)=\cdots=\sum_{j=1}^{n} \mu\left(B \cap A_{j}\right)
\end{aligned}
$$

then,

$$
\mu\left(B \cap\left\{\bigcup_{j=1}^{\infty} A_{j}\right\}\right) \geq \mu\left(B \cap\left\{\bigcup_{j=1}^{n} A_{j}\right\}\right)=\sum_{j=1}^{n} \mu\left(B \cap A_{j}\right)
$$

for all n, hence

$$
\mu\left(B \cap\left\{\bigcup_{j=1}^{\infty} A_{j}\right\}\right) \geq \sum_{j=1}^{\infty} \mu\left(B \cap A_{j}\right)
$$

But $\mu\left(B \cap\left\{\bigcup_{j=1}^{\infty} A_{j}\right\}\right)=\mu\left(\bigcup_{j=1}^{\infty} B \cap A_{j}\right) \leq \sum_{j=1}^{\infty} \mu\left(B \cap A_{j}\right)$, by σ-subadditivity of outer measures.

Proposition 3.3.4 If $\left\{A_{j}\right\}_{j=1}^{\infty}$ is a disjoint sequence of μ-measurable sets, then $\bigcup_{j=1}^{\infty} A_{j}$ is μ-measurable.

Proof Let $B \subset \Omega$, then

$$
\begin{aligned}
& \mu\left(B \cap \bigcup_{j=1}^{\infty} A_{j}\right)+\mu\left(B \cap\left\{\bigcup_{j=1}^{\infty} A_{j}\right\}^{c}\right) \\
\leq & \sum_{j=1}^{n} \mu\left(B \cap A_{j}\right)+\mu\left(B \cap\left\{\bigcup_{j=1}^{n} A_{j}\right\}^{c}\right)+\sum_{j=n+1}^{\infty} \mu\left(B \cap A_{j}\right) \\
= & \mu\left(B \cap\left\{\bigcup_{j=1}^{n} A_{j}\right\}\right)+\mu\left(B \cap\left\{\bigcup_{j=1}^{n} A_{j}\right\}^{c}\right)+\sum_{j=n+1}^{\infty} \mu\left(B \cap A_{j}\right) \\
= & \mu(B)+\sum_{j=n+1}^{\infty} \mu\left(B \cap A_{j}\right) .
\end{aligned}
$$

If $\sum_{j=1}^{\infty} \mu\left(B \cap A_{j}\right)<\infty$, by letting $n \rightarrow \infty$ in the above inequality, we have

$$
\begin{equation*}
\mu\left(B \cap \bigcup_{j=1}^{\infty} A_{j}\right)+\mu\left(B \cap\left\{\bigcup_{j=1}^{\infty} A_{i}\right\}^{c}\right) \leq \mu(B) ; \tag{3.3}
\end{equation*}
$$

while if $\sum_{j=1}^{\infty} \mu\left(B \cap A_{j}\right)=\infty$, then $\mu(B) \geq \mu\left(B \cap \bigcup_{j=1}^{\infty} A_{j}\right)=\sum_{j=1}^{\infty} \mu\left(B \cap A_{j}\right)=\infty$; hence (3.3) also holds.

If we denote by Σ^{μ} the family of all μ-measurable sets, it follows from Propositions 3.3.1, 3.3.2, and 3.3.4 that Σ^{μ} is both a π-system and a λ-system and is therefore a σ-algebra; while μ is σ-additive on Σ^{μ} by Proposition 3.3.3. Since Σ^{μ} contains all those subsets A of Ω such that $\mu(A)=0$, we have shown the following theorem.

Theorem 3.3.1 Σ^{μ} is a σ-algebra and $\left(\Omega, \Sigma^{\mu}, \mu\right)$ is a complete measure space.
For later reference, $\left(\Omega, \Sigma^{\mu}, \mu\right)$ is called the measure space for μ; and Σ^{μ}-measurable functions are sometimes said to be μ-measurable.

We have pointed out in Section 2.4 that the monotone limit property for increasing measurable sets, as stated in Lemma 2.4.1, reveals in a simple way the salient role played by σ-additivity of measures in the theory of measure and integration. Some outer measures possess the monotone limit property for increasing sets without requiring them to be measurable; regular measures are among them. A measure μ on Ω is said to be regular
if for each $B \subset \Omega$, there is a μ-measurable set $A \supset B$ such that $\mu(A)=\mu(B)$; more generally, if Σ is a sub σ-algebra of Σ^{μ}, we say that μ is Σ-regular if for each $B \subset \Omega$, there is $A \in \Sigma$ such that $A \supset B$ and $\mu(A)=\mu(B)$.
Theorem 3.3.2 If $A_{1} \subset A_{2} \subset \cdots \subset \cdots$ is a sequence of sets in Ω and μ is a regular measure on Ω, then

$$
\mu\left(\bigcup_{j} A_{j}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right)
$$

Proof We always have

$$
\begin{equation*}
\mu\left(\bigcup_{j} A_{j}\right) \geq \lim _{n \rightarrow \infty} \mu\left(A_{n}\right) . \tag{3.4}
\end{equation*}
$$

For each j, let B_{j} be a μ-measurable set such that $A_{j} \subset B_{j}$ and $\mu\left(A_{j}\right)=\mu\left(B_{j}\right)$. Now let $C_{j}=\bigcap_{n \geq j} B_{n}$, then $C_{j} \supset A_{j}$ and $\mu\left(C_{j}\right)=\mu\left(A_{j}\right)$ for each j and $C_{n} \nearrow \bigcup_{j} C_{j}$. Therefore,

$$
\mu\left(\bigcup_{j} A_{j}\right) \leq \mu\left(\bigcup_{j} C_{j}\right)=\lim _{n \rightarrow \infty} \mu\left(C_{n}\right)=\lim _{n \rightarrow \infty} \mu\left(A_{n}\right),
$$

or

$$
\mu\left(\bigcup_{j} A_{j}\right) \leq \lim _{n \rightarrow \infty} \mu\left(A_{n}\right) .
$$

This last inequality, together with (3.4), proves the theorem.
Example 3.3.1 The Lebesgue measure λ on \mathbb{R} is a regular measure. This follows from Exercise 3.2.3.

Exercise 3.3.1 Suppose that μ is a regular measure on Ω and that $B \subset \Omega$ with $\mu(B)<\infty$. Show that there is $A \in \Sigma^{\mu}$ such that $A \supset B$ and $\mu(C \cap A)=\mu(C \cap B)$, for every $C \in \Sigma^{\mu}$. (Hint: show that any $A \in \Sigma^{\mu}$ satisfying $A \supset B$ and $\mu(A)=\mu(B)$ will do.)

3.4 Premeasures and outer measures

Let Ω be a nonempty set, \mathcal{G} a class of subsets of Ω containing \emptyset, and $\tau: \mathcal{G} \rightarrow[0,+\infty]$ satisfy $\tau(\emptyset)=0$. Recall that such a set function τ is called a premeasure.

For a premeasure τ, define $\tau^{*}: 2^{\Omega} \rightarrow[0,+\infty]$ by

Then τ^{*} measures Ω and is called the (outer) measure on Ω constructed from τ by Method I. That τ^{*} is an outer measure on Ω follows from the same arguments as in the proof of Theorem 3.2.1 to show that λ is an outer measure on \mathbb{R}.

Example 3.4.1 The Lebesgue measure on \mathbb{R}^{n}.
A set of the form $I_{1} \times \cdots \times I_{n}$ in \mathbb{R}^{n}, where I_{1}, \ldots, I_{n} are finite intervals in \mathbb{R}, is called an oriented rectangle or an oriented interval, and $\prod_{j=1}^{n}\left|I_{j}\right|$ is called the volume of the rectangle. Let \mathcal{G} be the class of all open oriented rectangles in \mathbb{R}^{n} and let

$$
\tau(I)=\text { volume of } I \text { if } I \text { is an open oriented rectangle. }
$$

For convenience, the empty set is considered as a degenerate open oriented rectangle and hence \mathcal{G} contains the empty set \emptyset and $\tau(\emptyset)=0$. The measure τ^{*} on \mathbb{R}^{n} is called the Lebesgue measure on \mathbb{R}^{n}. The Lebesgue measure on \mathbb{R}^{n} will be denoted by λ^{n} and λ^{n}-measurable sets are called Lebesgue measurable sets. In conformity with the notation for Lebesgue measure on \mathbb{R}, introduced in Section 3.2, λ^{1} will be replaced by λ. We shall denote by \mathcal{L}^{n} the σ-algebra of all λ^{n}-measurable sets in \mathbb{R}^{n} and call \mathcal{L}^{n}-measurable functions Lebesgue measurable functions. Naturally, \mathcal{L}^{1} is to be replaced by \mathcal{L}. But, habitually, Lebesgue measurable sets and Lebesgue measurable functions are usually called measurable sets and measurable functions, in this order. Accordingly, λ^{n}-integrable functions are Lebesgue integrable and usually simply called integrable functions. It is easily verified that if one considers closed oriented rectangles instead of open ones in the above construction, one arrives also at λ^{n}.

Exercise 3.4.1 For $\varepsilon>0$, let $\mathcal{G}_{\varepsilon}$ be the class of all open oriented rectangles in \mathbb{R}^{n} with diameter $<\varepsilon$, and $\tau_{\varepsilon}(I)=$ volume of I for $I \in \mathcal{G}_{\varepsilon}$. Show that the measure τ_{ε}^{*} on \mathbb{R}^{n} is the Lebesgue measure.

Exercise 3.4.2 Let λ^{n} be the Lebesgue measure on \mathbb{R}^{n}.
(i) If $A, B \subset \mathbb{R}^{n}$ and $\operatorname{dist}(A, B):=\inf _{\substack{x \in A \\ y \in B}}|x-y|>0$, then $\lambda^{n}(A \cup B)=\lambda^{n}(A)+$ $\lambda^{n}(B)$.
(ii) Show that $\lambda^{n}(I)=$ volume of I if I is an open oriented rectangle. (Hint: use Lemma 1.7.2 to show $\lambda^{n}(I) \geq$ volume of I.)
(iii) Show that every open oriented rectangle is λ^{n}-measurable and hence so are open sets and closed sets in \mathbb{R}^{n}. (Hint: pattern the first part of the proof of Proposition 3.2.1.)
(iv) Show that any hyperplane in \mathbb{R}^{n} has Lebesgue measure zero.
(v) Show that $\left\{x \in \mathbb{R}^{n}:|x|=r\right\}$ has Lebesgue measure zero.
(vi) Show that for any $A \subset \mathbb{R}^{n}, \lambda^{n}(A+x)=\lambda^{n}(A)$ for $x \in \mathbb{R}^{n}$, and $\lambda^{n}(\alpha A)=$ $|\alpha|^{n} \lambda^{n}(A)$ for $\alpha \in \mathbb{R}$.

Example 3.4.2 Let $I=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$ be a finite closed oriented interval in \mathbb{R}^{n}. We assume that I is nondegenerate, i.e., $a_{k}<b_{k}$ for all $k=1, \ldots, n$. By

Exercise 3.4.2 (iii), continuous functions on I are Lebesgue measurable. Since continuous functions on I are bounded, they are Lebesgue integrable due to the fact that $\lambda^{n}(I)<\infty$. We claim that for a continuous function f on $I, \int_{I} f d \lambda^{n}$ is the same as $\int_{a_{n}}^{b_{n}} \cdots \int_{a_{1}}^{b_{1}} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}$, the Riemann integral of f over I. To see this, recall first that a step function g on I is a function which takes constant value on each of a finite number of disjoint oriented intervals in I; the union of which is I. Since f is continuous, there is a sequence $\left\{g_{k}\right\}$ of step functions converging uniformly to f on I; then $\lim _{k \rightarrow \infty} \int_{I} g_{k} d \lambda^{n}=\int_{I} f d \lambda^{n}$. But $\left\{\int_{I} g_{k} d \lambda^{n}\right\}$ is a sequence of Riemann sums of f which tends to $\int_{a_{n}}^{b_{n}} \ldots \int_{a_{1}}^{b_{1}} f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \cdots d x_{n}$, hence our claim holds. We shall show in Section 4.2 that a Riemann integrable function on I is Lebesgue integrable, and its Lebesgue integral and Riemann integral are the same.
Example 3.4.3 A continuous function f on \mathbb{R} is clearly Lebesgue measurable. We claim that f is Lebesgue integrable if and only if the improper integral $\int_{-\infty}^{\infty} f(x) d x$ converges absolutely. Suppose first that f is Lebesgue integrable. Then $|f|$ is Lebesgue integrable, hence $\int_{-\infty}^{\infty}|f| d \lambda=\lim _{n \rightarrow \infty} \int_{\mathbb{R}}|f|\left[I_{[-n, n]} d \lambda=\right.$ $\lim _{n \rightarrow \infty} \int_{[-n, n]}|f| d \lambda$, by the monotone convergence theorem as well as by LCDT. But $\int_{[-n, n]}|f| d \lambda=\int_{-n}^{n}|f(x)| d x$, as we have shown in the previous example, thus, $\int_{-\infty}^{\infty}|f(x)| d x=\lim _{n \rightarrow \infty} \int_{-n}^{n}|f(x)| d x=\lim _{n \rightarrow \infty} \int_{[-n, n]}|f| d \lambda=\int_{-\infty}^{\infty}|f| d \lambda<\infty$, or $\int_{-\infty}^{\infty} f(x) d x$ converges absolutely. Conversely, if $\int_{-\infty}^{\infty} f(x) d x$ converges absolutely, then $\int_{-\infty}^{\infty}|f| d \lambda=\lim _{n \rightarrow \infty} \int_{[-n, n]}|f| d \lambda=\lim _{n \rightarrow \infty} \int_{-n}^{n}|f(x)| d x=\int_{-\infty}^{\infty}|f(x)| d x<\infty$. Hence, $|f|$ is Lebesgue integrable, and so is f. One sees easily that if either f is Lebesgue integrable or $\int_{-\infty}^{\infty} f(x) d x$ converges absolutely, then $\int_{\mathbb{R}} f d \lambda=\int_{-\infty}^{\infty} f(x) d x$.
Exercise 3.4.3 Let f be a real-valued continuous function on \mathbb{R}. Show that f is Lebesgue integrable on \mathbb{R} if and only if for every sequence $\left\{I_{n}\right\}$ of finite disjoint open intervals, the system $\left\{\int_{I_{n}} f(x) d x\right\}_{n}$ is summable.

Exercise 3.4.4 Show that

$$
\int_{0}^{t} \frac{2 x}{1+x^{2}} d x=2 \sum_{j=0}^{\infty}(-1)^{j} \int_{0}^{t} x^{2^{j+1}} d x
$$

for $0<t<1$; then show that

$$
\int_{0}^{1} \frac{2 x}{1+x^{2}} d x=\sum_{j=0}^{\infty}(-1)^{j} \frac{1}{j+1},
$$

and evaluate $\sum_{j=0}^{\infty}(-1)^{j} \frac{1}{j+1}$.
Exercise 3.4.5 Suppose that f is Lebesgue integrable on \mathbb{R}. Define a function g on \mathbb{R} by

$$
g(x):=\int_{(-\infty, x)} f d \lambda, \quad x \in \mathbb{R}
$$

Show that g is a bounded and uniformly continuous on \mathbb{R}.

Exercise 3.4.6 Find continuous functions f and g on $(0, \infty)$ such that f and g^{2} are Lebesgue integrable on $(0, \infty)$, while f^{2} and g are not Lebesgue integrable on $(0, \infty)$. Compare this exercise with Example 2.7.2 and Exercise 2.7.11.

Exercise 3.4.7 Let f be a continuous function on \mathbb{R}^{2} and suppose that its improper integral on \mathbb{R}^{2} is absolutely convergent. For integers m and n, let

$$
\alpha_{m n}=\int_{n}^{n+1} \int_{m}^{m+1} f(x, y) d x d y .
$$

(i) Show that $\left\{\alpha_{m n}\right\}_{(m, n) \in \mathbb{Z} \times \mathbb{Z}}$ is summable.
(ii) Show that $\int_{\mathbb{R}} f(x, y) d \lambda(x)$ is a Borel measurable function of y.
(iii) Show that $\iint_{\mathbb{R}^{2}} f(x, y) d x d y=\int_{\mathbb{R}^{2}} f d \lambda^{2}=\int_{\mathbb{R}}\left(\int_{\mathbb{R}} f(x, y) d \lambda(x)\right) d \lambda(y)$.
(Hint: assume first that $f(x, y) \geq 0$. For positive integer $n, F_{n}(y)=$ $\int_{[-n, n]} f(x, y) d \lambda(x)$ is a continuous function of y.)

Exercise 3.4.8

(i) Show that $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y=\left(\int_{-\infty}^{\infty} e^{-t^{2}} d t\right)^{2}$.
(ii) Evaluate $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-\left(x^{2}+y^{2}\right)} d x d y$, by using polar coordinates, and then find $\int_{-\infty}^{\infty} e^{-t^{2}} d t$

Exercise 3.4.9 Find the following limits:
(i) $\lim _{n \rightarrow \infty} \int_{0}^{\infty}\left(1+\frac{x}{n}\right)^{-n} \sin \left(\frac{x}{n}\right) d x$.
(ii) $\lim _{n \rightarrow \infty} \int_{0}^{1}\left(1+n x^{2}\right)\left(1+x^{2}\right)^{-n} d x$.
(iii) $\lim _{n \rightarrow \infty} \int_{0}^{\infty} n \sin \left(\frac{x}{n}\right)\left[x\left(1+x^{2}\right)\right]^{-1} d x$.
(iv) $\lim _{n \rightarrow \infty} \int_{0}^{n}\left(1+\frac{x}{n}\right)^{n} e^{-2 x} d x$.

Exercise 3.4.10 Let $\alpha=\int_{-\infty}^{\infty} e^{-x^{2}} d x$; show that

$$
\int_{-\infty}^{\infty} x^{2 n} e^{-x^{2}} d x=(2 n)!\left(4^{n} n!\right)^{-1} \alpha
$$

Exercise 3.4.11 Show that $\lim _{k \rightarrow \infty} \int_{0}^{k} x^{n}(1-x / k)^{k} d x=n!$.
Exercise 3.4.12 Show that the improper integral $\int_{0}^{1} \frac{x^{p}}{1-x} \ln \frac{1}{x} d x$ exists and equals $\sum_{j=1}^{\infty} \frac{1}{(p+j)^{2}}(p>0)$. (Hint: expand $\frac{1}{1-x}$ as a geometric series over $[0,1-\varepsilon]$ for $0<$ $\varepsilon<1$.)

Exercise 3.4.13 Suppose that f is a Lebesgue integrable function and φ is a bounded continuous function on \mathbb{R}. Show that $F(x)=\int_{\mathbb{R}} f(y) \varphi(x-y) d \lambda(y)$ is a continuous function of x in \mathbb{R}.

Example 3.4.4 Suppose that f is a function defined on \mathbb{R}^{2} such that (i) $x \mapsto f(x, y)$ is Lebesgue measurable for each y, (ii) for λ-a.e. $x \in \mathbb{R}, f(x, y)$ is a continuous function of y, and (iii) there is a Lebesgue integrable function g on \mathbb{R} such that $|f(x, y)| \leq g(x)$ for λ-a.e. x and for all y. Show that the function defined by

$$
F(y)=\int_{\mathbb{R}} f(x, y) d x, \quad y \in \mathbb{R}
$$

is a continuous function on \mathbb{R}. Let $y \in \mathbb{R}$ and $\left\{y_{n}\right\}$ a sequence in \mathbb{R} converging to y. Put $f_{n}(x)=f\left(x, y_{n}\right)$, then $f_{n}(x) \rightarrow f(x, y)$ and $\left|f_{n}(x)\right| \leq g(x)$ for λ-a.e. x in \mathbb{R}. It follows then from LDCT that $\lim _{n \rightarrow \infty} F\left(y_{n}\right)=F(y)$. Hence F is continuous on \mathbb{R}.

Exercise 3.4.14 Let f and g be as in Example 3.4.4. Assume further that $y \mapsto f(x, y)$ is continuously differentiable for λ-a.e. x and there is an integrable function h on \mathbb{R} such that $\left|\frac{\partial}{\partial y} f(x, y)\right| \leq h(x)$ for λ-a.e. x and for all y. Let F be defined as in Example 3.4.4 show that F is continuously differentiable on \mathbb{R} and

$$
F^{\prime}(y)=\int_{\mathbb{R}} \frac{\partial}{\partial y} f(x, y) d x, \quad y \in \mathbb{R}
$$

Exercise 3.4.15 Define a function f on $(0, \infty)$ by

$$
f(x)=\int_{0}^{\infty} \frac{e^{-t^{2} x}}{1+t^{2}} d t, \quad x \in(0, \infty)
$$

Show that f is continuously differentiable on $(0, \infty)$ and is a solution of the equation $y^{\prime}-y+\frac{\sqrt{\pi}}{2} \frac{1}{\sqrt{x}}=0$.

Exercise 3.4.16 Suppose that f is a continuous integrable function on \mathbb{R}. Show that the function $F: \mathbb{R} \rightarrow \mathbb{R}$, defined by

$$
F(x)=\frac{1}{2} \int_{\mathbb{R}} e^{-|x-y|} f(y) d \lambda(y),
$$

solves $F^{\prime \prime}-F=f$ on \mathbb{R}.
Measurability of a given function is sometimes an issue, and is usually decided by whether it is the limit a.e. of a sequence of measurable functions. We illustrate this using an example.
Example 3.4.5 Suppose that $f(\cdot, y)$ is continuous on $[0,1]$ for each $y \in[0,1]$ and $f(x, \cdot)$ is continuous on $[0,1]$ for each $x \in[0,1]$. Then f is Lebesgue measurable on $[0,1] \times[0,1]$.

Proof For each $n \in \mathbb{R}$, define $f_{n}:[0,1] \times[0,1]$ by

$$
f_{n}(x, y)=f\left(x, \frac{k}{n}\right),
$$

if $\frac{k}{n} \leq y<\frac{k+1}{n}, k=0,1, \ldots, n-1$. Since the restriction of f_{n} to $[0,1] \times\left[\frac{k}{n}, \frac{k+1}{n}\right)$ is continuous for $k=0, \ldots, n-1, f_{n}$ is Lebesgue measurable on $[0,1] \times[0,1)$ for each $n \in \mathbb{N}$. To show the measurability of f, it suffices to show that f_{n} converges to f pointwise as $n \rightarrow \infty$. Fix $\left(x_{0}, y_{0}\right) \in[0,1] \times[0,1)$. For each $\varepsilon>0$ given, there is $\delta=\delta\left(x_{0}, y_{0}\right)>0$ such that $\left|f\left(x_{0}, y\right)-f\left(x_{0}, y_{0}\right)\right|<\varepsilon$ if $\left|y-y_{0}\right|<\delta$ by the continuity of $f\left(x_{0}, \cdot\right)$. Thus for each $n>\frac{1}{\delta}$,

$$
\left|f\left(x_{0}, y_{0}\right)-f_{n}\left(x_{0}, y_{0}\right)\right|=\left|f\left(x_{0}, y_{0}\right)-f\left(x_{0}, \frac{k}{n}\right)\right|<\varepsilon,
$$

where $k=k\left(y_{0}, n\right)$ with $\frac{k}{n} \leq y_{0}<\frac{k+1}{n}$. Therefore, $\lim _{n \rightarrow \infty} f_{n}\left(x_{0}, y_{0}\right)=f\left(x_{0}, y_{0}\right)$, and hence f is Lebesgue measurable.

For a nonempty class \mathcal{G} of subsets of a set Ω, denote by \mathcal{G}_{σ} the family of all those countable unions of sets from \mathcal{G}, and by $\mathcal{G}_{\sigma \delta}$ the family of all those countable intersections of sets from \mathcal{G}_{σ}; in parallel, the families \mathcal{G}_{δ} and $\mathcal{G}_{\delta \sigma}$ are defined by interchanging countable unions and countable intersections. In a metric space, a countable intersection of open sets is called a $\mathbf{G}_{\boldsymbol{\delta}}$-set and a countable union of closed sets is called a $\mathbf{F}_{\boldsymbol{\sigma}}$-set.

Proposition 3.4.1 Let τ be a premeasure with domain \mathcal{G} and suppose that there is $\left\{G_{n}\right\}_{n=1}^{\infty} \subset \mathcal{G}$ such that $\bigcup_{n} G_{n}=\Omega$. Then for every $B \subset \Omega$, there is $A \in \mathcal{G}_{\sigma \delta}$ such that $A \supset B$ and $\tau^{*}(A)=\tau^{*}(B)$.

Proof From the definition of τ^{*} and the assumption that there is $\left\{G_{n}\right\} \subset \mathcal{G}$ such that $\bigcup_{n} G_{n}=\Omega \supset B$, one infers that there are $\left\{G_{n}^{(k)}\right\}_{n} \subset \mathcal{G}, k=1,2,3, \ldots$, with the property $\bigcup_{n} G_{n}^{(k)} \supset B$ for each k and $\lim _{k \rightarrow \infty} \sum_{n} \tau\left(G_{n}^{(k)}\right)=\tau^{*}(B)$. Put $A=$ $\bigcap_{k} \bigcup_{n} G_{n}^{(k)}$, then $A \in \mathcal{G}_{\sigma \delta}$ and $A \supset B$. It is clear from the definition of τ^{*} that $\tau^{*}\left(\bigcup_{n} G_{n}^{(k)}\right) \leq \sum_{n} \tau\left(G_{n}^{(k)}\right)$, and consequently that $\tau^{*}(A) \leq \inf _{k} \tau^{*}\left(\bigcup_{n} G_{n}^{(k)}\right)$ $\leq \lim _{\inf _{k \rightarrow \infty}} \sum_{n} \tau\left(G_{n}^{(k)}\right)=\tau^{*}(B)$. But $B \subset A$ implies $\tau^{*}(B) \leq \tau^{*}(A)$, hence $\tau^{*}(A)=\tau^{*}(B)$.

Exercise 3.4.17

(i) Show that for any $B \subset \mathbb{R}^{n}$ and $\varepsilon>0$, there is an open set $G \supset B$ such that $\lambda^{n}(G) \leq \lambda^{n}(B)+\varepsilon$.
(ii) Show that for any $B \subset \mathbb{R}^{n}$, there is a G_{δ}-set A in \mathbb{R}^{n} such that $A \supset B$ and $\lambda^{n}(A)=$ $\lambda^{n}(B)$.

Some applications of the method of constructing measures presented in this section will now be considered. Firstly, an extension theorem of Carathéodory-Hahn is to be established.

Theorem 3.4.1 (Carathéodory-Hahn) Suppose that τ is a σ-additive set function on an algebra \mathcal{A} on Ω, and let τ^{*} be the measure on Ω constructed from τ by Method I. Then $\sigma(\mathcal{A}) \subset \Sigma^{\tau^{*}}$ and $\tau(A)=\tau^{*}(A)$ for $A \in \mathcal{A}$. Furthermore, if τ is σ-finite, then the restriction of τ^{*} to $\sigma(\mathcal{A})$ is the unique measure on $\sigma(A)$ extending τ.

Proof If we show that $\mathcal{A} \subset \Sigma^{\tau^{*}}$ and $\tau^{*}(A)=\tau(A)$ for $A \in \mathcal{A}$, then the first part of the theorem is proved. For $A \in \mathcal{A}$ and $B \subset \Omega$, consider an arbitrary sequence $\left\{A_{n}\right\}$ in \mathcal{A} satisfying $\bigcup_{n} A_{n} \supset B$, then

$$
\begin{aligned}
\left\{A_{n} \cap A\right\} \subset \mathcal{A}, & \left\{A_{n} \cap A^{c}\right\} \subset \mathcal{A} ; \\
\bigcup_{n}\left(A_{n} \cap A\right) \supset B \cap A, & \bigcup_{n}\left(A_{n} \cap A^{c}\right) \supset B \cap A^{c} .
\end{aligned}
$$

Hence,

$$
\sum_{n} \tau\left(A_{n}\right)=\sum_{n} \tau\left(A_{n} \cap A\right)+\sum_{n} \tau\left(A_{n} \cap A^{c}\right) \geq \tau^{*}(B \cap A)+\tau^{*}\left(B \cap A^{c}\right),
$$

from which follows that

$$
\tau^{*}(B) \geq \tau^{*}(B \cap A)+\tau^{*}\left(B \cap A^{c}\right),
$$

and thus $A \in \Sigma^{\tau^{*}}$.
To see that $\tau(A)=\tau^{*}(A)$, observe first that $\tau(A) \geq \tau^{*}(A)$; to show $\tau(A) \leq$ $\tau^{*}(A)$, pick any sequence $\left\{A_{n}\right\}$ in \mathcal{A} with $\bigcup_{n} A_{n} \supset A$ and verify that

$$
\sum_{n} \tau\left(A_{n}\right) \geq \sum_{n} \tau\left(A_{n} \cap A\right) \geq \tau\left(\bigcup_{n}\left[A_{n} \cap A\right]\right)=\tau(A)
$$

from σ-subadditivity of τ (cf. Exercise 2.1.1. (iv)), concluding that $\tau^{*}(A) \geq \tau(A)$.
Suppose now that v is a measure on $\sigma(\mathcal{A})$ such that $v(A)=\tau(A)$ for $A \in \mathcal{A}$. We claim that $v(A) \leq \tau^{*}(A)$ for $A \in \sigma(\mathcal{A})$. Let $A \in \sigma(\mathcal{A})$, and consider an arbitrary sequence $\left\{A_{n}\right\}$ in \mathcal{A} with $\bigcup_{n} A_{n} \supset A$. Then,

$$
\nu(A) \leq \sum_{n} v\left(A_{n}\right)=\sum_{n} \tau\left(A_{n}\right),
$$

concluding $\nu(A) \leq \tau^{*}(A)$.
If τ is σ-finite, there is an increasing sequence $\Omega_{1} \subset \Omega_{2} \subset \cdots \subset \Omega_{n} \subset \cdots$ in \mathcal{A} such that $\tau\left(\Omega_{n}\right)<\infty$ for all n and $\bigcup_{n} \Omega_{n}=\Omega$. For each n, from what we have just claimed, we have for $A \in \sigma(\mathcal{A})$,

$$
v\left(\Omega_{n} \backslash\left[\Omega_{n} \cap A\right]\right) \leq \tau^{*}\left(\Omega_{n} \backslash\left[\Omega_{n} \cap A\right]\right),
$$

or

$$
v\left(\Omega_{n}\right)-v\left(\Omega_{n} \cap A\right) \leq \tau^{*}\left(\Omega_{n}\right)-\tau^{*}\left(\Omega_{n} \cap A\right),
$$

from which, using the fact that $v\left(\Omega_{n}\right)=\tau^{*}\left(\Omega_{n}\right)=\tau\left(\Omega_{n}\right)<\infty$, we have

$$
v\left(\Omega_{n} \cap A\right) \geq \tau^{*}\left(\Omega_{n} \cap A\right)
$$

Let $n \rightarrow \infty$ in the last inequality; it follows that $v(A) \geq \tau^{*}(A)$. This shows that $\nu(A)=\tau^{*}(A)$ for $A \in \sigma(\mathcal{A})$, completing the proof of the second part of the theorem.

Example 3.4.6 (Continuation of Example 2.1.1) Consider the sequence space Ω, the algebra \mathcal{Q} of all cylinders in Ω, and the set function P, defined in Section 1.3. We know from Example 2.1.1 that P is σ-additive on \mathcal{Q}. Note that $P(\Omega)=1$. Now by Theorem 3.4.1, P can be extended uniquely to be a measure on $\sigma(\mathcal{Q})$; then the probability space $(\Omega, \sigma(\mathcal{Q}), P)$ is referred to as the Bernoulli sequence space. One can verify easily that the set E defined in the last paragraph of Section 1.3 is actually in $\sigma(\mathcal{Q})$ by observing that $E_{n k}:=\left\{w \in \Omega: \frac{1}{2}-\frac{1}{k}<\frac{S_{n}(w)}{n}<\frac{1}{2}+\frac{1}{k}\right\} \in \mathcal{Q}$ for n, k in $\mathbb{N} ; P(E)$ therefore has a meaning. Note that if $w=\left(w_{k}\right) \in \Omega$, then $\{w\}=$ $\left.E\left(w_{1}\right) \cap E\left(w_{1}, w_{2}\right) \cap \cdots \cap E\left(w_{1}, \ldots, w\right) n\right) \cap \cdots$; hence any singleton set in Ω is in $\sigma(\mathcal{Q})$, and clearly the probability of any singleton set is zero.

Theorem 3.4.1 contains the fact that the method of outer measure is universal in constructing measure spaces.

Corollary 3.4.1 Given a measure space (Ω, Σ, μ), the measure μ^{*} on Ω constructed from μ (considered as defined on Σ) by Method I is the unique Σ-regular measure on Ω such that $\mu^{*}(A)=\mu(A)$ for $A \in \Sigma$.

Proof By Theorem 3.4.1, $\Sigma \subset \Sigma^{\mu^{*}}$ and $\mu^{*}(A)=\mu(A)$ for $A \in \Sigma$. Since $\Sigma_{\sigma \delta}=\Sigma$, it follows from Proposition 3.4.1 that μ^{*} is Σ-regular.

To prove uniqueness, let v be a Σ-regular measure on Ω such that $v(A)=\mu(A)$ for $A \in \Sigma$. We claim that $v=\mu^{*}$. Actually, for any set $B \subset \Omega$, there are A_{1} and A_{2} in Σ such that $A_{1} \supset B, A_{2} \supset B, \mu^{*}\left(A_{1}\right)=\mu^{*}(B)$, and $\nu\left(A_{2}\right)=v(B)$. Put $A=A_{1} \cap A_{2}$, then

$$
\begin{aligned}
\mu^{*}\left(A_{1}\right) \geq \mu^{*}(A) & \geq \mu^{*}(B)=\mu^{*}\left(A_{1}\right) ; \\
v\left(A_{2}\right) & \geq v(A)
\end{aligned} \geq v(B)=v\left(A_{2}\right),
$$

hence, $\mu^{*}(B)=\mu^{*}(A)$ and $\nu(B)=\nu(A)$. But $A \in \Sigma$ implies that $\nu(A)=\mu(A)=$ $\mu^{*}(A)$. Thus $\mu^{*}(B)=\nu(B)$.

Exercise 3.4.18

(i) If (Ω, Σ, μ) is σ-finite, show that for $A \in \Sigma^{\mu^{*}}$ there is $B \in \Sigma$ such that $B \supset A$ and $\mu^{*}(B \backslash A)=0$.
(ii) If (Ω, Σ, μ) is σ-finite, show that $\left(\Omega, \Sigma^{\mu^{*}}, \mu^{*}\right)$ is the completion of (Ω, Σ, μ) (cf. Section 2.8.3).
(iii) If μ measures Ω and $\Sigma=\Sigma^{\mu}$, show that $\mu^{*}=\mu$ if and only if μ is regular.

Remark Because of Corollary 3.4.1, we may consider any measure space (Ω, Σ, μ) as obtained by restricting to Σ the Σ-regular measure μ^{*} on Ω. Note that if μ is a measure
on Ω, the measure μ^{*} on Ω constructed from μ as a measure on Σ^{μ} by Method I is in general different from the original measure μ on Ω (cf. Exercise 3.4.18 (iii)).

Theorem 3.4.2 Let \mathcal{A}, τ be as in Theorem 3.4.1. Then $\Sigma^{\tau^{*}}$ is the largest σ-algebra containing \mathcal{A} on which τ^{*} is σ-additive.

Proof Let Σ^{\prime} be a σ-algebra containing \mathcal{A} on which τ^{*} is σ-additive. We shall show that $\Sigma^{\prime} \subset \Sigma^{\tau^{*}}$. Let $A \in \Sigma^{\prime}$ and $B \subset \Omega$. For $\varepsilon>0$, there is a sequence $\left\{A_{n}\right\}$ in \mathcal{A} such that $B \subset \bigcup_{n} A_{n}$ and $\sum_{n} \tau\left(A_{n}\right) \leq \tau^{*}(B)+\varepsilon$. Put $H=\bigcup_{n} A_{n}$, then $H, H \cap A, H \cap A^{c}$ are in Σ^{\prime}, and

$$
\begin{aligned}
\tau^{*}(B)+\varepsilon & \geq \sum_{n} \tau\left(A_{n}\right)=\sum_{n} \tau^{*}\left(A_{n}\right) \geq \tau^{*}(H) \\
& =\tau^{*}(H \cap A)+\tau^{*}\left(H \cap A^{c}\right) \geq \tau^{*}(B \cap A)+\tau^{*}\left(B \cap A^{c}\right) \\
& \geq \tau^{*}(B)
\end{aligned}
$$

Let $\varepsilon \searrow 0$ in the last sequence of inequalities; we obtain $\tau^{*}(B)=\tau^{*}(B \cap A)+$ $\tau^{*}\left(B \cap A^{c}\right)$, concluding that $A \in \Sigma^{\tau^{*}}$.

Exercise 3.4.19 Use the $(\pi-\lambda)$ Theorem to prove the second part of Theorem 3.4.1.

Exercise 3.4.20

(i) Show that the measure on \mathbb{R}^{n} constructed from the restriction of λ^{n} to \mathcal{B}^{n} by Method I is λ^{n}.
(ii) Show that λ^{n} is not σ-additive on any σ-algebra on \mathbb{R}^{n} which contains \mathcal{L}^{n} strictly.

3.5 Carathéodory measures

We shall consider in this section a class of measures on metric spaces which plays an important role in analysis. For this purpose, we first introduce some useful notations. For a metric space X with metric ρ and for nonempty subsets A, B of X, let

$$
\rho(A, B)=\inf _{x \in A, y \in B} \rho(x, y)
$$

When $A=\{x\}, \rho(\{x\}, A)$ is written simply as $\rho(x, A)$. In the case of \mathbb{R}^{n} with the Euclidean metric $\rho, \rho(A, B)$ is usually denoted by $\operatorname{dist}(A, B)$ and is called the distance between A and B. Recall that for a metric space X, we use $\mathcal{B}(X)$ to denote the σ-algebra generated by the family of all open sets of X and that sets in $\mathcal{B}(X)$ are called Borel sets.

Let μ be a measure on X, with X being a metric space, μ is called a Carathéodory measure on X if $\mu(A \cup B)=\mu(A)+\mu(B)$ whenever $\rho(A, B)>0$.

Example 3.5.1 The Lebesgue measure on \mathbb{R}^{n} is a Carathéodory measure (cf. Exercise 3.4.2 (i)).

Theorem 3.5.1 If μ is a Carathéodory measure on a metric space X, then every closed subset of X is μ-measurable.
A lemma precedes the proof of the theorem.
Lemma 3.5.1 Let $A_{1} \subset A_{2} \subset \cdots \subset A_{n} \subset A_{n+1} \subset \cdots$ be an increasing sequence of subsets of X such that for each $n, \rho\left(A_{n}, A_{n+1}^{c}\right)>0$. Then,

$$
\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right)=\sup _{n} \mu\left(A_{n}\right) .
$$

Proof Obviously, $\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right) \geq \sup _{n} \mu\left(A_{n}\right)$.
To show that $\mu\left(\bigcup_{n=1}^{\infty} A_{n}\right) \leq \sup _{n} \mu\left(A_{n}\right)$, we may assume that $\sup _{n} \mu\left(A_{n}\right)<+\infty$.
Let $D_{1}=A_{1}, D_{2}=A_{2} \backslash A_{1}, \ldots, D_{n}=A_{n} \backslash A_{n-1}, \ldots$ By our assumption, for any n and $m \geq n+2$, we have $\operatorname{dist}\left(D_{n}, D_{m}\right)>0$. Then,

$$
\begin{aligned}
\mu\left(D_{1} \cup D_{3} \cup \cdots \cup D_{2 k-1}\right) & =\mu\left(D_{1}\right)+\mu\left(D_{3}\right)+\cdots+\mu\left(D_{2 k-1}\right) ; \\
\mu\left(D_{2} \cup D_{4} \cup \cdots \cup D_{2 k}\right) & =\mu\left(D_{2}\right)+\mu\left(D_{4}\right)+\cdots+\mu\left(D_{2 k}\right)
\end{aligned}
$$

for each k. Now,

$$
\sum_{j=1}^{k} \mu\left(D_{2 j-1}\right)=\mu\left(D_{1} \cup D_{3} \cup \cdots \cup D_{2 k-1}\right) \leq \mu\left(A_{2 k-1}\right) \leq \sup _{n} \mu\left(A_{n}\right)<+\infty,
$$

implying that $\sum_{j=1}^{\infty} \mu\left(D_{2 j-1}\right)<\infty$. Similarly, $\sum_{j=1}^{\infty} \mu\left(D_{2 j}\right)<+\infty$. Then,

$$
\begin{aligned}
\mu\left(\bigcup_{j=1}^{\infty} A_{j}\right) & =\mu\left(A_{n} \cup \bigcup_{j=n+1}^{\infty} A_{j}\right)=\mu\left(A_{n} \cup \bigcup_{j=n+1}^{\infty} D_{j}\right) \\
& \leq \mu\left(A_{n}\right)+\sum_{j=n+1}^{\infty} \mu\left(D_{j}\right),
\end{aligned}
$$

from which by letting $n \rightarrow \infty$, we have

$$
\mu\left(\bigcup_{j=1}^{\infty} A_{j}\right) \leq \sup _{n} \mu\left(A_{n}\right) .
$$

Proof of Theorem 3.5.1 Let $F \subset X$ be a closed set, and let $A \subset F, B \subset F^{c}$. For each $n \in \mathbb{N}$, let

$$
B_{n}=\left\{x \in B: \rho(x, F)>\frac{1}{n}\right\} .
$$

Then, since F is closed, we have $\bigcup_{n=1}^{\infty} B_{n}=B$. Obviously, $B_{1} \subset B_{2} \subset \cdots \subset B_{n} \subset$ $B_{n+1} \subset \cdots$. Now,

$$
\rho\left(B_{n}, B \backslash B_{n+1}\right) \geq \frac{1}{n(n+1)}>0,
$$

hence, by Lemma 3.5.1 (applied to the metric space (B, ρ)),

$$
\sup _{n} \mu\left(B_{n}\right)=\mu\left(\bigcup_{n=1}^{\infty} B_{n}\right)=\mu(B),
$$

and since $\rho\left(A, B_{n}\right) \geq \rho\left(F, B_{n}\right) \geq \frac{1}{n}>0$,

$$
\mu(A \cup B) \geq \mu\left(A \cup B_{n}\right)=\mu(A)+\mu\left(B_{n}\right)
$$

for each n; thus,

$$
\mu(A \cup B) \geq \mu(A)+\sup _{n} \mu\left(B_{n}\right)=\mu(A)+\mu(B)
$$

Corollary 3.5.1 If μ is a Carathéodory measure on a metric space X, then all Borel subsets of X are μ-measurable.

3.6 Construction of Carathéodory measures

Let X be a metric space and $\tau: \mathcal{G} \rightarrow[0,+\infty]$ a premeasure on X. For $\varepsilon>0$, define a measure τ_{ε} on X as follows. For $A \subset X$, let

$$
\tau_{\varepsilon}(A)=\inf \sum_{i} \tau\left(C_{i}\right)
$$

where the infimum is taken over all sequences $\left\{C_{i}\right\} \subset \mathcal{G}$ such that $\bigcup_{i} C_{i} \supset A$ and diam $C_{i} \leq \varepsilon$ for each $i ; \tau_{\varepsilon}$ is the measure constructed from the restriction of τ to $\mathcal{G}_{\varepsilon}=$ $\{\mathcal{C} \in \mathcal{G}: \operatorname{diam} \mathcal{C} \leq \varepsilon\}$ by Method I. Since $\tau_{\varepsilon}(A)$ increases as ε decreases for $A \subset X$, $\lim _{\varepsilon \rightarrow 0} \tau_{\varepsilon}(A)$ exists and we define

$$
\tau^{d}(A)=\lim _{\varepsilon \rightarrow 0} \tau_{\varepsilon}(A), A \subset X .
$$

Exercise 3.6.1

(i) Show that τ^{d} is a Carathéodory measure on X.
(ii) Show that if \mathcal{G} consists of open sets, then for any $A \subset X$ there is a G_{δ}-set $B \supset A$ such that $\tau^{d}(A)=\tau^{d}(B)$.

We shall call τ^{d} the measure constructed from premeasure τ by Method II.
Exercise 3.6.2 Let \mathcal{G} be the family of all bounded open intervals in \mathbb{R} and suppose that f is a nonnegative integrable function on \mathbb{R}. Define $\tau(I)=\int_{I} f d \lambda$ for $I \in \mathcal{G}$ and let τ^{d} be the measure on \mathbb{R} constructed from τ by Method II. Show that every measurable set in \mathbb{R} is τ^{d}-measurable and $\tau^{d}(A)=\int_{A} f d \lambda$ for every measurable set A. (Hint: show first that $\tau^{d}(I)=\tau(I)$ for bounded open interval I.)

Example 3.6.1 Let X be a metric space and $0 \leq s<+\infty$. Take $\mathcal{G}=2^{X}$ and let τ^{s} be the premeasure defined by $\tau^{s}(\emptyset)=0$ and $\tau^{s}(A)=(\operatorname{diam} A)^{s}$ if $A \neq \emptyset$. The measure
H^{s} constructed from τ^{s} by Method II is called the s-dimensional Hausdorff measure on X. Note that if we take \mathcal{G} to be the family of all open subsets of X or the family of all closed subsets of X, we shall arrive at the same measure H^{s}.

Exercise 3.6.3

(i) Show that H^{0} is the counting measure on X.
(ii) If $H^{s}(A)<+\infty$, show that $H^{s+\delta}(A)=0$ if $\delta>0$.
(iii) If $H^{s}(A)>0$, show that $H^{t}(A)=+\infty$ if $0 \leq t<s$.

Exercise 3.6.4 Show that H^{1} on \mathbb{R} is the Lebesgue measure on \mathbb{R}.
Since Hausdorff dimensional measures will not be our main concern, we shall content ourselves by showing that the arclength of a rectifiable arc in \mathbb{R}^{2} is its one-dimensional Hausdorff measure. By an arc C in \mathbb{R}^{2} we shall mean the image of a continuous injective map from a finite closed interval $[a, b]$ into \mathbb{R}^{2}. Any continuous injective map with C as its image is called a parametric representation of \mathcal{C}. Let $t:[a, b] \rightarrow \mathbb{R}^{2}$ be a parametric representation of \mathcal{C} and consider a partition $\mathcal{P}:=a=x_{0}<x_{1}<\cdots<x_{k}=b$ of $[a, b]$. Define

$$
l=\sup _{\mathcal{P}} \sum_{j=1}^{k}\left|t\left(x_{j}\right)-t\left(x_{j-1}\right)\right|
$$

where $|\cdot|$ is the Euclidean norm in \mathbb{R}^{2}. If $l<\infty, \mathcal{C}$ is called a rectifiable arc, and l is called the arclength of \mathcal{C}. Since l is the supremum of the length of all possible inscribed polygonal arcs, it is independent of parametric representations of \mathcal{C}.
Proposition 3.6.1 Let \mathcal{C} be a rectifiable arc in \mathbb{R}^{2}, then $H^{1}(\mathcal{C})$ is the arclength of \mathcal{C}.
Proof Let l be the arclength of \mathcal{C} and let $t:[0, l] \rightarrow \mathbb{R}^{2}$ be the parametric representation of \mathcal{C} by arclength, with $t(0)$ and $t(l)$ the endpoints of \mathcal{C}, i.e. the arclength from $t(0)$ to $t(s)$ is s for $0 \leq s \leq l$. Then for s_{1}, s_{2} in $[0, l]$,

$$
\operatorname{diam} t\left[s_{1}, s_{2}\right] \leq\left|s_{1}-s_{2}\right|
$$

Given $\varepsilon>0$, let $0=s_{0}<s_{1}<\cdots<s_{k}=l$ be a partition of $[0, l]$ such that $\mid s_{j}-$ $s_{j-1} \mid<\varepsilon$ for $j=1, \ldots, k$, then,

$$
l=\sum_{j=1}^{k}\left|s_{j}-s_{j-1}\right| \geq \sum_{j=1}^{k} \operatorname{diam} t\left[s_{j-1}, s_{j}\right] \geq \tau_{\varepsilon}^{1}(\mathcal{C})
$$

hence $l \geq H^{1}(\mathcal{C})$.
To show $l \leq H^{1}(\mathcal{C})$, we observe first that if L is a line in \mathbb{R}^{2} and P the orthogonal projection from \mathbb{R}^{2} onto L, then for any $A \subset \mathbb{R}^{2}, H^{1}(P A) \leq H^{1}(A)$. Now let $0=s_{0}<s_{1}<\cdots<s_{k}=l$ be a partition of $[0, l]$, and for each $j=1, \ldots, k$ consider the line L which passes through $t\left(s_{j-1}\right)$ and $t\left(s_{j}\right)$ and the orthogonal projection P from
\mathbb{R}^{2} onto L. From the above observation, $H^{1}\left(t\left(\left[s_{j-1}, s_{j}\right]\right)\right) \geq H^{1}\left(\left[t\left(s_{j-1}\right), t\left(s_{j}\right)\right]\right)=$ $\left|t\left(s_{j-1}\right)-t\left(s_{j}\right)\right|$, where $\left[t\left(s_{j-1}\right), t\left(s_{j}\right)\right]$ is the line segment connecting $t\left(s_{j-1}\right)$ and $t\left(s_{j}\right)$; consequently,

$$
H^{1}(\mathcal{C})=\sum_{j=1}^{k} H^{1}\left(t\left(\left[s_{j-1}, s_{j}\right]\right)\right) \geq \sum_{j=1}^{k}\left|t\left(s_{j-1}\right)-t\left(s_{j}\right)\right|
$$

from which one infers that $H^{1}(\mathcal{C}) \geq l$.

3.7 Lebesgue-Stieltjes measures

Given a monotone increasing function g on \mathbb{R}, a measure μ_{g} on \mathbb{R} will be constructed, which is suggested by the Riemann-Stieltjes integral of functions with respect to g.

For a finite open interval, $I=(a, b), a \leq b$, let $\tau(I)=g(b)-g(a)$, then τ is a premeasure on \mathbb{R}. The measure τ^{*} on \mathbb{R} constructed from τ by Method I is called the Lebesgue-Stieltjes measure generated by g and is denoted by μ_{g}; when $g(x)=x, \mu_{g}$ is the Lebesgue measure on \mathbb{R}.

It turns out that μ_{g} is also the measure τ^{d} on \mathbb{R} constructed from τ by Method II. To see this, a preliminary result on the set of points of discontinuity of g will first be shown.

Lemma 3.7.1 The set D of points of discontinuity of g is at most countable. Furthermore D consists only of points of jump of g.

Proof Since g is monotone, $g(x+)=\lim _{y \rightarrow x+} g(y)$ and $g(x-)=\lim _{y \rightarrow x-} g(y)$ exist and are finite at every point x of \mathbb{R}. It is clear that $x \in D$ if and only if $g(x+)-g(x-)>0$, hence D consists only of points of jump of g. To show that D is at its most countable, it is sufficient to show that $D_{n}:=D \cap(-n, n)$ is at its most countable for all $n \in \mathbb{N}$. Fix $n \in \mathbb{N}$ and for $x \in D_{n}$, let I_{x} be the open interval $(g(x-), g(x+))$ and $c_{x}=g(x+)-$ $g(x-)$. Consider any nonempty finite subset A of D_{n}, we have

$$
\sum_{x \in A} c_{x} \leq g(n+)-g((-n)-)
$$

because $\left\{I_{x}: x \in A\right\}$ is a finite disjoint family of open intervals. Hence the system $\left\{c_{x}\right\}$ indexed by $x \in D_{n}$ is summable by Theorem 1.1.2. But the fact that $c_{x}>0$ for $x \in D_{n}$ implies, by Exercise 1.1.6, that D_{n} is at its most countable.

We are now going to verify that $\tau^{d}=\mu_{g}$. Fix $\varepsilon>0$. Consider a finite open interval $I=(a, b), a<b$, and let $\delta>0$ be given. By Lemma 3.7.1 we can find a partition, $a=a_{0}<x_{1}<\cdots<x_{k}=b$, such that $x_{j}-x_{j-1}<\varepsilon$ for $j=1, \ldots, k$ and such that each $x_{j}, j=1, \ldots, k-1$, is a point of continuity of g; then for each $j=1, \ldots, k-1$, choose a point y_{j} in $\left(x_{j}, x_{j+1}\right)$ such that $g\left(y_{j}\right)-g\left(x_{j}\right)<\frac{\delta}{k}$ and $y_{j}-x_{j-1} \leq \varepsilon$. The intervals $\left(a, y_{1}\right)$,
$\left(x_{1}, y_{2}\right), \ldots,\left(x_{k-2}, y_{k-1}\right)$, and $\left(x_{k-1}, b\right)$ form a covering of $I=(a, b)$, and each of them has length $\leq \varepsilon$. Call these intervals I_{1}, \ldots, I_{k} in this order, then,

$$
\tau(I)=g(b)-g(a)=\sum_{j=1}^{k}\left\{g\left(x_{j}\right)-g\left(x_{j-1}\right)\right\}>\sum_{j=1}^{k} \tau\left(I_{j}\right)-\delta,
$$

from which one infers (cf. the method of proof of Lemma 3.2.1) that $\tau_{\varepsilon}(A)=\mu_{g}(A)$ for $A \subset \mathbb{R}$, and hence $\tau^{d}=\mu_{g}$ (see Section 3.6 for definitions of τ_{ε} and $\left.\tau^{d}\right)$.

Theorem 3.7.1 The measure μ_{g} is a Carathéodory measure on \mathbb{R} which takes finite value on each bounded set. Furthermore, there is a sequence $\left\{G_{k}\right\}$ of open sets such that $A \subset$ $\bigcap_{k} G_{k}$ and $\mu_{g}(A)=\inf _{k} \mu_{g}\left(G_{k}\right)$; in particular, for any $A \subset \mathbb{R}$, there is a G_{δ}-set $B \supset A$ such that $\mu_{g}(A)=\mu_{g}(B)$ (recall that the intersection of a sequence of open sets is called a G_{δ}-set).

Proof Since, as we have just shown, μ_{g} is a measure on \mathbb{R} constructed from the premeasure τ by Method II, μ_{g} is a Carathéodory measure. That $\mu_{g}(A)<\infty$ if A is bounded is obvious.

Now let $A \subset \mathbb{R}$. There is a sequence $\left\{I_{n}^{(1)}\right\},\left\{I_{n}^{(2)}\right\}, \ldots$ of countable coverings of A consisting of finite open intervals such that

$$
\mu_{g}(A)=\lim _{k \rightarrow \infty} \sum_{n} \tau\left(I_{n}^{(k)}\right) .
$$

For each k, let $G_{k}=\bigcup_{n} I_{n}^{(k)}$, then

$$
\mu_{g}(A) \leq \mu_{g}\left(G_{k}\right) \leq \sum_{n} \tau\left(I_{n}^{(k)}\right)
$$

from which we obtain $\mu_{g}(A)=\inf _{k} \mu_{g}\left(G_{k}\right)$ by letting $k \rightarrow \infty$. Finally, let $B=$ $\bigcap_{k} G_{k}$, then B is a G_{δ}-set containing A and $\mu_{g}(A) \leq \mu_{g}(B) \leq \inf _{k} \mu_{g}\left(G_{k}\right)=\mu_{g}(A)$. Hence, $\mu_{g}(A)=\mu_{g}(B)$.
Lemma 3.7.2 $\mu_{g}([a, b])=g(b+)-g(a-),-\infty<a \leq b<\infty$.
Proof Since $\mu_{g}([a, b]) \leq g(d)-g(c)$ for $(c, d) \supset[a, b], \mu_{g}([a, b]) \leq g(b+)-g(a-)$. It remains to show that $g(b+)-g(a-) \leq \mu_{g}([a, b])$.

Let $\left\{I_{n}\right\}$ be a sequence of finite open intervals such that $\bigcup_{n} I_{n} \supset[a, b]$, and write $I_{n}=\left(a_{n}, b_{n}\right), n=1,2, \ldots\left\{I_{n}\right\}$ is an open covering of $J=\left[a^{\prime}, b^{\prime}\right]$ for some $a^{\prime}<a$ and some $b^{\prime}>b$. Let $\delta>0$ be the Lebesgue number of J w.r.t. the open covering $\left\{I_{n}\right\}$ (cf. Lemma 1.7.2), and let $a^{\prime}=x_{0}<x_{1}<\cdots<x_{k}=b^{\prime}$ be a partition of J with $\left(x_{j}-\right.$ $\left.x_{j-1}\right) \leq \delta, j=1, \ldots, k$. Put $J_{j}=\left[x_{j-1}, x_{j}\right]$ for $j=1, \ldots, k$ and proceed as follows. First pick $n_{1} \in \mathbb{N}$ with $\left[x_{0}, x_{1}\right] \subset I_{n_{1}}$ according to Lemma 1.7.2, and let j_{1} be the largest integer between 1 and k such that $\left[x_{0}, x_{j_{1}}\right] \subset I_{n_{1}}$. If $j_{1}=k$, stop the process; otherwise, there is $n_{2} \in \mathbb{N}$ with $\left[x_{j_{1}}, x_{j_{1}+1}\right] \subset I_{n_{2}}$ (again by Lemma 1.7.2), and let j_{2} be the largest integer between $j_{1}+1$ and k such that $\left[x_{j_{1}}, x_{j_{2}}\right] \subset I_{n_{2}}$. Obviously, $n_{1} \neq n_{2}$. Continue
in this fashion, we obtain mutually different positive integers n_{1}, \ldots, n_{l} and integers $1 \leq j_{1}<\cdots<j_{l}=k$ such that $\left[x_{j_{m}}-x_{j_{m+1}}\right] \subset I_{n_{m+1}}$ for $m=0,1, \ldots, l-1$. Now,

$$
\begin{aligned}
g(b+)-g(a-) & \leq g\left(b^{\prime}\right)-g\left(a^{\prime}\right)=\sum_{m=1}^{l}\left\{g\left(x_{j_{m}}\right)-g\left(x_{j_{m-1}}\right)\right\} \\
& \leq \sum_{m=1}^{l} \tau\left(I_{n_{m}}\right) \leq \sum_{n} \tau\left(I_{n}\right),
\end{aligned}
$$

from which, since $\left\{I_{n}\right\}$ is any sequence of finite open intervals with $\bigcup_{n} I_{n} \supset[a, b]$, it follows that $g(b+)-g(a-) \leq \mu_{g}([a, b])$.

Exercise 3.7.1 Show that for $a<b$ in \mathbb{R},

$$
\begin{aligned}
& \mu_{g}((a, b])=g(b+)-g(a+) ; \\
& \mu_{g}((a, b))=g(b-)-g(a+) ; \\
& \mu_{g}([a, b))=g(b-)-g(a-) .
\end{aligned}
$$

Exercise 3.7.2 Let w be a nonnegative measurable function on \mathbb{R} such that $\int_{(-\infty, x]} w d \lambda<\infty$ for all $x \in \mathbb{R}$. Define a monotone increasing function g on \mathbb{R} by $g(x)=\int_{(-\infty, x]} w d \lambda$. Show that $\mu_{g}(B)=\int_{B} w d \lambda$ for $B \in \mathcal{B}$.
From Exercise 3.7.1, we know that if g is right-continuous, then $\mu_{g}((a, b])=g(b)-$ $g(a)$. Recall that a function is right-continuous if it is continuous from the right-hand side at each point of its domain of definition. We show now that for any monotone increasing function g on \mathbb{R}, μ_{g} is the same as the Lebesgue-Stieltjes measure generated by a right-continuous monotone increasing function.
Theorem 3.7.2 For a monotone increasing function g on \mathbb{R}, define a function \hat{g} on \mathbb{R} by $\hat{g}(x)=g(x+)$. Then \hat{g} is right-continuous and $\mu_{\hat{g}}=\mu_{g}$.
Proof Proof of right-continuity of \hat{g} is left as an exercise.
To show that $\mu_{\hat{g}}=\mu_{g}$, we note first that an open interval (a, b) is a union of a sequence $\left(a_{n}, b_{n}\right], n=1,2, \ldots$, of increasing half open intervals such that $a_{n} \searrow a$ and $b_{n} \nearrow b$, hence (cf. Exercise 3.7.1),

$$
\begin{aligned}
\mu_{g}((a, b)) & =\lim _{n \rightarrow \infty} \mu_{g}\left(\left(a_{n}, b_{n}\right]\right)=\lim _{n \rightarrow \infty}\left\{g\left(b_{n}+\right)-g\left(a_{n}+\right)\right\} \\
& =\lim _{n \rightarrow \infty}\left\{\hat{g}\left(b_{n}\right)-\hat{g}\left(a_{n}\right)\right\}=\lim _{n \rightarrow \infty}\left\{\hat{g}\left(b_{n}+\right)-\hat{g}\left(a_{n}+\right)\right\} \\
& =\lim _{n \rightarrow \infty} \mu_{\hat{g}}\left(\left(a_{n}, b_{n}\right]\right)=\mu_{\hat{g}}((a, b)) ;
\end{aligned}
$$

consequently, $\mu_{\tilde{g}}(G)=\mu_{g}(G)$ if G is open. Now let A be any subset of \mathbb{R}; by Theorem 3.7.1 there are sequences $\left\{G_{n}\right\}$ and $\left\{\widehat{G}_{n}\right\}$ of open sets such that $\bigcap_{n} G_{n} \supset A, \bigcap_{n} \widehat{G}_{n} \supset A, \mu_{g}(A)=\inf _{k} \mu_{g}\left(G_{k}\right)$, and $\mu_{\hat{g}}(A)=\inf _{k} \mu_{\hat{g}}\left(\widehat{G}_{k}\right)$. Observe that $\mu_{g}(A)=\inf _{k} \mu_{g}\left(G_{k} \cap \widehat{G}_{k}\right)$ and $\mu_{\hat{g}}(A)=\inf _{k} \mu_{\hat{g}}\left(G_{k} \cap \widehat{G}_{k}\right)$; then, since $\mu_{g}\left(G_{k} \cap \widehat{G}_{k}\right)=\mu_{\hat{g}}\left(G_{k} \cap \widehat{G}_{k}\right)$, it follows that $\mu_{g}(A)=\mu_{\hat{g}}(A)$.

Exercise 3.7.3 Show that the function \hat{g} defined in Theorem 3.7.2 is right-continuous.

Example 3.7.1 Let D be a finite or countably infinite set in \mathbb{R} and v a positivevalued function on D such that $\sum_{t \in(-\infty, x] \cap D} v(t)<\infty$ for all $x \in \mathbb{R}$. Define a function g on \mathbb{R} by $g(x)=\sum_{t \in(-\infty, x] \cap D} v(t), x \in \mathbb{R}$; then g is a monotone increasing function. We claim that g is right-continuous. For $x \in \mathbb{R}$, fix $y_{0}>x$. Then, $g(y)-g(x)=\sum_{t \in(x, y] \cap D} v(t)$ if $y \in\left(x, y_{0}\right]$. If $\left(x, y_{0}\right] \cap D$ is finite, $g(y)=g(x)$, when y is sufficiently near to x, and hence $g(x+)=g(x)$. We may therefore assume that $D \cap\left(x, y_{0}\right]$ is infinite and denote it by $\left\{t_{n}\right\}_{n \in \mathbb{N}}$. Since $\sum_{n \in \mathbb{N}} v\left(t_{n}\right)<\infty$, for given $\varepsilon>0$ there is $n_{0} \in \mathbb{N}$ such that $\sum_{n>n_{0}} v\left(t_{n}\right)<\varepsilon$. Let $y>x$ be smaller than $t_{1}, \ldots, t_{n_{0}}$, then $g(y)-g(x) \leq \sum_{n>n_{0}} v\left(t_{n}\right)<\varepsilon$, and consequently $g(x+)=g(x)$. Hence g is right-continuous at every $x \in \mathbb{R}$. The same argument also shows that D is the set of points of discontinuity of g and $g(t)-g(t-)=v(t)$ for $t \in D$. Similarly, if D and v satisfy the condition that $\sum_{t \in[x, \infty) \cap D} v(t)<\infty$ for all $x \in \mathbb{R}$, and if g is defined by $g(x)=$ $-\sum_{t \in(x, \infty) \cap D} v(t), x \in \mathbb{R}$, then g enjoys the same properties as shown previously.

Exercise 3.7.4 Let g be a monotone increasing and right-continuous function on \mathbb{R}, and denote by D the set of points of discontinuity of g. Define $v(t)=g(t)-g(t-)$ for $t \in D$, and define a function g_{d} on \mathbb{R} by

$$
g_{d}(x)= \begin{cases}\sum_{t \in(0, x] \cap D} v(t), & x \geq 0 \\ -\sum_{t \in(x, 0] \cap D} v(t), & x<0\end{cases}
$$

Show that g_{d} is a monotone increasing and right-continuous function with D as its set of points of discontinuity. Furthermore, the function $g-g_{d}$ is continuous.

Exercise 3.7.5 Let g, D, g_{d} be as in Exercise 3.7.4, and let $\mu=\mu_{g_{d}}$ be the LebesgueStielties measure generated by g_{d}. Show that for $B \in \mathcal{B}, \mu(B)=\sum_{t \in B \cap D} v(t)$, where $v(t)=g(t)-g(t-)$ for $t \in D$. (Hint: show first that $\mu(G)=\sum_{t \in G \cap D} v(t)$ if G is open, and use Theorem 2.1.1.)

Suppose now that g is a monotone increasing function on a closed finite interval $[a, b]$; extend g to a function h on \mathbb{R} by defining $h(x)=g(a)$ for $x<a$ and $h(x)=g(b)$ for $x>b$. Then the Lebesgue-Stieltjes measure μ_{g} on $[a, b]$ generated by g is the restriction of μ_{h} to $[a, b]$, i.e.

$$
\mu_{g}(A)=\mu_{h}(A), A \subset[a, b] .
$$

For notational convenience, the integral of a function f w.r.t. a Lebesgue-Stieltjes measure μ_{g} on \mathbb{R} or on a finite closed interval $[a, b]$ will be denoted by $\int_{-\infty}^{\infty} f d \mu_{g}$ or $\int_{a}^{b} f d \mu_{g}$, as the situation suggests.

3.8 Borel regularity and Radon measures

Recall that a measure μ on a set Ω is called regular if for any $A \subset \Omega$, there is a μ measurable set $B \supset A$ such that $\mu(B)=\mu(A)$. Such a regularity endows μ with a significant monotone limit property, stated in Theorem 3.3.2. A further regularity along this line for measures on metric spaces will now be introduced.

A measure μ on a metric space X is called a Borel measure if every Borel set is μ measurable. It is said to be Borel regular if it is Borel and if for every $A \subset X$, there is a Borel set $B \supset A$ such that $\mu(B)=\mu(A)$; in other words, a Borel regular measure on X is what we call a $\mathcal{B}(X)$-regular measure (see the paragraph preceding Theorem 3.3.2). It is called a Radon measure if it is Borel regular and $\mu(K)<+\infty$ for each compact set K.

We already know that every Carathéodory measure is Borel. Obviously, λ^{n} is a Radon measure on \mathbb{R}^{n}, by Exercise 3.4.17. More generally, all Lebesgue-Stieltjes measures on \mathbb{R} are Radon measures by Theorem 3.7.1.

Example 3.8.1 Suppose that μ is a Borel measure on a metric space X and f is a nonnegative Σ^{μ}-measurable function on X. Let v be the measure on $\mathcal{B}(X)$ defined by

$$
v(A)=\int_{A} f d \mu
$$

for $A \in \mathcal{B}(X)$ (cf. Exercise 2.5.7). We shall call v the indefinite integral of f with respect to μ, or simply the μ-indefinite integral of f, and denote it by $\{f \mu\}$. The measure on X constructed from $\{f \mu\}$ by Method I is denoted by $\{f \mu\}^{*} ;\{f \mu\}^{*}$ is the unique Borel regular measure on X such that $\{f \mu\}^{*}(A)=\{f \mu\}(A)$ for $A \in \mathcal{B}(X)$, by Corollary 3.4.1; it is for the Borel regularity of $\{f \mu\}^{*}$ that our construction starts, with $\{f \mu\}$ being originally defined on $\mathcal{B}(X)$. If, further, f is μ-integrable on every compact subset of X, then $\{f \mu\}^{*}$ is a Radon measure. Note that if μ is σ-finite and Borel regular, then for any Σ^{μ}-measurable set $S,\{f \mu\}^{*}(S)=\int_{S} f d \mu$. Actually, there is a Borel set $B \supset S$ such that $\mu(B \backslash S)=0$ and then there is a Borel set $C \supset(B \backslash S)$ such that $\mu(C)=0$, implying that $\{f \mu\}^{*}(B \backslash S) \leq\{f \mu\}^{*}(C)=\{f \mu\}(C)=\int_{C} f d \mu=0$; consequently,

$$
\{f \mu\}^{*}(B) \leq\{f \mu\}^{*}(S)+\{f \mu\}^{*}(B \backslash S)=\{f \mu\}^{*}(S) \leq\{f \mu\}^{*}(B),
$$

from which follows that $\{f \mu\}^{*}(S)=\{f \mu\}^{*}(B)=\{f \mu\}(B)=\int_{B} f d \mu=\int_{S} f d \mu$.
When μ is the Lebesgue measure on \mathbb{R}^{n} and X is a Lebesgue measurable set in $\mathbb{R}^{n},\{f \mu\}$ and $\{f \mu\}^{*}$ will be replaced by $\{f\}$ and $\{f\}^{*}$ respectively for compactness of expression.

The following proposition asserts that a measure constructed from a premeasure by Method II on a metric space X is Borel regular if the domain of the premeasure consists of Borel sets of X.

Proposition 3.8.1 Suppose that X is a metric space and τ a premeasure defined on $\mathcal{G} \subset$ $\mathcal{B}(X)$. Then the measure τ^{d} on X constructed from τ by Method II is Borel regular.

Proof Let $A \subset X$. We may assume that $\tau^{d}(A)<\infty$. For each $k \in \mathbb{N}$, there is a sequence $\left\{C_{n}^{(k)}\right\}$ in the domain of τ such that $\bigcup_{n} C_{n}^{(k)} \supset A$, diam $C_{n}^{(k)} \leq \frac{1}{k}$ for each n, and $\sum_{n} \tau\left(C_{n}^{(k)}\right) \leq \tau_{\frac{1}{k}}(A)+\frac{1}{k} \leq \tau^{d}(A)+\frac{1}{k}$. Let $B=\bigcap_{k} \bigcup_{n} C_{n}^{(k)}$, then $B \in \mathcal{B}(X)$ because each $C_{n}^{(k)} \in \mathcal{B}(X)$. Since $A \subset B, \tau^{d}(A) \leq \tau^{d}(B)$; but $\tau^{d}(B)=$ $\lim _{k \rightarrow \infty} \tau_{\frac{1}{k}}(B) \leq \lim \inf _{k \rightarrow \infty} \sum_{n} \tau\left(C_{n}^{(k)}\right) \leq \liminf _{k \rightarrow \infty}\left\{\tau^{d}(A)+\frac{1}{k}\right\}=\tau^{d}(A)$, hence $\tau^{d}(B)=\tau^{d}(A)$. Recall that

$$
\tau_{\frac{1}{k}}(B)=\inf \sum_{n} \tau\left(C_{n}\right),
$$

where the infimum is taken over all sequences $\left\{C_{n}\right\} \subset \mathcal{G}$ such that $\bigcup_{n} C_{n} \supset B$ and $\operatorname{diam} C_{n} \leq \frac{1}{k}$ for all n, hence, $\tau_{\frac{1}{k}}(B) \leq \sum_{n} \tau\left(C_{n}^{(k)}\right)$.

Recall that if μ is a measure on Ω and $A \subset \Omega$, then the restriction to A of μ, denoted $\mu\lfloor A$, is defined by $\mu\lfloor A(B)=\mu(A \cap B)$ for $B \subset \Omega$ (cf. Exercise 3.1.3).

Proposition 3.8.2 Let μ be a Borel regular measure on a metric space X and suppose that $A \subset X$ is μ-measurable and $\mu(A)<+\infty$. Then $\mu\lfloor A$ is a Radon measure.

Proof Let $v \equiv \mu\lfloor A$. Clearly, $v(K)<+\infty$ for compact K; actually, $v(S) \leq \mu(A)<\infty$ for any $S \subset X$. Since every μ-measurable set is v-measurable, v is a Borel measure. It remains to show that v is Borel regular. There is a Borel set B such that $A \subset B$ and $\mu(A)=\mu(B)<+\infty$. Hence, $\mu(B \backslash A)=\mu(B)-\mu(A)=0$. For $C \subset X$, we have

$$
\begin{aligned}
\nu(C) & \leq\left(\mu\lfloor B)(C)=\mu(B \cap C)=\mu(C \cap B \cap A)+\mu\left((C \cap B) \cap A^{C}\right)\right. \\
& \leq \mu(C \cap A)+\mu\left(B \cap A^{C}\right)=v(C) .
\end{aligned}
$$

Hence, $v(C)=(\mu\lfloor B)(C)$. We may assume then that A is Borel. Let now $C \subset X$; there is a Borel set $E \supset A \cap C$ such that $\mu(E)=\mu(A \cap C)$. Let $D=E \cup A^{c} ; D$ is a Borel set and $C \subset(A \cap C) \cup A^{c} \subset D$. Since $D \cap A=E \cap A$,

$$
v(C) \leq v(D)=\mu(D \cap A)=\mu(E \cap A) \leq \mu(E)=\mu(A \cap C)=v(C)
$$

implying, $v(C)=v(D)$.

3.9 Measure-theoretical approximation of sets in $\mathbb{R}^{\boldsymbol{n}}$

This section is devoted to considering measure-theoretical approximation of sets in \mathbb{R}^{n} by sets of familiar structure, such as open, closed, and compact sets. We observe first two easy and useful facts about open sets in \mathbb{R}^{n}. For this purpose, we call an oriented rectangle $I_{1} \times \cdots \times I_{n}$ in \mathbb{R}^{n} an oriented cube, if $\left|I_{1}\right|=\cdots=\left|I_{n}\right|$, and call it nondegenerate if $\left|I_{j}\right|>0$ for all $j=1, \ldots, n$. Oriented rectangles I and J are said to be nonoverlapping if $\stackrel{\circ}{I} \cap \stackrel{\circ}{J}=\emptyset$.

Proposition 3.9.1 Every open set G in \mathbb{R}^{n} is the union of a countable family of nondegenerate and mutually nonoverlapping closed oriented cubes.

Proof Let $k \in \mathbb{N}$; we call an oriented closed cube $I_{1} \times \cdots \times I_{n}$ a dyadic cube of order k if $I_{j}=\left[\frac{l_{j}}{2^{k}}, \frac{l^{j+1}}{2^{k}}\right]$, where l_{j} is an integer for each $j=1, \ldots, n$. Let \mathcal{F}_{1} be the family of all those dyadic cubes of order 1 which are contained in G; then let \mathcal{F}_{2} be the family of all those dyadic cubes of order 2 which are contained in G and are nonoverlapping with those in \mathcal{F}_{1}; proceeding in this fashion we obtain a sequence $\left\{\mathcal{F}_{j}\right\}$ of families of oriented cubes in G such that cubes in each \mathcal{F}_{j} are mutually nonoverlapping, and nonoverlapping with those in the preceding families if $j \geq 2$. Note that some of the \mathcal{F}_{j} 's might be empty. Let $\mathcal{F}=\bigcup_{j} \mathcal{F}_{j}$, then \mathcal{F} is a countable family of nondegenerate and mutually nonoverlapping closed cubes such that $G=\bigcup \mathcal{F}$.

Proposition 3.9.2 Let G be an open set in \mathbb{R}^{n}, then there is an increasing sequence $\left\{K_{j}\right\}$ of compact sets such that

$$
\begin{equation*}
G=\bigcup_{j=1}^{\infty} K_{j} \tag{3.5}
\end{equation*}
$$

Proof By Proposition 3.9.1, there is a countable family $\left\{C_{k}\right\}$ of nondegenerate and mutually nonoverlapping closed oriented cubes such that $G=\bigcup_{k} C_{k}$. Put $K_{j}=$ $\bigcup_{k=1}^{j} C_{k}$, then $\left\{K_{j}\right\}$ is an increasing sequence of compact sets such that (3.5) holds.

Remark As a consequence of Proposition 3.9.2, \mathcal{B}^{n} is the σ-algebra generated by the family of all compact sets.

Lemma 3.9.1 Suppose that μ is a Borel measure on \mathbb{R}^{n} and B is a Borel set with $\mu(B)<\infty$, then for each $\varepsilon>0$ there is a compact set $K \subset B$ such that $\mu(B \backslash K)<\varepsilon$.

Proof Replacing μ by $\mu\lfloor B$ if necessary, we may assume that μ is a finite measure.
Let \mathcal{M} be the family of all those Borel sets B such that for each $\varepsilon>0$ there are compact sets $K^{\prime} \subset B$ and $K^{\prime \prime} \subset B^{c}$, such that $\mu\left(B \backslash K^{\prime}\right)<\varepsilon$ and $\mu\left(B^{c} \backslash K^{\prime \prime}\right)<\varepsilon$. We claim first that \mathcal{M} contains all compact sets. Actually, if K is a compact set, for each $\varepsilon>0$ choose $K^{\prime}=K$ and choose $K^{\prime \prime}$ as follows: since by $(3.5) K^{c}=\bigcup_{j=1}^{\infty} K_{j}$, where $\left\{K_{j}\right\}$ is an increasing sequence of compact sets, $\mu\left(K^{c}\right)=\lim _{j \rightarrow \infty} \mu\left(K_{j}\right)$, which implies that $\mu\left(K^{c} \backslash K_{j}\right)<\varepsilon$ if j is sufficiently large; then choose $K^{\prime \prime}=K_{j}$ for such a sufficiently large j. Thus \mathcal{M} contains all compact sets. In particular, $\mathbb{R}^{n} \in \mathcal{M}$, because $\left(\mathbb{R}^{n}\right)^{c}=\emptyset$ which is compact. By definition, a Borel set B is in \mathcal{M} if and only if B^{c} is in \mathcal{M}, hence $B^{c} \in \mathcal{M}$ if $B \in \mathcal{M}$. Now let $\left\{B_{j}\right\}$ be a disjoint sequence in \mathcal{M} and put $B=\bigcup B_{j}$, then $B^{c}=\bigcap_{j} B_{j}^{c}$. Given that $\varepsilon>0$, there are compact sets $K_{j}^{\prime} \subset B_{j}$ and $K_{j}^{\prime \prime} \subset B_{j}^{c}$ such that $\mu\left(B_{j} \backslash K_{j}^{\prime}\right)<\varepsilon 2^{-(j+1)}$ and $\mu\left(B_{j}^{c} \backslash K_{j}^{\prime \prime}\right)<\varepsilon 2^{-(j+1)}$. We have

$$
\mu\left(B \backslash \bigcup_{j=1}^{l} K_{j}^{\prime}\right)=\sum_{j=1}^{l} \mu\left(B_{j} \backslash K_{j}^{\prime}\right)+\sum_{j=l+1}^{\infty} \mu\left(B_{j}\right)<\frac{\varepsilon}{2}+\sum_{j=l+1}^{\infty} \mu\left(B_{j}\right)<\varepsilon
$$

if l is sufficiently large, because $\lim _{l \rightarrow \infty} \sum_{j=l+1}^{\infty} \mu\left(B_{j}\right)=0$; choose $K^{\prime}=\bigcup_{j=1}^{l} K_{j}^{\prime}$ for such an l. On the other hand,

$$
\begin{aligned}
\mu\left(B^{c} \backslash \bigcap_{j} K_{j}^{\prime \prime}\right) & =\mu\left(\bigcap_{j} B_{j}^{c} \backslash \bigcap_{j} K_{j}^{\prime \prime}\right) \leq \mu\left(\bigcup_{j}\left(B_{j}^{c} \backslash K_{j}^{\prime \prime}\right)\right) \\
& \leq \sum_{j} \mu\left(B_{j}^{c} \backslash K_{j}^{\prime \prime}\right)<\varepsilon ;
\end{aligned}
$$

hence, by choosing $K^{\prime \prime}=\bigcap_{j} K_{j}^{\prime \prime}$, we have shown that $B \in \mathcal{M}$. We have shown therefore that \mathcal{M} is a λ-system. Since \mathcal{M} contains all compact sets, and since the family of all compact sets is a π-system, \mathcal{M} contains \mathcal{B}^{n} by the ($\pi-\lambda$) theorem, because \mathcal{B}^{n} is the σ-algebra generated by the family of all compact sets (cf. Remark after Proposition 3.9.2). But $\mathcal{M} \subset \mathcal{B}^{n}$ by definition, hence $\mathcal{M}=\mathcal{B}^{n}$. This completes the proof.

Lemma 3.9.2 If μ is a Radon measure on \mathbb{R}^{n}, then for a Borel set B in \mathbb{R}^{n} and $\varepsilon>0$, there is an open set $U \supset B$ such that $\mu(U \backslash B)<\varepsilon$.

Proof For each positive integer m let $U_{m}=B_{m}(0)$, the open ball with center 0 and radius m. Then $U_{m} \backslash B$ is a Borel set with $\mu\left(U_{m} \backslash B\right) \leq \mu\left(\bar{U}_{m}\right)<+\infty$, and so for $\varepsilon>0$, by Lemma 3.9.1, there is a compact set $K_{m} \subset U_{m} \backslash B$ such that

$$
\mu\left(\left(U_{m} \backslash K_{m}\right) \backslash B\right)=\mu\left(\left(U_{m} \backslash B\right) \backslash K_{m}\right)<\varepsilon 2^{-m} .
$$

Let $U=\bigcup_{m}\left(U_{m} \backslash K_{m}\right)$, then U is open and

$$
B=\bigcup_{m=1}^{\infty}\left(U_{m} \cap B\right) \subset \bigcup_{m=1}^{\infty}\left(U_{m} \backslash K_{m}\right)=U .
$$

Now,

$$
\begin{aligned}
& \mu(U \backslash B)=\mu\left(\bigcup_{m=1}^{\infty}\left(\left(U_{m} \backslash K_{m}\right) \backslash B\right)\right) \\
& \leq \sum_{m=1}^{\infty} \mu\left(\left(U_{m} \backslash K_{m}\right) \backslash B\right)<\sum_{m=1}^{\infty} \varepsilon \frac{1}{2^{m}}=\varepsilon .
\end{aligned}
$$

Theorem 3.9.1 Let μ be a Radon measure on \mathbb{R}^{n}. Then
(i) for $A \subset \mathbb{R}^{n}$,

$$
\mu(A)=\inf \{\mu(U): A \subset U, U \text { is open }\} ;
$$

and
(ii) for μ-measurable set $A \subset \mathbb{R}^{n}$,

$$
\mu(A)=\sup \{\mu(K): K \subset A, K \text { is compact }\} .
$$

Proof (i) We may assume that $\mu(A)<+\infty$. Suppose first that A is a Borel set. By Lemma 3.9.2, for each $\varepsilon>0$ there is an open $U \supset A$ such that $\mu(U \backslash A)<\varepsilon$, hence
$\mu(U)=\mu(A)+\mu(U \backslash A)<\mu(A)+\varepsilon$, which shows that (i) holds. Now let A be arbitrary. There is a Borel set $B \supset A$ with $\mu(A)=\mu(B)$. Then,
$\mu(A)=\mu(B)=\inf \{\mu(U): U \supset B, U$ is open $\} \geq \inf \{\mu(U): U \supset A, U$ is open $\}$,
which establishes (i), because the reverse inequality is obvious.
(ii) Let A be μ-measurable with $\mu(A)<+\infty$ and denote $\mu\lfloor A$ by ν; then by Proposition 3.8.2, v is a Radon measure. By (i), given $\varepsilon>0$, there is an open set $U \supset A^{c}$ with $\nu(U)<\varepsilon$. Let $C=U^{c}, C$ is closed, $C \subset A$, and

$$
\mu(A \backslash C)=v\left(\mathbb{R}^{n} \backslash C\right)=v\left(C^{c}\right)=v(U)<\varepsilon
$$

from which,

$$
0 \leq \mu(A)-\mu(C)<\varepsilon .
$$

But from $\mu(C)=\lim _{k \rightarrow \infty} \mu\left(C_{k}\right)$, where $C_{k}=\{x \in C:|x| \leq k\}$, it follows that there is a compact set $K \subset A$ such that

$$
0 \leq \mu(A)-\mu(K)<\varepsilon
$$

and hence,

$$
\mu(A)=\sup \{\mu(K): K \subset A, K \text { is compact }\} .
$$

If $\mu(A)=+\infty$, let $A_{j}=\{x \in A: j-1 \leq|x|<j\}, j=1,2, \ldots$ Then each A_{j} is μ-measurable and

$$
\mu(A)=\sum_{j} \mu\left(A_{j}\right)
$$

Since μ is a Radon measure, $\mu\left(A_{j}\right)<+\infty$. By what is proved above, there is a compact set $K_{j} \subset A_{j}$ with $\mu\left(K_{j}\right) \geq \mu\left(A_{j}\right)-2^{-j}$. Now, $\bigcup_{j} K_{j} \subset A$ and

$$
\lim _{l \rightarrow \infty} \mu\left(\bigcup_{j=1}^{l} K_{j}\right)=\mu\left(\bigcup_{j=1}^{\infty} K_{j}\right)=\sum_{j=1}^{\infty} \mu\left(K_{j}\right) \geq \sum_{j=1}^{\infty}\left[\mu\left(A_{j}\right)-2^{-j}\right]=\infty
$$

Since $\bigcup_{j=1}^{l} K_{j}$ is compact for every l, we have

$$
\sup \{\mu(K): K \subset A, K \text { is compact }\} \geq \sup \left\{\mu\left(\bigcup_{j=1}^{l} K_{j}\right): l=1,2, \ldots\right\}=+\infty
$$

Remark Because of Theorem 3.9.1 (i), a set $E \subset \mathbb{R}^{n}$ is μ-measurable if and only if $\mu(G)=\mu(G \cap E)+\mu\left(G \cap E^{c}\right)$ for all open sets G, where μ is a Radon measure on \mathbb{R}^{n}.

Corollary 3.9.1 The Lebesgue measure λ^{n} is also the measure on \mathbb{R}^{n} constructed by Method I from the premeasure τ on the family of all oriented closed cubes I, defined by $\tau(I)=$ volume of I.

Proof Let τ^{*} be the measure on \mathbb{R}^{n} constructed from τ by Method I. For $B \subset$ \mathbb{R}^{n} and any sequence $\left\{I_{k}\right\}$ of oriented closed cubes with $B \subset \bigcup_{k} I_{k}$, we have $\lambda^{n}(B) \leq \sum_{k} \lambda^{n}\left(I_{k}\right)=\sum_{k} \tau\left(I_{k}\right)$, from which follows $\lambda^{n}(B) \leq \tau^{*}(B)$. For $B \subset$ \mathbb{R}^{n} and $\varepsilon>0$, there is an open set $G \supset B$ such that $\lambda^{n}(G) \leq \lambda^{n}(B)+\varepsilon$, by Theorem 3.9.1 (i) (this fact is actually the conclusion of Exercise 3.4.17 (i)). Now, there is a sequence $\left\{C_{k}\right\}$ of nondegenerate and mutually nonoverlapping oriented closed cubes such that $\bigcup_{k} C_{k}=G$, by Proposition 3.9.1. Since C_{k} 's are mutually nonoverlapping, $\sum_{k} \tau\left(C_{k}\right)=\sum_{k} \lambda^{n}\left(C_{k}\right)=\lambda^{n}(G)$, and hence $\sum_{k} \tau\left(C_{k}\right)=\lambda^{n}(G) \leq \lambda^{n}(B)+\varepsilon$. Thus, $\tau^{*}(B) \leq \sum_{k} \tau\left(C_{k}\right) \leq \lambda^{n}(B)+\varepsilon$, from which follows $\tau^{*}(B) \leq \lambda^{n}(B)$, and consequently $\tau^{*}(B)=\lambda^{n}(B)$.

Exercise 3.9.1

(i) Let $A \subset \mathbb{R}^{n}$ be Lebesgue measurable; show that there is a F_{σ} set $M \subset A$ with $\lambda^{n}(A \backslash M)=0$ ($\mathrm{F} F_{\sigma}$-set is a countable union of closed sets).
(ii) Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be Lebesgue measurable; show that f is equivalent to a Borel measurable function. (Hint: consider first f, which is an indicator function.)

Exercise 3.9.2 Show that a set A in \mathbb{R}^{n} is measurable if and only if for every $\varepsilon>0$ there is an open set $G \supset A$ and a closed set $C \subset A$, such that $\lambda^{n}(G \backslash C)<\varepsilon$.

Exercise 3.9.3 Suppose that f is a Lebesgue integrable function on \mathbb{R}^{n}.
(i) Show that for any given $\varepsilon>0$, there is a compact set K in \mathbb{R}^{n} such that $\int_{\mathbb{R}^{n} \backslash K}|f| d \lambda^{n}<\varepsilon$.
(ii) Show that $\lim _{|x| \rightarrow \infty} \int_{K+x} f d \lambda^{n}=0$ for any compact set K in \mathbb{R}^{n} (recall that $K+$ $x=\{z+x: z \in K\}$).
(iii) Show that $\lim _{|y| \rightarrow \infty} \int_{\mathbb{R}^{n}}|f(x+y)-f(x)| d \lambda^{n}(x)=2 \int_{\mathbb{R}^{n}}|f| d \lambda^{n}$.

Exercise 3.9.4 Let $w \geq 0$ be integrable on \mathbb{R}^{n} and let μ be a premeasure defined for open sets G in \mathbb{R}^{n} by

$$
\mu(G)=\int_{G} w d \lambda^{n} .
$$

Denote by μ^{*} the measure on \mathbb{R}^{n} constructed from μ by Method I .
(i) Show that $\mu^{*}(S)=\inf \mu(G)$, where the infimum is taken over all open sets G containing S.
(ii) Show that μ^{*} is a Carathéodory measure and

$$
\mu^{*}(B)=\int_{B} w d \lambda^{n}
$$

for Borel sets B.
(iii) Show that $\mathcal{L}^{n} \subset \Sigma^{\mu^{*}}$ and $\mu^{*}(A)=\int_{A} w d \lambda^{n}$ if $A \in \mathcal{L}^{n}$.

Exercise 3.9.5 Suppose that μ is a measure on a metric space X with the property that compact sets are μ-measurable. Let $E \subset A$ be subsets of X of which E is not μ-measurable. Show that there exists $\varepsilon>0$ such that, if $K_{1} \subset E$ and $K_{2} \subset A \backslash E$ are compact sets, we always have $\mu\left(A \backslash\left(K_{1} \cup K_{2}\right)\right) \geq \varepsilon$.

3.10 Riesz measures

We introduce now a class of Radon measures on a locally compact metric space X, which has its origin in the work of F . Riesz on representation of bounded linear functionals on $C[a, b]$ by measures; and we therefore refer to measures in this class as Riesz measures.

Consider and fix a locally compact metric space X. We shall denote by \mathcal{G} the family of all open subsets of X, and by \mathcal{K} the family of all compact subsets of X. A Radon measure μ on X is called a Riesz measure if it satisfies the following conditions:
(i) For $A \subset X$,

$$
\mu(A)=\inf \{\mu(G): G \supset A, G \in \mathcal{G}\} ;
$$

(ii) for $G \in \mathcal{G}$,

$$
\mu(G)=\sup \{\mu(K): K \subset G, K \in \mathcal{K}\}
$$

Henceforth, condition (i) and condition (ii) will be referred to respectively as outer regularity and inner regularity of μ. Note that all Radon measures on \mathbb{R}^{n} are Riesz measures, according to Theorem 3.9.1. Actually, conclusion (ii) of Theorem 3.9.1 is stronger than inner regularity for Riesz measures; but the following proposition claims that finite Riesz measures satisfy the same conclusion as that of Theorem 3.9.1 (ii).

Proposition 3.10.1 If μ is a finite Riesz measure on X, then for any μ-measurable set A, we have

$$
\mu(A)=\sup \{\mu(K): K \in \mathcal{K}, K \subset A\}
$$

Proof Let $\varepsilon>0$. There is $K_{0} \in \mathcal{K}$ such that

$$
\mu\left(K_{0}^{c}\right)=\mu\left(X \backslash K_{0}\right)<\frac{\varepsilon}{2},
$$

by the inner regularity of μ, and there is $G \in \mathcal{G}$ such that $G \supset A^{c}$ and

$$
\mu(G \cap A)=\mu\left(G \backslash A^{c}\right)<\frac{\varepsilon}{2},
$$

by the outer regularity of μ. Now, $K_{0} \cap G^{c}$ is a compact set contained in A and

$$
A \backslash\left(K_{0} \cap G^{c}\right)=A \cap\left(K_{0} \cap G^{c}\right)^{c}=A \cap\left(K_{0}^{c} \cup G\right) \subset K_{0}^{c} \cup(A \cap G),
$$

hence $\mu\left(A \backslash\left(K_{0} \cap G^{c}\right) \leq \mu\left(K_{0}^{c}\right)+\mu(A \cap G)<\varepsilon\right.$, i.e.

$$
\mu(A)<\mu\left(K_{0} \cap G^{c}\right)+\varepsilon \leq \sup \{\mu(K): K \in \mathcal{K}, K \subset A\}+\varepsilon .
$$

Letting $\varepsilon \searrow 0$, we have

$$
\mu(A) \leq \sup \{\mu(K): K \in \mathcal{K}, K \subset A\}
$$

That $\mu(A) \geq \sup \{\mu(K): K \in \mathcal{K}, K \subset A\}$ is obvious.
Suppose now that X is locally compact, and denote as in Section 1.10 by $C_{c}(X)$ the space of all real continuous functions on X with compact support, and if $G \in \mathcal{G}$ by $U_{c}(G)$ the family of all those functions in $C_{c}(X)$ such that $0 \leq f \leq 1$ and $\operatorname{supp} f \subset G$. Our main purpose of this section is to construct a Riesz measure on X for each positive linear functional on $C_{c}(X)$. A linear functional ℓ on a vector space of functions on a set is said to be positive if $\ell(f) \geq 0$ whenever $f \geq 0$. Given a positive linear functional ℓ on $C_{c}(X)$, a related measure μ on X is constructed as follows. Define first a premeasure τ on \mathcal{G} by

$$
\tau(G)=\sup \left\{\ell(f): f \in U_{c}(G)\right\}, \quad G \in \mathcal{G} ;
$$

then for $A \subset X$, define

$$
\mu(A)=\inf \{\tau(G): G \supset A, G \in \mathcal{G}\} .
$$

Observe that
(1) $\mu(G)=\tau(G)$ for $G \in \mathcal{G}$;
(2) $\mu\left(\bigcup_{j=1}^{n} G_{j}\right) \leq \sum_{j=1}^{n} \mu\left(G_{j}\right)$ if G_{1}, \ldots, G_{n} are in \mathcal{G}; furthermore, if G_{j} 's are disjoint, then $\mu\left(\bigcup_{j=1}^{n} G_{j}\right)=\sum_{j=1}^{n} \mu\left(G_{j}\right)$.

Clearly, (1) is a direct consequence of the obvious fact that $\tau\left(G_{1}\right) \leq \tau\left(G_{2}\right)$, if G_{1} and G_{2} are in \mathcal{G} and $G_{1} \subset G_{2}$. To verify (2), let $u \in U_{c}\left(\bigcup_{j=1}^{n} G_{j}\right)$ and put $K=\operatorname{supp} u$. By Theorem 1.10.1, there is a partition of unity $\left\{u_{1}, \ldots, u_{n}\right\}$ of K subordinate to $\left\{G_{1}, \ldots, G_{n}\right\}$; one sees readily that $u=\sum_{j=1}^{n} u u_{j}$. Since each $u u_{j}$ is in $U_{c}\left(G_{j}\right), \ell(u)=$ $\sum_{j=1}^{n} \ell\left(u u_{j}\right) \leq \sum_{j=1}^{n} \tau\left(G_{j}\right)=\sum_{j=1}^{n} \mu\left(G_{j}\right)$, from which it follows that $\mu\left(\bigcup_{j=1}^{n} G_{j}\right)=$
$\tau\left(\bigcup_{j=1}^{n} G_{j}\right) \leq \sum_{j=1}^{n} \mu\left(G_{j}\right)$. Thus the first part of (2) is verified. Now if G_{1}, \ldots, G_{n} are disjoint, we need to show that $\mu\left(\bigcup_{j=1}^{n} G_{j}\right) \geq \sum_{j=1}^{n} \mu\left(G_{j}\right)$. For this purpose, since $\mu\left(\bigcup_{j=1}^{n} G_{j}\right) \geq \mu\left(G_{j}\right)$ for each j, we may assume that $\mu\left(G_{j}\right)<\infty$ for each j. Given $\varepsilon>0$, there is $u_{j} \in U_{c}\left(G_{j}\right)$ such that $\mu\left(G_{j}\right)=\tau\left(G_{j}\right)<\ell\left(u_{j}\right)+\frac{\varepsilon}{n}$ for each j. Then, $u=$ $\sum_{j=1}^{n} u_{j} \in U_{c}\left(\bigcup_{j=1}^{n} G_{j}\right)$, because G_{j}^{\prime} 's are disjoint, and hence

$$
\mu\left(\bigcup_{j=1}^{n} G_{j}\right)=\tau\left(\bigcup_{j=1}^{n} G_{j}\right) \geq \ell(u)=\sum_{j=1}^{n} \ell\left(u_{j}\right) \geq \sum_{j=1}^{n} \mu\left(G_{j}\right)-\varepsilon,
$$

from which $\mu\left(\bigcup_{j=1}^{n} G_{j}\right) \geq \sum_{j=1}^{n} \mu\left(G_{j}\right)$ follows by letting $\varepsilon \rightarrow 0$. Thus (2) is verified.
We show next that μ is a Carathéodory measure on X. Let $\left\{A_{n}\right\}$ be a sequence of subsets of X; we claim that $\mu\left(\bigcup_{n} A_{n}\right) \leq \sum_{n} \mu\left(A_{n}\right)$. For this, we may assume that $\mu\left(A_{n}\right)<\infty$ for all n. Given $\varepsilon>0$ and $n \in \mathbb{N}$, there is an open set $G_{n} \supset A_{n}$ such that $\mu\left(G_{n}\right)<\mu\left(A_{n}\right)+\frac{\varepsilon}{2^{n}}$. Then for $u \in U_{c}\left(\bigcup_{n} G_{n}\right)$, since supp u is compact, $u \in$ $U_{c}\left(\bigcup_{j=1}^{n_{0}} G_{j}\right)$ for some n_{0}, and we have therefore by (2),

$$
\ell(u) \leq \mu\left(\bigcup_{j=1}^{n_{0}} G_{j}\right) \leq \sum_{j=1}^{n_{0}} \mu\left(G_{j}\right) \leq \sum_{n} \mu\left(G_{n}\right) \leq \sum_{n} \mu\left(A_{n}\right)+\varepsilon ;
$$

consequently, $\ell(u) \leq \sum_{n} \mu\left(A_{n}\right)+\varepsilon$ for each $u \in U_{c}\left(\bigcup_{n} G_{n}\right)$ and hence $\mu\left(\bigcup_{n} G_{n}\right) \leq$ $\sum_{n} \mu\left(A_{n}\right)+\varepsilon$. Thus, $\mu\left(\bigcup_{n} A_{n}\right) \leq \mu\left(\bigcup_{n} G_{n}\right) \leq \sum_{n} \mu\left(A_{n}\right)+\varepsilon$. Since $\varepsilon>0$ is arbitrary, $\mu\left(\bigcup_{n} A_{n}\right) \leq \sum_{n} \mu\left(A_{n}\right)$. As $\mu(\emptyset)=0$ and $\mu(A) \leq \mu(B)$ for $A \subset B$ are direct consequences of the definition of μ, μ is a measure on X. Suppose now that A and B are subsets of X with $\rho(A, B)>0$; if we put $H_{1}=\left\{x \in X: \rho(x, A)<\frac{1}{2} \rho(A, B)\right\}$, $H_{2}=\left\{x \in X: \rho(x, B)<\frac{1}{2} \rho(A, B)\right\}$, then H_{1} and H_{2} are open and disjoint. Now let G be any open set containing $A \cup B$ and put $G_{1}=H_{1} \cap G, G_{2}=H_{2} \cap G$, then

$$
\mu(G) \geq \mu\left(G \cap\left(H_{1} \cup H_{2}\right)\right)=\mu\left(G_{1}\right)+\mu\left(G_{2}\right) \geq \mu(A)+\mu(B),
$$

and consequently, $\mu(A \cup B) \geq \mu(A)+\mu(B)$, or $\mu(A \cup B)=\mu(A)+\mu(B)$. Thus, μ is a Carathéodory measure on X. The measure μ so constructed will be referred to as the measure for the positive linear functional ℓ.
Lemma 3.10.1 Suppose that ℓ is a positive linear functional on $C_{c}(X)$ and let μ be the measure for ℓ, then μ is a Radon measure on X.

Proof Since μ is a Carathéodory measure, it is a Borel measure. From the definition of μ, for $A \subset X$ there is a sequence $\left\{G_{n}\right\}$ of open sets such that $\bigcap_{n} G_{n} \supset A$ and $\mu(A)=$ $\mu\left(\bigcap_{n} G_{n}\right)$, hence μ is Borel regular. Now let K be a compact subset of X. By (i) of Section 1.10, K has a compact neighborhood V, for which we know from Corollary 1.10.1 that there is $f \in U_{c}(X)$ such that $f=1$ on V. Clearly if $u \in U_{c}(\stackrel{\circ}{V})$, then $u \leq f$. Thus $\mu(K) \leq \mu(\stackrel{\circ}{V})=\sup \left\{\ell(u): u \in U_{c}(\stackrel{\circ}{V})\right\} \leq \ell(f)<\infty$. We have shown that μ is a Radon measure on X.

Lemma 3.10.2 Suppose that ℓ is a positive linear functional on $C_{c}(X)$ and μ is the measure for ℓ. Then,

$$
\ell(f)=\int_{X} f d \mu
$$

forf $\in C_{c}(X)$.
Proof Let $f \in C_{c}(X)$ and put $K=\operatorname{supp} f$. Given $\varepsilon>0$, for $j \in \mathbb{Z}$, let $E_{j}=\{x \in K: \varepsilon j<$ $f(x) \leq \varepsilon(j+1)\}$. As f is necessarily bounded, $E_{j}=\emptyset$ if $|j|>k$ for some $k \in \mathbb{N}$. Since $\mu\left(E_{j}\right) \leq \mu(K)<\infty$, for each j with $|j| \leq k$, there is an open set $G_{j} \supset E_{j}$ such that $\mu\left(G_{j} \backslash E_{j}\right)<\frac{1}{(2 k+1)(|j|+2)}$ and $f(x) \leq \varepsilon(j+2)$ for $x \in G_{j}$. There is a partition of unity $\left\{u_{j}\right\}_{\mid j \leq k}$ of K subordinate to the finite covering $\left\{G_{j}\right\}_{\mid j \leq k}$ of K, by Theorem 1.10.1. Then, $f=\sum_{|j| \leq k} f u_{j}$ and hence

$$
\begin{aligned}
\ell(f) & =\sum_{|j| \leq k} \ell\left(f u_{j}\right) \leq \sum_{|j| \leq k} \varepsilon(j+2) \ell\left(u_{j}\right) \leq \sum_{|j| \leq k} \varepsilon(j+2) \mu\left(G_{j}\right) \\
& \leq \sum_{|j| \leq k} \varepsilon(j+2)\left\{\mu\left(E_{j}\right)+\frac{1}{(2 k+1)(|j|+2)}\right\} \\
& \leq \int_{X} f d \mu+2 \varepsilon \mu(K)+\varepsilon
\end{aligned}
$$

and consequently, since $\varepsilon>0$ is arbitrary, we have

$$
\ell(f) \leq \int_{X} f d \mu ;
$$

but in the last inequality, if we replace f by $(-f)$, we also have $\ell(f) \geq \int_{X} f d \mu$, and thus

$$
\ell(f)=\int_{X} f d \mu
$$

Corollary 3.10.1 If G is an open set in X, then

$$
\mu(G)=\sup \{\mu(K): K \subset G, K \in \mathcal{K}\} .
$$

Proof It is sufficient to show that

$$
\mu(G) \leq \sup \{\mu(K): K \subset G, K \in \mathcal{K}\}
$$

Let $f \in U_{c}(G)$, then since $f \leq 1$, we have

$$
\ell(f)=\int_{X} f d \mu=\int_{\text {suppf }} f d \mu \leq \mu(\operatorname{supp} f),
$$

from which we infer that

$$
\sup \{\mu(K): K \subset G, K \in \mathcal{K}\} \geq \sup \left\{\ell(f): f \in U_{c}(G)\right\}=\mu(G)
$$

From Corollary 3.10 .1 and the definition of μ, the Radon measure μ is both outer regular and inner regular. Hence, the measure for any positive linear functional on $C_{c}(X)$ is a Riesz measure.

Theorem 3.10.1 The measure μ for a positive linear functional ℓ on $C_{c}(X)$ is the unique Riesz measure on X, such that

$$
\begin{equation*}
\ell(f)=\int_{X} f d \mu \tag{3.6}
\end{equation*}
$$

for all $f \in C_{c}(X)$.
Proof Since the measure μ for ℓ is a Riesz measure on X for which (3.6) holds, it remains to show that if v is a Riesz measure on X, such that $\ell(f)=\int_{X} f d v$ for all $f \in C_{c}(X)$, then $v=\mu$. To show $v=\mu$, it is sufficient to show that $v(G)=\mu(G)$ for all $G \in \mathcal{G}$, because both ν and μ are outer regular. Let now $G \in \mathcal{G}$. For $f \in U_{c}(G)$, $\nu(G) \geq \int_{X} f d v=\ell(f)$ implies

$$
v(G) \geq \sup \left\{\ell(f): f \in U_{c}(G)\right\}=\mu(G)
$$

To see $v(G) \leq \mu(G)$, consider any given compact set $K \subset G$ and choose according to Corollary 1.10.1 a function f in $U_{c}(G)$ such that $f=1$ on K. For such a function f, we have

$$
v(K) \leq \int_{X} f d v=\ell(f) \leq \mu(G)
$$

Thus, $v(G)=\sup \{v(K): K \in \mathcal{K}, K \subset G\} \leq \mu(G)$.
Exercise 3.10.1 Define a norm for $f \in C_{c}(X)$ by $\|f\|=\sup _{x \in X}|f(x)|=\max _{x \in X}|f(x)|$. Show that if ℓ is a bounded positive linear functional on $C_{c}(X)$ as a n.v.s. with the norm previously defined, then the measure μ for ℓ is a finite measure and $\|\ell\|=\mu(X)$.

Exercise 3.10.2 Suppose that X is a compact metric space. Show that a positive linear functional on $C(X)$ is necessarily a bounded linear functional on $C(X)$.

Exercise 3.10.3 Let ℓ be a positive linear functional on $C[0,1]$ and let μ be the measure for ℓ. Define a function g on $[0,1]$ by $g(x)=\mu([0, x])$ for $x \in(0,1]$ and $g(0)=0$. Show that the Lebesgue-Stielties measure μ_{g} is μ.

3.11 Existence of nonmeasurable sets

We exhibit here a nonmeasurable set in \mathbb{R}. For this purpose we prove first a remarkable property of measurable sets in \mathbb{R}.
Proposition 3.11.1 Let A be a measurable set in \mathbb{R} with $\lambda(A)>0$, then $D:=\{x-y$: $x, y \in A\}$ contains a nondegenerate interval.

Proof We may assume that $\lambda(A)<\infty$. There is an open set $U \supset A$ such that

$$
\begin{equation*}
\lambda(U)<\left(1+\frac{1}{3}\right) \lambda(A) . \tag{3.7}
\end{equation*}
$$

Since $U=\bigcup_{k} I_{k}$, where $\left\{I_{k}\right\}$ is a disjoint sequence of open intervals, we have $\lambda(A)=$ $\sum_{k} \lambda\left(A \cap I_{k}\right)$, and hence, in view of (3.7),

$$
\begin{equation*}
\lambda\left(I_{k_{0}}\right)<\left(1+\frac{1}{3}\right) \lambda\left(A \cap I_{k_{0}}\right) \tag{3.8}
\end{equation*}
$$

for some k_{0}. We now verify that $I:=\left(-\frac{1}{2} \lambda\left(I_{k_{0}}\right), \frac{1}{2} \lambda\left(I_{k_{0}}\right)\right) \subset D$. Let $t \in I, t \neq 0$, i.e. $0<|t|<\frac{1}{2} \lambda\left(I_{k_{0}}\right)$, then $\left(A \cap I_{k_{0}}\right) \cup\left(A \cap I_{k_{0}}+t\right)$ is contained in an interval of length $<\frac{3}{2} \lambda\left(I_{k_{0}}\right)$. If $\left(A \cap I_{k_{0}}\right) \cap\left(A \cap I_{k_{0}}+t\right)=\emptyset$, by (3.8),

$$
\lambda\left(\left(A \cap I_{k_{0}}\right) \cup\left(A \cap I_{k_{0}}+t\right)\right)=2 \lambda\left(A \cap I_{k_{0}}\right)>2 \cdot \frac{3}{4} \lambda\left(I_{k_{0}}\right)=\frac{3}{2} \lambda\left(I_{k_{0}}\right),
$$

which contradicts the fact that $\left(A \cap I_{k_{0}}\right) \cup\left(A \cap I_{k_{0}}+t\right)$ is contained in an interval of length $<\frac{3}{2} \lambda\left(I_{k_{0}}\right)$. Thus, $\left(A \cap I_{k_{0}}\right) \cap\left(A \cap I_{k_{0}}+t\right) \neq \emptyset$; say $x=y+t$ for some x and y in $A \cap I_{k_{0}}$, then $t=x-y \in D$. This shows that $I \subset D$, because $t=0$ is certainly in D.
For $x \in \mathbb{R}$, let $[x]$ denote the set of all those numbers y in \mathbb{R} such that $x-y$ is rational. It is clear that for x and y in $\mathbb{R},[x]$ and $[y]$ are either disjoint or the same set, and $[x]=[y]$ if and only if $x-y$ is rational; in particular, $[x]$ is the set of all rational numbers if x is rational and each set $[x]$ is countable. Let S be a subset of \mathbb{R} which contains exactly one point of each $[x]$. The possibility of choosing such a set follows from the axiom of choice, which states that from any given family of sets in a universal set, a set can be formed by choosing exactly one element from each set of the family. We note that axiom of choice is consistent with the usual logic adopted in mathematics, and we accept it as an axiom in our discourse. Returning to our set S, we observe first that $\mathbb{R}=\bigcup_{\alpha}(S+\alpha)$, where the union is taken over all rational numbers α. Actually, if $s_{x}=S \cap[x]$, then $\mathbb{R} \supset$ $\bigcup_{\alpha}(S+\alpha) \supset \bigcup_{x \in \mathbb{R}} \bigcup_{\alpha}\left\{s_{x}+\alpha\right\}=\bigcup_{x \in \mathbb{R}}[x]=\mathbb{R}$. It follows then $\lambda(S)>0$, because if $\lambda(S)=0, \lambda(S+\alpha)=0$ for all rational number α and $\infty=\lambda(\mathbb{R}) \leq \sum_{\alpha} \lambda(S+\alpha)=0$; which is absurd. Next, note that if x and y are distinct elements of S, then $x-y$ is irrational (otherwise, x and y are from $[x]$, contradicting the fact that $S \cap[x]$ consists of
one element). This implies that each element of the set $D_{0}:=\{x-y: x, y \in S\}$ other than 0 is irrational; consequently D_{0} contains no nonempty interval. Now, should S be measurable, D_{0} would contain a nonempty interval, by Proposition 3.11.1. Thus, S is nonmeasurable. This asserts the existence of nonmeasurable sets in \mathbb{R}.

Proposition 3.11.2 If A is a measurable subset of \mathbb{R} with positive measure, then A contains a nonmeasurable set.

Proof Let S be the nonmeasurable set, previously constructed, and let D_{0} be the difference set $S-S$, as defined before. Observe first that if E is a measurable set in S, then $\lambda(E)=0$, because if $\lambda(E)>0$; by Proposition 3.11.1 the difference set $E-E$ contains a nonempty interval, then so does D_{0}, contrary to the fact that D_{0} contains no nonempty interval. Similarly, if E is a measurable set in $S+\alpha$, where α is a real number, then $\lambda(E)=0$.

Suppose now that A contains no nonmeasurable subset, then $A \cap\{S+\alpha\}$ is measurable for each rational number α and hence $\lambda(A \cap\{S+\alpha\})=0$, from the previous observation. But we know that $\mathbb{R}=\bigcup_{\alpha}\{S+\alpha\}$, where the union is over all rational numbers α, thus,

$$
\lambda(A) \leq \sum_{\alpha} \lambda(A \cap\{S+\alpha\})=0
$$

contrary to the assumption that $\lambda(A)>0$. The contradiction asserts that A contains a nonmeasurable subset.

3.12 The axiom of choice and maximality principles

We have mentioned and used the axiom of choice in Section 3.11, when constructing a nonmeasurable set in \mathbb{R}. A more explicit discussion on the axiom of choice will now be made together with introduction of two maximality principles which are equivalent to the axiom of choice. The alluded maximality principles are Hausdorff's maximality principle and Zorn's lemma, which are often used in construction of mathematical objects.

Suppose that X is a nonempty set; a mapping f from $2^{X} \backslash\{\emptyset\}$ to X is called a choice function for X, if $f(A) \in A$ for each nonempty subset A of X. It is clear that the axiom of choice stated in Section 3.11 can be put in the following form:

Axiom of choice. For every nonempty set X, there is a choice function for X.
A binary relation \leq between some pairs of elements of a nonempty set X is called a partial order on X if (i) $x \leq x$ for all $x \in X$; (ii) $x \leq y$ and $y \leq z$ for x, y, and z in X, then $x \leq z$; and (iii) $x \leq y$ and $y \leq x$ result in $x=y . X$ is then said to be partially ordered by \leq. By a partially ordered set X we understand a nonempty set partially ordered by a certain partial order.

A familiar situation is when X is a family of subsets of a given set, then X is partially ordered by set inclusion, i.e. for sets A and B in $X, A \leq B$ if and only if $A \subset B$. Such X is always considered as partially ordered in this way.

An element x in a partially ordered set X is said to be maximal if $x \leq y$ for y in X; then $y=x$; in the case where X is a family of subsets of a given set, then a set A in X is maximal means that A is not a proper subset of any set in X. For example, if X is the family of all proper vector subspaces of a vector space V and is ordered by set inclusion; then maximal elements of X are called hyperplanes in V.

Let x, y be elements of a partially ordered set $X ; x$ is said to be comparable to y if either $x \leq y$ or $y \leq x$ holds; then x and y are comparable to each other. A nonempty subset C of a partially ordered set X is called a chain in X if any two elements of C are comparable to each other.

Abstract

Hausdorff's maximality principle. In any partially ordered set X, there exists a maximal chain. In other words, there is a chain in X which is not contained in another chain properly.

If A is a nonempty subset of a partially ordered set X, then an element b of X is called an upper bound of A if $a \leq b$ holds for all $a \in X$.

Zorn's lemma. If every chain in a partially ordered set X has an upper bound, then X has a maximal element.

It is easy to see that Zorn's lemma follows from Hausdorff's maximality principle. By Hausdorff maximality principle, there is a maximal chain C in X, then C has an upper bound b in X, by the assumption of Zorn's lemma; then b is a maximal element of X, because, otherwise, there is x in X such that $b \leq x$ and $b \neq x$, implying that the chain $C \cup\{x\}$ contains C properly.

We show next that the axiom of choice is a consequence of the validity of Zorn's lemma. Given a nonempty set X, let $\mathcal{F}=2^{X} \backslash\{\emptyset\}$, and consider the set Y of all those mappings f with its domain $D(f) \subset \mathcal{F}$ and range in X, such that $f(A) \in A$ for $A \in D(f)$. Y is nonempty because, for any $x \in X$, let $D(f)=\{\{x\}\}$ and $f(\{x\})=x$, then $f \in Y$. Define a partial order \leq on Y as follows. For f, g in $Y, f \leq g$ if and only if $D(f) \subset D(g)$ and $g(A)=f(A)$ for $A \in D(f)$. Y is obviously partially ordered by \leq. Now let C be a chain in Y; define a mapping g with $D(g)=\bigcup_{f \in C} D(f)$ and with $g(A)=f(A)$ if $f \in C$ and $A \in D(f)$. Since C is a chain in Y, g is well defined and belongs to Y. Obviously, g is an upper bound of C. By Zorn's lemma, Y has a maximal element, say f. We claim that f is a choice function for X by showing that $D(f)=\mathcal{F}$. Suppose the contrary, then there is A in \mathcal{F} but not in $D(f)$; choose $x \in A$ and let g be a mapping from $D(f) \cup\{A\}$ to X defined by $g(B)=f(B)$ for $B \in D(f)$ and $g(A)=x$. Then g is in $Y, f \leq g$, and $f \neq g$, contradicting that f is a maximal element in Y. Thus $D(f)=\mathcal{F}$ and f is a choice function for X. Hence the axiom of choice is a consequence of Zorn's lemma.

The rest of this section aims to show that Hausdorff's maximality principle follows from the axiom of choice, completing the establishment of the equivalence among axiom of choice, Hausdorff's maximality principle, and Zorn's lemma.

Let X be a partially ordered set and \mathcal{F} be the family of all chains in X and \emptyset. Then \mathcal{F} satisfies the conditions:
(a) If $A \in \mathcal{F}$, then all the subsets of A are in \mathcal{F};
(b) if \mathcal{C} is a chain in \mathcal{F}, then $\bigcup \mathcal{C}$ is in \mathcal{F}.

In condition (b), $\bigcup \mathcal{C}$ denotes the union of all sets in the family \mathcal{C}. By the axiom of choice, there is a choice function f for X. This choice function is fixed throughout the rest of this section. For $A \in \mathcal{F}$, let $\widehat{A}=\{x \in X: A \cup\{x\} \in \mathcal{F}\}$; observe that $\widehat{A} \supset A$ and $\widehat{A}=A$ if and only if A is maximal in \mathcal{F}. Define a mapping $\tau: \mathcal{F} \mapsto \mathcal{F}$ by $\tau(A)=A$ if $\widehat{A}=A$, while $\tau(A)=A \cup\{f(\widehat{A} \backslash A)\}$ if $\widehat{A} \backslash A \neq \emptyset$. Since $f(\widehat{A} \backslash A) \in \widehat{A}$ if $\widehat{A} \backslash A \neq \emptyset, A \cup\{f(\widehat{A} \backslash A)\} \in \mathcal{F}$ and τ is actually a mapping from \mathcal{F} into \mathcal{F}. Observe that $A \subset \tau(A)$ and $\tau(A) \backslash A$ consists of at most one element. Since A is maximal in \mathcal{F} if and only if $\widehat{A}=A, A$ is maximal in \mathcal{F} if and only if $\tau(A)=A$; but if $\tau(A)=A, A$ is not empty by the fact that $\tau(\emptyset)=$ $\{f(\bigcup \mathcal{F})\} \neq \emptyset$, and thus A is a maximal chain in X. Therefore, in order to establish Hausdorff's maximality principle, it is sufficient to show that $\tau(A)=A$ for some A in \mathcal{F}. This is what we shall do in the following.

A subfamily \mathcal{T} of \mathcal{F} is called a tower if it satisfies the following conditions:
(i) $\emptyset \in \mathcal{T}$;
(ii) if $A \in \mathcal{T}$, then $\tau(A) \in \mathcal{T}$; and
(iii) if \mathcal{C} is a chain in \mathcal{T}, then $\bigcup \mathcal{C} \in \mathcal{T}$.

Since \mathcal{F} is a tower, and the intersection of all towers is a tower, the smallest tower \mathcal{T}_{0} exists. We shall claim that \mathcal{T}_{0} is a chain. For this purpose, consider the family $\widehat{\mathcal{T}}_{0}$ of all those $C \in \mathcal{T}_{0}$ such that if $A \in \mathcal{T}_{0}$, either $A \subset C$ or $C \subset A$ holds, i.e. $\widehat{\mathcal{T}}_{0}$ is the family of all those elements of \mathcal{T}_{0} which are comparable to all elements of \mathcal{T}_{0}; then for $C \in \widehat{\mathcal{T}}_{0}$ let $\xi(C)$ be the family of all those $A \in \mathcal{T}_{0}$ such that either $A \subset C$ or $\tau(C) \subset A$.
Proposition 3.12.1 Let $C \in \widehat{\mathcal{T}}_{0}$. Suppose that $A \in \mathcal{T}_{0}$ and A is a proper subset of C, then $\tau(A) \subset C$.

Proof Suppose the contrary. Then, since $\tau(A) \in \mathcal{T}_{0}, C$ is a proper subset of $\tau(A)$; but this fact, together with the assumption that A is a proper subset of C, implies that $\tau(A) \backslash A$ contains at least two elements, contradicting the fact that $\tau(A) \backslash A$ contains at most one element.
Proposition 3.12.2 If $C \in \widehat{\mathcal{T}}_{0}$, then $\xi(C)=\mathcal{T}_{0}$.
Proof It is sufficient to show that ξ (C) is a tower. The conditions (i) and (iii) hold obviously for $\xi(C)$. It remains to show that condition (ii) holds for $\xi(C)$. Let $A \in \xi(C)$, then either $A \subset C$ or $\tau(C) \subset A$. If $\tau(C) \subset A$, then $\tau(C) \subset \tau(A)$, which implies that
$\tau(A) \in \xi(C)$. Otherwise $A \subset C$, i.e. either $A=C$ or A is a proper subset of C; in the latter case, $\tau(A) \in \xi(C)$, by Proposition 3.12.1, while in the former, $\tau(A)=\tau(C)$ implies that $\tau(A) \supset \tau(C)$ and hence $\tau(A) \in \xi(C)$. Thus, condition (ii) holds for $\xi(C)$ and $\xi(C)$ is a tower.

We are ready to see that \mathcal{T}_{0} is a chain. Let $C \in \widehat{\mathcal{T}}_{0}$. By Proposition 3.12.2, $\xi(C)=\mathcal{T}_{0}$, which means that if $A \in \mathcal{T}_{0}$, then either $A \subset C$ or $\tau(C) \subset A$, implying that either $\tau(A) \subset \tau(C)$ or $\tau(C) \subset A$ and consequently $\tau(C) \in \widehat{\mathcal{T}}_{0}$. Now, $\bigcup \mathcal{C} \in \widehat{\mathcal{T}}_{0}$ if \mathcal{C} is a chain in $\widehat{\mathcal{T}}_{0}$ follows immediately from the definition of $\widehat{\mathcal{T}}_{0}$. As $\emptyset \in \widehat{\mathcal{T}}_{0}$, we have shown that $\widehat{\mathcal{T}}_{0}$ is a tower and hence $\widehat{\mathcal{T}_{0}}=\mathcal{T}_{0} . \widehat{\mathcal{T}_{0}}=\mathcal{T}_{0}$ means only that \mathcal{T}_{0} is a chain.

Finally, let $A=\bigcup \mathcal{T}_{0}$. Since \mathcal{T}_{0} is a tower and a chain, $A \in \mathcal{T}_{0}$ and $\tau(A) \in \mathcal{T}_{0}$. Then $A=\bigcup \mathcal{T}_{0} \supset \tau(A)$, and consequently $\tau(A)=A$. Thus A is a maximal chain in X and therefore Hausdorff's maximality principle holds.

We have concluded that the axiom of choice, Hausdorff's maximality principle, and Zorn's lemma are each equivalent to one another.

4
 Functions of Real Variables

TWis chapter starts a systematic study of properties of functions of real variables, in terms of concepts related to measures. Properties of functions considered in this light are usually referred to as metric properties.

We begin with a characterization of measurable functions due to N.N. Lusin. This characterization is an intuitively satisfactory description of measurable functions and has basic and important consequences, in so far as measurable functions are concerned. Riemann integrable functions are then taken up and shown to be Lebesgue integrable and their integrals in either sense are the same.

Push-forward of measures, a natural construct of measures from those given through mappings, is then interposed for the purpose of representation of general integrals as integrals on \mathbb{R}, as well as for a transformation formula of the Lebesgue integral of functions on \mathbb{R}^{n} through change of variables later in the chapter. Then there follows naturally a more detailed study of functions of a real variable, in which considerable emphasis is placed on study of differentiability of functions unfolding from the Lebesgue differentiation theorem for Radon measures on \mathbb{R}^{n}.

Product measures are treated and followed by further studies of functions of several real variables in later sections of the chapter.

A detailed presentation of polar coordinates in \mathbb{R}^{n} is given in Section 4.11, with applications to integral operators of potential type and integral representation of C^{1} functions.

4.1 Lusin theorem

Let μ be a Borel regular measure on \mathbb{R}^{n}, and f a finite-valued function defined on a μ-measurable subset A of \mathbb{R}^{n}. We suppose that $\mu(A)<\infty$. We shall show that f is Σ^{μ} measurable if and only if it is almost a continuous function; "almost" in the sense given in Theorem 4.1.1. Theorem 4.1.1, is called the Lusin theorem in this book. In the following, μ, A, and f are fixed and specified as previously.

Lemma 4.1.1 Let h be a simple function defined on A, then for $\varepsilon>0$, there is a compact set $K \subset A$ such that $\left.h\right|_{K}$ is continuous and $\mu(A \backslash K)<\varepsilon$.

Proof In view of Proposition 3.8.2, we may assume that μ is a Radon measure. The simple function h can be expressed as

$$
h=\sum_{j=1}^{k} \alpha_{j} I_{A_{j}},
$$

where A_{1}, \ldots, A_{k} are disjoint μ-measurable subsets of A with $A=\bigcup_{j=1}^{k} A_{j}$. For each $j=1, \ldots, k$, there is a compact set $K_{j} \subset A_{j}$ with $\mu\left(A_{j} \backslash K_{j}\right)<\frac{\varepsilon}{k}$, by Theorem 3.9.1 (ii). Since K_{1}, \ldots, K_{k} are disjoint compact sets, $\operatorname{dist}\left(K_{i}, K_{j}\right)>0$ if $i \neq j$; this, together with the fact that h is constant on each K_{j}, shows that $\left.h\right|_{K}$ is continuous if $K:=\bigcup_{j=1}^{k} K_{j}$. Now, $\mu(A \backslash K)=\sum_{j=1}^{k} \mu\left(A_{j} \backslash K_{j}\right)<\varepsilon$. The Lemma is proved.
Theorem 4.1.1 (Lusin) Suppose that f is finite-valued and Σ^{μ}-measurable. Then for $\varepsilon>0$, there is a compact set $K \subset A$ and a continuous functiong defined on \mathbb{R}^{n} such that $\mu(A \backslash K)<\varepsilon$ and $g=f$ on K.
Proof There is a sequence $\left\{f_{m}\right\}$ of simple functions defined on A such that $\lim _{m \rightarrow \infty} f_{m}(x)=f(x)$ for $x \in A$. By the Egoroff theorem and Theorem 3.9.1 (ii), there is a compact set $K^{\prime} \subset A$ such that $\mu\left(A \backslash K^{\prime}\right)<\frac{\varepsilon}{2}$ and $f_{m}(x)$ converges to $f(x)$ uniformly for $x \in K^{\prime}$. For each m, by Lemma 4.1.1, there is a compact set $K_{m} \subset A$ such that $\left.f_{m}\right|_{K_{m}}$ is continuous and $\mu\left(A \backslash K_{m}\right)<\frac{\varepsilon}{2^{m+1}}$. Set $K^{\prime \prime}=\bigcap_{m=1}^{\infty} K_{m}$, then $\left.f_{m}\right|_{K^{\prime \prime}}$ is continuous for each m, and

$$
\mu\left(A \backslash K^{\prime \prime}\right)=\mu\left(\bigcup_{m=1}^{\infty}\left(A \backslash K_{m}\right)\right)<\sum_{m=1}^{\infty} \frac{\varepsilon}{2^{m+1}}=\frac{\varepsilon}{2} .
$$

Now let $K=K^{\prime} \cap K^{\prime \prime}$, then $\mu(A \backslash K)<\varepsilon$ and
(a) $\left.\operatorname{each} f_{m}\right|_{K}$ is continuous;
(b) $\left.f_{m}\right|_{K}$ converges uniformly to $\left.f\right|_{K}$.

From (a) and (b) follows the conclusion that $\left.f\right|_{K}$ is continuous. By the Tietze Theorem (Theorem 1.8.1) there is a continuous function g on \mathbb{R}^{n} such that $g=\left.f\right|_{K}$ on K, or $g=f$ on K.

Concerning the Lusin theorem, we note first that it still holds if f is finitevalued μ-a.e. on A; and secondly, if f is finite-valued μ-a.e. and satisfies the conclusion of the Lusin theorem, then f is Σ^{μ}-measurable. To see this, we proceed as follows. For each $m \in \mathbb{N}$ there is a compact set $K_{m} \subset A$ and a continuous function g_{m} on \mathbb{R}^{n} such that $\mu\left(A \backslash K_{m}\right)<\frac{1}{m^{2}}$ and $g_{m}=f$ on K_{m}; now $\sum_{m} \frac{1}{m^{2}}<\infty$ implies $\mu\left(\limsup _{m \rightarrow \infty}\left(A \backslash K_{m}\right)\right)=0$ (cf. Exercise 2.5.9 (i)), which means that μ-a.e. x in A is in K_{m} if m is sufficiently large (observe that $A \backslash \lim \sup _{m \rightarrow \infty}\left(A \backslash K_{m}\right)=$ $\left.A \backslash \bigcap_{m=1}^{\infty} \bigcup_{l \geq m}\left(A \backslash K_{l}\right)=\bigcup_{m=1}^{\infty} \bigcap_{\unrhd \geq m} K_{l}=\liminf \inf _{m \rightarrow \infty} K_{m}\right)$, or $f(x)=\lim _{m \rightarrow \infty} g_{m}(x)$ and consequently f is Σ^{μ}-measurable because each g_{m} is Σ^{μ}-measurable due to the fact that μ is a Borel measure. Thus the conclusion of the Lusin theorem is a characterization of Σ^{μ}-measurable functions on A. We state this explicitly as a theorem for later reference and still call it the Lusin theorem.

Theorem 4.1.2 Suppose that f is finite-valued μ-a.e. on A. Thenf is Σ^{μ}-measurable if and only iffor any given $\varepsilon>0$, there is a compact set $K \subset A$ and a continuous function g on \mathbb{R}^{n} such that $\mu(A \backslash K)<\varepsilon$ and $f=g$ on K.
Exercise 4.1.1 Let f be a monotone increasing function defined on a finite open interval (a, b) in \mathbb{R}. Show that for any $\varepsilon>0$, there is a continuous and monotone increasing function g on \mathbb{R} such that the set $\{x \in(a, b): f(x) \neq g(x)\}$ has Lebesgue measure less than ε. Furthermore, if f is bounded on $(a, b), g$ can also be chosen to be bounded by the same bound as that of f.
Exercise 4.1.2 Suppose that f is integrable on $[a, b]$. Show that for each $\varepsilon>0$ there is $g \in C[a, b]$ such that $\int_{a}^{b}|f-g| d \lambda<\varepsilon$. (Hint: prove first that the conclusion holds for bounded measurable function f.)

To conclude this section, we prove that when μ is the Lebesgue measure λ^{n} on \mathbb{R}^{n}, a characterization of Lebesgue measurable functions defined on an arbitrary Lebesgue measurable subset A of \mathbb{R}^{n} similar to Theorem 4.1.2 holds.

Theorem 4.1.3 Let A be a Lebesgue measurable set in \mathbb{R}^{n}. A function f which is defined and finite almost everywhere on A is measurable if and only iffor any $\varepsilon>0$ there is a closed set $F \subset A$ and a continuous function g on \mathbb{R}^{n} such that $\lambda^{n}(A \backslash F)<\varepsilon$ and $f=g$ on F.

Proof The sufficiency part follows from the same arguments that precede the statement of Theorem 4.1.2. We need only consider the necessity part. So, let f be a measurable function which is defined and finite almost everywhere on A, and let $\varepsilon>0$ be given. Consider the following sequence $\left\{A_{k}\right\}$ of subsets of $A: A_{1}=\{x \in A:|x|<1\}$ and for $k \geq 2$ let $A_{k}=\{x \in A: k-1<|x|<k\}$. Since each set $\left\{x \in \mathbb{R}^{n}:|x|=k\right\}$ has measure zero (see Exercise 3.4.2), $\bigcup_{k=1}^{\infty} A_{k}$ consists of almost all points of A. Each A_{k} is measurable and has finite measure. By Theorem 4.1.1, for each k there is a compact set $F_{k} \subset A_{k}$ such that $\left.f\right|_{F_{k}}$ is continuous and $\lambda^{n}\left(A_{k} \backslash F_{k}\right)<\frac{\varepsilon}{2^{k}}$. Now let $\left\{g_{k}\right\}$ be a sequence of continuous functions defined as follows: g_{1} is a continuous function defined on $\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$ such that $g_{1}=\left.f\right|_{F_{1}}$ on F_{1}; suppose g_{1}, \ldots, g_{k} have been defined, let g_{k+1} be a continuous function defined on $\left\{x \in \mathbb{R}^{n}:|x| \leq k+1\right\}$ such that $g_{k+1}=g_{k}$ on $\{|x| \leq k\}$ and $g_{k+1}=f \mid F_{k+1}$ on F_{k+1}. That $\left\{g_{k}\right\}$ can be so defined is due to Tietze's extension theorem (Theorem 1.8.1). Then define $g(x)=g_{k}(x)$ if $|x| \leq k$. Obviously, from our construction of the sequence $\left\{g_{k}\right\}, g$ is well defined and is continuous on \mathbb{R}^{n}. If we put $F=\bigcup_{k} F_{k}, F$ is a closed set, $F \subset A$, and $\lambda^{n}(A \backslash F)=$ $\sum_{k} \lambda^{n}\left(A_{k} \backslash F_{k}\right)<\sum_{k} \frac{\varepsilon}{2^{k}}=\varepsilon$. It is clear that $g=f$ on F.

4.2 Riemann and Lebesgue integral

In this section an oriented rectangle in \mathbb{R}^{n} will be called an oriented interval. We show that a Riemann integrable function defined on a closed oriented interval in \mathbb{R}^{n} is Lebesgue integrable and its Lebesgue integral coincides with its Riemann integral. First, we recall briefly the Riemann integrability. Fix a finite closed oriented interval
$I=\left[a_{1}, b_{1}\right] \times \cdots \times\left[a_{n}, b_{n}\right]$, which is not degenerated i.e. $a_{i}<b_{i}, i=1, \ldots, n$. Unless stated otherwise, henceforth in this section, an interval is always a finite, closed, nondegenerate, and oriented interval. Two intervals are said to be nonoverlapping if their interiors are disjoint. A partition \mathcal{P} of I is a finite family $\left\{I_{j}\right\}_{j=1}^{k}$ of nonoverlapping intervals such that $I=\bigcup_{j=1}^{k} I_{j}$, where k depends on \mathcal{P}; in particular, when $I=[a, b]$ is a finite closed interval in \mathbb{R}, a partition \mathcal{P} of I is determined by a sequence $a=x_{0}<x_{1}<\cdots<$ $x_{l}=b$ of points in $[a, b]$ and we simply call such a sequence of points in $[a, b]$ a partition of $[a, b]$. For a partition $\mathcal{P}=\left\{I_{j}\right\}_{j=1}^{k}$ of $I,\|\mathcal{P}\|$ will be used to denote $\max _{1 \leq j \leq k} \operatorname{diam} I_{j}$, and is called the mesh of \mathcal{P}.

Consider now a bounded function f defined on I. For an interval $J \subset I$, let $\bar{f}_{J}=\sup _{x \in J} f(x)$ and $\underline{f}_{J}=\inf _{x \in J} f(x)$. If $\mathcal{P}=\left\{I_{j}\right\}_{j=1}^{k}$ is a partition of I, put

$$
\bar{S}(f, \mathcal{P})=\sum_{j=1}^{k} \bar{I}_{I_{j}}\left|I_{j}\right| ; \quad \underline{S}(f, \mathcal{P})=\sum_{j=1}^{k} f_{I_{j}}\left|I_{j}\right|,
$$

where $|J|$ denote the volume of the interval J. A partition \mathcal{P} is said to be finer than a partition Q if every interval in Q is a union of intervals in \mathcal{P}. One verifies easily that if \mathcal{P} is finer than Q, then

$$
\bar{S}(f ; \mathcal{P}) \leq \bar{S}(f ; Q) ; \quad \underline{S}(f ; \mathcal{P}) \geq \underline{S}(f ; Q) .
$$

For partitions \mathcal{P} and Q of I, denote by $\mathcal{P} \vee Q$ the partition of I formed by all the nondegenerate intersections of intervals of \mathcal{P} and those of $Q . \mathcal{P} \vee Q$ is finer than both \mathcal{P} and Q, hence

$$
\bar{S}(f ; \mathcal{P}) \geq \bar{S}(f ; \mathcal{P} \vee Q) \geq \underline{S}(f ; P \vee Q) \geq \underline{S}(f ; Q)
$$

and consequently

$$
\inf _{\mathcal{P}} \bar{S}(f ; \mathcal{P}) \geq \sup _{\mathcal{P}} \underline{S}(f ; \mathcal{P})
$$

$\inf _{\mathcal{P}} \bar{S}(f ; \mathcal{P})$ is called the Darboux upper integral of f over I and is denoted by $\bar{\int}_{I} f$, while $\sup _{\mathcal{P}} \underline{S}(f ; \mathcal{P})$ is called the Darboux lower integral of f over I and is denoted by $\int_{I} f$. We have shown that

$$
\int_{\underline{I}} f \leq \bar{\int}_{I} f
$$

if $\int_{I} f=\bar{\int}_{I} f$, then the common value, denoted $\int_{I} f(x) d x$, is called the Riemann integral of \bar{f} over I, and f is then said to be Riemann integrable over I.
Exercise 4.2.1 Show that a bounded function f defined on I is Riemann integrable if and only if for any $\varepsilon>0$ there is a partition \mathcal{P} of I such that $\bar{S}(f ; \mathcal{P})-\underline{S}(f ; \mathcal{P})<\varepsilon$. In particular, infer that continuous functions defined on I are Riemann integrable.

For a bounded function f on I, we define related functions \underline{f} and \bar{f} as follows:

$$
\underline{f}(x)=\lim _{\delta \rightarrow 0+} \inf _{|y-x|<\delta} f(y) ; \quad \bar{f}(x)=\lim _{\delta \rightarrow 0+} \sup _{|y-x|<\delta} f(y)
$$

Lemma 4.2.1 $\underset{\underline{f}}{ }$ is lower semi-continuous and \bar{f} is upper semi-continuous on I. Hence both are Borel measurable, and therefore are Lebesgue measurable.
Proof Since $\bar{f}=-(\underline{-f})$, we need only show that \underline{f} is lower semi-continuous.
Let $\lambda \in \mathbb{R}$; we shall show that $E_{\lambda}:=\{\underline{f}>\lambda\}$ is open in I. Let $a \in E_{\lambda}$, then there is $\delta>0$, such that

$$
\inf _{\substack{|y-1|<2 \\ y \in I}} f(y)>\lambda
$$

Now let $x \in I$ and $|x-a|<\delta$; then $|y-x|<\delta$ entails that $|y-a|<2 \delta$ and hence,

$$
\inf _{\substack{y-x \mid<\delta \\ y \in I}} f(y) \geq \inf _{\substack{y-a \mid<2 \delta \\ y \in I}} f(y)>\lambda .
$$

Consequently, $x \in E_{\lambda}$ and E_{λ} is open in I. This shows that \underline{f} is lower semi-continuous on I.
Lemma 4.2.2 $\int_{I} f=\int_{I} f d \lambda^{n}, \bar{\int}_{I} f=\int_{I} \bar{f} d \lambda^{n}$.
Proof Choose a sequence $\left\{\mathcal{P}_{k}\right\}$ of partitions of I such that $\lim _{k \rightarrow \infty} \underline{S}\left(f ; \mathcal{P}_{k}\right)=\int_{I} f$. Since we still have $\lim _{k \rightarrow \infty} \underline{S}\left(f ; Q_{k}\right)=\int_{I} f$, if each Q_{k} is finer than \mathcal{P}_{k}, we may assume that $\left\|\mathcal{P}_{k}\right\| \rightarrow 0$ as $k \rightarrow \infty$. Let $\mathcal{P}_{k}=\left\{I_{i}^{(k)}\right\}_{i=1}^{n_{k}}$ and define $f_{k}(x)=\underline{I}_{I_{i}^{(k)}}$ if $x \in\left[I_{i}^{(k)}\right)$, $i=1, \ldots, n_{k}$ and $f_{k}(x)=0$ otherwise, where for an interval $J=\left[c_{1}, d_{1}\right] \times \cdots \times$ [$\left.c_{n}, d_{n}\right]$, $\left[J\right.$) denotes the half-open interval $\left[c_{1}, d_{1}\right) \times \cdots \times\left[c_{n}, d_{n}\right)$. We claim now that if $x \in I \backslash \bigcup_{k=1}^{\infty} \bigcup_{i=1}^{n_{k}} \partial I_{i}^{(k)}$, then $\lim _{k \rightarrow \infty} f_{k}(x)=\underline{f}(x)$. For each $\delta>0$, since $\left\|\mathcal{P}_{k}\right\| \rightarrow 0$ as $k \rightarrow \infty, \inf _{|y-x|<\delta} f(y) \leq f_{k}(x)$, if k is sufficiently large, hence $\inf _{|y-x|<\delta} f(y) \leq \liminf _{k \rightarrow \infty} f_{k}(x)$ and consequently $\underline{f}(x) \leq \liminf _{k \rightarrow \infty} f_{k}(x)$. On the other hand, for each $k, f_{k}(x) \leq \inf _{|y-x|<\delta} f(y)$ if $\delta>0$ is small enough, or $f_{k}(x) \leq$ $\underline{f}(x)$ and hence $\lim \sup _{k \rightarrow \infty} f_{k}(x) \leq \underline{f}(x)$. Thus,

$$
\limsup _{k \rightarrow \infty} f_{k}(x) \leq \underline{f}(x) \leq \liminf _{k \rightarrow \infty} f_{k}(x) \leq \underset{k \rightarrow \infty}{\limsup } f_{k}(x)
$$

or $\underline{f}(x)=\lim _{k \rightarrow \infty} f_{k}(x)$, as we claim. Now the set $\bigcup_{k=1}^{\infty} \bigcup_{i=1}^{n_{k}} \partial I_{i}^{(k)}$ has Lebesgue measure zero and $\left|f_{k}(x)\right| \leq M:=\sup _{x \in I}|f(x)|$; we may apply the Lebesgue dominated convergence theorem to obtain the equality $\int_{I} f=\lim _{k \rightarrow \infty} \underline{S}\left(f ; \mathcal{P}_{k}\right)=$ $\lim _{k \rightarrow \infty} \int_{I} f_{k} d \lambda^{n}=\int_{I} f d \lambda^{n}$. Similarly, $\bar{\int} f=\int_{I} \bar{f} d \lambda^{n}$.

Theorem 4.2.1 A bounded functionf on I is Riemann integrable if and only iff is continuous at almost all points of I.

Proof Since $\underline{f} \leq f \leq \bar{f}$ on I and

$$
\int_{I} f=\int_{I^{-}} d d \lambda^{n} \leq \int_{I} \bar{f} d \lambda^{n}=\int_{I} f
$$

f is Riemann integrable if and only if $\underline{f}=\bar{f}$ almost everywhere on I. But from Lemma 4.2.1, we know that \underline{f} is lower semi-continuous and \bar{f} is upper semicontinuous; it follows that $\underline{f}=\bar{f}$ almost everywhere on I means, through the inequalities $\underline{f} \leq f \leq \bar{f}$ on I, that f is continuous almost everywhere on I (cf. Exercise 1.5.2 (i) and (ii)).

Theorem 4.2.2 A Riemann integrable function f on I is Lebesgue integrable and $\int_{I} f(x) d x=\int_{I} f d \lambda^{n}$.

Proof Since $\underline{f} \leq f \leq \bar{f}$ on I, and $\underline{f}(x)=\bar{f}(x)$ for almost all x in I, as we have shown in the proof of Theorem 4.2.1, $f=\underline{f}$ almost everywhere on I and is therefore measurable. As f is bounded and measurable, it is Lebesgue integrable. Now $\int_{I} f d \lambda^{n}=\int_{I} f d \lambda^{n}=$ $\int_{I} f=\int_{I} f(x) d x$.

We note in passing that the function on $[0,1]$ which takes value 1 on irrational numbers and takes value 0 on rational numbers is not Riemann integrable, but is Lebesgue integrable with Lebesgue integral being 1.

Exercise 4.2.2 Let f be a function defined on \mathbb{R} whose improper integral $\int_{-\infty}^{\infty} f(x) d x$ converges absolutely. Show that f is Lebesgue integrable on \mathbb{R} and $\int_{\mathbb{R}} f d \lambda=$ $\int_{-\infty}^{\infty} f(x) d x$.

Exercise 4.2.3 Give an example to show that the conclusion in Exercise 4.2.2 does not hold if $\int_{-\infty}^{\infty} f(x) d x$ converges, but not absolutely.

We strongly suggest that readers verify that results similar to the conclusion of Exercise 4.2.2 hold for other types of improper integrals.

Notational convention Because of Theorem 4.2.2 and Exercise 4.2.2, we often write $\int_{A} f d \lambda^{n}$ as $\int_{A} f(x) d x$; also, we use $\int_{a}^{b} f(x) d x, \int_{a}^{\infty} f(x) d x, \int_{-\infty}^{b} f(x) d x$, and $\int_{-\infty}^{\infty} f(x) d x$ to denote $\int_{I} f d \lambda$ if I is $[a, b],[a, \infty),(-\infty, b]$, and $(-\infty, \infty)$ in this order. More generally, for a Borel measure μ on $\mathbb{R}, \int_{a}^{b} f d \mu, \int_{a}^{\infty} f d \mu, \int_{-\infty}^{b} f d \mu$, and $\int_{-\infty}^{\infty} f d \mu$ are similarly connoted.

4.3 Push-forward of measures and distribution of functions

Distribution of a measurable function on a measure space is now considered with its application to representation of the integral of Borel functions of the function as integral on \mathbb{R}. For this purpose, a natural method of constructing new measures from one given through mappings will be presented first.

Suppose that μ measures Ω and that t is a map from Ω to a set X; define a set function $t_{\#} \mu$ on 2^{x} by

$$
t_{\#} \mu(A)=\mu\left(t^{-1} A\right), \quad A \subset X
$$

Obviously, $t_{\#} \mu$ is a measure on X; it is called the push-forward of μ through the map t. Let $A \subset X$ be such that $t^{-1} A$ is μ-measurable, then $t^{-1} A$ is $\mu\lfloor B$-measurable for any subset B of Ω by Exercise 3.1.3 (i). Thus if C is any subset of X, we have, since $\left(t^{-1} A\right)^{c}=t^{-1} A^{c}$,

$$
\mu\left\lfloor B\left(t^{-1} C\right)=\mu\left\lfloor B\left(t^{-1} C \cap t^{-1} A\right)+\mu\left\lfloor B\left(t^{-1} C \cap t^{-1} A^{c}\right),\right.\right.\right.
$$

or,

$$
t_{\#}\left(\mu\lfloor B)(C)=t_{\#}\left(\mu\lfloor B)(C \cap A)+t_{\#}\left(\mu\lfloor B)\left(C \cap A^{c}\right)\right.\right.\right.
$$

The last equality means that A is $t_{\#}(\mu\lfloor B)$-measurable for any subset B of Ω. Conversely, suppose that a subset A of X is $t_{\#}(\mu\lfloor B)$-measurable for any subset B of Ω; then if we choose $C=X$ in the last equality, it follows that

$$
t_{\#}\left(\mu\lfloor B)(X)=t_{\#}\left(\mu\lfloor B)(A)+t_{\#}\left(\mu\lfloor B)\left(A^{c}\right),\right.\right.\right.
$$

or,

$$
\mu\left\lfloor B(\Omega)=\mu\left\lfloor B\left(t^{-1} A\right)+\mu\left\lfloor B\left(\left\{t^{-1} A\right\}^{c}\right),\right.\right.\right.
$$

and hence,

$$
\mu(B)=\mu\left(B \cap t^{-1} A\right)+\mu\left(B \cap\left\{t^{-1} A\right\}^{c}\right)
$$

for any subset B of Ω, implying that $t^{-1} A$ is μ-measurable. We have shown the following proposition.
Proposition 4.3.1 Let A be a subset of X, then, $t^{-1} A$ is μ-measurable if and only if A is $t_{*}(\mu\lfloor B)$-measurable for every subset B of Ω.
Corollary 4.3.1 A subset A of X is $t_{\#} \mu$-measurable if $t^{-1} A$ is μ-measurable.
Exercise 4.3.1 Show that if t is injective, then $A \subset X$ is $t_{\#} \mu$-measurable if and only if $t^{-1} A$ is μ-measurable.

Proposition 4.3.2 If μ is a finite regular measure on Ω, then $A \subset X$ is $t_{\#} \mu$ - measurable if and only if $t^{-1} A$ is μ-measurable.

Proof Because of Corollary 4.3.1, we need only show that if A is $t_{\#} \mu$-measurable, then $t^{-1} A$ is μ-measurable.

Choose $C \in \Sigma^{\mu}$ such that $t^{-1} A \subset C$ and $\mu\left(t^{-1} A\right)=\mu(C)$. Using the conclusion of Exercise 3.1.4, we have

$$
\begin{aligned}
\mu\left(C \cap t^{-1} A^{c}\right)+\mu\left(C \cup t^{-1} A^{c}\right) & =\mu(C)+\mu\left(t^{-1} A^{c}\right) \\
& =\mu\left(t^{-1} A\right)+\mu\left(t^{-1} A^{c}\right) \\
& =t_{\#} \mu(A)+t_{\#} \mu\left(A^{c}\right)=t_{\#} \mu(X) \\
& =\mu(\Omega)=\mu\left(C \cup t^{-1} A^{c}\right) ;
\end{aligned}
$$

since μ is finite, we may cancel out the term $\mu\left(C \cup t^{-1} A^{c}\right)$ from the far left-hand side and the far right-hand side in the above sequence of equalities to obtain $\mu(C \cap$ $\left.\left(t^{-1} A\right)^{c}\right)=0$. Thus $C \cap\left(t^{-1} A\right)^{c}$ is μ-measurable. But from $t^{-1} A \subset C$, we have $t^{-1} A=$ $C \backslash\left(C \cap\left(t^{-1} A\right)^{c}\right)$ and hence $t^{-1} A$ is μ-measurable.

Suppose now that (Ω, Σ, μ) is a measure space and t is a map from Ω into a set X. Let μ^{*} be the measure on Ω constructed from μ by Method I ; μ^{*} is the unique Σ-regular measure on Ω such that $\mu^{*}(A)=\mu(A)$ for $A \in \Sigma$ as asserted by Corollary 3.4.1. Define $t_{\#} \Sigma:=\left\{A \subset X: t^{-1} A \in \Sigma\right\}$. Since $\Sigma \subset \Sigma^{\mu^{*}}$ and $\mu^{*}(A)=\mu(A)$ for $A \in \Sigma, t_{\#} \Sigma \subset$ $\Sigma^{t_{t} \mu^{*}}$ (by Corollary 4.3.1) and $t_{\#} \mu^{*}(A)=\mu\left(t^{-1} A\right)$ for $A \in t_{\#} \Sigma$. For notational simplicity, denote the restriction of $t_{\#} \mu^{*}$ to $t_{\#} \Sigma$ by $t_{\#} \mu$; then $\left(X, t_{\#} \Sigma, t_{\#} \mu\right)$ is a measure space called the push-forward of (Ω, Σ, μ) through the map t. Note that the map t from Ω into X is measure-preserving from (Ω, Σ, μ) to $\left(X, t_{\#} \Sigma, t_{\#} \mu\right)$ (cf. Section 2.8.2).
Exercise 4.3.2 Let (Ω, Σ, μ) be a measure space and t a map from Ω into a set X.
(i) Show that a function f on X is $t_{*} \Sigma$-measurable if and only if $f \circ t$ is Σ-measurable.
(ii) Show that if $f \geq 0$ is $t_{\#} \Sigma$-measurable, then $\int_{X} f d t_{\#} \mu=\int_{\Omega} f \circ t d \mu$.
(iii) Show that if f is $t_{\#} \Sigma$-measurable, then $\int_{X} f d t_{\#} \mu=\int_{\Omega} f \circ t d \mu$ if one of the integrals is meaningful.
(Hint: start with f as an indicator function of a set.)
Example 4.3.1 (Cf. Exercise 3.4.2 (vi)) Suppose that $\Omega=X=\mathbb{R}^{n}$, and Σ is the σ-algebra \mathcal{L}^{n} of all Lebesgue measurable sets in \mathbb{R}^{n}.
(i) For $a \in \mathbb{R}^{n}$ fixed, let t be the mapping $t x=x+a, x \in \mathbb{R}^{n}$. Then $t_{\#} \mathcal{L}^{n}=\mathcal{L}^{n}$, $t_{\#} \lambda^{n}=\lambda^{n}$, hence,

$$
\int_{\mathbb{R}^{n}} f(x+a) d x=\int_{\mathbb{R}^{n}} f(x) d x,
$$

if $\int_{\mathbb{R}^{n}} f(x) d x$ exists, i.e. the Lebesgue integral is translation invariant on \mathbb{R}^{n}.
(ii) For $\alpha \in \mathbb{R}, \alpha \neq 0$, consider the mapping $t x=\alpha x$. Then, $t_{\#} \mathcal{L}^{n}=\mathcal{L}^{n}, t_{\#} \lambda^{n}=$ $\frac{1}{|\alpha|^{n}} \lambda^{n}$, hence,

$$
\int_{\mathbb{R}^{n}} f(\alpha x) d x=\frac{1}{|\alpha|^{n}} \int_{\mathbb{R}^{n}} f(x) d x,
$$

if $\int_{\mathbb{R}^{n}} f(x) d x$ exists. In particular, take $f=I_{B_{1}(0)}$, then $\lambda^{n}\left(B_{r}(0)\right)=r^{n} \lambda^{n}\left(B_{1}(0)\right)$.
Exercise 4.3.3 Suppose that f is Lebesgue measurable on \mathbb{R} and is periodic with period $l>0$ i.e. $f(x)=f(x+l)$ for $x \in \mathbb{R}$. Suppose further that f is integrable on $[0, l]$. Show that f is integrable on $[a, a+l]$ and $\int_{0}^{l} f d \lambda=\int_{a}^{a+l} f d \lambda$ for any $a \in \mathbb{R}$.
Exercise 4.3.4 Suppose that t is a continuous and monotone increasing function defined on a finite interval $[a, b]$. Put $c=t(a)$ and $d=t(b)$. Show that for any Borel set $A \subset[c, d], t_{\#} \mu_{t}(A)=\lambda(A)$, where μ_{t} is the Lebesgue-Stieltjes measure generated by t. (Hint: for any interval I open in $[c, d], t_{\#} \mu_{t}(I)=|I|$.)

Suppose now that f is a finite-valued measurable function on a measure space (Ω, Σ, μ). Since f is Σ-measurable, $f_{\#} \Sigma$ contains all Borel subsets of \mathbb{R} and $f_{\#} \mu$ is a measure on \mathcal{B}. Considered as a measure on $\mathcal{B}, f_{\#} \mu$ is called the distribution of f. If g is a Borel function on \mathbb{R}, then $g \circ f$ is Σ-measurable and

$$
\begin{equation*}
\int_{\mathbb{R}} g d f_{\#} \mu=\int_{\Omega} g \circ f d \mu \tag{4.1}
\end{equation*}
$$

if one of the integrals exists. In particular, if g is taken to be $g(t)=|t|^{p}, 1 \leq p<\infty$, then

$$
\int_{\Omega}|f|^{p} d \mu=\int_{\mathbb{R}}|t|^{p} d f_{\#} \mu .
$$

Thus, $\int_{\Omega}|f|^{p} d \mu$ can be expressed as an integral on \mathbb{R} w.r.t. the measure $f_{\#} \mu$. When $\mu(\{f \leq t\})<\infty$ for every $t \in \mathbb{R}$, put

$$
F(t)=\mu(\{f \leq t\})=\mu\left(f^{-1}(-\infty, t]\right),
$$

then F is a monotone increasing function and we might expect $\int_{\mathbb{R}}|t|^{p} d f_{\neq} \mu$ to be the improper Riemann-Stieltjes integral $\int|t|^{p} d F:=\lim _{\substack{c \rightarrow \infty \\ a \rightarrow-\infty}} \int_{a}^{b}|t|^{p} d F$. We shall see that this is actually true (cf. Exercise 4.5.6).
Exercise 4.3.5 Show that the function F, previously defined, is right-continuous i.e. $F(t)=F(t+)$. Moreover, $\lim _{t \rightarrow-\infty} F(t)=0, \lim _{t \rightarrow \infty} F(t)=\mu(\Omega)$.
The function F is called the distribution function of f. When a function F is mentioned as the distribution function of a measurable function f, it is implicitly assumed that $\mu(\{f \leq t\})<\infty$ for every $t \in \mathbb{R}$. One sees easily that if f is measurable and finite a.e. on Ω, its distribution $f_{\#} \mu$ and distribution function can be similarly defined.

As we have seen in Section 3.8, F generates a Lebesgue-Stieltjes measure μ_{F} on \mathbb{R}. It turns out that $\mu_{F}=f_{\#} \mu$ on \mathcal{B}, as the following theorem claims.

Theorem 4.3.1 Suppose that F is the distribution function of a finite-valued measurable function f on a measure space (Ω, Σ, μ). Then, $\left(\mathbb{R}, \mathcal{B}, f_{\#} \mu\right)=\left(\mathbb{R}, \mathcal{B}, \mu_{F}\right)$, where μ_{F} is the Lebesgue-Stieltjes measure generated by F, and

$$
\begin{equation*}
\int_{\Omega} g \circ f d \mu=\int_{\mathbb{R}} g d \mu_{F}, \tag{4.2}
\end{equation*}
$$

for any Borel measurable functiong on \mathbb{R} whose μ_{F}-integral exists.
Proof Since F is right-continuous, $\mu_{F}((a, b])=F(b)-F(a)$, from which by letting $a \rightarrow-\infty$, we have

$$
\mu_{F}((-\infty, b])=F(b)=\mu\left(f^{-1}(-\infty, b]\right)=f_{\#} \mu((-\infty, b])
$$

for $b \in \mathbb{R}$. Now fix $a \in \mathbb{R}$ and consider the family \mathcal{F} of all $B \in \mathcal{B}$ such that $\mu_{F}((-\infty, a] \cap B)=f_{\#} \mu((-\infty, a] \cap B)$. It is clear that \mathcal{F} is a λ-system and it contains all sets of the form $(-\infty, b], b \in \mathbb{R}$. Since the family of all sets of the form $(-\infty, b]$, $b \in \mathbb{R}$, is a π-system and \mathcal{B} is the smallest σ-algebra containing all sets of the form $(-\infty, b]$, it follows from the $(\pi-\lambda)$ theorem that $\mathcal{F}=\mathcal{B}$. Thus,

$$
\mu_{F}((-\infty, a] \cap B)=f_{\#} \mu((-\infty, a] \cap B)
$$

for all $B \in \mathcal{B}$. From this, by letting $a \rightarrow \infty$, we infer that $\mu_{F}(B)=f_{\#}(B)$ for all $B \in \mathcal{B}$, or $\left(\mathbb{R}, \mathcal{B}, \mu_{F}\right)=\left(\mathbb{R}, \mathcal{B}, f_{\#} \mu\right)$. Then (4.2) follows from (4.1).

In the final part of this section we demonstrate using an example the fact that measure spaces, which look very different from one another in appearance, might be the same measure space in different forms.

Example 4.3.2 Let $(\Omega, \sigma(\mathcal{Q}), P)$ be the Bernoulli sequence space of Example 3.4.6.
Define a map $t: \Omega \rightarrow[0,1]$ by

$$
t(\omega)=\sum_{j=1}^{\infty} \frac{\omega_{j}}{2^{j}}, \quad \omega=\left(\omega_{j}\right) \in \Omega .
$$

Note that $0 . \omega_{1} \omega_{2} \omega_{3} \cdots$ is a binary expansion of $t(\omega)$. For $x \in[0,1], t^{-1} x$ consists of either two elements or one element, depending on whether x is a binary rational number or not, except that $t^{-1} 0$ consists of one element; when x is a binary rational number in $(0,1]$, say $x=\sum_{j=1}^{n} \frac{\varepsilon_{j}}{2}$ with $\varepsilon_{n}=1$, then $t^{-1} x$ consists of $\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}, 1,0,0,0, \ldots\right)$ and $\left(\varepsilon_{1}, \ldots, \varepsilon_{n-1}, 0,1,1,1, \ldots\right)$. Therefore if we put

$$
\widehat{\Omega}=\left\{\omega \in \Omega: \omega_{j}=1 \text { for infinitely many } j\right\}
$$

then $\Omega \backslash \widehat{\Omega}$ is countable and hence $\widehat{\Omega} \in \sigma(\mathcal{Q})$ with $P(\widehat{\Omega})=1$. One sees readily that if \hat{t} is the restriction of t to $\widehat{\Omega}, \hat{t}$ is bijective from $\widehat{\Omega}$ to (0,1 . As in Section 1.3, for a finite sequence $\varepsilon_{1}, \ldots, \varepsilon_{n}$ of 0 and 1 , the elementary cylinder $\left\{\omega \in \Omega: \omega_{j}=\varepsilon_{j}\right.$, $j=1, \ldots, n\}$ in Ω of rank n is denoted by $E\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$; and we let \mathcal{E} be the family
of empty set \emptyset and all elementary cylinders of all ranks in Ω. \mathcal{E} is a π-system on Ω, and if we let $\widehat{\mathcal{E}}=\{E \cap \widehat{\Omega}: E \in \mathcal{E}\}$, then $\widehat{\mathcal{E}}$ is a π-system on $\widehat{\Omega}$.
(i) Observe first that $\sigma(\widehat{\mathcal{E}})=\sigma(\mathcal{Q}) \mid \widehat{\Omega}$. Actually, $\Sigma:=\{A \in \sigma(\mathcal{Q}): A \cap \widehat{\Omega} \in$ $\sigma(\widehat{\mathcal{E}})\}$ is a σ-algebra on Ω containing \mathcal{E}, implying $\Sigma \supset \sigma(\mathcal{E})=\sigma(\mathcal{Q}) \supset \Sigma$, or $\Sigma=\sigma(\mathcal{Q})=\sigma(\mathcal{E})$, and hence $\sigma(\mathcal{Q}) \mid \widehat{\Omega} \subset \sigma(\widehat{\mathcal{E}})$; that $\sigma(\widehat{\mathcal{E}}) \subset \sigma(\mathcal{Q}) \mid \widehat{\Omega}$ follows from the fact that $\sigma(\mathcal{Q}) \mid \widehat{\Omega}$ is a σ-algebra on $\widehat{\Omega}$ containing $\widehat{\mathcal{E}}$.
(ii) For any elementary cylinder $E\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$ of positive rank n in Ω, put $\widehat{E}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)=E \cap \widehat{\Omega}$. Observe that $\hat{t} \widehat{E}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)=\left(\alpha, \alpha+\frac{1}{2^{n}}\right]$, where $\alpha=$ $\sum_{j=1}^{n} \frac{\varepsilon_{j}}{2}$, and since \hat{t} is bijective on $\widehat{\Omega}$ to $(0,1], \hat{t}^{-1}\left(\alpha, \alpha+\frac{1}{2^{n}}\right]=\widehat{E}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)$, implying that $\hat{t}_{*} P\left(\left(\alpha, \alpha+\frac{1}{2^{n}}\right]\right)=P\left(\widehat{E}\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)\right)=\frac{1}{2^{n}}=\lambda\left(\left(\alpha, \alpha+\frac{1}{2^{n}}\right]\right)$. Now, if we let $\widehat{\mathcal{I}}=\{\hat{t} A: A \in \widehat{\mathcal{E}}\}$, then $\widehat{\mathcal{I}}$ is a π-system on (0,1$]$. Denote temporarily, in this example, by \mathcal{B} and $\widehat{\mathcal{B}}$ the Borel fields on $[0,1]$ and on $(0,1]$ respectively, and let

$$
\mathcal{M}=\left\{B \in \widehat{\mathcal{B}}: \hat{t}^{-1} B \in \sigma(\widehat{\mathcal{E}}) \text { and } P\left(\hat{t}^{-1} B\right)=\lambda(B)\right\} .
$$

As \hat{t} is bijective from $\widehat{\Omega}$ to $(0,1], \mathcal{M}$ is easily seen to be a λ-system on $(0,1]$ containing $\widehat{\mathcal{I}}$; and as $\sigma(\widehat{\mathcal{I}})=\widehat{\mathcal{B}}$, we conclude by the $(\pi-\lambda)$ theorem that $\mathcal{M}=\widehat{\mathcal{B}}$, i.e. $\widehat{\mathcal{B}} \subset \hat{t}_{\#} \sigma(\widehat{\mathcal{E}})$ and $\hat{t}_{\#} P(B)=\lambda(B)$ for all $B \in \widehat{\mathcal{B}}$.
(iii) We have shown in (ii) that $\widehat{\mathcal{B}} \subset \hat{t}_{*} \sigma(\widehat{\mathcal{E}})$ and $\hat{t}_{*} P(B)=\lambda(B)$ for all $B \in \widehat{\mathcal{B}}$; now it will be shown that $\widehat{\mathcal{B}}=\hat{t}_{\#} \sigma(\widehat{\mathcal{E}})$ and thus $((0,1], \widehat{\mathcal{B}}, \lambda)$ is the push-forward of $(\widehat{\Omega}, \sigma(\widehat{\mathcal{E}}), P)$ through the map \hat{t}. For this purpose, it is sufficient to claim that $\hat{t} A \in \widehat{\mathcal{B}}$ if $A \in \sigma(\widehat{\mathcal{E}})$. Consider $\mathcal{M}=\{A \in \sigma(\widehat{\mathcal{E}}): \hat{t} A \in \widehat{\mathcal{B}}\}$. Clearly, \mathcal{M} is a σ-algebra on $\widehat{\Omega}$ containing $\widehat{\mathcal{E}}$ and hence $\mathcal{M}=\sigma(\widehat{\mathcal{E}})$.
From the conclusions in (ii) and (iii) and the fact that \hat{t} is bijective from $\widehat{\Omega}$ to $(0,1]$, we conclude that $B \in \widehat{\mathcal{B}}$ if and only if $\hat{t}^{-1} B \in \sigma(\widehat{\mathcal{E}})$ (equivalently, $A \in \sigma(\widehat{\mathcal{E}})$ if and only if $\hat{t} A \in \widehat{\mathcal{B}})$ and that $\hat{t}_{\#} P=\lambda$ on $\widehat{\mathcal{B}}$ and $\hat{t}_{\#}^{-1} \lambda=P$ on $\sigma(\widehat{\mathcal{E}})$. Therefore, $(\widehat{\Omega}, \sigma(\widehat{\mathcal{E}}), P)$ and $((0,1], \widehat{\mathcal{B}}, \lambda)$ are the same measure space labeled differently. Since $\sigma(\widehat{\mathcal{E}})=$ $\sigma(\mathcal{Q}) \mid \widehat{\Omega}$ and $\Omega \backslash \widehat{\Omega}$ is countable, ($[0,1], \mathcal{B}, \lambda)$ is the push-forward of $(\Omega, \sigma(\mathcal{Q}), P)$ through t and $B \in \mathcal{B}$ if and only if $t^{-1} B \in \sigma(\mathcal{Q})$.

Exercise 4.3.6 Let $(\Omega, \sigma(\mathcal{Q}), P)$ and t be as in Example 4.3.2 and P^{*} be the measure on Ω constructed from P by Method I. Show that $t_{\#} P^{*}=\lambda$ on $[0,1]$.

4.4 Functions of bounded variation

This section is devoted to the study of an important class of real-valued functions defined on a finite closed interval $I=[a, b]$. This is the class of functions of bounded variation. Functions in this section are all understood to be real-valued and defined on I.

For a real number α, α^{+}denotes α or 0 according to whether $\alpha \geq 0$ or $\alpha<0$, and $\alpha^{-}:=(-\alpha)^{+}$. It is easily verified that $\alpha=\alpha^{+}-\alpha^{-},(\alpha+\beta)^{+} \leq \alpha^{+}+\beta^{+}$, and $(\alpha+\beta)^{-} \leq$ $\alpha^{-}+\beta^{-}$for any real numbers α and β.

Recall that a finite sequence $a=x_{0}<x_{1}<\cdots<x_{l}=b$ of points is called a partition of the interval I, where l varies from partition to partition. A generic partition of an interval will be denoted by \mathcal{P}.

Suppose that f is a function and $\mathcal{P}: a=x_{0}<x_{1}<\cdots<x_{l}=b$ a partition of I, let

$$
\begin{aligned}
& P_{a}^{b}(f ; \mathcal{P})=\sum_{j=1}^{l}\left\{f\left(x_{j}\right)-f\left(x_{j-1}\right)\right\}^{+} ; \\
& N_{a}^{b}(f ; \mathcal{P})=\sum_{j=1}^{l}\left\{f\left(x_{j}\right)-f\left(x_{j-1}\right)\right\}^{-} ;
\end{aligned}
$$

and

$$
V_{a}^{b}(f ; \mathcal{P})=\sum_{j=1}^{l}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right| .
$$

Observe that

$$
V_{a}^{b}(f ; \mathcal{P})=P_{a}^{b}(f ; \mathcal{P})+N_{a}^{b}(f ; \mathcal{P}) .
$$

Now put

$$
\begin{aligned}
P_{a}^{b}(f) & =\sup _{\mathcal{P}} P_{a}^{b}(f ; \mathcal{P}) ; \\
N_{a}^{b}(f) & =\sup _{\mathcal{P}} N_{a}^{b}(f ; \mathcal{P}) ;
\end{aligned}
$$

and

$$
V_{a}^{b}(f)=\sup _{\mathcal{P}} V_{a}^{b}(f ; \mathcal{P}) .
$$

$P_{a}^{b}(f)$ and $N_{a}^{b}(f)$ are called respectively the positive and the negative variation of f over I, while $V_{a}^{b}(f)$ is called the total variation of f over I. When $a=b, V_{a}^{b}(f)=$ $P_{a}^{b}(f)=N_{a}^{b}(f)=0$, by definition. A function f is said to be of bounded variation on I if $V_{a}^{b}(f)<\infty$. Observe that a continuously differentiable function f is of bounded variation over I and $V_{a}^{b}(f) \leq \int_{a}^{b}\left|f^{\prime}(x)\right| d x$, and that a monotone function f is of bounded variation on I with $V_{a}^{b}(f)=|f(b)-f(a)|$.
Exercise 4.4.1 Show that $V_{a}^{b}(f)=P_{a}^{b}(f)+N_{a}^{b}(f)$.
Exercise 4.4.2 If $a<c<b$, show that $P_{a}^{b}(f)=P_{a}^{c}(f)+P_{c}^{b}(f)$ and similarly for negative and total variation.

Exercise 4.4.3 Show that if f and g are of bounded variation on I, then $\alpha f+\beta g$ is also of bounded variation on I for any real numbers α and β, and $V_{a}^{b}(\alpha f+\beta g) \leq$ $|\alpha| V_{a}^{b}(f)+|\beta| V_{a}^{b}(g)$.

Now suppose that f is a function of bounded variation on I. Let $x \in I$ and \mathcal{P} be a partition of $[a, x]$, then

$$
\begin{aligned}
f(x)-f(a) & =\sum_{j=1}^{l}\left\{f\left(x_{j}\right)-f\left(x_{j-1}\right)\right\}=P_{a}^{x}(f ; \mathcal{P})-N_{a}^{x}(f ; \mathcal{P}) \\
& \leq P_{a}^{x}(f)-N_{a}^{x}(f ; \mathcal{P})
\end{aligned}
$$

or

$$
f(x)-f(a)+N_{a}^{x}(f ; \mathcal{P}) \leq P_{a}^{x}(f),
$$

from which one infers that

$$
f(x) \leq f(a)+P_{a}^{x}(f)-N_{a}^{x}(f)
$$

Similarly, one has

$$
f(x)-f(a) \geq P_{a}^{x}(f ; \mathcal{P})-N_{a}^{x}(f)
$$

and hence

$$
f(x)-f(a)+N_{a}^{x}(f) \geq P_{a}^{x}(f),
$$

or

$$
f(x) \geq f(a)+P_{a}^{x}(f)-N_{a}^{x}(f)
$$

Consequently,

$$
\begin{equation*}
f(x)=f(a)+P_{a}^{x}(f)-N_{a}^{x}(f), \quad x \in I \tag{4.3}
\end{equation*}
$$

Since $P_{a}^{x}(f)$ and $N_{a}^{x}(f)$ are monotone increasing in x, it follows from (4.3) that f is a difference of two monotone increasing functions. Conversely, when f is a difference of two monotone increasing functions, then f is of bounded variation on I. Thus the first part of the following theorem has been shown.

Theorem 4.4.1 A function f is of bounded variation on I if and only iff is a difference of two monotone increasing functions. Furthermore, if f is of bounded variation on I and $f=f_{1}-f_{2}$, where f_{1} and f_{2} are monotone increasing and $f_{1}(a)=f(a)$, then there is a monotone increasing function φ on I with $\varphi(a)=0$ such that

$$
f_{1}(x)=f(a)+P_{a}^{x}(f)+\varphi(x) ; \quad f_{2}(x)=N_{a}^{x}(f)+\varphi(x)
$$

for $x \in I$.

Proof It remains to show the second part of the theorem. So suppose that f is of bounded variation on I and $f=f_{1}-f_{2}$, where f_{1} and f_{2} are monotone increasing and $f_{1}(a)=f(a)$. From monotony of f_{1} and f_{2}, one verifies that for $a \leq x^{\prime}<x^{\prime \prime} \leq b$,

$$
\begin{aligned}
& \left\{f\left(x^{\prime \prime}\right)-f\left(x^{\prime}\right)\right\}^{+}=\left\{f_{1}\left(x^{\prime \prime}\right)-f_{1}\left(x^{\prime}\right)+f_{2}\left(x^{\prime}\right)-f_{2}\left(x^{\prime \prime}\right)\right\}^{+} \leq f_{1}\left(x^{\prime \prime}\right)-f_{1}\left(x^{\prime}\right) ; \\
& \left\{f\left(x^{\prime \prime}\right)-f\left(x^{\prime}\right)\right\}^{-}=\left\{f_{1}\left(x^{\prime \prime}\right)-f_{1}\left(x^{\prime}\right)+f_{2}\left(x^{\prime}\right)-f_{2}\left(x^{\prime \prime}\right)\right\}^{-} \leq f_{2}\left(x^{\prime \prime}\right)-f_{2}\left(x^{\prime}\right) .
\end{aligned}
$$

From the preceding inequalities it then follows that for $a \leq x<y \leq b$ and any partition \mathcal{P} of $[x, y]$,

$$
P_{x}^{y}(f ; \mathcal{P}) \leq f_{1}(y)-f_{1}(x) ; \quad N_{x}^{y}(f ; \mathcal{P}) \leq f_{2}(y)-f_{2}(x),
$$

and hence

$$
\begin{equation*}
P_{x}^{y}(f) \leq f_{1}(y)-f_{1}(x) ; \quad N_{x}^{y}(f) \leq f_{2}(y)-f_{2}(x) . \tag{4.4}
\end{equation*}
$$

In particular,

$$
P_{a}^{x}(f) \leq f_{1}(x)-f(a) ; \quad N_{a}^{x}(f) \leq f_{2}(x)
$$

for $x \in I$. Let $\varphi(x)=f_{1}(x)-\left\{f(a)+P_{a}^{x}(f)\right\}$, then $\varphi \geq 0$ and $\varphi(a)=0$; from $f(a)+$ $P_{a}^{x}(f)-N_{a}^{x}(f)=f(x)=f_{1}(x)-f_{2}(x)$, it follows that $f_{2}(x)=N_{a}^{x}(f)+\varphi(x)$ for $x \in I$. It remains to see that φ is monotone increasing. For $x<y$ in I we have

$$
\varphi(y)-\varphi(x)=f_{1}(y)-f_{1}(x)-\left\{P_{a}^{y}(f)-P_{a}^{x}(f)\right\}=f_{1}(y)-f_{1}(x)-P_{x}^{y}(f) \geq 0,
$$

by applying the first inequality in (4.4). This shows that φ is monotone increasing.

Henceforth, a function of bounded variation on I will simply be called a BV function on I. For a BV function f, let functions f_{P}, f_{N}, and f_{V} be defined by

$$
f_{P}(x)=P_{a}^{x}(f) ; \quad f_{N}(x)=N_{a}^{x}(f) ; \quad \text { and } f_{V}(x)=V_{a}^{x}(f),
$$

then the second part of Theorem 4.4.1 could be interpreted as saying that the decomposition $f=f(a)+f_{P}-f_{N}$ is the minimal decomposition of f into the difference of monotone increasing functions if a partial order \prec on the family of all monotone increasing functions on I is defined as follows: $f \prec g$ if and only if $g-f$ is nonnegative and monotone increasing on I.

Theorem 4.4.2 Suppose that f is a BV function on I. Iff is right(left)-continuous at $x_{0} \in$ $[a, b)\left(x_{0} \in(a, b]\right)$, then so are f_{p}, f_{N}, and f_{V}.
Proof Since $f(x)-f(a)=f_{P}(x)-f_{N}(x)$ and $f_{V}(x)=f_{P}(x)+f_{N}(x)$,

$$
f_{P}(x)=\frac{1}{2}\left\{f_{V}(x)+f(x)-f(a)\right\} \text { and } f_{N}(x)=\frac{1}{2}\left\{f_{V}(x)-f(x)+f(a)\right\}
$$

for $x \in I$, it is therefore sufficient to show that f_{V} is right-continuous at x_{0}. For this, we have to show that $f_{V}\left(x_{0^{+}}\right)=f_{V}\left(x_{0}\right)$, or $V_{x_{0}}^{x_{0}+h}(f) \rightarrow 0$ as $h \rightarrow 0+$.

Suppose the contrary, then $\delta_{0}=f_{V}\left(x_{0}+\right)-f_{V}\left(x_{0}\right)>0$. Let $\delta=\frac{2}{3} \delta_{0}$, and choose $h_{1}>0$ small enough so that $x_{0}+h_{1} \leq b$ and $V_{x_{0}}^{x_{0}+h_{1}}(f)<2 \delta$. Since $V_{x_{0}}^{x_{0}+h_{1}}(f)>\delta$, there is a partition $x_{0}<x_{1}<\cdots<x_{l}=x_{0}+h_{1}$ such that

$$
\sum_{j=1}^{l}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|>\delta
$$

As f is right-continuous at x_{0}, there is $h_{2}>0$ with $x_{0}+h_{2}<x_{1}$ such that $\left|f\left(x_{1}\right)-f\left(x_{0}+h_{2}\right)\right|+\sum_{j=2}^{l}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|>\delta$; hence $V_{x_{0}+h_{2}}^{x_{0}+h_{1}}(f)>\delta$. Now repeat the above argument with h_{1} replaced by h_{2}, to obtain $0<h_{3}<h_{2}$ such that $V_{x_{0}+h_{3}}^{x_{0}+h_{2}}(f)>\delta$. Then,

$$
2 \delta>V_{x_{0}}^{x_{0}+h_{1}}(f) \geq V_{x_{0}+h_{3}}^{x_{0}+h_{2}}(f)+V_{x_{0}+h_{2}}^{x_{0}+h_{1}}(f)>2 \delta
$$

which is absurd. Thus f_{V} is right-continuous at x_{0}.
Example 4.4.1 Let f be a Lebesgue integrable function on I and define

$$
\begin{equation*}
F(x)=\alpha+\int_{a}^{x} f(t) d t, \quad x \in I \tag{4.5}
\end{equation*}
$$

α being a constant. Then F is a BV function and

$$
V_{a}^{b}(F)=\int_{a}^{b}|f(t)| d t
$$

Actually, for any partition $\mathcal{P}: a=x_{0}<x_{1}<\cdots<x_{l}=b$, we have

$$
V_{a}^{b}(F ; \mathcal{P})=\sum_{j=1}^{l}\left|\int_{x_{j-1}}^{x_{j}} f(t) d t\right| \leq \int_{a}^{b}|f(t)| d t
$$

hence,

$$
\begin{equation*}
V_{a}^{b}(F) \leq \int_{a}^{b}|f(t)| d t<\infty \tag{4.6}
\end{equation*}
$$

Now, by Exercise 4.1.2, for any $\varepsilon>0$ there is a step function g such that

$$
\int_{a}^{b}|f(t)-g(t)| d t<\varepsilon
$$

Choose a partition $\mathcal{P}: a=x_{0}<x_{1}<\cdots<x_{l}=b$ of I such that $\left\{x_{0}, x_{1}, \ldots, x_{l}\right\}$ contains all the endpoints of the open intervals on which g is constant. We have then,

$$
\begin{aligned}
\sum_{j=1}^{l}\left|F\left(x_{j}\right)-F\left(x_{j-1}\right)\right| & =\sum_{j=1}^{l}\left|\int_{x_{j-1}}^{x_{j}} f(t) d t\right| \\
& \geq \sum_{j=1}^{l}\left|\int_{x_{j-1}}^{x_{j}} g(t) d t\right|-\sum_{j=1}^{l}\left|\int_{x_{j-1}}^{x_{j}}(f(t)-g(t)) d t\right| \\
& =\sum_{j=1}^{l} \int_{x_{j-1}}^{x_{j}}|g(t)| d t-\sum_{j=1}^{l}\left|\int_{x_{j-1}}^{x_{j}}(f(t)-g(t)) d t\right| \\
& \geq \int_{a}^{b}|g(t)| d t-\int_{a}^{b}|f(t)-g(t)| d t \\
& \geq \int_{a}^{b}|g(t)| d t-\varepsilon \geq \int_{a}^{b}|f(t)| d t-2 \varepsilon
\end{aligned}
$$

Thus,

$$
V_{a}^{b}(F) \geq \int_{a}^{b}|f(t)| d t-2 \varepsilon
$$

Let $\varepsilon \rightarrow 0$; we have $V_{a}^{b}(F) \geq \int_{a}^{b}|f(t)| d t$, and hence

$$
V_{a}^{b}(F)=\int_{a}^{b}|f(t)| d t
$$

by (4.6).
The function F, defined by (4.5), with f being Lebesgue integrable on I, is called an indefinite integral of f.

Exercise 4.4.4 Let F be an indefinite integral of f on I; show that $F_{P}(x)=\int_{a}^{x} f^{+}(t) d t$ and $F_{N}(x)=\int_{a}^{x} f^{-}(t) d t$. (Hint: use the fact that $F_{P}(x)=\frac{1}{2}\left\{F_{V}(x)+F(x)-F(a)\right\}$ and $F_{N}(x)=\frac{1}{2}\left\{F_{V}(x)-F(x)+F(a)\right\}$.)

4.5 Riemann-Stieltjes integral

The Rieman-Stieltjes integral of bounded functions on I will be defined along the same lines that the Riemann integral is defined. Suppose that g is a monotone increasing function defined on a finite closed interval $I=[a, b]$.

Given a partition $\mathcal{P}: a=x_{0}<x_{1}<\cdots<x_{l}=b$ of I and $j=1, \ldots, l$; put

$$
\mathcal{P}_{j} g=g\left(x_{j}\right)-g\left(x_{j-1}\right)
$$

For a bounded function f on I, and \mathcal{P} as above, let

$$
\underline{f}_{j}=\inf _{x \in\left[x_{j-1}, x_{j}\right]} f(x), \quad \bar{f}_{j}=\sup _{x \in\left[x_{j-1}, x_{j}\right]} f(x) ;
$$

and

$$
\underline{S}_{g}(f, \mathcal{P})=\sum_{j=1}^{l} f_{j} \mathcal{P}_{j} g, \quad \bar{S}_{g}(f, \mathcal{P})=\sum_{j=1}^{l} \bar{f}_{j} \mathcal{P}_{j} g .
$$

Observe that for any partitions \mathcal{P} and Q of I, the following sequence of inequalities holds:

$$
\begin{equation*}
\underline{S}_{g}(f, \mathcal{P}) \leq \underline{S}_{g}(f, \mathcal{P} \vee Q) \leq \bar{S}_{g}(f, \mathcal{P} \vee Q) \leq \bar{S}_{g}(f, Q) \tag{4.7}
\end{equation*}
$$

Now let $\int_{a}^{b} f d g=\sup _{\mathcal{P}} \underline{S}_{g}(f, \mathcal{P})$ and $\bar{\int}_{a}^{b} f d g=\inf _{\mathcal{P}} \bar{S}_{g}(f, \mathcal{P})$; by (4.7) both $\int_{a}^{b} f d g$ and $\bar{\int}_{a}^{b} f d g$ are finite and $\int_{a}^{b} f d g \leq \bar{\int}_{a}^{b} f d g$. In the case where $\int_{a}^{b} f d g=\bar{\int}_{a}^{b} f d g, f$ is said to be
Riemann-Stieltjes integrable w.r.t. g and the common value, denoted $\int_{a}^{b} f d g$, is called the Riemann-Stieltjes integral of f w.r.t. g. From (4.7), Theorem 4.5.1 follows directly:
Theorem 4.5.1 Let g be monotone increasing on $[a, b]$. A bounded function f on $[a, b]$ is Riemann-Stieltjes integrable w.r.t. g if and only if for any $\varepsilon>0$, there is a partition \mathcal{P} of $[a, b]$ such that

$$
\bar{S}_{g}(f, \mathcal{P})-\underline{S}_{g}(f, \mathcal{P})<\varepsilon
$$

Example 4.5.1 Let g be a monotone increasing function on $[a, b]$. (i) If f is continuous on $[a, b]$, then $\int_{a}^{b} f d g$ exists. (ii) If f is a BV function and g is continuous, then $\int_{a}^{b} f d g$ exists.
Clearly, (i) is an easy consequence of Theorem 4.5.1, while (ii) follows also from Theorem 4.5.1 if one notes that for any partition $\mathcal{P}: a=x_{0}<x_{1}<\cdots<x_{n}=b$ of $[a, b]$,

$$
\begin{aligned}
\bar{S}_{g}(f, \mathcal{P})-\underline{S}_{g}(f, \mathcal{P}) & =\sum_{j=1}^{n}\left(f_{j}-\bar{f}_{j}\right) \mathcal{P}_{j}(g) \\
& \leq \sum_{j=1}^{n} V_{x_{j-1}}^{x_{j}}(f) \mathcal{P}_{j} g \leq V_{a}^{b}(f) \max _{1 \leq j \leq n} \mathcal{P}_{j} g .
\end{aligned}
$$

Example 4.5.2 Suppose that w is a nonnegative Lebesgue integrable function on $[a, b]$, and g is an indefinite integral of w (cf. Example 4.4.1), then any Riemann integrable function f on $[a, b]$ is Riemann-Stieltjes integrable w.r.t. g on $[a, b]$ and

$$
\int_{a}^{b} f d g=\int_{a}^{b} f(t) w(t) d t
$$

For a partition $\mathcal{P}: a=x_{0}<x_{1}<\cdots<x_{n}=b$, define a function $\bar{f}^{\mathcal{P}}$ by $\bar{f}^{\mathcal{P}}(x)=\bar{f}_{j}$ if $x \in\left[x_{j-1}, x_{j}\right)$ and $\bar{f}^{\mathcal{P}}(b)=f(b)$; similarly define $\underline{f}^{\mathcal{P}}$ by $\underline{f}^{\mathcal{P}}(x)=\underline{f}_{j}$ if $x \in\left[x_{j-1}, x_{j}\right)$ and $\underline{f}^{\mathcal{P}}(b)=f(b)$. Now choose a sequence $\left\{\mathcal{P}^{(k)}\right\}$ of partitions so that $\left\|\mathcal{P}^{(k)}\right\| \rightarrow 0$ as $\bar{k} \rightarrow \infty$, and

$$
\bar{S}_{g}\left(f, \mathcal{P}^{(k)}\right) \rightarrow \int_{a}^{b} f d g ; \quad \underline{S}_{g}\left(f, \mathcal{P}^{(k)}\right) \rightarrow \int_{-}^{b} f d g .
$$

Obviously,

$$
\bar{S}_{g}\left(f, \mathcal{P}^{(k)}\right)=\int_{a}^{b} \bar{f}^{\mathcal{P}^{(k)}}(t) w(t) d t ; \quad \underline{S}_{g}\left(f, \mathcal{P}^{(k)}\right)=\int_{a}^{b} \underline{f}^{\mathcal{P}^{(k)}}(t) w(t) d t .
$$

Since f is Riemann integrable, f is continuous at almost all points of $[a, b]$, and hence

$$
\bar{f}^{\mathcal{P}^{(k)}} w \rightarrow f w \text { a.e.; } \quad \underline{f}^{\mathcal{P}^{(k)}} w \rightarrow f w \text { a.e. }
$$

If we put $M=\sup _{t \in[a, b]}|f(t)|,\left|\bar{f}^{\mathcal{P}^{(k)}} w\right| \leq M w,\left|\underline{f}^{\mathcal{P}^{(k)}} w\right| \leq M w$, hence by LDCT

$$
\lim _{k \rightarrow \infty} \bar{S}_{g}\left(f, \mathcal{P}^{(k)}\right)=\int_{a}^{b} f(t) w(t) d t=\lim _{k \rightarrow \infty} S_{g}\left(f, \mathcal{P}^{(k)}\right)
$$

and thus

$$
\int_{a}^{b} f d g=\int_{a}^{b} f d g=\int_{a}^{b} f(t) w(t) d t
$$

i.e. f is Riemann-Stieltjes integrable w.r.t. g on $[a, b]$ and $\int_{a}^{b} f d g=\int_{a}^{b} f(t) w(t) d t$.

Exercise 4.5.1 Suppose that f is continuous on $[a, b]$ and g is monotone increasing on $[a, b]$.
(i) Show that $\int_{a}^{b} f d g=\bar{\int}_{a}^{b} f d g=\inf \bar{S}_{g}(f, \mathcal{P})$, where the infimum is taken over all those partitions \mathcal{P}, the endpoints of whose intervals other than a and b are points of continuity of g.
(ii) Show that $\int_{a}^{b} f d g=\int_{a}^{b} f d \mu_{g}$.

The following Lemma is a generalization of Lemma 4.2.2 when $n=1$.

Lemma 4.5.1 Suppose that g is a right-continuous and monotone increasing function on $[a, b]$, and f a bounded function on $[a, b]$ which is continuous wherever g is discontinuous, then

$$
\int_{a}^{b} f d g=\int_{a}^{b} \underline{\underline{f}} d \mu_{g} ; \quad \int_{a}^{b} f d g=\int_{a}^{b} \bar{f} d \mu_{g}
$$

where $\underline{f}(x)=\lim _{\delta \rightarrow 0+} \inf _{|y-x|<\delta} f(y)$ and $\bar{f}(x)=\lim _{\delta \rightarrow 0+} \sup _{|y-x|<\delta} f(y)$.
Proof By Lemma 4.2.1, both \underline{f} and \bar{f} are Lebesgue measurable. It is clear that $\underline{f} \leq f \leq \bar{f}$ on $[a, b]$. Choose a sequence $\left\{\mathcal{P}^{(k)}\right\}$ of partitions of $[a, b]$ such that $\left\|\mathcal{P}^{(k)}\right\| \rightarrow 0$, and

$$
\int_{a}^{b} f d g=\lim _{k \rightarrow \infty} \underline{S}_{g}\left(f, \mathcal{P}^{(k)}\right) ; \quad \int_{a}^{b} f d g=\lim _{k \rightarrow \infty} \bar{S}_{g}\left(f, \mathcal{P}^{(k)}\right)
$$

For each $k \in \mathbb{N}$, let $\mathcal{P}^{(k)}$ be $a=x_{0}^{(k)}<x_{1}^{(k)}<\cdots<x_{n_{k}}^{(k)}=b$, and define $f_{k}(x)=$ $\inf _{x_{x_{-1}^{(k)}}^{(k)} \leq t \leq x_{j}^{(k)}} f(t)$ if $x \in\left(x_{j-1}^{(k)}, x_{j}^{(k)}\right]$ and $f_{k}(a)=f(a)$. As we have shown in the proof of Lemma 4.2.2, $\lim _{k \rightarrow \infty} f_{k}(x)=\underline{f}(x)$ if $x \in[a, b]$, but is not an endpoint of intervals of the partitions $\mathcal{P}^{(k)}, k=1,2, \ldots$. Now, since f is continuous wherever g is discontinuous and g is right-continuous, we may assume that all the endpoints of the intervals of the partitions $\mathcal{P}^{(k)}$ are points of continuity of g, except possibly b. Hence $f_{k}(x) \rightarrow \underline{f}(x)$ for μ_{g}-a.e. x in [a,b); but if b is a point of discontinuity of g, then f is continuous at b and hence $f_{k}(b) \rightarrow f(b)=\underline{f}(b)$. Thus, $\lim _{k \rightarrow \infty} f_{k}(x)=\underline{f}(x)$ for μ_{g}-a.e. x of $[a, b]$, and $\int_{a}^{b} \underline{f} d \mu_{g}=\lim _{k \rightarrow \infty} \int_{a}^{b} f_{k} d \mu_{g}$ by LDCT, because $\left|f_{k}(x)\right| \leq \sup _{a \leq t \leq b}|f(t)|$. Since g is right-continuous, $\mu_{g}((c, d])=$ $g(d)-g(c)$ for $a \leq c<d \leq b$; we have ${\underset{-}{g}}^{g}\left(f, \mathcal{P}^{(k)}\right)=\int_{a}^{b} f_{k} d \mu_{g}$. Consequently, $\int_{a}^{b} \underline{f} d \mu_{g}=\lim _{k \rightarrow \infty} \underline{S}_{g}\left(f, \mathcal{P}^{(k)}\right)=\underline{\int}_{a}^{b} f d g$. Similarly, $\int_{a}^{b} \bar{f} d \mu_{g}=\bar{\int}_{a}^{b} f d g$.
Theorem 4.5.2 Suppose that g is a right-continuous and monotone increasing function on $[a, b]$ and f is a bounded function which is continuous at the μ_{g}-a.e. point of $[a, b]$, then f is Riemann-Stieltjes integrable w.r.t. g, and

$$
\int_{a}^{b} f d g=\int_{a}^{b} f d \mu_{g}
$$

Proof We claim first that f is μ_{g}-measurable. From $\underline{f} \leq f \leq \bar{f}$ and the fact that f is continuous μ_{g}-a.e., it follows that $\underline{f}(x)=f(x)=\bar{f}(x)$ for μ_{g}-a.e. x in $[a, b]$; hence f differs from \underline{f} only on a set A with $\mu_{g}(A)=0$. But \underline{f} is Borel measurable by Lemma 4.2.1, and is therefore μ_{g}-measurable from the fact that μ_{g} is a Carathéodory measure.

Thus f is μ_{g}-measurable as we claim. Now, $\underline{f}=f=\bar{f} \mu_{g}$-a.e. implies, together with Lemma 4.5.1, that

$$
\int_{a}^{b} f d g=\int_{a}^{b} \underline{f} d \mu_{g}=\int_{a}^{b} f d \mu_{g}=\int_{a}^{b} \bar{f} d \mu_{g}=\int_{a}^{b} f d g,
$$

which entails that f is Riemann-Stieltjes integrable w.r.t. g and $\int_{a}^{b} f d g=\int_{a}^{b} f d \mu_{g}$.
Theorem 4.5.3 (Integration by parts) Suppose that f and g are monotone increasing functions on $[a, b]$ and at least one of them is continuous. Then

$$
\int_{a}^{b} f d g=f(b) g(b)-f(a) g(a)-\int_{a}^{b} g d f .
$$

Proof Note firstly that $\int_{a}^{b} f d g$ and $\int_{a}^{b} g d f$ exist, from Example 4.5.1. Let $\mathcal{P}: a=x_{0}<$ $x_{1}<\cdots<x_{l}=b$ be a partition of $[a, b]$, then

$$
\begin{aligned}
\bar{S}_{g}(f, \mathcal{P}) & =\sum_{j=1}^{l} f\left(x_{j}\right)\left[g\left(x_{j}\right)-g\left(x_{j-1}\right)\right] \\
& =f(b) g(b)-f(a) g(a)-\sum_{j=1}^{l} g\left(x_{j-1}\right)\left[f\left(x_{j}\right)-f\left(x_{j-1}\right)\right] \\
& =f(b) g(b)-f(a) g(a)-\underline{S}_{f}(g, \mathcal{P}),
\end{aligned}
$$

from which, by taking a sequence $\left\{\mathcal{P}^{(k)}\right\}$ of partitions such that

$$
\lim _{k \rightarrow \infty} \bar{S}_{g}\left(f, \mathcal{P}^{(k)}\right)=\int_{a}^{b} f d g \text { and } \lim _{k \rightarrow \infty} \underline{S}_{f}\left(g, \mathcal{P}^{(k)}\right)=\int_{a}^{b} g d f,
$$

we obtain,

$$
\begin{aligned}
\int_{a}^{b} f d g=\int_{a}^{b} f d g & =f(b) g(b)-f(a) g(a)-\int_{a}^{b} g d f \\
& =f(b) g(b)-f(a) g(a)-\int_{a}^{b} g d f .
\end{aligned}
$$

Exercise 4.5.2 Under the same assumptions as in Theorem 4.5.3, show that

$$
\int_{a}^{b} f d \mu_{g}=f(b) g(b)-f(a) g(a)-\int_{a}^{b} g d \mu_{f}
$$

(Hint: cf. Exercise 4.5.1.)

Now suppose that g is a BV function on $[a, b]$ and write $g=g_{1}-g_{2}$, where $g_{1}(x)=$ $g(a)+g_{P}(x)$ and $g_{2}(x)=g_{N}(x)$ for $x \in[a, b]$. Recall that $g_{P}(x)=P_{a}^{x}(g)$ and $g_{N}(x)=$ $N_{a}^{x}(g), x \in[a, b]$. A bounded function f on $[a, b]$ is called Riemann-Stieltjes integrable w.r.t. g if it is Riemann-Stieltjes integrable w.r.t. g_{1} and g_{2}, and in this case the Riemann-Stieltjes integral of f w.r.t. g, denoted $\int_{a}^{b} f d g$, is defined by

$$
\int_{a}^{b} f d g=\int_{a}^{b} f d g_{1}-\int_{a}^{b} f d g_{2}
$$

With this definition, Corollary 4.5.1 of Theorem 4.5.3 follows, by using Theorem 4.4.2.
Corollary 4.5.1 Suppose that f and g are $B V$ functions on $[a, b]$ and at least one of them is continuous, then

$$
\int_{a}^{b} f d g=f(b) g(b)-f(a) g(a)-\int_{a}^{b} g d f .
$$

Theorem 4.5.4 (Second mean-value theorem) Suppose that fis an integrable function on a finite interval $[a, b]$ and φ is a monotone function on $[a, b]$, then there is $c \in[a, b]$ such that

$$
\int_{a}^{b} \varphi f d \lambda=\varphi(a) \int_{a}^{c} f d \lambda+\varphi(b) \int_{c}^{b} f d \lambda .
$$

Firstly we prove a lemma.
Lemma 4.5.2 Let f and φ be as in Theorem 4.5.4 and, further φ is assumed to be nonnegative and monotone decreasing, then there is $c \in[a, b]$ such that

$$
\int_{a}^{b} \varphi f d \lambda=\varphi(a) \int_{a}^{c} f d \lambda .
$$

Proof We may assume that $\varphi(a)>0$, because otherwise $\varphi \equiv 0$ and the lemma is trivial.
Define a function F on $[a, b]$ by

$$
F(x)=\int_{a}^{x} f d \lambda, \quad x \in[a, b] .
$$

By Corollary 4.5.1 and Example 4.5.2, we have

$$
\int_{a}^{b} F d \varphi=F(b) \varphi(b)-F(a) \varphi(a)-\int_{a}^{b} \varphi d F=F(b) \varphi(b)-\int_{a}^{b} \varphi f d \lambda ;
$$

hence,

$$
\int_{a}^{b} \varphi f d \lambda \leq M \varphi(b)-M \int_{a}^{b} d \varphi=M \varphi(b)+M\{\varphi(a)-\varphi(b)\}=M \varphi(a),
$$

or $\frac{1}{\varphi(a)} \int_{a}^{b} \varphi f d \lambda \leq M$, where $M=\max _{x \in[a, b]} F(x)$. Similarly, if $m=\min _{x \in[a, b]} F(x)$, then $m \leq \frac{1}{\varphi(a)} \int_{a}^{b} \varphi f d \lambda$; thus,

$$
m \leq \frac{1}{\varphi(a)} \int_{a}^{b} \varphi f d \lambda \leq M
$$

from which, by the intermediate-value theorem for continuous functions, there is $c \in$ $[a, b]$ such that $\frac{1}{\varphi(a)} \int_{a}^{b} \varphi f d \lambda=F(c)=\int_{a}^{c} f d \lambda$.
Proof of Theorem 4.5.4 Consider first the case where φ is monotone decreasing. Since $\varphi-\varphi(b)$ is nonnegative and monotone decreasing, by Lemma 4.5.2 there is $c \in[a, b]$ such that $\int_{a}^{b}\{\varphi-\varphi(b)\} f d \lambda=\{\varphi(a)-\varphi(b)\} \int_{a}^{c} f d \lambda$, or

$$
\begin{aligned}
\int_{a}^{b} \varphi f d \lambda & =\varphi(b) \int_{a}^{b} f d \lambda+\left\{\varphi(a)-\varphi(b) \int_{a}^{c} f d \lambda\right. \\
& =\varphi(a) \int_{a}^{c} f d \lambda+\varphi(b) \int_{c}^{b} f d \lambda
\end{aligned}
$$

If φ is monotone increasing, replacing φ by $-\varphi$ in the argument above, we also conclude that there is $c \in[a, b]$ such that

$$
\int_{a}^{b} \varphi f d \lambda=\varphi(a) \int_{a}^{c} f d \lambda+\varphi(b) \int_{c}^{b} f d \lambda
$$

Corollary 4.5.2 Letf be integrable on $[a, b]$ and φ be nonnegative and monotone increasing on $[a, b]$; then there is $c \in[a, b]$ such that

$$
\int_{a}^{b} \varphi f d \lambda=\varphi(b) \int_{c}^{b} f d \lambda
$$

Proof Replace φ in Theorem 4.5.4 by $\varphi-\varphi(a)$.
Remark Lemma 4.5.2, Theorem 4.5.4, and Corollary 4.5 .2 will all be referred to as the second mean-value theorem.

Exercise 4.5.3 Show that the following improper integrals exist: (i) $\int_{0}^{\infty} \frac{\sin x}{x} d x$; (ii) $\int_{0}^{\infty} \frac{\sin x}{e^{x}-1} d x$

Exercise 4.5.4 Suppose that h is an integrable function on $[a, b]$ and g is an indefinite integral of h. Show that if f is a Riemann integrable function on $[a, b]$, then f is Riemann-Stieltjes integrable w.r.t. g, and

$$
\int_{a}^{b} f d g=\int_{a}^{b} f h d \lambda
$$

Exercise 4.5.5 Suppose that u and v are integrable functions on $[a, b]$ and that U and V are respectively indefinite integrals of u and v. Show that

$$
\int_{a}^{b} U v d \lambda=U(b) V(b)-U(a) V(a)-\int_{a}^{b} V u d \lambda .
$$

Exercise 4.5.6 Let f be a measurable and finite a.e. function on a measure space (Ω, Σ, μ). Suppose that $\mu(\{f \leq t\})<\infty$ for every $t \in \mathbb{R}$ and let $F(t)=\mu(\{f \leq$ $t\}$) for $t \in \mathbb{R}$. Define the improper Riemann-Stieltjes integral $\int_{\mathbb{R}}|t|^{p} d F$ by

$$
\int_{\mathbb{R}}|t|^{p} d F=\lim _{\substack{b \rightarrow \infty \\ a \rightarrow-\infty}} \int_{a}^{b}|t|^{p} d F, \quad 1 \leq p<\infty .
$$

Show that $\int_{\Omega}|f|^{p} d \mu=\int_{\mathbb{R}}|t|^{p} d F$.
A characterization of functions which are indefinite integrals will be taken up after a treatise on differentiation is given in Section 4.6.

4.6 Covering theorems and differentiation

Our purpose in this section is to establish the Lebesgue differentiation theorem for Radon measures on \mathbb{R}^{n} and to give some of its relevant applications. To do this, we shall first exhibit a useful procedure of selecting a sequence of disjoint balls from a given collection of balls in \mathbb{R}^{n}, and deduce from it two covering theorems in \mathbb{R}^{n}; one of which is elementary but will be useful when we study the Hardy-Littlewood maximal function in Chapter 6, and the other is a Vitali type covering theorem that is the main tool for the proof of the Lebesgue differentiation theorem.

For convenience, the diameter of a set A is denoted by δA instead of diam A, for the moment, and a ball is either open or closed with positive radius unless, specified explicitly. For a ball B, we shall denote by \widehat{B} the ball concentric with B and with radius five times that of B.

A collection \mathcal{C} of balls in \mathbb{R}^{n} is said to be admissible if $\sup _{B \in \mathcal{C}} \delta B<\infty$. Given an admissible collection \mathcal{C} of balls in \mathbb{R}^{n}, we select a disjoint sequence $\left\{B_{j}\right\}$, finite or infinite, from \mathcal{C} by the following procedure. Let $d_{0}=\sup _{B \in \mathcal{C}} \delta B$, then $0<d_{0}<\infty$. Choose a ball B_{1} in \mathcal{C} such that $\delta B_{1} \geq \frac{1}{2} d_{0}$. Suppose now that B_{1}, \ldots, B_{m} are disjoint balls chosen from \mathcal{C}; if $B \cap \bigcup_{j=1}^{m} B_{j} \neq \emptyset$ for every $B \in \mathcal{C}$, stop the procedure; otherwise, let

$$
d_{m}=\sup \left\{\delta B: B \in \mathcal{C}, B \cap \bigcup_{j=1}^{m} B_{j}=\emptyset\right\},
$$

and choose a ball B_{m+1} from \mathcal{C} which is disjoint with $\bigcup_{j=1}^{m} B_{j}$ and with $\delta B_{m+1} \geq \frac{1}{2} d_{m}$. Thus a disjoint sequence $\left\{B_{j}\right\}$, finite or infinite, is obtained by this procedure. Such a procedure of selecting $\left\{B_{j}\right\}$ from \mathcal{C} will be referred to as Procedure (S).

Lemma 4.6.1 Suppose that \mathcal{C} is an admissible collection of balls in \mathbb{R}^{n} and $\left\{B_{j}\right\}$ is a sequence of disjoint balls selected from \mathcal{C} by Procedure (S). Then either $\left\{B_{j}\right\}$ is infinite and $\inf _{j} \delta B_{j}>0$ or $\bigcup \mathcal{C} \subset \bigcup_{j} \widehat{B}_{j}\left(\right.$ recall that $\left.\bigcup \mathcal{C}:=\bigcup_{B \in \mathcal{C}} B\right)$.

Proof If $\left\{B_{j}\right\}$ is finite, say $\left\{B_{j}\right\}=\left\{B_{1}, \ldots, B_{m}\right\}$, meaning that if $B \in \mathcal{C}$, then $B \cap$ $\bigcup_{j=1}^{m} B_{j} \neq \emptyset$. Let j_{0} be the smallest $j, 1 \leq j \leq m$, such that $B \cap B_{j} \neq \emptyset$. If $j_{0}=1$, then $\delta B \leq d_{0} \leq 2 B_{1}$; while if $j_{0} \geq 2, B \cap \bigcup_{j=1}^{j_{0}-1} B_{j}=\emptyset$ and $\delta B \leq d_{j_{0}-1} \leq 2 \delta B_{j_{0}}$. Hence, $\delta B \leq 2 \delta B_{j_{0}}$ holds; this fact, together with $B \cap B_{j_{0}} \neq \emptyset$, implies that $B \subset \widehat{B}_{j_{0}}$. Thus, $\bigcup \mathcal{C} \subset \bigcup_{j=1}^{m} \widehat{B}_{j}$.

Now suppose that $\left\{B_{j}\right\}$ is infinite and $\inf _{j} \delta B_{j}=0$. Let again $B \in \mathcal{C}$. Since $\delta B>0$ and $\inf _{j} \delta B_{j}=0$, there is $j_{0} \in \mathbb{N}$ arbitrarily large such that $\delta B>2 \delta B_{j_{0}}$. But then $B \cap \bigcup_{j=1}^{j_{0}-1} B_{j} \neq \emptyset$, because otherwise $\delta B_{j_{0}}<\frac{1}{2} \delta B \leq \frac{1}{2} d_{j_{0}-1}$, contradicting the way $B_{j_{0}}$ is selected by Procedure (S). Since $B \cap \bigcup_{j=1}^{j o-1} B_{j} \neq \emptyset$, argue as in the first paragraph of the proof to conclude that B is contained in one of $\widehat{B}_{1}, \ldots, \widehat{B}_{j_{0-1}}$, and hence $B \subset \bigcup_{j} \widehat{B}_{j}$. Consequently, $\bigcup \mathcal{C} \subset \bigcup_{j} \widehat{B}_{j}$.

Lemma 4.6.1 leads immediately to the following basic covering theorem.
Theorem 4.6.1 Let \mathcal{C} be an admissible collection of balls in \mathbb{R}^{n}; then there is a disjoint sequence $\left\{B_{j}\right\}$ of balls from \mathcal{C} such that

$$
\begin{equation*}
\lambda^{n}(\cup \mathcal{C}) \leq 5^{n} \sum_{j} \lambda^{n}\left(B_{j}\right) \tag{4.8}
\end{equation*}
$$

Proof Let $\left\{B_{j}\right\}$ be a sequence of disjoint balls selected from \mathcal{C} by Procedure (S). By Lemma 4.6.1, either $\left\{B_{j}\right\}$ is infinite and $\inf \delta B_{j}>0$ or $\cup \mathcal{C} \subset \bigcup_{j} \widehat{B}_{j}$. If $\left\{B_{j}\right\}$ is infinite and $\inf _{j} \delta B_{j}>0$, then the right-hand side of (4.8) is ∞ and (4.8) holds trivially. Suppose now that $\bigcup \mathcal{C} \subset \bigcup_{j} \widehat{B}_{j}$. Then,

$$
\lambda^{n}(\cup \mathcal{C}) \leq \sum_{j} \lambda^{n}\left(\widehat{B}_{j}\right)=5^{n} \sum_{j} \lambda^{n}\left(B_{j}\right)
$$

because $\lambda^{n}\left(\widehat{B}_{j}\right)=5^{n} \lambda^{n}\left(B_{j}\right)$, by Example 4.3.1 (ii).
We come now to a Vitali type covering theorem. Let E be a subset of \mathbb{R}^{n}; a collection \mathcal{V} of subsets of \mathbb{R}^{n} is called a Vitali cover of E if for every x in E and any positive number ε there is V in \mathcal{V}, such that $\delta V<\varepsilon$ and $x \in V$. The following covering theorem is a simple version of the well-known Vitali covering theorem, but it suffices for our purpose.

Theorem 4.6.2 (Vitali) Let E be a subset of \mathbb{R}^{n} with $\lambda^{n}(E)<\infty$, and suppose that \mathcal{V} is a collection of closed balls in \mathbb{R}^{n} which forms a Vitali cover of E. Then there is a sequence $\left\{B_{j}\right\}$ of disjoint balls from \mathcal{V} such that $\lambda^{n}\left(E \backslash \bigcup_{j} B_{j}\right)=0$.

Proof Choose an open set $G \supset E$ such that $\lambda^{n}(G)<\infty$, and let

$$
\mathcal{C}=\{V \in \mathcal{V}: V \subset G, \delta V \leq 1\} .
$$

Then \mathcal{C} is an admissible collection of closed balls and is a Vitali cover of E. Now select a sequence $\left\{B_{j}\right\}$ of disjoint balls from \mathcal{C} by Procedure (S). If $\left\{B_{j}\right\}$ is finite, say $\left\{B_{j}\right\}=\left\{B_{1}, \ldots, B_{m}\right\}$, then $V \cap \bigcup_{j=1}^{m} B_{j} \neq \emptyset$ for every $V \in \mathcal{C}$. Take any $x \in E$ and $\varepsilon>0$, choose $V \in \mathcal{C}$ such that $x \in V$ and $\delta V<\varepsilon$, then $\operatorname{dist}\left(x, \bigcup_{j=1}^{m} B_{j}\right) \leq$ $\operatorname{dist}\left(x, V \cap \bigcup_{j=1}^{m} B_{j}\right) \leq \delta V<\varepsilon$. Since $\varepsilon>0$ is arbitrary and $\bigcup_{j=1}^{m} B_{j}$ is closed, we infer that $x \in \bigcup_{j=1}^{m} B_{j}$ or $E \subset \bigcup_{j=1}^{m} B_{j}$, and hence $\lambda^{n}\left(E \backslash \bigcup_{j=1}^{m} B_{j}\right)=0$. Suppose now that $\left\{B_{j}\right\}$ is infinite. Since $\sum_{j} \lambda^{n}\left(B_{j}\right)=\lambda^{n}\left(\bigcup_{j} B_{j}\right) \leq \lambda^{n}(G)<\infty, \inf _{j \geq 1} \delta\left(B_{j}\right)=0$ for any $l \in \mathbb{N}$. Observe then that for any $l \in \mathbb{N},\left\{B_{j}\right\}_{j \geq l+1}$ is a sequence of balls selected from the admissible collection

$$
\mathcal{C}^{(l)}:=\left\{V \in \mathcal{C}: V \subset G \backslash \bigcup_{j=1}^{l} B_{j}\right\}
$$

by Procedure (S). Since $\inf _{j \geq l+1} \delta B_{j}=0$, it follows from Lemma 4.6.1 that $\bigcup \mathcal{C}^{(l)} \subset$ $\bigcup_{j \geq l+1} \widehat{B}_{j}$; consequently,

$$
\lambda^{n}\left(E \backslash \bigcup_{j=1}^{l} B_{j}\right) \leq \lambda^{n}\left(\bigcup \mathcal{C}^{(l)}\right) \leq \sum_{j \geq l+1} \lambda^{n}\left(\widehat{B}_{j}\right)=5^{n} \sum_{j \geq l+1} \lambda^{n}\left(B_{j}\right)
$$

because $\mathcal{C}^{(l)}$ is a Vitali cover of $E \backslash \bigcup_{j=1}^{l} B_{j}$. Now from

$$
\lambda^{n}\left(E \backslash \bigcup_{j} B_{j}\right) \leq \lambda^{n}\left(E \backslash \bigcup_{j=1}^{l} B_{j}\right) \leq 5^{n} \sum_{j \geq l+1} \lambda^{n}\left(B_{j}\right)
$$

for $l \in \mathbb{N}$, we obtain $\lambda^{n}\left(E \backslash \bigcup_{j} B_{j}\right)=0$ by letting $l \rightarrow \infty$.
Remark In Theorem 4.6.2, E is not required to be measurable.
Exercise 4.6.1 Show that the union of any family \mathcal{C} of closed balls in \mathbb{R}^{n} is Lebesgue measurable. (Hint: consider the Vitali cover \mathcal{V} of $\cup \mathcal{C}$, which consists of all closed balls each of which is contained in a ball of \mathcal{C}).

Exercise 4.6.2 Show that Theorem 4.6.2 still holds if \mathcal{V} is a Vitali cover of E consisting of open balls.
Exercise 4.6.3 Describe in \mathbb{R}^{n} a procedure for selecting a sequence of disjoint closed cubes, from a collection \mathcal{C} of closed cubes of positive bounded side lengths similar to Procedure (S), when \mathcal{C} is an admissible collection of closed cubes so that Lemma 4.6.1 holds for such a collection \mathcal{C}. Then state the Vitali covering theorem for Vitali covers of E consisting of closed (open) cubes, where E is a subset of \mathbb{R}^{n} with $\lambda^{n}(E)<\infty$.

Lebesgue differentiation of Radon measures on \mathbb{R}^{n} is the subject we shall treat in the remaining part of this section. The differentiation is taken w.r.t. Lebesgue measure and
with closed balls as base in the sense which will be defined. For the sake of simplicity in expression, a generic closed ball in \mathbb{R}^{n} is henceforth denoted by B in this section.

Since the expression " λ^{n}-almost everywhere" appears often, it will hereafter be replaced by "almost everywhere". In other words, a property which holds almost everywhere w.r.t. Lebesgue measure λ^{n} in \mathbb{R}^{n} will simply be said to hold almost everywhere. Accordingly, " λ^{n}-a.e." is often replaced by "a.e.", and λ^{n}-null sets will simply be called null sets.

Suppose that f is a set function (not necessarily taking only nonnegative values) defined for all closed balls inside an open set $\Omega \subset \mathbb{R}^{n}$ and $x \in \Omega$, define

$$
\begin{aligned}
\liminf _{B \rightarrow x} f(B) & :=\lim _{\sigma \rightarrow 0+}\left\{\inf _{\substack{\delta B \subset \sigma \\
x \in B}} f(B)\right\} ; \\
\limsup _{B \rightarrow x} f(B) & :=\lim _{\sigma \rightarrow 0+}\left\{\sup _{\substack{\delta B<\sigma \\
x \in B}} f(B)\right\}
\end{aligned}
$$

Clearly, $\quad \liminf _{B \rightarrow x} f(B) \leq \lim \sup _{B \rightarrow x} f(B)$; in the case $\quad \liminf _{B \rightarrow x} f(B)=$ $\lim \sup _{B \rightarrow x} f(B)$, the common value is denoted by $\lim _{B \rightarrow x} f(B)$ and we say that $\lim _{B \rightarrow x} f(B)$ exists. In the above definitions, B certainly denotes a generic closed ball B in Ω.

Exercise 4.6.4 Show that $\lim _{B \rightarrow x} f(B)$ exists and is a finite number l if and only if for any given $\varepsilon>0$ there is $\sigma>0$, such that

$$
|f(B)-l|<\varepsilon
$$

whenever $\delta B<\sigma$ and $x \in B$.
Now let μ be a Radon measure on an open set $\Omega \subset \mathbb{R}^{n} ; \mu$ is said to be differentiable w.r.t. Lebesgue measure λ^{n} at $x \in \Omega$ with closed balls as base if $\lim _{B \rightarrow x} \frac{\mu(B)}{\lambda^{n}(B)}$ exists. Since the differentiation of Radon measures on \mathbb{R}^{n} is always taken in this sense in what follows, if $\lim _{B \rightarrow x} \frac{\mu(B)}{\lambda^{n}(B)}$ exists, we simply say that μ is differentiable at x with derivate $\frac{d \mu}{d \lambda^{n}}(x):=$ $\lim _{B \rightarrow x} \frac{\mu(B)}{\lambda^{n}(B)}$. We shall show that μ is differentiable with finite derivate at a.e. x of Ω, and that the function $\frac{d \mu}{d \lambda^{n}}$ which is defined and finite almost everywhere on Ω is measurable.

Put $\underline{D} \mu(x)=\lim \inf _{B \rightarrow x} \frac{\mu(B)}{\lambda^{n}(B)}$ and $\bar{D} \mu(x)=\lim \sup _{B \rightarrow x} \frac{\mu(B)}{\lambda^{n}(B)}$ for $x \in \Omega$. Note that $\underline{D} \mu(x) \leq \bar{D} \mu(x)$ for every $x \in \Omega$.

Lemma 4.6.2 If $\bar{D} \mu \geq \alpha$ on $S \subset \Omega$ for some $\alpha \geq 0$, then $\mu(S) \geq \alpha \lambda^{n}(S)$.
Proof Clearly we may assume that $\alpha>0$. For $l \in \mathbb{N}$, let $S_{l}=\{x \in S:|x|<l\}$ and let G be any open set which contains S_{l} and is contained in Ω. Now for any $\varepsilon>0$ sufficiently small so that $\alpha-\varepsilon>0$, consider the family \mathcal{V} of all those closed balls $B \subset G$ such that $\mu(B)>(\alpha-\varepsilon) \lambda^{n}(B)$. Since \mathcal{V} is a Vitali cover of S_{l} and $\lambda^{n}\left(S_{l}\right)<$ ∞, there is a disjoint sequence $\left\{B_{j}\right\}$ of balls from \mathcal{V} such that $\lambda^{n}\left(S_{l} \backslash \bigcup_{j} B_{j}\right)=0$, by Vitali the covering theorem (Theorem 4.6.2). Then, $(\alpha-\varepsilon) \lambda^{n}\left(S_{l}\right) \leq(\alpha-\varepsilon) \lambda^{n}$
$\left(\bigcup_{j} B_{j}\right)=\sum_{j}(\alpha-\varepsilon) \lambda^{n}\left(B_{j}\right)<\sum_{j} \mu\left(B_{j}\right)=\mu\left(\bigcup_{j} B_{j}\right) \leq \mu(G)$, and since μ is a Radon measure, it follows that $(\alpha-\varepsilon) \lambda^{n}\left(S_{l}\right) \leq \mu\left(S_{l}\right)$ and consequently, by letting $l \rightarrow \infty,(\alpha-\varepsilon) \lambda^{n}(S) \leq \mu(S)$ follows, as both λ^{n} and μ are regular measures and S_{l} increases to S when $l \rightarrow \infty$ (cf. Theorem 3.3.2). Finally, let $\varepsilon \searrow 0$ to conclude the proof.

Corollary 4.6.1 $\bar{D} \mu<\infty$ almost everywhere on Ω.
Proof Since $\Omega=\bigcup_{l \in \mathbb{N}}\left(\left\{x \in \Omega: \operatorname{dist}\left(x, \Omega^{c}\right) \geq \frac{1}{l}\right\} \cap\left\{x \in \mathbb{R}^{n}:|x| \leq l\right\}\right)$, Ω is a countable union of compact sets; it is sufficient to show that $\lambda^{n}(\{x \in K$: $\bar{D} \mu(x)=\infty\})=0$ for any compact set in Ω. For such a compact set K, put $S=\{x \in K: \bar{D} \mu(x)=\infty\}$. Since for any $\alpha>0, \bar{D} \mu \geq \alpha$ on S, by Lemma 4.6.2, $\lambda^{n}(S) \leq \frac{1}{\alpha} \mu(S) \leq \frac{1}{\alpha} \mu(K)$, which implies that $\lambda^{n}(S)=0$ by letting $\alpha \rightarrow \infty$, because $\mu(K)<\infty$.

Lemma 4.6.3 Suppose that $\underline{D} \mu \leq \beta$ on $S \subset \Omega$ for some $\beta \geq 0$; then there is a null set $N \subset S$ such that $\mu(S \backslash N) \leq \beta \lambda^{n}(S)$.

Proof Suppose first that $\lambda^{n}(S)<\infty$. For $l, k \in \mathbb{N}$, take an open set G_{k} which contains S and is contained in Ω with $\lambda^{n}\left(G_{k}\right)<\lambda^{n}(S)+\frac{1}{k}$, and consider the family \mathcal{V} of all those closed balls $B \subset G_{k}$ such that $\mu(B)<\left(\beta+\frac{1}{l}\right) \lambda^{n}(B) ; \mathcal{V}$ is clearly a Vitali cover of S. Since $\lambda^{n}(S)<\infty$, by the Vitali covering theorem there is a disjoint sequence $\left\{B_{j}\right\}$ of balls from \mathcal{V} such that $\lambda^{n}\left(S \backslash \bigcup_{j} B_{j}\right)=0$. If we let $N_{l, k}=S \backslash \bigcup_{j} B_{j}$ (observe that $\left\{B_{j}\right\}$ depends on l and $k), N_{l, k}$ is a null set contained in S and $\left(\beta+\frac{1}{l}\right) \lambda^{n}\left(G_{k}\right) \geq\left(\beta+\frac{1}{l}\right)$ $\lambda^{n}\left(\bigcup_{j} B_{j}\right)>\mu\left(\bigcup_{j} B_{j}\right) \geq \mu\left(S \backslash N_{l, k}\right)$. Now let $N=\bigcup_{l, k} N_{l, k} ; N$ is a null set in S and $\left(\beta+\frac{1}{l}\right) \lambda^{n}(S)=\left(\beta+\frac{1}{l}\right) \inf _{k} \lambda^{n}\left(G_{k}\right) \geq \mu(S \backslash N)$ for each l. We simply let $l \rightarrow \infty$ to conclude that $\mu(S \backslash N) \leq \beta \lambda^{n}(S)$.

If $\lambda^{n}(S)=\infty$, for each $l \in \mathbb{N}$, put $S_{l}=\{x \in S:|x| \leq l\}$, then $\lambda^{n}\left(S_{l}\right)<\infty$. By the first part of the proof, for each $l \in \mathbb{N}$ there is a null set $N_{l} \subset S_{l}$ such that $\mu\left(S_{l} \backslash N_{l}\right) \leq \beta \lambda^{n}\left(S_{l}\right)$; then, $N=\bigcup_{l} N_{l}$ is a null set and $\mu\left(S_{l} \backslash N\right) \leq \mu\left(S_{l} \backslash N_{l}\right) \leq$ $\beta \lambda^{n}\left(S_{l}\right) \leq \beta \lambda^{n}(S)$, from which $\mu(S \backslash N) \leq \beta \lambda^{n}(S)$ follows by letting $l \rightarrow \infty$.

Theorem 4.6.3 (Lebesgue) $\frac{d \mu}{d \lambda^{n}}$ exists and is finite almost everywhere on Ω.
Proof Since $\bar{D} \mu<\infty$ almost everywhere on Ω, by Corollary 4.6.1, it is only necessary to show that $\frac{d \mu}{d \lambda^{n}}$ exists almost everywhere on Ω. If we put $E=$ $\{x \in \Omega: \bar{D} \mu(x)>\underline{D} \mu(x)\}$, this amounts to showing that $\lambda^{n}(E)=0$; but since $\underline{D} \mu \geq 0, E=\bigcup_{(\alpha, \beta)} E_{(\alpha, \beta)}$, where $E_{(\alpha, \beta)}=\{x \in \Omega: \bar{D} \mu(x) \geq \alpha>\beta \geq \underline{D} \mu(x)\}$, with (α, β) being a generic pair of rational numbers α, β such that $\alpha>\beta \geq 0$, and since all such pairs (α, β) form a countable set, it suffices to show that $\lambda^{n}\left(E_{(\alpha, \beta)}\right)=0$ for any such pairs of rational numbers. For such a pair (α, β), put $S=E_{(\alpha, \beta)}$. We now show that $\lambda^{n}(S)=0$. Suppose the contrary that $\lambda^{n}(S)>0$, then there is $l \in \mathbb{N}$ such that if we put $S_{l}=\{x \in S:|x|<l\}$ then $\infty>\lambda^{n}\left(S_{l}\right)>0$. Now $\underline{D} \mu \leq \beta$ on S_{l}; by Lemma 4.6.3 there is a null set N inside S_{l} such that $\mu\left(S_{l} \backslash N\right) \leq \beta \lambda^{n}\left(S_{l}\right)$;
on the other hand, the fact that $\bar{D} \mu \geq \alpha$ on $S_{l} \backslash N$ implies, by Lemma 4.6.2, that $\alpha \lambda^{n}\left(S_{l}\right)=\alpha \lambda^{n}\left(S_{l} \backslash N\right) \leq \mu\left(S_{l} \backslash N\right)$. Thus,

$$
\mu\left(S_{l} \backslash N\right) \leq \beta \lambda^{n}\left(S_{l}\right)<\alpha \lambda^{n}\left(S_{l}\right)=\alpha \lambda^{n}\left(S_{l} \backslash N\right) \leq \mu\left(S_{l} \backslash N\right),
$$

the absurdity of which shows that $\lambda^{n}(S)=0$.
If we let D denote the set of all $x \in \Omega$ such that $\frac{d \mu}{d \lambda^{n}}(x)$ exists and is finite, D is measurable because D is the complement in Ω of a null set and null sets are measurable. We shall show in a moment that $\frac{d \mu}{d \lambda^{n}}$ is measurable as a function defined a.e. on Ω (cf. Section 2.5 for measurability of functions defined a.e. on Ω). For $x \in D, \frac{d \mu}{d \lambda^{n}}(x)=\lim _{B \rightarrow x} \frac{\mu(B)}{\lambda^{n}(B)}$, a fortiori, $\frac{d \mu}{d \lambda^{n}}(x)=\lim _{r \rightarrow 0} \frac{\mu\left(C_{r}(x)\right)}{\lambda^{n}\left(C_{r}(x)\right)}$, where $C_{r}(x)$ is the closed ball centered at x and with radius $r>0$. Now if, as before, $B_{r}(x)$ denotes the open ball centered at x and with radius $r>0$, we claim that

$$
\begin{equation*}
\frac{d \mu}{d \lambda^{n}}(x)=\lim _{r \rightarrow 0} \frac{\mu\left(B_{r}(x)\right)}{\lambda^{n}\left(B_{r}(x)\right)} \tag{4.9}
\end{equation*}
$$

To see this one needs only to observe that if $r^{\prime}=r(1-r)$ for $0<r<1$, then

$$
(1-r)^{n} \frac{\mu\left(C_{r^{\prime}}(x)\right)}{\lambda^{n}\left(C_{r^{\prime}}(x)\right)}=\frac{\lambda^{n}\left(C_{r^{\prime}}(x)\right)}{\lambda^{n}\left(C_{r}(x)\right)} \frac{\mu\left(C_{r^{\prime}}(x)\right)}{\lambda^{n}\left(C_{r^{\prime}}(x)\right)} \leq \frac{\mu\left(B_{r}(x)\right)}{\lambda^{n}\left(B_{r}(x)\right)} \leq \frac{\mu\left(C_{r}(x)\right)}{\lambda^{n}\left(C_{r}(x)\right)},
$$

where the relation $\lambda^{n}\left(C_{r^{\prime}}(x)\right)=(1-r)^{n} \lambda^{n}\left(C_{r}(x)\right)$ has been used (cf. Example 4.3.1 (ii)), and (4.9) follows as $r \rightarrow 0$.

Lemma 4.6.4 $\frac{d \mu}{d \lambda^{n}}$ is measurable.
Proof For $x \in \Omega$ and $r>0$, let $\Omega_{r}(x)=B_{r}(x) \cap \Omega$. First, we show that as a function of $x, \mu\left(\Omega_{r}(x)\right)$ is lower semi-continuous on D (r being fixed). For $x \in D$, let I_{x} denote the indicator function of the set $\Omega_{r}(x)$, then $\mu\left(\Omega_{r}(x)\right)=\int_{\Omega} I_{x} d \mu$. Suppose now that $\left\{x_{k}\right\}$ is a sequence in D tending to x. Since $I_{x_{k}} \rightarrow I_{x}$ on $\Omega_{r}(x)$ and $I_{x}=0$ on $\Omega \backslash \Omega_{r}(x), I_{x} \leq \lim \inf _{k \rightarrow \infty} I_{x_{k}}$. It follows from the Fatou Lemma that $\mu\left(\Omega_{r}(x)\right)=\int_{\Omega} I_{x} d \mu \leq \liminf _{k \rightarrow \infty} \int_{\Omega} I_{x_{k}} d \mu=\liminf _{k \rightarrow \infty} \mu\left(\Omega_{r}\left(x_{k}\right)\right)$. Hence, $\mu\left(\Omega_{r}(x)\right)$ is lower semi-continuous as a function of x on D and is therefore measurable on D. Similarly, $\lambda^{n}\left(\Omega_{r}(x)\right)$ is lower semi-continuous on D. By choosing a sequence of r tending to zero, we have

$$
\frac{d \mu}{d \lambda^{n}}(x)=\lim _{r \rightarrow 0} \frac{\mu\left(B_{r}(x)\right)}{\lambda^{n}\left(B_{r}(x)\right)}=\lim _{r \rightarrow 0} \frac{\mu\left(\Omega_{r}(x)\right)}{\lambda^{n}\left(\Omega_{r}(x)\right)}
$$

for $x \in D$, hence $\frac{d \mu}{d \lambda^{n}}$ is measurable on D (note that $\Omega_{r}(x)=B_{r}(x)$ if r is small). Since $\Omega \backslash D$ is a null set, $\frac{d \mu}{d \lambda^{n}}$ is measurable.
$\frac{d \mu}{d \lambda^{n}}$ is usually extended from D to Ω by defining it to be zero on $\Omega \backslash D$. In view of Exercise 3.9.1(ii), $\frac{d \mu}{d \lambda^{n}}$ has a Borel measurable version and we shall henceforth take $\frac{d \mu}{d \lambda^{n}}$ to be a Borel measurable function on Ω.

Lemma 4.6.5 For any Borel set $S \subset \Omega, \int_{S} \frac{d \mu}{d \lambda^{n}} d \lambda^{n} \leq \mu(S)$.In particular $\int_{K} \frac{d \mu}{d \lambda^{n}} d \lambda^{n}<\infty$ for compact sets $K \subset \Omega$.

Proof Let g be a generic nonnegative and Borel measurable simple function on Ω satisfying $g \leq \frac{d \mu}{d \lambda^{n}} \cdot I_{S}$; there are disjoint Borel sets A_{1}, \ldots, A_{l} in S and nonnegative numbers $\alpha_{1}, \ldots, \alpha_{l}$ such that $g=\sum_{j=1}^{l} \alpha_{j} I_{A_{j}}$. Then,

$$
\int_{\Omega} g d \lambda^{n}=\sum_{j=1}^{l} \alpha_{j} \lambda^{n}\left(A_{j}\right)
$$

But $\mu\left(A_{j}\right) \geq \alpha_{j} \lambda^{n}\left(A_{j}\right), j=1, \ldots, l$, by Lemma 4.6.2, consequently,

$$
\int_{\Omega} g d \lambda^{n} \leq \sum_{j=1}^{l} \mu\left(A_{j}\right)=\mu\left(\sum_{j=1}^{l} A_{j}\right) \leq \mu(S),
$$

and hence,

$$
\int_{S} \frac{d \mu}{d \lambda^{n}} d \lambda^{n}=\int_{\Omega} \frac{d \mu}{d \lambda^{n}} \cdot I_{S} d \lambda^{n}=\sup _{g} \int_{\Omega} g d \lambda^{n} \leq \mu(S) .
$$

Lemma 4.6.5 implies that $\left\{\frac{d \mu}{d \lambda^{n}} \lambda^{n}\right\}^{*}$ is a Radon measure on Ω (cf. Example 3.8.1). Recall that $\left\{\frac{d \mu}{d \lambda^{n}} \lambda^{n}\right\}$ denotes the indefinite integral of $\frac{d \mu}{d \lambda^{n}}$ with respect to λ^{n}. Since indefinite integrals, considered later in this chapter, are always λ^{n}-indefinite integrals, the notation $\left\{\frac{d \mu}{d \lambda^{n}} \lambda^{n}\right\}$ is simplified to $\left\{\frac{d \mu}{d \lambda^{n}}\right\}$ for compactness of expression. Similarly, for a nonnegative measurable function f defined on Ω, $\left\{f \lambda^{n}\right\}$ will be replaced by $\{f\}$. With this notational convention, if f is locally integrable on Ω in the sense that f is integrable on compact sets in Ω, then $\{f\}^{*}$ is a Radon measure on Ω. Thus $\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}$ is a Radon measure on Ω.

Another immediate consequence of Lemma 4.6.5 is the following.
Corollary 4.6.2 For any $S \subset \Omega,\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}(S) \leq \mu(S)$.
Proof If S is a Borel set, then $\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}(S)=\int_{S} \frac{d \mu}{d \lambda^{n}} d \lambda^{n} \leq \mu(S)$, by Lemma 4.6.5; for general S, the same inequality follows from the fact that both $\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}$ and μ are Borel regular.

Remark As shown in Example 3.8.1, $\{f\}^{*}(S)=\int_{S} f d \lambda^{n}$ if S is a measurable subset of Ω and f a nonnegative measurable function. Hence, $\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}(S)=\int_{S} \frac{d \mu}{d \lambda^{n}} d \lambda^{n}$ if S is a measurable subset of Ω.

Corollary 4.6.3 Iff is a nonnegative and locally integrable function on Ω, then $\frac{d}{d \lambda^{n}}\{f\}^{*}=f$ a.e. on Ω; i.e. for almost all $x \in \Omega, \lim _{B \rightarrow x} \frac{\int_{B} f d \lambda^{n}}{\lambda^{n}(B)}=f(x)$; in particular,

$$
\begin{equation*}
f(x)=\lim _{r \rightarrow 0} \frac{1}{\lambda^{n}\left(B_{r}(x)\right)} \int_{B_{r}(x)} f d \lambda^{n} \tag{4.10}
\end{equation*}
$$

for almost every $x \in \Omega$.
Proof Put $g=\frac{d}{d \lambda^{n}}\{f\}^{*}$. By Corollary 4.6.2 and the remark following it, $\int_{S} g d \lambda^{n}=$ $\{g\}^{*}(S) \leq\{f\}^{*}(S)=\int_{S} f d \lambda^{n}$ for any measurable set $S \subset \Omega$, hence $g \leq f$ a.e. on Ω.

Now, put $E=\{g<f\}$; we will show that $\lambda^{n}(E)=0$ to conclude that $f=g$ a.e. For this we need only show that $\lambda^{n}\left(E^{\prime}\right)=0$, where

$$
E^{\prime}=\left\{x \in E: \lim _{B \rightarrow x} \frac{\{f\}^{*}(B)}{\lambda^{n}(B)} \text { exists }\right\}
$$

Suppose the contrary, that $\lambda^{n}\left(E^{\prime}\right)>0$, then there are numbers $0<\beta<\alpha<\infty$ and $R>0$ such that the set $S=\left\{x \in E^{\prime}:|x|<R, f(x)>\alpha>\beta>g(x)\right\}$ has positive Lebesgue measure. Let G be any open set containing S and contained in Ω, and consider the family \mathcal{V} of all $B \subset G$ satisfying $\beta \lambda^{n}(B)>\{f\}^{*}(B) . \mathcal{V}$ is a Vitali cover of S; by the Vitali covering theorem, there is a disjoint sequence $\left\{B_{j}\right\}$ of balls from \mathcal{V} such that $\lambda^{n}\left(S \backslash \bigcup_{j} B_{j}\right)=0$ (note that $\left.\lambda^{n}(S)<\infty\right)$. Then,

$$
\begin{aligned}
\beta \lambda^{n}(G) & \geq \beta \lambda^{n}\left(\bigcup_{j} B_{j}\right)=\sum_{j} \beta \lambda^{n}\left(B_{j}\right)>\sum_{j}\{f\}^{*}\left(B_{j}\right)=\{f\}^{*}\left(\bigcup_{j} B_{j}\right) \\
& =\int_{\bigcup_{j} B_{j}} f d \lambda^{n} \geq \int_{S} f d \lambda^{n},
\end{aligned}
$$

from which it follows that $\beta \lambda^{n}(S) \geq \int_{S} f d \lambda^{n}$; on the other hand $\int_{S} f d \lambda^{n} \geq \alpha \lambda^{n}(S)$, hence,

$$
\beta \lambda^{n}(S) \geq \int_{S} f d \lambda^{n} \geq \alpha \lambda^{n}(S)
$$

the absurdity of which shows that $\lambda^{n}\left(E^{\prime}\right)=0$. That (4.10) holds for almost all $x \in \Omega$ follows from (4.9).

Example 4.6.1 (Density and approximate continuity) Let D be a measurable subset of \mathbb{R}^{n} with $\lambda^{n}(D)>0$. For $x \in \mathbb{R}^{n}$, if $\lim _{B \rightarrow x} \frac{\lambda^{n}(B \cap D)}{\lambda^{n}(B)}$ exists, the limit is called the density of D at x. Certainly, the density is nonnegative and ≤ 1. If the density of D at x is 1 , x is called a density point of D; while x is called a point of dispersion of D if the density of D at x is 0 . A measurable function f on D is said to have approximate limit l at x if x is a density point of the set $\{y \in D:|f(y)-l|<\varepsilon\}$ for every $\varepsilon>0$, and the approximate limit l will be denoted by $\operatorname{aplim}_{y \rightarrow x} f(y)$. The function f is called approximately
continuous at $x \in D$ if aplim ${ }_{y \rightarrow x} f(y)=f(x)$. We claim that (i) almost every point of D is a density point of D, and almost every point of D^{c} is a point of dispersion of D, and (ii) a measurable function f on D is approximately continuous a.e. on D. Assertion (i) is a direct consequence of Corollary 4.6.3, by choosing f to be the indicator function of D. Observe that (i) implies that if g is a continuous function on \mathbb{R}^{n}, then f is approximately continuous at almost every point of the set $\{x \in D: f(x)=g(x)\}$. It is clear now that (ii) follows from this observation and the Lusin theorem (Theorem 4.1.1).

Exercise 4.6.5 Suppose that A is a measurable subset of \mathbb{R}^{n}. Show that $\operatorname{dist}(y, A)=$ $o(|y-x|)$ as $y \rightarrow x$ for almost every x in A.
For a locally integrable function f on Ω, the set $L(f)$ of all those points $x \in \Omega$ such that $\lim _{B \rightarrow x} \frac{1}{\lambda^{n} B} \int_{B}|f(y)-f(x)| d y=0$ is called the Lebesgue set of f.
Theorem 4.6.4 Iff is locally integrable on Ω, then $\lambda^{n}(\Omega \backslash L(f))=0$, i.e. $L(f)$ consists of almost all points of Ω.

Proof Denote by γ the set of all rational numbers in \mathbb{R}. For $a \in \gamma$, there is a null set E_{a} in Ω such that for $x \in \Omega \backslash E_{a}$, the following holds, by Corollary 4.6.3:

$$
\lim _{B \rightarrow x} \frac{1}{\lambda^{n}(B)} \int_{B}|f(y)-a| d y=|f(x)-a| .
$$

Put $E=\bigcup_{a \in \gamma} E_{a}$, then $\lambda^{n}(E)=0$. For $x \in \Omega \backslash E$ and $\varepsilon>0$, there is $a \in \gamma$ such that $|f(x)-a|<\varepsilon$, hence,

$$
\begin{aligned}
\limsup _{B \rightarrow x} \frac{1}{\lambda^{n}(B)} \int_{B}|f(y)-f(x)| d y & \leq \limsup _{B \rightarrow x} \frac{1}{\lambda^{n}(B)} \int_{B}\{|f(y)-a|+|f(x)-a|\} d y \\
& =2|f(x)-a|<2 \varepsilon .
\end{aligned}
$$

Since $\varepsilon>0$ is arbitrary, we have $\lim \sup _{B \rightarrow x} \frac{1}{\lambda^{n}(B)} \int_{B}|f(y)-f(x)|=0$, or $\lim _{B \rightarrow x} \frac{1}{\lambda^{n}(B)} \int_{B}|f(y)-f(x)| d y=0$.
Theorem 4.6.5 Iff is locally integrable on Ω, then

$$
\lim _{B \rightarrow x} \frac{1}{\lambda^{n}(B)} \int_{B} f d \lambda^{n}=f(x)
$$

for almost every $x \in \Omega$.
Proof For $x \in L(f)$,

$$
\left|\frac{1}{\lambda^{n}(B)} \int_{B} f(y) d y-f(x)\right| \leq \frac{1}{\lambda^{n}(B)} \int_{B}|f(y)-f(x)| d y
$$

for any closed ball B containing x; then $\lim _{B \rightarrow x} \int_{B} f d \lambda^{n}=f(x)$ follows.

As an application of Theorem 4.6.5, we shall now prove that the space $C_{c}(\Omega)$ of all those continuous functions on Ω, each of which vanishes outside a compact subset of Ω, is dense in $L^{p}\left(\Omega, \mathcal{L}^{n} \mid \Omega, \lambda^{n}\right)$:
Proposition 4.6.1 $\quad C_{c}(\Omega)$ is dense in $L^{p}\left(\Omega, \mathcal{L}^{n} \mid \Omega, \lambda^{n}\right), 1 \leq p<\infty$.
Proof Let $f \in L^{p}\left(\Omega, \mathcal{L}^{n} \mid \Omega, \lambda^{n}\right)$ and $\varepsilon>0$. For each $k \in \mathbb{N}$, put $F_{k}=\{x \in \Omega$: $\left.\operatorname{dist}\left(x, \Omega^{c}\right) \geq \frac{1}{k}\right\} \cap C_{k}(0) ;\left\{F_{k}\right\}$ is an increasing sequence of compact sets in Ω and $\Omega=\bigcup_{k} F_{k}$. Set $f_{k}=I_{F_{k}} f$, then $\lim _{k \rightarrow \infty} f_{k}(x)=f(x)$ for all $x \in \Omega$ and $\left|f_{k}\right| \leq|f|$. LDCT implies that $\lim _{k \rightarrow \infty}\left\|f_{k}-f\right\|_{p}=0$. There is then k_{0} such that $\left\|f_{k_{0}}-f\right\|_{p}<\frac{\varepsilon}{3}$. Now, for each $l \in \mathbb{N}$, let $g_{l}(x)=f_{k_{0}}(x)$ if $\left|f_{k_{0}}(x)\right| \leq l$, otherwise let $g_{l}(x)=0$. By LDCT again, there is $l_{0} \in \mathbb{N}$ such that $\left\|g_{l_{0}}-f_{k_{0}}\right\|_{p}<\frac{\varepsilon}{3}$. Put $g=g_{0} ; g$ is a bounded function and $g=0$ outside $F_{k_{0}}$. For $0<r<\frac{1}{2 k_{0}}$, define $[g]_{r}(x)=\frac{1}{\lambda^{n}\left(B_{r}(x)\right)} \int_{B_{r}(x)} g(y) d y$, if $x \in F_{2 k_{0}}$; otherwise let $[g]_{r}(x)=0$. Obviously, $[g]_{r} \in C_{c}(\Omega),\left|[g]_{r}\right| \leq l_{k_{0}}$ on $F_{2 k_{0}}$ and $[g]_{r}=0$ outside $F_{2 k_{0}}$. [g] $]_{r}$ is therefore in $L^{p}\left(\Omega, \mathcal{L}^{n} \mid \Omega, \lambda^{n}\right)$. Since $\lim _{r \rightarrow 0}[g]_{r}=g$ a.e., by Theorem 4.6.5, LDCT implies $\lim _{r \rightarrow 0}\left\|[g]_{r}-g\right\|_{p}=0$. Choose $0<r_{0}<\frac{1}{2 k_{0}}$ such that $\left\|[g]_{r_{0}}-g\right\|_{p}<\frac{\varepsilon}{3}$. Then, $g_{r_{0}} \in$ $C_{c}(\Omega)$ and $\left\|f-[g]_{r_{0}}\right\|_{p} \leq\left\|f-f_{k_{0}}\right\|_{p}+\left\|f_{k_{0}}-g\right\|_{p}+\left\|g-[g]_{r_{0}}\right\|_{p}<\varepsilon$.
Theorem 4.6.6 Suppose that D is a measurable set in \mathbb{R}^{n} with positive measure. Then $L^{p}\left(D, \mathcal{L}^{n} \mid D, \lambda^{n}\right)$ is separable for $1 \leq p<\infty$.
Proof In the proof, we shall denote by $L^{p}(A)$ the space $L^{p}\left(A, \mathcal{L} \mid A, \lambda^{n}\right)$ if $A \in \mathcal{L}^{n}$. Since if $\left\{u_{k}\right\}_{k \in \mathbb{N}}$ is dense in $L^{p}\left(\mathbb{R}^{n}\right)$, then $\left\{\left.u_{k}\right|_{D}\right\}_{k \in \mathbb{N}}$ is dense in $L^{p}(D)$, it is sufficient to show that $L^{p}\left(\mathbb{R}^{n}\right)$ is separable.

We call the indicator function of an oriented interval $I_{1} \times \cdots \times I_{n}$ an elementary unit function of order k, if each $I_{j}, j=1, \ldots, n$, is of the form $I_{j}=\left[\frac{l^{k}}{2^{k}}, \frac{l_{i}+1}{2^{k}}\right)$, $l_{j} \in \mathbb{Z}$. Consider now the family \mathcal{E} of all finite linear combinations of elementary unit functions of all possible order with rational coefficients. It is clear that \mathcal{E} is a countable set in $L^{p}\left(\mathbb{R}^{n}\right)$. Let $u \in C_{c}\left(\mathbb{R}^{n}\right)$ and $\varepsilon>0$. As u vanishes outside $J=J_{1} \times$ $\cdots \times J_{n}$ with each $J_{j}=\left[-n_{0}, n_{0}\right]$ for some $n_{0} \in \mathbb{N}$, and u is uniformly continuous on J, for any given $\varepsilon>0$ there is $g \in \mathcal{E}$ such that $\|u-g\|_{p}<\varepsilon$; hence the closure of \mathcal{E} in $L^{p}\left(\mathbb{R}^{n}\right)$ contains $C_{c}\left(\mathbb{R}^{n}\right)$. Thus the closure of \mathcal{E} in $L^{p}\left(\mathbb{R}^{n}\right)$ is $L^{p}\left(\mathbb{R}^{n}\right)$, by Proposition 4.6.1.
Lemma 4.6.6 There is a Radon measure φ on Ω such that $\mu=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}+\varphi$, i.e. $\mu(S)=$ $\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}(S)+\varphi(S)$ for all $S \subset \Omega$.
Proof Denote by $\mathcal{K}(\Omega)$ the family of all compact sets in Ω. Both μ and $\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}$ take finite value on $\mathcal{K}(\Omega)$; we define φ_{1} on $\mathcal{K}(\Omega)$ by

$$
\varphi_{1}(K)=\mu(K)-\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}(K)
$$

for $K \in \mathcal{K}(\Omega)$. By Corollary 4.6.2, $\varphi_{1} \geq 0$. Observe that
(i) φ_{1} is monotone on $\mathcal{K}(\Omega)$, i.e. for $K_{1} \subset K_{2}$ in $\mathcal{K}(\Omega), \varphi_{1}\left(K_{1}\right) \leq \varphi_{1}\left(K_{2}\right)$.
(ii) For any finite number of disjoint sets K_{1}, \ldots, K_{l} in $\mathcal{K}(\Omega)$,

$$
\varphi_{1}\left(\bigcup_{j=1}^{l} K_{j}\right)=\sum_{j=1}^{l} \varphi_{1}\left(K_{j}\right) .
$$

Now define φ on $\mathcal{B}(\Omega)$ by

$$
\varphi(A)=\sup \varphi_{1}(K)
$$

for $A \in \mathcal{B}(\Omega)$, where the supremum is taken over all $K \in \mathcal{K}(\Omega)$ with $K \subset A$. Then φ is an extension of φ_{1} and

$$
\begin{equation*}
\mu(A)=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}(A)+\varphi(A) \tag{4.11}
\end{equation*}
$$

for $A \in \mathcal{B}(\Omega)$. That φ is an extension of φ_{1} follows from (i), while (4.11) holds by taking the limit as $j \rightarrow \infty$ on both sides of

$$
\mu\left(K_{j}\right)=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}\left(K_{j}\right)+\varphi\left(K_{j}\right),
$$

for a sequence $\left\{K_{j}\right\} \subset \mathcal{K}(\Omega)$ such that $\lim _{j \rightarrow \infty} \mu\left(K_{j}\right)=\mu(A), \lim _{j \rightarrow \infty}$ $\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}\left(K_{j}\right)=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}(A)$, and $\lim _{j \rightarrow \infty} \varphi\left(K_{j}\right)=\varphi(A)$. That such a sequence $\left\{K_{j}\right\}$ exists follows by applying Theorem 3.9.1 (ii) to μ and $\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}$, and by definition of φ.

If now $\left\{A_{j}\right\}$ is a disjoint sequence of Borel sets in a given compact set $K \subset \Omega$, then both $\mu\left(\bigcup_{j} A_{j}\right)$ and $\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}\left(\bigcup_{j} A_{j}\right)$ are finite, and by (4.11),

$$
\begin{aligned}
\varphi\left(\bigcup_{j} A_{j}\right) & =\mu\left(\bigcup_{j} A_{j}\right)-\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}\left(\bigcup_{j} A_{j}\right) \\
& =\sum_{j}\left\{\mu\left(A_{j}\right)-\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}\left(A_{j}\right)\right\}=\sum_{j} \varphi\left(A_{j}\right),
\end{aligned}
$$

hence we have:
(iii) For disjoint sequence $\left\{A_{j}\right\} \subset \mathcal{B}(\Omega)$ with $\bigcup_{j} A_{j} \subset K$ for some compact set K in Ω,

$$
\varphi\left(\bigcup_{j} A_{j}\right)=\sum_{j} \varphi\left(A_{j}\right) .
$$

Next, we claim that φ is σ-additive on $\mathcal{B}(\Omega)$. Let $\left\{A_{j}\right\}$ be any disjoint sequence in $\mathcal{B}(\Omega)$. For any compact set $K \subset \bigcup_{j} A_{j}$,

$$
\varphi(K)=\varphi\left(\bigcup_{j}\left\{K \cap A_{j}\right\}\right)=\sum_{j} \varphi\left(K \cap A_{j}\right) \leq \sum_{j} \varphi\left(A_{j}\right)
$$

by (iii), and the obvious fact that φ is monotone on $\mathcal{B}(\Omega)$. Consequently,

$$
\begin{equation*}
\varphi\left(\bigcup_{j} A_{j}\right) \leq \sum_{j} \varphi\left(A_{j}\right) \tag{4.12}
\end{equation*}
$$

On the other hand, fix $l \in \mathbb{N}$ and for each $j=1, \ldots, l$ take an arbitrary compact set $K_{j} \subset A_{j}$, then

$$
\begin{equation*}
\varphi\left(\bigcup_{j} A_{j}\right) \geq \varphi\left(\bigcup_{j=1}^{l} K_{j}\right)=\sum_{j=1}^{l} \varphi\left(K_{j}\right), \tag{4.13}
\end{equation*}
$$

by monotony of φ on $\mathcal{B}(\Omega)$ and (ii); since each K_{j} is an arbitrary compact set in A_{j}, it follows from (4.13) that

$$
\varphi\left(\bigcup_{j} A_{j}\right) \geq \sum_{j=1}^{l} \varphi\left(A_{j}\right)
$$

and hence,

$$
\varphi\left(\bigcup_{j} A_{j}\right) \geq \sum_{j} \varphi\left(A_{j}\right)
$$

The last inequality shows, together with (4.12), that $\varphi\left(\bigcup_{j} A_{j}\right)=\sum_{j} \varphi\left(A_{j}\right)$. Thus φ is σ-additive on $\mathcal{B}(\Omega)$.

Now construct from φ on $\mathcal{B}(\Omega)$ a measure on Ω by Method I, which is the unique $\mathcal{B}(\Omega)$-regular extension of φ by Corollary 3.4.1 and hence is a Radon measure. The Radon measure so constructed is to be denoted also by φ. That $\mu=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}+\varphi$ holds follows from (4.11) and Borel regularity of $\mu,\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}$, and φ.
Theorem 4.6.7 (Lebesgue decomposition theorem) There is a null set $N \subset \Omega$ such that

$$
\mu=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}+\mu\lfloor N
$$

Proof By Lemma 4.6.6, there is a Radon measure φ on Ω such that

$$
\begin{equation*}
\mu=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}+\varphi \tag{4.14}
\end{equation*}
$$

Choose a null set $N_{1} \subset \Omega$ such that, for $x \in \Omega \backslash N_{1}$, the derivates $\lim _{B \rightarrow x} \frac{\mu(B)}{\lambda^{n}(B)}$, $\lim _{B \rightarrow x} \frac{\left\{\frac{d \mu}{d n^{n}}{ }^{*}(B)\right.}{\lambda^{n}(B)}$, and $\lim _{B \rightarrow x} \frac{\varphi(B)}{\lambda^{n}(B)}$ exist and are finite, and further, $\frac{d}{d \lambda^{n}}\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}(x)=$ $\frac{d \mu}{d \lambda^{n}}(x)$. That such a null set N_{1} exists is a consequence of Theorem 4.6.3 and Corollary 4.6.3. From the choice of N_{1} and (4.14), one concludes that the derivate $\frac{d \varphi}{d \lambda^{n}}(x)=0$ for $x \in \Omega \backslash N_{1}$, and hence, in view of Lemma 4.6.3, there is a null set $N_{2} \subset \Omega \backslash N_{1}$ such that $\varphi\left(\Omega \backslash\left(N_{1} \cup N_{2}\right)\right)=0$. Put $N=N_{1} \cup N_{2} ; N$ is a null set, and for any $S \subset \Omega$,

$$
\varphi(S \cap N) \leq \varphi(S) \leq \varphi(S \cap(\Omega \backslash N))+\varphi(S \cap N)=\varphi(S \cap N)
$$

or

$$
\varphi(S)=\varphi(S \cap N) .
$$

Now,

$$
\mu(S \cap N)=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}(S \cap N)+\varphi(S \cap N)=\varphi(S)
$$

consequently,

$$
\mu(S)=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}(S)+\varphi(S)=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}(S)+\mu(S \cap N)
$$

for any $S \subset \Omega$; in other words,

$$
\mu=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}+\mu\lfloor N
$$

The decomposition of μ into the sum $\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}+\mu\lfloor N$ in Theorem 4.6.7 is called the Lebesgue decomposition of μ.

Concepts of absolute continuity and singularity for measures are introduced now for the purpose of singling out a distinguishing feature of the Lebesgue decomposition theorem. Suppose μ and ν are measures on a set Ω. The measure μ is said to be v-absolutely continuous if $\mu(A)=0$ whenever $\nu(A)=0$; and μ is said to be v-singular if $\mu=\mu\lfloor N$ where $\nu(N)=0$. If Ω is a subset of \mathbb{R}^{n}, then a measure μ on Ω being λ^{n}-absolute continuous or λ^{n}-singular will simply be said to be absolutely continuous or singular, in this order.

In the decomposition $\mu=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}+\mu\left\lfloor N\right.$, where $\lambda^{n}(N)=0$, as claimed by Theorem 4.6.7, $\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}$ is absolutely continuous and $\mu\lfloor N$ is singular. Thus, Theorem 4.6.7 claims that any Radon measure on Ω can be decomposed into an absolutely continuous part and a singular part. We shall see presently that such a decomposition is unique.
Lemma 4.6.7 If μ is an absolutely continuous Radon measure on Ω, then $\mu=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}$.

Proof By Theorem 4.6.7,

$$
\mu=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}+\mu\lfloor N,
$$

where $\lambda^{n}(N)=0$; but absolute continuity of μ implies $\mu(N)=0$ and hence $\mu\lfloor N=0$.
Lemma 4.6.8 If μ is a singular Radon measure on Ω, then $\frac{d \mu}{d \lambda^{n}}=0$ a.e. on Ω.
Proof There are null sets N and N^{\prime} in Ω such that

$$
\mu=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}+\mu\lfloor N
$$

and

$$
\mu=\mu\left\lfloor N^{\prime},\right.
$$

by Theorem 4.6 .7 and singularity of μ. For any set $S \subset \Omega \backslash N^{\prime}$, we have

$$
\mu(S)=\mu\left(S \cap N^{\prime}\right)=\mu(\emptyset)=0,
$$

and hence,

$$
0=\mu(S)=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}(S)+\mu(N \cap S)
$$

a fortiori, $\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}(S)=0$. Since $\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}(S)=\int_{S} \frac{d \mu}{d \lambda^{n}} d \lambda^{n}=0$ for any measurable $S \subset \Omega \backslash N^{\prime}, \frac{d \mu}{d \lambda^{n}}=0$ a.e. on $\Omega \backslash N^{\prime}$, and consequently $\frac{d \mu}{d \lambda^{n}}=0$ a.e. on Ω.

Theorem 4.6.8 For a Radon measure μ on Ω, the Lebesgue decomposition $\mu=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}+$ $\mu\left\lfloor N\right.$, where $\lambda^{n}(N)=0$, is the unique decomposition of μ into a sum of an absolutely continuous and a singular Radon measure.
Proof Let $\mu=\mu_{a}+\mu_{s}$ be a decomposition of μ into the sum of an absolutely continuous Radon measure μ_{a} and a singular Radon measure μ_{s}. Then,

$$
\frac{d \mu}{d \lambda^{n}}=\frac{d \mu_{a}}{d \lambda^{n}}+\frac{d \mu_{s}}{d \lambda^{n}}
$$

almost everywhere on Ω. Since $\frac{d \mu_{s}}{d \lambda^{n}}=0$ a.e. on Ω, by Lemma 4.6.8, $\frac{d \mu}{d \lambda^{n}}=\frac{d \mu_{a}}{d \lambda \lambda^{n}}$ a.e. From Lemma 4.6.7, $\mu_{a}=\left\{\frac{d \mu_{a}}{d \lambda^{n}}\right\}^{*}=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}$. Let $\mu=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}+\mu\lfloor N$ be the Lebesgue decomposition of μ; then by what has just being proved,

$$
\mu(S)=\mu_{a}(S)+\mu_{s}(S)=\left\{\frac{d \mu}{d \lambda^{n}}\right\}^{*}(S)+\mu\left\lfloor N(S)=\mu_{a}(S)+\mu\lfloor N(S) ;\right.
$$

in particular, if $\mu(S)<\infty, \mu_{s}(S)=\mu\left\lfloor N(S)\right.$, from which $\mu_{s}=\mu\lfloor N$ follows by Theorem 3.3.2, because both μ_{s} and $\mu\lfloor N$ are regular.

Exercise 4.6.6 Let H^{n} be the n-dimensional Hausdorff measure on \mathbb{R}^{n}.
(i) Show that H^{n} is a Radon measure on \mathbb{R}^{n}.
(ii) Show that $\frac{d H^{n}}{d \lambda^{n}}(x)=\alpha_{n}$ for all $x \in \mathbb{R}^{n}$, where α_{n} is a constant depending only on the dimension n.
(iii) Show that $H^{n}=\alpha_{n} \lambda^{n}$.

The results in this section will be applied in Section 4.7 to study differentiability of functions of a real variable; while differentiability of measures in a general setting will be taken up in Section 5.7, where a decomposition theorem similar to Theorem 4.6.8 is established.

4.7 Differentiability of functions of a real variable and related functions

Differentiability of functions of a real variable will be studied through differentiation of Lebesgue-Stieltjes measures generated by monotone functions. An important subclass of the class of BV functions will be introduced. This is the class of absolutely continuous functions, which is much larger than the class of continuously differentiable functions, but enjoys many useful properties of the latter; in particular, the formula of integration by parts holds for absolutely continuous functions.

We start with the almost everywhere differentiability for monotone functions.
Lemma 4.7.1 If g is a finite-valued monotone increasing function on \mathbb{R}, then the derivative g^{\prime} exists and is finite almost everywhere on \mathbb{R} and g^{\prime} is measurable. Furthermore, $g^{\prime}=\frac{d \mu_{g}}{d \lambda}$ a.e.

Proof Let μ_{g} be the Lebesgue-Stieltjes measure generated by g. We know from Theorem 4.6.3 that the derivate

$$
\frac{d \mu_{g}}{d \lambda}(x)=\lim _{I \rightarrow x} \frac{\mu_{g}(I)}{|I|}
$$

exists and is finite for x in a subset D of \mathbb{R} with $\lambda(\mathbb{R} \backslash D)=0$, where I denotes a generic finite closed interval in \mathbb{R}. We claim that for $x \in D, g^{\prime}(x)$ exists and equals $\frac{d \mu_{g}}{d \lambda}(x)$. Note first that points in D are necessarily points of continuity of g and $\mu_{g}([a, b])=$ $g(b)-g(a)$ if g is continuous at a and b (cf. Lemma 3.7.2). Now for $x \in D$, if $y \rightarrow x+$ through points of continuity of g, then $\lim _{y \rightarrow x+} \frac{g(y)-g(x)}{y \rightarrow x}=\frac{d \mu_{g}}{d \lambda}(x)$; in general, for any
$y>x$, choose points of continuity y^{\prime} and $y^{\prime \prime}$ such that $x<y^{\prime}<y<y^{\prime \prime}$ and such that $\lim _{y \rightarrow x+} \frac{y^{\prime}-x}{y-x}=\lim _{y \rightarrow x+} \frac{y^{\prime \prime}-x}{y-x}=1$, then,

$$
\left(\frac{y^{\prime}-x}{y-x}\right) \frac{g\left(y^{\prime}\right)-g(x)}{y^{\prime}-x} \leq \frac{g(y)-g(x)}{y-x} \leq\left(\frac{y^{\prime \prime}-x}{y-x}\right) \frac{g\left(y^{\prime \prime}\right)-g(x)}{y^{\prime \prime}-x},
$$

from which by taking the limit as $y \rightarrow x+$, we obtain $\lim _{y \rightarrow x+} \frac{g(y)-g(x)}{y-x}=\frac{d \mu_{g}}{d \lambda}(x)$. Similarly, $\lim _{y \rightarrow x-} \frac{g(y)-g(x)}{y-x}=\lim _{y \rightarrow x-} \frac{g(x)-g(y)}{x-y}=\frac{d \mu_{g}}{d \lambda}(x)$. Thus, $g^{\prime}(x)=\frac{d \mu_{g}}{d \lambda}(x)$ for $x \in D$. This means that g^{\prime} exists almost everywhere on \mathbb{R}. That g^{\prime} is measurable follows from Lemma 4.6.4 and the fact that $g^{\prime}=\frac{d \mu_{g}}{d \lambda}$ a.e.
Theorem 4.7.1 Iff is a $B V$ function on a finite closed interval $[a, b]$, then f^{\prime} exists a.e. on $[a, b]$ and is integrable. Furthermore,

$$
V_{a}^{x}(f) \geq \int_{a}^{x}\left|f^{\prime}\right| d \lambda
$$

for $x \in[a, b]$.
Proof Put $f_{1}(x)=f(a)+P_{a}^{x}(f)$ and $f_{2}(x)=N_{a}^{x}(f)$ for $x \in[a, b]$; then f_{1} and f_{2} are monotone increasing on $[a, b]$ and $f=f_{1}-f_{2}$. That f^{\prime} exists a.e. on $[a, b]$ and is measurable follows from Lemma 4.7.1 by extending f_{1} and f_{2} to be defined and monotone increasing on \mathbb{R}, as in the last paragraph of Section 3.7 and by extending f by $f=f_{1}-f_{2}$ on \mathbb{R}. Then $f^{\prime}=f_{1}^{\prime}-f_{2}^{\prime}$ a.e. on \mathbb{R}.

If for $i=1,2$, we let μ_{i} be the Lebesgue-Stieltjes measure on \mathbb{R} generated by f_{i}, then from the Lebesgue decomposition theorem,

$$
\mu_{i}=\left\{\frac{d \mu_{i}}{d \lambda}\right\}^{*}+\mu_{i}\left\lfloor N_{i}\right) \geq\left\{\frac{d \mu_{i}}{d \lambda}\right\}^{*}=\left\{f_{i}^{\prime}\right\}^{*}
$$

where N_{i} is a null set in \mathbb{R} and $\frac{d \mu_{i}}{d \lambda}=f_{i}^{\prime}$ a.e., by Lemma 4.7.1. As a consequence, for $x \in[a, b], P_{a}^{x}(f)=f_{1}(x)-f_{1}(a) \geq \mu_{1}([a, x)) \geq \int_{a}^{x} f_{1}^{\prime} d \lambda$; similarly, $N_{a}^{x}(f) \geq$ $\int_{a}^{x} f_{2}^{\prime} d \lambda$. Now, $V_{a}^{x}(f)=P_{a}^{x}(f)+N_{a}^{x}(f) \geq \int_{a}^{x}\left(f_{1}^{\prime}+f_{2}^{\prime}\right) d \lambda \geq \int_{a}^{x}\left|f^{\prime}\right| d \lambda$. That f^{\prime} is integrable follows from $\int_{a}^{b}\left|f^{\prime}\right| d \lambda \leq V_{a}^{b}(f)<\infty$.

Remark Although the measurability of g^{\prime} in Lemma 4.7.1 follows from that of $\frac{d \mu_{g}}{d \lambda}$ by Lemma 4.6.4, if a measurable function f is differentiable a.e., the measurability of f^{\prime} follows from the measurability of the limit of a sequence of measurable functions. Actually,

$$
f^{\prime}(x)=\lim _{k \rightarrow \infty} k\left\{f\left(x+\frac{1}{k}\right)-f(x)\right\}
$$

if $f^{\prime}(x)$ exists, and for each $k \in \mathbb{N}, k\left\{f\left(x+\frac{1}{k}\right)-f(x)\right\}$ is a measurable function of x.

Exercise 4.7.1 Let f be a monotone increasing function on a finite closed interval $[a, b]$. Show that $f(x)=f(a)+\int_{a}^{x} f^{\prime} d \lambda$ for all $x \in[a, b]$ if and only if the Lebesgue-Stieltjes measure μ_{f} generated by f is absolutely continuous.
In the remaining part of this section, functions are finite-valued and defined on a finite closed interval $[a, b]$; and for a function f and an interval I in $[a, b]$ with endpoints $c<d$, the difference $f(d)-f(c)$ will be denoted by $f(I)$.

A monotone increasing function f is said to be absolutely continuous if the Lebesgue-Stieltjes measure μ_{f} generated by f is absolutely continuous. Hence, by Exercise 4.7.1, a monotone increasing function f is absolutely continuous if and only if

$$
f(x)=f(a)+\int_{a}^{x} f^{\prime} d \lambda
$$

holds for all $x \in[a, b]$. We shall characterize absolute continuity of a monotone increasing function by a property which can be adopted to define absolute continuity for general functions.

Lemma 4.7.2 For a monotone increasing function f, the following two statements are equivalent:
(I) f is absolutely continuous.
(II) Given any $\varepsilon>0$, there is $\delta>0$ such that if $\left\{I_{j}\right\}$ is a disjoint sequence of intervals open in $[a, b]$ with $\sum_{j}\left|I_{j}\right|<\delta$, then $\sum_{j}\left|f\left(I_{j}\right)\right|<\varepsilon$.
Proof For convenience, put $\mu=\mu_{f}$.
To show the implication (I) \Rightarrow (II), note first that since $\mu(\{x\})=0$ for all $x \in[a, b], \mu(\{x\})=f(x+)-f(x-)=0$, i.e. f is continuous on $[a, b]$. From Lemma 4.6.7, $\int_{a}^{b} \frac{d \mu}{d \lambda} d \lambda=\mu([a, b])<\infty$, hence $\frac{d \mu}{d \lambda}$ is integrable. Now let $\varepsilon>0$ be given; by Exercise 2.5.9 (iii) there is $\delta>0$ such that if A is a measurable set in $[a, b]$ with $\lambda(A)<\delta$, then $\int_{A} \frac{d \mu}{d \lambda} d \lambda<\varepsilon$; if $\left\{I_{j}\right\}$ is a disjoint sequence of intervals open in [a,b] with $\sum_{j}\left|I_{j}\right|<\delta$, then $\lambda\left(\bigcup_{j} I_{j}\right)<\delta$ and $\sum_{j}\left|f\left(I_{j}\right)\right|=\sum_{j} f\left(I_{j}\right)=\int_{\bigcup_{j} I_{j}} \frac{d \mu}{d \lambda} d \lambda<\varepsilon$. Thus (II) holds.

Suppose now that (II) holds. We will show that if N is a null set in $[a, b], \mu(N)=0$. Given $\varepsilon>0$, choose $\delta>0$ according to (II). There is a set G open in [a,b] such that $G \supset N$ and $\lambda(G)<\delta$. But, since $G=\bigcup_{j} I_{j}$, where $\left\{I_{j}\right\}$ is a disjoint sequence of intervals open in $[a, b], \sum_{j}\left|I_{j}\right|=\lambda(G)<\delta$, and consequently,

$$
\begin{equation*}
\mu(N) \leq \mu(G)=\sum_{j} \mu\left(I_{j}\right)=\sum_{j} f\left(I_{j}\right)<\varepsilon \tag{4.15}
\end{equation*}
$$

by (II), where the obvious fact that if (II) holds, f is continuous on $[a, b]$ and $\mu\left(I_{j}\right)=f\left(I_{j}\right)$, has been used. Since (4.15) holds for arbitrary $\varepsilon>0, \mu(N)=0$.
Exercise 4.7.2 Show that a monotone increasing and absolutely continuous function maps null sets to null sets.

We take Lemma 4.7.2 as a hint for defining absolute continuity for general functions. A function f is said to be absolutely continuous if condition (II) in Lemma 4.7.2 holds for f. Condition (II) in Lemma 4.7.2 will be referred to as condition (AC), and an absolutely continuous function is usually simply called an AC function. Immediately following, if $\mathcal{P}: x_{0}=c<x_{1}<\cdots<x_{l}=d$ is a partition of $[c, d]$, the intervals $\left(x_{j-1}, x_{j}\right)$, $j=1, \ldots, l$ are called the intervals of \mathcal{P}; and if f is a function defined on $[c, d]$, $\sum_{j=1}^{l}\left|f\left(x_{j}\right)-f\left(x_{j-1}\right)\right|$ will be denoted by $|f(\mathcal{P})|$.
Lemma 4.7.3 An AC functionf is a BV function.
Proof Since f satisfies condition (AC), there is $\delta>0$ such that if $\left\{I_{j}\right\}$ is a disjoint sequence of intervals open in $[a, b]$ with $\sum_{j}\left|I_{j}\right|<\delta$, then $\sum_{j}\left|f\left(I_{j}\right)\right|<1$. Divide $[a, b]$ into m nonoverlapping closed intervals of equal length $<\delta$, and consider one of these subintervals, say J. Let \mathcal{P} be any partition of J, then $|f(\mathcal{P})|<1$, because the intervals of \mathcal{P} are in J and the sum of their lengths is smaller than δ. Since \mathcal{P} is an arbitrary partition of J, the total variation of f over J is less than or equal to 1 . Hence, $V_{a}^{b}(f) \leq m$.
Recall that if f is a BV function, the functions f_{P}, f_{N}, and f_{V} are defined by

$$
f_{P}(x)=P_{a}^{x}(f) ; \quad f_{N}(x)=N_{a}^{x}(f) ; \quad f_{V}(x)=V_{a}^{x}(f)
$$

for $x \in[a, b]$.
Lemma 4.7.4 Iff is a BV function, then the following three statements are equivalent:
(I) f is an $A C$ function.
(II) f_{V} is an $A C$ function.
(III) Both f_{P} and f_{N} are $A C$ functions.

Proof The implication of (II) \Rightarrow (I) and the equivalence of (II) \Leftrightarrow (III) are obvious. It remains to show the implication of (I) \Rightarrow (II).

Suppose (I) holds. For $\varepsilon>0$ given, choose $\delta>0$ according to condition (AC). We are going to show that if $\left\{I_{j}\right\}$ is a disjoint sequence of intervals open in [a,b] with $\sum_{j}\left|I_{j}\right|<\delta$, then $\sum_{j} f_{V}\left(I_{j}\right) \leq \varepsilon$. For each j, let \mathcal{P}_{j} be an arbitrary partition of I_{j}, and let $\left\{I_{k}^{(j)}\right\}_{k}$ be the finite family of intervals of \mathcal{P}_{j}, then $\bigcup_{j}\left\{I_{k}^{(j)}\right\}_{k}$ is a sequence of disjoint intervals open in $[a, b]$ and $\sum_{j} \sum_{k}\left|I_{k}^{(j)}\right|=\sum_{j}\left|I_{j}\right|<\delta$. From the choice of $\delta, \sum_{j} \sum_{k}\left|f\left(I_{k}^{(j)}\right)\right|=\sum_{j}\left|f\left(\mathcal{P}_{j}\right)\right|<\varepsilon$; consequently, $\sum_{j} f_{V}\left(I_{j}\right) \leq \varepsilon$, by taking the supremum of $\sum_{j}\left|f\left(\mathcal{P}_{j}\right)\right|$ first for all partitions \mathcal{P}_{1} of I_{1}, and then for all partitions \mathcal{P}_{2} of I_{2}, and so on. Thus, f_{V} satisfies condition (AC) and is therefore an AC function.

A function f is called an indefinite integral if there is an integrable function g such that

$$
\begin{equation*}
f(x)=c+\int_{a}^{x} g d \lambda \tag{4.16}
\end{equation*}
$$

for some constant c and all $x \in[a, b]$. More precisely, if (4.16) holds, f is called an indefinite integral of g.

Exercise 4.7.3 Show that if f is an indefinite integral of g, then $f^{\prime}=g$ a.e.
Theorem 4.7.2 A functionf is an AC function if and only if it is an indefinite integral.
Proof It is obvious that an indefinite integral is an AC function. Suppose now that f is an AC function. Both f_{P} and f_{N} are AC functions, by Lemma 4.7.4, hence,

$$
f_{P}(x)=\int_{a}^{x} f_{P}^{\prime} d \lambda ; \quad f_{N}(x)=\int_{a}^{x} f_{N}^{\prime} d \lambda
$$

for all $x \in[a, b]$, by Exercise 4.7.1. Then,

$$
f(x)=f(a)+f_{P}(x)-f_{N}(x)=f(a)+\int_{a}^{x}\left(f_{P}^{\prime}-f_{N}^{\prime}\right) d \lambda
$$

for all $x \in[a, b]$. This shows that f is an indefinite integral $\left(f_{P}^{\prime}-f_{N}^{\prime}\right.$ is integrable because both f_{P}^{\prime} and f_{N}^{\prime} are integrable).

Exercise 4.7.4 Show that a function f is AC if and only if f^{\prime} exists a.e., f^{\prime} is integrable, and $f(x)=f(a)+\int_{a}^{x} f^{\prime} d \lambda$ for all $x \in[a, b]$.
Corollary 4.7.1 Iff is an $A C$ function, then $f_{N}^{\prime}=0$ a.e. on $\left\{f_{P}^{\prime}>0\right\}$ and $f_{P}^{\prime}=0$ a.e. on $\left\{f_{N}^{\prime}>0\right\}$; in other words, $\left(f^{\prime}\right)^{+}=f_{P}^{\prime}$ a.e. and $\left(f^{\prime}\right)^{-}=f_{N}^{\prime}$ a.e.
Proof Since $f^{\prime}=f_{P}^{\prime}-f_{N}^{\prime}$ a.e., by Example 4.4.1, $V_{a}^{b}(f)=\int_{a}^{b}\left|f_{P}^{\prime}-f_{N}^{\prime}\right| d \lambda$; on the other hand, $V_{a}^{b}(f)=P_{a}^{b}(f)+N_{a}^{b}(f)=\int_{a}^{b} f_{P}^{\prime} d \lambda+\int_{a}^{b} f_{N}^{\prime} d \lambda$, since both f_{P} and f_{N} are AC, by Lemma 4.7.4. Now, $f_{P}^{\prime}+f_{N}^{\prime} \geq\left|f_{P}^{\prime}-f_{N}^{\prime}\right|$ and $\int_{a}^{b}\left\{f_{P}^{\prime}+f_{N}^{\prime}-\left|f_{P}^{\prime}-f_{N}^{\prime}\right|\right\} d \lambda=0$ imply that $f_{P}^{\prime}+f_{N}^{\prime}=\left|f_{P}^{\prime}-f_{N}^{\prime}\right|$ a.e. From the last equality, the conclusion of the corollary follows directly.
Exercise 4.7.5 Suppose that f is a BV function.
(i) Show that if $V_{a}^{b}(f)=\int_{a}^{b}\left|f^{\prime}\right| d \lambda$, then

$$
f_{V}(x)=\int_{a}^{x}\left|f^{\prime}\right| d \lambda ; \quad f_{P}(x)=\int_{a}^{x}\left(f^{\prime}\right)^{+} d \lambda ; \quad f_{N}(x)=\int_{a}^{x}\left(f^{\prime}\right)^{-} d \lambda
$$

for all $x \in[a, b]$.
(ii) Show that a BV function f is AC if and only if $V_{a}^{b}(f)=\int_{a}^{b}\left|f^{\prime}\right| d \lambda$.

Exercise 4.7.6 A monotone increasing function f is said to be singular if $f^{\prime}=0$ a.e. Show that every monotone increasing function is a sum of an AC function and a singular function.

Exercise 4.7.7 Let $\left\{f_{n}\right\}$ be a sequence of AC functions on $[a, b]$ such that $\lim _{n \rightarrow \infty} f_{n}(a)$ exists and is finite, and $\left\{f_{n}^{\prime}\right\}$ converges in $L^{1}[a, b]$. Show that $\left\{f_{n}\right\}$ converges uniformly on $[a, b]$ to an AC function.

Example 4.7.1 (Cantor's ternary function) Let $I_{0}=[0,1]$ and let $J_{0}=\left(\frac{1}{3}, \frac{2}{3}\right)$ be the middle third open interval of I_{0}. Then $I_{0} \backslash V_{0}=\left[0, \frac{1}{3}\right] \cup\left[\frac{2}{3}, 1\right]$, and call $\left[0, \frac{1}{3}\right]$ and $\left[\frac{2}{3}, 1\right] I_{11}, I_{12}$ respectively. The open middle thirds of I_{11} and I_{12} are denoted J_{11}, J_{12} respectively. Continue in this fashion; on the k th step we obtain 2^{k} open intervals $J_{k, 1}, \ldots, J_{k, 2^{k}}$ ordered from left to right, each of length $\left(\frac{1}{3}\right)^{k+1}$. Put $G=\bigcup_{k=0}^{\infty} \bigcup_{j=1}^{2^{k}} J_{k j}$, then $\lambda(G)=\sum_{k=0}^{\infty} 2^{k}\left(\frac{1}{3}\right)^{k+1}=1$. The set $P:=I_{0} \backslash G$ is the intersection of a decreasing sequence of nonempty compact sets, and is therefore a nonempty compact set, called Cantor's ternary set. P is small in the sense that $\lambda(P)=0$; but we shall see that P is large in the sense that cardinality of P is the same as that of $I_{0}=[0,1]$. A function f will now be defined on $[0,1]$ as follows. For $x \in[0,1]$, express x in ternary expansion

$$
x=\sum_{j=1}^{\infty} \frac{\varepsilon_{j}}{3^{j}}, \quad \varepsilon_{j} \in\{0,1,2\},
$$

and let $\zeta_{j}=\frac{1}{2} \varepsilon_{j}$ for all j. The function f is defined by

$$
f(x)=\sum_{j=1}^{n-1} \frac{\zeta_{j}}{2^{j}}+\frac{1}{2^{n}}
$$

if $\varepsilon_{j} \in\{0,2\}$ for $j=1, \ldots, n-1$, and $\varepsilon_{n}=1$ for some n; otherwise, let $f(x)=\sum_{j=1}^{\infty} \frac{\xi_{j}}{2}$. Function f is well defined, since the only situation where x has two ternary expansions that might lead to different values of $f(x)$ is when the sequence $\left\{\varepsilon_{j}\right\}$ of one of the expansions is of the form: for some $n, \varepsilon_{1}, \ldots, \varepsilon_{n-1}$ are in $\{0,2\}, \varepsilon_{n}=1$, and either $\varepsilon_{j}=0$ for $j \geq n+1$ or $\varepsilon_{j}=2$ for $j \geq n+1$; in the first case x can also be expressed as $x=\sum_{j=1}^{n-1} \frac{\varepsilon_{j}}{3^{j}}+\frac{0}{3^{n}}+\sum_{j \geq n+1}^{\infty} \frac{2}{3^{j}}$, and in either expansion

$$
f(x)=\sum_{j=1}^{n-1} \frac{\zeta_{j}}{2^{j}}+\frac{1}{2^{n}},
$$

while in the second case x can also be expanded as

$$
x=\sum_{j=1}^{n-1} \frac{\varepsilon_{j}}{3^{j}}+\frac{2}{3^{n}}+\sum_{j \geq n+1} \frac{0}{3^{j}},
$$

and $f(x)$ also has the value $\sum_{j=1}^{n-1} \frac{\xi_{j}}{\nu}+\frac{1}{2^{n}}$. The function so defined is called Cantor's ternary function.

Exercise 4.7.8 Let f be the Cantor's ternary function.
(i) Show that f is a monotone increasing and continuous function with $f(0)=0$ and $f(1)=1$.
(ii) Show that each open interval $J_{k j}, k=0,1,2, \ldots ; j=1, \ldots, 2^{k}$, defined above is of the form $\left(\sum_{j=1}^{n-1} \frac{\varepsilon_{j}}{3^{j}}+\frac{1}{3^{n}}, \sum_{j=1}^{n-1} \frac{\varepsilon_{j}}{3^{j}}+\frac{2}{3^{n}}\right)$ for some n, where $\varepsilon_{1}, \ldots, \varepsilon_{n-1}$ are in $\{0,2\}$. Also show that f is constant on each such interval and find the value.
(iii) Show that if x and y in $[0,1]$ satisfy $|x-y| \leq \frac{1}{3^{n}}$, then $|f(x)-f(y)| \leq \frac{1}{2^{n}}$.
(iv) Show that $\int_{P} f d \mu_{f}=\frac{1}{2}$.

Exercise 4.7.9 Let P be the Cantor's ternary set defined previously.
(i) Show that $x \in P$ if and only if x has a ternary expansion $x=\sum_{j=1}^{\infty} \frac{\varepsilon_{j}}{3}$, where each $\varepsilon_{j} \in\{0,2\}$.
(ii) Show that Cantor's ternary function maps P onto $[0,1]$.
(iii) A number x in $[0,1]$ is called a ternary rational number if $x=\frac{m}{3^{n}}$, where m and n are nonnegative integers with $0 \leq m \leq 3^{n}$. Let P_{0} be the set obtained by removing all those ternary rational numbers in $(0,1)$ from P. Show that the Cantor's ternary function is 1-1 on P_{0}.
(iv) Show that the cardinality of P is the same as that of $[0,1]$.

Example 4.7.1 (Continued) The Cantor's ternary function f is constant on each open interval $J_{k j}$ and hence $f^{\prime}=0$ a.e. on $[0,1]$. Cantor's ternary function is the most wellknown singular function. Observe that $V_{a}^{b}(f)=1$, but $\int_{a}^{b}\left|f^{\prime}\right| d \lambda=0$; hence f is not an AC function. The Cantor's ternary set P is perfect i.e. P is the set of all of its own limit points. Thus P is a perfect compact null set with cardinality that of \mathbb{R}.

Example 4.7.2 We now use Cantor's ternary function f on $[0,1]$ to exhibit the fact that a measurable function of a continuous function may not be measurable.

Define a function g on $[0,1]$ by $g(x)=f(x)+x$, where f is Cantor's ternary function. Evidently, g is strictly increasing on $[0,1]$ and maps $[0,1]$ continuously onto $[0,2]$. The complement G of Cantor's ternary set P in $[0,1]$ is an open set which is mapped by g onto an open set in $[0,2]$ of measure 1 (note that each interval component of G is mapped by f to a point, and is hence mapped by g onto an interval of the same length); as a result, g maps the Cantor's ternary set P onto a compact set K of measure 1. By Proposition 3.11.2, K contains a nonmeasurable set W. Since $g^{-1} W \subset P$ and $\lambda(P)=0, g^{-1} W$ is a null set and is therefore measurable. Put $A=g^{-1} W$ and let $h=I_{A} ; h$ is measurable. Because g is a continuous and injective map from the compact set $[0,1]$ onto $[0,2], g^{-1}$ is a continuous function from $[0,2]$ onto $[0,1]$, by Proposition 1.7.3. Now $h \circ g^{-1}$ is not measurable, because $\left\{h \circ g^{-1}>0\right\}=W$ is nonmeasurable. Thus, a measurable function of a continuous function could be nonmeasurable.

For a right-continuous BV function g on $[a, b]$, let μ_{g}^{+}and μ_{g}^{-}be the LebesgueStieltjes measures generated by g_{P} and g_{N} respectively, and let $\mu_{g}=\mu_{g}^{+}-\mu_{g}^{-}$. Note that both g_{P} and g_{N} are right-continuous, by Theorem 4.4.2. If f is both $\stackrel{\mu}{\mu}_{g}^{+}$and μ_{g}^{-}-measurable on $[a, b]$ and is integrable w.r.t. μ_{g}^{+}and μ_{g}^{-}, we define

$$
\int_{a}^{b} f d \mu_{g}=\int_{a}^{b} f d \mu_{g}^{+}-\int_{a}^{b} f d \mu_{g}^{-}
$$

The measure $\left|\mu_{g}\right|:=\mu_{g}^{+}+\mu_{g}^{-}$is called the total variational measure generated by g, while μ_{g}^{+}and μ_{g}^{-}are called respectively the positive variational measure and the negative variational measure generated by g. If f is a bounded function on $[a, b]$ which is continuous $\left|\mu_{g}\right|$-a.e., then

$$
\int_{a}^{b} f d g:=\int_{a}^{b} f d g_{P}-\int_{a}^{b} f d g_{N}
$$

exists and is finite, by Theorem 4.5.2.
Exercise 4.7.10 Suppose that g is an AC function. Show that a Riemann integrable function f is continuous $\left|\mu_{g}\right|$-a.e. Then conclude that $\int_{a}^{b} f d g$ is defined and $\int_{a}^{b} f d g=$ $\int_{a}^{b} f g^{\prime} d \lambda$. (Hint: cf. Example 4.5.2.)

Theorem 4.7.3 (Integration by parts) Let f, g be AC functions on $[a, b]$, then

$$
\int_{a}^{b} f g^{\prime} d \lambda=f(b) g(b)-f(a) g(a)-\int_{a}^{b} g f^{\prime} d \lambda
$$

Proof We may assume that both f and g are monotone increasing, then by Theorem 4.5.3,

$$
\int_{a}^{b} f d g=f(b) g(b)-f(a) g(a)-\int_{a}^{b} g d f
$$

But by Example 4.5.2,

$$
\int_{a}^{b} f d g=\int_{a}^{b} f g^{\prime} d \lambda ; \quad \int_{a}^{b} g d f=\int_{a}^{b} g f^{\prime} d \lambda
$$

hence,

$$
\int_{a}^{b} f g^{\prime} d \lambda=f(b) g(b)-f(a) g(a)-\int_{a}^{b} g f^{\prime} d \lambda
$$

Exercise 4.7.11 Let f and g be $A C$ functions. Show that the product $f g$ is $A C$, and (using integration by parts)

$$
\int_{c}^{d}(f g)^{\prime} d \lambda=\int_{c}^{d} f^{\prime} g d \lambda+\int_{c}^{d} f g^{\prime} d \lambda
$$

for all $a \leq c<d \leq b$, and conclude that $(f g)^{\prime}=f^{\prime} g+f g^{\prime}$ a.e.
Exercise 4.7.12 Let f be an integrable function on $[a, b]$ with the property that

$$
\int_{a}^{b} f g^{\prime} d \lambda=0
$$

for all AC functions g such that $g(a)=g(b)=0$. Show that $f=$ constant a.e. (Hint: put $c=\int_{a}^{b} f d \lambda$, and let

$$
g(x)=\int_{a}^{x}\left(f-\frac{c}{b-a}\right) d \lambda
$$

for $x \in[a, b]$. Observe that $g(a)=g(b)=0$ and evaluate $\int_{a}^{b}\left(f-\frac{c}{b-a}\right)^{2} d \lambda$.)
Exercise 4.7.13 Let f and g be integrable functions on $[a, b]$ and suppose that

$$
\int_{a}^{b} f h^{\prime} d \lambda=-\int_{a}^{b} g h d \lambda
$$

for all AC functions h with $h(a)=h(b)=0$. Show that f is equivalent to an AC function \hat{f} and $\hat{f}^{\prime}=g$ a.e.

Theorem 4.7.4 (Change of variable) Suppose that g is a monotone increasing $A C$ function on $[a, b]$. Put $c=g(a)$ and $d=g(b)$. Then for any nonnegative measurable function f on $[c, d]$, the function $(f \circ g) g^{\prime}$ is measurable and

$$
\int_{c}^{d} f d \lambda=\int_{a}^{b}(f \circ g) g^{\prime} d \lambda .
$$

Proof From $|I|=\mu_{g}\left(g^{-1} I\right)$, for any interval I open in $[c, d]$, it follows that $\lambda(G)=$ $\mu_{g}\left(g^{-1} G\right)$ for any set G open in $[c, d]$, and hence for any Borel set B in $[c, d]$ we have (cf. Exercise 4.3.4 and recall that μ_{g} is absolutely continuous)

$$
\lambda(B)=\mu_{g}\left(g^{-1} B\right)=\int_{g^{-1} B} \frac{d \mu_{g}}{d \lambda} d \lambda=\int_{a}^{b} I_{g^{-1} B} g^{\prime} d \lambda=\int_{a}^{b}\left(I_{B} \circ g\right) g^{\prime} d \lambda,
$$

or

$$
\lambda(B)=\int_{H}\left(I_{B} \circ g\right) g^{\prime} d \lambda,
$$

where $H=\left\{g^{\prime}>0\right\}$. Note that for a Borel set B in $[c, d], I_{B} \circ g$ is a Borel measurable function and $\left(I_{B} \circ g\right) g^{\prime}$ is measurable; but in general $I_{A} \circ g$ may not be measurable for measurable set $A \subset[c, d]$; however, we claim that $\left(I_{A} \circ g\right) g^{\prime}$ is measurable and

$$
\lambda(A)=\int_{a}^{b}\left(I_{A} \circ g\right) g^{\prime} d \lambda
$$

To see this, first consider the case where A is a null set in $[c, d]$. Choose a Borel set B in $[c, d]$ such that $B \supset A$ and $\lambda(B)=\lambda(A)=0$, then

$$
\lambda(B)=\int_{H}\left(I_{B} \circ g\right) g^{\prime} d \lambda=0,
$$

which implies that $I_{B} \circ g=0$ a.e. on H and, a fortiori, $I_{A} \circ g=0$ a.e. on H. Therefore $I_{A} \circ g$ is measurable on H; as a consequence, $\left(I_{A} \circ g\right) g^{\prime}=0$ a.e. on $[a, b]$ and is therefore measurable. Now, let A be any measurable set in $[c, d]$ and choose a Borel set B in $[c, d]$ such that $B \supset A$ and $\lambda(B)=\lambda(A) ;$ then $S:=B \backslash A$ is a null set and $\left(I_{S} \circ g\right) g^{\prime}=0$ a.e. as we have just proved. But $\left(I_{B} \circ g\right) g^{\prime}=\left(I_{A} \circ g+I_{S} \circ g\right) g^{\prime}=\left(I_{A} \circ g\right) g^{\prime}$ a.e. on $[a, b]$, hence $\left(I_{A} \circ g\right) g^{\prime}$ is measurable and

$$
\lambda(A)=\lambda(B)=\int_{a}^{b}\left(I_{B} \circ g\right) g^{\prime} d \lambda=\int_{a}^{b}\left(I_{A} \circ g\right) g^{\prime} d \lambda .
$$

If $f \geq 0$ is measurable, $f=\sum_{j=1}^{\infty} \frac{1}{j} I_{A_{j}}$, where each A_{j} is a measurable set in $[c, d]$, by Theorem 2.2.1. Then,

$$
\begin{aligned}
\int_{c}^{d} f d \lambda & =\int_{c}^{d} \sum_{j=1}^{\infty} \frac{1}{j} I_{A_{j}} d \lambda=\sum_{j=1}^{\infty} \frac{1}{j} \lambda\left(A_{j}\right)=\sum_{j=1}^{\infty} \frac{1}{j} \int_{a}^{b}\left(I_{A_{j}} \circ g\right) g^{\prime} d \lambda \\
& =\int_{a}^{b} \lim _{l \rightarrow \infty} \sum_{j=1}^{l} \frac{1}{j}\left(I_{A_{j}} \circ g\right) g^{\prime} d \lambda=\int_{a}^{b} \lim _{l \rightarrow \infty}\left\{\left(\sum_{j=1}^{l} \frac{1}{j} I_{A_{j}}\right) \circ g\right\} g^{\prime} d \lambda \\
& =\int_{a}^{b}(f \circ g) g^{\prime} d \lambda,
\end{aligned}
$$

where $(f \circ g) g^{\prime}=\lim _{l \rightarrow \infty} \sum_{j=1}^{l} \frac{1}{j}\left(I_{A_{j}} \circ g\right) g^{\prime}$ is measurable because it is the limit of measurable functions $\sum_{j=1}^{l} \frac{1}{j}\left(I_{A_{j}} \circ g\right) g^{\prime}$.

Remark The change of variable formula in Theorem 4.7.4 is familiar in integral calculus. Here, it is shown under much relaxed conditions on f and g. Note that one of the delicacies in the proof is the measurability of $(f \circ g) g^{\prime}$, although $f \circ g$ may not be measurable, as we see in Example 4.7.2.

4.8 Product measures and Fubini theorem

We digress in this section from the main theme of the chapter, to the construction and properties of product measures, before going to further studies of functions of several real variables. Consider measure spaces ($\Omega_{i}, \Sigma_{i}, \mu_{i}$), $i=1,2$, and let $R=\left\{A_{1} \times A_{2}: A_{i} \in\right.$ $\left.\Sigma_{i}, i=1,2\right\}$. R is a π-system. Sets in R are called measurable rectangles. The σ-algebra $\sigma(R)$ on $\Omega_{1} \times \Omega_{2}$ generated by R is denoted by $\Sigma_{1} \otimes \Sigma_{2}$. For $E \subset \Omega_{1} \times \Omega_{2}$ and (w_{1}, w_{2}) $\in \Omega_{1} \times \Omega_{2}$, we define sets $E_{w_{1}}$ and $E^{w_{2}}$ by

$$
E_{w_{1}}=\left\{y \in \Omega_{2}:\left(w_{1}, y\right) \in E\right\} ; \quad E^{w_{2}}=\left\{x \in \Omega_{1}:\left(x, w_{2}\right) \in E\right\} .
$$

$E_{w_{1}}$ and $E^{w_{2}}$ are called respectively the w_{1}-section and w_{2}-section of E.
The lemma that follows is easily verified.
Lemma 4.8.1 Let Σ be the family of all $E \subset \Omega_{1} \times \Omega_{2}$ such that $E_{w_{1}} \in \Sigma_{2}, E^{w_{2}} \in \Sigma_{1}$ for all $\left(w_{1}, w_{2}\right) \in \Omega_{1} \times \Omega_{2}$, then Σ is a σ-algebra containing R.
Corollary 4.8.1 $\Sigma \supset \Sigma_{1} \otimes \Sigma_{2}$.
Corollary 4.8.2 If f is $\Sigma_{1} \otimes \Sigma_{2}$-measurable, then for $\left(w_{1}, w_{2}\right) \in \Omega_{1} \times \Omega_{2}, x \mapsto$ $f\left(x, w_{2}\right)$ and $y \mapsto f\left(w_{1}, y\right)$ are respectively Σ_{1} - and Σ_{2}-measurable.

Proof Since $I_{E}\left(x, w_{2}\right)=I_{E^{w_{2}}}(x)$ and $I_{E}\left(w_{1}, y\right)=I_{E_{w_{1}}}(y)$ for $E \subset \Omega_{1} \times \Omega_{2}$, it follows from Lemma 4.8.1 and Corollary 4.8 .1 that the corollary holds if f is the indicator function of a set in $\Sigma_{1} \otimes \Sigma_{2}$. Then the corollary holds for $\Sigma_{1} \otimes \Sigma_{2}$-measurable simple functions. For general nonnegative $\Sigma_{1} \otimes \Sigma_{2}$-measurable functions, the corollary follows by Theorem 2.2.1; this is sufficient to conclude that the corollary holds.

Lemma 4.8.2 Suppose that both $\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right)$ are σ-finite and $E \in \Sigma_{1} \otimes \Sigma_{2}$, then $w_{1} \mapsto \mu_{2}\left(E_{w_{1}}\right)$ is Σ_{1}-measurable and $w_{2} \mapsto \mu_{1}\left(E^{w_{2}}\right)$ is Σ_{2}-measurable, and

$$
\int_{\Omega_{1}} \mu_{2}\left(E_{w_{1}}\right) d \mu_{1}\left(w_{1}\right)=\int_{\Omega_{2}} \mu_{1}\left(E^{w_{2}}\right) d \mu_{2}\left(w_{2}\right) .
$$

Proof Ω_{1} and Ω_{2} can be expressed as

$$
\Omega_{1}=\bigcup_{n=1}^{\infty} \Omega_{n}^{(1)}, \quad \Omega_{2}=\bigcup_{n=1}^{\infty} \Omega_{n}^{(2)},
$$

where $\left\{\Omega_{n}^{(1)}\right\} \subset \Sigma_{1},\left\{\Omega_{n}^{(2)}\right\} \subset \Sigma_{2}$ are both disjoint and $\mu_{i}\left(\Omega_{n}^{(i)}\right)<\infty$ for $i=1,2$ and $n=1,2, \ldots$ Consider the family \mathcal{M} of all those $E \in \Sigma_{1} \otimes \Sigma_{2}$, such that the conclusions of the lemma hold if E is replaced by $E \cap\left(\Omega_{n}^{(1)} \times \Omega_{m}^{(2)}\right)$ for all n and m. It is simply routine to verify that \mathcal{M} is a λ-system. But it is to be noted that the only place where $E \cap\left(\Omega_{n}^{(1)} \times \Omega_{m}^{(2)}\right)$ requires considering is when one verifies that if E is in \mathcal{M} then E^{c} is in \mathcal{M}. Since $E \in \mathcal{M}$ is easily seen to satisfy the conclusions of the lemma, and since $\mathcal{M} \supset R$, the lemma follows from the $(\pi-\lambda)$ theorem.

Now, for $E \in \Sigma_{1} \otimes \Sigma_{2}$, define

$$
\mu_{1} \times \mu_{2}(E)=\int_{\Omega_{1}} \mu_{2}\left(E_{w_{1}}\right) d \mu_{1}\left(w_{1}\right)=\int_{\Omega_{2}} \mu_{1}\left(E^{w_{2}}\right) d \mu_{2}\left(w_{2}\right) .
$$

Then $\mu_{1} \times \mu_{2}$ is a measure on $\Sigma_{1} \otimes \Sigma_{2}$ and $\left(\Omega_{1} \times \Omega_{2}, \Sigma_{1} \otimes \Sigma_{2}, \mu_{1} \times \mu_{2}\right)$ is a measure space, called the product space of $\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right)$. The measure $\mu_{1} \times \mu_{2}$ is called the product measure of μ_{1} and μ_{2}. One notes that $\mu_{1} \times \mu_{2}\left(A_{1} \times A_{2}\right)=\mu_{1}\left(A_{1}\right) \mu_{2}\left(A_{2}\right)$ if $A_{1} \times A_{2} \in R$.
Proposition 4.8.1 Suppose that both $\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right)$ are σ-finite, then $\mu_{1} \times \mu_{2}$ is the unique measure on $\Sigma_{1} \otimes \Sigma_{2}$ such that $\mu_{1} \times \mu_{2}\left(A_{1} \times A_{2}\right)=$ $\mu_{1}\left(A_{1}\right) \mu_{2}\left(A_{2}\right)$ for all $A_{1} \in \Sigma_{1}$ and $A_{2} \in \Sigma_{2}$.
Proof Let disjoint sequences $\left\{\Omega_{n}^{(1)}\right\} \subset \Sigma_{1}$ and $\left\{\Omega_{m}^{(2)}\right\} \subset \Sigma_{2}$ be as in the proof of Lemma 4.8.2, and suppose that μ is a measure on $\Sigma_{1} \otimes \Sigma_{2}$ such that $\mu\left(A_{1} \times A_{2}\right)=$ $\mu_{1}\left(A_{1}\right) \mu_{2}\left(A_{2}\right)$ for all $A_{1} \in \Sigma_{1}$ and $A_{2} \in \Sigma_{2}$. Consider the family \mathcal{F} of all $E \in \Sigma_{1} \otimes$ Σ_{2}, such that

$$
\mu\left(E \cap\left[\Omega_{n}^{(1)} \times \Omega_{m}^{(2)}\right]\right)=\mu_{1} \times \mu_{2}\left(E \cap\left[\Omega_{n}^{(1)} \times \Omega_{m}^{(2)}\right]\right)
$$

for all n and m. Then \mathcal{F} is a λ-system containing all measurable rectangles. Since the family R of all measurable rectangles is a π-system, it follows from the $(\pi-\lambda)$ theorem that $\mathcal{F}=\Sigma_{1} \otimes \Sigma_{2}$ and thus $\mu=\mu_{1} \times \mu_{2}$.
Theorem 4.8.1 (Simple version of Fubini theorem)
(i) (Tonelli) Iff is $\Sigma_{1} \otimes \Sigma_{2}$-measurable andf ≥ 0, then $x \mapsto \int_{\Omega_{2}} f\left(x, w_{2}\right) d \mu_{2}\left(w_{2}\right)$ is Σ_{1}-measurable, $y \mapsto \int_{\Omega_{1}} f\left(w_{1}, y\right) d \mu_{1}\left(w_{1}\right)$ is Σ_{2}-measurable, and

$$
\begin{aligned}
\int_{\Omega_{1} \times \Omega_{2}} f d \mu_{1} \times \mu_{2} & =\int_{\Omega_{1}}\left[\int_{\Omega_{2}} f\left(w_{1}, w_{2}\right) d \mu_{2}\left(w_{2}\right)\right] d \mu_{1}\left(w_{1}\right) \\
& =\int_{\Omega_{2}}\left[\int_{\Omega_{1}} f\left(w_{1}, w_{2}\right) d \mu_{1}\left(w_{1}\right)\right] d \mu_{2}\left(w_{2}\right) .
\end{aligned}
$$

(ii) Iff is $\mu_{1} \times \mu_{2}$-integrable, then conclusions in (i) also hold for f.

Proof Since (ii) is an obvious consequence of (i), it is sufficient to prove (i). If $E \in$ $\Sigma_{1} \otimes \Sigma_{2}$ and $f=I_{E}$, then (i) follows from Lemma 4.8.2 and hence the lemma holds for nonnegative simple functions. If f is a nonnegative $\Sigma_{1} \otimes \Sigma_{2}$-measurable function, by Theorem 2.2.1,

$$
f=\sum_{k=1}^{\infty} \frac{1}{k} I_{A_{k}}=\lim _{l \rightarrow \infty} \sum_{k=1}^{l} \frac{1}{k} I_{A_{k}},
$$

where each $A_{k} \in \Sigma_{1} \otimes \Sigma_{2}$, then (i) follows from the monotone convergence theorem.

In general, it is not true that the product space of two σ-finite complete measure spaces is complete. For example, consider ($\left.\mathbb{R}^{2}, \mathcal{L} \otimes \mathcal{L}, \lambda \times \lambda\right)$, where \mathcal{L} is the σ-algebra of all Lebesgue measurable sets in \mathbb{R} and λ the Lebesgue measure on \mathbb{R}. As we have shown in Section 3.11 there is a nonmeasurable set $S \subset \mathbb{R}$. Choose any nonempty null set N in \mathbb{R}, and consider the set $N \times S$ in \mathbb{R}^{2}. For $w \in N,(N \times S)_{w}=S$ is not in \mathcal{L}; hence $N \times S$ is not in $\mathcal{L} \otimes \mathcal{L}$. But $N \times S \subset N \times \mathbb{R}$ and $\lambda \times \lambda(N \times \mathbb{R})=\lambda(N) \lambda(\mathbb{R})=0$, thus $N \times S$ is a $\lambda \times \lambda$-null set which is not in $\mathcal{L} \otimes \mathcal{L} .\left(\mathbb{R}^{2}, \mathcal{L} \otimes \mathcal{L}, \lambda \times \lambda\right)$ is therefore not complete and cannot be $\left(\mathbb{R}^{2}, \mathcal{L}^{2}, \lambda^{2}\right)$.

Exercise 4.8.1 Show that $\left(\mathbb{R}^{k+l}, \mathcal{L}^{k+l}, \lambda^{k+l}\right)$ is the completion of the measure space $\left(\mathbb{R}^{k+l}, \mathcal{L}^{k} \otimes \mathcal{L}^{l}, \lambda^{k} \times \lambda^{l}\right)$ for k, l in \mathbb{N}. (Hint: verify first that $\mathcal{B}\left(\mathbb{R}^{k+l}\right) \subset \mathcal{L}^{k} \otimes \mathcal{L}^{l}$ and $\lambda^{k+l}(B)=\lambda^{k} \times \lambda^{l}(B)$ for $B \in \mathcal{B}\left(\mathbb{R}^{k+l}\right)$.)

Suppose now that both $\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right)$ are σ-finite complete measure spaces; then corresponding to Theorem 4.8.1, the following theorem holds.
Theorem 4.8.2 (Fubini) Let $\left(\Omega_{1} \times \Omega_{2}, \overline{\Sigma_{1} \otimes \Sigma_{2}}, \overline{\mu_{1} \times \mu_{2}}\right)$ be the completion of $\left(\Omega_{1} \times \Omega_{2}, \Sigma_{1} \otimes \Sigma_{2}, \mu_{1} \times \mu_{2}\right)$.
(i) (Tonelli) Iff is nonnegative $\overline{\Sigma_{1} \otimes \Sigma_{2}}$-measurable, then for μ_{1}-a.e. w_{1} in Ω_{1} and μ_{2}-a.e. w_{2} in Ω_{2},

$$
\begin{aligned}
& v \mapsto f\left(w_{1}, v\right) \text { is } \Sigma_{2} \text {-measurable; } \\
& u \mapsto f\left(u, w_{2}\right) \text { is } \Sigma_{1} \text {-measurable. }
\end{aligned}
$$

Furthermore,

$$
\begin{aligned}
& w_{1} \mapsto \int_{\Omega_{2}} f\left(w_{1}, w_{2}\right) d \mu_{2}\left(w_{2}\right) \text { is } \Sigma_{1} \text {-measurable; } \\
& w_{2} \mapsto \int_{\Omega_{1}} f\left(w_{1}, w_{2}\right) d \mu_{1}\left(w_{1}\right) \text { is } \Sigma_{2} \text {-measurable }
\end{aligned}
$$

and

$$
\begin{aligned}
\int_{\Omega_{1} \times \Omega_{2}} f d \overline{\mu_{1} \times \mu_{2}} & =\int_{\Omega_{1}}\left[\int_{\Omega_{2}} f\left(w_{1}, w_{2}\right) d \mu_{2}\left(w_{2}\right)\right] d \mu_{1}\left(w_{1}\right) \\
& =\int_{\Omega_{2}}\left[\int_{\Omega_{1}} f\left(w_{1}, w_{2}\right) d \mu_{1}\left(w_{1}\right)\right] d \mu_{2}\left(w_{2}\right) .
\end{aligned}
$$

(ii) Iff is $\overline{\mu_{1} \times \mu_{2}}$-integrable, then the same statements in (i) hold for f.

Lemma 4.8.3 Suppose that $E \in \Sigma_{1} \otimes \Sigma_{2}$ and $\mu_{1} \times \mu_{2}(E)=0$. Then for any subset D of E, the following statements hold:
(1) $D_{w_{1}} \in \Sigma_{2}$ and $\mu_{2}\left(D_{w_{1}}\right)=0$ for μ_{1}-a.e. w_{1} in Ω_{1}.
(2) $D^{w_{2}} \in \Sigma_{1}$ and $\mu_{1}\left(D^{w_{2}}\right)=0$ for μ_{2}-a.e. w_{2} in Ω_{2}.

Proof Since $\mu_{1} \times \mu_{2}(E)=\int_{\Omega_{1}} \mu_{2}\left(E_{w_{1}}\right) d \mu_{1}\left(w_{1}\right)=\int_{\Omega_{2}} \mu_{1}\left(E^{w_{2}}\right) d \mu_{2}\left(w_{2}\right)=0$, and both $\mu_{2}\left(E_{w_{1}}\right)$ and $\mu_{1}\left(E^{w_{2}}\right)$ are nonnegative, $\mu_{2}\left(E_{w_{1}}\right)=0$ for μ_{1}-a.e. w_{1} and $\mu_{1}\left(E^{w_{2}}\right)=0$ for μ_{2}-a.e. w_{2}. For such w_{1} and $w_{2}, D_{w_{1}}$ and $D^{w_{2}}$ are in Σ_{2} and Σ_{1} respectively, because $D_{w_{1}} \subset E_{w_{1}}, D^{w_{2}} \subset E^{w_{2}}$, and both $\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right)$ are complete. Trivially, for such w_{1} and $w_{2}, \mu_{2}\left(D_{w_{1}}\right)=\mu_{1}\left(D^{w_{2}}\right)=0$.
Proof of Theorem 4.8.2 Since (ii) follows from (i) easily, it suffices to prove (i).
If $f \geq 0$ is $\overline{\Sigma_{1} \otimes \Sigma_{2}}$-measurable, $f=\sum_{j=1}^{\infty} \frac{1}{j} I_{A_{j}}$, where each A_{j} is in $\overline{\Sigma_{1} \otimes \Sigma_{2}}$, as claimed by Theorem 2.2.1. It is therefore sufficient to consider the case $f=I_{A}$ for $A \in \overline{\Sigma_{1} \otimes \Sigma_{2}}$. There are B and C in $\Sigma_{1} \otimes \Sigma_{2}$ such that $B \subset A \subset C$ with $\mu_{1} \times$ $\mu_{2}(C \backslash B)=0$. This means that $A=B \cup D$ where $D \subset E:=C \backslash B$. From Lemma 4.8.3, for μ_{1}-a.e. w_{1} and μ_{2}-a.e. $w_{2}, D_{w_{1}} \in \Sigma_{2}$ with $\mu_{2}\left(D_{w_{1}}\right)=0$ and $D^{w_{2}} \in \Sigma_{1}$ with $\mu_{1}\left(D^{w_{2}}\right)=0$; for such w_{1} and w_{2},

$$
v \mapsto I_{A}\left(w_{1}, v\right)=I_{A_{w_{1}}}(v)=I_{B_{w_{1}} \cup D_{w_{1}}}(v)=I_{B_{w_{1}}}(v)+I_{D_{w_{1}}}(v)
$$

and

$$
u \mapsto I_{A}\left(u, w_{2}\right)=I_{A^{w_{2}}}(u)=I_{B^{w_{2}} \cup D^{w_{2}}}(u)=I_{B^{w_{2}}}(u)+I_{D^{w_{2}}}(u)
$$

are respectively Σ_{2} - and Σ_{1}-measurable. Furthermore,

$$
w_{1} \mapsto \int_{\Omega_{2}} I_{A}\left(w_{1}, v\right) d \mu_{2}(v)=\mu_{2}\left(B_{w_{1}}\right),
$$

and

$$
w_{2} \mapsto \int_{\Omega_{1}} I_{A}\left(u, w_{2}\right) d \mu_{1}(u)=\mu_{1}\left(B^{w_{2}}\right)
$$

are respectively Σ_{1} - and Σ_{2}-measurable by Lemma 4.8.2, and hence,

$$
\begin{aligned}
& \int_{\Omega_{1}}\left[\int_{\Omega_{2}} I_{A}\left(w_{1}, w_{2}\right) d \mu_{2}\left(w_{2}\right)\right] d \mu_{1}\left(w_{1}\right)=\int_{\Omega_{1}} \mu_{2}\left(B_{w_{1}}\right) d \mu_{1}\left(w_{1}\right) ; \\
& \int_{\Omega_{2}}\left[\int_{\Omega_{1}} I_{A}\left(w_{1}, w_{2}\right) d \mu_{2}\left(w_{2}\right)\right] d \mu_{2}\left(w_{2}\right)=\int_{\Omega_{2}} \mu_{1}\left(B^{w_{2}}\right) d \mu_{2}\left(w_{2}\right) .
\end{aligned}
$$

Thus (i) holds for $f=I_{A}$, because by Lemma 4.8.2,

$$
\int_{\Omega_{1}} \mu_{2}\left(B_{w_{1}}\right) d \mu_{1}\left(w_{1}\right)=\int_{\Omega_{2}} \mu_{1}\left(B^{w_{2}}\right) d \mu_{2}\left(w_{2}\right)=\mu_{1} \times \mu_{2}(B),
$$

and $\mu_{1} \times \mu_{2}(B)=\overline{\mu_{1} \times \mu_{2}}(A)=\int_{\Omega_{1} \times \Omega_{2}} I_{A} d \overline{\mu_{1} \times \mu_{2}}$.

Example 4.8.1 We use the Fubini theorem to evaluate $\int_{-\infty}^{\infty} e^{-x^{2}} d x$ (cf. Exercise 3.4.7 and Exercise 3.4.8). First note that since $\int_{-\infty}^{\infty} e^{-x^{2}} d x<\infty$ as an improper integral, $\int_{\mathbb{R}} e^{-x^{2}} d \lambda(x)=\int_{-\infty}^{\infty} e^{-x^{2}} d x$ by Exercise 3.4.7 (i). From the Fubini theorem,

$$
\int_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d \lambda^{2}(x, y)=\int_{\mathbb{R}}\left[\int_{\mathbb{R}} e^{-x^{2}} d \lambda(x)\right] e^{-y^{2}} d \lambda(y)=\left[\int_{\mathbb{R}} e^{-x^{2}} d x\right]^{2} .
$$

Now,

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d \lambda^{2}(x, y) & =\lim _{L \rightarrow \infty} \iint_{x^{2}+y^{2} \leq L^{2}} e^{-\left(x^{2}+y^{2}\right)} d x d y \\
& =\lim _{L \rightarrow \infty} \int_{0}^{L} \rho \int_{0}^{2 \pi} e^{-\rho^{2}} d \theta d \rho=\lim _{\rho \rightarrow \infty} 2 \pi \int_{0}^{L} \rho e^{-\rho^{2}} d \rho \\
& =\lim _{L \rightarrow \infty} \pi \int_{0}^{L} \frac{d}{d \rho}\left(-e^{-\rho^{2}}\right) d \rho=\pi
\end{aligned}
$$

Hence $\int_{-\infty}^{\infty} e^{-x^{2}} d x=\left[\iint_{\mathbb{R}^{2}} e^{-\left(x^{2}+y^{2}\right)} d x d y\right]^{\frac{1}{2}}=\sqrt{\pi}$. By the Fubini theorem, again one finds that $\int_{\mathbb{R}^{n}} e^{-|x|^{2}} d x=\pi^{\frac{n}{2}}$.

Exercise 4.8.2

(i) Show that $\int_{0}^{\infty} \frac{|\sin x|}{x} d x=\infty$.
(ii) Show that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\lim _{b \rightarrow \infty} \int_{0}^{b} \frac{\sin x}{x} d x=\frac{\pi}{2}$ by integrating $e^{-x y} \sin x$ over a suitable domain in the first quadrant of \mathbb{R}^{2}.

Exercise 4.8.3 Let (Ω, Σ, μ) be a σ-finite measure space and f a nonnegative Σ-measurable function on Ω. Put $G_{f}=\{(w, y) \in \Omega \times[0, \infty): 0<y<f(w)\}$. Show that $G_{f} \in \Sigma \otimes \mathcal{B}$ and $\mu \times \lambda\left(G_{f}\right)=\int_{\Omega} f d \mu$.
Exercise 4.8.4 Let $f(x, y)=\frac{x y}{\left(x^{2}+y^{2}\right)^{2}}$ if $(x, y) \neq(0,0)$, and $f(0,0)=0$. Verify that $\int_{-1}^{1}\left(\int_{-1}^{1} f(x, y) d x\right) d y=\int_{-1}^{1}\left(\int_{-1}^{1} f(x, y) d y\right) d x=0$, and decide whether f is Lebesgue integrable on $[-1,1] \times[-1,1]$ or not.

Exercise 4.8.5 Show that $\int_{0}^{\infty}\left(\sum_{j=1}^{\infty} e^{-j x} \sin x\right) d x=\sum_{j=1}^{\infty} \int_{0}^{\infty} e^{-j x} \sin x d x$ and use this fact to show that $\int_{0}^{\infty} \frac{\sin x}{e^{x}-1} d x=\sum_{j=1}^{\infty} \frac{1}{1+j^{j}}$.

Exercise 4.8.6

(i) Show that $\int_{0}^{\infty} \frac{\tan ^{-1} t}{t} d t=\infty$ by considering the double integral

$$
\int_{0}^{1}\left(\int_{0}^{\infty} \frac{1}{1+x^{2} t^{2}} d t\right) d x
$$

(ii) Show that $\int_{0}^{\infty}\left(\frac{\tan ^{-1} t}{t}\right)^{2} d t=\pi \ln 2$ by integrating the triple integral

$$
\int_{0}^{1}\left(\int_{0}^{1}\left(\int_{0}^{\infty} \frac{1}{1+x^{2} t^{2}} \cdot \frac{1}{1+y^{2} t^{2}} d t\right) d x\right) d y
$$

Example 4.8.2 Let $\left\{f_{n}\right\}$ be a sequence of $L\left(\Omega_{1} \times \Omega_{2}, \Sigma_{1} \otimes \Sigma_{2}, \mu_{1} \times \mu_{2}\right)$, in which it converges to f. We claim that there is a subsequence $\left\{f_{n_{k}}\right\}$ of $\left\{f_{n}\right\}$ such that for μ_{1}-a.e. $x \lim _{k \rightarrow \infty} \int_{\Omega_{2}}\left|f_{n_{k}}(x, y)-f(x, y)\right| d \mu_{2}(y)=0$. Define F, F_{n} on Ω_{1} by $F(x)=\int_{\Omega_{2}} f(x, y) d \mu_{2}(y)$ and $F_{n}(x)=\int_{\Omega_{2}} f_{n}(x, y) d \mu_{2}(y)$. Note that F, F_{n} 's are measurable on $\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$ and $\int_{\Omega_{1}}\left|F_{n}-F\right| d \mu_{1}=\int_{\Omega_{1} \times \Omega_{2}}\left|f_{n}-f\right| d \mu_{1} \times \mu_{2}$ by the Fubini theorem. Consequently, $\lim _{n \rightarrow \infty} \int_{\Omega_{1}}\left|F_{n}-F\right| d \mu_{1}=0$, and, by Exercise 2.7.9, $\left\{F_{n}\right\}$ has a subsequence $\left\{F_{n_{k}}\right\}$ which converges to F a.e. on Ω_{1}. Now, the Fatou lemma implies that $\int_{\Omega_{1}} \lim _{k \rightarrow \infty}\left|F_{n_{k}}-F\right| d \mu_{1} \leq \liminf _{k \rightarrow \infty} \int_{\Omega_{1}}\left|F_{n_{k}}-F\right| d \mu_{1}=0$, which means $\lim _{k \rightarrow \infty}\left|F_{n_{k}}-F\right|=0 \mu_{1}$-a.e. on Ω_{1}, or

$$
\lim _{k \rightarrow \infty} \int_{\Omega_{2}}\left|f_{n_{k}}(x, y)-f(x, y)\right| d \mu_{2}(y)=0
$$

for μ_{1}-a.e. x in Ω_{1}, as we claim.
We conclude this section by applying the Fubini theorem to prove a measurability result which we shall need later. For this purpose, define first a map t from $\mathbb{R}^{2 n}$ to \mathbb{R}^{n} by $t(x, y)=x-y$, where x and y are in \mathbb{R}^{n}. If f is a Borel measurable function on \mathbb{R}^{n}, then $f \circ t$ is Borel measurable on $\mathbb{R}^{2 n}$, because $\{f \circ t>\alpha\}=t^{-1}\{f>\alpha\}$, which is a Borel set in $\mathbb{R}^{2 n}$. Note that for $A \subset \mathbb{R}^{n}$, the y-section $\left(t^{-1} A\right)^{y}$ of $t^{-1} A$ is $A+y:=\{x+y: x \in A\}$.

Lemma 4.8.4 If A is a null set in \mathbb{R}^{n}, then $t^{-1} A$ is a null set in $\mathbb{R}^{2 n}$.
Proof There is a Borel set $B \supset A$ with $\lambda^{n}(B)=0$. Now $t^{-1} B$ is a Borel set in $\mathbb{R}^{2 n}$; by the Fubini theorem,

$$
\begin{aligned}
\lambda^{2 n}\left(t^{-1} B\right) & =\int_{\mathbb{R}^{2 n}} I_{t^{-1} B} d \lambda^{2 n}=\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}} I_{t^{-1} B}(x, y) d \lambda^{n}(x)\right) d \lambda^{n}(y) \\
& =\int_{\mathbb{R}^{n}} \lambda^{n}\left(\left(t^{-1} B\right)^{y}\right) d \lambda^{n}(y)=\int_{\mathbb{R}^{n}} \lambda^{n}(B+y) d \lambda^{n}(y) \\
& =\int_{\mathbb{R}^{n}} \lambda^{n}(B) d \lambda^{n}=\int_{\mathbb{R}^{n}} 0 d \lambda^{n}=0
\end{aligned}
$$

i.e. $t^{-1} B$ is a null set in $\mathbb{R}^{2 n}$. But $t^{-1} A \subset t^{-1} B$ implies that $t^{-1} A$ is a null set.

Proposition 4.8.2 Iff is a measurable function on \mathbb{R}^{n}, then $f \circ t$ is a measurable function on $\mathbb{R}^{2 n}$.

Proof There is a Borel function g on \mathbb{R}^{n} such that $f=g+h$, where $h=0$ a.e. on \mathbb{R}^{n}. Since $f \circ t=g \circ t+h \circ t$ and $g \circ t$ is Borel measurable, $f \circ t$ is measurable if $h \circ t$ is
measurable. We claim that $h \circ t=0$ a.e. on $\mathbb{R}^{2 n}$. There is a null set $A \subset \mathbb{R}^{n}$ such that $h=0$ on $\mathbb{R}^{n} \backslash A$. Then $h \circ t=0$ on $t^{-1}\left(\mathbb{R}^{n} \backslash A\right)=\left(t^{-1} \mathbb{R}^{n}\right) \backslash t^{-1} A=\mathbb{R}^{2 n} \backslash t^{-1} A$. But, by Lemma 4.8.4, $t^{-1} A$ is a null set in $\mathbb{R}^{2 n}$, hence $h \circ t=0$ a.e. on $\mathbb{R}^{2 n}$. Since $h \circ t=0$ a.e. on $\mathbb{R}^{2 n}$, it is measurable; consequently, $f \circ t$ is measurable.

4.9 Smoothing of functions

Our concern in this section is the smoothing of functions and approximation of functions by smooth ones. The method we shall use is that of the Friederichs mollifier.

We define first some function spaces which will be frequently considered later. Given an open set Ω in \mathbb{R}^{n} and a positive integer k, we shall denote by $C^{k}(\Omega)$ the vector space of all functions defined on Ω which have continuous partial derivatives up to order k, and denote by $\mathrm{C}^{\infty}(\Omega)$ the space $\bigcap_{k} \mathrm{C}^{k}(\Omega)$. The functions considered are either real-valued or complex-valued, as will either be clear from context or explicitly stated. For a function f defined on Ω, recall that the closure in Ω of the set $\{f \neq 0\}$ is called the support of f and is denoted by $\operatorname{supp} f$. If $\operatorname{supp} f$ is a compact set, then f is said to have compact support. The subspace of $C^{k}(\Omega)$, which consists of all functions in $C^{k}(\Omega)$ with compact support, is denoted by $C_{c}^{k}(\Omega) ; C_{c}^{\infty}(\Omega)$ is similarly defined.

For a measurable subset Ω of \mathbb{R}^{n}, the space $L^{p}\left(\Omega, \mathcal{L}^{n} \mid \Omega, \lambda^{n}\right)$ will be simply denoted by $L^{p}(\Omega)$, for convenience, and accordingly the space of all those measurable functions which are in $L^{p}(K)$ for every compact subset K of Ω is denoted by $L_{\mathrm{loc}}^{p}(\Omega)$. Usually $L_{\text {loc }}^{1}(\Omega)$ is simply denoted by $L_{\text {loc }}(\Omega)$ and its elements are called locally integrable functions on Ω; correspondingly, functions in $L_{\mathrm{loc}}^{p}(\Omega)$ are called locally L^{p} functions on Ω.

Some notations regarding multi-indices are now introduced. By multi-index, we mean an ordered n-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ of nonnegative integers for some integer $n>1(n$ will be clearly implied from the context). For a multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, the sum $\sum_{j=1}^{n} \alpha_{j}$ and the product $\prod_{j=1}^{n} \alpha_{j}!$ are denoted respectively by $|\alpha|$ and $\alpha!$; while if $x=$ $\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, x^{\alpha}$ will stand for $x_{1}^{\alpha_{1}}, \ldots, x_{n}^{\alpha_{n}}$. The partial derivative symbol $\frac{\partial^{|\alpha|}}{\partial x_{1}^{\alpha_{1}} \ldots \partial \alpha_{n}^{\alpha_{n}}}$ will be abbreviated to $\frac{\partial^{|\alpha|} \mid}{\partial x^{\alpha}}$ or ∂_{x}^{α}.

We are now ready to define the Friederichs mollifier. Let $\varphi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\int \varphi d \lambda^{n}=1$. For definiteness, assume that $\operatorname{supp} \varphi \subset C_{1}(0)$, the closed ball in \mathbb{R}^{n} centered at 0 and with radius 1 . Such a function φ is called a mollifying function. For $\varepsilon>0$, define $\varphi_{\varepsilon}(x)=\varepsilon^{-n} \varphi\left(\frac{x}{\varepsilon}\right)$ for $x \in \mathbb{R}^{n}$; then $\operatorname{supp} \varphi_{\varepsilon} \subset C_{\varepsilon}(0)$ and $\int \varphi_{\varepsilon} d \lambda^{n}=1$, by Example 4.3.1 (ii).

Corresponding to such a function φ and $\varepsilon>0$, we define a linear transformation J_{ε} which maps functions f in $L_{\mathrm{loc}}(\Omega)$ to functions defined on $\Omega_{\varepsilon}=\left\{x \in \Omega: \operatorname{dist}\left(x, \Omega^{c}\right)>\right.$ $\varepsilon\}$, by

$$
J_{\varepsilon} f(x)=\int_{C_{\varepsilon}(x)} f(y) \varphi_{\varepsilon}(x-y) d y, \quad x \in \Omega_{\varepsilon}
$$

Note that $C_{\varepsilon}(x) \subset \Omega$ for $x \in \Omega_{\varepsilon}$, hence f is integrable on $C_{\varepsilon}(x)$ and $J_{\varepsilon} f(x)$ is defined; moreover, since $\varphi_{\varepsilon}(x-y)=0$ for y outside $C_{\varepsilon}(x)$, we may consider the defining integral for $J_{\varepsilon} f(x)$ as over the whole space \mathbb{R}^{n}, thus

$$
J_{\varepsilon} f(x)=\int f(y) \varphi_{\varepsilon}(x-y) d y
$$

The family $\left\{J_{\varepsilon}\right\}_{\varepsilon>0}$, which depends on φ, is called a Friederichs mollifier. We often consider the case $\varphi \geq 0$, but for the moment, we do not impose this restriction.

The most well-known such nonnegative function φ is that defined as follows:

$$
\varphi(x)= \begin{cases}C e^{-\frac{1}{1-\left.1 x\right|^{2}}}, & \text { if }|x|<1 ; \\ 0, & \text { if }|x| \geq 1,\end{cases}
$$

where C is chosen so that $\int \varphi d \lambda^{n}=1$.

Exercise 4.9.1

(i) Show that $J_{\varepsilon} f \in C\left(\Omega_{\varepsilon}\right)$.
(ii) More generally, suppose that h is a continuous function on \mathbb{R}^{n} with supp $h \subset$ $C_{\varepsilon}(0)$; show that $\int f(y) h(x-y) d y$ is a continuous function of $x \in \Omega_{\varepsilon}$.

Exercise 4.9.2 Show that $\int f(y) \varphi_{\varepsilon}(x-y) d y=\int f(x-y) \varphi_{\varepsilon}(y) d y$, for $x \in \Omega_{\varepsilon}$.
Proposition 4.9.1 Iff $\in C(\Omega), J_{\varepsilon} f(x) \rightarrow f(x)$ uniformly on any compact subset of Ω as $\varepsilon \rightarrow 0$.

Proof Let $K \subset \Omega$ be compact. Fix $0<\varepsilon_{0}<\operatorname{dist}\left(K, \Omega^{c}\right)$ and let $F=\{x \in \Omega$: $\left.\operatorname{dist}(x, K) \leq \varepsilon_{0}\right\}$. F is compact. Since f is uniformly continuous on F, for $\sigma>0$, there is $\delta>0$ with $\delta \leq \varepsilon_{0}$, such that $|f(x)-f(y)| \leq \sigma$ if x, y are in F and $|x-y|<\delta$. For $x \in K, 0<\varepsilon<\delta$, we have

$$
\left|J_{\varepsilon} f(x)-f(x)\right|=\left|\int(f(y)-f(x)) \varphi_{\varepsilon}(x-y) d y\right| \leq \sigma \int\left|\varphi_{\varepsilon}\right| d \lambda^{n} \leq \sigma M_{\varphi}
$$

where $M_{\varphi}=\int|\varphi| d \lambda^{n}$.
Proposition 4.9.2 Forf $\in L_{\mathrm{loc}}(\Omega), J_{\varepsilon} f \in C^{\infty}\left(\Omega_{\varepsilon}\right)$.
Proof For $h \neq 0$, consider the difference quotient for $x \in \Omega_{\varepsilon}$,

$$
\frac{1}{h}\left\{J_{\varepsilon} f\left(x+h e_{j}\right)-J_{\varepsilon} f(x)\right\}=\int f(y) \frac{\varphi_{\varepsilon}\left(x+h e_{j}-y\right)-\varphi_{\varepsilon}(x-y)}{h} d y,
$$

where $e_{j}=\left(\delta_{j 1}, \ldots, \delta_{j n}\right)$ with $\delta_{j k}$ being 1 or zero according to whether or not $k=j$. When h is $\operatorname{small}, \operatorname{dist}\left(x+h e_{j}, \Omega^{c}\right) \geq \varepsilon_{0}>\varepsilon$, and for all such small enough $h, \varphi_{\varepsilon}(x+$ $\left.h e_{j}-y\right)=0$ for y outside a compact set K in Ω; therefore,

$$
\int f(y) \frac{\varphi_{\varepsilon}\left(x+h e_{j}-y\right)-\varphi_{\varepsilon}(x-y)}{h} d y=\int_{K} f(y) \frac{\varphi_{\varepsilon}\left(x+h e_{j}-y\right)-\varphi_{\varepsilon}(x-y)}{h} d y .
$$

Now,

$$
\left|\frac{\varphi_{\varepsilon}\left(x+h e_{j}-y\right)-\varphi_{\varepsilon}(x-y)}{h}\right| \leq \max _{z \in \mathbb{R}^{n}}\left|\frac{\partial \varphi_{\varepsilon}}{\partial x_{j}}(z)\right|:=M_{j},
$$

and hence

$$
\left|f(y) \frac{\varphi_{\varepsilon}\left(x+h e_{j}-y\right)-\varphi_{\varepsilon}(x-y)}{h}\right| \leq M_{j}|f(y)|
$$

on K. By LDCT,

$$
\frac{\partial}{\partial x_{j}} J_{\varepsilon} f(x)=\lim _{h \rightarrow 0} \frac{1}{h}\left\{J_{\varepsilon} f\left(x+h e_{j}\right)-J_{\varepsilon} f(x)\right\}=\int f(y) \frac{\partial \varphi_{\varepsilon}}{\partial x_{j}}(x-y) d y .
$$

So far we have only used the fact that $\varphi_{\varepsilon} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\operatorname{supp} \varphi_{\varepsilon} \subset C_{\varepsilon}(0)$. Hence, we may repeat the argument to obtain

$$
\frac{\partial^{|\alpha|}}{\partial x^{\alpha}} J_{\varepsilon} f(x)=\int f(y) \frac{\partial^{|\alpha|}}{\partial x^{\alpha}} \varphi_{\varepsilon}(x-y) d y .
$$

By Exercise 4.9.1 (ii), each $\frac{\partial^{|\alpha|} \mid}{\partial x^{\alpha}} J_{\varepsilon} f$ is continuous on Ω_{ε}.
Exercise 4.9.3 If K is a compact set and G is an open set containing K, then there is C^{∞} function g with $\operatorname{supp} g \subset G$ and $0 \leq g \leq 1$, such that $g=1$ on K.

Remark When $f \in L^{p}(\Omega), 1 \leq p \leq \infty$, we may consider f as defined on \mathbb{R}^{n} by defining f to be zero outside Ω; then $J_{\varepsilon} f$ is defined for $x \in \mathbb{R}^{n}$ and hence for $x \in \Omega$.

Theorem 4.9.1 Forf $\in L^{p}(\Omega), p \geq 1$, we have $\left\|J_{\varepsilon} f\right\|_{p} \leq L\|f\|_{p}$, where $L=L(\varphi, p)$.
Proof By the previous remark, we may assume that $\Omega=\mathbb{R}^{n}$.
That $\left\|J_{\varepsilon} f\right\|_{p} \leq L\|f\|_{p}$ when $p=1$ or ∞ is obvious. We consider the case $1<p<\infty$. In this case, let $q>1$ be the exponent conjugate to p, i.e. $\frac{1}{p}+\frac{1}{q}=1$, then,

$$
\begin{aligned}
\left|J_{\varepsilon} f(x)\right| & =\left|\int f(y) \varphi_{\varepsilon}(x-y) d y\right| \\
& \leq \int|f(y)|\left|\varphi_{\varepsilon}(x-y)\right| d y=\int|f(x-y)|\left|\varphi_{\varepsilon}(y)\right| d y \\
& \leq\left\{\int|f(x-y)|^{p}\left|\varphi_{\varepsilon}(y)\right| d y\right\}^{\frac{1}{p}}\left\{\int\left|\varphi_{\varepsilon}(y)\right| d y\right\}^{\frac{1}{q}} \\
& =C\left\{\int|f(x-y)|^{p}\left|\varphi_{\varepsilon}(y)\right| d y\right\}^{\frac{1}{p}},
\end{aligned}
$$

where $C=\left\{\int\left|\varphi_{\varepsilon}(y)\right| d y\right\}^{1 / q}=\left\{\int|\varphi(y)| d y\right\}^{\frac{1}{q}}$. In one of the steps above, we have used Hölder's inequality w.r.t. the measure v with $d \nu=\left|\varphi_{\varepsilon}\right| d \lambda^{n}$ (cf. Exercise 2.5.7). Now the Fubini theorem implies

$$
\begin{aligned}
\left\|J_{\varepsilon} f\right\|_{p}^{p} & \leq C^{p} \int\left(\int|f(x-y)|^{p}\left|\varphi_{\varepsilon}(y)\right| d y\right) d x \\
& =C^{p} \int\left(\int|f(x-y)|^{p}\left|\varphi_{\varepsilon}(y)\right| d x\right) d y \\
& =C^{p}\|f\|_{p}^{p} \int|\varphi(y)| d y=C^{p} C^{q}\|f\|_{p}^{p},
\end{aligned}
$$

or,

$$
\left\|J_{\varepsilon} f\right\|_{p} \leq L\|f\|_{p}
$$

where $L=L(\varphi, p)$. Note that $(x, y) \mapsto|f(x-y)|^{p} \varphi_{\varepsilon}(y)$ is measurable by Proposition 4.8.2.

Exercise 4.9.4 Show that if $\varphi \geq 0$, the constant L in Theorem 4.9.1 can be taken to be 1 .

Theorem 4.9.2 Iff $\in L^{p}(\Omega), 1 \leq p<\infty$, then $\lim _{\varepsilon \rightarrow 0}\left\|J_{\varepsilon} f-f\right\|_{p}=0$.
Proof We may assume that $\Omega=\mathbb{R}^{n}$. Let $\sigma>0$ be given. By Proposition 4.6.1, there is $g \in C_{c}\left(\mathbb{R}^{n}\right)$ such that $\|f-g\|_{p}<\frac{\sigma}{2(L+1)}$, where $L=L(\varphi, p)$ is the constant in Theorem 4.9.1. Now,

$$
\begin{aligned}
\left\|J_{\varepsilon} f-f\right\|_{p} & =\left\|J_{\varepsilon} f-J_{\varepsilon} g+J_{\varepsilon} g-g+g-f\right\|_{p} \\
& \leq\left\|J_{\varepsilon}(f-g)\right\|_{p}+\left\|J_{\varepsilon} g-g\right\|_{p}+\|g-f\|_{p} \\
& \leq(L+1)\|f-g\|_{p}+\left\|J_{\varepsilon} g-g\right\|_{p} \\
& <\frac{\sigma}{2}+\left\|J_{\varepsilon} g-g\right\|_{p},
\end{aligned}
$$

where we have used the inequality $\left\|J_{\varepsilon}(f-g)\right\|_{p} \leq L\|f-g\|_{p}$ as asserted by Theorem 4.9.1. Let K be the support of g and put $\widehat{K}=\left\{x \in \mathbb{R}^{n}: \operatorname{dist}(x, K) \leq 1\right\}$. \widehat{K} is a compact set, outside which both g and $J_{\varepsilon} g$ vanish if $0<\varepsilon \leq 1$. Hence, from Proposition 4.9.1,

$$
\left\|J_{\varepsilon} g-g\right\|_{p}^{p}=\int_{\widehat{K}}\left|J_{\varepsilon} g-g\right|^{p} d \lambda^{n}<\left(\frac{\sigma}{2}\right)^{p},
$$

or,

$$
\left\|J_{\varepsilon} g-g\right\|_{p}<\frac{\sigma}{2}
$$

if ε is sufficiently small, say $\varepsilon<\delta$. This means that $\left\|J_{\varepsilon} f-f\right\|_{p}<\frac{\sigma}{2}+\left\|J_{\varepsilon} g-g\right\|_{p}<\sigma$, if $\varepsilon<\delta$.

Corollary 4.9.1 $C_{c}^{\infty}(\Omega)$ is dense in $L^{p}(\Omega), 1 \leq p<\infty$.
Proof Let $f \in L^{p}(\Omega), 1 \leq p<\infty$, and fix $\sigma>0$. By Proposition 4.6.1, there is $g \in$ $C_{c}(\Omega)$ such that $\|f-g\|_{p}<\frac{\sigma}{2}$; while from Theorem 4.9.2, if $\varepsilon>0$ is small enough, $\left\|J_{\varepsilon} g-g\right\|_{p}<\frac{\sigma}{2}$. Since g has compact support in $\Omega, J_{\varepsilon} g$ has compact support in Ω if ε is small enough. Hence if ε is small enough, $J_{\varepsilon} g \in C_{c}^{\infty}(\Omega)$ and $\left\|J_{\varepsilon} g-g\right\|_{p}<\frac{\sigma}{2}$; but then $\left\|f-J_{\varepsilon} g\right\|_{p} \leq\|f-g\|_{p}+\left\|g-J_{\varepsilon} g\right\|_{p}<\sigma$.
Exercise 4.9.5 Suppose that $\varphi(x)=\varphi(-x)$ for all x in \mathbb{R}^{n} and let f, g be in $L^{2}\left(\mathbb{R}^{n}\right)$. Show that

$$
\int_{\mathbb{R}^{n}}\left(J_{\varepsilon} f\right) g d \lambda^{n}=\int_{\mathbb{R}^{n}} f J_{\varepsilon} g d \lambda^{n} .
$$

4.10 Change of variables for multiple integrals

A transformation formula for multiple integrals under changes of variables will be proved in this section. The changes of variables to be considered are C^{1} diffeomorphisms, which we shall now describe. Let Ω be an open set in \mathbb{R}^{n}. A map $t=\left(t_{1}, \ldots, t_{n}\right)$ from Ω into \mathbb{R}^{n} is called a C^{1} map if its component functions t_{i} are continuously differentiable, i.e. first-order partial derivatives of each t_{i} exist and are continuous on Ω. For $x \in \Omega$, the linear map from \mathbb{R}^{n} into \mathbb{R}^{n} represented by the matrix $\left(\frac{\partial t_{i}}{\partial x_{j}}(x)\right)$ in reference to the standard basis of \mathbb{R}^{n} is called the differential of t at x, and is denoted by $d_{x} t$. By the standard basis of \mathbb{R}^{n} we mean the basis formed by e_{1}, \ldots, e_{n}, where for each $j, e_{j}=\left(\delta_{j 1}, \ldots, \delta_{j n}\right)$, with $\delta_{j k}$ being 1 or 0 according to whether $k=j$ or $k \neq j$. The symbols $\delta_{j k}$ are called Kronecker symbols. In this section, linear maps from \mathbb{R}^{n} to \mathbb{R}^{n} are represented by matrices with reference to the standard basis. The determinant of $\left(\frac{\partial t_{i}}{\partial x_{j}}(x)\right)$, called the Jacobian of t at x, is to be denoted by $J(t ; x)$. When t is a linear map, $t_{i}(x)=\sum_{j=1}^{n} t_{i j} x_{j}$ for $x=\left(x_{1}, \ldots, x_{n}\right)$, where $\left(t_{i j}\right)$ is the matrix representing t; it follows then that $\left(\frac{\partial t_{i}}{\partial x_{j}}(x)\right)=\left(t_{i j}\right)$, i.e. $d_{x} t=t$. For a linear map t, the determinant of the matrix representing t is usually denoted by $\operatorname{det} t$, thus $J(t ; x)=\operatorname{det} d_{x} t$ if t is a C^{1} map. A C^{1} map t from Ω into \mathbb{R}^{n} is called a
C^{1} diffeomorphism if it is injective and $d_{x} t$ is invertible for all $x \in \Omega$. By the inverse function theorem, if t is a C^{1} diffeomorphism from Ω into \mathbb{R}^{n}, then t^{-1} is a C^{1} diffeomorphism from $t \Omega$ onto Ω and $J(t ; x)^{-1}=J\left(t^{-1} ; t x\right)$ for $x \in \Omega$. Note that $J(t ; x) \neq 0$ for all x in Ω.

We consider first the transformation formula for integrals when changes of variables are invoked by invertible linear maps. We follow the usual practice of denoting linear maps by capital letters, and, for convenience, the matrix representing a linear map T is also denoted by T. The matrices derived from the unit matrix I by elementary row operations are called elementary matrices. They are of the following three types:
(i) A type(1) elementary matrix is one obtained from I by multiplying a row of I by a nonzero real number c;
(ii) a type(2) elementary matrix is one obtained from I by multiplying a row of I by a nonzero real number and then adding it to a different row of I;
(iii) a type(3) elementary matrix is one obtained from I by interchanging two rows of I.

Note that if T is an elementary matrix of type(1), then $\operatorname{det} T=c$; while $\operatorname{det} T=1$ or -1 , according to whether T is of type(2) or type(3). If T is an elementary matrix, the corresponding linear map T is called an elementary linear map of the same type.

Lemma 4.10.1 If T is an elementary linear map and $f \geq 0$ is a measurable function on \mathbb{R}^{n} such that $f \circ T$ is measurable, then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f d \lambda^{n}=|\operatorname{det} T| \int_{\mathbb{R}^{n}} f \circ T d \lambda^{n} . \tag{4.17}
\end{equation*}
$$

Proof Suppose that T is of type(1), then $f \circ T\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{1}, \ldots, c x_{j}, \ldots, x_{n}\right)$ for some $j=1, \ldots, n$ and $c \neq 0$. By expressing $x=\left(x_{1}, \ldots, x_{j}, \ldots, x_{n}\right)$ as $x=\left(x_{j}, \hat{x}_{j}\right)$ and using the Fubini theorem, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} f \circ T d \lambda^{n} & =\int_{\mathbb{R}^{n-1}}\left(\int_{\mathbb{R}} f\left(x_{1}, \ldots, c x_{j}, \ldots, x_{n}\right) d x_{j}\right) d \hat{x}_{j} \\
& =\frac{1}{|c|} \int_{\mathbb{R}^{n-1}}\left(\int_{\mathbb{R}} f\left(x_{1}, \ldots, x_{j}, \ldots, x_{n}\right) d x_{j}\right) d \hat{x}_{j} \\
& =\frac{1}{|c|} \int_{\mathbb{R}^{n}} f d \lambda^{n}
\end{aligned}
$$

where $\int_{\mathbb{R}} f\left(x_{1}, \ldots, c x_{j}, \ldots, x_{n}\right) d x_{j}=\frac{1}{|c|} \int_{\mathbb{R}} f\left(x_{1}, \ldots, x_{j}, \ldots, x_{n}\right) d x_{j}$ follows from the fact stated in Example 4.3.1 (ii). Hence,

$$
\int_{\mathbb{R}^{n}} f d \lambda^{n}=|c| \int_{\mathbb{R}^{n}} f \circ T d \lambda^{n}=|\operatorname{det} T| \int_{\mathbb{R}^{n}} f \circ T d \lambda^{n} .
$$

Similarly, (4.17) can be verified for the case when T is of type(2) or of type(3).

If T is an invertible linear map from \mathbb{R}^{n} onto \mathbb{R}^{n} then, as is well known in elementary linear algebra, after a finite number of elementary row operations the corresponding matrix T becomes the unit matrix I, i.e.

$$
I=S_{1} \cdots S_{k} \cdot T
$$

where S_{1}, \ldots, S_{k} are elementary matrices, or

$$
S_{k}^{-1} \cdots S_{1}^{-1}=T
$$

where each S_{j}^{-1} is also elementary and of the some type as S_{j}; in terms of maps, this means that the invertible linear map T is a composition of a finite number of elementary linear maps, i.e.

$$
\begin{equation*}
T=T_{1} \circ \cdots \circ T_{l}, \tag{4.18}
\end{equation*}
$$

with each T_{j} being elementary.
Theorem 4.10.1 If T is an invertible linear map from \mathbb{R}^{n} onto \mathbb{R}^{n} and f is a measurable function on \mathbb{R}^{n}, then $f \circ T$ is measurable; and iff is either nonnegative or integrable,

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f d \lambda^{n}=|\operatorname{det} T| \int_{\mathbb{R}^{n}} f \circ T d \lambda^{n} . \tag{4.19}
\end{equation*}
$$

Proof It is sufficient to prove (4.19) for the case $f \geq 0$. Suppose first that $f \geq 0$ is Borel measurable, then since $f \circ T$ is Borel and T is of the form (4.18), we have from Lemma 4.10.1,

$$
\begin{aligned}
|\operatorname{det} T| \int_{\mathbb{R}^{n}} f \circ T d \lambda^{n} & =\prod_{j=1}^{l}\left|\operatorname{det} T_{j}\right| \int_{\mathbb{R}^{n}} f \circ T_{1} \circ \cdots \circ T_{l} d \lambda^{n} \\
& =\left(\prod_{j=1}^{l-1}\left|\operatorname{det} T_{j}\right|\right) \cdot\left|\operatorname{det} T_{l}\right| \int_{\mathbb{R}^{n}}\left(f \circ T_{1} \circ \cdots \circ T_{l-1}\right) \circ T_{l} d \lambda^{n} \\
& =\prod_{j=1}^{l-1}\left|\operatorname{det} T_{j}\right| \int_{\mathbb{R}^{n}} f \circ T_{1} \circ \cdots \circ T_{l-1} d \lambda^{n} \\
& =\cdots=\int_{\mathbb{R}^{n}} f d \lambda^{n} .
\end{aligned}
$$

Thus (4.19) holds when f is a nonnegative Borel function on \mathbb{R}^{n}.
Now suppose that f is nonnegative and measurable. We claim first that $f \circ T$ is measurable. Let $B \in \mathcal{B}^{n}$; we have to show that $(f \circ T)^{-1} B=T^{-1}\left(f^{-1} B\right)$ is measurable. As $f^{-1} B$ is measurable, $f^{-1} B=A \cup C$, where A is a Borel set and $\lambda^{n}(C)=0$ (cf. Exercise 3.9.1 (i)). There is a Borel set $D \supset C$ such that $\lambda^{n}(D)=0$. The indicator function I_{D} of D is a Borel function; by what we have proved in the
first part, $|\operatorname{det} T| \int_{\mathbb{R}^{n}} I_{D} \circ T d \lambda^{n}=\lambda^{n}(D)=0$; then $\int_{\mathbb{R}^{n}} I_{D} \circ T d \lambda^{n}=0$, and consequently $I_{D} \circ T=0$ a.e. But $I_{D} \circ T=I_{T^{-1} D}$ and $I_{D} \circ T=0$ a.e. imply $\lambda^{n}\left(T^{-1} D\right)=0$. Since $T^{-1} C \subset T^{-1} D, \lambda^{n}\left(T^{-1} C\right)=0$. Thus $T^{-1} C$ is measurable. Now, $(f \circ T)^{-1} B=$ $T^{-1}(A \cup C)=T^{-1} A \cup T^{-1} C$ shows that $(f \circ T)^{-1} B$ is measurable. We have shown the claim that $f \circ T$ is measurable. Since $f \circ T$ is measurable, we can repeat the first part of the proof to conclude that (4.19) holds.

Corollary 4.10.1 For a measurable set $A \subset \mathbb{R}^{n}, T A$ is measurable and $\lambda^{n}(T A)=$ $|\operatorname{det} T| \lambda^{n}(A)$.

Proof In Theorem 4.10.1, replace T by T^{-1} and consider $f=I_{A}$.
Corollary 4.10.2 Lebesgue measure is invariant under rotations.
Proof Let $A \subset \mathbb{R}^{n}$ and T be a rotation of \mathbb{R}^{n}; we have to show that $\lambda^{n}(T A)=\lambda^{n}(A)$. By Corollary 4.10.1, $\lambda^{n}(T A)=|\operatorname{det} T| \lambda^{n}(A)=\lambda^{n}(A)$, because the matrix representing T is an orthogonal matrix and the determinant of an orthogonal matrix is 1 or -1 .

Now let t be a C^{1} diffeomorphism from Ω into \mathbb{R}^{n}. Define a measure $\lambda^{n} t$ on Ω by

$$
\lambda^{n} t(A)=\lambda^{n}(t A), \quad A \subset \Omega
$$

That $\lambda^{n} t$ measures Ω is obvious. Since t is bijective from Ω to $t \Omega$, the measure $\lambda^{n} t$ on Ω can be considered as a copy of λ^{n} on the open set $t \Omega$; actually a subset A of Ω is $\lambda^{n} t$ measurable if and only if $t A$ is λ^{n}-measurable, and both t and t^{-1} are measure preserving (cf. Section 2.8.2). Furthermore, since a subset B of Ω is Borel if and only if $t B$ is Borel, it follows that $\lambda^{n} t$ is a Radon measure on Ω.

Proposition 4.10.1 Iff ≥ 0 is measurable on $t \Omega$, then $f \circ t$ is $\Sigma^{\lambda^{n} t}$-measurable on Ω and

$$
\begin{equation*}
\int_{t \Omega} f d \lambda^{n}=\int_{\Omega} f \circ t d \lambda^{n} t \tag{4.20}
\end{equation*}
$$

Proof If $f=I_{A}$ for a measurable set A, then $f \circ t=I_{t^{-1} A}$, where $t^{-1} A$ is $\lambda^{n} t$-measurable; it follows that (4.20) holds in this case. For the general case, (4.20) follows from Theorem 2.2.1 and what has just been shown.

Remark Since $\lambda^{n}=t_{\#} \lambda^{n} t$ on $t \Omega$, Proposition 4.10.1 follows also from Exercise 4.3.2.

Lemma 4.10.2 $\lambda^{n} t$ is absolutely continuous on Ω.
Proof Let $Q \subset \Omega$ be a nondegenerate oriented closed cube, i.e. $Q=I_{1} \times \cdots \times I_{n}$, where I_{1}, \ldots, I_{n} are finite closed intervals in \mathbb{R} of the same positive length. Suppose that f is a continuously differentiable function defined on a neighborhood of Q, and consider two points x and y in Q. Let a function g on [0,1] be defined by $g(s)=f(x+s(y-x))$; then $f(y)-f(x)=g(1)-g(0)=$
$\int_{0}^{1} g^{\prime}(s) d s=\int_{0}^{1}\left\{\sum_{j=1}^{n} \frac{\partial f}{\partial x_{j}}(x+s(y-x)) \cdot\left(y_{j}-x_{j}\right)\right\} d s=\int_{0}^{1} \nabla f(x+s(y-x)) \cdot(y-$ $x) d s$, where $\nabla f=\left(\frac{\partial f}{\partial x_{1}}, \ldots, \frac{\partial f}{\partial x_{n}}\right)$ is the gradient of f. Hence,

$$
\begin{equation*}
|f(y)-f(x)| \leq|y-x| \int_{0}^{1}|\nabla f(x+s(y-x))| d s \tag{4.21}
\end{equation*}
$$

Applying (4.21) to each component function of t, we have

$$
|t(y)-t(x)|^{2} \leq|y-x|^{2} \sum_{i=1}^{n}\left[\int_{0}^{1}\left|\nabla t_{i}(x+s(y-x))\right| d s\right]^{2} \leq|y-x|^{2} M(Q)^{2}
$$

or

$$
\begin{equation*}
|t(y)-t(x)| \leq|y-x| M(Q) \tag{4.22}
\end{equation*}
$$

where $M(Q)^{2}=\max _{z \in Q} \sum_{i, j=1}^{n}\left|\frac{\partial t_{i}}{\partial x_{j}}(z)\right|^{2}$.
Suppose now that A is a null set in Ω. Since Ω is a countable union of open sets G, with \bar{G} being a compact subset of Ω (cf. Proposition 3.9.2), to show that $\lambda^{n} t(A)=0$, we may assume that A is a null set in an open set G, with \bar{G} a compact set in Ω. Given that $\varepsilon>0$, there is a sequence $\left\{Q_{k}\right\}$ of nondegenerate closed oriented cubes in G such that $\bigcup Q_{k} \supset A$ and $\sum_{k} \lambda^{n}\left(Q_{k}\right)<\varepsilon$, by Corollary 3.9.1. For each k, let c_{k} be the center of Q_{k}, and apply (4.22) for $x=c_{k}$ and $y \in Q_{k}$, to obtain

$$
\left|t(y)-t\left(c_{k}\right)\right| \leq\left|y-c_{k}\right| M\left(Q_{k}\right)
$$

which implies that $t Q_{k}-t\left(c_{k}\right) \subset C_{r}\left(t\left(c_{k}\right)\right)$ with $r=\left(\frac{1}{2} \operatorname{diam} Q_{k}\right) M$, where $M^{2}=$ $\max _{z \in \bar{G}} \sum_{i, j=1}^{n}\left|\frac{\partial t_{i}}{\partial x_{j}}(z)\right|^{2}$, and consequently,

$$
\lambda^{n}\left(t Q_{k}\right)=\lambda^{n}\left(t Q_{k}-t\left(c_{k}\right)\right) \leq \lambda^{n}\left(C_{r}\left(t\left(c_{k}\right)\right)\right)=\left(\frac{\sqrt{n} M}{2}\right)^{n} \lambda^{n}\left(C_{1}(0)\right) \lambda^{n}\left(Q_{k}\right)
$$

by Example 4.3.1. Now,

$$
\begin{aligned}
\lambda^{n} t(A) & \leq \lambda^{n} t\left(\bigcup_{k} Q_{k}\right) \leq \sum_{k} \lambda^{n} t\left(Q_{k}\right)=\sum_{k} \lambda^{n}\left(t Q_{k}\right) \\
& \leq\left(\frac{\sqrt{n} M}{2}\right)^{n} \lambda^{n}\left(C_{1}(0)\right) \sum_{k} \lambda^{n}\left(Q_{k}\right)<\left(\frac{\sqrt{n} M}{2}\right)^{n} \lambda^{n}\left(C_{1}(0)\right) \varepsilon
\end{aligned}
$$

from which, by letting $\varepsilon \rightarrow 0$, we conclude that $\lambda^{n} t(A)=0$.
Corollary 4.10.3 $A \subset \Omega$ is measurable if and only iftA is measurable. Also, A is measurable if and only if it is $\lambda^{n} t$-measurable.

Proof If A is measurable, then $A=B \cup N$, with B a Borel set and N a null set. By Lemma 4.10.2, $\lambda^{n}(t N)=\lambda^{n} t(N)=0$; hence $t N$ is a null set and is therefore measurable. Now, $t A=t B \cup t N$ implies that $t A$ is measurable. Conversely, if $t A$ is measurable, then A is measurable by the same argument, but with Ω replaced by $t \Omega$ and t replaced by t^{-1}.

Since $A \subset \Omega$ is $\lambda^{n} t$-measurable if and only if $t A$ is measurable, the second part of the corollary follows from the first part.
Lemma 4.10.3 For a.e. x in $\Omega, \frac{d \lambda^{n} t}{d \lambda^{n}}(x)=\left|\operatorname{det} d_{x} t\right|$.
Proof It is sufficient to show that $\lim _{r \rightarrow 0} \frac{\lambda^{n} t\left(C_{r}(x)\right)}{\lambda^{n}\left(C_{r}(x)\right)}=\left|\operatorname{det} d_{x} t\right|$ for $x \in \Omega$, where $C_{r}(x)$ is the closed ball centered at x and with radius r.

Let $x \in \Omega$ and suppose first that $d_{x} t=I$, the identity map of \mathbb{R}^{n}. Write

$$
\begin{equation*}
t(y)-t(x)=d_{x} t(y-x)+R(x, y)=(y-x)+R(x, y) \tag{4.23}
\end{equation*}
$$

Since t is differentiable at x, for each $\varepsilon>0$, there is $\delta>0$ such that $|R(x, y)|<$ $\varepsilon|y-x|$ if $|y-x|<\delta$. Now if $0<r<\delta$, we have from (4.23),

$$
t C_{r}(x)-t(x) \subset(1+\varepsilon)\left(C_{r}(x)-x\right)
$$

then $\lambda^{n}\left(t C_{r}(x)\right)=\lambda^{n}\left(t C_{r}(x)-t(x)\right) \leq(1+\varepsilon)^{n} \lambda^{n}\left(C_{r}(x)-x\right)=(1+\varepsilon)^{n} \lambda^{n}\left(C_{r}(x)\right)$, and hence

$$
\begin{equation*}
\limsup _{r \rightarrow 0} \frac{\lambda^{n} t\left(C_{r}(x)\right)}{\lambda^{n}\left(C_{r}(x)\right)} \leq(1+\varepsilon)^{n} \tag{4.24}
\end{equation*}
$$

We show next that $C:=C_{r(1-\varepsilon)}(t(x))$ is contained in $t C_{r}(x)$ if $0<r<\delta$. Observe first that, by (4.23), $t \Gamma$ is outside C, where Γ is the boundary of $C_{r}(x)$. To show that $C \subset t C_{r}(x)$ is to show that the line segment $[t(x), z]:=\{t(x)+s(z-t(x))$: $0 \leq s \leq 1\} \subset t C_{r}(x)$ for each $z \in \partial C$. Let $z \in \partial C$ be fixed. Define a set L of positive numbers by

$$
L=\left\{0<\rho \leq 1: t(x)+s(z-t(x)) \in t C_{r}(x) \text { for all } 0 \leq s \leq \rho\right\}
$$

By the inverse function theorem, t maps a neighborhood of x in $C_{r}(x)$ onto a neighborhood of $t(x)$; hence L is nonempty. Let $\rho_{0}=\sup L$. We claim that $\rho_{0} \in L$. Note first that $\left(0, \rho_{0}\right) \subset L$. Choose a sequence $\left\{s_{j}\right\}$ in $\left(0, \rho_{0}\right)$ such that $s_{j} \rightarrow \rho_{0}$ and let $z_{j}=t(x)+s_{j}(z-t(x))$. Then $z_{j} \in t C_{r}(x)$ for each j. Since $z_{j} \rightarrow z_{\infty}:=t(x)+\rho_{0}(z-$ $t(x))$ and t^{-1} is continuous, we infer that $t^{-1} z_{j} \rightarrow t^{-1} z_{\infty}$ and $t^{-1} z_{\infty} \in C_{r}(x)$ (note that each $\left.t^{-1} z_{j} \in C_{r}(x)\right)$. Now, $t\left(t^{-1} z_{\infty}\right)=z_{\infty}$ implies that $\rho_{0} \in L$. We assert then that $\rho_{0}=1$. If $\rho_{0}<1, t^{-1} z_{\infty} \in B_{r}(x)$, because $t \Gamma$ is outside C; then by the inverse function theorem again, t maps a neighborhood of $t^{-1} z_{\infty}$ in $B_{r}(x)$ onto a neighborhood of z_{∞}; this would imply that L contains numbers larger than ρ_{0}, contradicting the definition of ρ_{0}. Now $\rho_{0}=1$ means the line segment $[t(x), z]$ is contained in
$t C_{r}(x)$. Thus C is contained in $t C_{r}(x)$, or $t C_{r}(x)-t(x) \supset(1-\varepsilon)\left(C_{r}(t(x))-t(x)\right)$. Hence,

$$
\lambda^{n} t\left(C_{r}(x)\right)=\lambda^{n}\left(t C_{r}(x)\right)=\lambda^{n}\left(t C_{r}(x)-t(x)\right) \geq(1-\varepsilon)^{n} \lambda^{n}\left(C_{r}(x)\right),
$$

or

$$
\begin{equation*}
\liminf _{r \rightarrow 0} \frac{\lambda^{n} t\left(C_{r}(x)\right)}{\lambda^{n}\left(C_{r}(x)\right)} \geq(1-\varepsilon)^{n} . \tag{4.25}
\end{equation*}
$$

Letting $\varepsilon \rightarrow 0$ in (4.24) and (4.25), we have

$$
\lim _{r \rightarrow 0} \frac{\lambda^{n} t\left(C_{r}(x)\right)}{\lambda^{n}\left(C_{r}(x)\right)}=1 .
$$

This shows that $\lim _{r \rightarrow 0} \frac{\lambda^{n} t\left(C_{r}(x)\right)}{\lambda^{n}\left(C_{r}(x)\right)}=1$, if $d_{x} t=I$. In general, for $x \in \Omega$, consider the map $\hat{t}=\left(d_{x} t\right)^{-1} \circ t$, then $d_{x} \hat{t}=\left(d_{x} t\right)^{-1} \circ d_{x} t=I$, hence,

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{\lambda^{n} \hat{t}\left(C_{r}(x)\right)}{\lambda^{n}\left(C_{r}(x)\right)}=1 . \tag{4.26}
\end{equation*}
$$

Now, by Corollary 4.10.1,

$$
\begin{aligned}
\lambda^{n} t\left(C_{r}(x)\right) & =\lambda^{n}\left(t C_{r}(x)\right)=\lambda^{n}\left(d_{x} t \circ\left(d_{x} t\right)^{-1}\left(t C_{r}(x)\right)\right) \\
& =\left|\operatorname{det} d_{x} t\right| \lambda^{n}\left(\hat{t} C_{r}(x)\right),
\end{aligned}
$$

from which it follows that

$$
\lim _{r \rightarrow 0} \frac{\lambda^{n} t\left(C_{r}(x)\right)}{\lambda^{n}\left(C_{r}(x)\right)}=\left|\operatorname{det} d_{x} t\right| \lim _{r \rightarrow 0} \frac{\lambda^{n} \hat{t}\left(C_{r}(x)\right)}{\lambda^{n}\left(C_{r}(x)\right)}=\left|\operatorname{det} d_{x} t\right|,
$$

by (4.26).
Theorem 4.10.2 Suppose that tis a C^{1} diffeomorphism from an open set Ω in \mathbb{R}^{n} into \mathbb{R}^{n}; then iff is a measurable function on $t \Omega, f \circ t$ is measurable on Ω, and $i f$, furthermore, f is nonnegative or integrable, then,

$$
\begin{equation*}
\int_{t \Omega} f d \lambda^{n}=\int_{\Omega}(f \circ t)(x)|J(t ; x)| d \lambda^{n}(x) . \tag{4.27}
\end{equation*}
$$

Proof Since $A \subset t \Omega$ is measurable if and only if $t^{-1} A$ is measurable by Corollary 4.10.3, we infer that if $f=I_{A}$, then f is measurable if and only if $f \circ t=I_{t^{-1} A}$ is measurable. It follows then from Theorem 2.2.1 that a nonnegative function f is measurable if and only if $f \circ t$ is measurable; from this it follows that f is measurable on $t \Omega$ if and only if
$f \circ t$ is measurable. In particular if f is measurable on $t \Omega$, then $f \circ t$ is measurable on Ω. To verify (4.27), we need only consider the case $f \geq 0$. By Proposition 4.10.1,

$$
\begin{equation*}
\int_{t \Omega} f d \lambda^{n}=\int_{\Omega} f \circ t d \lambda^{n} t \tag{4.28}
\end{equation*}
$$

Since $\lambda^{n} t$ is absolutely continuous,

$$
\lambda^{n} t(A)=\int_{A} \frac{d \lambda^{n} t}{d \lambda^{n}} d \lambda^{n}=\int_{A}\left|\operatorname{det} d_{x} t\right| d \lambda^{n}(x)=\int_{A}|J(t ; x)| d \lambda^{n}(x)
$$

for measurable $A \subset \Omega$ by Lemma 4.10.3; it follows then from Exercise 2.5.7 that $\int_{\Omega} f \circ t d \lambda^{n} t=\int_{\Omega}(f \circ t)(x)|J(t ; x)| d \lambda^{n}(x)$; combining the last equality with (4.28), we conclude that (4.27) holds.

We illustrate the way to use Theorem 4.10 .2 by an example.
Example 4.10.1 Consider the map t from the open set $\Omega:=\{(\rho, \theta): 0<\rho<\infty$, $0<\theta<2 \pi\}$ in \mathbb{R}^{2} into \mathbb{R}^{2} by

$$
\left(x_{1}, x_{2}\right)=t(\rho, \theta)=(\rho \cos \theta, \rho \sin \theta)
$$

then, $\frac{\partial x_{1}}{\partial \rho}=\cos \theta, \frac{\partial x_{1}}{\partial \theta}=-\rho \sin \theta ; \frac{\partial x_{2}}{\partial \rho}=\sin \theta, \frac{\partial x_{2}}{\partial \theta}=\rho \cos \theta$. Hence,

$$
d_{(\rho, \theta)} t=\left|\begin{array}{cc}
\cos \theta & -\rho \sin \theta \\
\sin \theta & \rho \cos \theta
\end{array}\right|=\rho>0
$$

t is actually a C^{1} diffeomorphism from Ω onto $t \Omega=\left\{\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}: x_{2} \neq 0\right.$, or $x_{2}=0$ but $\left.x_{1}<0\right\}$, i.e. $t \Omega$ is obtained from \mathbb{R}^{2} by taking away the positive x_{1}-axis and the origin. Now if $f \geq 0$ is measurable, then, since $\lambda^{2}\left(\mathbb{R}^{2} \backslash t \Omega\right)=0$, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{2}} f d \lambda^{2} & =\int_{t \Omega} f d \lambda^{n}=\int_{\Omega}(f \circ t)(\rho, \theta) \rho d \lambda^{2}(\rho, \theta) \\
& =\int_{0}^{\infty}\left(\int_{0}^{2 \pi} \rho f(\rho \cos \theta, \rho \sin \theta) d \theta\right) d \rho
\end{aligned}
$$

where we have the applied the Fubini theorem in the last step.
Exercise 4.10.1 Suppose that f is a measurable function on \mathbb{R}^{3} and is either nonnegative or integrable.
(i) Show that

$$
\begin{aligned}
\int_{\mathbb{R}^{3}} f(x, y, z) d \lambda^{3}(x, y, z) & =\int_{G} f(\rho \cos \varphi, \rho \sin \varphi, z) \rho d \lambda^{3}(\rho, \varphi, z) \\
& =\int_{-\infty}^{\infty} \int_{0}^{2 \pi} \int_{0}^{\infty} f(\rho \cos \varphi, \rho \sin \varphi, z) \rho d \rho d \varphi d z
\end{aligned}
$$

where $G=(0, \infty) \times(0,2 \pi) \times \mathbb{R}=\{(\rho, \varphi, z): 0<\rho<\infty, 0<\varphi<2 \pi, z \in \mathbb{R}\}$.
(ii) Show that

$$
\begin{aligned}
& \int_{\mathbb{R}^{3}} f(x, y, z) d \lambda^{3}(x, y, z) \\
= & \int_{H} f(\rho \sin \theta \cos \varphi, \rho \sin \theta \sin \varphi, \rho \cos \theta) \rho^{2} \sin \theta d \lambda^{3}(\rho, \theta, \varphi) \\
= & \int_{0}^{\infty} \int_{0}^{\pi} \int_{0}^{2 \pi} f(\rho \sin \theta \cos \varphi, \rho \sin \theta \sin \varphi, \rho \cos \theta) \rho^{2} \sin \theta d \varphi d \theta d \rho,
\end{aligned}
$$

where $H=(0, \infty) \times(0, \pi) \times(0,2 \pi)=\{(\rho, \theta, \varphi): 0<\rho<\infty, 0<\theta<\pi$, $0<\varphi<2 \pi\}$.

4.11 Polar coordinates and potential integrals

In Example 4.10.1, ρ and θ are the polar coordinates of the point $(\rho \cos \theta, \rho \sin \theta)$ in \mathbb{R}^{2}, and $d \theta$ is the line element on the unit circle S^{1}, described by $(\cos \theta, \sin \theta)$, $0 \leq \theta<2 \pi$; while in Exercise 4.10.1 (ii), ρ, φ, and θ are the so-called spherical coordinates of the point $(\rho \sin \theta \cos \varphi, \rho \sin \theta \sin \varphi, \rho \cos \theta)$ in \mathbb{R}^{3}, and $\sin \theta d \varphi d \theta$ is the surface element on the unit sphere S^{2} in \mathbb{R}^{3}, described by $(\sin \theta \cos \varphi, \sin \theta \cos \varphi, \cos \theta), 0 \leq$ $\varphi<2 \pi, 0 \leq \theta \leq \pi$. Therefore, for nonnegative measurable function f on \mathbb{R}^{2} or \mathbb{R}^{3}, we have

$$
\begin{align*}
& \int_{\mathbb{R}^{2}} f(x) d \lambda^{2}(x)=\int_{0}^{\infty}\left(\int_{S^{1}} \rho f\left(\rho x^{\prime}\right) d l\left(x^{\prime}\right)\right) d \rho \tag{4.29}\\
& \int_{\mathbb{R}^{3}} f(x) d \lambda^{3}(x)=\int_{0}^{\infty}\left(\int_{S^{2}} \rho^{2} f\left(\rho x^{\prime}\right) d \sigma\left(x^{\prime}\right)\right) d \rho \tag{4.30}
\end{align*}
$$

where $x=\rho x^{\prime}$ with $\rho=|x|$ and $x^{\prime} \in S^{1}$ or S^{2}, depending on $x \in \mathbb{R}^{2}$ or \mathbb{R}^{3}, $d l$ is the line element on S^{1}, and $d \sigma$ the surface element on S^{2}. The discussion so far is formal; we shall now put it on a solid basis for \mathbb{R}^{n} in general.

For $x \in \dot{\mathbb{R}}^{n}:=\mathbb{R}^{n} \backslash\{0\}$, write $x=\rho x^{\prime}$, where $\rho=|x|$ and $x^{\prime}=|x|^{-1} x$ is in $S^{n-1}:=\{x \in$ $\left.\mathbb{R}^{n}:|x|=1\right\} ; \rho$ and x^{\prime} are called the polar coordinates of $x \in \dot{\mathbb{R}}^{n}$. The polar coordinates of a point $x \in \dot{\mathbb{R}}^{n}$ will be written as an ordered pair $\left(\rho, x^{\prime}\right)$ and hence is represented as a point in $(0, \infty) \times S^{n-1}$. Let p be the map $x \mapsto\left(\rho, x^{\prime}\right)$ from $\dot{\mathbb{R}}^{n}$ to $(0, \infty) \times S^{n-1} ; p$ is obviously a bijection and both p and p^{-1} are continuous; it follows that a function f on $\dot{\mathbb{R}}^{n}$ is λ^{n}-measurable if and only if $f \circ p^{-1}$ is $p_{*} \lambda^{n}$-measurable on $(0, \infty) \times S^{n-1}$, where $p_{\#} \lambda^{n}$ is the measure on $(0, \infty) \times S^{n-1}$, defined by $p_{\#} \lambda^{n}(A)=\lambda^{n}\left(p^{-1} A\right)$ for subsets A of $(0, \infty) \times S^{n-1}\left(\right.$ cf. Exercise 4.3 .1 and note that $\left.\lambda^{n}=\left(p^{-1}\right)_{\#}\left(p_{\#} \lambda^{n}\right)\right)$. We then infer from Exercise 4.3.2 that if f is a nonnegative measurable or an integrable function on \mathbb{R}^{n}, then

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} f d \lambda^{n}=\int_{\mathbb{R}^{n}} f d \lambda^{n}=\int_{(0, \infty) \times S^{n-1}} f \circ p^{-1} d p_{\#} \lambda^{n} . \tag{4.31}
\end{equation*}
$$

We shall presently show that $p_{\#} \lambda^{n}$ is a product measure. A Borel measure σ on S^{n-1} will be defined first; this measure is interpreted as measuring the surface area of sets in S^{n-1} and is therefore called the surface measure on S^{n-1}. For $E \subset S^{n-1}$ and $r>0$, let E_{r} be the set $\bigcup\{\alpha E: 0<\alpha \leq r\}$ in \mathbb{R}^{n}; clearly, $E_{r}=r E_{1}$ and E_{r} is a Borel set in \mathbb{R}^{n}, if $E \in \mathcal{B}\left(S^{n-1}\right)$. It then follows that

$$
\begin{equation*}
\lambda^{n}\left(E_{r}\right)=r^{n} \lambda^{n}\left(E_{1}\right) \tag{4.32}
\end{equation*}
$$

for $E \in \mathcal{B}\left(S^{n-1}\right)$, by Example 4.3.1 (ii). Observe now that if $h>0, E_{1+h} \backslash E_{1}$ is a spherically sliced section of the cone $\bigcup\{\alpha E: \alpha>0\}$ of thickness h, and hence it is natural to define the surface area of $E \in \mathcal{B}\left(S^{n-1}\right)$, as

$$
\lim _{h \rightarrow 0+} h^{-1} \lambda^{n}\left(E_{1+h} \backslash E_{1}\right)=\lim _{h \rightarrow 0+} h^{-1}\left[(1+h)^{n}-1\right] \lambda^{n}\left(E_{1}\right)=n \lambda^{n}\left(E_{1}\right),
$$

where we have applied (4.32) with $r=1+h$. Thus we let $\sigma(E)=n \lambda^{n}\left(E_{1}\right)$ for $E \in$ $\mathcal{B}\left(S^{n-1}\right)$. It is readily verified that σ is a finite measure on $\mathcal{B}\left(S^{n-1}\right)$, and the measure on S^{n-1} constructed from σ by Method I is the unique Radon measure on S^{n-1}, extending σ on $\mathcal{B}\left(S^{n-1}\right)$ (this measure is also denoted by σ), and ($\left.S^{n-1}, \Sigma^{\sigma}, \sigma\right)$ is the completion of ($S^{n-1}, \mathcal{B}\left(S^{n-1}\right), \sigma$) (cf. Exercise 3.4.18).

From (4.32), we have

$$
\lambda^{n}\left(E_{r}\right)=r^{n} \lambda^{n}\left(E_{1}\right)=n \lambda^{n}\left(E_{1}\right) \int_{0}^{r} \rho^{n-1} d \rho=\sigma(E) \int_{0}^{r} \rho^{n-1} d \rho
$$

for $E \in \mathcal{B}\left(S^{n-1}\right)$ and hence, by Borel regularity of σ, E_{r} is measurable and

$$
\begin{equation*}
\lambda^{n}\left(E_{r}\right)=\sigma(E) \int_{0}^{r} \rho^{n-1} d \rho \tag{4.33}
\end{equation*}
$$

for any σ-measurable set E in S^{n-1} (see Exercise 4.11.1).
Exercise 4.11.1 Let E be a σ-measurable set in S^{n-1}; show that E_{r} is measurable and (4.33) holds. (Hint: there are Borel sets F and G in S^{n-1} such that $F \subset E \subset G$ and $\sigma(G \backslash F)=0$.)

Now let γ be the unique Radon measure on $(0, \infty)$ such that $\gamma(B)=\int_{B} \rho^{n-1} d \rho$ for Borel sets B in $(0, \infty)$. Since $\gamma(A)=0$ if and only if $\lambda(A)=0$ for any $A \subset(0, \infty)$, it follows that γ-measurable sets in $(0, \infty)$ are exactly the Lebesgue measurable sets in ($0, \infty$).

Lemma 4.11.1 For σ-measurable sets E in S^{n-1} and measurable sets A in $(0, \infty)$,

$$
\gamma \times \sigma(A \times E)=p_{\#} \lambda^{n}(A \times E) .
$$

Proof For a fixed σ-measurable set E in S^{n-1}, let \mathcal{M} be the family of all measurable sets A in $(0, \infty)$ such that for every positive integer n,

$$
\gamma \times \sigma(A \cap(0, n] \times E)=p_{\#} \lambda^{n}(A \cap(0, n] \times E)
$$

then, $\gamma \times \sigma(A \times E)=p_{\#} \lambda^{n}(A \times E)$ for $A \in \mathcal{M}$. Since $p_{\#} \lambda^{n}((0, r] \times E)=\lambda^{n}\left(E_{r}\right)$, we infer from (4.33) that \mathcal{M} contains $\Pi=\{(0, r]: r>0\}$, which is a π-system on $(0, \infty)$. It is routine to verify that \mathcal{M} is a λ-system, and the $(\pi-\lambda)$ theorem implies that \mathcal{M} contains all Borel sets in $(0, \infty)$. Now if A is a measurable set in $(0, \infty)$, there are Borel sets C and D in $(0, \infty)$ such that $C \subset A \subset D$ and $\lambda(D \backslash C)=\gamma(D \backslash C)=0$, hence,

$$
\begin{aligned}
\gamma \times \sigma(C \times E) & =p_{\#} \lambda^{n}(C \times E) \leq p_{\#} \lambda^{n}(A \times E) \leq p_{\#} \lambda^{n}(D \times E) \\
& =\gamma \times \sigma(D \times E)=\gamma \times \sigma(C \times E),
\end{aligned}
$$

from which it follows that $\gamma \times \sigma(A \times E)=p_{\# \lambda^{n}}(A \times E)$.
Lemma 4.11.2 $\mathcal{B}\left((0, \infty) \times S^{n-1}\right) \subset \Sigma^{\gamma} \otimes \Sigma^{\sigma} \subset \Sigma^{p * \lambda^{n}}$.
Proof Since both $(0, \infty)$ and S^{n-1} are separable as metric space, every open set in $(0, \infty) \times S^{n-1}$ is a countable union of sets of the form $A \times B$, where A is open in $(0, \infty)$ and B is open in S^{n-1}; open sets in $(0, \infty) \times S^{n-1}$ are $\Sigma^{\gamma} \otimes \Sigma^{\sigma}$-measurable and hence $\mathcal{B}\left((0, \infty) \times S^{n-1}\right) \subset \Sigma^{\gamma} \otimes \Sigma^{\sigma}$. To show that $\Sigma^{\gamma} \otimes \Sigma^{\sigma} \subset \Sigma^{p^{*} \lambda^{n}}$, it is sufficient to show that $A \times B \in \Sigma^{p_{\star \lambda} \lambda^{n}}$ if $A \in \Sigma^{\gamma}$ and $B \in \Sigma^{\sigma}$. There are Borel sets C and D in $(0, \infty)$ such that $C \subset A \subset D$ and $\gamma(D \backslash C)=0$, and there are Borel sets E and F in S^{n-1} such that $E \subset B \subset F$ and $\sigma(F \backslash E)=0$; then,

$$
\gamma \times \sigma(D \times F \backslash C \times E)=0
$$

and by Lemma 4.11.1,

$$
p_{\#} \lambda^{n}(D \times F \backslash C \times E)=0,
$$

from which we infer that $A \times B=C \times E \cup N$, where $N \subset D \times F \backslash C \times E$ and is therefore a $p_{\#} \lambda^{n}$-null set. Thus N is $p_{\#} \lambda^{n}$-measurable and so is $A \times B$, because $C \times E$ is a Borel set in $(0, \infty) \times S^{n-1}$ and is therefore $p_{\#} \lambda$-measurable.

Since $\gamma \times \sigma$ is the unique measure on $\Sigma^{\gamma} \otimes \Sigma^{\sigma}$ such that $\gamma \times \sigma(A \times E)=$ $\gamma(A) \sigma(E)$ for measurable set $A \subset(0, \infty)$, and $E \in \Sigma^{\sigma}$ by Proposition 4.8.1, it follows from Lemma 4.11.1 and Lemma 4.11.2 that $p_{\#} \lambda^{n}=\gamma \times \sigma$ on $\Sigma^{\gamma} \otimes \Sigma^{\sigma}$. Since $\mathcal{B}\left((0, \infty) \times S^{n-1}\right) \subset \Sigma^{\gamma} \otimes \Sigma^{\sigma}$, by Lemma 4.11.2, one concludes that the space $\left((0, \infty) \times S^{n-1}, \Sigma^{p_{*} \lambda^{n}}, p_{\#} \lambda^{n}\right)$ is the completion of $\left((0, \infty) \times S^{n-1}, \Sigma^{\gamma} \otimes \Sigma^{\sigma}, \gamma \times \sigma\right)$, from the fact that $p_{\#} \lambda^{n}$ is Borel regular (cf. Exercise 3.4.18). That $p_{\#} \lambda^{n}$ is Borel regular follows from the Borel regularity of λ^{n} and the fact that $\mathcal{B}\left(\dot{\mathbb{R}}^{n}\right)=p^{-1} \mathcal{B}\left((0, \infty) \times S^{n-1}\right)$.

Then, on account of (4.31), we infer immediately that if f is a nonnegative measurable function or an integrable function on \mathbb{R}^{n}, then

$$
\int_{\mathbb{R}^{n}} f d \lambda^{n}=\int_{(0, \infty) \times S^{n-1}} f \circ p^{-1} d \overline{\gamma \times \sigma} ;
$$

consequently, if we put $f(\rho, \theta)=f \circ p^{-1}(\rho, \theta)$, we have from the Fubini theorem the following theorem.

Theorem 4.11.1 (Integral in polar coordinates) Iff is a nonnegative measurable function or an integrable function on \mathbb{R}^{n}, then

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} f d \lambda^{n} & =\int_{0}^{\infty}\left(\int_{S^{n-1}} f(\rho, \theta) d \sigma(\theta)\right) \rho^{n-1} d \rho \\
& =\int_{S^{n-1}}\left(\int_{0}^{\infty} \rho^{n-1} f(\rho, \theta) d \rho\right) d \sigma(\theta) .
\end{aligned}
$$

Example 4.11.1 Suppose that $0 \leq \alpha<n$ and let $\Gamma_{\alpha}(x, y)=|x-y|^{-\alpha}$, then for any $r>0$,

$$
\begin{align*}
\int_{B_{r}(x)} \Gamma_{\alpha}(x, y) d \lambda^{n}(y) & =\int_{B_{r}(0)} \Gamma_{\alpha}(0, y) d \lambda^{n}(y) \\
& =\int_{0}^{r}\left(\rho^{n-1} \int_{S^{n-1}} \rho^{-\alpha} d \sigma(\theta)\right) d \rho=\frac{\omega_{n-1}}{n-\alpha} r^{n-\alpha}, \tag{4.34}
\end{align*}
$$

where $\omega_{n-1}=\sigma\left(S^{n-1}\right)$.
Exercise 4.11.2 Let b_{n} be the Lebesgue measure of the unit ball in \mathbb{R}^{n}, and let $l_{n}=\prod_{j=2}^{n} \int_{0}^{\frac{\pi}{2}} \cos ^{j} \theta d \theta$ for $n \geq 2$.
(i) Show that $b_{n}=2^{n} l_{n}$ for $n \geq 2$.
(ii) Show that $b_{2 k}=\frac{1}{k!} \pi^{k}$ and $b_{2 k+1}=2^{2 k+1} \frac{k!}{(2 k+1)!} \pi^{k}$.
(Hint: express b_{n} in terms of b_{n-1} by using the Fubini theorem.)

Exercise 4.11.3

(i) Show that $\int_{\mathbb{R}^{n}} e^{-|x|^{2}} d x=\frac{\omega_{n-1}}{2} \int_{0}^{\infty} t^{\frac{n}{2}-1} e^{-t} d t$ and $\omega_{n-1}=\frac{n \pi^{\frac{n}{2}}}{\Gamma\left(\frac{1}{2} n+1\right)}$, where $\Gamma(x)=$ $\int_{0}^{\infty} t^{x-1} e^{-t} d t$
(ii) Compare (i) and Exercise 4.11.2 (ii) to find $\Gamma\left(\frac{n}{2}\right)$ for $n \in \mathbb{N}$.

In the remaining part of this section, a brief account of integral operators of potential type will be given, with an application to integral representation of C^{1} functions.

For $0<\alpha<n$, let Γ_{α} be the function on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ defined by

$$
\Gamma_{\alpha}(x, \xi)=\frac{1}{|x-\xi|^{\alpha}}, \quad(x, \xi) \in \mathbb{R}^{n} \times \mathbb{R}^{n} .
$$

Given a bounded measurable set Ω with positive measure in \mathbb{R}^{n}, we denote by $\widehat{\Omega}$ the smallest closed ball centered at 0 and containing Ω, i.e. $\widehat{\Omega}=C_{R}(0)$, where $R=\sup _{x \in \Omega}|x|$.

Lemma 4.11.3 For $u \in L^{1}(\Omega)$,

$$
\int_{\Omega} \Gamma_{\alpha}(x, \xi)|u(\xi)| d \xi<\infty
$$

for a.e. x in \mathbb{R}^{n}.
Proof Let R be the radius of the ball $\widehat{\Omega}$, by the Fubini theorem and (4.34),

$$
\begin{aligned}
\int_{C_{2 R}(0)}\left(\int_{\Omega} \Gamma_{\alpha}(x, \xi)|u(\xi)| d \xi\right) d x & =\int_{\Omega}|u(\xi)| \int_{C_{2 R}(0)} \Gamma_{\alpha}(x, \xi) d x d \xi \\
& \leq \int_{\Omega}|u(\xi)| \int_{C_{3 R}(\xi)} \Gamma_{\alpha}(x, \xi) d x d \xi \\
& \leq \frac{\omega_{n-1}}{n-\alpha}(3 R)^{n-\alpha} \int_{\Omega}|u(\xi)| d \xi<\infty,
\end{aligned}
$$

i.e. $\int_{\Omega} \Gamma_{\alpha}(x, \xi)|u(\xi)| d \xi$ is an integrable function of x on $C_{2 R}(0)$. Hence, $\int_{\Omega} \Gamma_{\alpha}(x, \xi)$ $|u(\xi)| d \xi<\infty$ for a.e. x in $C_{2 R}(0)$; while if x is outside $C_{2 R}(0), \int_{\Omega} \Gamma_{\alpha}(x, \xi)|u(\xi)| d \xi$ $\leq \int_{\Omega}|u(\xi)| d \xi<\infty$.
Because of Lemma 4.11.3, for $u \in L^{1}(\Omega)$, a function $K_{\alpha} u$ can be defined a.e. on \mathbb{R}^{n} by

$$
\left(K_{\alpha} u\right)(x)=\int_{\Omega} \Gamma_{\alpha}(x, \xi) u(\xi) d \xi, \quad x \in \mathbb{R}^{n}
$$

$K_{\alpha} u$ is a function measurable by the Fubini theorem; therefore K_{α} is a linear operator from $L^{1}(\Omega)$ into the space of measurable functions on \mathbb{R}^{n}. We call K_{α} an integral operator of potential type and Γ_{α} a potential kernel.

Theorem 4.11.2 Suppose that Ω and D are two bounded measurable sets of positive measure in \mathbb{R}^{n}, then K_{α} is a bounded linear operator from $L^{p}(\Omega)$ into $L^{p}(D)$.

Proof When $p=1$ or ∞, the theorem is obvious. We assume that $1<p<\infty$. Since Ω is bounded, $u \in L^{1}(\Omega)$ if $u \in L^{p}(\Omega)$, and hence $\left(K_{\alpha} u\right)(x)=\int_{\Omega} \Gamma_{\alpha}(x, \xi) u(\xi) d \xi$ is finite for a.e. x in \mathbb{R}^{n}. Let the radius of the ball $\widehat{\Omega \cup D}$ be R, i.e. $R=\sup _{x \in \Omega \cup D}|x|$, then for $x \in C_{R}(0)$,

$$
\begin{aligned}
\left|\left(K_{\alpha} u\right)(x)\right| & \leq \int_{\Omega} \Gamma_{\alpha}(x, \xi)^{\frac{1}{p}}|u(\xi)| \Gamma_{\alpha}(x, \xi)^{\frac{1}{q}} d \xi \\
& \leq\left(\int_{\Omega} \Gamma_{\alpha}(x, \xi)|u(\xi)|^{p} d \xi\right)^{\frac{1}{p}}\left(\int_{\Omega} \Gamma_{\alpha}(x, \xi) d \xi\right)^{\frac{1}{q}} \\
& \leq\left(\int_{\Omega} \Gamma_{\alpha}(x, \xi)|u(\xi)|^{p} d \xi\right)^{\frac{1}{p}}\left(\int_{C_{2 R}(x)} \Gamma_{\alpha}(x, \xi) d \xi\right)^{\frac{1}{q}} \\
& =\left[\frac{\omega_{n-1}(2 R)^{n-\alpha}}{n-\alpha}\right]^{\frac{1}{q}}\left(\int_{\Omega} \Gamma_{\alpha}(x, \xi)|u(\xi)|^{p} d \xi\right)^{\frac{1}{p}},
\end{aligned}
$$

where q is the conjugate exponent of p and (4.34) is applied in the last step. Now, denoting $\frac{\omega_{n-1}(2 R)^{n-\alpha}}{n-\alpha}$ by M, we have

$$
\begin{aligned}
\left\|K_{\alpha} u\right\|_{p, D}^{p} & \leq M^{\frac{p}{q}} \int_{D} \int_{\Omega} \Gamma_{\alpha}(x, \xi)|u(\xi)|^{p} d \xi d x \\
& =M^{\frac{p}{q}} \int_{\Omega} \int_{D} \Gamma_{\alpha}(x, \xi)|u(\xi)|^{p} d x d \xi \\
& \leq M^{\frac{p}{q}} \int_{\Omega}|u(\xi)|^{p} \int_{C_{2 R}(\xi)} \Gamma_{\alpha}(x, \xi) d x d \xi \\
& \leq M^{\frac{p}{q}+1}\|u\|_{p, \Omega}^{p},
\end{aligned}
$$

where (4.34) is again applied in the last step, and $\|\cdot\|_{p, D},\|\cdot\|_{p, \Omega}$ denote respectively the norms on $L^{p}(D)$ and $L^{p}(\Omega)$. Thus $\left\|K_{\alpha}\right\| \leq M=\frac{\omega_{n-1}(2 \mathrm{R})^{n-\alpha}}{n-\alpha}$.

It is easy to see that, more generally, if b is a bounded measurable function defined on $D \times \Omega$, the function $K_{\alpha}^{b} u$ defined for $u \in L^{1}(\Omega)$ by

$$
\left(K_{\alpha}^{b} u\right)(x)=\int_{\Omega} b(x, \xi) \Gamma_{\alpha}(x, \xi) u(\xi) d \xi
$$

is finite for a.e. x in \mathbb{R}^{n}; furthermore, K_{α}^{b} is a bounded linear operator from $L^{p}(\Omega)$ into $L^{p}(D), p \geq 1$ with norm $\left\|K_{\alpha}^{b}\right\| \leq C \frac{\omega_{n-1}(2 R)^{n-\alpha}}{n-\alpha}$, where $C=\|b\|_{\infty}$ and $R=\sup _{x \in \Omega \cup D}|x|$. Of course, we assume as before that Ω and D are bounded measurable sets with positive measure in \mathbb{R}^{n}.

Theorem 4.11.3 If Ω and D are compact sets in \mathbb{R}^{n} with positive measure, and b is a continuous function on $D \times \Omega$, then K_{α}^{b} maps every bounded measurable function u into a continuous function on D.

Proof Fix $x \in D$ and for $\delta>0$, let $h \in \mathbb{R}^{n}$ be such that $|h|<\delta$ and $x+h \in D$; for such an h,

$$
\begin{aligned}
& \left|\left(K_{\alpha}^{b} u\right)(x+h)-\left(K_{\alpha}^{b} u\right)(x)\right| \\
= & \left|\int_{\Omega}\left\{b(x+h, \xi) \Gamma_{a}(x+h, \xi)-b(x, \xi) \Gamma_{\alpha}(x, \xi)\right\} u(\xi) d \xi\right| \\
\leq & \|u\|_{\infty}\|b\|_{\infty} \int_{B_{2 \delta}(x)}\left\{\Gamma_{\alpha}(x+h, \xi)+\Gamma_{\alpha}(x, \xi)\right\} d \xi \\
& +\|u\|_{\infty} \int_{\Omega \backslash B_{2 \delta}(x)}\left|b(x+h, \xi) \Gamma_{\alpha}(x+h, \xi)-b(x, \xi) \Gamma_{\alpha}(x, \xi)\right| d \xi \\
\leq & \|u\|_{\infty}\|b\|_{\infty} \frac{\omega_{n-1}}{n-\alpha}\left\{(3 \delta)^{n-\alpha}+(2 \delta)^{n-\alpha}\right\} \\
& +\|u\|_{\infty} \int_{\Omega \backslash B_{2 \delta}(x)}\left|b(x+h, \xi) \Gamma_{\alpha}(x+h, \xi)-b(x, \xi) \Gamma_{\alpha}(x, \xi)\right| d \xi
\end{aligned}
$$

because by (4.34),

$$
\begin{gathered}
\int_{B_{2 \delta}(x)} \Gamma_{\alpha}(x+h, \xi) d \xi \leq \int_{B_{3 \delta}(x+h)} \Gamma_{\alpha}(x+h, \xi) d \xi \leq \frac{\omega_{n-1}(3 \delta)^{n-\alpha}}{n-\alpha} \\
\int_{B_{2 \delta}(x)} \Gamma_{\alpha}(x, \xi) d \xi \leq \frac{\omega_{n-1}(2 \delta)^{n-\alpha}}{n-\alpha}
\end{gathered}
$$

Now, given $\varepsilon>0$, choose $\delta>0$ such that $\|u\|_{\infty}\|b\|_{\infty}\left\{(3 \delta)^{n-\alpha}+(2 \delta)^{n-\alpha}\right\}<\frac{\varepsilon}{2}$. Since both $\Gamma_{\alpha}(x+h, \xi)$ and $\Gamma_{\alpha}(x, \xi) \leq \delta^{-\alpha}$ for $\xi \in \Omega \backslash B_{2 \delta}(x)$, and

$$
\begin{aligned}
& \left|b(x+h, \xi) \Gamma_{\alpha}(x+h, \xi)-b(x, \xi) \Gamma_{\alpha}(x, \xi)\right| \\
\leq & \|b\|_{\infty}\left|\Gamma_{\alpha}(x+h, \xi)-\Gamma_{\alpha}(x, \xi)\right|+\Gamma_{\alpha}(x, \xi)|b(x+h, \xi)-b(x, \xi)|
\end{aligned}
$$

we can then choose $0<\sigma_{0}<\delta$ such that

$$
\left|b(x+h, \xi) \Gamma_{\alpha}(x+h, \xi)-b(x, \xi) \Gamma_{\alpha}(x, \xi)\right|<\left\{2\left(\|u\|_{\infty} \vee 1\right) \lambda^{n}(\Omega)\right\}^{-1} \varepsilon
$$

for all $\xi \in \Omega \backslash B_{2 \delta}(x)$ whenever $|h|<\sigma_{0}$ and $x+h \in D$, and consequently $\left|\left(K_{\alpha}^{b} u\right)(x+h)-\left(K_{\alpha}^{b} u\right)(x)\right|<\varepsilon$ whenever $|h|<\sigma_{0}$ and $x+h \in D$. Thus, $K_{\alpha}^{b} u$ is continuous at $x \in D$.

Exercise 4.11.4 Show that if b is a continuous function on $\mathbb{R}^{n} \times \Omega$, then $K_{\alpha}^{b} u$ is continuous on \mathbb{R}^{n} for $u \in L^{\infty}(\Omega)$, where Ω is a compact set with positive measure in \mathbb{R}^{n}.

Theorem 4.11.4 (Integral representation of C^{1} functions) Suppose that Ω is a bounded open convex domain in \mathbb{R}^{n}, then there is a bounded map A from $\Omega \times \Omega$ to \mathbb{R}^{n} which is
continuous off the diagonal of $\Omega \times \Omega$, such that if u is a C^{1} function on Ω with $\nabla u \in$ $L^{1}(\Omega)$, then

$$
\begin{equation*}
u(x)=\frac{1}{\lambda^{n}(\Omega)} \int_{\Omega} u(\xi) d \xi-\int_{\Omega} A(x, \xi) \cdot \nabla u(\xi) \Gamma_{n-1}(x, \xi) d \xi \tag{4.35}
\end{equation*}
$$

for $x \in \Omega$.
Proof Fix $x \in \Omega$. For $\xi \in \Omega$, let

$$
g(t)=u(x+t(\xi-x)), \quad 0 \leq t \leq 1,
$$

then, $g^{\prime}(t)=\nabla u(x+t(\xi-x)) \cdot(\xi-x)$ and

$$
\begin{equation*}
u(x)=u(\xi)-\int_{0}^{1} \nabla u(x+t(\xi-x)) \cdot(\xi-x) d t \tag{4.36}
\end{equation*}
$$

When $0<t \leq 1$, the map $\xi \mapsto z=x+t(\xi-x)$ is an invertible affine map with Jacobian t^{n} at all $\xi \in \mathbb{R}^{n}$; we may use Theorem 4.10.2 to obtain

$$
\begin{aligned}
\int_{\Omega}|\nabla u(x+t(\xi-x)) \cdot(\xi-x)| d \xi & =\int_{x+t(\Omega-x)}\left|\nabla u(z) \cdot \frac{z-x}{t}\right| \frac{1}{t^{n}} d z \\
& =\int_{\Omega} I_{x+t(\Omega-x)}(z)|\nabla u(z) \cdot(z-x)| t^{-(n+1)} d z
\end{aligned}
$$

hence,

$$
\begin{aligned}
& \int_{0}^{1} \int_{\Omega}|\nabla u(x+t(z-x)) \cdot(\xi-x)| d \xi d t \\
= & \int_{\Omega}|\nabla u(z) \cdot(z-x)| \int_{0}^{1} I_{x+t(\Omega-x)}(z) t^{-(n+1)} d t d z .
\end{aligned}
$$

But $I_{x+t(\Omega-x)}(z)=0$, when $0<t<\frac{|z-x|}{l(x, z)}$, where $l(x, z)$ is the length of the line segment from x to the boundary of Ω through z, thus,

$$
\begin{aligned}
& \int_{\Omega} \int_{0}^{1}|\nabla u(x+t(\xi-x)) \cdot(\xi-x)| d t d \xi \\
= & \frac{1}{n} \int_{\Omega}|\nabla u(z) \cdot(z-x)|\left(\frac{l(x, z)^{n}}{|z-x|^{n}}-1\right) d z \\
\leq & \frac{1}{n} \int_{\Omega}|\nabla u(z)|\left\{l(x, z)^{n}-|z-x|^{n}\right\} \Gamma_{n-1}(x, z) d z ;
\end{aligned}
$$

now, for $0<\rho<\operatorname{dist}\left(x, \Omega^{c}\right)$, we have

$$
\int_{B_{\rho}(x)}|\nabla u(z)|\left\{l(x, z)^{n}-|z-x|^{n}\right\} \Gamma_{n-1}(x, z) d z \leq M \int_{B_{\rho}(x)} \Gamma_{n-1}(x, z) d z<\infty,
$$

because $|\nabla u(z)|$ is bounded on $B_{\rho}(x)$, and consequently

$$
\int_{\Omega} \int_{0}^{1}|\nabla u(x+t(\xi-x)) \cdot(\xi-x)| d t d \xi<\infty
$$

We have shown that $\nabla u(x+t(\xi-x)) \cdot(\xi-x)$ is an integrable function of (ξ, t) on $\Omega \times[0,1]$ for $x \in \Omega$. Integrate both sides of (4.36) w.r.t. ξ over Ω to obtain (denoting $\lambda^{n}(\Omega)$ by $|\Omega|$),

$$
\begin{aligned}
u(x)|\Omega| & =\int_{\Omega} u(\xi) d \xi-\int_{\Omega} \int_{0}^{1} \nabla u(x+t(\xi-x)) \cdot(\xi-x) d t d \xi \\
& =\int_{\Omega} u(\xi) d \xi-\frac{1}{n} \int_{\Omega} \nabla u(z) \cdot(z-x)\left\{\frac{l(x, z)^{n}}{|z-x|^{n}}-1\right\} d z,
\end{aligned}
$$

by repeating the previous steps with $|\nabla u(x+t(\xi-x)) \cdot(\xi-x)|$ replaced by $\nabla u(x+t(\xi-x)) \cdot(\xi-x)$, as assured by the Fubini theorem. Now let A be the map from $\Omega \times \Omega$ to \mathbb{R}^{n}, defined by

$$
A(x, \xi)=\frac{1}{n|\Omega|}\left[\frac{l(x, \xi)^{n}-|x-\xi|^{n}}{|\xi-x|}\right](\xi-x)
$$

if $x \neq \xi$ and $A(x, \xi)=0$; if $x=\xi$, then

$$
u(x)=\frac{1}{|\Omega|} \int_{\Omega} u(\xi) d \xi-\int_{\Omega} A(x, \xi) \cdot \nabla u(\xi) \Gamma_{n-1}(x, \xi) d \xi
$$

for x in Ω. Obviously, A is continuous off the diagonal of $\Omega \times \Omega$ and $|A(x, \xi)| \leq \frac{1}{n}(\operatorname{diam} \Omega)^{n}|\Omega|^{-1}$, since $l(x, \xi)^{n}-|x-\xi|^{n}=l(x, \xi)^{n}\left(1-\frac{|x-\xi| n}{l(x, \xi)^{n}}\right) \leq$ $l(x, \xi)^{n} \leq(\operatorname{diam} \Omega)^{n}$ if $x \neq \xi$.

Corollary 4.11.1 Let $u \in C^{1}\left(\mathbb{R}^{n}\right)$. Suppose that u and all of its partial derivatives of first order are integrable. Then,

$$
\begin{equation*}
u(x)=\frac{1}{n b_{n}} \int_{\mathbb{R}^{n}} \frac{(x-\xi) \cdot \nabla u(\xi)}{|x-\xi|^{n}} d \xi \tag{4.37}
\end{equation*}
$$

for $x \in \mathbb{R}^{n}$, where b_{n} is the Lebesgue measure of the unit ball in \mathbb{R}^{n}.

Proof Observe first that $\frac{(x-\xi) \cdot \nabla u(\xi)}{\left.|x-\xi|\right|^{\xi}}$ is integrable on \mathbb{R}^{n} as a function of ξ; actually for $\rho>0$, we have

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}} \frac{|(x-\xi) \cdot \nabla u(\xi)|}{|x-\xi|^{n}} d \xi \\
\leq & \int_{B_{\rho}(x)} \frac{|\nabla u(\xi)|}{|x-\xi|^{n-1}} d \xi+\int_{\mathbb{R}^{n} \backslash B_{\rho}(x)} \frac{|\nabla u(\xi)|}{|x-\xi|^{n-1}} d \xi \\
\leq & \sup _{\xi \in B_{\rho}(x)}|\nabla u(\xi)| \int_{B_{\rho}(x)} \frac{1}{|x-\xi|^{n-1}} d \xi+\frac{1}{\rho^{n-1}} \int_{\mathbb{R}^{n}}|\nabla u(\xi)| d \xi \\
< & \infty,
\end{aligned}
$$

by recalling that $\int_{B_{\rho}(x)} \frac{1}{\mid x-\xi \xi^{n-1}} d \xi=w_{n-1} \rho$.
For $x \in \mathbb{R}^{n}$ and $R>0$, apply Theorem 4.11 .4 with $\Omega=B_{R}(x)$, to obtain

$$
\begin{aligned}
u(x)= & \frac{1}{R^{n} b_{n}} \int_{B_{R}(x)} u(\xi) d \xi \\
& -\frac{1}{n R^{n} b_{n}} \int_{B_{R}(x)} \frac{R^{n}-|\xi-x|^{n}}{|\xi-x|}(\xi-x) \cdot \nabla u(\xi) \Gamma_{n-1}(x, \xi) d \xi \\
= & \frac{1}{R^{n} b_{n}} \int_{B_{R}(x)} u(\xi) d \xi-\frac{1}{n b_{n}} \int_{B_{R}(x)} \frac{(\xi-x) \cdot \nabla u(\xi)}{|\xi-x|^{n}} d \xi \\
& +\frac{1}{n R^{n} b_{n}} \int_{B_{R}(x)}(\xi-x) \cdot \nabla u(\xi) d \xi,
\end{aligned}
$$

because $A(x, \xi)=\frac{1}{n R^{n} b_{n}}\left[\frac{R^{n}-|x-\xi|^{n}}{|\xi-x|}\right](\xi-x)$ in this case. Now, let $R \rightarrow \infty$ to conclude that

$$
u(x)=-\frac{1}{n b_{n}} \int_{\mathbb{R}^{n}} \frac{(\xi-x) \cdot \nabla u(\xi)}{|\xi-x|^{n}} d \xi=\frac{1}{n b_{n}} \int_{\mathbb{R}^{n}} \frac{(x-\xi) \cdot \nabla u(\xi)}{|x-\xi|^{n}} d \xi,
$$

on noting that

$$
\left|\frac{1}{R^{n} b_{n}} \int_{B_{\mathbb{R}}(x)} u(\xi) d \xi\right| \leq \frac{1}{R^{n} b_{n}} \int_{\mathbb{R}^{n}}|u(\xi)| d \xi \rightarrow 0
$$

and

$$
\left|\frac{1}{n R^{n} b_{n}} \int_{B_{R}(x)}(\xi-x) \cdot \nabla u(\xi) d \xi\right| \leq \frac{1}{n R^{n-1} b_{n}} \int_{\mathbb{R}^{n}}|\nabla u(\xi)| \rightarrow 0
$$

as $R \rightarrow \infty$; while $\int_{B_{R}(x)} \frac{(\xi-x) \cdot \nabla u(\xi)}{|\xi-x|^{n}} d \xi \rightarrow \int_{\mathbb{R}^{n}} \frac{(\xi-x) \cdot \nabla u(\xi)}{|\xi-x|^{n}} d \xi$ as $R \rightarrow \infty$ due to the fact that $\frac{(x-\xi) \cdot \nabla u(\xi)}{\left.|x-\xi|\right|^{\xi}}$ is integrable on \mathbb{R}^{n} as a function of ξ.

Exercise 4.11.5 Suppose that $u \in C^{1}(\Omega)$ and $C_{r}(x) \subset \Omega$. Show that

$$
u(x)=\frac{1}{r^{n} b_{n}}\left\{\int_{B_{r}(0)} u(x+\xi) d \xi-\frac{1}{n} \int_{S^{n-1}} \int_{0}^{r}\left(r^{n}-\rho^{n}\right) \frac{\partial u}{\partial \rho}(x+\rho s) d \rho d \sigma(s)\right\}
$$

Example 4.11.2 Let u be a C^{1} function on the ball $B_{R}(x)$ in \mathbb{R}^{n} such that ∇u is integrable on $B_{R}(x)$. We establish here the following estimate for the mean of the Lipschitz quotient of u at x :

$$
\begin{equation*}
\frac{1}{\lambda^{n}\left(B_{R}(x)\right)} \int_{B_{R}(x)} \frac{|u(\xi)-u(x)|}{|\xi-x|} d \xi \leq M(\nabla u, x) \tag{4.38}
\end{equation*}
$$

where $M(\nabla u, x)=\sup _{0<r \leq R} \frac{1}{\lambda^{n}\left(B_{r}(x)\right)} \int_{B_{r}(x)}|\nabla u| d \lambda^{n}$.
As in the first step of the proof of Theorem 4.11.4, we have

$$
\begin{aligned}
\int_{B_{R}(x)} \frac{|u(\xi)-u(x)|}{|\xi-x|} d \xi & \leq \int_{B_{R}(x)}\left(\int_{0}^{1}|\nabla u(x+t(\xi-x))| d t\right) d \xi \\
& =\int_{0}^{1}\left(\int_{B_{R}(x)}|\nabla u(x+t(\xi-x))| d \xi\right) d t \\
& =\int_{0}^{1}\left(\int_{B_{R t(x)}}|\nabla u(z)| \frac{1}{t_{n}} d z\right) d t \\
& =\lambda^{n}\left(B_{R}(x)\right) \int_{0}^{1} \frac{1}{\lambda^{n}\left(B_{R t(x)}\right)} \int_{B_{R t(x)}}|\nabla u(z)| d z d t \\
& \leq \lambda^{n}\left(B_{R}(x)\right) M(\nabla u, x)
\end{aligned}
$$

from which (4.38) follows.

. Basic Principles of Linear Analysis

Mathematical objects studied in linear analysis are linear transformations between vector spaces endowed with proper concepts of limit. Linear analysis, therefore, provides suitable language and framework for modeling linear phenomena, and, moreover, often suggests feasible methods for solving the corresponding problems. This is most clearly seen in the case of linear algebra when the vector spaces concerned are finite-dimensional.

This chapter is devoted to the most basic principles of linear analysis. Emphasis will be placed on the case when vector spaces are normed vector spaces, although weaker concepts of limit other than in terms of norm will occasionally be considered in view of subsequent applications.

The first basic principles are those arising from the Baire category theorem, and those from separation of sets by hyperplanes. These principles will be presented first, because they are fundamental in many constructs of linear analysis.

In the latter part of the chapter, considerable weight is laid on geometric aspects of linear analysis, with the introduction of Hilbert spaces. The main ingredients are the Riesz representation of continuous linear functionals on Hilbert spaces and Fourier expansion of elements of a Hilbert space with respect to an orthonormal basis.

Recall that vector spaces considered in our discourse are either over the complex field \mathbb{C} or over the real field \mathbb{R}; when specification is desirable, they are called complex vector spaces or real vector spaces, according to whether they are over the complex or the real field. As usual, the smallest vector subspace containing a subset S of a vector space is called the vector space spanned by S and is denoted by $\langle S\rangle$.

5.1 The Baire category theorem

The Baire category theorem reveals a deep property of complete metric spaces; it is not usually applied directly, but through its consequences, such as the principle of uniform
boundedness and the open mapping theorem. We shall present in this section the Baire category theorem and the principle of uniform boundedness; while the open mapping theorem and some of its consequences will be treated in Section 5.2.

Let M be a metric space. A subset S of M is said to be nowhere dense in M if the closure \bar{S} of S contains no nonempty open balls of M. A subset A of M is said to be of the first category if A is a countable union of nowhere dense subsets of M. Otherwise A is said to be of the second category.

Theorem 5.1.1 (Baire category theorem) A complete metric space M is of the second category.

Proof It is required to show that if M is a union $\bigcup_{n=1}^{\infty} S_{n}$ of closed sets, then one of the S_{n} contains a nonempty open ball. Suppose the contrary, then each S_{n}^{c} has a nonempty intersection with every open ball. Thus if B_{0} is an open ball with radius $1, S_{1}^{c} \cap B_{0}$ contains an open ball $B_{1}=B_{r_{1}}\left(x_{1}\right)$ as well as the closed ball $C_{1}=C_{r_{1}}\left(x_{1}\right)$ with $r_{1}<\frac{1}{2}$. Then $S_{2}^{c} \cap B_{1}$ contains an open ball $B_{2}=B_{r_{2}}\left(x_{2}\right)$ and the closed ball $C_{2}=C_{r_{2}}\left(x_{2}\right)$ with $r_{2}<\frac{1}{2^{2}}$. Proceed in this way; a sequence of open balls $\left\{B_{k}\right\}, B_{k}=B_{r_{k}}\left(x_{k}\right)$, is obtained such that the closed ball $C_{k+1}:=C_{r_{k+1}}\left(x_{k+1}\right) \subset S_{k+1}^{c} \cap B_{k}$ and $0<r_{k}<2^{-k}$, $k=1,2, \ldots$. Since $\left\{C_{k}\right\}$ is decreasing, $\left\{x_{k}, x_{k+1}, \ldots\right\} \subset C_{k}$, the sequence $\left\{x_{k}\right\}$ is a Cauchy sequence, hence $x_{k} \rightarrow x$ in M. But for each $k, x \in C_{k} \subset B_{k-1}$, or $x \in \bigcap_{k=1}^{\infty} B_{k}$, hence, $x \in \bigcap_{k=1}^{\infty} S_{k}^{c}=\left(\bigcup_{k=1}^{\infty} S_{k}\right)^{c}=\emptyset$, which is absurd.
Theorem 5.1.2 (Principle of uniform boundedness) Let $\left\{f_{\alpha}\right\}$ be a family of continuous nonnegative functions defined on a Banach space X with the following properties:
(1) $f_{\alpha}(x+y) \leq f_{\alpha}(x)+f_{\alpha}(y)$ for x, y in X and for each α;
(2) $f_{\alpha}(\lambda x)=|\lambda| f_{\alpha}(x)$, for $\lambda \in \mathbb{C}$ or \mathbb{R} (depending on whether X is a complex or a real space), $x \in X$ and for each α; and
(3) $\sup _{\alpha} f_{\alpha}(x)<\infty$ for each $x \in X$.

Then there is $N>0$, such that

$$
\sup _{\alpha} f_{\alpha}(x) \leq N\|x\|
$$

for all $x \in X$.
Proof For each $n \in \mathbb{N}$, let

$$
S_{n}=\left\{x \in X: f_{\alpha}(x) \leq n \forall \alpha\right\}=\bigcap_{\alpha}\left\{x \in X: f_{\alpha}(x) \leq n\right\} .
$$

Each S_{n} is closed and from (3), $X=\bigcup_{n} S_{n}$. By Theorem 5.1.1, for some $n_{0}, S_{n_{0}}$ contains a ball $B=C_{r}\left(x_{0}\right)$, or

$$
\sup _{\alpha ; x \in B} f_{\alpha}(x) \leq n_{0} .
$$

Now, there is $N>0$ such that

$$
f_{\alpha}(x) \leq N
$$

for all α if $\|x\|=1$. To see this, for $x \in X$ with $\|x\|=1$ and any α,

$$
\begin{aligned}
f_{\alpha}(x)=\frac{1}{r} f_{\alpha}(r x) & \leq \frac{1}{r}\left\{f_{\alpha}\left(r x+x_{0}\right)+f_{\alpha}\left(-x_{0}\right)\right\} \\
& \leq \frac{1}{r}\left\{n_{0}+\sup _{\alpha} f_{\alpha}\left(-x_{0}\right)\right\}=: N .
\end{aligned}
$$

Now, for any $x \neq 0$ and any α,

$$
f_{\alpha}(x)=\|x\| f_{\alpha}\left(\frac{x}{\|x\|}\right) \leq N\|x\| .
$$

Actually, the principle of uniform boundedness is usually referred to the following special case of Theorem 5.1.2.
Theorem 5.1.3 Let $\left\{T_{\alpha}\right\} \subset L(X, Y)$, where X is a Banach space and Y a n.v.s. Then $\sup _{\alpha}\left\|T_{\alpha}\right\|<\infty$ if and only if $\sup _{\alpha}\left\|T_{\alpha} x\right\|<+\infty$ for each $x \in X$.

Proof That $\sup _{\alpha}\left\|T_{\alpha}\right\|<\infty$ implies that $\sup _{\alpha}\left\|T_{\alpha} x\right\|<\infty$ for all $x \in X$ is obvious; to show the other direction of implication, let $f_{\alpha}(x)=\left\|T_{\alpha} x\right\|$ and apply Theorem 5.1.2.

Theorem 5.1.4 (Banach-Steinhaus) $\operatorname{Let}\left\{T_{n}\right\} \subset L(X, Y)$, where X is a Banach space and Y a n.v.s. Suppose that $T x=\lim _{n \rightarrow \infty} T_{n} x$ exists for each $x \in X$. Then $T \in L(X, Y)$ and $\|T\| \leq \lim \inf _{n \rightarrow \infty}\left\|T_{n}\right\| \leq \sup _{n}\left\|T_{n}\right\|<\infty$.

Proof T is obviously a linear operator from X into Y. Since $\lim _{n \rightarrow \infty} T_{n} x$ exists, it follows that $\sup _{n}\left\|T_{n} x\right\|<\infty$ and hence $\sup _{n}\left\|T_{n}\right\|<\infty$, by Theorem 5.1.3. Now,

$$
\begin{gathered}
\|T\|=\sup _{\|x\|=1}\|T x\|=\sup _{\|x\|=1}\left\|\lim _{n \rightarrow \infty} T_{n} x\right\| \\
=\sup _{\|x\|=1}\left(\lim _{n \rightarrow \infty}\left\|T_{n} x\right\|\right) \leq \sup _{\|x\|=1}\left(\liminf _{n \rightarrow \infty}\left\|T_{n}\right\| \cdot\|x\|\right) \\
=\liminf _{n \rightarrow \infty}\left\|T_{n}\right\| \leq \sup _{n}\left\|T_{n}\right\|<\infty .
\end{gathered}
$$

Exercise 5.1.1 Let $\left\{T_{n}\right\} \subset L(X, Y)$, where both X and Y are Banach spaces. A necessary and sufficient condition for $\lim _{n \rightarrow \infty} T_{n} x$ to exist for each $x \in X$ is:
$\begin{cases}(1) & \lim _{n \rightarrow \infty} T_{n} x \text { exists for } x \text { in a dense subset of } X ; \\ \text { (2) } & \left\{\left\|T_{n}\right\|\right\} \text { is bounded. }\end{cases}$

Theorem 5.1.5 (C.Neumann) Suppose that T is a bounded linear operator from a Banach space X into itself with $\|T\|<1$. Then $(1-T)^{-1}$ exists, $(1-T)^{-1} \in L(X)$, and ($1-$ $T)^{-1} x=\lim _{n \rightarrow \infty} \sum_{k=0}^{n} T^{k} x=\sum_{k=0}^{\infty} T^{k} x$.
Proof For each $x \in X$, let $x_{n}=\sum_{k=0}^{n} T^{k} x$. Since for $n>m$,

$$
\left\|x_{n}-x_{m}\right\|=\left\|\sum_{k=m+1}^{n} T^{k} x\right\| \leq\left(\sum_{k=m+1}^{n}\|T\|^{k}\right)\|x\|,
$$

$\left\{x_{n}\right\}$ is a Cauchy sequence in X. Let $S x=\lim _{n \rightarrow \infty} x_{n}=\lim _{n \rightarrow \infty}\left(\sum_{k=0}^{n} T^{k} x\right)$. By Theorem 5.1.4, S is a bounded linear operator. Now,

$$
\begin{aligned}
(1-T) S x & =(1-T)\left(\lim _{n \rightarrow \infty} \sum_{k=0}^{n} T^{k} x\right)=\lim _{n \rightarrow \infty}\left((1-T) \sum_{k=0}^{n} T^{k} x\right) \\
& =\lim _{n \rightarrow \infty}\left(x-T^{n+1} x\right)=x,
\end{aligned}
$$

because $\left\|T^{n+1} x\right\| \leq\|T\|^{n+1}\|x\| \rightarrow 0$, implying that $T^{n+1} x \rightarrow 0$; similarly, $S(1-T) x=x$ for $x \in X$. Hence $S=(1-T)^{-1}$.

Exercise 5.1.2 Suppose that $T \in L(X), T \neq 0$, where X is a Banach space. Show that for $\lambda \in \mathbb{C}$ with $|\lambda|<\|T\|^{-1}$ the operator $I-\lambda T$ is bijective. Expand $(I-\lambda T)^{-1}$ in terms of λ and T and their powers.

We now apply the Baire category theorem to show the existence of continuous functions on the finite closed interval $[a, b]$ which are nowhere differentiable on $[a, b]$.

Fix a finite closed interval $[a, b]$ and let $I=[a, c]$, where $b<c<\infty$.
Lemma 5.1.1 Suppose that $f \in C(I)$ and let $\varepsilon>0$ and $L>0$ be given. Then there is a continuous and piece-wise linear function g on I such that $\max _{x \in I}|g(x)-f(x)| \leq \varepsilon$, and the absolute value of the slope of each line segment of the graph of g is greater than L.

Proof Let $\delta>0$ be chosen so that $|f(x)-f(y)|<\frac{\varepsilon}{4}$ if $|x-y|<\delta$. Consider a partition $a=x_{0}<x_{1}<\cdots<x_{k-1}<x_{k}=c$ of I, with $\left|x_{j}-x_{j-1}\right|<\delta$ for $j=1, \ldots, k$, and let $P_{0}=\left(x_{0}, f\left(x_{0}\right)\right), \quad P_{1}=\left(x_{1}, f\left(x_{1}\right)+\frac{3}{4} \varepsilon\right), \ldots, P_{j}=\left(x_{j}, f\left(x_{j}\right)+(-1)^{j-1} \frac{3}{4} \varepsilon\right), \ldots, P_{k}=$ $\left(x_{k}, f\left(x_{k}\right)\right)$. Let g be the piece-wise linear function whose graph consists of the line segments $\left[P_{0}, P_{1}\right],\left[P_{1}, P_{2}\right], \ldots,\left[P_{k-1}, P_{k}\right]$. Then g is continuous and $\max _{x \in I}|g(x)-f(x)| \leq \varepsilon$. If we choose δ small enough, then the absolute value of the slope of each $\left[P_{j-1}, P_{j}\right], j=1, \ldots, k$, is greater than L.
Theorem 5.1.6 There is a continuous function on $[a, b]$ which is nowhere differentiable on $[a, b]$.

Proof Let $I=[a, c], b<c<\infty$. It is sufficient to show that there is $f \in C(I)$ such that f is not differentiable at every point of $[a, b]$; actually, should f be differentiable from the left at b, the function $f+g$ is differentiable nowhere on $[a, b]$ if g is a continuous function on $[a, b]$ which is differentiable on $[a, b)$, but not differentiable from
the left at b. As usual, we endow $C(I)$ with sup-norm, then $C(I)$ is a complete metric space. Consider the set S of functions f in $C(I)$ such that for some $\xi \in[a, b]$, the set $\left\{\frac{f(\xi+h)-f(\xi)}{h}: 0<h \leq c-b\right\}$ is bounded. Clearly, S contains all functions in $C(I)$ which are differentiable somewhere on $[a, b]$. For $n \in \mathbb{N}$, let

$$
S_{n}=\left\{f \in S: \sup _{0<h \leq c-b}\left|\frac{f(\xi+h)-f(\xi)}{h}\right| \leq n \text { for some } \xi \in[a, b]\right\} .
$$

Observe that $S=\bigcup_{n} S_{n}$. We claim first that each S_{n} is closed. Let $\left\{f_{k}\right\}$ be a sequence in S_{n} which converges to f in $C(I)$. To claim that S_{n} is closed is to show that $f \in S_{n}$. For each k, there is $\xi_{k} \in[a, b]$ such that

$$
\sup _{0<h \leq c-b}\left|\frac{f_{k}\left(\xi_{k}+h\right)-f_{k}\left(\xi_{k}\right)}{h}\right| \leq n .
$$

Since $[a, b]$ is compact, $\left\{\xi_{k}\right\}$ has a subsequence which converges to $\xi \in[a, b]$. If necessary, replace $\left\{f_{k}\right\}$ by a subsequence of itself; we may assume that $\left\{\xi_{k}\right\}$ converges to ξ. For $0<h \leq c-b$ and $\varepsilon>0$, there is $N=N(h, \varepsilon) \in \mathbb{N}$ such that $k>N$ implies $\sup _{x \in I}\left|f_{k}(x)-f(x)\right|<\frac{\varepsilon h}{4}$. Since f is uniformly continuous on I and $\xi_{k} \rightarrow \xi$, there is $N_{1}>N$ such that $\left|f\left(\xi_{k}\right)-f(\xi)\right|<\frac{\varepsilon h}{4}$ and $\left|f(\xi+h)-f\left(\xi_{k}+h\right)\right|<\frac{\varepsilon h}{4}$ whenever $k>N_{1}$. Thus, for $k>N_{1}$, we have

$$
\begin{aligned}
\left|\frac{f(\xi+h)-f(\xi)}{h}\right| \leq & \frac{1}{h}\left\{\left|f_{k}\left(\xi_{k}+h\right)-f_{k}\left(\xi_{k}\right)\right|+\left|f\left(\xi_{k}\right)-f(\xi)\right|+\left|f_{k}\left(\xi_{k}\right)-f\left(\xi_{k}\right)\right|\right. \\
& \left.+\left|f\left(\xi_{k}+h\right)-f_{k}\left(\xi_{k}+h\right)\right|+\left|f(\xi+h)-f\left(\xi_{k}+h\right)\right|\right\} \\
< & \left|\frac{f_{k}\left(\xi_{k}+h\right)-f_{k}\left(\xi_{k}\right)}{h}\right|+\varepsilon \leq n+\varepsilon ;
\end{aligned}
$$

hence, $\sup _{0<h \leq c-b}\left|\frac{f(\xi+h)-f(\xi)}{h}\right| \leq n+\varepsilon$ for $\varepsilon>0$, consequently,

$$
\sup _{0<h \leq c-b}\left|\frac{f(\xi+h)-f(\xi)}{h}\right| \leq n
$$

and $f \in S_{n}$. This shows that S_{n} is closed for $n \in \mathbb{N}$.
Next we claim that each S_{n} is nowhere dense in $C(I)$. For this, it is sufficient to show that $C(I) \backslash S_{n}$ is dense in $C(I)$. Consider $f \in C(I)$ and $\varepsilon>0$; we claim that there is $g \in C(I) \backslash S_{n}$ such that $\sup _{x \in I}|g(x)-f(x)| \leq \varepsilon$. Let g be the continuous and piecewise linear function in Lemma 5.1.1 corresponding to ε and $L=n$, then, $g \in C(I) \backslash S_{n}$ and $\sup _{x \in I}|g(x)-f(x)| \leq \varepsilon$. Hence, $C(I) \backslash S_{n}$ is dense in $C(I)$, and therefore S_{n} is nowhere dense in $C(I)$. Since $S=\bigcup_{n} S_{n}$ and each S_{n} is closed and nowhere dense in $C(I), S$ is of the first category. By Theorem 5.1.1, $C(I)$ is of the second category and therefore there is $f \in C(I) \backslash S$. Since S contains all functions which are somewhere differentiable on $[a, b], f$ is nowhere differentiable on $[a, b]$.

An interesting application of Theorem 5.1.3 is considered in Exercise 5.9.1, to show the existence of a continuous periodic function whose Fourier series diverges at a point.

5.2 The open mapping theorem

Theorem 5.2.1 (Banach open mapping theorem) Suppose that T is a bounded linear map from a Banach space X onto a Banach space Y. Then T maps open sets into open sets.
Proof Since $T\left(G+x_{0}\right)=T G+T x_{0}$, it suffices to prove that if G is a neighborhood of 0 in X, then $T G$ contains an open ball centered at 0 in Y.

Step 1. A weaker claim will be shown first. Here is the claim: Let B^{X} be an open ball in X centered at 0 , then there is an open ball B^{Y} in Y centered at 0 such that $B^{Y} \subset \overline{T B^{X}}$. For the proof, the open ball in X centered at x with radius r will be denoted by $B_{r}^{X}(x)$; the connotation of $B_{r}^{Y}(y)$ as an open ball in Y is similarly defined. Let $B^{X}=$ $B_{r}^{X}(0)$ and $U=B_{\frac{r}{2}}^{X}(0)$. Then, $X=\bigcup_{n=1}^{\infty}(n U)$, and $Y=T X=\bigcup_{n=1}^{\infty} n T U$. The Baire category theorem implies that there is n_{0} such that $\overline{n_{0} T U}=n_{0} \overline{T U}$ contains an open ball in Y and hence $\overline{T U}$ contains an open ball, say $B_{\sigma}^{Y}(\hat{y})$. Since $\hat{y} \in \overline{T U}$, there is $x_{0} \in U$ such that $y_{0}=T x_{0} \in B_{\frac{\sigma}{2}}^{Y}(\hat{y})$, and therefore $B_{\frac{\sigma}{2}}^{Y}\left(y_{0}\right) \subset B_{\sigma}^{Y}(\hat{y}) \subset \overline{T U}$. Now put $B^{Y}=$ $B_{\frac{\sigma}{2}}^{Y}(0)$, then,

$$
B^{Y}=B_{\frac{\sigma}{2}}^{Y}\left(y_{0}\right)-y_{0} \subset \overline{T U}-T x_{0} \subset \overline{T U-T x_{0}} \subset \overline{T(U+U)} \subset \overline{T B^{X}}
$$

as is claimed.
Step 2. Let G be any open set containing 0 in X and let $B_{r}^{X}(0) \subset G$. Put $B_{0}^{X}=$ $B_{\frac{r}{2}}^{X}(0)$. By Step 1, there is a ball $B_{0}^{Y}=B_{\sigma}^{Y}(0)$ in Y such that $B_{0}^{Y} \subset \overline{T B_{0}^{X}}$. It will be shown that $T B_{r}^{X}(0) \supset B_{0}^{Y}$. For this purpose, let $B_{i}^{X}=B_{\varepsilon_{i}}^{X}(0), \varepsilon_{i}=\frac{r}{2^{i+1}}, i=1,2, \ldots$ By Step 1, there is a sequence $B_{i}^{Y}=B_{\eta_{i}}^{Y}(0)$ of balls in Y such that $\eta_{i} \rightarrow 0$ and $B_{i}^{Y} \subset \overline{T B_{i}^{X}}$. For $y \in B_{0}^{Y}$, there is $x_{0} \in B_{0}^{X}$ such that $\left\|y-T x_{0}\right\|<\eta_{1}$; then there is $x_{1} \in B_{1}^{X}$ such that $\left\|y-T x_{0}-T x_{1}\right\|<\eta_{2}$. Proceeding in this way, we find a sequence $\left\{x_{i}\right\}$ such that $x_{i} \in B_{i}^{X}$ and

$$
\left\|y-\sum_{i=0}^{n} T x_{i}\right\|=\left\|y-T\left(\sum_{i=0}^{n} x_{i}\right)\right\|<\eta_{n},
$$

$n=1,2, \ldots$. Now, $\left\|\sum_{i=m}^{m+l} x_{i}\right\| \leq \sum_{i=m}^{m+l} \varepsilon_{i} \rightarrow 0$ uniformly in l as $m \rightarrow \infty$, which implies that $\left\{\sum_{i=0}^{n} x_{i}\right\}$ is a Cauchy sequence. Set $x=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} x_{i}$, then

$$
T x=\lim _{n \rightarrow \infty} T\left(\sum_{i=0}^{n} x_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=0}^{n} T x_{j}=y .
$$

But $\|x\| \leq \sum_{i=0}^{\infty}\left\|x_{i}\right\|<\sum_{i=0}^{\infty} \frac{r}{2^{i+1}}=r$, i.e. $x \in B_{r}^{X}(0)$, hence $y \in T B_{r}^{X}(0)$.

Corollary 5.2.1 If T is an injective continuous linear map from a Banach space onto a Banach space, then T^{-1} is a bounded linear map.

Exercise 5.2.1 As a complement to Theorem 5.2.1, show that if l is a nonzero linear functional on a n.v.s. not necessarily continuous, then l maps open sets into open sets.

Exercise 5.2.2 Let X be a n.v.s. and F a closed vector subspace of X. For $x \in X$, let $[x]=x+F$.
(i) Show that $[x]=[y]$ if and only if $y \in[x]$.
(ii) Define $[x]+[y]=[x+y], \lambda[x]=[\lambda x]$ (λ scalar). Show that both operations are well defined and $X / F:=\{[x]: x \in X\}$ becomes a vector space under these operations.
(iii) For $[x] \in X / F$, define $\|[x]\|=\inf _{y \in[x]}\|y\|$. Show that $\|[x]\|$ is well defined and that it defines a norm on X / F.
(iv) Define $\tau: X \mapsto X / F$ by $\tau(x)=[x]$. Show that τ is a linear open mapping from X onto X / F. The map τ is called the canonical map from X onto X / F.

5.3 The closed graph theorem

For n.v.s.'s X and Y over the same field, a n.v.s. $X \oplus Y$, called the direct sum of X and Y, is constructed as follows. Let $X \oplus Y=\{[x, y]: x \in X, y \in Y\}$, on which vector space operations are defined by

$$
\left[x_{1}, y_{1}\right]+\left[x_{2}, y_{2}\right]=\left[x_{1}+x_{2}, y_{1}+y_{2}\right] ; \quad \alpha[x, y]=[\alpha x, \alpha y],
$$

and a norm is defined by

$$
\|[x, y]\|=\left\{\|x\|^{2}+\|y\|^{2}\right\}^{\frac{1}{2}} .
$$

This norm is so chosen, that when X and Y are inner product spaces (to be introduced later in Section 5.6), so is $X \oplus Y$.

That $X \oplus Y$ is a n.v.s. is a direct consequence of its definition. Observe that when both X and Y are Banach spaces, so is $X \oplus Y$.

Henceforth, by a linear operator T from a vector space X into a vector space Y, we shall mean that the domain of T, denoted $D(T)$, is a vector subspace of X, not necessarily the whole space X. Now, if both X and Y are n.v.s.'s over the same field, and if T is a linear operator from X into Y, T is called a closed operator if its graph $G(T):=\{[x, T x]: x \in$ $D(T)\}$ is closed in $X \oplus Y$; i.e. if $\left\{x_{n}\right\} \subset D(T)$ with $\lim _{n \rightarrow \infty} x_{n}=x$ and $\lim _{n \rightarrow \infty} T x_{n}=y$, then $x \in D(T)$ and $T x=y$. If T is a linear operator from X into Y and the closure of $G(T)$ in $X \oplus Y$ is the graph of a linear operator, then T is called closable.

Example 5.3.1 Let $X=Y=C[0,1], D(T)=\left\{f \in X: f^{\prime} \in X\right\}$ and $T f=f^{\prime}$ for $f \in$ $D(T)$. Then T is not bounded on $D(T)$, but T is a closed operator. That T is not bounded on $D(T)$ follows from

$$
\left\|T f_{n}\right\|=n\left\|f_{n-1}\right\|, n=1,2, \ldots,
$$

where $f_{n}(t)=t^{n}, t \in[0,1]$. That T is closed is left as an exercise.
Exercise 5.3.1 Show that the linear operator T in Example 5.3.1 is closed.
Remark For a linear operator, its domain of definition has to be specified. For example, the differential operator T in Example 5.3.1 has to be considered as a different operator if its domain of definition $D(T)$ is changed to $D(T)=\left\{f \in X: f^{\prime \prime} \in X\right\}$. Note that when defined on the new domain of definition, T is not closed, but closable.

Proposition 5.3.1 If X and Y are n.v.s.'s, then a linear operator from X into Y is closable if and only if

$$
\begin{equation*}
\left\{x_{n}\right\} \subset D(T), \lim _{n \rightarrow \infty} x_{n}=0 \text {, and } \lim _{n \rightarrow \infty} T x_{n}=y \text {, then } y=0 . \tag{5.1}
\end{equation*}
$$

Proof That (5.1) is necessary for T to be closable is obvious. To show that (5.1) is sufficient for T to be closable, let $[x, y] \in \overline{G(T)}$, i.e. there is $\left[x_{n}, T x_{n}\right] \in G(T)$ such that $\left[x_{n}, T x_{n}\right] \rightarrow[x, y]$. Define $S x=y$. Because of (5.1), one verifies easily that S is well defined i.e. if $\left[x_{n}, T x_{n}\right] \rightarrow[x, y]$ and $\left[x_{n}^{\prime}, T x_{n}^{\prime}\right] \rightarrow\left[x, y^{\prime}\right]$, then $y^{\prime}=y$. Clearly, S is linear and $G(S)=\overline{G(T)}$.

Example 5.3.2 Let Ω be an open set in $\mathbb{R}^{n}, C_{\alpha} \in C^{k}(\Omega)$ for $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right)$, with $|\alpha|=\alpha_{1}+\cdots+\alpha_{n} \leq k$. Define $D(A)=\left\{f \in L^{2}(\Omega) \cap C^{k}(\Omega): A f \in L^{2}(\Omega)\right\}$, where $A=\sum_{|\alpha| \leq k} C_{\alpha} \partial^{\alpha}$. Then A is a closable linear operator from $L^{2}(\Omega)$ into $L^{2}(\Omega)$. If $\left\{f_{j}\right\} \subset D(A), f_{j} \rightarrow 0$ in $L^{2}(\Omega)$, and $A f_{j} \rightarrow g$ in $L^{2}(\Omega)$, then for any $\varphi \in C_{c}^{\infty}(\Omega)$,

$$
\begin{aligned}
\int_{\Omega} g(x) \varphi(x) d x & =\lim _{j \rightarrow \infty} \int_{\Omega}\left(A f_{j}\right) \varphi d \lambda^{n} \\
& =\lim _{j \rightarrow \infty} \int_{\Omega}\left(\sum_{|\alpha| \leq k} C_{\alpha}(x) \partial^{\alpha} f_{j}(x)\right) \varphi(x) d x \\
& =\lim _{j \rightarrow \infty} \int_{\Omega} \sum_{|\alpha| \leq k}(-1)^{|\alpha|} \partial^{\alpha}\left(C_{\alpha}(x) \varphi(x)\right) f_{j}(x) d x \\
& =\lim _{j \rightarrow \infty} \int_{\Omega}\left[A^{\prime} \varphi\right](x) f_{j}(x) d x=0,
\end{aligned}
$$

which implies that $g=0$. By Proposition 5.3.1, A is closable. Note that in the sequence of equalities above, the Fubini theorem and integration by parts have been used.

Exercise 5.3.2 Show that if T is a $1-1$ closed operator, then T^{-1} is also closed.

Theorem 5.3.1 (Closed graph theorem) A closed operator T with $D(T)=X$, a Banach space, and range in a Banach space Y, is bounded.

Proof $G(T)$ is a closed subspace of $X \oplus Y$, and is therefore a Banach space. The linear operator $U: G(T) \mapsto X$ defined by

$$
U[x, T x]=x, \quad x \in X
$$

is clearly one-to-one and continuous. Since $U(G(T))=X$, by Corollary 5.2.1, U^{-1} is a continuous linear map from X onto $G(T)$, thus $T=V U^{-1}$ is continuous, where $V[x, T x]=T x$ is a continuous linear map from $G(T)$ to Y.

The following exercise is a comment on Theorem 5.3.1.
Exercise 5.3.3 Let X be the space of all sequences $\left(a_{k}\right)_{k \in \mathbb{N}}$ of real numbers such that $a_{k} \neq 0$ only for finitely many k 's. X is a vector space under the usual way of defining addition and multiplication by scalars. For $\left(a_{k}\right)$ in X, let $\left\|\left(a_{k}\right)\right\|=\max _{k}\left|a_{k}\right|$; then X is a n.v.s. Define $T: X \rightarrow X$ by $T\left(a_{k}\right)=\left(k a_{k}\right)$. Show that X is a closed operator on X, but is not bounded.

5.4 Separation principles

Consider a real vector space X; a subset E of X is said to be convex if $\alpha x+\beta y \in E$ whenever x and y are in E and α, β are nonnegative numbers with $\alpha+\beta=1$. E is called a convex cone if it is convex and $\gamma E \subset E$ for all $\gamma>0$. For a set $S \subset X$, there is a smallest convex set containing S. The smallest convex set containing S is called the convex hull of S and is usually denoted by Conv S, while the smallest convex cone containing S will be denoted by Con S. For $x \neq y$ in $X, \operatorname{Conv}\{x, y\}$ is usually denoted by $[x, y]$ and is called the line segment with endpoints x and y, while, for $x \neq 0$ in $X, \operatorname{Con}\{x\}$ is called the half line through x. In \mathbb{R}^{k}, the convex set $\Delta^{k-1}:=\left\{x=\left(x_{1}, \ldots, x_{k}\right): x_{j} \geq 0, j=1, \ldots, k\right.$, $\left.\sum_{j=1}^{k} x_{j}=1\right\}$ is called the standard $(k-1)$-simplex. Elements in X of the form $\sum_{j=1}^{k} \alpha_{j} x_{j}$ (k varies from element to element), where x_{1}, \ldots, x_{k} are in X and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in$ Δ^{k-1}, are called convex combinations of x_{1}, \ldots, x_{k}; if x_{1}, \ldots, x_{k} are in $S \subset X$, they are called convex combinations of elements in S.

For convenience, the fact that a real-valued function f assumes values $\geq \alpha$ on a set A will be expressed by $f(A) \geq \alpha$; the meaning of each of the expressions $f(A)>\alpha$, $f(A) \leq \alpha$, and $f(A)<\alpha$ is parallelly given.

Exercise 5.4.1 Let $S \subset X$. Prove the following statements:
(i) Conv S is the set of all convex combinations of elements in S.
(ii) $\operatorname{Con} S=\left\{\sum_{j=1}^{k} \gamma_{j} x_{j}: k \in \mathbb{N}, x_{1}, \ldots, x_{k} \in S, \gamma_{j}>0, j=1, \ldots, k\right\}$.
(iii) S is a convex cone if and only if $S+S \subset S$ and $\gamma S \subset S$ for all $\gamma>0$.

A set $E \subset X$ is said to be linearly open if for any $x \in E$ and $y \in X, x+t y \in E$ if $|t|$ is small enough. Clearly, open sets in a n.v.s. X are linearly open. Note that if a linearly open convex cone contains the origin 0 , then $E=X$.
Exercise 5.4.2 Show that a convex set $E \subset \mathbb{R}^{n}$ is linearly open if and only if E is open.
Exercise 5.4.3 Suppose that E is a convex cone in X, and S a convex set in X.
(i) Show that if $E \cap S=\emptyset$, then $E \cap(\operatorname{Con} S)=\emptyset$.
(ii) If S is also a convex cone, then $E+S$ and $E-S$ are convex cones and they are linearly open if one of E and S is linearly open.

Theorem 5.4.1 If E is a nonempty linearly open convex cone not containing 0 , then there is a hyperplane H such that $E \cap H=\emptyset$.
Proof Denote by \mathcal{F} the family of all vector subspaces F of X such that $F \cap E=\emptyset . \mathcal{F}$ is not empty, because $\{0\} \in \mathcal{F}$. Order \mathcal{F} by set-inclusion i.e. $F_{1} \leq F_{2}$ if $F_{1} \subset F_{2}$ for F_{1} and F_{2} in \mathcal{F}. If \mathcal{T} is a chain in \mathcal{F}, then $\bigcup_{F \in \mathcal{T}} F$ is in \mathcal{F} and is an upper bound of \mathcal{T}. By Zorn's lemma (cf. Section 3.12), \mathcal{F} has a maximal element H.

Let $D=H+E$; by Exercise $5.4 .3, D$ is a linearly open convex cone. We claim that $X=D \cup H \cup(-D)$ is a disjoint union. It is obvious that $D \cap H=\emptyset$, and hence $(-D) \cap H=\emptyset$. If $h \in D \cap(-D)$, then both h and $-h$ are in D and consequently $h+(-h)=0$ is in D, contradicting the fact that $D \cap H=\emptyset$. Thus $D \cup H \cup(-D)$ is a disjoint union. It remains to show that $X=D \cup H \cup(-D)$. Let $x \in X$, but $x \notin H$. Then $H+\langle x\rangle$ meets E, because H is a maximal element of \mathcal{F}. Then there is $h \in H$ and $\lambda \in \mathbb{R}, \lambda \neq 0$ such that $h+\lambda x \in E$; as a consequence $\lambda x \in H+E=D$, and then $x \in D$ or $(-D)$ depending on $\lambda>0$ or $\lambda<0$. This shows that $X=D \cup H \cup(-D)$.

It will be shown presently that H is a hyperplane. This amounts to showing that if $x \in X$, but $x \notin H$, then $H+\langle x\rangle=X$. Fix such an x and let $y \in X, y \notin H$. One has to show that $y \in H+\langle x\rangle$ to conclude the proof. For this purpose, one may assume that $x \in D$ and $y \in(-D)$. Since $[x, y]$ is connected (see Theorem 1.9.1) and $X=D \cup H \cup(-D)$,

$$
[x, y] \cap\{D \cup(-D)\} \subsetneq[x, y]=[x, y] \cap\{D \cup H \cup(-D)\}
$$

therefore there is $h \in H \cap[x, y]$. Since $h \in[x, y]$ there are $\alpha \geq 0, \beta \geq 0$ with $\alpha+$ $\beta=1$, such that $h=\alpha x+\beta y$. Now $h \in H$ implies that $h \notin D$, which forces β to be >0 and hence $y=\frac{1}{\beta} h-\frac{\alpha}{\beta} x \in H+\langle x\rangle$. The proof of the theorem is complete.
A basic principle on separation of sets by linear functional is the following consequence of Theorem 5.4.1.

Corollary 5.4.1 Suppose that E is a nonempty linearly open convex cone in X, and C is a nonempty convex set in X such that $C \cap E=\emptyset$, then there is $\ell \in X^{\prime}$ such that $\ell(C) \geq 0$ and $\ell(E)<0$.

Proof Put $D=E-$ Con C. D is a linearly open convex cone and $0 \notin D$, because E and Con C are disjoint, by Exercise 5.4.3. By Theorem 5.4.1, there is a hyperplane H in
X such that $H \cap D=\emptyset$. Choose $\ell \in X^{\prime}$ with ker $\ell=H$ and $\ell(D)<0$. Now, for $x \in$ Con $C, y \in E$, and $\gamma>0$

$$
\left\{\begin{array}{l}
\ell(y)<\gamma \ell(x) ; \\
\gamma \ell(y)<\ell(x) .
\end{array}\right.
$$

Let $\gamma \searrow 0$; it follows that $\ell(y) \leq 0$ for $y \in E$ and $\ell(x) \geq 0$ for $x \in$ Con C. In particular, $\ell(C) \geq 0$.

It remains to show that $\ell(y)<0$ for $y \in E$. Choose $x_{0} \in X$ with $\ell\left(x_{0}\right)>0$, then $y+t x_{0} \in E$ if $|t|$ is small enough, because E is linearly open. Since $y+t x_{0} \in E, \ell(y+$ $\left.t x_{0}\right) \leq 0$, and hence $\ell(y) \leq-t \ell\left(x_{0}\right)<0$ if $t>0$ is small, as is to be shown.
Note that in the proof of Corollary 5.4.1 we have used the well-known fact in linear algebra that a vector subspace of X is a hyperplane in X if and only if it is the kernel of a nonzero linear functional on X.

A real-valued function φ defined on a convex set S in X is called a convex function if $\varphi(\alpha x+\beta y) \leq \alpha \varphi(x)+\beta \varphi(y)$ for any x, y in S and any convex pair (α, β). If φ is convex, then $\varphi\left(\sum_{j=1}^{k} \alpha_{j} x_{j}\right) \leq \sum_{j=1}^{k} \alpha_{j} \varphi\left(x_{j}\right)$ for any convex combination $\sum_{j=1}^{k} \alpha_{j} x_{j}$ of elements of S, as is easily seen by induction on k.

Consider now a convex function φ defined on an open interval I of \mathbb{R}. For $a<b<c$ in I, from $b=\frac{c-b}{c-a} a+\frac{b-a}{c-a} c$ it follows that $\varphi(b) \leq \frac{c-b}{c-a} \varphi(a)+\frac{b-a}{c-a} \varphi(c)=\varphi(a)-\frac{b-a}{c-a}\{\varphi(c)-$ $\varphi(a)\}$, or

$$
\frac{\varphi(b)-\varphi(a)}{b-a} \leq \frac{\varphi(c)-\varphi(a)}{c-a}
$$

similarly,

$$
\frac{\varphi(c)-\varphi(a)}{c-a} \leq \frac{\varphi(c)-\varphi(b)}{c-b}
$$

From the sequence of inequalities,

$$
\frac{\varphi(b)-\varphi(a)}{b-a} \leq \frac{\varphi(c)-\varphi(a)}{c-a} \leq \frac{\varphi(c)-\varphi(b)}{c-b}
$$

one infers that if $x \neq y$ are in I, the quotient $\frac{\varphi(y)-\varphi(x)}{y-x}$ is bounded for y near x and is an increasing function of y. Thus, both $\varphi_{-}^{\prime}(x):=\lim _{y \rightarrow x-} \frac{\varphi(y)-\varphi(x)}{y-x}$ and $\varphi_{+}^{\prime}(x)=$ $\lim _{y \rightarrow x+} \frac{\varphi(y)-\varphi(x)}{y-x}$ exist and are finite; furthermore, $\varphi_{-}^{\prime}(x) \leq \varphi_{+}^{\prime}(x)$ and $\varphi_{+}^{\prime}(x) \leq \varphi_{-}^{\prime}(y)$ if $x<y$ are in I. The last inequality follows from $\varphi_{+}^{\prime}(x) \leq \frac{\varphi(z)-\varphi(x)}{z-x} \leq \frac{\varphi(y)-\varphi(z)}{y-z}$ for z strictly between x and y, by letting $z \rightarrow y$. Since the left and right derivatives of φ exist and are finite at each point of I, φ is continuous on I. Now, for $x<y$ in I, the inequalities $\varphi_{-}^{\prime}(x) \leq$ $\varphi_{+}^{\prime}(x) \leq \varphi_{-}^{\prime}(y) \leq \varphi_{+}^{\prime}(y)$ imply that both φ_{-}^{\prime} and φ_{+}^{\prime} are monotone increasing functions
on I. Next, for $x<y<z$ in I, one verifies that $\varphi_{+}^{\prime}(x) \leq \varphi_{+}^{\prime}(y) \leq \frac{\varphi(z)-\varphi(y)}{z-y}$, from which $\varphi_{+}^{\prime}(x) \leq \varphi_{+}^{\prime}(x+) \leq \frac{\varphi(z)-\varphi(x)}{z-x}$ follows when $y \rightarrow x$ (note that φ is continuous); then one concludes that $\varphi_{+}^{\prime}(x)=\varphi_{+}^{\prime}(x+)$, by letting $z \rightarrow x$. Thus φ_{+}^{\prime} is a right-continuous function; similarly, one can verify that φ_{-}^{\prime} is a left-continuous function. The following proposition has been proved.

Proposition 5.4.1 Suppose that φ is a convex function defined on an open interval I in \mathbb{R}. The following statements hold:
(i) The left derivative $\varphi_{-}^{\prime}(x)$ and the right derivative $\varphi_{+}^{\prime}(x)$ exist and are finite at each point x of I; and for $x<y$ in $I, \varphi_{-}^{\prime}(x) \leq \varphi_{+}^{\prime}(x) \leq \varphi_{-}^{\prime}(y)$.
(ii) Both φ_{-}^{\prime} and φ_{+}^{\prime} are monotone increasing.
(iii) φ_{-}^{\prime} is left-continuous and φ_{+}^{\prime} is right-continuous.
(iv) For $x \in I$ and $m \in\left[\varphi_{-}^{\prime}(x), \varphi_{+}^{\prime}(x)\right], \varphi(y) \geq \varphi(x)+m(y-x)$ for all $y \in I$.

Exercise 5.4.4 Show that if φ is a convex function on a vector space X, then, for any $t \in \mathbb{R}$, the set $\{\varphi \leq t\}$ is convex and the set $\{\varphi<t\}$ is convex and linearly open.

A real-valued function q on a real vector space X is called a sublinear functional on X if
(1) $q(x+y) \leq q(x)+q(y), x, y$ in X;
(2) $q(\lambda x)=\lambda q(x), x \in X, \lambda>0$.

Note that a sublinear functional is necessarily convex.
Exercise 5.4.5 Suppose that q is a sublinear functional on X, and put $Q=\{q<0\}$. Show that Q is a linearly open convex cone. Also show that $q(0)=0$ and $-q(-x) \leq$ $q(x)$ for $x \in X$.

Exercise 5.4.6 Suppose that q is the sublinear functional on \mathbb{R}^{n} defined by $q(x)=$ $\max _{1 \leq j \leq n} x_{j}$ if $x=\left(x_{1}, \ldots, x_{n}\right)$. Show that a linear functional on \mathbb{R}^{n} satisfies $l \leq q$ if and only if there is $\alpha \in \Delta^{n-1}$ such that $l(x)=\sum_{j=1}^{n} \alpha_{j} x_{j}$.

Lemma 5.4.1 Suppose that q is a sublinear functional on X with $Q=\{q<0\} \neq \emptyset$. Let τ be a map from a set T into X. Then there is $\ell \in X^{\prime}, \ell \neq 0$, with $\ell \leq q$ such that $\ell(\tau(T)) \geq 0$ if and only if $q(\operatorname{Con} \tau(T)) \geq 0$.

Proof Suppose $q(\operatorname{Con} \tau(T)) \geq 0$. Then $(\operatorname{Con} \tau(T)) \cap Q=\emptyset$. By Corollary 5.4.1, there is $\hat{\ell} \in X^{\prime}, \hat{\ell} \neq 0$, such that $\hat{\ell}(\operatorname{Con} \tau(T)) \geq 0$ and $\hat{\ell}(Q)<0$. It will be shown presently that there is $\sigma>0$ such that $\sigma \hat{\ell} \leq q$.

Define a map f from X into \mathbb{R}^{2} by

$$
f(x)=(q(x),-\hat{\ell}(x)), \quad x \in X,
$$

and let C be the convex hull of $f(X)$; then $C \cap \stackrel{\circ}{\mathbb{R}}_{-}^{2}=\emptyset$, where $\stackrel{\circ}{\mathbb{R}}_{-}^{2}=\left\{\left(r_{1}, r_{2}\right) \in\right.$ $\left.\mathbb{R}^{2}: r_{1}<0, r_{2}<0\right\}$. Actually, if $v \in C$, there are x_{1}, \ldots, x_{k} in X and
$\alpha=\left(\alpha_{1}, \ldots, \alpha_{k}\right) \in \Delta^{k-1}$ such that $v=\left(\sum_{j=1}^{k} \alpha_{j} q\left(x_{j}\right),-\hat{\ell}\left(\sum_{j=1}^{k} \alpha_{j} x_{j}\right)\right)$; if $\sum_{j=1}^{k} \alpha_{j} q$ $\left(x_{j}\right)<0$, then $q\left(\sum_{j=1}^{k} \alpha_{j} x_{j}\right) \leq \sum_{j=1}^{k} \alpha_{j} q\left(x_{j}\right)<0$, implying that $\sum_{j=1}^{k} \alpha_{j} x_{j} \in Q$ and hence $-\hat{\ell}\left(\sum_{j=1}^{k} \alpha_{j} x_{j}\right)>0$; thus $v \notin \mathbb{R}_{2}^{2}$. By Corollary 5.4.1, there is $\left(\alpha_{1}, \alpha_{2}\right)$ in \mathbb{R}^{2} with $\alpha_{1}^{2}+\alpha_{2}^{2}>0$ such that

$$
\begin{cases}\alpha_{1} r_{1}+\alpha_{2} r_{2}<0 & \text { for }\left(r_{1}, r_{2}\right) \in \stackrel{\circ}{\mathbb{R}}_{-}^{2} ; \tag{5.2}\\ \alpha_{1} q(x)-\alpha_{2} \hat{\ell}(x) \geq 0 & \text { for } x \in X .\end{cases}
$$

The first inequality in (5.2) shows that $\alpha_{1} \geq 0, \alpha_{2} \geq 0$, while the second inequality shows that $\alpha_{1}>0$ and $\alpha_{2}>0$, in that $Q \neq \emptyset$. Then, $\sigma \hat{\ell}(x) \leq q(x)$ for $x \in X$ by taking $\sigma=\alpha_{1}^{-1} \alpha_{2}$. Then $\ell:=\sigma \hat{\ell}$ satisfies $\ell \leq q, \ell \neq 0$, and $\ell(x) \geq 0$ for $x \in \tau(T)$. The other direction of the Lemma is obvious.

Remark

(i) Since q is sublinear, the condition $q(\operatorname{Con} \tau(T)) \geq 0$ in Lemma 5.4.1 is equivalent to $q(\operatorname{Conv} \tau(T)) \geq 0$;
(ii) since $Q \neq \emptyset, \ell \neq 0$ is a consequence of $\ell \leq q$;
(iii) when $Q=\emptyset$, Lemma 5.4 .1 also holds if we do not require that $\ell \neq 0$, because in this case $q(\operatorname{Con} \tau(T)) \geq 0$ always holds and ℓ is simply taken to be the zero functional.

It follows from the preceding remarks that Lemma 5.4.1 can be generalized to the following theorem.

Theorem 5.4.2 Suppose that q is a sublinear functional on a real vector space X and τ a map from a set T into X. Then there is $\ell \in X^{\prime}$ with $\ell \leq q$ such that $\ell(\tau(T)) \geq 0$ if and only if $q(\operatorname{Con} \tau(T)) \geq 0$.

An immediate consequence of Theorem 5.4.2 is the following historically interesting result of Banach.

Corollary 5.4.2 (Banach) If q is a sublinear functional on X, then there is $\ell \in X^{\prime}$ such that $\ell \leq q$ on X.

Proof In Theorem 4.5.2, take $\tau(t)$ to be the zero element of X for each $t \in T$.
If, for a real vector space X and a sublinear functional q on X, we let $X^{\prime}(q)$ be the set of all those $\ell \in X^{\prime}$ such that $\ell \leq q$, then $X^{\prime}(q)$ is obviously convex, and is nonempty, by Corollary 5.4.2.

From Theorem 5.4.2, there follow two important consequences.
Theorem 5.4.3 (Hahn-Banach) Let q be a sublinear functional on a real vector space X and suppose that Y is a vector subspace of X and $\ell \in Y^{\prime}(q)$. Then there is $\hat{\ell} \in X^{\prime}(q)$ such that $\ell(y)=\hat{\ell}(y)$ for $y \in Y$.

Proof Define a sublinear functional \hat{q} on $X \oplus Y$ by

$$
\hat{q}(x, y)=q(x)+\ell(y), \quad x \in X, y \in Y,
$$

and a map $\hat{\tau}$ from Y into $X \oplus Y$ by

$$
\hat{\tau}(y)=(y,-y), \quad y \in Y .
$$

Since $\hat{\tau}$ is linear, $\operatorname{Conv} \hat{\tau}(Y)=\hat{\tau}(Y)$. Now let $v \in \operatorname{Conv} \hat{\tau}(Y)=\hat{\tau}(Y)$. Then, $v=(y,-y)$ for some $y \in Y$ and $\hat{q}(v)=q(y)+\ell(-y) \geq 0$; this means that $\hat{q}(\operatorname{Conv} \hat{\tau}(Y)) \geq 0$. By Theorem 5.4.2, there is $\left(\hat{\ell}, \ell_{Y}\right) \in(X \oplus Y)^{\prime}$ with $\left(\hat{\ell}, \ell_{Y}\right) \leq \hat{q}$ such that $\left(\hat{\ell}, \ell_{Y}\right)(y,-y) \geq 0$ for all $y \in Y$, where $\hat{\ell} \in X^{\prime}$ and $\ell_{Y} \in Y^{\prime}$. But $\left(\hat{\ell}, \ell_{Y}\right) \leq \hat{q}$ if and only if $\hat{\ell} \leq q$ on X and $\ell_{Y} \leq \ell$ on Y. Now, $\ell_{Y} \leq \ell$ implies that $\ell_{Y}=\ell$ and $\left(\hat{\ell}, \ell_{Y}\right)(y,-y)=\hat{\ell}(y)-\ell_{Y}(y)=\hat{\ell}(y)-\ell(y) \geq 0$ for $y \in Y$ forces $\hat{\ell}(y)=\ell(y)$ for $y \in Y$.
Theorem 5.4.4 (Mazur-Orlicz) Let q be a sublinear functional on a real vector space X and τ a map from a set T into X. Suppose that θ is a map from T into \mathbb{R}. Then there is $\ell \in X^{\prime}(q)$ such that $\theta(t) \leq \ell(\tau(t))$ for all $t \in T$ if and only iffor every positive integer n,

$$
\begin{equation*}
\sum_{j=1}^{n} \alpha_{j} \theta\left(t_{j}\right) \leq q\left(\sum_{j=1}^{n} \alpha_{j} \tau\left(t_{j}\right)\right) \tag{5.3}
\end{equation*}
$$

for all t_{1}, \ldots, t_{n} in T and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \Delta^{n-1}$.
Proof Consider $\hat{X}=X \oplus \mathbb{R}$. Define $\hat{q}: \hat{X} \mapsto \mathbb{R}$ by

$$
\hat{q}(x, \lambda)=q(x)+\lambda, \quad x \in X, \lambda \in \mathbb{R},
$$

then \hat{q} is a sublinear functional on \hat{X}. Let now

$$
\hat{\tau}(t)=(\tau(t),-\theta(t)), \quad t \in T .
$$

Suppose that (5.3) holds, then for $n \in \mathbb{N}, t_{1}, \ldots, t_{n}$ in T and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in$ Δ^{n-1},

$$
\begin{aligned}
\hat{q}\left(\sum_{j=1}^{n} \alpha_{j} \tau\left(t_{j}\right),-\sum_{j=1}^{n} \alpha_{j} \theta\left(t_{j}\right)\right) & =\hat{q}\left(\sum_{j=1}^{n} \alpha_{j} \hat{\tau}\left(t_{j}\right)\right) \\
& =q\left(\sum_{j=1}^{n} \alpha_{j} \tau\left(t_{j}\right)\right)-\sum_{j=1}^{n} \alpha_{j} \theta\left(t_{j}\right) \geq 0,
\end{aligned}
$$

or $\hat{q}(\operatorname{Conv} \hat{\tau}(T)) \geq 0$. By Theorem 5.4.2, there is $\hat{\ell} \in \hat{X}^{\prime}$ with $\hat{\ell} \leq \hat{q}$ on \hat{X} such that $\hat{\ell}(\hat{\tau}(T)) \geq 0$. But $\hat{\ell}=(\ell, \alpha), \ell \in X^{\prime}, \alpha \in \mathbb{R}$, and $\hat{\ell}(x, \lambda)=\ell(x)+\alpha \lambda$ for $x \in X$ and $\lambda \in \mathbb{R}$. Observe then that $\hat{\ell} \leq \hat{q}$ on \hat{X} means that $\ell \leq q$ on X and $\alpha=1$; hence, $\hat{\ell}(\hat{\tau}(t)) \geq 0$ for $t \in T$ implies that $\theta(t) \leq \ell(\tau(t))$ for $t \in T$. On the other hand, if there is $\ell \in X^{\prime}$ with $\ell \leq q$ and $\ell(\tau(t)) \geq \theta(t)$ for $t \in T$, then (5.3) obviously holds.

Corollary 5.4.3 Let X, q, and τ be as in Theorem 5.4.4, then

$$
\max _{\ell \in X^{\prime}(q)} \inf \ell(\tau(T))=\inf q(\operatorname{Conv} \tau(T)) .
$$

Proof Observe firstly that $\inf \ell(\tau(T)) \leq \inf q(\operatorname{Conv} \tau(T))$ holds for any $\ell \in X^{\prime}(q)$, hence $\sup _{\ell \in X^{\prime}(q)} \inf \ell(\tau(T)) \leq \inf q(\operatorname{Conv} \tau(T))$, and it remains to show that there is $\ell \in X^{\prime}(q)$ such that $\inf \ell(\tau(T))=\inf q(\operatorname{Conv} \tau(T))$. In the case where $\inf q(\operatorname{Conv} \tau(T))=-\infty$, just take any $\ell \in X^{\prime}(q)\left(\right.$ recall that $X^{\prime}(q) \neq \emptyset$, by Corollary 5.4.2). If $\inf q(\operatorname{Conv} \tau(T))=\beta>-\infty$, let a function θ on T be defined by $\theta(t)=\beta$ for all $t \in T$. Then (5.3) holds trivially and we may apply Theorem 5.4.4 to find $\ell \in X^{\prime}(q)$ such that $\beta \leq \ell(\tau(t))$ for all $t \in T$, i.e.

$$
\inf \ell(\tau(T)) \geq \beta=\inf q(\operatorname{Conv} \tau(T))
$$

But, as we observed at the beginning of the proof, $\inf \ell(\tau(T)) \leq \inf q(\operatorname{Conv} \tau(T))$, therefore $\inf \ell(\tau(T))=\inf q(\operatorname{Conv} \tau(T))$ and the proof is complete.

Exercise 5.4.7 Show that if C is a convex set in a real n.v.s. X, such that $\inf _{x \in C}\|x\|=$ $\sigma>0$, then there is $l \in X^{*}$ with $\|l\|=1$ such that $l(x) \geq \sigma$ for all $x \in C$. (Hint: apply Corollary 5.4.3.)

The conclusion of Corollary 5.4.3 is a general form of J. von Neumann's minimax theorem in game theory, as illustrated in Exercise 5.4.8.
Exercise 5.4.8 (von Neumann minimax theorem) Suppose that $\left(a_{i j}\right), 1 \leq i \leq m, 1 \leq$ $j \leq n$, is a given $m \times n$-matrix with real entries. For each $j=1, \ldots, n$, define a function f_{j} on Δ^{m-1} by

$$
f_{j}(\alpha)=\sum_{i=1}^{m} a_{i j} \alpha_{i}, \quad \alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \Delta^{m-1}
$$

and define a quadratic form A on $\Delta^{m-1} \times \Delta^{n-1}$ by

$$
A(\alpha, \beta)=\sum_{j=1}^{n} \beta_{j} f_{j}(\alpha)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} \alpha_{i} \beta_{j} .
$$

Now consider the sublinear functional q on \mathbb{R}^{n}, defined by $q(x)=\max _{1 \leq j \leq n} x_{j}$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$, and let the map τ from Δ^{m-1} to \mathbb{R}^{n} be defined by $\tau(\alpha)=$ $\left(f_{1}(\alpha), \ldots, f_{n}(\alpha)\right)$. Use Corollary 5.4.3 and the assertion of Exercise 5.4.6 to show the following minimax equality of von Neumann:

$$
\min _{\alpha \in \Delta^{m-1}} \max _{\beta \in \Delta^{n-1}} A(\alpha, \beta)=\max _{\beta \in \Delta^{n-1}} \min _{\alpha \in \Delta^{m-1}} A(\alpha, \beta) .
$$

Exercise 5.4.9 Let q be a sublinear functional on a real vector space X and put $Q=$ $\{x \in X: q(x)<0\}$. Suppose that S is a convex cone in X such that $Q \cap S=\emptyset$, and define \hat{q} on X by $\hat{q}(x)=\inf _{y \in S} q(x+y)$.
(i) Show that \hat{q} is a sublinear functional on X and $\hat{q} \leq q$.
(ii) Show that if $\ell \in X^{\prime}(\hat{q})$, then $\ell(x) \geq 0$ for $x \in S$.

Exercise 5.4.10 Show that Theorem 5.4.2 is a consequence of Corollary 5.4.2. (Hint: apply Corollary 5.4.2 with q replaced by \hat{q}, as defined in Exercise 5.4.9, with $S=\operatorname{Con}(\tau(T))$.)
Exercise 5.4.11 Show that Theorem 5.4.2, Theorem 5.4.3, and Theorem 5.4.4 are equivalent to each other. (Hint: Corollary 5.4.2 is a special case of the Hahn-Banach theorem.)

Exercise 5.4.12 Let Q be a proper linearly open convex cone in a real vector space X. Fix $x_{0} \in Q$.
(i) Show that the family $L=\left\{\ell \in X^{\prime}: \ell<0\right.$ on Q and $\left.\ell\left(x_{0}\right)=-1\right\}$ is nonempty and that for $x \in X, \sup _{\ell \in L} \ell(x)$ is finite. (Hint: for $x \in X$ there is $\sigma>0$ such that $x_{0}+\sigma x \in Q$, from which assert that $\ell(x) \leq \frac{1}{\sigma}$ for $\ell \in L$.)
(ii) $\operatorname{Put} q(x)=\sup _{\ell \in L} \ell(x)$ for $x \in X$. Show that q is a sublinear functional on X and that $Q=\{x \in X: q(x)<0\}$.
In this final part of the section our discussion is restricted to real normed vector spaces; and our concern is the separation of convex sets by closed affine hyperplane. By an affine hyperplane we mean a translation of a hyperplane in a vector space, i.e. an affine hyperplane in a vector space X is a set of the form $x+H$, where $x \in X$ and H is a hyperplane in X. We recall from elementary linear algebra that a vector subspace of a vector space X is a hyperplane if and only if it is the kernel of a nonzero linear functional on X. Note that if ℓ_{1}, ℓ_{2} are nonzero linear functionals on X, then $\operatorname{ker} \ell_{1}=\operatorname{ker} \ell_{2}$ if and only if $\ell_{1}=\alpha \ell_{2}$ for some nonzero scalar α. Thus an affine hyperplane in X is a set of the form $\{x \in X: \ell(x)=\alpha\}$ for some $\ell \in X^{\prime}(\ell \neq 0)$ and some scalar α. If X is a normed vector space, then, since the closure of a vector subspace of X is a vector subspace of X, every hyperplane in X is either closed or dense in X. Observe that a hyperplane $H=\operatorname{ker} \ell$, $\ell \in X^{\prime}$, in a normed vector space X is closed if and only if $\ell \in X^{*}$, and hence a closed affine hyperplane in X is of the form $\{x \in X: \ell(x)=\alpha\}$ for some $\ell \in X^{*}(\ell \neq 0)$ and some scalar α.

We fix now a real n.v.s. X. Nonempty sets A and B in X are said to be separated strictly by a closed affine hyperplane if there are $\ell \in X^{*}$ and $\alpha \in \mathbb{R}$ such that $\ell(x)<\alpha$ for $x \in A$ and $\ell(y)>\alpha$ for $y \in B$; while they are separated strictly in the strong sense if there are $\ell \in X^{*}, \alpha \in \mathbb{R}$, and $\varepsilon>0$ such that $\ell(x) \leq \alpha-\varepsilon$ for $x \in A$ and $\ell(y) \geq \alpha+\varepsilon$ for $y \in B$. Note that $\ell \in X^{*}$ in the above definition is necessarily nonzero, and $\{x \in X: \ell(x)=\alpha\}$ is the closed affine hyperplane in question. A closed set of the form $\{x \in X: \ell(x) \leq \alpha\}$, where $\ell \in X^{*}$ and $\alpha \in \mathbb{R}$, is called a closed half-space in X.
Lemma 5.4.2 Let G be a nonempty open convex set in X not containing 0 . Then there is $\ell \in X^{*}$ such that $\ell(x)<0$ for $x \in G$.

Proof Put $E=\bigcup_{\lambda>0} \lambda G$. Clearly E is a nonempty open convex cone not containing 0 , and we infer from Corollary 5.4.1 by taking $C=\{0\}$ that there is $\ell \in X^{\prime}$ such
that $\ell(x)<0$ for $x \in E$ (and hence for $x \in G$). Since G is disjoint with the hyperplane $H:=\operatorname{ker} \ell, H$ cannot be dense in X and therefore is closed. Consequently $\ell \in X^{*}$.

Theorem 5.4.5 Any two nonempty disjoint open convex sets A and B in X can be separated strictly by a closed affine hyperplane.

Proof Let $G=A-B$. G is a nonempty open convex set in X not containing 0 ; we infer then from Lemma 5.4.2 that there is $\ell \in X^{*}$ such that $\ell(x-y)<0$ for $x \in A$ and $y \in B$, and hence $\ell(A)$ is bounded above and $\ell(B)$ is bounded below. Observe that $\ell(A)$ and $\ell(B)$ are open intervals. Let $a=\sup \ell(A)$ and $b=\inf \ell(B)$; then $a \leq b$. Choose $\alpha \in[a, b]$, then $f(x)<\alpha$ for $x \in A$ and $\ell(y)>\alpha$ for $y \in B$. Thus A and B are separated strictly by the closed affine hyperplane $\{x \in X: \ell(x)=\alpha\}$.

Theorem 5.4.6 Suppose that A and B are disjoint closed convex sets in X, one of which is compact. Then there is a closed affine hyperplane which separates A and B strictly in the strong sense.

Proof We may assume that B is compact and let $G=X \backslash A$. Then G is an open set containing B. For $x \in B$, choose $r_{x}>0$ such that $x+B_{r_{x}}(0) \subset G$. The family $\{x+$ $\left.B_{\frac{1}{2} r_{x}}(0)\right\}_{x \in B}$ is an open covering of B, hence there are x_{1}, \ldots, x_{k} in B such that $B \subset \bigcup_{j=1}^{k}\left\{x_{j}+B_{\frac{1}{2} r_{x j}}(0)\right\}$. Let $r=\min _{1 \leq j \leq k} \frac{1}{2} r_{x_{j}}>0$, then $B+B_{r}(0) \subset G$. Therefore $\left\{B+B_{r}(0)\right\} \cap A=\emptyset$, and consequently

$$
\left\{B+B_{\frac{1}{2} r}(0)\right\} \cap\left\{A+B_{\frac{1}{2} r}(0)\right\}=\emptyset .
$$

We infer then from Theorem 5.4.5 that there are $\ell \in X^{*}$ and $\alpha \in \mathbb{R}$, such that

$$
\begin{aligned}
& \ell(x+z)<\alpha, x \in A, z \in B_{\frac{1}{2} r}(0) ; \\
& \ell(y+z)>\alpha, y \in B, z \in B_{\frac{1}{2} r}(0) .
\end{aligned}
$$

Now put $\varepsilon=\sup \left\{|\ell(z)|: z \in B_{\frac{1}{2} r}(0)\right\}$. Then, by choosing sequences $\left\{z_{k}^{\prime}\right\}$ and $\left\{z_{k}^{\prime \prime}\right\}$ in $B_{\frac{1}{2} r}(0)$ such that $\ell\left(z_{k}^{\prime}\right) \rightarrow \varepsilon$ and $\ell\left(z_{k}^{\prime \prime}\right) \rightarrow-\varepsilon$, we conclude from $\ell(x)<\alpha-\ell\left(z_{k}^{\prime}\right)$ for $x \in A$ by letting $k \rightarrow \infty$ that $\ell(x) \leq \alpha-\varepsilon$; and conclude from $\ell(y) \geq \alpha-\ell\left(z_{k}^{\prime \prime}\right)$ for $y \in B$ by letting $k \rightarrow \infty$ that $\ell(y) \geq \alpha+\varepsilon$.

Exercise 5.4.13 Show that a set K in a real n.v.s. X is closed convex if and only if K is the intersection of a family of closed half-spaces in X.

Remark Since a complex vector space is also a real vector space, sublinear functionals are also defined on complex vector spaces. This fact is often used without being noted explicitly.

5.5 Complex form of Hahn-Banach theorem

Let X be a vector space. A semi-norm on X is a sublinear functional q on X such that $q(\alpha x)=|\alpha| q(x)$ for $x \in X$ and for scalar α (cf. Remark at the end of Section 5.4). Note that a semi-norm is nonnegative, because if $q(x)<0$ for some x, then $0=q(0)=q(x+$ $(-x)) \leq q(x)+q(-x)=2 q(x)<0$, which is absurd.

Theorem 5.5.1 Let X be a vector space and q a semi-norm on X. Suppose that ℓ is a linear functional on a vector subspace Y of X such that $|\ell| \leq q$ on Y, then there is $\hat{\ell} \in X^{\prime}$ with $|\hat{\ell}| \leq q$ on X such that $\hat{\ell}(y)=\ell(y)$ for $y \in Y$.

Proof If X is a real vector space, then the theorem is a consequence of Theorem 5.4.3, as is easily verified. So we assume that X is a complex vector space. Write

$$
\ell(y)=\ell_{1}(y)+i \ell_{2}(y), \quad y \in Y
$$

where $\ell_{1}(y)=\operatorname{Re} \ell(y)$ and $\ell_{2}(y)=\operatorname{Im} \ell(g)$. Then ℓ_{1} and ℓ_{2} are real linear functionals on Y. Since $i \ell(y)=\ell(i y)$, it follows that $\ell_{2}(y)=-\ell_{1}(i y)$, i.e.

$$
\ell(y)=\ell_{1}(y)-i \ell_{1}(i y), \quad y \in Y .
$$

Obviously, $\left|\ell_{1}\right| \leq q$ on Y. Hence there is a real linear functional $\hat{\ell}_{1}$ on X extending ℓ_{1} such that $\left|\hat{\ell}_{1}(x)\right| \leq q(x)$ for $x \in X$.

Define $\hat{\ell}$ on X by

$$
\hat{\ell}(x)=\hat{\ell}_{1}(x)-i \hat{\ell}_{1}(i x), \quad x \in X .
$$

One can see that $\hat{\ell}$ is a linear functional on X and $\hat{\ell}$ extends ℓ. It remains only to show that $|\hat{\ell}(x)| \leq q(x)$ for $x \in X$. For any $x \in X$, there is $\beta \in \mathbb{C}$ with $|\beta|=1$ such that $|\hat{\ell}(x)|=\beta \hat{\ell}(x)$, then,

$$
\begin{aligned}
|\hat{\ell}(x)| & =\beta \hat{\ell}(x)=\hat{\ell}(\beta x)=\hat{\ell}_{1}(\beta x)-i \hat{\ell}_{1}(i \beta x) \\
& =\hat{\ell}_{1}(\beta x) \leq q(\beta x)=|\beta| q(x)=q(x) .
\end{aligned}
$$

Some relevant consequences of Theorem 5.5.1 are now considered.
Corollary 5.5.1 Let X be a normed vector space, then for any $x_{0} \in X$, there is $\ell \in X^{*}$, with $\|\ell\|=1$ such that $\ell\left(x_{0}\right)=\left\|x_{0}\right\|$.

Proof Suppose first that $x_{0} \neq 0$, and let $Y=\left\langle\left\{x_{0}\right\}\right\rangle$ be the vector subspace of X spanned by $\left\{x_{0}\right\}$. Define a linear functional ℓ_{1} on Y by

$$
\ell_{1}\left(\alpha x_{0}\right)=\alpha\left\|x_{0}\right\|,
$$

then $\left|\ell_{1}\left(\alpha x_{0}\right)\right|=\left\|\alpha x_{0}\right\|$, implying $\left\|\ell_{1}\right\|_{Y^{*}}=1$. By Theorem 5.5.1 with q being the norm on X, there is $\ell \in X^{\prime}$ extending ℓ_{1} such that $|\ell(x)| \leq\|x\|$. Then, $\ell\left(x_{0}\right)=$ $\ell_{1}\left(x_{0}\right)=\left\|x_{0}\right\|$ and $\|\ell\|=1$.

Now if $x_{0}=0$, simply take ℓ to be any $\ell \in X^{\prime}$ with $\|\ell\|=1$ (note that the first part of the proof shows that there is $\ell \in X^{\prime}$ with $\|\ell\|=1$).

Corollary 5.5.2 Let X be any normed vector space. Then for any x and y in $X, x \neq y$, there is $\ell \in X^{*}$ such that $\ell(x) \neq \ell(y)$. i.e. X^{*} separates points of X.

Proof Let $x_{0}=x-y$. By Corollary 5.5.1, there is $\ell \in X^{*}$ with $\|\ell\|=1$ such that $\ell\left(x_{0}\right)=$ $\left\|x_{0}\right\|=\|x-y\|$. But,

$$
|\ell(x)-\ell(y)|=|\ell(x-y)|=\left|\ell\left(x_{0}\right)\right|=\left\|x_{0}\right\|>0 .
$$

Exercise 5.5.1 Show that if $x_{0} \in X$ and $x_{0} \neq 0$, then there is $\ell \in X^{*}$ with $\|\ell\|=\left\|x_{0}\right\|$ and $\ell\left(x_{0}\right)=\left\|x_{0}\right\|^{2}$.

Exercise 5.5.2 Let $X=L^{1}[0,1]$ and $Y=C[0,1]$. Choose $x_{0} \in(0,1)$ and let $\ell(f)=$ $f\left(x_{0}\right)$ for $f \in Y$. Is it possible to extend ℓ to a bounded linear functional on X ?

For a normed vector space X, define a function $\langle\cdot, \cdot\rangle$ on $X \times X^{*}$ by

$$
\left\langle x, x^{*}\right\rangle=x^{*}(x), \quad\left(x, x^{*}\right) \in X \times X^{*}
$$

$\langle\cdot, \cdot\rangle$ is called the natural pairing between X and X^{*}.
For $x \in X$, let $j(x) \in X^{* *}:=\left(X^{*}\right)^{*}$ be defined by

$$
\left\langle x^{*}, j(x)\right\rangle=\left\langle x, x^{*}\right\rangle, \quad x^{*} \in X^{*} .
$$

The mapping j is a linear map from X into $X^{* *}$, and since X^{*} separates points of X, it is one-to-one; furthermore it is an isometry in the sense that $\|j(x)\|=\|x\|$ for all $x \in X$.

Theorem 5.5.2 The mapping j is a linear isometry from X into $X^{* *}$.
Proof It is left only to show that $\|j(x)\|=\|x\|$, where $\|j(x)\|$ is the norm of $j(x)$ in $X^{* *}$. From

$$
\begin{aligned}
\|j(x)\| & =\sup _{\substack{x^{*} \in x^{*} \\
\left\|x^{*}\right\|=1}}\left|\left\langle x^{*}, j(x)\right\rangle\right|=\sup _{\substack{x^{*} \in x^{*} \\
\| x^{*}\\
}}\left|\left\langle x, x^{*}\right\rangle\right| \\
& \leq \sup _{\substack{x^{*} \in x^{*} \\
\left\|x^{*}\right\|=1}}\|x\|\left\|x^{*}\right\|=\|x\|,
\end{aligned}
$$

it follows that $\|j(x)\| \leq\|x\|$. On the other hand, by Corollary 5.5.1, there is $x^{*} \in X^{*}$ with $\left\|x^{*}\right\|=1$ such that $\left\langle x, x^{*}\right\rangle=\|x\|$, hence $\|j(x)\| \geq\|x\|$. Thus, $\|j(x)\|=\|x\|$.

Because of Theorem 5.5.2 we shall consider X as embedded in $X^{* *}$ as a normed vector subspace through the mapping j. If $X=X^{* *}$, then X is called a reflexive space. A reflexive normed vector space is necessarily a Banach space. In general, the closure of X in $X^{* *}$ is a Banach space, which is called the completion of X. Note that if x is in the completion of a n.v.s. X, then there is a Cauchy sequence $\left\{x_{n}\right\}$ in $X \subset X^{* *}$ such that $x_{n} \rightarrow x$ in $X^{* *}$.

Example 5.5.1 Let $X=L^{\infty}[-1,1]$ and $Y=C[-1,1]$, and let $\delta \in Y^{*}$ be defined by $\delta(f)=f(0)$ for $f \in Y$. Since δ is a bounded linear functional with norm 1 on Y, it can be extended to be a bounded linear functional on X with the same norm by the HahnBanach theorem; we also denote the extended functional by δ, i.e., $\delta \in L^{\infty}[-1,1]^{*}$. It will be shown in Chapter 6 that $L^{1}[-1,1]^{*}=L^{\infty}[-1,1]$, in the sense that for $\ell \in$ $L^{1}[-1,1]^{*}$ there is $h \in L^{\infty}[-1,1]$ such that $\ell(f)=\int_{[-1,1]} f h d \lambda$ for all $f \in L^{1}[-1,1]$. We know from this fact that $\delta \in L^{1}[-1,1]^{* *}$. But there is no $h \in L^{1}[-1,1]$ such that $\delta(f)=\int_{[-1,1]} f h d \lambda=f(0)$ for $f \in C[-1,1]$; this means that $\delta \notin L^{1}[-1,1]$, i.e., $L^{1}[-1,1] \subsetneq L^{1}[-1,1]^{* *}$.

Exercise 5.5.3 Suppose that Y is a vector subspace of a n.v.s. X such that $\bar{Y} \neq X$, and let $Y^{\perp}=\left\{x^{*} \in X^{*}:\left\langle y, x^{*}\right\rangle=0\right.$ for all $\left.y \in Y\right\}$.
(i) For $x \in X \backslash \bar{Y}$, show that there is $x^{*} \in Y^{\perp}$ such that $\left\|x^{*}\right\|=1$ and $\left\langle x, x^{*}\right\rangle=$ $\inf _{y \in Y}\|x-y\|$. (Hint: define $l \in(\langle\{x\}\rangle+Y)^{*}$ by $l(\alpha x+y)=\alpha \inf _{y \in Y}\|x-y\|$ for scalar α and $y \in Y$, then extend l to be defined on X by the Hahn-Banach theorem.)
(ii) For $x \in X$, show that

$$
\inf _{y \in Y}\|x-y\|=\max _{\substack{x^{*} \in Y^{\perp} \\\| \|^{*} \| \leq 1}}\left|\left\langle x, x^{*}\right\rangle\right|=\max _{\substack{x^{*} \in Y^{\perp} \\\left\|u^{*}\right\| \|=1}}\left|\left\langle x, x^{*}\right\rangle\right| .
$$

Exercise 5.5.4 Let F be a closed vector subspace in a real n.v.s. X and let τ be the canonical map from X onto X / F.
(i) Suppose now that C is an open convex set with $C \cap F=\emptyset$. Show that $\tau(C)$ is an open convex set in X / F, not containing [0].
(ii) Suppose that Y is a vector subspace of X and C an open convex set in X, such that $C \cap Y=\emptyset$; show that there is a closed hyperplane H such that $H \supset Y$ and $H \cap C=\emptyset$. (Hint: use Theorem 5.4.1 in X / \bar{Y} and note that a hyperplane in a n.v.s. X is either closed or dense in X.)

5.6 Hilbert space

Let E be a vector space. For definiteness, it will be assumed that E is a complex space throughout this section. The case of E being a real vector space can be treated similarly.
E is called an inner product space if there is a map $(\cdot, \cdot): E \times E \rightarrow \mathbb{C}$ satisfying the following conditions:
(i) $(x, x) \geq 0 \forall x \in E$, and $(x, x)=0$ if and only if $x=0$;
(ii) (\cdot, x) is linear on E for each $x \in E$; and
(iii) $(x, y)=\overline{(y, x)}$ for all x, y in E (for $z \in \mathbb{C}, \bar{z}$ is the conjugate of z).

The map (\cdot, \cdot) is called an inner product on E. We always consider a vector subspace F of an inner product space E as an inner product space, with the inner product inherited from that on E, i.e. the inner product on F is the restriction to $F \times F$ of that on E. Note that when E is a real vector space, condition (iii) is replaced by $(x, y)=(y, x)$. If E is an inner product space, put $\|x\|=(x, x)^{1 / 2}$ for $x \in E$.

Theorem 5.6.1 If E is an inner product space, then for x, y in E, the following hold:
(a) $\|x-y\|^{2}+\|x+y\|^{2}=2\left(\|x\|^{2}+\|y\|^{2}\right)$ (Parallelogram identity);
(b) $|(x, y)| \leq\|x\| \cdot\|y\|$ (Schwarz inequality); and
(c) $\|x+y\| \leq\|x\|+\|y\|$ (Triangle inequality).

Proof For x and y in E,

$$
\begin{align*}
& \|x-y\|^{2}=(x-y, x-y)=\|x\|^{2}-2 \operatorname{Re}(x, y)+\|y\|^{2} ; \tag{5.4}\\
& \|x+y\|^{2}=(x+y, x+y)=\|x\|^{2}+2 \operatorname{Re}(x, y)+\|y\|^{2} . \tag{5.5}
\end{align*}
$$

(a) follows by adding (5.4) and (5.5).

To show (b), it is sufficient to show that $|(x, y)| \leq 1$ whenever $\|x\|=\|y\|=1$. Now if $\|x\|=\|y\|=1,|\operatorname{Re}(x, y)| \leq 1$ follows from (5.4) or (5.5) according to whether $\operatorname{Re}(x, y) \geq 0$ or $R(x, y)<0$, because the far left sides of (5.4) and (5.5) are both greater than or equal to zero. If $\theta \in \mathbb{C}$ with $|\theta|=1$ is chosen so that $(x, \theta y)=$ $|(x, y)|$, then

$$
|(x, y)|=(x, \theta y)=\operatorname{Re}(x, \theta y) \leq 1,
$$

this concludes (b). Finally,

$$
\begin{aligned}
\|x+y\|^{2} & =(x+y, x+y)=\|x\|^{2}+2 \operatorname{Re}(x, y)+\|y\|^{2} \\
& \leq\|x\|^{2}+2\|x\| \cdot\|y\|+\|y\|^{2}=(\|x\|+\|y\|)^{2},
\end{aligned}
$$

and thus,

$$
\|x+y\| \leq\|x\|+\|y\| .
$$

From Theorem 5.6.1 (c), E is a normed vector space if the norm $\|x\|$ of x in E is defined by $\|x\|=(x, x)^{1 / 2}$. For an inner product space, the norm so defined is called the norm associated with its inner product. Unless stated otherwise, for an inner product space the norm associated with its inner product is always chosen as its norm.

An inner product space E is called a Hilbert space if it is complete when considered as a normed vector space. Obviously, a closed vector subspace of a Hilbert space is a Hilbert space.

The most important class of Hilbert spaces is the class of all $L^{2}(\Omega, \Sigma, \mu)$ with inner product (f, g), defined by $\int_{\Omega} f \bar{g} d \mu$ for f, g in $L^{2}(\Omega, \Sigma, \mu)$. The norm associated with this inner product is the L^{2}-norm. The space \mathbb{C}^{n} with inner product $(z, w)=\sum_{k=1}^{n} z_{k} \bar{w}_{k}$ for $z=\left(z_{1}, \ldots, z_{n}\right)$ and $w=\left(w_{1}, \ldots, w_{n}\right)$ is a particular case; the norm associated with this inner product is the norm introduced for \mathbb{C}^{n} in Section 1.4 , hence \mathbb{C}^{n} with this inner product is called the n-dimensional unitary space. Correspondingly, the Euclidean norm of \mathbb{R}^{n} is associated with the inner product $(x, y)=\sum_{k=1}^{n} x_{k} y_{k}$ for $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$.

Suppose that E is a finite-dimensional vector space of dimension n and let b_{1}, \ldots, b_{n} form a basis of E. For $x=\sum_{j=1}^{n} x_{j} b_{j}, y=\sum_{j=1}^{n} y_{j} b_{j}$ in E, where the x_{j} 's and y_{j} 's are scalars, define $(x, y)=\sum_{j=1}^{n} x_{j} \bar{y}_{j}$. E is clearly a Hilbert space with inner product so defined. Then it follows from Proposition 1.7.2 that every finite-dimensional inner product space is a Hilbert space.

An example of infinite-dimensional Hilbert space is the real space $\ell^{2}(\mathbb{Z})$ considered in Section 1.6 whose norm is associated with the inner product $(x, y)=\sum_{k \in \mathbb{Z}} x_{k} y_{k}$ for $x=\left(x_{k}\right)$ and $y=\left(y_{k}\right)$. We shall also use $\ell^{2}(\mathbb{Z})$ to denote the complex Hilbert space of all those complex sequences $\left(z_{k}\right)_{k \in \mathbb{Z}}$ such that $\sum_{k \in \mathbb{Z}}\left|z_{k}\right|^{2}<\infty$, and with inner product $(z, w):=\sum_{k \in \mathbb{Z}} z_{k} \bar{w}_{k}$ for $z=\left(z_{k}\right)$ and $w=\left(w_{k}\right)$. Whether $\ell^{2}(\mathbb{Z})$ is a complex or real space will either be stated explicitly or occasioned by context.

As inner product on an inner product space is a generalization of the scalar product for vectors in three-dimensional Euclidean space in which two nonzero vectors are perpendicular to each other if and only if their scalar product is zero. Therefore, two elements x and y in an inner product space E are said to be orthogonal if $(x, y)=0$, and, for a nonempty subset A of E, call the set $A^{\perp}:=\{x \in E:(x, y)=0 \forall y \in A\}$, the orthogonal complement of A in E. Obviously, A^{\perp} is a closed vector subspace of E.

Exercise 5.6.1 Let M be a vector subspace of an inner product space E; show that $M \cap$ $M^{\perp}=\{0\}$. Also show that if an element x of E can be expressed as the $\operatorname{sum} x=y+z$ of an element y in M and an element z in M^{\perp}, then such an expression is unique.

Theorem 5.6.2 (Orthogonal projection theorem) Suppose that E is a Hilbert space and M a closed vector subspace of E. Then for any $x \in E$, there is a unique element $y \in M$ such that

$$
\begin{equation*}
\|x-y\|=\min _{z \in M}\|x-z\| \tag{5.6}
\end{equation*}
$$

Furthermore, y is characterized by

$$
\begin{equation*}
x-y \in M^{\perp} \tag{5.7}
\end{equation*}
$$

Proof Let $\alpha=\inf _{z \in M}\|x-z\|$. There is a sequence $\left\{y_{n}\right\}$ in M such that

$$
\alpha^{2} \leq\left\|x-y_{n}\right\|^{2} \leq \alpha^{2}+\frac{1}{n}, \quad n=1,2, \ldots
$$

By parallelogram identity,

$$
\begin{aligned}
& \left\|\left(y_{n}-x\right)-\left(y_{m}-x\right)\right\|^{2}+\left\|\left(y_{n}-x\right)+\left(y_{m}-x\right)\right\|^{2} \\
= & 2\left(\left\|y_{n}-x\right\|^{2}+\left\|y_{m}-x\right\|^{2}\right) \leq 4 \alpha^{2}+\frac{2}{n}+\frac{2}{m},
\end{aligned}
$$

or

$$
\left\|y_{n}-y_{m}\right\|^{2} \leq 4 \alpha^{2}+\frac{2}{n}+\frac{2}{m}-4\left\|\frac{y_{n}+y_{m}}{2}-x\right\|^{2} \leq 2\left(\frac{1}{n}+\frac{1}{m}\right),
$$

from which it follows that $\left\{y_{n}\right\}$ is a Cauchy sequence in M. Since M is complete, there is $y \in M$ such that $\lim _{n \rightarrow \infty}\left\|y_{n}-y\right\|=0$. Then,

$$
\|x-y\|^{2}=\lim _{n \rightarrow \infty}\left\|x-y_{n}\right\|^{2}=\alpha^{2},
$$

i.e.

$$
\|x-y\|=\alpha=\inf _{z \in M}\|x-z\|=\min _{z \in M}\|x-z\| .
$$

We have shown that there is $y \in M$ such that

$$
\|x-y\|=\min _{z \in M}\|x-z\| .
$$

Now let y be any element of M which satisfies (5.6); then for $z \in M$ and $t \in \mathbb{R}$, we have

$$
\|x-y-t z\|^{2}=\|x-y\|^{2}-2 \operatorname{Re}(x-y, z) t+t^{2}\|z\|^{2}
$$

or

$$
0 \leq\|x-y-t z\|^{2}-\|x-y\|^{2} \leq-2 \operatorname{Re}(x-y, z) t+t^{2}\|z\|^{2}
$$

Then for $t>0$,

$$
0 \leq-2 \operatorname{Re}(x-y, z)+t\|z\|^{2}
$$

and hence,

$$
\operatorname{Re}(x-y, z) \leq 0,
$$

by letting $t \searrow 0$; while for $t<0$,

$$
0 \geq-2 \operatorname{Re}(x-y, z)+t\|z\|^{2}
$$

holds, and by letting $t \nearrow 0$, we have

$$
\operatorname{Re}(x-y, z) \geq 0
$$

Hence,

$$
\begin{equation*}
\operatorname{Re}(x-y, z)=0 . \tag{5.8}
\end{equation*}
$$

If we replace z in (5.8) by $i z$, then $\operatorname{Im}(x-y, z)=0$. Thus $(x-y, z)=0$, i.e. y satisfies (5.7). Suppose now that (5.6) holds for $y=y^{\prime}$ and $y^{\prime \prime}$ in M, then $\left(x-y^{\prime}, y^{\prime}-y^{\prime \prime}\right)=0=$ $\left(x-y^{\prime \prime}, y^{\prime}-y^{\prime \prime}\right)=0$ by (5.7), and consequently,

$$
\left(y^{\prime}-y^{\prime \prime}, y^{\prime}-y^{\prime \prime}\right)=\left(x-y^{\prime \prime}+y^{\prime}-x, y^{\prime}-y^{\prime \prime}\right)=0,
$$

which implies that $\left\|y^{\prime}-y^{\prime \prime}\right\|=0$ or $y^{\prime}=y^{\prime \prime}$. Hence, there is unique $y \in M$ that satisfies (5.6).

Finally, suppose $y \in M$ satisfies (5.7), then for $z \in M$,

$$
\begin{aligned}
\|x-z\|^{2} & =\|(x-y)+(y-z)\|^{2}=\|x-y\|^{2}+2 \operatorname{Re}(x-y, y-z)+\|y-z\|^{2} \\
& =\|x-y\|^{2}+\|y-z\|^{2} \geq\|x-y\|^{2},
\end{aligned}
$$

or y satisfies (5.6).
The map that associates each $x \in X$ with the unique element y in M which satisfies (5.6) (or (5.7)) is called the orthogonal projection from X onto M. This map will be denoted by P_{M}.

Corollary 5.6.1 Suppose that M is a closed vector subspace of a Hilbert space E; then every $x \in E$ can be expressed uniquely as $x=y+z$, where $y \in M$ and $z \in M^{\perp}$. In other words, $E=M \oplus M^{\perp}$.

Proof For $x \in E$, let $y=P_{M} x$. Then $x-y \in M^{\perp}$, by (5.7), hence $x=y+(x-y) \equiv$ $y+z$, where $y \in M$ and $z \in M^{\perp}$. The uniqueness of such an expression follows from Exercise 5.6.1.

Exercise 5.6.2 Let M be a closed vector subspace of a Hilbert space E.
(i) Show that P_{M} is linear and that the following properties hold:
(a) $P_{M} x=x$ if and only if $x \in M$; (b) $P_{M}^{2}=P_{M}$; and (c) $\left\|P_{M} x\right\| \leq\|x\|$ for all $x \in E$.
(ii) Show that $1-P_{M}=P_{M^{\perp}}$.
(iii) Show that $\|x\|^{2}=\left\|P_{M} x\right\|^{2}+\left\|P_{M \perp} x\right\|^{2}$ for $x \in E$ (Pythagoras relation).

Theorem 5.6.3 (Riesz representation theorem) If E is a Hilbert space, and $x^{*} \in E^{*}$, then there is a unique $y_{0} \in E$ such that

$$
\left\langle x, x^{*}\right\rangle=\left(x, y_{0}\right), \quad x \in E .
$$

Furthermore,

$$
\left\|x^{*}\right\|=\left\|y_{0}\right\|,
$$

and the map $x^{*} \rightarrow y_{0}$ is conjugate linear (an operator T from a vector space into a vector space is conjugate linear if $T(\alpha x+\beta y)=\bar{\alpha} T x+\bar{\beta} T y$ for all x, y in $D(T)$ and all scalars α and β).

Proof If $x^{*}=0$, take $y_{0}=0$. Suppose now that $x^{*} \neq 0$ and let $M=\operatorname{ker} x^{*}:=\{x \in E$: $\left.\left\langle x, x^{*}\right\rangle=0\right\}$. M is clearly a closed vector subspace of E. Since $x^{*} \neq 0$, there is $x_{0} \in$ M^{\perp} such that $\left\langle x_{0}, x^{*}\right\rangle=1$. Now let $x \in E$ and put $\lambda=\left\langle x, x^{*}\right\rangle$. By Corollary 5.6.1, $x=y+z$, where $y \in M$ and $z \in M^{\perp}$, hence, $\lambda=\left\langle x, x^{*}\right\rangle=\left\langle z, x^{*}\right\rangle=\left\langle\lambda x_{0}, x^{*}\right\rangle$, or $\langle z-$ $\left.\lambda x_{0}, x^{*}\right\rangle=0$, which means that $z-\lambda x_{0} \in M$. But $z-\lambda x_{0}$ is also in M^{\perp}, consequently $z=\lambda x_{0}$, by Exercise 5.6.1. Now, from $x=y+\lambda x_{0}$ we have $\left(x, x_{0}\right)=\left(y+\lambda x_{0}, x_{0}\right)=$ $\lambda\left\|x_{0}\right\|^{2}=\left\langle x, x^{*}\right\rangle\left\|x_{0}\right\|^{2}$. If we take $y_{0}=\frac{x_{0}}{\left\|x_{0}\right\|^{2}}$, then $\left(x, y_{0}\right)=\left\langle x, x^{*}\right\rangle$ for $x \in E$. Suppose that $y_{0}^{\prime} \in E$ also satisfies $\left\langle x, x^{*}\right\rangle=\left(x, y_{0}^{\prime}\right)$ for all $x \in E$, then $\left(y_{0}^{\prime}-y_{0}, x\right)=0$ for all x in E; in particular, $\left(y_{0}^{\prime}-y_{0}, y_{0}^{\prime}-y_{0}\right)=0$ or $\left\|y_{0}^{\prime}-y_{0}\right\|=0$, implying $y_{0}^{\prime}=y_{0}$. Hence, there is unique $y_{0} \in E$ satisfying $\left\langle x, x^{*}\right\rangle=\left(x, y_{0}\right)$ for all x in E. From $\left\langle x, x^{*}\right\rangle=$ $\left(x, y_{0}\right)$ it follows readily that $\left\|x^{*}\right\| \leq\left\|y_{0}\right\|$; but $\left\|y_{0}\right\|^{2}=\left(y_{0}, y_{0}\right)=\left|\left\langle y_{0}, x^{*}\right\rangle\right| \leq\left\|y_{0}\right\|$. $\left\|x^{*}\right\|$, hence, $\left\|y_{0}\right\| \leq\left\|x^{*}\right\|$. Thus $\left\|y_{0}\right\|=\left\|x^{*}\right\|$. That $x^{*} \rightarrow y_{0}$ is conjugate linear is obvious.

Exercise 5.6.3

(i) Denote by R the map $x^{*} \mapsto y_{0}$ in Theorem 5.6.3. Show that E^{*} is a Hilbert space with inner product $(\cdot, \cdot)_{*}$, defined by $\left(x^{*}, y^{*}\right)_{*}=\left(R y^{*}, R x^{*}\right)$ for x^{*}, y^{*} in E^{*}.
(ii) Show that Hilbert spaces are reflexive.

Example 5.6.1 Define on $C[0,1]$ an inner product by

$$
(f, g)=\int_{0}^{1} f(t) \overline{g(t)} d t, \quad f, g \in C[0,1]
$$

We claim that $C[0,1]$ is not complete with the norm associated with this inner product. We denote this inner product space by $\hat{C}[0,1]$ in this example. Let f be the indicator function of $\left[\frac{1}{2}, 1\right]$ on $[0,1]$ and for each integer $n>2$, let f_{n} be a continuous function such that $0 \leq f_{n} \leq 1$ and coincides with f on [$0, \frac{1}{2}-$ $\left.\frac{1}{n}\right] \cup\left[\frac{1}{2}, 1\right]$. Then $f_{n} \rightarrow f$ in $L^{2}[0,1]$, i.e., $\left\|f_{n}-f\right\|_{2} \rightarrow 0$. Let g be any function in $\hat{C}[0,1]$, then $\left\|f_{n}-g\right\|_{2} \geq\|f-g\|_{2}-\left\|f_{n}-f\right\|_{2}$ and hence $\lim \inf _{n \rightarrow \infty}\left\|f_{n}-g\right\|_{2} \geq$ $\|f-g\|_{2}>0$. Thus $\left\{f_{n}\right\}$, which is a Cauchy sequence in $\hat{C}[0,1]$, does not converge in $\hat{C}[0,1]$.

The Riesz representation theorem for linear functionals on Hilbert spaces might lead to far reaching results, even when the spaces concerned are finite dimensional. We illustrate this fact by proving an interesting result of A.P. Calderón and A. Zygmund about Friederich mollifiers. Recall that from a real-valued C^{∞} function φ on \mathbb{R}^{n} with compact support in the unit closed ball $C_{1}(0)$ and with $\int \varphi d \lambda^{n}=1$, one can construct a family
$\left\{J_{\varepsilon}\right\}_{\varepsilon>0}$ of operators on $L_{\mathrm{loc}}\left(\mathbb{R}^{n}\right)$ in the following way (cf. Section 4.9). For $\varepsilon>0$, let $\varphi_{\varepsilon}(x)=\varepsilon^{-n}\left(\frac{x}{\varepsilon}\right)$ for $x \in \mathbb{R}^{n}$, then $\operatorname{supp} \varphi_{\varepsilon} \subset C_{\varepsilon}(0)$ and $\int \varphi_{\varepsilon} d \lambda^{n}=1$. If $f \in L_{\text {loc }}\left(\mathbb{R}^{n}\right)$, define a function $J_{\varepsilon} f$ by

$$
J_{\varepsilon} f(x)=\int_{\mathbb{R}^{n}} f(y) \varphi_{\varepsilon}(x-y) d \lambda^{n}(y), \quad x \in \mathbb{R}^{n}
$$

The family $\left\{J_{\varepsilon}\right\}_{\varepsilon>0}$ depends on φ and is called a Friederich mollifier.
Theorem 5.6.4 (Calderón-Zygmund) For each $k \in \mathbb{N}$, there is a Friederichs mollifier $\left\{J_{\varepsilon}\right\}_{\varepsilon>0}$ such that $J_{\varepsilon} p=p$ for every polynomial p of degree $\leq k$ defined on \mathbb{R}^{n}.

Proof Let E be the space of all real polynomials p of degree $\leq k$ on \mathbb{R}^{n}. E is a real vector space of finite dimension. Choose a nonnegative and nonzero C^{∞} function η on \mathbb{R}^{n} with supp $\eta \subset C_{1}(0)$ and define an inner product (\cdot, \cdot) on E by $(p, q)=\int_{\mathbb{R}^{n}} p q \eta d \lambda^{n}$ for p, q in E. Since $\operatorname{dim} E<\infty, E$ is a Hilbert space. Let l be a linear functional on E defined by

$$
l(p)=p(0), \quad p \in E
$$

Since $\operatorname{dim} E<\infty$, every linear functional on E is bounded. By Theorem 5.6.3, there is $q_{0} \in E$ such that

$$
p(0)=\left(p, q_{0}\right)=\int_{\mathbb{R}^{n}} p q_{0} \eta d \lambda^{n}
$$

If we choose p to be the constant polynomial 1 in the above equality, we have $\int_{\mathbb{R}^{n}} q_{0} \eta d \lambda^{n}=1$. Let $\varphi=q_{0} \eta$ and $\left\{J_{\varepsilon}\right\}_{\varepsilon>0}$ the corresponding Friederich mollifier. Now for $p \in E$ and $x \in \mathbb{R}^{n}$,

$$
\begin{aligned}
J_{\varepsilon} p(x) & =\int_{\mathbb{R}^{n}} p(y) \varphi_{\varepsilon}(x-y) d \lambda^{n}(y)=\varepsilon^{-n} \int_{\mathbb{R}^{n}} p(y) \varphi\left(\frac{x-y}{\varepsilon}\right) d \lambda^{n}(y) \\
& =\int_{\mathbb{R}^{n}} p(x-\varepsilon y) \varphi(y) d \lambda^{n}(y)=\widehat{p}_{x}(0)=p(x)
\end{aligned}
$$

where $\widehat{p}_{x}(y)=p(x-\varepsilon y)$.
Another remarkable application of the Riesz representation theorem will be presented in Section 5.7.

5.7 Lebesgue-Nikodym theorem

We consider in this section an interesting application of the Riesz representation theorem to measure theory.

Let (Ω, Σ) be a measurable space, and suppose that μ and ν are finite measures on Σ. The following theorem asserts that ν can be decomposed in a certain way relative to μ.

Theorem 5.7.1 (Lebesgue-Nikodym theorem) Let (Ω, Σ) be a measurable space, and μ, v finite measures on Σ. Then there is a unique $h \in L^{1}(\Omega, \Sigma, \mu)$ and a μ-null set N, such that

$$
\begin{equation*}
\nu(A)=\int_{A} h d \mu+\nu(A \cap N), A \in \Sigma \tag{5.9}
\end{equation*}
$$

Proof Let $\rho=\mu+\nu$; then ρ is a finite measure on Σ. Consider the real Hilbert space $L^{2}(\Omega, \Sigma, \rho)$ and consider the linear functional ℓ on $L^{2}(\Omega, \Sigma, \rho)$, defined by

$$
\ell(f)=\int f d \nu
$$

Since

$$
\begin{aligned}
|\ell(f)| & \leq\left(\int|f|^{2} d v\right)^{1 / 2}\left(\int 1 d v\right)^{1 / 2} \leq \nu(\Omega)^{1 / 2}\left[\int|f|^{2} d \rho\right]^{1 / 2} \\
& =v(\Omega)^{1 / 2}\|f\|_{L^{2}(\rho)}
\end{aligned}
$$

ℓ is a bounded linear functional on $L^{2}(\Omega, \Sigma, \rho)$. By the Riesz representation theorem there is unique $g \in L^{2}(\Omega, \Sigma, \rho)$, such that

$$
\int f d v=\int f g d \rho=\int f g d \mu+\int f g d v
$$

for all $f \in L^{2}(\Omega, \Sigma, \rho)$, or

$$
\begin{equation*}
\int f(1-g) d \nu=\int f g d \mu \tag{5.10}
\end{equation*}
$$

for all $f \in L^{2}(\Omega, \Sigma, \rho)$.
We claim first that there is a μ-null set N such that $0 \leq g(x)<1$ for $x \in \Omega \backslash N$. Let $A_{1}=\{x \in \Omega: g(x)<0\}$ and $A_{2}=\{x \in \Omega: g(x) \geq 1\}$. If we let $f=I_{A_{1}}$ in (5.10), then $0 \leq \nu\left(A_{1}\right) \leq \int_{A_{1}}(1-g) d \nu=\int_{A_{1}} g d \mu$, from which it follows that $\mu\left(A_{1}\right)=0$. Next choose $f=I_{A_{2}}$ in (5.10); we have $0 \geq \int_{A_{2}}(1-g) d \nu=\int_{A_{2}} g d \mu \geq \mu\left(A_{2}\right)$. This implies that $\mu\left(A_{2}\right)=0$. Put $N=A_{1} \cup A_{2}$, then $\mu(N)=0$ and $0 \leq g(x)<1$ for $x \in \Omega \backslash N$.

We show next that (5.10) holds for every nonnegative measurable function f which vanishes on N. Suppose that f is such a function; for each positive integer n, let $f_{n}=f \wedge n$, i.e. $f_{n}(x)=f(x)$ if $f(x) \leq n$, otherwise $f_{n}(x)=n$. Since $1-g>0$ and $g \geq 0$ on $\Omega \backslash N, 0 \leq f_{n}(1-g) \nearrow f(1-g)$, and $0 \leq f_{n} g \nearrow f g$, then from the monotone convergence theorem and the fact that (5.10) holds for each f_{n}, it follows that

$$
\int f(1-g) d v=\lim _{n \rightarrow \infty} \int f_{n}(1-g) d v=\lim _{n \rightarrow \infty} \int f_{n} g d \mu=\int f g d \mu
$$

This shows that (5.10) holds for every such function. For $A \in \Sigma$, let $B=A \cap$ $(\Omega \backslash N)$; then (5.10) holds for the function $f:=I_{B}(1-g)^{-1}$ and we have $\int I_{B} d v=$ $\int I_{B} \frac{g}{1-g} d \mu=\int_{A} I_{\Omega \backslash N} \cdot \frac{g}{1-g} d \mu$, or

$$
v(A \cap(\Omega \backslash N))=\int_{A} h d \mu
$$

if we put $h=I_{\Omega \backslash N} \frac{g}{1-g}$. Note that $h \geq 0$, and, since $\int_{\Omega} h d \mu=v(\Omega \backslash N)<\infty$, $h \in L^{1}(\Omega, \Sigma, \mu)$. Now,

$$
v(A)=v(A \cap(\Omega \backslash N))+v(A \cap N)=\int_{A} h d \mu+v(A \cap N)
$$

hence (5.9) holds. Now suppose that there is $h^{\prime} \in L^{1}(\Omega, \Sigma, \mu)$ and μ-null set N^{\prime}, such that

$$
v(A)=\int_{A} h^{\prime} d \mu+v\left(A \cap N^{\prime}\right), \quad A \in \Sigma
$$

if we put $\hat{N}=N \cup N^{\prime}$, then $\int_{A \cap \hat{N}^{c}} h d \mu=\int_{A \cap \hat{N}^{c}} h^{\prime} d \mu$ for all $A \in \Sigma$, and consequently $h=h^{\prime} \mu$-a.e. on $\Omega \backslash \hat{N}$; but \hat{N} being a μ-null set implies that $h=h^{\prime} \mu$-a.e. on Ω. Thus h is unique.

Exercise 5.7.1 Show that Theorem 5.7.1 holds if both μ and ν are σ-finite. But in this case h may not be μ-integrable; however it is μ-integrable if ν is finite.

Measure ν is said to be μ-absolutely continuous on Σ, if $A \in \Sigma$ and $\mu(A)=0$ results in $\nu(A)=0$; while ν is $\boldsymbol{\mu}$-singular on Σ, if there is a μ-null set N such that $v(A)=(A \cap N)$ for all $A \in \Sigma$. Note that if we use μ^{*} and v^{*} to denote the outer measures on Ω, constructed respectively from μ and ν on Σ by Method I, then the definitions given here for μ-absolute continuity and μ-singularity for ν as measure on Σ are the same as μ^{*}-absolute continuity and μ^{*}-singularity for ν^{*}, introduced in Section 4.6.

Corollary 5.7.1 (Radon-Nikodym) If μ and v are σ-finite measures on Σ and v is μ absolutely continuous, then there is a unique nonnegative measurable function h on Ω such that

$$
v(A)=\int_{A} h d \mu, \quad A \in \Sigma
$$

Proof We know that Theorem 5.7.1 also holds true if μ and ν are σ-finite (cf. Exercise 5.7.1). We may then apply (5.9). Since $\mu(A \cap N)=0$ implies that $v(A \cap N)=0$ for all $A \in \Sigma$ by the μ-absolute continuity of v, the corollary follows.

Remark The function h in Corollary 5.7.1 is called the Radon-Nikodym derivative of ν w.r.t. μ, and the conclusion of the corollary is usually referred to as the RadonNikodym theorem and is expressed by $d \nu=h d \mu$ or $h=\frac{d \nu}{d \mu}$.

5.8 Orthonormal families and separability

Hilbert spaces considered in this section are assumed to be of infinite dimension. The finite-dimensional case can be treated similarly, but in a simpler fashion.

A family $\left\{e_{\alpha}\right\}_{\alpha \in I}$ of elements in a Hilbert space E is said to be orthonormal if $\left(e_{\alpha}, e_{\beta}\right)=$ $\delta_{\alpha \beta}:=\left\{\begin{array}{ll}0 & \text { if } \alpha \neq \beta \\ 1 & \text { if } \alpha=\beta\end{array}\right.$. It is clear that an orthonormal family is linearly independent.

Consider first a finite orthonormal family $\left\{e_{j}\right\}_{j=1}^{n}$ and let $E_{n}=\left\langle\left\{e_{1}, \ldots, e_{n}\right\}\right\rangle$. Then E_{n} is a closed vector subspace of E, by Corollary 1.7.1.

Lemma 5.8.1 Let P_{n} denote the orthogonal projection from E onto E_{n}; then $P_{n} x=$ $\sum_{j=1}^{n}\left(x, e_{j}\right) e_{j}$ for $x \in E$.

Proof It is clear that $P_{n} x=\sum_{j=1}^{n}\left(P_{n} x, e_{j}\right) e_{j}$. For each $j=1, \ldots, n$, we have $(x-$ $\left.P_{n} x, e_{j}\right)=0$, by (5.7), hence $\left(P_{n} x, e_{j}\right)=\left(x, e_{j}\right)$.
Exercise 5.8.1 Suppose that $\left\{e_{\alpha}\right\}_{\alpha \in I}$ is an orthonormal family in a Hilbert space E. Show that for any $x \in E,\left\{\left|\left(x, e_{\alpha}\right)\right|^{2}\right\}_{\alpha \in I}$ is summable and $\sum_{\alpha \in I}\left|\left(x, e_{\alpha}\right)\right|^{2} \leq\|x\|^{2}$.
Now let $\left\{e_{k}\right\}_{k=1}^{\infty}$ be an orthonormal family in E. For each $n \in \mathbb{N}$, put $E_{n}=$ $\left\langle\left\{e_{1}, \ldots, e_{n}\right\}\right\rangle$ and let E_{∞} be the closure of $\left\langle\left\{e_{k}\right\}_{k=1}^{\infty}\right\rangle$, i.e. E_{∞} is the smallest closed vector subspace containing $\left\{e_{k}\right\}_{k=1}^{\infty}$.

Theorem 5.8.1 For $x \in E_{\infty}$, we have
(i) $x=\sum_{k=1}^{\infty}\left(x, e_{k}\right) e_{k}$, i.e. $\lim _{n \rightarrow \infty}\left\|x-\sum_{k=1}^{n}\left(x, e_{k}\right) e_{k}\right\|=0$.
(ii) $\|x\|^{2}=\sum_{k=1}^{\infty}\left|\left(x, e_{k}\right)\right|^{2}$.

Proof

(i): Given that $\varepsilon>0$, there is $y \in\left\{\left\{e_{k}\right\}_{k=1}^{\infty}\right\rangle$ such that $\|x-y\|^{2}<\varepsilon$. Now, $y=$ $\sum_{k=1}^{m} \alpha_{k} e_{k}, \alpha_{k} \in \mathbb{C}, k=1, \ldots, m$, hence, $y \in E_{m} \subset E_{n}$ for $n \geq m$. Thus if $n \geq m$, we have

$$
\left\|x-P_{n} x\right\|^{2} \leq\|x-y\|^{2}<\varepsilon,
$$

or, by Lemma 5.8.1,

$$
\left\|x-\sum_{k=1}^{n}\left(x, e_{k}\right) e_{k}\right\|^{2}<\varepsilon
$$

if $n \geq m$. This proves (i).
(ii): $\operatorname{From}(\mathrm{i})$,

$$
\|x\|^{2}=\lim _{n \rightarrow \infty}\left\|\sum_{k=1}^{n}\left(x, e_{k}\right) e_{k}\right\|^{2} .
$$

But,

$$
\begin{aligned}
\left\|\sum_{k=1}^{n}\left(x, e_{k}\right) e_{k}\right\|^{2} & =\left(\sum_{j=1}^{n}\left(x, e_{j}\right) e_{j}, \sum_{k=1}^{n}\left(x, e_{k}\right) e_{k}\right) \\
& =\sum_{j, k=1}^{n}\left(x, e_{j}\right) \overline{\left(x, e_{k}\right)}\left(e_{j}, e_{k}\right)=\sum_{k=1}^{n}\left|\left(x, e_{k}\right)\right|^{2}
\end{aligned}
$$

hence $\|x\|^{2}=\sum_{k=1}^{\infty}\left|\left(x, e_{k}\right)\right|^{2}$.
Corollary 5.8.1 (Bessel inequality) For $x \in E, \sum_{k=1}^{\infty}\left|\left(x, e_{k}\right)\right|^{2} \leq\|x\|^{2}$, and the equality holds if and only if $x \in E_{\infty}$.

Proof Let P be the orthogonal projection from E onto E_{∞}, then $\|x\|^{2}=\|P x\|^{2}+$ $\|x-P x\|^{2}$, by Exercise 5.6.1. Hence $\|P x\|^{2} \leq\|x\|^{2}$. But by Theorem 5.8.1,

$$
\|P x\|^{2}=\sum_{k=1}^{\infty}\left|\left(P x, e_{k}\right)\right|^{2}=\sum_{k=1}^{\infty}\left|\left(x, e_{k}\right)\right|^{2}
$$

because $\left(x-P x, e_{k}\right)=0$ for each k by (5.7). Hence,

$$
\|x\|^{2}=\|x-P x\|^{2}+\sum_{k=1}^{\infty}\left|\left(x, e_{k}\right)\right|^{2}
$$

from which it follows that $\sum_{k=1}^{\infty}\left|\left(x, e_{k}\right)\right|^{2} \leq\|x\|^{2}$, and that equality holds if and only if $x=P x$ or $x \in E_{\infty}$.

Exercise 5.8.2

(i) Show that for x, y in E_{∞} we have

$$
(x, y)=\sum_{k=1}^{\infty}\left(x, e_{k}\right) \overline{\left(y, e_{k}\right)} .
$$

(ii) Show that $E=E_{\infty}$ if and only if $\|x\|^{2}=\sum_{k=1}^{\infty}\left|\left(x, e_{k}\right)\right|^{2}$ for all $x \in E$.
(iii) Show that $E=E_{\infty}$ if and only if

$$
x=\sum_{k=1}^{\infty}\left(x, e_{k}\right) e_{k}
$$

for all $x \in E$.
Theorem 5.8.2 (Riesz-Fischer) Let $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ be an orthonormal family in E and $\left\{\alpha_{k}\right\}_{k \in \mathbb{N}}$ a sequence of scalars, then there is $x \in E$ such that $x=\sum_{k=1}^{\infty} \alpha_{k} e_{k}$ if and only if $\sum_{k}\left|\alpha_{k}\right|^{2}<\infty$.

Proof Suppose that $\sum_{k=1}^{\infty}\left|\alpha_{k}\right|^{2}<\infty$. For each $n \in \mathbb{N}$ let $x_{n}=\sum_{k=1}^{n} \alpha_{k} e_{k}$. We claim that $\left\{x_{n}\right\}$ is a Cauchy sequence in E. Actually, for $n>m$ in \mathbb{N},

$$
\begin{aligned}
\left\|x_{n}-x_{m}\right\|^{2} & =\left(\sum_{k=m+1}^{n} \alpha_{k} e_{k}, \sum_{j=m+1}^{n} \alpha_{j} e_{j}\right)=\sum_{k, j=m+1}^{n} \alpha_{k} \bar{e}_{j}\left(e_{k}, e_{j}\right) \\
& =\sum_{k=m+1}^{n}\left|\alpha_{k}\right|^{2} \rightarrow 0
\end{aligned}
$$

as $n>m \rightarrow \infty$, so $\left\{x_{n}\right\}$ is a Cauchy sequence, and there is $x \in E$ such that $x=$ $\lim _{n \rightarrow \infty} x_{n}$, or $x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \alpha_{k} e_{k}=\sum_{k=1}^{\infty} \alpha_{k} e_{k}$.

Next, suppose that $x=\sum_{k=1}^{\infty} \alpha_{k} e_{k}$. This means that $x=\lim _{n \rightarrow \infty} \sum_{k=1}^{n} \alpha_{k} e_{k}$; but each $\sum_{k=1}^{n} \alpha_{k} e_{k}$ is in E_{n}, and hence $x \in E_{\infty}$. Now for each $j \in \mathbb{N}$,

$$
\left(x, e_{j}\right)=\lim _{n \rightarrow \infty}\left(\sum_{k=1}^{n} \alpha_{k} e_{k}, e_{j}\right)=\alpha_{j} ;
$$

consequently,

$$
\sum_{j=1}^{\infty}\left|\alpha_{j}\right|^{2}=\sum_{j=1}^{\infty}\left|\left(x, e_{j}\right)\right|^{2}=\|x\|^{2}<\infty,
$$

by Theorem 5.8.1 (ii).
An orthonormal family $\left\{e_{k}\right\}_{k=1}^{\infty}$ is called an orthonormal basis for E if

$$
x=\sum_{k=1}^{\infty}\left(x, e_{k}\right) e_{k}
$$

for all $x \in E$.
Theorem 5.8.3 Let $\left\{e_{k}\right\}_{k=1}^{\infty}$ be an orthonormal family in a Hilbert space E and define E_{∞} as before.
(i) $\left\{e_{k}\right\}_{k=1}^{\infty}$ is an orthonormal basis for E if and only if $E=E_{\infty}$.
(ii) $\left\{e_{k}\right\}_{k=1}^{\infty}$ is an orthonormal basis for E if and only if for $x \in E, x=0$ whenever $\left(x, e_{k}\right)=0$ for all k.

Proof It is clear that (i) follows from Theorem 5.8.1 (i), and the fact that if $\left\{e_{k}\right\}_{k=1}^{\infty}$ is an orthonormal basis, then $E=E_{\infty}$. For the proof of (ii), in view of (i) one need only observe that for $x \in E,\left(x-P x, e_{k}\right)=0$ for all k, where P is the orthonormal projection from E onto E_{∞}.

Exercise 5.8.3 Show that an orthonormal family $\left\{e_{k}\right\}_{k \in \mathbb{N}}$ in E is an orthonormal basis for E if and only if $\|x\|^{2}=\sum_{k=1}^{\infty}\left|\left(x, e_{k}\right)\right|^{2}$ for all $x \in E$.

Example 5.8.1 (Hermite polynomials and Hermite functions) For nonnegative integer n and $x \in \mathbb{R}$, let

$$
H_{n}(x)=(-1)^{n} e^{x^{2}} \frac{d^{n}}{d x^{n}} e^{-x^{2}} ;
$$

then $H_{n}(x)$ is a polynomial in x of degree n with the coefficient of x^{n} being 2^{n}. The polynomials $H_{n}(x)$ are called Hermite polynomials and the functions $\psi_{n}(x)=$ $e^{-\frac{x^{2}}{2}} H_{n}(x)$ are called Hermite functions. We have, for nonnegative integers m and n,

$$
\begin{aligned}
\int_{-\infty}^{\infty} \psi_{n}(x) \psi_{m}(x) d x & =\int_{-\infty}^{\infty} e^{-x^{2}} H_{n}(x) H_{m}(x) d x \\
& =\int_{-\infty}^{\infty} H_{m}(x)(-1)^{n} \frac{d^{n}}{d x^{n}} e^{-x^{2}} d x,
\end{aligned}
$$

from which we conclude by repeated integration by parts that

$$
\begin{aligned}
\int_{-\infty}^{\infty} \psi_{n}(x) \psi_{m}(x) d x & =\int_{-\infty}^{\infty} e^{-x^{2}} \frac{d^{n}}{d x^{n}} H_{m}(x) d x \\
& = \begin{cases}0 & \text { if } m<n ; \\
2^{n} n!\sqrt{\pi} & \text { if } m=n .\end{cases}
\end{aligned}
$$

Thus $\left\{\psi_{0}, \psi_{1}, \psi_{2}, \ldots\right\}$ is an orthogonal family in $L^{2}(\mathbb{R})$. If we define the normalized Hermite functions \mathcal{E}_{n} by

$$
\mathcal{E}_{n}(x)=\left(2^{n} n!\sqrt{\pi}\right)^{-\frac{1}{2}} \psi_{n}(x),
$$

then $\left\{\mathcal{E}_{0}, \mathcal{E}_{1}, \mathcal{E}_{2}, \ldots\right\}$ is an orthonormal family in $L^{2}(\mathbb{R})$. Observe that $\mathcal{E}_{n}(x)=e^{-\frac{x^{2}}{2}} h_{n}(x)$, where $h_{n}(x)=\left(2^{n} n!\sqrt{\pi}\right)^{-\frac{1}{2}} H_{n}(x)$; the polynomials $h_{0}(x)$, $h_{1}(x), h_{2}(x), \ldots$ are called normalized Hermite polynomials. Observe that since $h_{n}(x)$ is a polynomial of degree n, each monomial x^{n} is a linear combination of $h_{0}(x), \ldots, h_{n}(x)$. Let us now put $w(x)=e^{-x^{2}}$ and denote by $L_{w}^{2}(\mathbb{R})$ the space $L^{2}(\mathbb{R}, \mathcal{L}, \mu)$, where $\mu(A)=\int_{A} w d \lambda=\int_{A} e^{-x^{2}} d x$ for $A \in \mathcal{L}$. The space $L_{w}^{2}(\mathbb{R})$ is called the weighted L^{2} space on \mathbb{R} with weight w. Then, Hermite polynomials form an orthogonal family in $L_{w}^{2}(\mathbb{R})$ and normalized Hermite polynomials form an orthonormal family in $L_{w}^{2}(\mathbb{R})$. We shall see in Chapter 7 that $\left\{\mathcal{E}_{0}, \mathcal{E}_{1}, \mathcal{E}_{2}, \ldots\right\}$ is an orthonormal basis for $L^{2}(\mathbb{R})$, or equivalently, $\left\{h_{0}, h_{1}, h_{2}, \ldots\right\}$ is an orthonormal basis for $L_{w}^{2}(\mathbb{R})$ (cf. Corollary 7.1.1).

A procedure, the Gram-Schmidt process, for orthonormalizing a given countable linearly independent family $\left\{u_{k}\right\}$ in E is now introduced. Let $e_{1}=\frac{u_{1}}{\left\|u_{1}\right\|}$. Suppose now that e_{1}, \ldots, e_{n} have been defined so that they form an orthonormal family and $\left\langle\left\{e_{1}, \ldots, e_{n}\right\}\right\rangle=$ $\left\langle\left\{u_{1}, \ldots, u_{n}\right\}\right\rangle$; put $E_{n}=\left\langle\left\{e_{1}, \ldots, e_{n}\right\}\right\rangle$ and let z_{n} be the image of u_{n+1} in E_{n} under the orthogonal projection from E onto E_{n}. Since u_{n+1} is not in $\left\langle\left\{u_{1}, \ldots, u_{n}\right\}\right\rangle$, it is not in E_{n} and hence $u_{n+1}-z_{n} \neq 0$. Define $e_{n+1}=\frac{u_{n+1}-z_{n}}{\left\|u_{n+1}-z_{n}\right\|}$, then $\left\|e_{n+1}\right\|=1$ and $e_{n+1} \in E_{n}^{\perp}$.

Thus e_{1}, \ldots, e_{n+1} form an orthonormal family; it is readily seen that $\left\langle\left\{u_{1}, \ldots, u_{n+1}\right\}\right\rangle$ $=\left\langle\left\{e_{1}, \ldots, e_{n+1}\right\}\right\rangle$. We have therefore defined, by induction, an orthonormal family $\left\{e_{k}\right\}$ from $\left\{u_{k}\right\}$ such that $\left\langle\left\{e_{1}, \ldots, e_{n}\right\}\right\rangle=\left\langle\left\{u_{1}, \ldots, u_{n}\right\}\right\rangle$ for all $n \in \mathbb{N}$.

Theorem 5.8.4 A Hilbert space E has an orthonormal basis if and only if E is separable.
Proof If E has an orthonormal basis $\left\{e_{k}\right\}$, then the countable set $\bigcup_{n=1}^{\infty}\left\{\sum_{j=1}^{n} \alpha_{j} e_{j}\right.$: $\left.\alpha_{j} \in \gamma, j=1, \ldots, n\right\}$ is dense in E; hence E is separable. We have denoted by γ the countable set of rational complex numbers.

If now E is separable, say $\left\{x_{n}\right\}_{n=1}^{\infty}$ is dense in E. We may assume that $x_{1} \neq 0$. By an obvious selection procedure, we can select a linearly independent subsequence $\left\{x_{n_{k}}\right\}$ of $\left\{x_{n}\right\}$ such that $\left\langle\left\{x_{n_{k}}\right\}\right\rangle=\left\langle\left\{x_{n}\right\}\right\rangle$. Put $x_{n_{k}}=y_{k}$. Let $\left\{e_{k}\right\}$ be the orthonormal family obtained from $\left\{y_{k}\right\}$ by the Gram-Schimdt procedure, then $\left\{e_{k}\right\}$ is an orthonormal family such that $\left\langle\left\{e_{k}\right\}\right\rangle=\left\langle\left\{y_{k}\right\}\right\rangle=\left\langle\left\{x_{k}\right\}\right\rangle$. Consequently the closure of $\left\langle\left\{e_{k}\right\}\right\rangle$ is E. Then $\left\{e_{k}\right\}_{k=1}^{\infty}$ is an orthonormal basis of E.

5.9 The space $L^{2}[-\pi, \pi]$

Historically, the most well-known orthonormal family is $\left\{\frac{1}{\sqrt{2 \pi}} e^{i k t}\right\}_{k \in \mathbb{Z}}$ in $L^{2}[-\pi, \pi]$. It was introduced by J. Fourier in his study of heat conduction by means of expansion of functions as trigonometric series, and is usually referred to as the Fourier basis. Here $L^{2}[-\pi, \pi]$ stands for $L^{2}([-\pi, \pi], \mathcal{L} \mid[-\pi, \pi], \lambda)$.

For $f \in L^{1}[-\pi, \pi]$, the function \hat{f} defined on \mathbb{Z} by

$$
\hat{f}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} f(t) e^{-i k t} d t
$$

is called the Fourier transform of f, and $\hat{f}(k)$'s, $k \in \mathbb{Z}$, are called Fourier coefficients of f. If we put $e_{k}(t)=\frac{1}{\sqrt{2 \pi}} e^{i k t}$, then for $f \in L^{2}[-\pi, \pi], \hat{f}(k)=\left(f, e_{k}\right), k \in \mathbb{Z}$, where $\int_{-\pi}^{\pi} f(t) \overline{g(t)} d t \equiv(f, g)$ is the inner product for L^{2}-spaces. It is easily verified that $\left(e_{k}, e_{j}\right)=\delta_{k j}$, hence $\left\{e_{k}\right\}$ is indeed an orthonormal family in $L^{2}[-\pi, \pi]$.

We shall show in this section that $\left\{e_{k}\right\}_{k \in \mathbb{Z}}$ is an orthonormal basis for $L^{2}[-\pi, \pi]$.
Let $f \in L^{1}[-\pi, \pi]$ and n be a nonnegative integer; define the Fourier n-th partial sum $S_{n}(f, t)$ of f by

$$
\begin{aligned}
S_{n}(f, t) & =\sum_{k=-n}^{n} \hat{f}(k) e_{k}(t)=\sum_{k=-n}^{n}\left(\int_{-\pi}^{\pi} f(s) \frac{e^{-i k s}}{\sqrt{2 \pi}} d s\right) \frac{1}{\sqrt{2 \pi}} e^{i k t} \\
& =\frac{1}{2 \pi} \sum_{k=-n}^{n} \int_{-\pi}^{\pi} f(s) e^{i k(t-s)} d s .
\end{aligned}
$$

We derive firstly an integral representation for $S_{n}(f, t)$. Define

$$
D_{n}(t):=\frac{1}{2 \pi}\left[1+2 \sum_{k=1}^{n} \cos k t\right],
$$

then,

$$
\begin{aligned}
\sin \frac{1}{2} t D_{n}(t) & =\frac{1}{2 \pi}\left[\sin \frac{1}{2} t+2 \sum_{k=1}^{n} \sin \frac{1}{2} t \cos k t\right] \\
& =\frac{1}{2 \pi}\left[\sin \frac{1}{2} t+\sum_{k=1}^{n}\left\{\sin \left(k+\frac{1}{2}\right) t-\sin \left(k-\frac{1}{2}\right) t\right\}\right] \\
& =\frac{1}{2 \pi} \sin \left(n+\frac{1}{2}\right) t,
\end{aligned}
$$

hence if t is not an even multiple of π, we have

$$
D_{n}(t)=\frac{1}{2 \pi} \frac{\sin \left(n+\frac{1}{2}\right) t}{\sin \frac{1}{2} t} .
$$

Now,

$$
\begin{aligned}
S_{n}(f, t) & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(s) \sum_{k=-n}^{n} e^{i k(t-s)} d s \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(s)\left\{1+2 \sum_{k=1}^{n} \cos k(t-s)\right\} d s
\end{aligned}
$$

thus,

$$
\begin{equation*}
S_{n}(f, t)=\int_{-\pi}^{\pi} f(s) D_{n}(t-s) d s . \tag{5.11}
\end{equation*}
$$

The functions $D_{n}, n=0,1,2, \ldots$ are called Dirichlet kernels.
It is a common practice to extend a function on $(a, b]$ to be a periodic function on \mathbb{R} with period $(b-a)$; we follow this practice by regarding f as defined on $(-\pi, \pi]$ and extend it periodically to \mathbb{R} with period 2π; then,

$$
\begin{aligned}
S_{n}(f, t) & =\int_{-\pi}^{\pi} f(s) D_{n}(t-s) d s=\int_{-\pi-t}^{\pi-t} f(t+s) D_{n}(-s) d s \\
& =\int_{-\pi-t}^{\pi-t} f(t+s) D_{n}(s) d s=\int_{-\pi}^{\pi} f(t+s) D_{n}(s) d s,
\end{aligned}
$$

where the last equality follows from the fact that the function $s \mapsto f(t+s) D_{n}(s)$ is of period 2π (cf. Exercise 4.3.3). Thus (5.11) can be put in the form

$$
\begin{equation*}
S_{n}(f, t)=\int_{-\pi}^{\pi} f(t+s) D_{n}(s) d s \tag{5.11}
\end{equation*}
$$

Exercise 5.9.1 Let $X=\{f \in C[-\pi, \pi]: f(-\pi)=f(\pi)\} ; X$ is a Banach space with sup-norm. For $n=0,1,2, \ldots$ define $\ell_{n}(f)=S_{n}(f, 0)$ for $f \in X$.
(i) Show that $\ell_{n} \in X^{*}, n=0,1,2, \ldots$ and

$$
\left\|\ell_{n}\right\|=\int_{-\pi}^{\pi}\left|D_{n}(t)\right| d t ;
$$

(ii) Show that $\lim _{n \rightarrow \infty}\left\|\ell_{n}\right\|=\infty$;
(iii) Show that there is $f \in X$ such that

$$
\underset{n \rightarrow \infty}{\limsup }\left|S_{n}(f, 0)\right|=\infty
$$

(Hint: cf. Theorem 5.1.3.)
In general, $S_{n}(f, t)$ is not well behaved as $n \rightarrow \infty$, so it is expedient to consider the Cesàro mean of the sequence: for $n=0,1,2, \ldots$; let

$$
\sigma_{n}(f, t)=\frac{1}{n+1} \sum_{k=0}^{n} S_{k}(f, t) .
$$

Using (5.11) we have

$$
\begin{equation*}
\sigma_{n}(f, t)=\frac{1}{n+1} \int_{-\pi}^{\pi} f(s) \sum_{k=0}^{n} D_{k}(t-s) d s=\int_{-\pi}^{\pi} f(s) F_{n}(t-s) d s \tag{5.12}
\end{equation*}
$$

where $F_{n}(t)=\frac{1}{n+1} \sum_{k=0}^{n} D_{k}(t)$. Since

$$
\begin{aligned}
\sin ^{2} \frac{1}{2} t F_{n}(t) & =\frac{1}{2 \pi(n+1)} \sum_{k=0}^{n} \sin \left(k+\frac{1}{2}\right) t \sin \frac{1}{2} t \\
& =\frac{1}{2 \pi(n+1)} \frac{1}{2} \sum_{k=0}^{n}\{\cos k t-\cos (k+1) t\} \\
& =\frac{1}{2 \pi(n+1)} \cdot \frac{1}{2}\{1-\cos (n+1) t\} \\
& =\frac{1}{2 \pi(n+1)} \sin ^{2} \frac{n+1}{2} t,
\end{aligned}
$$

we have

$$
F_{n}(t)=\frac{1}{2 \pi(n+1)}\left(\frac{\sin \frac{n+1}{2} t}{\sin \frac{1}{2} t}\right)^{2}
$$

if t is not an even multiple of $\pi . F_{n}(t), n=0,1,2, \ldots$, are called the Féjer kernels. Take $f=1$ in (5.11) and (5.12), we have

$$
\begin{equation*}
\int_{-\pi}^{\pi} D_{n}(t-s) d s=\int_{-\pi}^{\pi} F_{n}(t-s) d s=1, \quad t \in[-\pi, \pi] . \tag{5.13}
\end{equation*}
$$

Theorem 5.9.1 (Féjer) Suppose that f is continuous on $[-\pi, \pi]$ and $f(-\pi)=f(\pi)$. Then $\sigma_{n}(f, t) \rightarrow f(t)$ uniformly for $t \in[-\pi, \pi]$ when $n \rightarrow \infty$.

Proof From (5.13),

$$
\begin{aligned}
\left|\sigma_{n}(f, t)-f(t)\right| & =\left|\int_{-\pi}^{\pi}\{f(s)-f(t)\} F_{n}(t-s) d s\right| \\
& \leq \int_{-\pi}^{\pi}|f(s)-f(t)| F_{n}(t-s) d s .
\end{aligned}
$$

Since f is continuous on $[-\pi, \pi]$ and $f(-\pi)=f(\pi)$, for any given $\varepsilon>0$, there is $\delta>0$, such that when either $|s-t|<\delta$ or $|s-t|>2 \pi-\delta$, we have $|f(s)-f(t)| \leq \frac{\varepsilon}{2}$. It is obvious from the form of the function $F_{n}(s-t)$ that there is $N \in \mathbb{N}$ such that when $n \geq N$,

$$
\begin{equation*}
\sup _{\delta \leq|t-s| \leq 2 \pi-\delta} F_{n}(t-s) \leq \frac{\varepsilon}{8 \pi M} \tag{5.14}
\end{equation*}
$$

where $M=\sup _{t \in[-\pi, \pi]}|f(t)|$. For $n \geq N$, by (5.14) and the choice of δ,

$$
\begin{aligned}
\left|\sigma_{n}(f, t)-f(t)\right| \leq & \int_{\substack{\text { or }|t-s||t| 2 \pi-\delta}}|f(s)-f(t)| F_{n}(t-s) d s \\
& +\int_{\delta \leq|t-s| \leq 2 \pi-\delta}|f(s)-f(t)| F_{n}(t-s) d s \\
\leq & \frac{\varepsilon}{2} \int_{-\pi}^{\pi} F_{n}(t-s) d s+2 M \cdot \frac{\varepsilon}{8 \pi M} \cdot 2 \pi=\varepsilon
\end{aligned}
$$

this shows that $\sigma_{n}(f, t) \rightarrow f(t)$ uniformly for $t \in[-\pi, \pi]$ when $n \rightarrow \infty$, because our choice of N is independent of t.
Since each $\sigma_{n}(f, t)$ is a linear combination of $\left\{\frac{1}{\sqrt{2 \pi}} e_{k}\right\}_{|k| \leq n}$, it follows from the Féjer theorem that $\left\langle\left\{\frac{1}{\sqrt{2 \pi}} e_{k}\right\}_{k \in \mathbb{Z}}\right\rangle$ is dense in the space of all continuous functions f on $[-\pi, \pi]$ with $f(-\pi)=f(\pi)$ w.r.t. the L^{2}-norm in $L^{2}[-\pi, \pi]$. But the latter space contains $C_{c}(-\pi, \pi)$ which is dense in $L^{2}[-\pi, \pi]$. As a consequence, the closure of $\left\langle\left\{\frac{1}{\sqrt{2 \pi}} e_{k}\right\}_{k \in \mathbb{Z}}\right\rangle$ in $L^{2}[-\pi, \pi]$ is $L^{2}[-\pi, \pi]$. Thus we have established the following theorem.

Theorem 5.9.2 $\left\{\frac{1}{\sqrt{2 \pi}} e_{k}\right\}_{k \in \mathbb{Z}}$, where $e_{k}(t)=e^{i k t}$ is an orthonormal basis for $L^{2}[-\pi, \pi]$.
Because $e^{i k t}=\cos k t+i \sin k t$, it follows from direct computation that

$$
\begin{aligned}
& S_{n}(f, x)=\frac{1}{2} \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) d t \\
&+\frac{1}{\pi} \sum_{k=1}^{n}\left\{\int_{-\pi}^{\pi} f(t) \cos k t d t \cos k x+\int_{-\pi}^{\pi} f(t) \sin k t d t \sin k x\right\}
\end{aligned}
$$

Hence, if we put

$$
\begin{align*}
& a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \cos n t d t, \quad n=0,1,2, \ldots \tag{5.15}\\
& b_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \sin n t d t, \quad n=1,2,3, \ldots
\end{align*}
$$

then,

$$
\begin{equation*}
S_{n}(f, x)=\frac{1}{2} a_{0}+\sum_{k=1}^{n}\left\{a_{k} \cos k x+b_{k} \sin k x\right\} . \tag{5.16}
\end{equation*}
$$

This is the traditional form of Fourier partial sums; the numbers $a_{0}, a_{1}, b_{1}, a_{2}, b_{2}, \ldots$ defined by (5.15) are called the Fourier trigonometric coefficients of the function f and are expressed symbolically by

$$
f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left\{a_{n} \cos n x+b_{n} \sin n x\right\}
$$

the series $\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left\{a_{n} \cos n x+b_{n} \sin n x\right\}$ is usually referred to as the Fourier trigonometric series of f. Whether or $\operatorname{not} f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left\{a_{n} \cos n x+b_{n} \sin n x\right\}$ for $x \in$ $[-\pi, \pi]$ is a well-known problem in analysis, which leads to discovery of many tools in real analysis, including the introduction of Lebesgue measure and Lebesgue integration. Since $\left\{\frac{1}{\sqrt{2 \pi}} e_{k}\right\}_{k \in \mathbb{Z}}$ is an orthonormal basis for $L^{2}[a, b]$ if $b-a=2 \pi$, our discussion so far also holds on any interval of length 2π; in particular, Fourier trigonometric coefficients for integrable functions on such an interval are defined similarly.

Exercise 5.9.2 Consider $L^{2}[0,2 \pi]$.
(i) Show that $\left\{\frac{1}{\sqrt{2 \pi}}, \frac{1}{\sqrt{\pi}} \cos x, \frac{1}{\sqrt{\pi}} \sin x, \frac{1}{\sqrt{\pi}} \cos 2 x, \frac{1}{\sqrt{\pi}} \sin 2 x, \ldots\right\}$ is an orthonormal basis for $L^{2}[0,2 \pi]$.
(ii) For f, g in $L^{2}[0,2 \pi]$, suppose that

$$
\begin{aligned}
& f(x) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left\{a_{n} \cos n x+b_{n} \sin n x\right\} \\
& g(x) \sim \frac{1}{2} c_{0}+\sum_{n=1}^{\infty}\left\{c_{n} \cos n x+d_{n} \sin n x\right\}
\end{aligned}
$$

Show that

$$
\frac{1}{\pi} \int_{0}^{2 \pi} f \bar{g} d \lambda=\frac{1}{2} a_{0} \bar{c}_{0}+\sum_{n=1}^{\infty}\left\{a_{n} \bar{c}_{n}+b_{n} \bar{d}_{n}\right\}
$$

(iii) Suppose that $f \in L^{2}[0,2 \pi]$ and $a_{n}=b_{n}=0$ for $n \geq k$ for some k. Show that $f(x)=\frac{1}{2} a_{0}+\sum_{n=1}^{k-1}\left\{a_{n} \cos n x+b_{n} \sin n x\right\}$ for a.e. $x \in[0,2 \pi]$.
(iv) Suppose that f is $A C$ on $[0,2 \pi]$ with $f^{\prime} \in L^{2}[0,2 \pi]$ and satisfies $f(0)=f(2 \pi)$. Show that

$$
\frac{1}{\pi} \int_{0}^{2 \pi}\left|f^{\prime}\right|^{2} d \lambda=\sum_{n=1}^{\infty} n^{2}\left(\left|a_{n}\right|^{2}+\left|b_{n}\right|^{2}\right)
$$

where a_{n} and b_{n} are as defined in (ii).
(v) Let f be as in (iv). Show that $\sum_{n=1}^{\infty}\left(\left|a_{n}\right|+\left|b_{n}\right|\right)<\infty$ and infer that the Fourier trigonometric series of f converges uniformly to f on $[0,2 \pi]$.

To give a flavor of orthonormal basis in infinite-dimensional spaces, we now prove a classical isoperimetric inequality, following A. Hurwicz.

Theorem 5.9.3 (Isoperimetric inequality) For any piece-wise C^{1} simple closed plane curve with given length L , the following inequality holds:

$$
A \leq \frac{L^{2}}{4 \pi}
$$

where A is the area of the region enclosed by the curve; and equality holds when and only when the curve is a circle.

Proof Let C be such a curve and choose a parametric representation, $x=x(s), y=y(s)$, $0 \leq s \leq L$, with arc length as the parameter so that, when s goes from 0 to L, the curve C is traced counter clockwise. Choose the new parameter $t=2 \pi s / L$ and let

$$
\begin{aligned}
& x(t) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left\{a_{n} \cos n t+b_{n} \sin n t\right\} \\
& y(t) \sim \frac{1}{2} c_{0}+\sum_{n=1}^{\infty}\left\{c_{n} \cos n t+d_{n} \sin n t\right\}
\end{aligned}
$$

then, using the results in Exercise 5.9.2, we have

$$
\begin{aligned}
& \frac{d x}{d t} \sim \sum_{n=1}^{\infty}\left\{n b_{n} \cos n t-n a_{n} \sin n t\right\}, \\
& \frac{d y}{d t} \sim \sum_{n=1}^{\infty}\left\{n d_{n} \cos n t-n c_{n} \sin n t\right\} ;
\end{aligned}
$$

and

$$
\begin{gathered}
\frac{1}{\pi} \int_{0}^{2 \pi}\left\{\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}\right\} d t=\sum_{n=1}^{\infty} n^{2}\left(a_{n}^{2}+b_{n}^{2}+c_{n}^{2}+d_{n}^{2}\right) \\
\frac{1}{\pi} \int_{0}^{2 \pi} x \frac{d y}{d t} d t=\sum_{n=1}^{\infty} n\left(a_{n} d_{n}-b_{n} c_{n}\right)
\end{gathered}
$$

Since $\left(\frac{d x}{d t}\right)^{2}+\left(\frac{d y}{d t}\right)^{2}=\left(\frac{L}{2 \pi}\right)^{2}\left\{\left(\frac{d x}{d s}\right)^{2}+\left(\frac{d y}{d s}\right)^{2}\right\}=\left(\frac{L}{2 \pi}\right)^{2}$ and $A=\int_{0}^{2 \pi} x \frac{d y}{d t} d t$, we have

$$
\begin{aligned}
\frac{L^{2}}{4 \pi}-A & =\frac{\pi}{2} \sum_{n=1}^{\infty}\left\{n^{2}\left(a_{n}^{2}+b_{n}^{2}+c_{n}^{2}+d_{n}^{2}\right)-2 n\left(a_{n} d_{n}-b_{n} c_{n}\right)\right\} \\
& =\frac{\pi}{2} \sum_{n=1}^{\infty}\left\{\left(n a_{n}-d_{n}\right)^{2}+\left(n b_{n}+c_{n}\right)^{2}+\left(n^{2}-1\right)\left(c_{n}^{2}+d_{n}^{2}\right)\right\} \geq 0 .
\end{aligned}
$$

Hence $A \leq \frac{L^{2}}{4 \pi}$. Now, $\sum_{n=1}^{\infty}\left\{\left(n a_{n}-d_{n}\right)^{2}+\left(n b_{n}+c_{n}\right)^{2}+\left(n^{2}-1\right)\left(c_{n}^{2}+d_{n}^{2}\right)\right\}=0$ if and only if $a_{1}=d_{1}, b_{1}=-c_{1}$, and $a_{n}=b_{n}=c_{n}=d_{n}=0$ for $n \geq 2$; it follows that $\frac{L^{2}}{4 \pi}=A$ if and only if

$$
x=\frac{1}{2} a_{0}+a_{1} \cos t+b_{1} \sin t, \quad y=\frac{1}{2} c_{0}-b_{1} \cos t+a_{1} \sin t
$$

or C is a circle.
Theorem 5.9.4 (Weierstrass approximation theorem) Any continuous function on a finite closed interval $[a, b]$ can be approximated uniformly by polynomials in the interval.

Proof We may assume without loss of generality that $[a, b]=[-\pi, \pi]$. Since any continuous function f on $[-\pi, \pi]$ can be expressed as

$$
f(x)=f(-\pi)+\frac{\{f(\pi)-f(-\pi)\}}{2 \pi}(x+\pi)+g(x),
$$

where $g(-\pi)=g(\pi)=0$, it is sufficient to prove the theorem for continuous functions f on $[-\pi, \pi]$ satisfying $f(-\pi)=f(\pi)$. For such a function $f, \sigma_{n}(f, x) \rightarrow f(x)$ uniformly for $x \in[-\pi, \pi]$, by Theorem 5.9.1. Now, $\sigma_{n}(f, x)$ is a finite linear combination of trigonometric functions $\cos x, \sin x, \cos 2 x, \sin 2 x, \ldots$; hence, each $\sigma_{n}(f, x)$ can be approximated uniformly by polynomials on $[-\pi, \pi]$ by Taylor's theorem. Thus, given $\varepsilon>0$, there is n_{0} such that $\sup _{x \in[-\pi, \pi]}\left|f(x)-\sigma_{n_{0}}(f, x)\right| \leq \frac{\varepsilon}{2}$; then let $p(x)$ be a Taylor polynomial of $\sigma_{n_{0}}(f, x)$ such that $\sup _{x \in[-\pi, \pi]}\left|\sigma_{n_{0}}(f, x)-p(x)\right| \leq \frac{\varepsilon}{2}$; therefore, $\sup _{x \in[-\pi, \pi]}|f(x)-p(x)| \leq \varepsilon$.

Exercise 5.9.3 Let $f_{n}(x)=x^{n}, n=0,1,2, \ldots$. Show that the Gram-Schmidt process applied to the family $\left\{f_{0}, f_{1}, f_{2}, \ldots\right\}$ in $L^{2}[a, b]$ yields an orthonormal basis for $L^{2}[a, b](-\infty<a<b<\infty)$. When $a=-1, b=1$, denote the orthonormal basis so obtained by $\left\{\pi_{0}, \pi_{1}, \pi_{2}, \ldots\right\}$. Show that π_{n} is a polynomial of degree $n, n=0,1,2, \ldots$ and find π_{0}, π_{1}, and π_{2}.

Exercise 5.9.4 For $n=0,1,2, \ldots$, let P_{n} be the polynomial defined by $P_{n}(x)=$ $\frac{1}{2^{n} n!} \frac{d^{n}\left(x^{2}-1\right)^{n}}{d x^{n}} ; P_{0}, P_{1}, P_{2}, \ldots$ are called Legendre polynomials. Show that $\left\{P_{0}, P_{1}, P_{2}, \ldots\right\}$ is an orthogonal family in $L^{2}[-1,1]$ and $\int_{-1}^{1} x^{k} P_{n}(x) d x=0$ for $n \geq 1$ and $0 \leq k<n$.

Exercise 5.9.5 Let $\left\{\pi_{0}, \pi_{1}, \pi_{2}, \ldots\right\}$ and $\left\{P_{0}, P_{1}, P_{2}, \ldots\right\}$ be as in Exercises 5.9.3 and 5.9.4. Show that for $n=0,1,2, \ldots$, there is a positive constant α_{n} such that $\pi_{n}=$ $\alpha_{n} P_{n}$.

We digress now from the main theme of this section to discuss briefly the pointwise convergence of Fourier trigonometric series. For this we first prove the RiemannLebesgue lemma.
Lemma 5.9.1 (Riemann-Lebesgue) Iff is an integrable function on a finite interval $[a, b]$, then

$$
\lim _{l \rightarrow \infty} \int_{a}^{b} f(t) \sin l t d t=0
$$

Proof If J is an interval with endpoints $c<d$ in $[a, b]$, then $\int_{J} \sin l t d t=-\frac{1}{l}\{\cos l d-$ $\cos l c\} \rightarrow 0$ as $l \rightarrow \infty$; consequently, the lemma holds if f is a step function. In general, given $\varepsilon>0$, there is a step function g on $[a, b]$ such that $\int_{a}^{b}|f(t)-g(t)| d t<\frac{\varepsilon}{2}$, and therefore,

$$
\begin{aligned}
\left|\int_{a}^{b} f(t) \sin l t d t\right| & \leq\left|\int_{a}^{b}\{f(t)-g(t)\} \sin l t d t\right|+\left|\int_{a}^{b} g(t) \sin l t d t\right| \\
& <\frac{\varepsilon}{2}+\left|\int_{a}^{b} g(t) \sin l t d t\right|<\varepsilon
\end{aligned}
$$

if l is sufficiently large, because the lemma holds for the step function g.
Theorem 5.9.5 (Dini test) Suppose that f is an integrable function on $(-\pi, \pi)$ and is extended to \mathbb{R} periodically. Let $t_{0} \in[-\pi, \pi]$, then,

$$
\lim _{n \rightarrow \infty} S_{n}\left(f, t_{0}\right)=f\left(t_{0}\right)
$$

ifs $\mapsto \frac{1}{s}\left\{f\left(t_{0}+s\right)-f\left(t_{0}\right)\right\}$ is integrable in a neighborhood of 0.
Proof If $s \mapsto \frac{1}{s}\left\{f\left(t_{0}+s\right)-f\left(t_{0}\right)\right\}$ is integrable in a neighborhood of 0 , then the function g defined by

$$
g(s)=\frac{1}{2 \pi} \frac{f\left(t_{0}+s\right)-f\left(t_{0}\right)}{\sin \frac{1}{2} s}=\frac{1}{2 \pi} \frac{s}{\sin \frac{1}{2} s} \frac{f\left(t_{0}+s\right)-f\left(t_{0}\right)}{s}, \quad s \in[-\pi, \pi],
$$

is integrable on $[-\pi, \pi]$. Now, from (5.11)' we have,

$$
\begin{aligned}
S_{n}\left(f, t_{0}\right)-f\left(t_{0}\right) & =\int_{-\pi}^{\pi}\left\{f\left(t_{0}+s\right)-f\left(t_{0}\right)\right\} D_{n}(s) d s \\
& =\int_{-\pi}^{\pi} g(s) \sin \left(n+\frac{1}{2}\right) s d s \rightarrow 0
\end{aligned}
$$

as $n \rightarrow \infty$, by the Riemann-Lebesgue lemma.

Exercise 5.9.6 Let f be an even function on $[-\pi, \pi]$ defined on $[0, \pi]$ by $f(s)=1-\frac{s}{\pi}$. Show that the Fourier trigonometric series of f converges uniformly to f on $[-\pi, \pi]$. In particular, verify that $\sum_{k=0}^{\infty} \frac{1}{(2 k+1)^{2}}=\frac{\pi^{2}}{8}$.

Exercise 5.9.7 Suppose that f is a periodic function of period 2π on \mathbb{R} and is integrable on $[-\pi, \pi]$. Show that if $f=0$ on a neighborhood of t_{0}, then $S_{n}(f, t) \rightarrow 0$ uniformly on a neighborhood of t_{0}.

Exercise 5.9.8 Suppose that f is integrable on $[-\pi, \pi]$ and $f\left(t_{0}+\right), f\left(t_{0}-\right)$ exist at $t_{0} \in$ $[-\pi, \pi]$. Show that

$$
\lim _{n \rightarrow \infty} S_{n}\left(f, t_{0}\right)=\frac{1}{2}\left\{f\left(t_{0}-\right)+f\left(t_{0}+\right)\right\}
$$

if $\int_{-\varepsilon}^{0}\left|\frac{f\left(t_{0}+s\right)-f\left(t_{0}-\right)}{s}\right| d s<\infty$, and $\int_{0}^{\varepsilon}\left|\frac{f\left(t_{0}+s\right)-f\left(t_{0}+\right)}{s}\right| d s<\infty$ for some $\varepsilon>0$. (Hint: $\left.\int_{-\pi}^{0} D_{n}(s) d s=\int_{0}^{\pi} D_{n}(s) d s=\frac{1}{2}.\right)$

Exercise 5.9.9 Let f be a periodic function with period π on \mathbb{R}, and $f(s)=s$ for $0 \leq$ $s<\pi$. Find the Fourier trigonometric series for f and evaluate $\sum_{n=1}^{\infty} a_{n}$, where

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(s) \cos n s d s, \quad n=0,1,2, \ldots .
$$

Lemma 5.9.2 There is $c>0$ s.t. $\left|\int_{\delta}^{\eta} D_{n}(s) d s\right| \leq c$ for all $n \in \mathbb{N}$ and $0 \leq \delta<\eta \leq \pi$.
Proof Let $n \in \mathbb{N}$ and $0 \leq \delta<\eta \leq \pi$. It will be clear from the following argument that we may assume $\delta<\frac{2}{2 n+1}<\eta$; then,

$$
0 \leq \frac{\sin \left(n+\frac{1}{2}\right) s}{\sin \frac{1}{2} s}=\frac{\frac{1}{2} s}{\sin \frac{1}{2} s} \cdot \frac{\sin \left(n+\frac{1}{2}\right) s}{\frac{1}{2} s}<1 \cdot(2 n+1)
$$

for $0<s<\frac{2}{2 n+1}$, and hence,

$$
\int_{\delta}^{\frac{2}{2 n+1}} \frac{\sin \left(n+\frac{1}{2}\right) s}{\sin \frac{1}{2} s}<(2 n+1) \cdot \frac{2}{2 n+1}=2 .
$$

Thus,

$$
\left|\int_{\delta}^{\eta} D_{n}(s) d s\right| \leq \frac{1}{2 \pi}\left\{2+\left|\int_{\frac{2}{2 n+1}}^{\eta} \frac{\sin \left(n+\frac{1}{2}\right) s}{\sin \frac{1}{2} s} d s\right|\right\} .
$$

But by the second mean-value theorem (actually, Lemma 4.5.2), there is $\frac{2}{2 n+1} \leq$ $\eta^{\prime} \leq \eta$ such that

$$
\begin{aligned}
\left|\int_{\frac{2}{2 n+1}}^{\eta} \frac{\sin \left(n+\frac{1}{2}\right) s}{\sin \frac{1}{2} s} d s\right| & =\left|\frac{1}{\sin \left(\frac{1}{2 n+1}\right)} \int_{\frac{2}{2 n+1}}^{\eta^{\prime}} \sin \left(n+\frac{1}{2}\right) s d s\right| \\
& =\frac{1}{\sin \left(\frac{1}{2 n+1}\right)}\left|\frac{1}{n+\frac{1}{2}}\left\{\cos 1-\cos \left(n+\frac{1}{2}\right) \eta^{\prime}\right\}\right| \\
& \leq \frac{1}{(2 n+1) \sin \left(\frac{1}{2 n+1}\right)} \\
& =\left\{(2 n+1)\left[\frac{1}{2 n+1}-\frac{1}{3!}\left(\frac{1}{2 n+1}\right)^{3}+\cdots\right]\right\}^{3} \\
& \leq\left\{1-\frac{1}{3!}\left(\frac{1}{2 n+1}\right)^{2}\right\}^{-1}=\frac{54}{53}
\end{aligned}
$$

and consequently,

$$
\left|\int_{\delta}^{n} D_{n}(s) d s\right| \leq \frac{1}{2 \pi}\left(2+\frac{54}{53}\right)
$$

Thus we may take it that $c=\frac{1}{2 \pi}\left(2+\frac{54}{53}\right)$.
Theorem 5.9.6 (Dirichlet-Jordan) Let f be a BV function on $[-\pi, \pi]$; then $\frac{1}{2} a_{0}+$ $\sum_{n=1}^{\infty}\left\{a_{n} \cos n t+b_{n} \sin n t\right\}=\lim _{n \rightarrow \infty} S_{n}(f, t)=\frac{1}{2}\{f(t-)+f(t+)\}$.

Proof Since f is the difference of two monotone increasing functions, we may assume without loss of generality that f is monotone increasing, and consider f as defined on $(-\pi, \pi]$ and then extend f to \mathbb{R} as a periodic function with period 2π. Now fix $t \in[-\pi, \pi]$. Given that $\varepsilon>0$, there is $\delta>0$ such that $f(t+s)-f(t+)<\frac{\varepsilon}{2 c}$ for $0<s \leq \delta$, where c is the constant in Lemma 5.9.2. We choose δ small enough so that $f(t+s)$ is monotone increasing in s on $[0, \delta]$, if $f(t+0)$ is understood to be $f(t+)$. Then, $\int_{0}^{\delta}\{f(t+s)-f(t+)\} D_{n}(s) d s=\{f(t+\delta)-f(t+)\} \int_{\delta^{\prime}}^{\delta} D_{n}(s) d s$ for some $\delta^{\prime} \in[0, \delta]$ by the second-mean value theorem, and hence

$$
\left|\int_{0}^{\delta}\{f(t+s)-f(t+)\} D_{n}(s) d s\right|<\frac{\varepsilon}{2 c} \cdot c=\frac{\varepsilon}{2}
$$

Now,

$$
\begin{aligned}
& \left.\left|\int_{0}^{\pi} f(t+s) D_{n}(s) d s-\frac{1}{2} f(t+)\right|=\mid \int_{0}^{\pi}\{f(t+s)-f(t+)\} D_{n}(s) d s\right\} \\
\leq & \left|\int_{0}^{\delta}\{f(t+s)-f(t+)\} D_{n}(s) d s\right|+\left|\int_{\delta}^{\pi}\{f(t+s)-f(t+)\} D_{n}(s) d s\right| \\
< & \frac{\varepsilon}{2}+\left|\frac{1}{2 \pi} \int_{\delta}^{\pi} \frac{f(t+s)-f(t+)}{\sin \frac{1}{2} s} \cdot \sin \left(n+\frac{1}{2}\right) s d s\right|<\varepsilon
\end{aligned}
$$

if n is sufficiently large, by the Riemann-Lebesgue lemma, because the function $s \mapsto \frac{f(t+s)-f(t+)}{\sin \frac{1}{2} s}$ is integrable on $[\delta, \pi]$. Thus $\lim _{n \rightarrow \infty} \int_{0}^{\pi} f(t+s) D_{n}(s) d s=$ $\frac{1}{2} f(t+)$. Similarly, $\lim _{n \rightarrow \infty} \int_{-\pi}^{0} f(t+s) D_{n}(s) d s=\frac{1}{2} f(t-)$. Consequently, $\lim _{n \rightarrow \infty}$ $\int_{-\pi}^{\pi} f(\mathrm{t}+\mathrm{s}) D_{n}(s) d s=\lim _{n \rightarrow \infty} S_{n}(f, t)=\frac{1}{2}\{f(t-)+f(t+)\}$.

5.10 Weak convergence

The concept of limit for sequences in a metric space is defined in Section 1.4 in terms of the metric of the space. When normed vector spaces are concerned, there is a weaker form of concept of limit for sequences, towards the introduction of which we now turn.

Suppose that X is a n.v.s. and $\left\{x_{k}\right\}$ a sequence in X. If $x \in X$ satisfies $\left\langle x, x^{*}\right\rangle=$ $\lim _{k \rightarrow \infty}\left\langle x_{k}, x^{*}\right\rangle$ for every $x^{*} \in X^{*}, x$ is called a weak limit of the sequence $\left\{x_{k}\right\}$; since X^{*} separates points of X, if x is a weak limit of $\left\{x_{k}\right\}$, it is the only weak limit of $\left\{x_{k}\right\}$, and hence is the weak limit of $\left\{x_{k}\right\}$ and is denoted by $w-\lim _{k \rightarrow \infty} x_{k}$. We often write $x_{k} \rightharpoonup x$ to indicate that $x=w$-lim $k \rightarrow \infty$ x x_{k}. To distinguish between weak limit and limit defined in terms of the norm of X, the latter is called the limit in norm and we employ notation $x=\lim _{k \rightarrow \infty} x_{k}$ or $x_{k} \rightarrow x$ to mean that x is the limit of $\left\{x_{k}\right\}$ in norm. If the weak (norm) limit of a sequence exists, the sequence is said to be weakly convergent (convergent in norm) or is said to converge weakly (in norm). Clearly, in a Hilbert space E, $x=w-\lim _{k \rightarrow \infty} x_{k}$ if and only if $(x, y)=\lim _{x \rightarrow \infty}\left(x_{k}, y\right)$ for all $y \in E$, and $x_{k} \rightarrow x$ implies that $x_{k} \rightharpoonup x$.

Proposition 5.10.1 A weakly convergent sequence in a n.v.s. X is bounded.
Proof Let $\left\{x_{k}\right\}$ be a weakly convergent sequence in X. For $k \in \mathbb{N}$, let l_{k} be the bounded linear functional on X^{*}, defined by $l_{k}\left(x^{*}\right)=\left\langle x_{k}, x^{*}\right\rangle$ for $x^{*} \in X^{*}$. Note that X^{*} is a Banach space and by Theorem 5.5.2, $\left\|l_{k}\right\|=\left\|x_{k}\right\|$ for $k \in \mathbb{N}$. Let $x=w-\lim _{k \rightarrow \infty} x_{k}$, then since $\lim _{k \rightarrow \infty}\left|l_{k}\left(x^{*}\right)\right|=\left|\left\langle x, x^{*}\right\rangle\right|, \sup _{k}\left|l_{k}\left(x^{*}\right)\right|<\infty$ for each $x^{*} \in X^{*}$. By the principle of uniform boundedness (Theorem 5.1.3), $\sup _{k}\left\|l_{k}\right\|=\sup _{k}\left\|x_{k}\right\|<\infty$.

Remark Proposition 5.10.1 is actually contained in Theorem 5.1.4.

Exercise 5.10.1 Show that a bounded sequence $\left\{x_{k}\right\}$ converges to x weakly in a n.v.s. X if and only if there is $S \subset X^{*}$ such that $\langle S\rangle$ is dense in X^{*} and $\left\langle x, x^{*}\right\rangle=\lim _{k \rightarrow \infty}\left\langle x_{k}, x^{*}\right\rangle$ for $x^{*} \in S$.

Exercise 5.10.2 Show that a sequence $\left\{x_{n}\right\}$ in a finite-dimensional n.v.s. X converges weakly if and only if it converges in norm.

Theorem 5.10.1 Every bounded sequence $\left\{x_{k}\right\}$ in a Hilbert space E has a subsequence which converges weakly in E.

Proof Let F be the closure of $\left\langle\left\{x_{k}\right\}\right\rangle$ in E, then F is a Hilbert space with inner product inherited from E. Put $\sup _{k}\left\|x_{k}\right\|=M<\infty$. We show first that $\left\{x_{k}\right\}$ has a subsequence which converges weakly in F.

Since $\left\{\left(x_{k}, x_{1}\right)\right\}_{k}$ is a bounded sequence in \mathbb{C}, there is a subsequence $\left\{x_{k}^{(1)}\right\}$ of $\left\{x_{k}\right\}$ such that $\lim _{k \rightarrow \infty}\left(x_{k}^{(1)}, x_{1}\right)$ exists. Suppose now that sequences $\left\{x_{k}^{(1)}\right\}, \ldots,\left\{x_{k}^{(n)}\right\}$ have been chosen so that each of them except the first is a subsequence of the preceding one and $\lim _{k \rightarrow \infty}\left(x_{k}^{(n)}, x_{j}\right)$ exists for $j=1, \ldots, n$. Since $\left\{\left(x_{k}^{(n)}, x_{n+1}\right)\right\}$ is bounded, there is a subsequence $\left\{x_{k}^{(n+1)}\right\}$ of $\left\{x_{k}^{(n)}\right\}$ such that $\lim _{k \rightarrow \infty}\left(x_{k}^{(n+1)}, x_{n+1}\right)$ exists. Clearly, $\lim _{k \rightarrow \infty}\left(x_{k}^{(n+1)}, x_{j}\right)$ exists for $j=1, \ldots, n$, because $\left\{x_{k}^{(n+1)}\right\}$ is a subsequence of $\left\{x_{k}^{(n)}\right\}$. We have therefore obtained a sequence $\left\{x_{k}^{(1)}\right\},\left\{x_{k}^{(2)}\right\}, \ldots,\left\{x_{k}^{(n)}\right\}, \ldots$ of subsequences of $\left\{x_{k}\right\}$ such that $\left\{x_{k}^{(n+1)}\right\}$ is a subsequence of $\left\{x_{k}^{(n)}\right\}$ for each $n \in \mathbb{N}$ and where $\lim _{k \rightarrow \infty}\left(x_{k}^{(n)}, x_{j}\right)$ exists for $j=1, \ldots, n$. Now, $\left\{x_{k}^{(k)}\right\}$ is a subsequence of $\left\{x_{k}\right\}$ and $\lim _{k \rightarrow \infty}\left(x_{k}^{(k)}, x_{j}\right)$ exists for each $j \in \mathbb{N}$. For convenience, put $y_{k}=x_{k}^{(k)}$ for $k \in \mathbb{N}$, then $\lim _{k \rightarrow \infty}\left(y_{k}, z\right)$ exists for $z \in\left\langle\left\{x_{k}\right\}\right\rangle$. Let $l(z)=\overline{\lim _{k \rightarrow \infty}\left(y_{k}, z\right)}$, then l is a linear functional on $\left\langle\left\{x_{k}\right\}\right\rangle$; obviously, $|l(z)| \leq M\|z\|$ for $z \in\left\langle\left\{x_{k}\right\}\right\rangle$, hence l is bounded on $\left\langle\left\{x_{k}\right\}\right\rangle$, and can be extended uniquely to be a bounded linear functional on F, still denoted by l. By the Riesz representation theorem, there is unique $x \in F$ such that $l(u)=(u, x)$ for $u \in F$; in particular, for $z \in\left\langle\left\{x_{k}\right\}\right\rangle,(z, x)=\overline{\lim _{k \rightarrow \infty}\left(y_{k}, z\right)}$ i.e. $(x, z)=\lim _{k \rightarrow \infty}\left(y_{k}, z\right)$. Since $\left\langle\left\{x_{k}\right\}\right\rangle$ is dense in $F, y_{k} \rightharpoonup x$ in F, by Exercise 5.10.1.

We claim now that $y_{k} \rightharpoonup x$ in E. Let $u \in E$, then $u=z+v$, where $z \in F$ and $v \in F^{\perp}$, by Corollary 5.6.1. Thus,

$$
(x, u)=(x, z+v)=(x, z)=\lim _{k \rightarrow \infty}\left(y_{k}, z\right)=\lim _{k \rightarrow \infty}\left(y_{k}, z+v\right)=\lim _{k \rightarrow \infty}\left(y_{k}, u\right)
$$

and hence $y_{k} \rightharpoonup x$ in E.
Exercise 5.10.3 Suppose that $\left\{e_{k}\right\}$ is an orthonormal sequence in a Hilbert space E. Show that $e_{k} \rightharpoonup 0$, but 0 is not a limit of $\left\{e_{k}\right\}$ in norm. (Hint: for $x \in E$, $\left.\sum_{k=1}^{\infty}\left|\left(x, e_{k}\right)\right|^{2} \leq\|x\|^{2}.\right)$

Exercise 5.10.4 (Cf. Example 2.7.2) Show that if $1<p<\infty$, then $f_{n} \rightharpoonup f$ in $l^{p}(\Omega)$ if and only if $\sup _{n}\left\|f_{n}\right\|_{p}<\infty$ and $f_{n}(\omega) \rightarrow f(\omega)$ for all $\omega \in \Omega$.

Exercise 5.10.5 Suppose that X is a reflexive Banach space and $\left\{x_{n}\right\}$ is a bounded sequence in X. Assume that X^{*} is separable and let $\left\{x_{1}^{*}, x_{2}^{*}, \ldots\right\}$ be a countable dense set in X^{*}. Show that $\left\{x_{n}\right\}$ has a subsequence which converges weakly by the following steps.
(i) Show that $\left\{x_{n}\right\}$ has a subsequence $\left\{y_{n}\right\}$ such that $\lim _{n \rightarrow \infty}\left\langle y_{n}, x_{k}^{*}\right\rangle$ exists and is finite for all $k \in \mathbb{N}$.
(ii) Show that $\lim _{n \rightarrow \infty}\left\langle y_{n}, x^{*}\right\rangle$ exists and is finite for all $x^{*} \in X^{*}$.
(iii) Put $l\left(x^{*}\right)=\lim _{n \rightarrow \infty}\left\langle y_{n}, x^{*}\right\rangle$. Show that $l \in X^{* *}$, and there is $x \in X$ such that $l\left(x^{*}\right)=\left\langle x, x^{*}\right\rangle$ for all $x^{*} \in X^{*}$.

Theorem 5.10.2 (Banach-Saks) If $\left\{x_{k}\right\}$ is a bounded sequence in a Hilbert space E, then it has a subsequence $\left\{y_{k}\right\}$ such that $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{k=1}^{n} y_{k}$ in norm exists.
Proof There is a subsequence $\left\{z_{k}\right\}$ of $\left\{x_{k}\right\}$ and $x \in E$ such that $z_{k} \rightharpoonup x$, by Theorem 5.10.1. Let $\hat{z}_{k}=z_{k}-x$, then $\hat{z}_{k} \rightharpoonup 0$. Choose inductively a subsequence $\left\{\hat{y}_{k}\right\}$ of $\left\{\hat{z}_{k}\right\}$ so that

$$
\left|\left(\hat{y}_{1}, \hat{y}_{n+1}\right)\right| \leq \frac{1}{n}, \ldots,\left|\left(\hat{y}_{n}, \hat{y}_{n+1}\right)\right| \leq \frac{1}{n}
$$

for all $n \in \mathbb{N}$. Then,

$$
\begin{aligned}
\left\|n^{-1} \sum_{k=1}^{n} \hat{y}_{k}\right\|^{2} & =n^{-2} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(\hat{y}_{i}, \hat{y}_{j}\right) \\
& =n^{-2}\left\{\sum_{i=1}^{n}\left(\hat{y}_{i}, \hat{y}_{i}\right)+2 \sum_{1 \leq i<j \leq n} \operatorname{Re}\left(\hat{y}_{i}, \hat{y}_{j}\right)\right\} \\
& \leq n^{-2}\left\{n C+2 \sum_{j=2}^{n} \sum_{i=1}^{j-1}\left|\left(\hat{y}_{i}, \hat{y}_{j}\right)\right|\right\} \\
& \leq n^{-2}\{n C+2(n-1)\}<n^{-1}\{C+2\}
\end{aligned}
$$

where $C=\sup _{n}\left\{\left\|\hat{y}_{n}\right\|^{2}\right\} \leq \sup _{n}\left(\left\|x_{n}\right\|+\|x\|\right)^{2}<\infty$. Thus $\lim _{n \rightarrow \infty} n^{-1} \sum_{k=1}^{n} \hat{y}_{k}=0$. We complete the proof by letting $y_{k}=\hat{y}_{k}+x$.
Theorems 5.10.1 and 5.10.2 have already shown the relevance of weak convergence, in that in terms of weak convergence, bounded sets in a Hilbert space reveal a certain compactness property. We shall now apply Theorem 5.10.1 to prove a mean ergodic theorem of F. Riesz which shows that bounded linear operators from a Hilbert space into itself of a certain kind have eigenvalue 1 whose eigenspace can be explicitly described.

In the following, we fix a bounded linear operator T from a Hilbert space E into itself, having the property that $\left\|T^{n}\right\| \leq \alpha<\infty$ for all $n \in \mathbb{N}$ for some $\alpha>0$. Let $T_{1}=T$ and $T_{n}=\frac{1}{n}\left\{T+T^{2}+\cdots+T^{n}\right\}$ for $n \geq 2$, and for $x \in E$, put $x_{n}=T_{n} x$ for $n \in \mathbb{N}$.
Lemma 5.10.1 If $x \in \overline{(1-T) E}$, then $\lim _{n \rightarrow \infty}\left\|x_{n}\right\|=0$.

Proof If $x \in(1-T) E$, i.e. $x=y-T y$ for some y in E, then

$$
x_{n}=(y-T y)_{n}=\frac{1}{n}\left\{T(y-T y)+\cdots+T^{n}(y-T y)\right\}=\frac{1}{n}\left\{T y-T^{n+1} y\right\}
$$

and hence, $\left\|x_{n}\right\| \leq \frac{2 \alpha}{n}\|y\|$, from which $\left\|x_{n}\right\| \rightarrow 0$ follows. Now suppose that $x \in$ $\overline{(1-T) E}$. Given $\varepsilon>0$, there is $z \in(1-T) E$ such that $\|x-z\|<\frac{\varepsilon}{2 \alpha}$. It is clear that $\left\|(x-z)_{n}\right\| \leq \alpha\|x-z\|<\frac{\varepsilon}{2}$. Since $\left\|z_{n}\right\| \rightarrow 0$, by the first part of the proof, there is $n_{0} \in \mathbb{N}$ such that $\left\|z_{n}\right\|<\frac{\varepsilon}{2}$ whenever $n \geq n_{0}$, hence, $\left\|x_{n}\right\|=\left\|z_{n}+(x-z)_{n}\right\| \leq$ $\left\|z_{n}\right\|+\left\|(x-z)_{n}\right\|<\left\|z_{n}\right\|+\frac{\varepsilon}{2}<\varepsilon$ whenever $n \geq n_{0}$. Thus $\left\|x_{n}\right\| \rightarrow 0$.

Lemma 5.10.2 If x_{∞} is the weak limit of a subsequence of $\left\{x_{n}\right\}$, then x_{∞} is a fixed point of T, i.e. $T x_{\infty}=x_{\infty}$.

Proof Let $\left\{x_{n_{k}}\right\}$ be a subsequence of $\left\{x_{n}\right\}$ such that $w-\lim _{k \rightarrow \infty} x_{n_{k}}=x_{\infty}$. Since $T T_{n} x-T_{n} x=T_{n} T x-T_{n} x=T_{n}(T x-x)=(T x-x)_{n}, \quad\left\|T T_{n} x-T_{n} x\right\| \rightarrow 0, \quad$ by Lemma 5.10.1 and hence $T T_{n_{k}} x \rightharpoonup x_{\infty}$. But, since for each $y \in E,(T z, y)=(z, \hat{y})$ for some $\hat{y} \in E$ and for all $z \in E$ by the Riesz representation theorem, we have $\left(T T_{n_{k}} x, y\right)=\left(x_{n_{k}}, \hat{y}\right) \rightarrow\left(x_{\infty}, \hat{y}\right)=\left(T x_{\infty}, y\right)$ and consequently, $T T_{n_{k}} x \rightharpoonup T x_{\infty} . \mathrm{We}$ infer from this last fact and the fact that $T T_{n_{k}} x \rightharpoonup x_{\infty}$, that $T_{x_{\infty}}=x_{\infty}$.

To prepare for the statement of the mean ergodic theorem of Riesz, we shall say that a sequence $\left\{T_{n}\right\} \subset L(X, Y)$ converges strongly to $T \in L(X, Y)$ if $\lim _{n \rightarrow \infty} T_{n} x=T x$ for all $x \in X$, where X and Y are n.v.s.'s over the same scalar field \mathbb{C} or \mathbb{R}. To distinguish this mode of convergence, if $\lim _{n \rightarrow \infty}\left\|T_{n}-T\right\|=0$, we say that T_{n} converges in operator norm to T.

Theorem 5.10.3 (Mean ergodic theorem of Riesz) T_{n} converges strongly in $L(E)$ to a linear operator T_{∞} with the property that $T T_{\infty}=T_{\infty}$.
Proof For $x \in E,\left\|x_{n}\right\|=\left\|\frac{1}{n}\left\{T x+\cdots+T^{n} x\right\}\right\| \leq \alpha\|x\|$, hence $\left\{x_{n}\right\}$ is a bounded sequence in E. $\left\{x_{n}\right\}$ has a subsequence $\left\{x_{n_{k}}\right\}$ which converges weakly to x_{∞} in E. We know from Lemma 5.10 .2 that $T x_{\infty}=x_{\infty}$, and hence $\left(x_{\infty}\right)_{n}=x_{\infty}$. We claim that $\lim _{n \rightarrow \infty} x_{n}=x_{\infty}$, i.e. x_{n} converges strongly to x_{∞}. Now, $x_{n}=\left(x_{\infty}+\left\{x-x_{\infty}\right\}\right)_{n}=$ $\left(x_{\infty}\right)_{n}+\left(x-x_{\infty}\right)_{n}=x_{\infty}+\left(x-x_{\infty}\right)_{n}$, thus $\left\|x_{n}-x_{\infty}\right\|=\left\|\left(x-x_{\infty}\right)_{n}\right\|$; to verify the claim it is sufficient to show that $x-x_{\infty} \in \overline{(1-T) E}$, by Lemma 5.10.1. To see this, let Y be the orthogonal complement of $(1-T) E$ in E and observe that $x-x_{k_{n}}=\frac{1}{n_{k}}\{(x-$ $\left.T x)+\cdots+\left(x-T^{n_{k}} x\right)\right\}$ is in $(1-T) E$, because $\left(x-T^{m} x\right)=(1-T)(1+T+\cdots+$ $\left.T^{m-1}\right) x \in(1-T) E$ for each $m \in \mathbb{N}$; then for $y \in Y$, we have $\left(x-x_{n_{k}}, y\right)=0$, which implies that

$$
\left(x-x_{\infty}, y\right)=\lim _{k \rightarrow \infty}\left(x-x_{n_{k}}, y\right)=0
$$

i.e. $x-x_{\infty} \in Y^{\perp}=\overline{(1-T) E}$. Thus we have shown that $\left\|x_{n}-x_{\infty}\right\| \rightarrow 0$. This last fact shows in particular that all weakly convergent subsequences of $\left\{x_{n}\right\}$ converge weakly to the same element x_{∞}. Let $x_{\infty}=T_{\infty} x$, then T_{∞} is a linear operator from E
into E and is the strong limit of $\left\{T_{n}\right\}$, i.e. $T_{\infty} x=\lim _{n \rightarrow \infty} T_{n} x$. That T_{∞} is a bounded linear operator follows from the Banach-Steinhaus theorem (Theorem 5.1.4). From Lemma 5.10.2, $T x_{\infty}=x_{\infty}$ and consequently, $T T_{\infty} x=T_{\infty} x$, or $T T_{\infty}=T_{\infty}$.

Corollary 5.10.1 $T T_{\infty}=T_{\infty}=T_{\infty} T=T_{\infty}^{2}$.
Proof From $T T_{\infty}=T_{\infty}$, it follows that $T^{n} T_{\infty}=T_{\infty}$ and $T_{n} T_{\infty}=T_{\infty}$ for all $n \in \mathbb{N}$; by letting $n \rightarrow \infty$ in the last equality, we obtain $T_{\infty}^{2}=T_{\infty}$. To see that $T_{\infty} T=T_{\infty}$, note first that $T_{n} T-T_{n}=\frac{1}{n}\left(T^{n+1}-T\right)$ and hence $\left\|T_{n} T x-T_{n} x\right\| \leq \frac{2 \alpha}{n}\|x\|$ for all $x \in E$; thus $T_{\infty} T=T_{\infty}$ follows.

Exercise 5.10.6 Show that 1 is an eigenvalue of T and $T_{\infty} E$ is the eigenspace of T belonging to the eigenvalue 1 .

The well-known ergodic theorem of J . von Neumann is a consequence of Theorem 5.10.3, as we shall now show.

Let (Ω, Σ, p) be a probability space. A bijective map $T: \Omega \rightarrow \Omega$ is called a flow on (Ω, Σ, p) if T is measurable and measure preserving.

Theorem 5.10.4 (von Neumann mean ergodic theorem) Suppose that T is a flow on a probability space (Ω, Σ, p). Define a linear operator \widehat{T} from $L^{2}(\Omega, \Sigma, p)$ to itself by

$$
(\widehat{T} f)(\omega)=f \circ T(\omega), \omega \in \Omega, f \in L^{2}(\Omega, \Sigma, p) ;
$$

and let $\widehat{T}_{n}=\frac{1}{n}\left\{\widehat{T}+\cdots+\widehat{T}^{n}\right\}$. Then for $f \in L^{2}(\Omega, \Sigma, p), \widehat{T}_{n} f \rightarrow f^{*}$ in $L^{2}(\Omega, \Sigma, p)$. Furthermore, $\widehat{T} f^{*}=f^{*}$ i.e. $f^{*}(T \omega)=f^{*}(\omega)$ for a.e. $\omega \in \Omega$.
Proof Since T is a flow on $(\Omega, \Sigma, p),\|\widehat{T} f\|=\|f\|$ for all $f \in L^{2}(\Omega, \Sigma, p)$. Hence $\|\widehat{T}\|=1$ and $\left\|\widehat{T}^{n}\right\| \leq\|\widehat{T}\|^{n}=1$ for all $n \in \mathbb{N}$. The theorem follows from Theorem 5.10.3.

A flow T on (Ω, Σ, p) is called an ergodic flow if for each $f \in L^{2}(\Omega, \Sigma, p)$, the element f^{*} in the conclusion of Theorem 5.10.4 is constant a.e. on Ω.
Corollary 5.10.2 Suppose that T is an ergodic flow on (Ω, Σ, p) and $\widehat{T}, \widehat{T}_{n}, n \in \mathbb{N}$, are defined as in Theorem 5.10.4. Then for $f \in L^{2}(\Omega, \Sigma, p), \widehat{T}_{n} f \rightarrow \int_{\Omega} f d p$ in $L^{2}(\Omega, \Sigma, p)$.
Proof For $f \in L^{2}(\Omega, \Sigma, p)$, let f^{*} be as in Theorem 5.10.4. Since $\widehat{T}_{n} f \rightarrow f^{*}$ in $L^{2}(\Omega, \Sigma, p), \widehat{T}_{n} f \rightarrow f^{*}$ in $L^{1}(\Omega, \Sigma, p)$ and, a fortiori, $\lim _{n \rightarrow \infty} \int_{\Omega} \widehat{T}_{n} f d p=\int_{\Omega} f^{*} d p ;$ but $\int_{\Omega} \widehat{T} f d p=\int_{\Omega} \widehat{T}^{2} f d p=\cdots=\int_{\Omega} \widehat{T}_{n} f d p=\cdots=\int_{\Omega} f d p$, from the fact that T is measure preserving, hence $\int_{\Omega} f^{*} d p=\int_{\Omega} f d p$. Now that $f^{*}=$ constant a.e. implies $f^{*}=\int_{\Omega} f d p$ a.e.

- L^{p} Spaces

L^{p} spaces are the most interesting examples of Banach spaces and play a salient role in modern analysis. In this chapter basic features of L^{p} spaces are studied; in particular, their dual spaces are identified. Special attention is directed towards $L^{p}(\Omega)$ where Ω is an open set in \mathbb{R}^{n}, for example, convolution and maximal function operators in L^{p}, are treated. An important class of function spaces, which is related to L^{p} spaces and was first introduced by S.L. Sobolev in his study of equations of mathematical physics, is briefly introduced in the last section of the chapter. Further study of this class of spaces is taken up in Chapter 7 by applying the method of Fourier integrals.

Some useful inequalities for functions in L^{p} spaces are collected in the first section for later reference. The second section on signed and complex measures is primarily preliminary in nature for this chapter, but it also has its own merit of interest, as is shown by the Riesz representation theorem in the concluding part of the section.

6.1 Some inequalities

Some inequalities which appear frequently in studies related to L^{p} spaces are collected here for later reference.

6.1.1 Markov inequality

Let $f \in L^{p}(\Omega, \Sigma, \mu), 1 \leq p<\infty$, then

$$
\begin{equation*}
\mu(\{|f| \geq \lambda\}) \leq \lambda^{-p}\|f\|_{p}^{p} \tag{6.1}
\end{equation*}
$$

for all $\lambda>0$.
The inequality (6.1), called the Markov inequality, follows readily from the sequence of inequalities,

$$
\lambda^{p} \mu\left(\{|f| \geq \lambda) \leq \int_{\{|f| \geq \lambda\}}|f|^{p} d \mu \leq\|f\|_{p}^{p}\right.
$$

Remark Since $\lim _{\lambda \rightarrow \infty} \mu\{|f| \geq \lambda\}=0$ by (6.1), it follows from Exercise 2.5.9 (iii) that $\lim _{\lambda \rightarrow \infty} \int_{\{|f| \geq \lambda\}}|f|^{p} d \mu=0$, and hence

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} \lambda^{p} \mu(\{|f| \geq \lambda\})=0 . \tag{6.2}
\end{equation*}
$$

6.1.2 Chebyshev inequality

Let $f \in L^{2}(\Omega, \Sigma, P)$, where (Ω, Σ, P) is a probability space, then the following Chebyshev inequality is a special case of (6.1):

$$
\begin{equation*}
P\left(\{|f-E(f)| \geq \lambda) \leq \lambda^{-2} \operatorname{Var}(f)\right. \tag{6.3}
\end{equation*}
$$

where $E(f)=\int_{\Omega} f d P$ and $\operatorname{Var}(f)=\int_{\Omega}|f-E(f)|^{2} d P$.
Remark A measurable function f on a probability space is called a random variable. If $\int_{\Omega} f d P$ exists, it is called the expectation of the random variable f and is denoted by $E(f)$; if $E(f)$ is finite, $\int_{\Omega}|f-E(f)|^{2} d P$ is called the variance of f and is denoted by $\operatorname{Var}(f)$. The significance of Chebyshev inequality in probability theory will become clear when the concept of independence is introduced in Chapter 7.

6.1.3 Jensen inequality

Suppose that φ is a convex function defined on \mathbb{R}, and f is an integrable function on a probability space (Ω, Σ, P), then

$$
\begin{equation*}
\varphi(E(f)) \leq E(\varphi \circ f) \tag{6.4}
\end{equation*}
$$

This inequality is referred to as the Jensen inequality. For the verification of (6.4), let us put $x=E(f)$ and choose $m \in\left[\varphi_{-}^{\prime}(x), \varphi_{+}^{\prime}(x)\right]$. By Proposition 5.4.1 (iv),

$$
\varphi(x)+m(y-x) \leq \varphi(y)
$$

for all $y \in \mathbb{R}$, and hence,

$$
\begin{equation*}
\varphi(x)+m(f(\omega)-x) \leq \varphi(f(\omega)) \tag{6.5}
\end{equation*}
$$

for all $\omega \in \Omega$. It follows from (6.5) that

$$
\{\varphi \circ f\}^{-} \leq|\varphi(x)|+|m||f|+|m x|,
$$

and therefore $\{\varphi \circ f\}^{-}$is integrable; consequently, $\int_{\Omega} \varphi \circ f d P$ exists. We can then integrate both sides of (6.5) over Ω to obtain

$$
\varphi(x)+m(E(f)-x) \leq E(\varphi \circ f),
$$

which reduces to (6.4), because $x=E(f)$. Thus the Jensen inequality is verified.

Remark If (Ω, Σ, μ) is a finite measure space and f is integrable on (Ω, Σ, μ), then the Jensen inequality leads to

$$
\begin{equation*}
\varphi\left(\frac{1}{\mu(\Omega)} \int_{\Omega} f d \mu\right) \leq \frac{1}{\mu(\Omega)} \int_{\Omega} \varphi \circ f d \mu \tag{6.6}
\end{equation*}
$$

In particular, $\left|\frac{1}{\mu(\Omega)} \int_{\Omega} f d \mu\right|^{p} \leq \frac{1}{\mu(\Omega)} \int|f|^{p} d \mu$ for $1 \leq p<\infty$.

6.1.4 Extended Hölder inequality

Suppose that $f_{1}, \ldots, f_{n}, n \geq 3$, are measurable functions on a measure space (Ω, Σ, μ) and let $p_{1} \geq 1, p_{2} \geq 1, \ldots, p_{n} \geq 1$ be extended real numbers such that $\sum_{i=1}^{n} p_{i}^{-1}=1$, then the following extended Hölder inequality holds:

$$
\begin{equation*}
\int_{\Omega}\left|\prod_{i=1}^{n} f_{i}\right| d \mu \leq \prod_{i=1}^{n}\left\|f_{i}\right\|_{p_{i}} \tag{6.7}
\end{equation*}
$$

To see that (6.7) holds, it is sufficient to consider the case where $n=3$; then (6.7) follows inductively. So consider the case where $n=3$ and let $p^{-1}=\frac{1}{p_{1}}+\frac{1}{p_{2}}$. Since p and p_{3} are conjugate exponents, by the Hölder inequality, we have

$$
\begin{equation*}
\int_{\Omega}\left|f_{1} f_{2} f_{3}\right| d \mu \leq\left\|f_{1} f_{2}\right\|_{p} \cdot\left\|f_{3}\right\|_{p_{3}} \tag{6.8}
\end{equation*}
$$

Then put $p^{\prime}=\frac{p_{1}}{p}, q^{\prime}=\frac{p_{2}}{p}$ and apply the Hölder inequality, to obtain

$$
\begin{aligned}
\left\|f_{1} f_{2}\right\|_{p}^{p} & =\int_{\Omega}\left|f_{1}\right|^{p}\left|f_{2}\right|^{p} d \mu \leq\left(\int_{\Omega}\left|f_{1}\right|^{p p^{\prime}} d \mu\right)^{1 / p^{\prime}}\left(\int_{\Omega}\left|f_{2}\right|^{p q^{\prime}} d \mu\right)^{1 / q^{\prime}} \\
& =\left\|f_{1}\right\|_{p_{1}}^{p}\left\|f_{2}\right\|_{p_{2}}^{p}
\end{aligned}
$$

or $\left\|f_{1} f_{2}\right\|_{p} \leq\left\|f_{1}\right\|_{p_{1}} \cdot\left\|f_{2}\right\|_{p_{2}}$. This last inequality and (6.8) imply that (6.7) holds when $n=3$.

Exercise 6.1.1 Suppose that Ω is a measurable subset of \mathbb{R}^{n} with $\lambda^{n}(\Omega)>0$, and f is a measurable function on Ω. Show that $f \in L^{p}(\Omega), 1 \leq p<\infty$, if and only if for every $\varepsilon>0$, there is a closed set $F \subset \Omega$ and a bounded continuous function g in $L^{p}\left(\mathbb{R}^{n}\right)$, such that $\lambda^{n}(\Omega \backslash F)<\varepsilon, f=g$ on F, and $\|f-g\|_{p}<\varepsilon$. (Hint: cf. (6.2) and Theorem 4.1.3.)

Exercise 6.1.2 Suppose that $\left\{f_{n}\right\}_{n \in \mathbb{N}}$ is an orthonormal system in $L^{2}(\Omega, \Sigma, \mu)$. Show that for any $\varepsilon>0$,

$$
\lim _{n \rightarrow \infty} \mu\left(\left\{\frac{\left|\sum_{k=1}^{n} f_{k}\right|}{n} \geq \varepsilon\right\}\right)=0
$$

Exercise 6.1.3 Suppose that $\left\{f_{n}\right\}$ is a sequence in $L^{p}(\Omega, \Sigma, \mu), 1 \leq p<\infty$, which converges in $L^{p}(\Omega, \Sigma, \mu)$ to f. Show that $\left\{f_{n}\right\}$ has a subsequence which converges a.e. to f. (Hint: there are positive integers $n_{1}<n_{2}<\cdots<n_{k}<\cdots$ such that $\mu\left(\left\{\left|f_{n_{k}}-f\right| \geq \frac{1}{k}\right\}\right) \leq \frac{1}{k^{2}}$ for each $k \in \mathbb{N}$.)
Exercise 6.1.4 Suppose that $\sum_{n=1}^{\infty} \alpha_{n}=1$, where $\alpha_{n} \geq 0$ for each n. Show that if $\left\{\beta_{n}\right\}$ is a sequence of real numbers such that $\sum_{n=1}^{\infty} \alpha_{n}\left|\beta_{n}\right|<\infty$, then

$$
\left|\sum_{n=1}^{\infty} \alpha_{n} \beta_{n}\right|^{p} \leq \sum_{n=1}^{\infty} \alpha_{n}\left|\beta_{n}\right|^{p}
$$

for $1 \leq p<\infty$.

6.2 Signed and complex measures

So far the integration is taken with respect to a measure on a measurable space (Ω, Σ), where a measure is understood to be a nonnegative σ-additive set function defined on Σ. But there naturally appear set functions which may take negative values, such as electric charges, and integration with respect to such set functions is a useful construct, such as the potential of the electric charge distribution. Our purpose in this section is firstly to generalize the concept of measure to cover situations when negative values might be assumed, and then to consider complex measures. In order to do this, we extend the concept of sum for systems of real numbers in Section 1.1 to systems which may contain ∞ or $-\infty$. This can be done naturally as follows. Let $\left\{c_{\alpha}\right\}_{\alpha \in I}$ be a system of extended real numbers; by considering $\left\{c_{\alpha}\right\}_{\alpha \in I}$ as a function on I, we say that the sum of $\left\{c_{\alpha}\right\}$ exists if its integral with respect to the counting measure on I exists. This integral is called the sum of $\left\{c_{\alpha}\right\}$ and is denoted by $\sum_{\alpha \in I} c_{\alpha}$, or $\sum_{\alpha} c_{\alpha}$ if I is clearly implied (cf. Examples 2.3.1 and 2.3.3). Note that $\left\{c_{\alpha}\right\}$ is summable if and only if $\sum_{\alpha} c_{\alpha}$ exists and is finite.

Let (Ω, Σ) be a measurable space; a set function $\sigma: \Sigma \rightarrow \overline{\mathbb{R}}=\mathbb{R} \cup\{-\infty, \infty\}$ is called a signed measure on (Ω, Σ) if
(i) $\sigma(\emptyset)=0$;
(ii) if $\left\{A_{n}\right\} \subset \Sigma$ is a disjoint sequence, then the sum $\sum_{n} \sigma\left(A_{n}\right)$ exists and

$$
\begin{equation*}
\sigma\left(\bigcup_{n} A_{n}\right)=\sum_{n} \sigma\left(A_{n}\right) . \tag{6.9}
\end{equation*}
$$

We remark first that if $\sigma\left(\bigcup_{n=1}^{\infty} A_{n}\right)$ is finite, then $\sum_{n} \sigma\left(A_{n}\right)$ on The righthand side of (6.9) can be written as $\sum_{n=1}^{\infty} \sigma\left(A_{n}\right)$ which necessarily converges absolutely, because $\bigcup_{n=1}^{\infty} A_{n}$ does not depend on the order of A_{1}, A_{2}, \ldots. Secondly, we call attention to the fact that condition (ii) in the above definition forces σ to satisfy condition (iii);
(iii) The signed measure σ does not take both ∞ and $-\infty$ as its value.

In fact, if $\sigma(A)=-\infty, \sigma(B)=\infty$ for A, B in Σ, then,

$$
\sigma(A \cup B)=\sigma(A \cap B)+\sigma\left(A \cap B^{c}\right)+\sigma\left(B \cap A^{c}\right)
$$

does not make sense, because $-\infty$ and ∞ both appear on the right-hand side in all possible situations, as can easily be seen.

For definiteness, we shall assume that in the sequel, condition (iii)' holds;
(iii) $\sigma(A)>-\infty$ for all $A \in \Sigma$.

Under this assumption, if $\left\{A_{n}\right\}$ is a disjoint sequence in Σ with $\sigma\left(\bigcup_{n} A_{n}\right)=\infty$, then $\sum_{n=1}^{\infty} \sigma\left(A_{n}\right)$ diverges to ∞.

Measures on Σ are certainly signed measures; to distinguish them from general signed measures, we shall sometimes refer to them as positive measures. Accordingly, if $\sigma(A) \leq 0$ for all $A \in \Sigma, \sigma$ is called a negative measure.

Example 6.2.1 Let (Ω, Σ, μ) be a measure space.
(i) Suppose that A_{1}, \ldots, A_{k} are disjoint sets from Σ with $\mu\left(A_{j}\right)<\infty, j=1, \ldots, k$ and let $\alpha_{1}, \ldots, \alpha_{k}$ be real numbers. Define σ on Σ by

$$
\sigma(A)=\sum_{j=1}^{k} \alpha_{j} \mu\left(A \cap A_{j}\right), \quad A \in \Sigma
$$

The set function σ is obviously a signed measure.
(ii) Suppose that f is a measurable function with $\int_{\Omega} f^{-} d \mu<\infty$, then

$$
\sigma(A)=\int_{A} f d \mu, \quad A \in \Sigma
$$

is a signed measure.
Remark Signed measure σ, defined in Example 6.2.1 (ii), is usually referred to as the indefinite integral of f; but when Ω is a metric space and $\mathcal{B}(\Omega) \subset \Sigma$, the indefinite integral of f is sometimes restricted to $\mathcal{B}(\Omega)$. This should not cause any confusion, because the definite meaning of an indefinite integral will be clear from the context (cf. Example 3.8.1).

Example 6.2.2 Consider the measurable space $(\mathbb{R}, \mathcal{B})$ where \mathcal{B} is the σ-algebra of all Borel sets in \mathbb{R}. Suppose that we order the set of all rational numbers by $\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}, \ldots$, and define σ on \mathcal{B} by

$$
\sigma(B)=\sum_{\gamma_{n} \in B}(-1)^{n} \frac{1}{n^{2}}, \quad B \in \mathcal{B} .
$$

Then σ is a signed measure which assumes only finite values.

Exercise 6.2.1 Verify the following statements. Let σ be a signed measure on (Ω, Σ). If $\left\{E_{n}\right\} \subset \Sigma$ and $E_{n} \nearrow$, then

$$
\sigma\left(\lim _{n \rightarrow \infty} E_{n}\right)=\sigma\left(\bigcup_{n} E_{n}\right)=\lim _{n \rightarrow \infty} \sigma\left(E_{n}\right) ;
$$

if, on the other hand, $E_{n} \searrow$ and $\sigma\left(E_{n}\right)<\infty$ for some n, then

$$
\sigma\left(\lim _{n \rightarrow \infty} E_{n}\right)=\sigma\left(\bigcap_{n} E_{n}\right)=\lim _{n \rightarrow \infty} \sigma\left(E_{n}\right) .
$$

Exercise 6.2.2 Show that if $|\sigma(E)|<\infty$, then $|\sigma(F)|<\infty$ for $F \subset E$.
We currently show that any signed measure is the difference of two positive measures, one of which is a finite measure.

In the following discussion, a fixed signed measure σ on a measurable space (Ω, Σ) is considered.

A set $E \in \Sigma$ is said to be positive (negative) if $\sigma(A \cap E) \geq 0(\leq 0)$ for all $A \in \Sigma$. Obviously, any measurable subset of a positive (negative) set is positive (negative). The empty set \emptyset is both positive and negative. Certainly, if $A_{1}, A_{2}, \ldots, A_{n}, \ldots$ are positive (negative), then so is $\bigcup_{n} A_{n}$.

The family of all positive sets will be denoted by \mathcal{P}_{σ}, and that of all negative sets by \mathcal{N}_{σ}.
Lemma 6.2.1 Let $\beta=\inf _{E \in \mathcal{N}_{\sigma}} \sigma(E)$; then $-\infty<\beta \leq 0$ and there is $B \in \mathcal{N}_{\sigma}$ such that $\sigma(B)=\beta$.

Proof There is a sequence $\left\{B_{n}\right\}$ in \mathcal{N}_{σ} such that

$$
\beta=\lim _{n \rightarrow \infty} \sigma\left(B_{n}\right) .
$$

Take $B=\bigcup_{n} B_{n}$, then $B \in \mathcal{N}_{\sigma}$, and for each k,

$$
\sigma(B)=\sigma\left(B_{k}\right)+\sigma\left(B \backslash B_{k}\right) \leq \sigma\left(B_{k}\right),
$$

hence $\sigma(B) \leq \lim _{k \rightarrow \infty} \sigma\left(B_{k}\right)=\beta$. But $\sigma(B) \geq \beta$, so $\sigma(B)=\beta$. Since $\sigma(B)>$ $-\infty$, we have $-\infty<\beta \leq 0$.

Theorem 6.2.1 (Hahn decomposition theorem) There are disjoint sets A and B in Σ such that
(i) $A \cup B=\Omega$;
(ii) $A \in \mathcal{P}_{\sigma}$ and $B \in \mathcal{N}_{\sigma}$.

Proof Let β and B be as in Lemma 6.2.1, and take $A=\Omega \backslash$. It remains to show that $A \in \mathcal{P}_{\sigma}$. Suppose the contrary. Then there is a measurable set $E_{0} \subset A$ such that $\sigma\left(E_{0}\right)<0$. Naturally E_{0} is not negative, because otherwise $B \cup E_{0}$ would be negative and $\sigma\left(B \cup E_{0}\right)=\sigma(B)+\sigma\left(E_{0}\right)<\beta$, contrary to the choice of β. Let k_{1} be the smallest positive integer such that E_{0} contains a measurable set E_{1} with $\sigma\left(E_{1}\right) \geq \frac{1}{k_{1}}$.

Now, since $\sigma\left(E_{0} \backslash E_{1}\right)=\sigma\left(E_{0}\right)-\sigma\left(E_{1}\right) \leq \sigma\left(E_{0}\right)-\frac{1}{k_{1}}<0$, we can repeat the above argument with E_{0} replaced by $E_{0} \backslash E_{1}$. So, let k_{2} be the smallest positive integer such that $E_{0} \backslash E_{1}$ contains a measurable set E_{2} with $\sigma\left(E_{2}\right) \geq \frac{1}{k_{2}}$. Continue in this fashion; we obtain a sequence of mutually disjoint measurable sets $E_{1}, E_{2}, \ldots, E_{n}, \ldots$ in E_{0} and a sequence $k_{1}, k_{2}, \ldots, k_{n}, \ldots$ of positive integers such that for each $n \geq 2, k_{n}$ is the smallest positive integer such that $E_{0} \backslash\left(E_{1} \cup \cdots \cup E_{n-1}\right)$ contains a measurable set E_{n} with $\sigma\left(E_{n}\right) \geq \frac{1}{k_{n}}$. Since $\bigcup_{n=1}^{\infty} E_{n} \subset E_{0}$ and $\left|\sigma\left(E_{0}\right)\right|<\infty,\left|\sigma\left(\bigcup_{n=1}^{\infty} E_{n}\right)\right|<\infty$ (see Exercise 6.2.2), and hence,

$$
\sum_{n=1}^{\infty} \frac{1}{k_{n}} \leq \sum_{n=1}^{\infty} \sigma\left(E_{n}\right)=\sigma\left(\bigcup_{n=1}^{\infty} E_{n}\right)
$$

Thus $\sum_{n=1}^{\infty} \frac{1}{k_{n}}$ is a convergent series, and as a consequence,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{k_{n}}=0 \tag{6.10}
\end{equation*}
$$

Let $F_{0}=E_{0} \backslash \bigcup_{n=1}^{\infty} E_{n}$, then $\sigma\left(F_{0}\right)=\sigma\left(E_{0}\right)-\sum_{n=1}^{\infty} \sigma\left(E_{n}\right) \leq \sigma\left(E_{0}\right)<0$. Consider a measurable set $F \subset F_{0}$; we claim that $\sigma(F) \leq 0$. If $\sigma(F)>0$, then $\sigma(F)>\frac{1}{n_{0}}$ for some positive integer n_{0}; but (6.10) implies that $n_{0}<k_{n}$ for sufficiently large n, thus contradicting the choice of k_{n} for such n 's, because $F \subset E_{0} \backslash \bigcup_{k=1}^{n-1} E_{k}$ for all n. Thus, $\sigma(F) \leq 0$ and consequently F_{0} is a negative set. But then $F_{0} \cup B$ is negative and $\sigma\left(F_{0} \cup B\right)<\beta$, contrary to the choice of β. The contradiction proves the theorem.

The pair (A, B) in the statement of Theorem 6.2 .1 is called a Hahn decomposition of Ω relative to the signed measure σ, or simply a σ-decomposition of Ω. In general, Hahn decomposition is not unique.

Exercise 6.2.3 Let σ be the signed measure of Example 6.2.2. Find two Hahn decompositions of \mathbb{R} relative to σ.

Lemma 6.2 .2 shows a close relation between any two Hahn decompositions of Ω relative to a signed measure σ.

Lemma 6.2.2 Let $\left(A_{1}, B_{1}\right)$ and $\left(A_{2}, B_{2}\right)$ be Hahn decompositions of Ω relative to the signed measure σ; then for any $E \in \Sigma$ the following relations hold:

$$
\sigma\left(E \cap A_{1}\right)=\sigma\left(E \cap A_{2}\right) ; \quad \sigma\left(E \cap B_{1}\right)=\sigma\left(E \cap B_{2}\right)
$$

Proof Since $A_{1} \backslash A_{2}$ is positive, $\sigma\left(E \cap\left(A_{1} \backslash A_{2}\right)\right) \geq 0 ;$ on the other hand $E \cap$ $\left(A_{1} \backslash A_{2}\right) \subset B_{2}$ implies that $\sigma\left(E \cap\left(A_{1} \backslash A_{2}\right)\right) \leq 0$. Hence $\sigma\left(E \cap\left(A_{1} \backslash A_{2}\right)\right)=0$; similarly, $\sigma\left(E \cap\left(A_{2} \backslash A_{1}\right)\right)=0$. Now,

$$
\begin{aligned}
\sigma\left(E \cap A_{1}\right) & =\sigma\left(E \cap A_{1}\right)+\sigma\left(E \cap\left(A_{2} \backslash A_{1}\right)\right) \\
& =\sigma\left(E \cap\left(A_{1} \cup A_{2}\right)\right)=\sigma\left(E \cap A_{2}\right)+\sigma\left(E \cap\left(A_{1} \backslash A_{2}\right)\right) \\
& =\sigma\left(E \cap A_{2}\right) .
\end{aligned}
$$

Similarly, $\sigma\left(E \cap B_{1}\right)=\sigma\left(E \cap B_{2}\right)$.
For a Hahn decomposition (A, B) of Ω relative to σ, define for $E \in \Sigma$,

$$
\sigma^{+}(E)=\sigma(E \cap A) ; \sigma^{-}(E)=-\sigma(E \cap B) ; \text { and }|\sigma|(E)=\sigma^{+}(E)+\sigma^{-}(E)
$$

Obviously, σ^{+}, σ^{-}, and $|\sigma|$ are positive measures on Σ and are independent of the chosen Hahn decomposition (A, B), by Lemma 6.2.2. The measure $|\sigma|$ is called the total variational measure of σ, while σ^{+}and σ^{-}are called respectively the positive variational measure and the negative variational measure of σ. Observe that $|\sigma(E)| \leq|\sigma|(E)$ for $E \in \Sigma$. Theorem 6.2.2 speaks for itself.

Theorem 6.2.2 The measure σ^{-}is a finite positive measure and $\sigma=\sigma^{+}-\sigma^{-}$.
Furthermore, if σ is finite or σ-finite then so are σ^{+}and $|\sigma|$.
The decomposition $\sigma=\sigma^{+}-\sigma^{-}$is called the Jordan decomposition of σ.
Integrals and indefinite integrals of functions w.r.t. a signed measure σ are only defined for functions f in $L^{1}(\Omega, \Sigma,|\sigma|)$ by

$$
\begin{aligned}
\int_{\Omega} f d \sigma & :=\int_{\Omega} f d \sigma^{+}-\int_{\Omega} f d \sigma^{-} \\
\int_{E} f d \sigma & :=\int_{E} f d \sigma^{+}-\int_{E} f d \sigma^{-}, \quad E \in \Sigma .
\end{aligned}
$$

In the above definitions, f could be a complex-valued function.
Exercise 6.2.4 Show that for $E \in \Sigma$:
(i) $\sigma^{+}(E)=\max _{B \in \Sigma} \sigma(B \cap E)$;
(ii) $\sigma^{-}(E)=-\min _{B \in \Sigma} \sigma(B \cap E)$; and
(iii) $|\sigma|(E)=\sup \left\{\sum_{n=1}^{\infty}\left|\sigma\left(E_{n}\right)\right|\right\}$, where the supremum is taken over all decompositions of E into countable disjoint measurable sets E_{1}, E_{2}, \ldots

Exercise 6.2.5 If σ is a finite signed measure, then

$$
|\sigma|(E)=\sup \left|\int_{E} f d \sigma\right|
$$

where the supremum is taken over all measurable functions f with $|f| \leq 1$.
Exercise 6.2.6 Let σ be the signed measure in Example 6.2.1 (ii). Show that for $E \in \Sigma$, we have

$$
\sigma^{+}(E)=\int_{E} f^{+} d \mu ; \quad \sigma^{-}(E)=\int_{E} f^{-} d \mu ; \quad \text { and }|\sigma|(E)=\int_{E}|f| d \mu
$$

Also find a Hahn decomposition of Ω relative to σ.

Exercise 6.2.7 Let σ be a signed measure and $\sigma=\sigma_{1}-\sigma_{2}$, where σ_{1} and σ_{2} are positive measures with σ_{2} a finite measure. Show that there is a positive finite measure μ on Σ such that $\sigma_{1}=\sigma^{+}+\mu$ and $\sigma_{2}=\sigma^{-}+\mu$. (Hint: use Exercise 6.2.4)

Remark The conclusion of Exercise 6.2.7 means that the Jordan decomposition of a signed measure σ is the minimal decomposition of σ into the difference of two positive measures. For the corresponding fact concerning decomposition of functions of bounded variation into the difference of two monotone increasing functions, see the paragraph following Theorem 4.4.1.

Now let μ be a positive measure on (Ω, Σ). A signed measure σ on Σ is said to be μ absolutely continuous if $\sigma(A)=0$ whenever $A \in \Sigma$ and $\mu(A)=0$. It is easily verified that σ is μ-absolutely continuous if and only if σ^{+}, σ^{-}are μ-absolutely continuous; thus, σ is μ-absolutely continuous if and only if $|\sigma|$ is μ-absolutely continuous.

Theorem 6.2.3 If σ is a finite signed measure, then σ is μ-absolutely continuous if and only iffor any given $\varepsilon>0$ there is $\delta>0$ such that if $A \in \Sigma$ with $\mu(A)<\delta$, then $|\sigma|(A)<\varepsilon$.

Proof Sufficiency is obvious.
Necessity: Suppose the contrary. Then for some $\varepsilon>0$ and for any $n \in \mathbb{N}$, there is $A_{n} \in \Sigma$ such that $\mu\left(A_{n}\right)<2^{-n}$ and $|\sigma|\left(A_{n}\right) \geq \varepsilon$. Let $A=\limsup _{n \rightarrow \infty} A_{n}$, then for each n,

$$
\mu(A)=\mu\left(\lim _{n \rightarrow \infty} \bigcup_{k \geq n} A_{k}\right) \leq \mu\left(\bigcup_{k \geq n} A_{k}\right)<\sum_{k \geq n} 2^{-k}
$$

letting $n \rightarrow \infty$, we then have $\mu(A)=0$. But,

$$
|\sigma|(A)=\lim _{n \rightarrow \infty}|\sigma|\left(\bigcup_{k \geq n} A_{k}\right) \geq \underset{n \rightarrow \infty}{\limsup }|\sigma|\left(A_{n}\right) \geq \varepsilon
$$

which contradicts the fact that $|\sigma|$ is μ-absolutely continuous.
Theorem 6.2.4 (Radon-Nikodym) If (Ω, Σ, μ) is a σ-finite measure space and σ is a σ-finite μ-absolutely continuous signed measure on (Ω, Σ), then there is a unique measurable functionf such that $\int_{\Omega} f^{-} d \mu<\infty$, and

$$
\sigma(A)=\int_{A} f d \mu, \quad A \in \Sigma
$$

Proof We know that σ^{+}is σ-finite and σ^{-}is finite on Σ. By Exercise 5.7.1, there is $f_{2} \in$ $L^{1}(\Omega, \Sigma, \mu)$ such that $f_{2} \geq 0$, and

$$
\sigma^{-}(A)=\int_{A} f_{2} d \mu, \quad A \in \Sigma ;
$$

and there is a measurable function f_{1} with $f_{1} \geq 0$ such that

$$
\sigma^{+}(A)=\int_{A} f_{1} d \mu, \quad A \in \Sigma .
$$

Let $f=f_{1}-f_{2}$, then

$$
\sigma(A)=\int_{A} f d \mu, \quad A \in \Sigma
$$

One can verify (cf. Exercise 6.2.6) that $f^{-}=f_{2}$ a.e., hence $\int_{\Omega} f^{-} d \mu<\infty$. That f is unique is left as an exercise.

Exercise 6.2.8 Show that the function f in Theorem 6.2.4 is unique.
Now complex measures are introduced. Fix a measurable space (Ω, Σ); a set function $\sigma: \Sigma \rightarrow \mathbb{C}$ is called a complex measure if (i) $\sigma(\emptyset)=0$; and (ii) $\sigma\left(\bigcup_{n} A_{n}\right)=$ $\sum_{n=1}^{\infty} \sigma\left(A_{n}\right)$ for every disjoint sequence $\left\{A_{n}\right\}$ in Σ. Observe that in (ii) the convergence of $\sum_{n=1}^{\infty} \sigma\left(A_{n}\right)$ does not depend on how the sequence $\left\{A_{n}\right\}$ is ordered, hence for any disjoint sequence $\left\{A_{n}\right\} \subset \Sigma, \sum_{n=1}^{\infty}\left|\sigma\left(A_{n}\right)\right|<\infty$. We take a hint from Exercise 6.2 .4 (iii) to define the total variational measure $|\sigma|$ of a complex measure by

$$
|\sigma|(E)=\sup \left\{\sum_{n=1}^{\infty}\left|\sigma\left(E_{n}\right)\right|\right\}
$$

for $E \in \Sigma$, where the supremum is taken over all decompositions of E into countable disjoint measurable sets E_{1}, E_{2}, \ldots When σ is a signed or complex measure on $\mathcal{B}(X)$, where X is a metric space, it is called a Radon (Riesz) measure if $|\sigma|^{*}$ is a Radon (Riesz) measure on X. Recall that $|\sigma|^{*}$ is the measure on X constructed from $|\sigma|$ by Method I.

Exercise 6.2.9 Show that the family of all complex Riesz measures on $\mathcal{B}(X)$ is a complex vector space.

For $A \in \Sigma$, let us put $\sigma_{r}(A)=\operatorname{Re} \sigma(A)$ and $\sigma_{i}(A)=\operatorname{Im} \sigma(A)$; then σ_{r} and σ_{i} are finite signed measures on Σ. If f is a complex-valued $|\sigma|$-integrable function on Ω, the σ-integral of f is defined by

$$
\int_{X} f d \sigma:=\int_{X} f d \sigma_{r}+i \int_{X} f d \sigma_{i} .
$$

Suppose now that μ is a positive measure on Σ. A complex measure σ on Σ is $\boldsymbol{\mu}$ absolutely continuous, if $A \in \Sigma$ and $\mu(A)=0$ implies $\sigma(A)=0$. Obviously, σ is μ absolutely continuous if and only if both σ_{r} and σ_{i} are μ-absolutely continuous.

Exercise 6.2.10 A complex measure σ on Σ is μ-absolutely continuous if and only if for any $\varepsilon>0$, there is $\delta>0$ such that if $A \in \Sigma$ with $\mu(A)<\delta$, then $|\sigma(A)|<\varepsilon$.

By applying Theorem 6.2.4 to σ_{r} and σ_{i} we obtain Theorem 6.2.5:
Theorem 6.2.5 $\operatorname{If}(\Omega, \Sigma, \mu)$ is a σ-finite measure space and σ is a μ-absolutely continuous complex measure on Σ, then there is a unique μ-integrable function f on Ω such that

$$
\sigma(A)=\int_{A} f d \mu, \quad A \in \Sigma
$$

Henceforth, both Theorem 6.2.4 and Theorem 6.2.5 are to be referred to as the Radon-Nikodym theorem. We note in passing that the family of complex measures on Σ includes all finite signed measures on Σ.

As an application of the notion of signed (complex) measure, we present in the final part of this section the Riesz representation theorem for linear functions on $C_{0}(X)$; the space of all continuous functions vanishing at infinity on the locally compact metric space X. A function f on X is said to be vanishing at infinity if for any $\varepsilon>0$ there is a compact set K such that $|f(x)|<\varepsilon$ for $x \in K^{c}$. The space $C_{0}(X)$ is a real or complex vector space, depending on whether the functions in question are real or complex-valued. Equipped with the norm defined by

$$
\|f\|=\sup _{x \in X}|f(x)|
$$

for $f \in C_{0}(X), C_{0}(X)$ is a normed vector space; clearly, $\|f\|=\max _{x \in X}|f(x)|$. The norm so defined on $C_{0}(X)$ is usually referred to as the uniform norm; and unless otherwise specified, $C_{0}(X)$ is equipped with this norm. For definiteness, we assume that functions in $C_{0}(X)$ are real-valued and hence $C_{0}(X)$ is a real vector space.

Exercise 6.2.11

(i) Show that $C_{0}(X)$ is a Banach space.
(ii) Show that if $f \in C_{0}(X)$, then both f^{+}and f^{-}are in $C_{0}(X)$.

If ℓ is a positive linear functional on $C_{0}(X)$, it is, a fortiori, positive on $C_{c}(X)$; the measure μ constructed in Section 3.10 for ℓ considered as restricted to $C_{c}(X)$ is also referred to as the measure for ℓ. As we know in Section 3.10, μ is the unique Riesz measure on X such that

$$
\ell(f)=\int_{X} f d \mu
$$

for all $f \in C_{c}(X)$.
Lemma 6.2.3 Suppose that ℓ is a bounded positive linear functional on $C_{0}(X)$ and μ is the measure for ℓ; then $\ell(f)=\int_{X} f d \mu$ for $f \in C_{0}(X)$ and $\|\ell\|=\mu(X)$.

Proof Since ℓ is bounded, μ is a finite measure (cf. Exercise 3.10.1).

For $f \in C_{0}(X)$ and $\varepsilon>0$, there is a compact set K in X such that $|f(x)|<\varepsilon$ for $x \in K^{c}$. By Corollary 1.10.1, there is $g \in U_{c}(X)$ satisfying $g=1$ on K. Put $h=f g$, then $h \in C_{c}(X)$, and

$$
\begin{aligned}
\ell(f) & =\ell(f-h)+\ell(h)=\ell(f-h)+\int_{X} h d \mu \\
& =\ell(f-h)+\int_{X} f d \mu+\int_{X}(h-f) d \mu ;
\end{aligned}
$$

hence,

$$
\left|\ell(f)-\int_{X} f d \mu\right| \leq\|\ell\| \varepsilon+\varepsilon \mu(X)
$$

because $\|f-h\|=\|f(1-g)\| \leq \sup _{x \in K^{c}}|f(x)| \leq \varepsilon$. By letting $\varepsilon \searrow 0$, we obtain

$$
\ell(f)=\int_{X} f d \mu
$$

Now, if $f \in C_{0}(X)$ with $\|f\|=1$, then

$$
|\ell(f)|=\left|\int_{X} f d \mu\right| \leq \int_{X}|f| d \mu \leq \mu(X)
$$

and consequently $\|\ell\| \leq \mu(X)$. On the other hand, for a compact set K in X, there is a function $f \in U_{c}(X)$ such that $f=1$ on K (again by Corollary 1.10.1); then,

$$
\mu(K) \leq \int_{X} f d \mu=\ell(f) \leq\|\ell\|
$$

from which $\mu(X) \leq\|\ell\|$ follows by the inner regularity of μ. Thus $\|\ell\|=\mu(X)$.
Suppose now that $\ell \in C_{0}(X)^{*}$; we shall decompose ℓ as a difference of two bounded positive linear functionals on $C_{0}(X)$ as follows.

Denote by $C_{0}(X)^{+}$the family $\left\{f \in C_{0}(X): f \geq 0\right\}$ and define a functional ℓ^{+}on $C_{0}(X)^{+}$by

$$
\ell^{+}(f)=\sup \left\{\ell(g): g \in C_{0}(X)^{+} \text {and } g \leq f\right\}
$$

for $f \in C_{0}(X)^{+}$; since $\ell^{+}(f) \geq \ell(0)=0$ and

$$
\ell(g) \leq\|\ell\| \cdot\|g\| \leq\|\ell\| \cdot\|f\|<\infty
$$

for $g \in C_{0}(X)^{+}$satisfying $g \leq f, \ell^{+}$is nonnegative and $\ell^{+}(f) \leq\|\ell\| \cdot\|f\|<\infty$. Note that ℓ^{+}is positively homogeneous on $C_{0}(X)^{+}$in the sense that for $f \in C_{0}(X)^{+}$and nonnegative number $\alpha, \ell^{+}(\alpha f)=\alpha \ell^{+}(f)$.

Lemma 6.2.4 The functional ℓ^{+}is additive, i.e. iff and g are in $\mathrm{C}_{0}(X)^{+}$, then $\ell^{+}(f+g)=$ $\ell^{+}(f)+\ell^{+}(g)$.
Proof Let u, v in $C_{0}(X)^{+}$be such that $u \leq f$ and $v \leq g$, then $0 \leq u+v \leq f+g$, and hence,

$$
\ell^{+}(f+g) \geq \ell(u+v)=\ell(u)+\ell(v)
$$

from which it follows that

$$
\ell^{+}(f+g) \geq \ell^{+}(f)+\ell^{+}(g)
$$

On the other hand, if $u \in C_{0}(X)^{+}$with $u \leq f+g$, by putting $u_{1}=u \wedge f$ and $u_{2}=u-$ u_{1}, one verifies easily that

$$
u=u_{1}+u_{2}, u_{1} \leq f, \text { and } u_{2} \leq g ;
$$

and thus,

$$
\ell(u)=\ell\left(u_{1}\right)+\ell\left(u_{2}\right) \leq \ell^{+}(f)+\ell^{+}(g),
$$

implying that $\ell^{+}(f+g) \leq \ell^{+}(f)+\ell^{+}(g)$.
Now, extend ℓ^{+}to $C_{0}(X)$ by defining

$$
\ell^{+}(f)=\ell^{+}\left(f^{+}\right)-\ell^{+}\left(f^{-}\right)
$$

for $f \in C_{0}(X)$. For $f \in C_{0}(X)$, note that both f^{+}and f^{-}are in $C_{0}(X)^{+}$(cf. Exercise 6.2.11 (ii)) and observe that if $f=g-h$, with g and h being in $C_{0}(X)^{+}$, then $g=f^{+}+u$ and $h=f^{-}+u$ for some $u \in C_{0}(X)^{+}$, and hence,

$$
\ell^{+}(f)=\ell^{+}(g)-\ell^{+}(h)
$$

Therefore if f and g are in $C_{0}(X)$, we have

$$
\begin{aligned}
\ell^{+}(f+g) & =\ell^{+}\left(f^{+}+g^{+}\right)-\ell^{+}\left(f^{-}+g^{-}\right) \\
& =\ell^{+}\left(f^{+}\right)+\ell^{+}\left(g^{+}\right)-\ell^{+}\left(f^{-}\right)-\ell^{+}\left(g^{-}\right) \\
& =\ell^{+}(f)+\ell^{+}(g),
\end{aligned}
$$

i.e. ℓ^{+}is additive on $C_{0}(X)$. Obviously,

$$
\ell^{+}(\alpha f)=\alpha \ell^{+}(f),
$$

for $f \in C_{0}(X)$ and $\alpha \in \mathbb{R}$. Thus ℓ^{+}is a positive linear functional on $C_{0}(X)$. Since

$$
\left|\ell^{+}(f)\right| \leq \ell^{+}\left(f^{+}\right)+\ell^{+}\left(f^{-}\right) \leq\|\ell\|\left(\left\|f^{+}\right\|+\left\|f^{-}\right\|\right) \leq 2\|\ell\| \cdot\|f\|,
$$

ℓ^{+}is a bounded positive linear functional on $C_{0}(X)$.

If we let $\ell^{-}=\ell^{+}-\ell$, then $\ell^{-} \in C_{0}(X)^{*}$ and $\ell=\ell^{+}-\ell^{-}$. Since for $f \in C_{0}(X)^{+}$we have $\ell^{-}(f)=\ell^{+}(f)-\ell(f) \geq 0, \ell^{-}$is a bounded positive linear functional on $C_{0}(X)$. Thus, every $\ell \in C_{0}(X)^{*}$ can be decomposed as the difference $\ell^{+}-\ell^{-}$of two bounded positive linear functionals on $C_{0}(X)$. Let μ_{+}and μ_{-}be respectively the measure for ℓ^{+}and ℓ^{-}, and for $B \in \mathcal{B}(X)$ put $\mu(B)=\mu_{+}(B)-\mu_{-}(B)$, then μ is a finite signed measure on $\mathcal{B}(X)$ and

$$
\begin{equation*}
\ell(f)=\int_{X} f d \mu, \quad f \in C_{0}(X) \tag{6.11}
\end{equation*}
$$

Denote as before the total variational measure of μ on $\mathcal{B}(X)$ by $|\mu|$, and let $|\mu|^{*}$ be the measure on X constructed from $|\mu|$ by Method I. We know from Corollary 3.4.1 that $|\mu|^{*}$ is the unique Borel regular measure extending $|\mu|$, and, since $|\mu|^{*}$ is finite, it is a Radon measure. We shall see presently that $|\mu|^{*}$ is a Riesz measure. For this purpose, set for the moment $v=\mu_{+}+\mu_{-}$, then v is a Riesz measure on X and $|\mu|^{*} \leq \nu$. Given that $B \in \mathcal{B}(X)$ and $\varepsilon>0$, by outer regularity of ν and Proposition 3.10.1 there are $K \in$ \mathcal{K} and $G \in \mathcal{G}$ with $K \subset B \subset G$ such that $\nu(G \backslash K)<\varepsilon$ and, a fortiori, $|\mu|^{*}(G \backslash K)<\varepsilon$; consequently, $|\mu|^{*}(G)-\varepsilon<|\mu|^{*}(B)<|\mu|^{*}(K)+\varepsilon$, which in turn implies that

$$
\begin{equation*}
|\mu|^{*}(B)=\sup \left\{|\mu|^{*}(K): K \in \mathcal{K}, K \subset B\right\} \tag{6.12}
\end{equation*}
$$

and

$$
|\mu|^{*}(B)=\inf \left\{|\mu|^{*}(G): G \in \mathcal{G}, B \subset G\right\}
$$

Now for any $S \subset X$, there is $B \in \mathcal{B}(X)$ such that $B \supset S$ and $|\mu|^{*}(S)=|\mu|^{*}(B)=$ $\inf \left\{|\mu|^{*}(G): G \in \mathcal{G}, B \subset G\right\} \geq \inf \left\{|\mu|^{*}(G): G \in \mathcal{G}, S \subset G\right\} \geq|\mu|^{*}(S)$; thus,

$$
|\mu|^{*}(S)=\inf \left\{|\mu|^{*}(G): G \in \mathcal{G}, S \subset G\right\},
$$

i.e. $|\mu|^{*}$ is outer regular. Note that (6.12) implies in particular that $|\mu|^{*}$ is inner regular; hence $|\mu|^{*}$ is a Riesz measure on X and μ is a Riesz measure on $\mathcal{B}(X)$. This last fact and (6.11) prove the following Lemma 6.2.5.

Lemma 6.2.5 For $\ell \in C_{0}(X)^{*}$ there is a finite Riesz measure μ on $\mathcal{B}(X)$ such that (6.11) holds.

Lemma 6.2.6 Suppose that μ is a finite Riesz measure on $\mathcal{B}(X)$. Define a linear functional ℓ on $\mathrm{C}_{0}(X)$ by

$$
\ell(f)=\int_{X} f d \mu, \quad f \in C_{0}(X)
$$

Then, $\ell \in C_{0}(X)^{*}$ and $\|\ell\|=|\mu|(X)$.

Proof For $f \in C_{0}(X)$,

$$
\begin{aligned}
|\ell(f)| & =\left|\int_{X} f d \mu^{+}-\int_{X} f d \mu^{-}\right| \leq \int_{X}|f| d \mu^{+}+\int_{X}|f| d \mu^{-} \\
& =\int_{X}|f| d|\mu| \leq\|f\||\mu|(X)
\end{aligned}
$$

hence, $\ell \in C_{0}(X)^{*}$ and $\|\ell\| \leq|\mu|(X)$.
Let (A, B) be a Hahn decomposition of X w.r.t. μ. Since $|\mu|^{*}$ is a finite Riesz measure on X, by Proposition 3.10.1, there are K_{1} and K_{2} in \mathcal{K} with $K_{1} \subset A$ and $K_{2} \subset B$ such that $|\mu|^{*}\left(X \backslash\left(K_{1} \cup K_{2}\right)\right)<\varepsilon$. Take a continuous function g on X such that $-1 \leq g \leq 1, g=1$ on K_{1} and $g=-1$ on K_{2} according to Corollary 1.8.1, and a function $h \in U_{c}(X)$ such that $h=1$ on $K_{1} \cup K_{2}$ according to Corollary 1.10.1, and let $f=g h$; then, $f \in C_{c}(X),-1 \leq f \leq 1, f=1$ on K_{1}, and $f=-1$ on K_{2}. Now,

$$
\begin{aligned}
\ell(f)=\int_{X} f d \mu & =\mu\left(K_{1}\right)-\mu\left(K_{2}\right)+\int_{X \backslash\left(K_{1} \cup K_{2}\right)} f d \mu \\
& =|\mu|\left(K_{1}\right)+|\mu|\left(K_{2}\right)+\int_{X \backslash\left(K_{1} \cup K_{2}\right)} f d \mu \\
& \geq|\mu|\left(K_{1} \cup K_{2}\right)-\int_{X \backslash\left(K_{1} \cup K_{2}\right)}|f| d|\mu| \\
& \geq|\mu|(X)-2|\mu|\left(X \backslash\left(K_{1} \cup K_{2}\right)\right) \\
& \geq|\mu|(X)-2 \varepsilon,
\end{aligned}
$$

from which, since $\|f\|=1$, it follows that $\|\ell\| \geq|\mu|(X)-2 \varepsilon$ and hence $\|\ell\| \geq$ $|\mu|(X)$. Thus, $\ell \in C_{0}(X)^{*}$ and $\|\ell\|=|\mu|(X)$, because we already know that $\|\ell\| \leq$ $|\mu|(X)$.
Theorem 6.2.6 (Riesz representation theorem) For $\ell \in C_{0}(X)^{*}$ there is a unique finite Riesz measure μ on $\mathcal{B}(X)$ such that

$$
\begin{equation*}
\ell(f)=\int_{X} f d \mu \tag{6.13}
\end{equation*}
$$

for $f \in C_{0}(f)$.
Proof The existence of Riesz measure μ on $\mathcal{B}(X)$ such that (6.13) holds follows from Lemma 6.2.5. Suppose that μ_{1} and μ_{2} are Riesz measures on $\mathcal{B}(X)$ such that (6.13) holds, with μ replaced by either μ_{1} or μ_{2}. Then $\mu_{1}-\mu_{2}$ is a Riesz measure on $\mathcal{B}(X)$ (cf. Exercise 6.2.9) such that

$$
\int_{X} f d\left(\mu_{1}-\mu_{2}\right)=0
$$

for all $f \in C_{0}(X)$; it follows then from Lemma 6.2.6 that $\left|\mu_{1}-\mu_{2}\right|(X)=0$, i.e. $\left|\mu_{1}-\mu_{2}\right|$ is a zero measure on $\mathcal{B}(X)$. But, for $B \in \mathcal{B}(X), 0=\left|\mu_{1}-\mu_{2}\right|(B) \geq$ $\left|\mu_{1}(B)-\mu_{2}(B)\right|$ implies that $\mu_{1}(B)=\mu_{2}(B)$. Thus the uniqueness of μ is proved.

Example 6.2.3 Let ℓ be a bounded linear functional on the real space $C[0,1]$. Then there is a BV function g on $[a, b]$ such that g is right-continuous except at 0 , and

$$
\ell(f)=\int_{0}^{1} f d g, \quad f \in C[0,1] .
$$

Actually, let μ be the unique Riesz measure on $\mathcal{B}([0,1])$ such that $\int_{0}^{1} f d \mu=\ell(f)$ for $f \in C[0,1]$, and let $g(0)=0$ and $g(t)=\mu([0, t]), t \in[0,1]$; then g is rightcontinuous except at 0 . Consider any partition $0=t_{0}<t_{1}<\cdots<t_{n}=1$; we have $\sum_{k=1}^{n}\left|g\left(t_{k}\right)-g\left(t_{k-1}\right)\right|=\sum_{k=1}^{n}\left|\mu\left(\left(t_{k-1}, t_{k}\right]\right)\right|+|\mu(\{0\})| \leq|\mu|([0,1])$. Therefore g is a BV function. Clearly, $\ell(f)=\int_{0}^{1} f d g$ for $f \in C[0,1]$.

In the above discussion we assume that $C_{0}(X)$ is formed from real-valued functions; a brief account will now be given of the case when $C_{0}(X)$ consists of complex-valued functions. Recall that a complex-valued function f can be expressed as $\operatorname{Re} f+i \operatorname{Im} f$, where $\operatorname{Re} f$ and $\operatorname{Im} f$ are respectively the real and imaginary parts of f. Suppose that $\ell \in C_{0}(X)^{*}$, then

$$
\ell(f)=\ell_{r}(f)+i \ell_{i}(f),
$$

where $\ell_{r}(f)=\operatorname{Re}\{\ell(f)\}$ and $\ell_{i}(f)=\operatorname{Im}\{\ell(f)\} ; \ell_{r}$ and ℓ_{i} are bounded linear functionals on $C_{0}(X)$ considered as a real vector space; in particular, they are bounded linear functionals on the real vector space of all real-valued functions in $C_{0}(X)$. By Theorem 6.2.6 there is a unique pair $\left(\mu_{r}, \mu_{i}\right)$ of finite Riesz signed measures on $\mathcal{B}(X)$ such that

$$
\ell(f)=\int_{X} f d \mu_{r}+i \int_{X} f d \mu_{i}
$$

for real-valued functions f in $C_{0}(X)$. Let us put $\mu(B)=\mu_{r}(B)+i \mu_{i}(B)$ for $B \in \mathcal{B}(X)$; then μ is a complex Riesz measure on $\mathcal{B}(X)$, and for $f \in C_{0}(X)$ we have

$$
\begin{aligned}
\ell(f) & =\ell(\operatorname{Re} f+i \operatorname{Im} f)=\ell(\operatorname{Re} f)+i \ell(\operatorname{Im} f) \\
& =\ell_{r}(\operatorname{Re} f)+i \ell_{i}(\operatorname{Re} f)+i\left\{\ell_{r}(\operatorname{Im} f)+i \ell_{i}(\operatorname{Im} f)\right\} \\
& =\int_{X} \operatorname{Re} f d \mu_{r}+i \int_{X} \operatorname{Re} f d \mu_{i}+i \int_{X} \operatorname{Im} f d \mu_{r}-\int_{X} \operatorname{Im} f d \mu_{i} \\
& =\int_{X} \operatorname{Re} f d \mu+i \int_{X} \operatorname{Im} f d \mu=\int_{X} f d \mu .
\end{aligned}
$$

We leave it as an exercise to show the uniqueness of the Riesz measure μ on $\mathcal{B}(X)$ such that $\ell(f)=\int_{X} f d \mu$ for $f \in C_{0}(X)$, as well as the fact that $\|\ell\|=|\mu|(X)$. Hence, Theorem 6.2.6 also holds when the functions in $C_{0}(X)$ are complex-valued.

Exercise 6.2.12 When $C_{0}(X)$ consists of complex-valued functions and $\ell \in C_{0}(X)^{*}$, show that there is a unique Riesz measure on X such that

$$
\ell(f)=\int_{X} f d \mu, \quad f \in C_{0}(X) .
$$

Furthermore, show that for such a measure, $\|\ell\|=|\mu|(X)$.

6.3 Linear functionals on $\boldsymbol{L}^{\boldsymbol{p}}$

Let p and q be conjugate exponents i.e. $p, q \geq 1$ and $p^{-1}+q^{-1}=1$. We shall consider a fixed measure space (Ω, Σ, μ) throughout this section, therefore measurability of sets or functions is in reference to this measure space and the measure of a set A means $\mu(A)$ with $A \in \Sigma$. The space $L^{p}(\Omega, \Sigma, \mu)$ will be simply denoted by L^{p} for $p \geq 1$, and L^{p}-norm of f will be denoted by $\|f\|_{p}$.

Our purpose in this section is to identify $\left(L^{p}\right)^{*}$ with L^{q} in a sense to be specified later when μ is σ-finite and $p<\infty$.

For $g \in L^{q}$, define a linear functional ℓ_{g} on L^{p} by

$$
\ell_{g}(f)=\int f g d \mu, \quad f \in L^{p} .
$$

It follows from the Hölder inequality that ℓ_{g} is a bounded linear functional on L^{p} and its norm $\left\|\ell_{g}\right\| \leq\|g\|_{q}$.

We shall actually show that $\left\|\ell_{g}\right\|=\|g\|_{q}$ if $q<\infty$; and that this equality holds for all $q \geq 1$ if (Ω, Σ, μ) is σ-finite. This means that we may consider L^{q} as isometrically and isomorphically embedded in $\left(L^{p}\right)^{*}$ in either case, because the map $g \mapsto l_{g}$ is a linear map from L^{q} into $\left(L^{p}\right)^{*}$.
Lemma 6.3.1 If $q<\infty$ and $g \in L^{q}$, then $\|g\|_{q}=\left\|\ell_{g}\right\|$.
Proof We may assume that $g \neq 0$ on a set of positive measure, and let

$$
f=\frac{|g|^{q-1} \overline{\operatorname{sgng}}}{\|g\|_{q}^{q-1}}
$$

where $\operatorname{sgn} g(x)=0$ if $g(x)=0$, and $=g(x) /|g(x)|$ if $g(x) \neq 0$. One sees easily that $\operatorname{sgn} g$ is a measurable function and $f \in L^{p}$ with $\|f\|_{p}=1$. Now,

$$
\left\|\ell_{g}\right\| \geq\left|\int f g d \mu\right|=\|g\|_{q}^{-(q-1)} \int|g|^{q} d \mu=\|g\|_{q}
$$

This, together with $\left\|\ell_{g}\right\| \leq\|g\|_{q}$, shows that $\left\|\ell_{g}\right\|=\|g\|_{q}$.
Corollary 6.3.1 $\operatorname{If}(\Omega, \Sigma, \mu)$ is σ-finite and $g \in L^{q}$, then $\left\|\ell_{g}\right\|=\|g\|_{q}$.

Proof We need only to prove that $\left\|\ell_{g}\right\| \geq\|g\|_{\infty}$ for $g \in L^{\infty}$. For this purpose we may assume that $\|g\|_{\infty}>0$ and for a given $0<\varepsilon<\|g\|_{\infty}$, let $A=\left\{|g| \geq\|g\|_{\infty}-\varepsilon\right\}$. From the definition of $\|g\|_{\infty}, \mu(A)>0$. Since μ is σ-finite, there is an increasing sequence $\left\{\Omega_{n}\right\} \subset \Sigma$ such that $\mu\left(\Omega_{n}\right)<\infty$ for each n and $\lim _{n \rightarrow \infty} \Omega_{n}=\Omega$. Then, $\mu(A)=\lim _{n \rightarrow \infty} \mu\left(A \cap \Omega_{n}\right)$ implies that $\mu\left(A \cap \Omega_{n}\right)>0$ if n is large enough, say $n \geq n_{0}$; let $B=A \cap \Omega_{n_{0}}$, then $0<\mu(B)<\infty$. Choose $f=\frac{1}{\mu(B)} I_{B} \overline{\operatorname{sgn} g}$, then $f \in L^{1}$ and $\|f\|_{1}=1$. Now,

$$
\left\|\ell_{g}\right\| \geq\left|\int f g d \mu\right|=\frac{1}{\mu(B)} \int_{B}|g| d \mu \geq\|g\|_{\infty}-\varepsilon
$$

from which we infer that $\left\|\ell_{g}\right\| \geq\|g\|_{\infty}$ by letting $\varepsilon \searrow 0$.
For the statement of the next lemma (6.3.2), given a measurable function g which is finite a.e. on Ω, we denote by $S_{p}(g)$ the family of all those functions f such that $\|f\|_{p}=1$ and $f g$ is integrable.

Exercise 6.3.1 Suppose that (Ω, Σ, μ) is σ-finite and g is a measurable function which is finite a.e. on Ω. Show that $S_{p}(g)$ is nonempty.

Lemma 6.3.2 Suppose that (Ω, Σ, μ) is a σ-finite measure space and g is measurable and finite almost everywhere. Then,

$$
\|g\|_{q}=\sup \left\{\left|\int f g d \mu\right|: f \in S_{p}(g)\right\} .
$$

Proof From the Hölder inequality, $\|g\|_{q} \geq \sup \left\{\left|\int f g d \mu\right|: f \in S_{p}(g)\right\}$, it remains to show the converse inequality. For this purpose we may assume that $g \neq 0$ on a set of positive measure.

Let the sequence $\left\{\Omega_{n}\right\} \subset \Sigma$ be as in the proof of Corollary 6.3.1.
Step 1. Suppose that $q<\infty$. For each $n \in \mathbb{N}$, let $A_{n}=\{x \in \Omega:|g(x)| \leq n\} \cap \Omega_{n}$. $\left\{A_{n}\right\}$ is an increasing sequence in Σ such that $\mu\left(\Omega \backslash \bigcup_{n} A_{n}\right)=0$. If we let $g_{n}=g I_{A_{n}}$, then g_{n} is bounded and $\neq 0$ on a set of positive measure when n is sufficiently large, say $n \geq n_{0}$. Define, for $n \geq n_{0}$,

$$
f_{n}=\frac{\left|g_{n}\right|^{q-1} \overline{\operatorname{sgn} g_{n}}}{\left\|g_{n}\right\|_{q}^{q-1}}
$$

One can verify easily that $\left\|f_{n}\right\|_{p}=1$. Since $f_{n} g=\left\|g_{n}\right\|_{q}^{1-q}\left|g_{n}\right|^{q}, f_{n} g$ is integrable and therefore $\left\{f_{n}\right\}_{n \geq n_{0}} \subset S_{p}(g)$. Now for $n \geq n_{0}$, using $f_{n} g=\left\|g_{n}\right\|_{q}^{1-q}\left|g_{n}\right|^{q}$, we have

$$
\begin{aligned}
\left\|g_{n}\right\|_{q}^{q} & =\int\left|g_{n}\right|^{q} d \mu \\
& =\left\|g_{n}\right\|_{q}^{q-1} \int f_{n} g d \mu \leq\left\|g_{n}\right\|_{q}^{q-1} \sup \left\{\left|\int f g d \mu\right|: f \in S_{p}(g)\right\},
\end{aligned}
$$

from which it follows that $\left\|g_{n}\right\|_{q} \leq \sup \left\{\left|\int f g d \mu\right|: f \in S_{p}(g)\right\}$. But $\mu\left(\Omega \backslash \bigcup_{n} A_{n}\right)=0$ implies that $\left|g_{n}\right|$ increases to $|g|$ a.e. on Ω, hence, on letting $n \rightarrow \infty$, we obtain $\|g\|_{q} \leq \sup \left\{\left|\int f g d \mu\right|: f \in S_{p}(g)\right\}$. Thus, $\|g\|_{q}=\sup \left\{\left|\int f g d \mu\right|: f \in S_{p}(g)\right\}$ if $q<\infty$.
Step 2. Suppose that $q=\infty$, i.e. $p=1$. Put

$$
\gamma=\sup \left\{\left|\int f g d \mu\right|: f \in S_{1}(g)\right\} .
$$

We may assume that $\gamma<\infty$.
Given that $\varepsilon>0$, let $A=\{x \in \Omega:|g(x)| \geq \gamma+\varepsilon\}$. We claim that $\mu(A)=0$; otherwise, let $B_{n}=A \cap \Omega_{n} \cap\{|g| \leq n\}$, then $0<\mu\left(B_{n}\right)<\infty$ if $n \geq n_{0}$ for some $n_{0} \in \mathbb{N}$. Put $B=B_{n_{0}}$ and let $f=\mu(B)^{-1} I_{B} \overline{\text { ggng }}$. Then, $\|f\|_{1}=1$ and $\int f g d \mu=$ $\mu(B)^{-1} \int_{B}|g| d \mu \leq n_{0}$, thus $f \in S_{1}(g)$; but $\int f g d \mu=\mu(B)^{-1} \int_{B}|g| d \mu \geq \gamma+\varepsilon$, which contradicts the definition of γ. Hence, $\mu(A)=0$ and consequently $\|g\|_{\infty} \leq$ $\gamma+\varepsilon$. Let $\varepsilon \searrow 0$; we have $\|g\|_{\infty} \leq \gamma$.
It is worthwhile noting that the proof of Lemma 6.3.2 actually shows that $\|g\|_{q}=$ $\sup \left\{\operatorname{Re} \int_{\Omega} f g d \mu: f \in S_{p}(g)\right\}$, and that if $g \geq 0,\|g\|_{q}=\sup \left\{\int_{\Omega} f g d \mu: f \in S_{p}(g)\right.$ and $f \geq 0\}$.

The following integral version of the Minkowski inequality follows from Lemma 6.3 .2 with this note.

Corollary 6.3.2 Suppose that $\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$ and $\left(\Omega_{2}, \Sigma_{2}, \mu_{2}\right)$ are σ-finite complete measure spaces and $f \geq 0$ is $\overline{\Sigma_{1} \otimes \Sigma_{2}}$-measurable on $\Omega_{1} \times \Omega_{2}$. Then for $1 \leq p<\infty$, the following inequality holds:

$$
\begin{equation*}
\left\{\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f(x, y) d \mu_{2}(y)\right)^{p} d \mu_{1}(x)\right\}^{\frac{1}{p}} \leq \int_{\Omega_{2}}\left(\int_{\Omega_{1}} f(x, y)^{p} d \mu_{1}(x)\right)^{\frac{1}{p}} d \mu_{2}(y) . \tag{6.14}
\end{equation*}
$$

Proof $\operatorname{Put} F(x)=\int_{\Omega_{2}} f(x, y) d \mu_{2}(y), x \in \Omega_{1}$. F is measurable using the Fubini theorem.
Step 1. Suppose that $F(x)<\infty$ for μ_{1}-a.e. x. Let $h \geq 0$ be in $S_{q}(F) \subset$ $L^{q}\left(\Omega_{1}, \Sigma_{1}, \mu_{1}\right)$, then

$$
\begin{aligned}
\int_{\Omega_{1}} h F d \mu_{1} & =\int_{\Omega_{1}}\left(\int_{\Omega_{2}} f(x, y) d \mu_{2}(y)\right) h(x) d \mu_{1}(x) \\
& =\int_{\Omega_{2}}\left(\int_{\Omega_{1}} f(x, y) h(x) d \mu_{1}(x)\right) d \mu_{2}(y) \\
& \leq\|h\|_{q} \int_{\Omega_{2}}\left(\int_{\Omega_{1}} f(x, y)^{p} d \mu_{1}(x)\right)^{1 / p} d \mu_{2}(y) \\
& =\int_{\Omega_{2}}\left(\int_{\Omega_{1}} f(x, y)^{p} d \mu_{1}(x)\right)^{1 / p} d \mu_{2}(y) .
\end{aligned}
$$

By Lemma 6.3.2, with p replaced by q, together with the note that follows it, we conclude that $\|F\|_{p} \leq \int_{\Omega_{2}}\left(\int_{\Omega_{1}} f(x, y)^{p} d \mu(x)\right)^{1 / p} d \mu_{2}(y)$, i.e. (6.14) holds.
Step 2. Now suppose that $A=\{F=\infty\}$ has positive measure. Since μ_{1} is σ finite, there is a measurable set $A_{0} \subset A$ such that $0<\mu_{1}\left(A_{0}\right)<\infty$. Let $h=\mu_{1}\left(A_{0}\right)^{-\frac{1}{4}} I_{A_{0}}$ or $I_{A_{0}}$ according to whether $q<\infty$ or $q=\infty$, then proceed as in Step 1; we have

$$
\infty=\int_{\Omega_{1}} h F d \mu_{1} \leq \int_{\Omega_{2}}\left(\int_{\Omega_{1}} f(x, y)^{p} d \mu_{1}(x)\right)^{1 / p} d \mu_{2}(y) .
$$

Consequently (6.14) holds, because right-hand side of (6.14) is ∞.
Now we come to the main theorem of this section.
Theorem 6.3.1 If (Ω, Σ, μ) is σ-finite and $1 \leq p<\infty$, then $L^{q}=\left(L^{p}\right)^{*}$, through the map

$$
g \mapsto \ell_{g}, \quad g \in L^{q} .
$$

Proof We already know that $L^{q} \subset\left(L^{p}\right)^{*}$ through the map $g \mapsto \ell_{g}$, by Corollary 6.3.1; it remains to show that for $\ell \in\left(L^{p}\right)^{*}$, there is a unique $g \in L^{q}$ such that $\ell=\ell_{g}$.
Step 1. Suppose that $\mu(\Omega)<\infty$.
For $A \in \Sigma$, let $v(A)=\ell\left(I_{A}\right)$. Since ℓ is linear, v is an additive set function on Σ. Now suppose that $\left\{A_{n}\right\}_{n=1}^{\infty} \subset \Sigma$ is disjoint, then

$$
v\left(\bigcup_{n} A_{n}\right)=v\left(\bigcup_{n=1}^{N} A_{n}\right)+v\left(\bigcup_{n=N+1}^{\infty} A_{n}\right),
$$

hence, by putting $B_{N}=\bigcup_{n=N+1}^{\infty} A_{n}$, we have

$$
\begin{aligned}
\left|v\left(\bigcup_{n} A_{n}\right)-\sum_{n=1}^{N} v\left(A_{n}\right)\right| & \leq\left|v\left(B_{N}\right)\right| \\
& \leq\|\ell\|\left\|I_{B_{N}}\right\|_{p} \\
& =\|\ell\|\left[\mu\left(B_{N}\right)\right]^{1 / p} \rightarrow 0
\end{aligned}
$$

as $N \rightarrow \infty$, because $B_{N} \downarrow \phi$ and $\mu(\Omega)<\infty$; consequently, $\nu\left(\bigcup_{n} A_{n}\right)=$ $\sum_{n=1}^{\infty} v\left(A_{n}\right)$. Thus v is a complex measure on Σ. Since v is μ-absolutely continuous, from the Radon-Nikodym theorem, there is $g \in L^{1}$ such that $\nu(A)=\int_{A} g d \mu$, or

$$
\begin{equation*}
\ell(f)=\int f g d \mu \tag{6.15}
\end{equation*}
$$

for simple functions f.

Suppose now that $f \in S_{p}(g)$. Choose a sequence $\left\{f_{n}\right\}$ of simple functions such that $f_{n} \rightarrow f$ pointwise and $\left|f_{n}\right| \leq|f|$. Then, $\left|f_{n} g\right| \leq|f g|$, by LDCT and (6.15),

$$
\left|\int f g d \mu\right|=\lim _{n \rightarrow \infty}\left|\int f_{n} g d \mu\right|=\lim _{n \rightarrow \infty}\left|\ell\left(f_{n}\right)\right| \leq\|\ell\| .
$$

It then follows from Lemma 6.3.2 that $g \in L^{q}$ and $\|g\|_{q} \leq\|\ell\|$.
Now let $f \in L^{p}$ and choose a sequence $\left\{\varphi_{n}\right\}$ of simple functions such that $\varphi_{n} \rightarrow f$ pointwise and $\left|\varphi_{n}\right| \leq|f|$, then $\varphi_{n} \rightarrow f$ in L^{p} and by (6.15),

$$
\int f g d \mu=\lim _{n \rightarrow \infty} \int \varphi_{n} g d \mu=\lim _{n \rightarrow \infty} \ell\left(\varphi_{n}\right)=\ell(f)
$$

this means that $\ell=\ell_{g}$ and $\|\ell\|=\left\|\ell_{g}\right\|=\|g\|_{q}$.
Step 2. Suppose that (Ω, Σ, μ) is σ-finite.
Let $\left\{\Omega_{n}\right\} \subset \Sigma$ be as in the proof of Corollary 6.3.1. By Step 1, for each n, there is $g_{n} \in L^{q}$ with $\left\{g_{n} \neq 0\right\} \subset \Omega_{n}$ such that

$$
\begin{equation*}
\ell(f)=\int f g_{n} d \mu \tag{6.16}
\end{equation*}
$$

for $f \in L^{p}$ with $\{f \neq 0\} \subset \Omega_{n}$. Define g on Ω by $g(x)=g_{1}(x)$ if $x \in \Omega_{1}$, and $g(x)=g_{n}(x)$ if $x \in \Omega_{n} \backslash \Omega_{n-1}$ for $n \geq 2$. Then, since $g_{n}(x)=g_{n-1}(x)$ for a.e. x in Ω_{n-1} when $n \geq 2, g(x)=g_{n}(x)$ for a.e. $x \in \Omega_{n}$.

Now let $f \in S_{p}(g)$, then $\left|f g_{n}\right| \leq|f g|$ and $f g_{n} \rightarrow f g$ a.e., hence by (6.16),

$$
\left|\int f g d \mu\right|=\lim _{n \rightarrow \infty}\left|\int f g_{n} d \mu\right|=\lim _{n \rightarrow \infty}\left|\ell\left(f I_{\Omega_{n}}\right)\right| \leq\|\ell\| .
$$

From Lemma 6.3.2, $g \in L^{q}$ and hence for $f \in L^{p}$,

$$
\int f g d \mu=\lim _{n \rightarrow \infty} \int f I_{\Omega_{n}} g_{n} d \mu=\lim _{n \rightarrow \infty} \ell\left(f I_{\Omega_{n}}\right)=\ell(f)
$$

where the last equality comes from the obvious fact that $f I_{\Omega_{n}} \rightarrow f$ in L^{p}. Then $\ell=\ell_{g}$, and $\|\ell\|=\left\|_{g}\right\|_{q}$. That g is uniquely determined is obvious.

Exercise 6.3.2 shows that Theorem 6.3.1 may not hold true when $p=\infty$.
Exercise 6.3.2 Consider $L^{\infty}[0,1]$ and let $x_{0} \in[0,1]$. Show that there is $\ell \in$ $L^{\infty}[0,1]^{*}$ with $\|\ell\|=1$ such that $\ell(f)=f\left(x_{0}\right)$ for $f \in C[0,1]$. For this ℓ show that there is no $g \in L^{1}[0,1]$ such that $\ell(f)=\int_{[0,1]} f g d \lambda$ for all $f \in L^{\infty}[0,1]$.

Exercise 6.3.3 Suppose that (Ω, Σ, μ) is σ-finite and $1<p<\infty$. Show that L^{p} is reflexive.

Exercise 6.3.4 Let D be a measurable set in \mathbb{R}^{n} with positive measure. Show that every bounded sequence in $L^{p}(D), 1<p<\infty$, has a subsequence which converges weakly. (Hint: cf. Exercise 5.10.5.)

6.4 Modular distribution function and Hardy-Littlewood maximal function

Suppose that f is a finite a.e. measurable function on a measure space (Ω, Σ, μ). Define a function $\lambda_{f}:(0, \infty) \rightarrow[0, \infty]$ by

$$
\begin{equation*}
\lambda_{f}(\alpha)=\mu(\{|f|>\alpha\}) . \tag{6.17}
\end{equation*}
$$

Then the function λ_{f} enjoys the following properties:
(1) λ_{f} is monotone decreasing and right continuous.
(2) If $|f| \leq|g|$, then $\lambda_{f} \leq \lambda_{g}$.
(3) If $\left|f_{n}\right| \nearrow|f|$, then $\lambda_{f_{n}} \nearrow \lambda_{f}$.
(4) If $f=g+h$, then $\lambda_{f}(\alpha+\beta) \leq \lambda_{g}(\alpha)+\lambda_{h}(\beta)$ for $\alpha, \beta>0$.

Properties (1)-(3) follow directly from the definition, while (4) is a consequence of the fact that $\{|f|>\alpha+\beta\} \subset\{|g|>\alpha\} \cup\{|h|>\beta\}$.

The function λ_{f} is usually called the distribution function of f; but the distribution function of a measurable function is defined differently in Section 4.3, in agreement with the distribution function of a random variable in probability theory; we shall instead call λ_{f} the modular distribution function of f.

If $\lambda_{f}(\alpha)<\infty \forall \alpha>0$, then λ_{f} generates a negative Radon measure v on $(0, \infty)$ such that

$$
v((a, b])=\lambda_{f}(b)-\lambda_{f}(a), \quad 0<a<b<\infty ;
$$

actually, v is the negative of the Radon measure generated by the monotone increasing function $-\lambda_{f}$. We shall call v the Lebesque-Stieltjes measure generated by λ_{f}. If φ is a Borel function on $(0, \infty)$ such that $\int_{0}^{\infty} \varphi d \nu=\int_{(0, \infty)} \varphi d \nu$ exists, then $\int_{0}^{\infty} \varphi d \nu$ will be denoted by $\int_{0}^{\infty} \varphi d \lambda_{f}$ or $\int_{0}^{\infty} \varphi(\alpha) d \lambda_{f}(\alpha)$ in this section, and called the LebesqueStieltjes integral of φ w.r.t. λ_{f}.
Lemma 6.4.1 Suppose that $\lambda_{f}(\alpha)<\infty$ for all $\alpha>0$ and let φ be a nonnegative Borel function on $(0, \infty)$, then

$$
\begin{equation*}
\int_{\Omega} \varphi \circ|f| d \mu=-\int_{0}^{\infty} \varphi(\alpha) d \lambda_{f}(\alpha) . \tag{6.18}
\end{equation*}
$$

Proof We have

$$
v((a, b])=\lambda_{f}(b)-\lambda_{f}(a)=-\mu(\{a<|f| \leq b\})=-\mu\left(|f|^{-1}(a, b]\right)
$$

from which it follows that

$$
v(B)=-\mu\left(|f|^{-1} B\right)
$$

for Borel set B in $\left(\frac{1}{k}, k\right]$ (by the $(\pi-\lambda)$ theorem), and therefore for Borel set B in $(0, \infty)$. This means that (6.18) holds if φ is the indicator function of Borel set B in $(0, \infty)$, and consequently, if φ is a nonnegative simple Borel function on $(0, \infty)$. For a general nonnegative Borel function on $(0, \infty)$, (6.18) follows then by approximating φ pointwise by an increasing sequence of nonnegative simple Borel functions on $(0, \infty)$.

Exercise 6.4.1 Give the detail of the first part of the proof of Lemma 6.4.1 where the ($\pi-\lambda$) theorem is applied.

A measurable function f on (Ω, Σ, μ) is called a weak L^{p} function; $0<p<\infty$, if there is $0 \leq A<\infty$ depending only on f and p such that

$$
\begin{equation*}
\mu(\{|f|>\alpha\}) \leq \frac{A^{p}}{\alpha^{p}}, \quad \alpha>0 \tag{6.19}
\end{equation*}
$$

One sees readily that f is a weak L^{p} function if and only if $\sup _{\alpha>0} \alpha^{p} \mu\{|f|>\alpha\}<\infty$.
Exercise 6.4.2 Show that if $|f|^{p}, 0<p<\infty$, is integrable, then f is a weak L^{p} function.
Theorem 6.4.1 Suppose that f is a weak L^{p} function, $1 \leq p<\infty$, then we have

$$
\begin{equation*}
\int_{\Omega}|f|^{p} d \mu=-\int_{0}^{\infty} \alpha^{p} d \lambda_{f}(\alpha)=p \int_{0}^{\infty} \alpha^{p-1} \lambda_{f}(\alpha) d \alpha \tag{6.20}
\end{equation*}
$$

Proof Since f is a weak L^{p} function, $1 \leq p<\infty, \lambda_{f}(\alpha)<\infty$ for all $\alpha>0$, hence the first equality in (6.20) follows from Lemma 6.4.1 by taking $\phi(\alpha)=\alpha^{p}$. It remains to show that

$$
\int_{\Omega}|f|^{p} d \mu=p \int_{0}^{\infty} \alpha^{p-1} \lambda_{f}(\alpha) d \alpha
$$

We observe first that the set

$$
E:=\{(x, \alpha): x \in \Omega, 0<\alpha<|f(x)|\}
$$

is in $\Sigma \otimes \mathcal{B}$ (cf. Exercise 4.8.3). Since I_{E} is $\Sigma \otimes \mathcal{B}$-measurable, from Tonelli's theorem we have

$$
\begin{aligned}
& \int_{\Omega \times(0, \infty)} p I_{E}(x, \alpha) \alpha^{p-1} d(\mu \times \lambda)(x, \alpha) \\
= & \int_{\Omega}\left(\int_{0}^{|f(x)|} p \alpha^{p-1} d \lambda(\alpha)\right) d \mu(x) \\
= & \int_{\Omega}|f(x)|^{p} d \mu(x)
\end{aligned}
$$

but we also have

$$
\begin{aligned}
& \int_{\Omega \times(0, \infty)} p I_{E}(x, \alpha) \alpha^{p-1} d(\mu \times \lambda)(x, \alpha) \\
= & p \int_{0}^{\infty} \alpha^{p-1}\left(\int_{\{|f|>\alpha\}} d \mu\right) d \lambda(\alpha) \\
= & p \int_{0}^{\infty} \alpha^{p-1} \lambda_{f}(\alpha) d \alpha
\end{aligned}
$$

Hence $\int_{\Omega}|f|^{p} d \mu=p \int_{0}^{\infty} \alpha^{p-1} \lambda_{f}(\alpha) d \alpha$.
The Hardy-Littlewood maximal function will now be introduced. Let f be a locally integrable function on \mathbb{R}^{n}; the Hardy-Littlewood maximal function of f, denoted $M f$, is defined in terms of $|f|$ as follows:

$$
\begin{equation*}
M f(x)=\sup _{r>0} \frac{1}{\lambda^{n}\left(B_{r}(x)\right)} \int_{B_{r}(x)}|f(y)| d y \tag{6.21}
\end{equation*}
$$

where $M f(x)$ could be infinite for some $x \in \mathbb{R}^{n}$. Since, for each $r>0$, the function

$$
x \mapsto \frac{1}{\lambda^{n}\left(B_{r}(x)\right)} \int_{B_{r}(x)}|f(y)| d y
$$

is continuous, $\{M f>\alpha\}$ is open for $\alpha \in \mathbb{R}$. Hence $M f$ is a Borel function and is therefore measurable. We shall from now on simply call $M f$ the maximal function of f.

Theorem 6.4.2 For $f \in L^{1}\left(\mathbb{R}^{n}\right), M f$ is a weak L^{1} function. Actually there is $A>0$, depending only on n, such that

$$
\begin{equation*}
\lambda^{n}(\{M f>\alpha\}) \leq A\|f\|_{1} \alpha^{-1} \tag{6.22}
\end{equation*}
$$

for $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\alpha>0$.

Proof For $\alpha>0$, put $E_{\alpha}=\{M f>\alpha\}$. For $x \in E_{\alpha}$, there is a ball $B(x)$ centered at x such that

$$
\begin{equation*}
\int_{B(x)}|f(y)| d y>\alpha \lambda^{n}(B(x)) \tag{6.23}
\end{equation*}
$$

Since $\lambda^{n}(B(x))<\alpha^{-1}\|f\|_{1}$ by (6.23), $\mathcal{C}:=\left\{B(x): x \in E_{\alpha}\right\}$ is an admissible collection of balls. By Theorem 4.6.1, there is a disjoint sequence $\left\{B_{k}\right\}$ of balls from \mathcal{C} such that $\bigcup \mathcal{C} \subset \bigcup_{k} \widehat{B}_{k}$, where \widehat{B}_{k} is concentric with B_{k} and has a radius five times that of B_{k}. Then from (6.23),

$$
\begin{aligned}
\lambda^{n}\left(E_{\alpha}\right) & \leq \lambda^{n}(\cup \mathcal{C}) \leq \sum_{k} \lambda^{n}\left(\widehat{B}_{k}\right)=5^{n} \sum_{k} \lambda^{n}\left(B_{k}\right) \\
& <5^{n} \alpha^{-1} \sum_{k} \int_{B_{k}}|f(y)| d y=5^{n} \alpha^{-1} \int_{\bigcup_{B_{k}}}|f(y)| d y \\
& \leq 5^{n}\|f\|_{1} \alpha^{-1}
\end{aligned}
$$

from which we complete the proof by taking $A=5^{n}$.
Exercise 6.4.3 For $f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p<\infty$, show that $M f$ is a weak L^{p} function. (Hint: use Jensen's inequality to show that $M f(x) \leq\left\{M|f|^{p}(x)\right\}^{1 / p}$ for $x \in \mathbb{R}^{n}$.)

We note at this point that although $M f$ is a weak L^{1} function, it can never be integrable except for the extreme case $f=0$ a.e. To see this, suppose that $f \neq 0$ on a set of positive measure; then $\int_{B_{R}(0)}|f| d \lambda^{n}=c>0$ for some $R>0$ and hence if $|x| \geq R, B:=B_{2|x|}(x)$ contains $B_{R}(0)$, from which

$$
M f(x) \geq \frac{1}{\lambda^{n}(B)} \int_{B}|f(y)| d y \geq 2^{-n}|x|^{-n} b_{n}^{-1} c=c_{0}|x|^{-n}
$$

follows, where b_{n} is the measure of the unit ball in \mathbb{R}^{n}; thus by integrating $M f$ over \mathbb{R}^{n} using polar coordinates (cf. Theorem 4.11.1), we conclude that $\int M f d \lambda^{n}=\infty$. However, as the following theorem shows, $M f \in L^{p}$ if $f \in L^{p}$ and the map $f \mapsto M f$ is a bounded map from L^{p} into L^{p} when $p>1$.

Theorem 6.4.3 If $1<p \leq \infty$, there is $A_{p}>0$ such that for $f \in L^{p}\left(\mathbb{R}^{n}\right)$ we have

$$
\|M f\|_{p} \leq A_{p}\|f\|_{p}
$$

Proof When $p=\infty$, this is obvious with $A_{\infty}=1$. Consider now $1<p<\infty$. For a fixed $\alpha>0$, define f_{1} by

$$
f_{1}(x)= \begin{cases}f(x) & \text { if }|f(x)| \geq \frac{\alpha}{2} \\ 0 & \text { otherwise }\end{cases}
$$

then, $f_{1} \in L^{1}\left(\mathbb{R}^{n}\right)$ (see Exercise 6.4.4) and $|f(x)| \leq\left|f_{1}(x)\right|+\frac{\alpha}{2}$; hence $M f \leq M f_{1}+$ $\frac{\alpha}{2}$, which implies $\{M f>\alpha\} \subset\left\{M f_{1}>\frac{\alpha}{2}\right\}$ and consequently by Theorem 6.4.2 (note that A can be taken to be 5^{n}),

$$
\lambda_{M f}(\alpha) \leq \frac{2 \cdot 5^{n}}{\alpha}\left\|f_{1}\right\|_{1}=\frac{2 \cdot 5^{n}}{\alpha} \int_{\left\{|f| \geq \frac{\alpha}{2}\right\}}|f(x)| d x
$$

Now by (6.20),

$$
\begin{aligned}
\|M f\|_{p}^{p} & =p \int_{0}^{\infty} \alpha^{p-1} \lambda_{M f}(\alpha) d \alpha \\
& \leq p \int_{0}^{\infty} \alpha^{p-1}\left(\frac{2 \cdot 5^{n}}{\alpha} \int_{\left\{|f| \geq \frac{\alpha}{2}\right\}}|f(x)| d x\right) d \alpha \\
& =2 \cdot 5^{n} \cdot p \int_{\mathbb{R}^{n}}|f(x)| \int_{0}^{2|f(x)|} \alpha^{p-2} d \alpha d x \\
& =\frac{2 \cdot 5^{n} \cdot p}{p-1} \int_{\mathbb{R}^{n}} 2^{p-1}|f(x)|^{p} d x \\
& =2^{p} \cdot 5^{n} \frac{p}{p-1}\|f\|_{p}^{p}=A_{p}^{p}\|f\|_{p}^{p}
\end{aligned}
$$

where $A_{p}=2\left(\frac{5^{n} p}{p-1}\right)^{1 / p}$.
Exercise 6.4.4 Show that the function f_{1} defined at the beginning of the proof of Theorem 6.4.3 is integrable.

As an application of maximal function, a direct proof of Theorem 4.6 .4 will now be given using Theorem 6.4.2 together with the Markov inequality (6.1). An application of Theorem 6.4.3 to the study of Sobolev space is presented in Section 6.6. Actually, we shall prove that if f is a locally integrable function on an open set $\Omega \subset \mathbb{R}^{n}$, then

$$
\begin{equation*}
\lim _{r \rightarrow 0} \frac{1}{\lambda^{n}\left(B_{r}(x)\right)} \int_{B_{r}(x)}|f(y)-f(x)| d y=0 \tag{6.24}
\end{equation*}
$$

for a.e. $x \in \Omega$, and leave the proof for the general statement as an exercise. Because of the local nature of (6.24), we may assume that f is an integrable function on \mathbb{R}^{n}. Put $\theta(f, x)=\lim \sup _{r \rightarrow 0} \frac{1}{\lambda^{n}\left(B_{r}(x)\right)} \int_{B_{r}(x)}|f(y)-f(x)| d y$; our aim is to show that $\theta(f, x)=0$ for a.e. x in \mathbb{R}^{n}, or, equivalently, to show that $\lambda^{n}(\{\theta(f, \cdot)>\alpha\})=0$ for every $\alpha>0$. Now, given that $\varepsilon>0$, there is a continuous function g on \mathbb{R}^{n} such that $\|f-g\|_{1}<\varepsilon$ (cf. Exercise 6.1.1), then,

$$
\theta(f, x)=\theta(f-g+g, x) \leq \theta(f-g, x)+\theta(g, x)=\theta(f-g, x)
$$

because $\theta(g, x)=0$; but $\theta(f-g, x) \leq M(f-g)(x)+|f(x)-g(x)|$ and consequently,

$$
\{\theta(f, \cdot)>\alpha\} \subset\{\theta(f-g, \cdot)>\alpha\} \subset\left\{M(f-g)>\frac{\alpha}{2}\right\} \cup\left\{|f-g|>\frac{\alpha}{2}\right\} .
$$

Hence,

$$
\lambda^{n}(\{\theta(f, \cdot)>\alpha\}) \leq\left(A\|f-g\|_{1}+\|f-g\|_{1}\right) \frac{2}{\alpha} \leq 2(A+1) \frac{\varepsilon}{\alpha} ;
$$

by letting $\varepsilon \rightarrow 0$, we have $\lambda^{n}(\{\theta(f, \cdot)>\lambda\})=0$. Thus, $\theta(f, x)=0$ for a.e. x in \mathbb{R}^{n} and (6.24) is established.

Exercise 6.4.5 Show that $\lim _{B \rightarrow x} \frac{1}{\lambda^{n(B)}} \int_{B}|f(y)-f(x)| d y=0$ follows from (6.24). (Hint: if $x \in B$, then $B \subset B_{2 r}(x)$, where r is the radius of B.)

6.5 Convolution

The operation of taking convolution was used in Section 4.9 when introducing the Friederichs mollifier for the purpose of smoothing functions. An account of general features of convolution for functions on \mathbb{R}^{n} will be given in this section; its connection with the Fourier integral will be seen in Chapter 7. Referring to Exercises 1.6.6 and 1.6.7, we note in passing that convolution can be introduced for functions on groups with a measure invariant under translations w.r.t. the group operation and is often proved to be a useful operation.

We first state Proposition 4.8.2 as a lemma for later reference.
Lemma 6.5.1 Let f be a measurable function on \mathbb{R}^{n}, then $F(x, y):=f(x-y), x, y$ in \mathbb{R}^{n}, is a measurable function on $\mathbb{R}^{2 n}=\mathbb{R}^{n} \oplus \mathbb{R}^{n}$.

Let f and g be measurable functions on \mathbb{R}^{n}. The convolution of f and g is the function $f * g$ defined for all those x for which the following integral exists and is finite:

$$
f * g(x)=\int f(x-y) g(y) d y .
$$

Exercise 6.5.1

(i) Show that if $f * g(x)$ exists and is finite, then $g * f(x)$ exists and is finite, and $g * f(x)=f * g(x)$.
(ii) Show that if $f * g$ exists and is finite for a.e. x, then $f * g$ is measurable. (Hint: apply Lemma 6.5.1 and the Fubini theorem.)

Exercise 6.5.2 Suppose that $[a, b]$ and $[c, d]$ are finite closed intervals of equal length. Find $I_{[a, b]} * I_{[c, d]}$; in particular, show that $I_{\left[-\frac{\alpha}{2}, \frac{\alpha}{2}\right]} * I_{\left[-\frac{\alpha}{2}, \frac{\alpha}{2}\right]}(x)=\alpha\left(1-\frac{|x|}{\alpha}\right)^{+}, \alpha>0$.

Theorem 6.5.1 (Young inequality) Suppose that $f \in L^{p}, p \geq 1$, and $g \in L^{1}$, then $f * g$ exists and is finite a.e., and

$$
\|f * g\|_{p} \leq\|f\|_{p}\|g\|_{1} .
$$

Proof The case where $p=\infty$ is obvious. We consider the case where $1 \leq p<\infty$. Let $h(x, y)=f(x-y) g(y) ; h$ is measurable by Lemma 6.5.1. Using the integral version of the Minkowski inequality (Corollary 6.3.2), we have

$$
\begin{aligned}
\left(\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}|f(x-y) g(y)| d y\right)^{p} d x\right)^{\frac{1}{p}} & \leq \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}|f(x-y) g(y)|^{p} d x\right)^{\frac{1}{p}} d y \\
& =\|f\|_{p}\|g\|_{1} ;
\end{aligned}
$$

then, $\left(\int_{\mathbb{R}^{n}}\left|\int_{\mathbb{R}^{n}} f(x-y) g(y) d y\right|^{p} d x\right)^{\frac{1}{p}} \leq\|f\|_{p}\|g\|_{1}$, and consequently $f * g$ exists and is finite a.e., and $\|f * g\|_{p} \leq\|f\|_{p}\|g\|_{1}$.
Example 6.5.1 We give here another proof of Theorem 5.6.1 without recourse to the integral version of the Minkowski inequality. Since

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}|f(x-y)|^{p}|g(y)| d y\right) d x & =\int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}|f(x-y)|^{p}|g(y)| d x\right) d y \\
& =\|f\|_{p}^{p} \int_{\mathbb{R}^{n}}|g(y)| d y=\|f\|_{p}^{p}\|g\|_{1},
\end{aligned}
$$

therefore, $\int_{\mathbb{R}^{n}}|f(x-y)|^{p}|g(y)| d y<\infty$ for a.e. x, and hence

$$
\int_{\mathbb{R}^{n}}\left|f(x-y)\left\|g(y) \left\lvert\, d y \leq\left(\int_{\mathbb{R}^{n}}|f(x-y)|^{p}|g(y)| d y\right)^{\frac{1}{p}} \cdot\right.\right\| g \|_{1}^{\frac{1}{q}}<\infty \text { for a.e. } x\right. \text {, }
$$

which implies that $f * g$ exists and is finite a.e., and

$$
\begin{aligned}
\|f * g\|_{p}^{p} & \leq \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}|f(x-y) \| g(y)| d y\right)^{p} d x \\
& \leq\|g\|_{1}^{\frac{p}{1}} \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}}|f(x-y)|^{p}|g(y)| d y\right) d x \\
& =\|g\|_{1}^{\frac{p}{q}}\|f\|_{p}^{p}\|g\|_{1}=\|f\|_{p}^{p}\|g\|_{1}^{p},
\end{aligned}
$$

or

$$
\|f * g\|_{p} \leq\|f\|_{p}\|g\|_{1} .
$$

Lemma 6.5.2 For $f \in L^{p}, 1 \leq p<\infty$, and $y \in \mathbb{R}^{n}$, let $f^{y}(x)=f(x-y)$. Then, $\lim _{y \rightarrow 0}\left\|f^{y}-f\right\|_{p}=0$.

Proof Given $\varepsilon>0$, there is a continuous function g with compact support such that $\|f-g\|_{p}<\frac{\varepsilon}{3}$, by Proposition 4.6.1. Then,

$$
\begin{aligned}
\left\|f^{y}-f\right\|_{p} & =\left\|f^{y}-g^{y}+g^{y}-g+g-f\right\|_{p} \\
& \leq\left\|f^{y}-g^{y}\right\|_{p}+\|g-f\|_{p}+\left\|g^{y}-g\right\|_{p} \\
& <\frac{2}{3} \varepsilon+\left\|g^{y}-g\right\|_{p}
\end{aligned}
$$

but since g is continuous with compact support, $\left\|g^{y}-g\right\|_{p}<\frac{\varepsilon}{3}$ when $|y|$ is small. Thus, $\left\|f^{y}-f\right\|_{p}<\varepsilon$ when $|y|$ is small.

We shall denote by $C_{0}\left(\mathbb{R}^{n}\right)$ the space of all those continuous functions f on \mathbb{R}^{n} with the property that for any $\varepsilon>0$, there is $R>0$ such that $|f(x)|<\varepsilon$ whenever $|x|>$ R. Functions in $C_{0}\left(\mathbb{R}^{n}\right)$ are functions vanishing at infinity, introduced in Section 6.2. Clearly, $C_{c}\left(\mathbb{R}^{n}\right) \subset C_{0}\left(\mathbb{R}^{n}\right)$.

Theorem 6.5.2 If p and q are conjugate exponents, $f \in L^{p}$ and $g \in L^{q}$, then $f * g(x)$ exists and is finite for all x, and $f * g$ is bounded and uniformly continuous on \mathbb{R}^{n}. Furthermore, $\|f * g\|_{\infty} \leq\|f\|_{p}\|g\|_{q}$; and if $1<p<\infty$, then $f * g \in C_{0}\left(\mathbb{R}^{n}\right)$.

Proof From the Hölder inequality, $|f * g(x)| \leq\|f\|_{p}\|g\|_{q}$ for all x, hence $f * g(x)$ exists and is finite for all x, and $\|f * g\|_{\infty} \leq\|f\|_{p}\|g\|_{q}$.

To show that $f * g$ is uniformly continuous, we may assume that $1 \leq p<\infty$ (otherwise interchange p and q). Now,

$$
|f * g(x-y)-f * g(x)|=\left|\left(f^{y}-f\right) * g(x)\right| \leq\left\|f^{y}-f\right\|_{p}\|g\|_{q}
$$

hence $f * g$ is uniformly continuous on \mathbb{R}^{n}, by Lemma 6.5.2.
Finally, suppose that $1<p<\infty$ (then $1<q<\infty$). Choose sequences $\left\{f_{k}\right\},\left\{g_{k}\right\}$ in $\mathcal{C}_{c}\left(\mathbb{R}^{n}\right)$ so that $\left\|f_{k}-f\right\|_{p} \rightarrow 0$ and $\left\|g_{k}-g\right\|_{q} \rightarrow 0$ as $k \rightarrow \infty$; this is possible by Proposition 4.6.1. Then, $\left\{f_{k} * g_{k}\right\}$ is a sequence of continuous functions with compact support, and

$$
\begin{aligned}
\sup _{x \in \mathbb{R}^{n}}\left|f_{k} * g_{k}(x)-f * g(x)\right| & =\sup _{x \in \mathbb{R}^{n}}\left|f_{k} *\left(g_{k}-g\right)(x)+\left(f_{k}-f\right) * g(x)\right| \\
& \leq\left\|f_{k}\right\|_{p}\left\|g_{k}-g\right\|_{q}+\left\|f_{k}-f\right\|_{p}\|g\|_{q} \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$, because $\left\{f_{k}\right\}$, being a convergent sequence in L^{p}, is bounded in L^{p}.
Now given $\varepsilon>0$, from what we have just shown choose k_{0} large enough so that $\sup _{x \in \mathbb{R}^{n}}\left|f_{k_{0}} * g_{k_{0}}(x)-f * g(x)\right|<\varepsilon$, and then choose $R>0$ such that $f_{k_{0}} *$ $g_{k_{0}}(x)=0$ when $|x|>R$; thus $|f * g(x)|<\varepsilon$, when $|x|>R$. This shows that $f * g \in$ $C_{0}\left(\mathbb{R}^{n}\right)$.

Remark Theorem 6.5.2 is an example showing the smoothing effect of convolution.

Exercise 6.5.3 Show that for f, g, and h in $L^{1},(f * g) * h=f *(g * h)$.
Example 6.5.2 The Friederich mollifier $\left\{J_{\varepsilon}\right\}_{\varepsilon>0}$ constructed from a mollifying function φ introduced in Section 4.9 can be expressed as

$$
J_{\varepsilon} f(x)=f * \varphi_{\varepsilon}(x), \quad x \in \mathbb{R}^{n}
$$

for $f \in L^{\text {loc }}\left(\mathbb{R}^{n}\right)$. By Proposition 4.9.2 and Theorem 6.5.2, $J_{\varepsilon} f \in C^{\infty}\left(\mathbb{R}^{n}\right) \cap C_{0}\left(\mathbb{R}^{n}\right)$ if $f \in L^{p}, 1<p<\infty$.

Exercise 6.5.4 Show that there is no $u \in L^{1}$ such that $u * f=f$ for all $f \in L^{1}$. (Hint: if there is such a u, then $u * \varphi_{\varepsilon}=\varphi_{\varepsilon}$ for all $\varepsilon>0$, where φ is a mollifying function.)

Example 6.5.3 Suppose that f, g are in L^{1} and $f \in C^{1}\left(\mathbb{R}^{n}\right)$ with bounded partial derivatives. Since $f \in C^{1}\left(\mathbb{R}^{n}\right)$ with bounded partial derivatives, f is uniformly continuous; consequently if $f * g(x)$ exists and is finite, then $f * g\left(x^{\prime}\right)$ exists and is finite if $\left|x^{\prime}-x\right|<\delta$, where $\delta>0$ is chosen so that $\left|f(z)-f\left(z^{\prime}\right)\right|<1$ if $\left|z-z^{\prime}\right|<\delta$. This, together with the known fact that $f * g$ exists and is finite a.e., shows that $f * g$ exists and is finite everywhere and is uniformly continuous on \mathbb{R}^{n}. Now for any x, y in \mathbb{R}^{n}, $\frac{|f(x)-f(y)|}{|x-y|} \leq M$ for a fixed $M>0$, because partial derivatives of f are bounded. We can then apply LDCT to infer that

$$
\frac{\partial}{\partial x_{j}} f * g(x)=\frac{\partial f}{\partial x_{j}} * g(x), \quad x \in \mathbb{R}^{n}, j=1, \ldots, n .
$$

But from Theorem 6.5.2, $\frac{\partial f}{\partial x_{j}} * g$ is bounded and continuous. Hence, $f * g \in C^{1}\left(\mathbb{R}^{n}\right)$ and its partial derivatives are bounded.

By the Young inequality (Theorem 6.5.1), L^{1} is closed under the binary operation of convolution, which is associative (cf. Exercise 6.5.3) and clearly distributive w.r.t. the addition of elements in L^{1}. Thus with the introduction of the binary operation $*$ into L^{1}, L^{1} becomes a commutative algebra; it is an example of the so-called Banach algebras, in that it is a Banach space which is also an algebra that satisfies the inequality $\|f * g\|_{1} \leq\|f\|_{1}\|g\|_{1}$ for f, g in L^{1}. Because of the conclusion of Exercise 6.5.4, there exists no identity element in L^{1} w.r.t. the multiplication operation $*$. However, if φ is a mollifying function (cf. Example 6.5.2), $\lim _{\varepsilon \rightarrow 0} \varphi_{\varepsilon} * f=f$ in L^{1}, by Theorem 4.9.2; such a family $\left\{\varphi_{\varepsilon}\right\}_{\varepsilon>0}$ is called an approximate identity for L^{1}.Just as we construct the approximate identity $\left\{\varphi_{\varepsilon}\right\}_{\varepsilon>0}$ from a mollifying function φ, starting from an integrable function h on \mathbb{R}^{n} with $\int h d \lambda^{n}=1$, we define for each $t>0$ a function h_{t} by

$$
h_{t}(x)=t^{-n} h\left(\frac{x}{t}\right), \quad x \in \mathbb{R}^{n}
$$

then, $\int h_{t} d \lambda^{n}=1$. We shall see that $\left\{h_{t}\right\}_{t>0}$ is an approximate identity for L^{1}.

Lemma 6.5.3 For $\varepsilon>0$ and $\delta>0$, there is $t_{0}>0$ such that

$$
\int_{|y| \geq \delta}\left|h_{t}(y)\right| d y<\varepsilon
$$

whenever $0<t \leq t_{0}$.
Proof Since $h \in L^{1}$, there is $R>0$ such that $\int_{|y| \geq R}|h(y)| d y<\varepsilon$. Then,

$$
\int_{|y| \geq \delta}\left|h_{t}(y)\right| d y=\int_{|y| \geq \frac{\delta}{t}}|h(y)| d y<\varepsilon
$$

if $\frac{\delta}{t} \geq R$. We choose $t_{0}=\frac{\delta}{R}$ to complete the proof.
Theorem 6.5.3 $\left\{h_{t}\right\}_{t>0}$ is an approximate identity for L^{1}, i.e.

$$
\lim _{t \rightarrow 0}\left\|h_{t} * f-f\right\|_{1}=0, \quad f \in L^{1}
$$

Proof For $f \in L^{1}$ and $\varepsilon>0$, there is $\delta>0$ such that

$$
\begin{equation*}
\int_{\mathbb{R}^{n}}|f(x-y)-f(x)| d x<\frac{\varepsilon}{2\|h\|_{1}} \tag{6.25}
\end{equation*}
$$

if $|y|<\delta$. Since we may assume that $\|f\|_{1}>0$, there is $t_{0}>0$ such that

$$
\begin{equation*}
\int_{|y| \geq \delta}\left|h_{t}(y)\right| d y<\frac{\varepsilon}{4\|f\|_{1}} \tag{6.26}
\end{equation*}
$$

whenever $0<t \leq t_{0}$, by Lemma 6.5.3. Now,

$$
\begin{aligned}
& \int_{\mathbb{R}^{n}}\left|h_{t} * f-f\right| d \lambda^{n} \\
= & \int_{\mathbb{R}^{n}}\left|\int_{\mathbb{R}^{n}}\{f(x-y)-f(x)\} h_{t}(y) d y\right| d x \\
\leq & \int_{\mathbb{R}^{n}}\left|h_{t}(y)\right| \int_{\mathbb{R}^{n}}|f(x-y)-f(x)| d x d y \\
\leq & \int_{|y|<\delta}\left|h_{t}(y)\right| \int_{\mathbb{R}^{n}}|f(x-y)-f(x)| d x d y+2\|f\|_{1} \int_{|y| \geq \delta}\left|h_{t}(y)\right| d y \\
< & \frac{\varepsilon}{2\|h\|_{1}} \int_{|y|<\delta}\left|h_{t}(y)\right| d y+\frac{\varepsilon}{2} \leq \varepsilon
\end{aligned}
$$

if $0<t \leq t_{0}$ by (6.25) and (6.26).
We know from Theorem 6.5.2 that $f * h_{t}$ is a bounded and uniformly continuous function for each $t>0$ if $f \in L^{\infty}$; we show now, as a supplement to Theorem 6.5.3, that $f * h_{t}$ converges to f uniformly on every compact set of \mathbb{R}^{n} as $t \rightarrow 0$ if $f \in L^{\infty} \cap C\left(\mathbb{R}^{n}\right)$.

Theorem 6.5.4 If f is a bounded continuous function on \mathbb{R}^{n}, then $\lim _{t \rightarrow 0} f * h_{t}=f$ uniformly on every compact set K of \mathbb{R}^{n}.

Proof For a compact set K in \mathbb{R}^{n} and $\varepsilon>0$, there is $\delta>0$ such that $|f(x-y)-f(x)|<$ $\frac{\varepsilon}{2\|h\|_{1}}$ whenever $x \in K$ and $|y|<\delta$. Then by Lemma 6.5.3, there is $t_{0}>0$ such that $\int_{|y| \geq \delta}\left|h_{t}(y)\right| d y<\frac{\varepsilon}{4\|f\|_{\infty}}$ if $0<t \leq t_{0}$. Now for $x \in K$ and $0<t \leq t_{0}$, we have

$$
\begin{aligned}
& \left|h_{t} * f(x)-f(x)\right|=\left|\int_{\mathbb{R}^{n}} h_{t}(y)\{f(x-y)-f(x)\} d y\right| \\
\leq & \int_{\mathbb{R}^{n}}\left|h_{t}(y) \| f(x-y)-f(x)\right| d y \\
= & \int_{|y|<\delta}\left|h_{t}(y)\right||f(x-y)-f(x)| d y+\int_{|y| \geq \delta}\left|h_{t}(y) \| f(x-y)-f(x)\right| d y \\
< & \frac{\varepsilon}{2\|h\|_{1}} \int_{|y|<\delta}\left|h_{t}(y)\right| d y+2\|f\|_{\infty} \int_{|y| \geq \delta}\left|h_{t}(y)\right| d y \\
< & \frac{\varepsilon}{2}+2\|f\|_{\infty} \frac{\varepsilon}{4\|f\|_{\infty}}=\varepsilon,
\end{aligned}
$$

which means that $h_{t} * f(x) \rightarrow f(x)$ uniformly for $x \in K$ as $t \rightarrow 0$.
Exercise 6.5.5 Let $p(x)=\frac{1}{\pi} \frac{1}{1+x^{2}}$ and write $p_{t}(x)=\frac{t}{\pi} \frac{1}{t^{2}+x^{2}}$ as $p(x, t)$ for $x \in \mathbb{R}$ and $t>0$. The function $(x, t) \mapsto p(x, t)$ on $\mathbb{R} \times(0, \infty)$ is called the Poisson kernel.
(i) $\operatorname{For} f \in L^{1}(\mathbb{R})$, let

$$
\Pi(x, t)=p_{t} * f=\int_{\mathbb{R}} p(x-y, t) f(y) d y, \quad(x, t) \in \mathbb{R} \times(0, \infty)
$$

Show that

$$
\begin{aligned}
& \frac{\partial^{2} \Pi}{\partial x^{2}}(x, t)=\int_{\mathbb{R}} \frac{\partial^{2} p}{\partial x^{2}}(x-y, t) f(y) d y \\
& \frac{\partial^{2} \Pi}{\partial t^{2}}(x, t)=\int_{\mathbb{R}} \frac{\partial^{2} p}{\partial t^{2}}(x-y, t) f(y) d y
\end{aligned}
$$

(Hint: $\frac{\partial p}{\partial x}(x, t), \frac{\partial^{2} p}{\partial x^{2}}(x, t), \frac{\partial p}{\partial t}(x, t), \frac{\partial^{2} p}{\partial t^{2}}(x, t)$ are bounded on $\mathbb{R} \times\left(t_{0}, \infty\right)$ for any $t_{0}>0$.)
(ii) Let f and Π be as in (i). Show that Π is harmonic on $\mathbb{R} \times(0, \infty)$. Furthermore, if f is bounded and continuous, show that Π can be extended continuously to $\mathbb{R} \times[0, \infty)$ and that $\Pi(x, 0)=f(x)$ for $x \in \mathbb{R}$.

6.6 The Sobolev space $W^{k, p}(\Omega)$

A brief account of Sobolev spaces, which are fundamental in modern theory of partial differential equations and calculus of variations, will now be given.

A locally integrable function u defined on an open set $\Omega \subset \mathbb{R}^{n}$ is said to be weakly differentiable up to order k on Ω, k being a positive integer, if for any multi-index $\alpha=$ $\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ with $|\alpha|=\alpha_{1}+\cdots+\alpha_{n} \leq k$ there is a locally integrable function g_{α} on Ω, such that

$$
\begin{equation*}
\int_{\Omega} u \partial^{\alpha} \varphi d \lambda^{n}=(-1)^{|\alpha|} \int_{\Omega} g_{\alpha} \varphi d \lambda^{n} \tag{6.27}
\end{equation*}
$$

for all $\varphi \in C_{c}^{\infty}(\Omega)$. Observe that g_{α} is uniquely determined by u in the sense that any two such functions are equivalent. We therefore denote g_{α} by u_{α}. Note that $u_{0}=u_{(0, \ldots, 0)}=u$. Clearly, functions u in $C^{k}(\Omega)$ are weakly differentiable up to order k on Ω with $u_{\alpha}=$ $\partial^{\alpha} u$. For $p \geq 1$, let $W^{k, p}(\Omega)$ be the equivalence class of all such functions u in $L^{p}(\Omega)$ which is weakly differentiable up to order k on Ω such that $u_{\alpha} \in L^{p}(\Omega)$ for all α with $|\alpha| \leq k . W^{k, p}(\Omega)$ is a vector space with the usual definition of addition and multiplication by scalar. On $W^{k, p}(\Omega)$ a norm $\|\cdot\|_{k, p}$ is defined by

$$
\begin{align*}
\|u\|_{k, p} & =\left(\sum_{|\alpha| \leq k}\left\|u_{\alpha}\right\|_{p}^{p}\right)^{\frac{1}{p}} \quad \text { if } p<\infty ; \tag{6.28}\\
& =\sum_{|\alpha| \leq k}\left\|u_{\alpha}\right\|_{\infty} \quad \text { if } p=\infty .
\end{align*}
$$

To see that $\|u\|_{k, p}$ is actually a norm, we need only verify that triangle inequality holds when $1 \leq p<\infty:\|u+v\|_{k, p} \leq\left(\sum_{|\alpha| \leq k}\left\{\left\|u_{\alpha}\right\|_{p}+\left\|v_{\alpha}\right\|_{p}\right\}^{p}\right)^{\frac{1}{p}} \leq\left(\sum_{|\alpha| \leq k}\right.$ $\left.\left\|u_{\alpha}\right\|_{p}^{p}\right)^{\frac{1}{p}}+\left(\sum_{|\alpha| \leq k}\left\|v_{\alpha}\right\|_{p}^{p}\right)^{\frac{1}{p}}=\|u\|_{k, p}+\|v\|_{k, p}$, where we have used the Minkowski inequality for $l^{p}(S)$ with S a finite set. Of course, there are equivalent norms for $W^{k, p}(\Omega)$; for example, we may also define $\|u\|_{k, p}$ as $\sum_{|\alpha| \leq k}\left\|u_{\alpha}\right\|_{p}$. We prefer the norm defined in (6.28), because when $p=2$, the norm comes from an inner product on $W^{k, 2}(\Omega)$, defined by

$$
\begin{equation*}
(u, v)_{k}=\sum_{|\alpha| \leq k} \int_{\Omega} u_{\alpha} \bar{v}_{\alpha} d \lambda^{n} \tag{6.29}
\end{equation*}
$$

If u is weakly differentiable to certain order, u_{α} 's are called generalized partial derivatives of u, and often u_{α} is denoted by $\partial^{\alpha} u$ or $\frac{\partial^{|\alpha|} u}{\partial x_{1}^{\alpha_{1}} \ldots \partial \partial_{n}^{\alpha_{n}}}$; many notations related to smooth functions are also borrowed to be applied to weakly differentiable functions, for example, if u is weakly differentiable to first order, ∇u is used to denote $\left(\frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial u}{\partial x_{n}}\right)$ and is called the generalized gradient of u.

In what follows in this section, p and q are conjugate exponents.

Theorem 6.6.1 $W^{k, p}(\Omega)$ is a Banach space.
Proof Let $\left\{u^{(j)}\right\}$ be a Cauchy sequence in $W^{k, p}(\Omega)$. For each α with $|\alpha| \leq k,\left\{u_{\alpha}^{(j)}\right\}$ is a Cauchy sequence in $L^{p}(\Omega)$, hence, $\lim _{j \rightarrow \infty}\left\|u_{\alpha}^{(j)}-g_{\alpha}\right\|_{p}=0$ for some $g_{\alpha} \in L^{p}(\Omega)$. If we put $u=g_{0}$, we shall show that $u \in W^{k, p}(\Omega)$ and $\lim _{j \rightarrow \infty}\left\|u^{(j)}-u\right\|_{k, p}=0$. For any given $\varphi \in C_{c}^{\infty}(\Omega)$,

$$
\begin{aligned}
& \left|\int_{\Omega} u \partial^{\alpha} \varphi d \lambda^{n}-(-1)^{|\alpha|} \int_{\Omega} g_{\alpha} \varphi d \lambda^{n}\right| \\
= & \left|\int_{\Omega}\left(u-u^{(j)}\right) \partial^{\alpha} \varphi d \lambda^{n}+(-1)^{|\alpha|} \int_{\Omega}\left(u_{\alpha}^{(j)}-g_{\alpha}\right) \varphi d \lambda^{n}\right| \\
\leq & \left\|u-u^{(j)}\right\|_{p}\left\|\partial^{\alpha} \varphi\right\|_{q}+\left\|g_{\alpha}-u_{\alpha}^{(j)}\right\|_{p}\|\varphi\|_{q},
\end{aligned}
$$

from which by letting $j \rightarrow \infty$, we have

$$
\int_{\Omega} u \partial^{\alpha} \varphi d \lambda^{n}=(-1)^{\alpha} \int_{\Omega} g_{\alpha} \varphi d \lambda^{n}
$$

and hence u is weakly differentiable up to order k with $u_{\alpha}=g_{\alpha}$. Thus $u \in W^{k, p}(\Omega)$. That $\lim _{j \rightarrow \infty}\left\|u-u^{(j)}\right\|_{k, p}=0$ follows from $\lim _{j \rightarrow \infty}\left\|u_{\alpha}-u_{\alpha}^{(j)}\right\|_{p}=0$, for each α with $|\alpha| \leq k$.
Theorem 6.6.1 implies in particular that $W^{k, 2}(\Omega)$ is a Hilbert space with inner product defined by (6.29).
Exercise 6.6.1 A locally integrable function u defined on an open set Ω in \mathbb{R}^{n} is in $W^{k, p}(\Omega), p>1$, if and only if for each multi-index α with $|\alpha| \leq k$, there is a constant $C_{\alpha}>0$ such that

$$
\left|\int_{\Omega} u \partial^{\alpha} \varphi d \lambda^{n}\right| \leq C_{\alpha}\|\varphi\|_{q}
$$

for all $\varphi \in C_{c}^{\infty}(\Omega)$, where p, q are conjugate exponents.
Exercise 6.6.2 Let $\left\{J_{\varepsilon}\right\}_{\varepsilon>0}$ be a Friederich mollifier and suppose that u is weakly differentiable up to order k on an open set $\Omega \subset \mathbb{R}^{n}$. Show that for any multi-index α with $|\alpha| \leq k$, we have

$$
\partial^{\alpha}\left(J_{\varepsilon} u\right)(x)=J_{\varepsilon} u_{\alpha}(x), \quad x \in \Omega_{\varepsilon}
$$

where $\Omega_{\varepsilon}=\left\{x \in \Omega: \operatorname{dist}\left(x, \Omega^{c}\right)>\varepsilon\right\}$.
Exercise 6.6.3 Let $u \in W^{k, p}(\Omega), 1 \leq p<\infty$. Show that there is a sequence $\left\{v_{j}\right\} \subset$ $C^{\infty}\left(\mathbb{R}^{n}\right)$ such that for every $\varepsilon>0, v_{j} \in W^{k, p}\left(\Omega_{\varepsilon}\right)$ when j is large and $v_{j} \rightarrow u$ in $W^{k, p}\left(\Omega_{\varepsilon}\right)$. Note that $v_{j} \in W^{k, p}\left(\Omega_{\varepsilon}\right)$ implicitly implies that the restriction of v_{j} to Ω_{ε} is also denoted by v_{j}.

Exercise 6.6.4 Let I be an open interval in \mathbb{R}. Show that a locally integrable function f on I is in $W^{1,1}(I)$ if and only if it is equivalent to a function g which is absolutely continuous on every finite closed interval in I and $g^{\prime} \in L^{1}(I)$.
Theorem 6.6.2 Suppose that $u \in W^{1,1}\left(\mathbb{R}^{n}\right)$, then

$$
u(x)=\frac{1}{n b_{n}} \int_{\mathbb{R}^{n}} \frac{(x-\xi) \cdot \nabla u(\xi)}{|x-\xi|^{n}} d \xi
$$

for a.e. x in \mathbb{R}^{n}, where $b_{n}=\lambda^{n}\left(B_{1}(0)\right)$ and $\nabla u=\left(\frac{\partial u}{\partial x_{1}}, \ldots, \frac{\partial u}{\partial x_{n}}\right)$.
Proof We know from Exercises 6.1.3 and 6.6.3 that there is a sequence $\left\{u_{j}\right\}$ in $C^{\infty}\left(\mathbb{R}^{n}\right) \cap W^{1,1}\left(\mathbb{R}^{n}\right)$ such that $\lim _{j \rightarrow \infty}\left\|u_{j}-u\right\|_{1,1}=0$ and $u_{j}(x) \rightarrow u(x)$ for a.e. x in \mathbb{R}^{n}. Apply Corollary 4.11 .1 to each u_{j}; we have

$$
\begin{equation*}
u_{j}(x)=\frac{1}{n b_{n}} \int_{\mathbb{R}^{n}} \frac{(x-\xi) \cdot \nabla u_{j}(\xi)}{|x-\xi|^{n}} d \xi, \quad x \in \mathbb{R}^{n} . \tag{6.30}
\end{equation*}
$$

Fix $R>0$. Let $\Omega=B_{R+1}(0), D=B_{R}(0)$, and put

$$
g_{j}(x)=\int_{\Omega} \frac{\left|\nabla u_{j}(\xi)-\nabla u(\xi)\right|}{|x-\xi|^{n-1}} d \xi, \quad x \in D .
$$

By Theorem 4.11.2, $\left\|g_{j}\right\|_{1} \rightarrow 0$ as $j \rightarrow \infty$; hence, $\left\{g_{j}\right\}$ has a subsequence $\left\{g_{j}\right\}$ such that $g_{j^{\prime}}(x) \rightarrow 0$ as $j^{\prime} \rightarrow \infty$ for a.e. x in D, by Exercise 6.1.3. Now,
$u_{j^{\prime}}(x)=\frac{1}{n b_{n}} \int_{\mathbb{R}^{n}} \frac{(x-\xi) \cdot\left(\nabla u_{j^{\prime}}(\xi)-\nabla u(\xi)\right)}{|x-\xi|^{n}} d \xi+\frac{1}{n b_{n}} \int_{\mathbb{R}^{n}} \frac{(x-\xi) \cdot \nabla u(\xi)}{|x-\xi|^{n}} d \xi ;$
if we show that $\int_{\mathbb{R}^{n}} \frac{(x-\xi) \cdot\left(\nabla u_{j}(\xi)-\nabla u(\xi)\right)}{|x-\xi|^{n}} d \xi \rightarrow 0$ for a.e. x in D as $j^{\prime} \rightarrow \infty$, then $u(x)=$ $\frac{1}{n b_{n}} \int_{\mathbb{R}^{n}} \frac{(x-\xi) \cdot \nabla(\xi)}{|x-\xi|^{n}} d \xi$ for a.e. x in D. But, for $x \in D$, we have

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{n}} \frac{(x-\xi) \cdot\left(\nabla u_{j^{\prime}}(\xi)-\nabla u(\xi)\right)}{|x-\xi|^{n}} d \xi\right| & \leq \int_{\mathbb{R}^{n}} \frac{\left|\nabla u_{j^{\prime}}(\xi)-\nabla u(\xi)\right|}{|x-\xi|^{n-1}} d \xi \\
& =g_{j^{\prime}}(x)+\int_{\mathbb{R}^{n} \backslash \Omega} \frac{\left|\nabla u_{j^{\prime}}(\xi)-\nabla u(\xi)\right|}{|x-\xi|^{n-1}} d \xi \\
& \leq g_{j^{\prime}}(x)+\int_{\mathbb{R}^{n}}\left|\nabla u_{j^{\prime}}(\xi)-\nabla u(\xi)\right| d \xi \rightarrow 0
\end{aligned}
$$

as $j^{\prime} \rightarrow \infty$ for those x where $g_{j^{\prime}}(x) \rightarrow 0$. Thus $u(x)=\frac{1}{n b_{n}} \int_{\mathbb{R}^{n}} \frac{(x-\xi) \cdot \nabla u(\xi)}{|x-\xi|^{n}} d \xi$ for a.e. x in D. Since $R>0$ is arbitrary, the theorem is proved.

The closure of $C_{c}^{\infty}(\Omega)$ in $W^{k, p}(\Omega)$ is denoted by $\stackrel{\circ}{W}^{k, p}(\Omega)$; functions in $\stackrel{\circ}{W}^{k, p}(\Omega)$ are said to vanish on $\partial \Omega$ in a generalized sense.

Exercise 6.6.5 Suppose that Ω is bounded and let $u \in \stackrel{\circ}{W}^{k, \infty}(\Omega)$. Show that u is equivalent to a function $v \in C^{k}(\Omega)$ which can be continuously extended to be zero on $\partial \Omega$, together with all its partial derivatives up to order k.

Exercise 6.6.6 Show that if $u \in W^{k, p}(\Omega)$, then

$$
\int_{\Omega} u \partial^{\alpha} v d \lambda^{n}=(-1)^{|\alpha|} \int_{\Omega} u_{\alpha} v d \lambda^{n}
$$

for all $v \in \stackrel{\circ}{W}^{k, q}(\Omega)$ if $|\alpha| \leq k$.
Exercise 6.6.7 Let g be in $C^{\infty}\left(\mathbb{R}^{n}\right)$ satisfying $0 \leq g \leq 1, g=0$ outside $B_{2}(0)$, and $g=1$ on $B_{1}(0)$. For $j \in \mathbb{N}$, let g_{j} be the function defined on \mathbb{R}^{n} by

$$
g_{j}(x)=g\left(j^{-1} x\right), \quad x \in \mathbb{R}^{n}
$$

(i) Suppose that $u \in C^{k}\left(\mathbb{R}^{n}\right) \cap W^{k, p}\left(\mathbb{R}^{n}\right), 1 \leq p<\infty$. Show that $\lim _{j \rightarrow \infty} \| g_{j} u-$ $u \|_{k, p}=0$.
(ii) Show that $\stackrel{\circ}{W}^{k, p}\left(\mathbb{R}^{n}\right)=W^{k, p}\left(\mathbb{R}^{n}\right)$ if $1 \leq p<\infty$.

Theorem 6.6.3 (Poincaré) If Ω is a bounded open set in \mathbb{R}^{n}, then on $\stackrel{\circ}{W}^{k, p}(\Omega)$ the norm $\|\cdot\|_{k, p}$ is equivalent to the norm $|\cdot|_{k, p}$, defined for $u \in \stackrel{\circ}{W^{k, p}}(\Omega)$ by

$$
\begin{aligned}
|u|_{k, p} & =\left(\sum_{|\alpha|=k}\left\|u_{\alpha}\right\|_{p}^{p}\right)^{1 / p}, \quad p<\infty ; \\
|u|_{k, \infty} & =\sum_{|\alpha|=k}\left\|u_{\alpha}\right\|_{\infty} .
\end{aligned}
$$

Proof We prove the theorem for $k=1$ and $p<\infty$; the proof for the general case will be clear from the proof of this particular case.

For $u \in \stackrel{\circ}{W}^{1, p}(\Omega)$, we are going to show that there is $C>0$, independent of u, such that $\|u\|_{1, p} \leq C|u|_{1, p}$. From the definition of $\stackrel{\circ}{W}^{1, p}(\Omega)$, we may assume that $u \in C_{c}^{\infty}(\Omega)$. By letting $u=0$ outside Ω, we may further assume that $u \in C_{c}^{\infty}(I)$, where I is an open oriented cube containing Ω and with side-width $=l$. Express I as $I=I_{1} \times \hat{I}_{1}$, where $I_{1}=(a, b) \subset \mathbb{R}$ and $\hat{I}_{1} \subset \mathbb{R}^{n-1}$; then for $x \in I, x$ can be expressed as $\left(x_{1}, \hat{x}_{1}\right)$ with $x_{1} \in(a, b)$ and $\hat{x}_{1} \in \hat{I}_{1}$. Now, $u(x)=\int_{a}^{x_{1}} \frac{\partial u}{\partial x_{1}}\left(t, \hat{x}_{1}\right) d t$ implies that $|u(x)|^{p} \leq\left(x_{1}-a\right)^{p / q} \int_{a}^{b}\left|\frac{\partial u}{\partial x_{1}}\left(t, \hat{x}_{1}\right)\right|^{p} d t$ and hence,

$$
\begin{aligned}
\|u\|_{p}^{p} & \leq(b-a)^{p / q}(b-a) \int_{I}\left|\frac{\partial u}{\partial x_{1}}(x)\right|^{p} d x=(b-a)^{p}\left\|\frac{\partial u}{\partial x_{1}}\right\|_{p}^{p} \\
& \leq(b-a)^{p} \sum_{j=1}^{n}\left\|\frac{\partial u}{\partial x_{j}}\right\|_{p}^{p},
\end{aligned}
$$

from which it follows that

$$
\|u\|_{1, p}^{p} \leq\left\{1+(b-a)^{p}\right\}|u|_{1, p}^{p} ;
$$

therefore $\|u\|_{1, p} \leq C|u|_{1, p}$, where $C=\left\{1+(b-a)^{p}\right\}^{1 / p}$. Then,

$$
|u|_{1, p} \leq\|u\|_{1, p} \leq C|u|_{1, p}
$$

implying that $\|\cdot\|_{1, p}$ and $|\cdot|_{1, p}$ are equivalent.
Remark Since $|u|_{k, p} \leq\|u\|_{k, p}$ for $u \in \stackrel{\circ}{W}^{k, p}(\Omega)$, Theorem 6.6.3 is equivalent to the statement that there is $C>0$ such that

$$
\begin{equation*}
\|u\|_{k, p} \leq C|u|_{k, p} \tag{6.31}
\end{equation*}
$$

for all $u \in \stackrel{\circ}{W}^{k, p}(\Omega)$. Inequality (6.31) is called the Poincaré inequality; and Theorem 6.6.3 is usually referred to as the Poincaré inequality.

The following lemma is a generalization of Example 4.11.2.
Lemma 6.6.1 Let $u \in W^{1, p}\left(\mathbb{R}^{n}\right), 1 \leq p<\infty$, then,

$$
\int_{B_{R}(x)} \frac{|u(\xi)-u(x)|}{|\xi-x|} d \xi \leq M|\nabla u|(x)
$$

for x in \mathbb{R}^{n}, where $M|\nabla u|$ is the maximal function of ∇u.
Proof Fix a Friederichs mollifier $\left\{J_{\varepsilon}\right\}_{\varepsilon>0}$, and let $u_{\varepsilon}=J_{\varepsilon} u$ (cf. Section 4.9), then $\lim _{\varepsilon \rightarrow 0}\left\|J_{\varepsilon} u-u\right\|_{1, p}=0$, by Exercise 6.6.2 and Theorem 4.9.2; hence $u_{\varepsilon} \rightarrow u$, $\nabla u_{\varepsilon} \rightarrow \nabla u$ in $L^{p}\left(\mathbb{R}^{n}\right)$. Fix $x \in \mathbb{R}^{n}$ and $R>0$, in terms of polar coordinates of $y-x$; we have

$$
\begin{aligned}
\int_{B_{R}(x)}\left|u_{\varepsilon}(y)-u(y)\right| d y & =\int_{0}^{R} \rho^{n-1} \int_{S^{n-1}}\left|u_{k}(\rho, \theta)-u(\rho, \theta)\right| d \sigma(\theta) d \rho \\
& =\int_{S^{n-1}} \int_{0}^{R} \rho^{n-1}\left|u_{k}(\rho, \theta)-u(\rho, \theta)\right| d \rho d \sigma(\theta) \rightarrow 0
\end{aligned}
$$

as $\varepsilon \searrow 0$. We infer then from Example 4.8.2 that there is a sequence $\varepsilon_{k} \searrow$ 0 such that $\int_{0}^{R} \rho^{n-1}\left|u_{\varepsilon_{k}}(\rho, \theta)-u(\rho, \theta)\right| d \rho \rightarrow 0$ as $k \rightarrow \infty$ for σ-a.e. $\theta \in S^{n-1}$.

Then for any $0<\delta<R, \int_{\delta}^{R}\left|u_{\varepsilon_{k}}(\rho, \theta)-u(\rho, \theta)\right| d \rho \rightarrow 0$ as $k \rightarrow \infty$. Similarly, $\int_{\delta}^{R}\left|\nabla u_{\varepsilon_{k}^{\prime}}(\rho, \theta)-\nabla u(\rho, \theta)\right| d \rho \rightarrow 0$ as $k \rightarrow \infty$ for σ-a.e. $\theta \in S^{n-1}$. Since we may choose ε_{k}^{\prime}, a subsequence of ε_{k}, we conclude that there is a sequence $\left\{u_{k}\right\}$ in $C^{\infty}\left(\mathbb{R}^{n}\right) \cap W^{1, p}\left(\mathbb{R}^{n}\right)$ such that for a.e. y in $B_{R}(x) \backslash B_{\delta}(x)$,

$$
\int_{\delta}^{R}\left|u_{k}(x+t(y-x))-u(x+t(y-x))\right| d t \rightarrow 0
$$

and

$$
\int_{\delta}^{R}\left|\nabla u_{k}(x+t(y-x))-\nabla u(x+t(y-x))\right| d t \rightarrow 0
$$

as $k \rightarrow \infty$. Therefore for a.e. y in $B_{R}(x) \backslash B_{\delta}(x), u(x+t(y-x))$ is AC on $[\delta, R]$ and $\frac{d}{d t} u(x+t(y-x))=\nabla u(x+t(y-x)) \cdot(y-x)$ for a.e. t on $[\delta, R]$. Then, as in Example 4.11.2,

$$
\begin{aligned}
\int_{B_{R}(x) \backslash B_{\delta}(x)} \frac{|u(\xi)-u(x)|}{|\xi-x|} d \xi & \leq \int_{0}^{1} \frac{1}{t^{n}} \int_{B_{R t}(x) \backslash B_{\delta(t)}(x)}|\nabla u(z)| d z \\
& \leq \int_{0}^{1} \frac{1}{t^{n}} \int_{B_{R t}(x)}|\nabla u(z)| d z \\
& \leq \lambda^{n}\left(B_{R}(x)\right) \cdot M|\nabla u|(x) .
\end{aligned}
$$

We conclude the proof by letting $\delta \searrow 0$.
Theorem 6.6.4 There is a positive constant $\theta=\theta(n, p), 1<p<\infty$ with the property that if $u \in W^{1, p}\left(\mathbb{R}^{n}\right)$, then for $\varepsilon>0$ there is a closed set $F \subset \mathbb{R}^{n}$ such that $\left.u\right|_{F}$, the restriction of u to F, is Lipschitz with Lipschitz constant $\operatorname{Lip}\left(\left.u\right|_{F}\right)$, satisfying

$$
\operatorname{Lip}\left(\left.u\right|_{F}\right)^{p} \lambda^{n}\left(\mathbb{R}^{n} \backslash F\right)<\theta(n, p) \varepsilon
$$

Proof For x, y in \mathbb{R}^{n}, put $q(x, y)=\frac{|u(y)-u(x)|}{|y-x|}$, then

$$
\begin{equation*}
\frac{1}{\sigma_{R}} \int_{B_{R}(x)} q(x, y) d y \leq M|\nabla u|(x), \tag{6.32}
\end{equation*}
$$

from Lemma 6.6.1, where $\sigma_{R}=\lambda^{n}\left(B_{R}(x)\right)$. For $x \in \mathbb{R}^{n}$ and $\lambda>0$, let $W_{R}(x, \lambda)=$ $\left\{y \in B_{R}(x): q(x, y) \leq \lambda\right\}$; we have from (6.1) and (6.32),

$$
\begin{equation*}
\lambda^{n}\left(B_{R}(x) \backslash W_{R}(x, \lambda)\right) \leq \frac{1}{\lambda} \int_{B_{R}(x)} q(x, y) d y \leq \frac{\sigma_{R}}{\lambda} M|\nabla u|(x) . \tag{6.33}
\end{equation*}
$$

Now put $Z_{\delta}=\left\{x \in \mathbb{R}^{n}: M|\nabla u|(x) \leq \delta\right\}$, and choose $k_{0}>1$ such that

$$
\begin{equation*}
\lambda^{n}\left(B_{R}(x) \cap B_{R}(y)\right)>\frac{2}{k_{0}} \sigma_{R}, \quad R=|x-y| . \tag{6.34}
\end{equation*}
$$

Consider now x, y in Z_{δ}; we have from (6.33),

$$
\begin{equation*}
\lambda^{n}\left(B_{R}(z) \backslash W_{R}\left(z, k_{0} \delta\right)\right) \leq \frac{M|\nabla u|(z)}{k_{0} \delta} \sigma_{R} \leq \frac{1}{k_{0}} \sigma_{R} \tag{6.35}
\end{equation*}
$$

for $z=x$ or y and $R=|x-y|$. It follows from (6.34) and (6.35) that $W_{R}\left(x, k_{0} \delta\right) \cap$ $W_{R}\left(y, k_{0} \delta\right) \neq \emptyset$; choose $z_{0} \in W_{R}\left(x, k_{0} \delta\right) \cap W_{R}\left(y, k_{0} \delta\right)$, then

$$
\begin{equation*}
q(x, y) \leq q\left(x, z_{0}\right)+q\left(y, z_{0}\right) \leq 2 k_{0} \delta . \tag{6.36}
\end{equation*}
$$

Given that $\varepsilon>0$, by (6.2) there is $\delta>0$ such that $\delta^{p} \lambda^{n}(\{M|\nabla u|>\delta\})<\varepsilon$. Choose then a closed set F in Z_{δ} with $\lambda^{n}\left(\mathbb{R}^{n} \backslash F\right)<2 \lambda^{n}(\{M|\nabla u|>\delta\})$. The restriction of u to F is a Lipschitz function with Lipschitz constant $\leq 2 k_{0} \delta$, by (6.36); therefore $\left(\frac{\operatorname{Lip}\left(\left.u\right|_{F}\right)}{2 k_{0}}\right)^{p} \lambda^{n}\left(\mathbb{R}^{n} \backslash F\right)<2 \varepsilon$. We choose $\theta=\theta(n, p)=2^{p+1} k_{0}^{p}$ to complete the proof.

Remark If $M(|u|+|\nabla u|)$ is substituted for $M|\nabla u|$ in Theorem 6.6.4, the closed set F can be chosen so that $\left\|\left.u\right|_{F}\right\|_{\infty}+\operatorname{Lip}\left(\left.u\right|_{F}\right) \leq 2 \operatorname{Lip}\left(\left.u\right|_{F}\right)$; this observation, together with the known fact that $\left.u\right|_{F}$ can be extended to a Lipschitz function v on \mathbb{R}^{n} such that $\|v\|_{\infty}+$ $\operatorname{Lip}(v) \leq A\left(\left\|\left.u\right|_{F}\right\|_{\infty}+\operatorname{Lip}\left(\left.u\right|_{F}\right)\right)$, where A is a constant depending only on n (cf. [St, Chapter VI]), shows that Theorem 6.6.4 can be formulated as follows. A function $u \in$ $L^{p}\left(\mathbb{R}^{n}\right)$ is in $W^{1, p}\left(\mathbb{R}^{n}\right)$ if and only if for any given $\varepsilon>0$ there is a Lipschitz function v on \mathbb{R}^{n}, and a closed set F such that $u=v$ on $F, \lambda^{n}\left(\mathbb{R}^{n} \backslash F\right)<\varepsilon$, and $\|u-v\|_{1, p}<\varepsilon$.

Besides, Theorem 6.6.4 also holds when $p=1$, because in the last paragraph of the proof of the theorem, δ can be chosen so that $\delta \lambda^{n}(\{M|\nabla u|>\delta\})<\varepsilon$ follows from the improved form of Theorem 6.4.2:

$$
\lambda^{n}(\{M f>\alpha\}) \leq 2 A \alpha^{-1} \int_{\left\{|f|>\frac{\alpha}{2}\right\}}|f| d \lambda^{n}
$$

of which we refer to [St, P.7].
Since $W^{k, 2}(\Omega)$ is a Hilbert space, it will be denoted by $H^{k}(\Omega)$; accordingly, $\stackrel{\circ}{W}^{k, 2}(\Omega)$ is denoted by $\stackrel{\circ}{H}^{k}(\Omega)$. By Exercise 6.6 .7 (ii), $\stackrel{\circ}{H}^{k}\left(\mathbb{R}^{n}\right)=H^{k}\left(\mathbb{R}^{n}\right) ; H^{k}\left(\mathbb{R}^{n}\right)$ is usually abbreviated to H^{k}. In Chapter 7, with the help of the Fourier integral, H^{s} will also be defined for fractional number s.

Fourier Integral and Sobolev Space $\boldsymbol{H}^{\boldsymbol{s}}$

TThe Fourier integral is a useful construct in analysis which is based on an idea of J. Fourier for resolving functions into basic harmonics in his treatment of conduction of heat. When functions are periodic, say of period 2π, they are resolved as Fourier series (see Section 5.9). For nonperiodic functions on \mathbb{R}, the idea leads to a Fourier integral. The Fourier integral for L^{1} functions on \mathbb{R}^{n} can be defined straight away, and is treated in Section 7.1. Since L^{2} is a Hilbert space, it is desirable to define a Fourier integral for L^{2} functions; but a straightforward definition for L^{2} functions is lacking; some variation is therefore necessary for the purpose. We shall get around this through the Fourier integral for rapidly decreasing functions, introduced in Section 7.2. Applications to Sobolev spaces H^{s} and to partial differential equations are provided in later sections of the chapter. The Fourier integral of probability distributions is introduced in Section 7.5, and is applied to prove the central limit theorem of probability theory.

A Fourier integral is also called a Fourier transform.
For the convenience of expressing certain functions defined on \mathbb{R}^{n}, the function $x \mapsto$ $f(x)$ will sometimes be expressed by $f(x)$. For example, $x \mapsto x^{\alpha}$ is simply denoted by x^{α}, and if f is a function on \mathbb{R}^{n}, the function $x \mapsto x^{\alpha} f(x)$ is denoted by $x^{\alpha} f$.

7.1 Fourier integral for $\mathbf{L}^{\mathbf{1}}$ functions

For $f \in L^{1}:=L^{1}\left(\mathbb{R}^{n}\right)$, define the Fourier integral Ff of f by

$$
(F f)(\xi)=\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} f(x) e^{-i \xi \cdot x} d x, \quad \xi \in \mathbb{R}^{n}
$$

Since $\left|f(x) e^{-i \xi \cdot x}\right|=|f(x)|, F f$ is defined and is finite for every $\xi \in \mathbb{R}^{n}$. One verifies readily that
(1) $\|F f\|_{\infty} \leq \frac{1}{(2 \pi)^{\frac{\pi}{2}}}\|f\|_{1}$;
(2) Ff is uniformly continuous on \mathbb{R}^{n} (note that this follows from LDCT).

Exercise 7.1.1 Let $f(x)=e^{-|x|}, x \in \mathbb{R}$. Find Ff.
Exercise 7.1.2 Suppose that f_{1}, \ldots, f_{n} are in $L^{1}(\mathbb{R})$ and let $f(x)=\prod_{j=1}^{n} f_{j}\left(x_{j}\right)$ for $x=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}$. Show that $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $(F f)(\xi)=\prod_{j=1}^{n}\left(F f_{j}\right)\left(\xi_{j}\right)$ for $\xi=\left(\xi_{1}, \ldots, \xi_{n}\right)$.

Example 7.1.1

(i) For $\alpha>0$, consider the function $f=I_{[-\alpha, \alpha]}$ on \mathbb{R}; then $(F f)(\xi)=\frac{2 \sin \alpha \xi}{\sqrt{2 \pi \xi}}$, $\xi \in \mathbb{R}$. For $n>1, f=I_{[-\alpha, \alpha] \times \cdots \times[-\alpha, \alpha]},(F f)(\xi)=\frac{2^{n}}{(2 \pi)^{\frac{n}{2}}} \prod_{j=1}^{n} \frac{\sin \alpha \xi_{j}}{\xi_{j}}$.

This follows from Exercise 7.1.2.
(ii) For $n=1$, consider the function $f(x)=e^{-\frac{x^{2}}{2}}$. We have

$$
(F f)(\xi)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-\frac{x^{2}}{2}} e^{-i \xi x} d x=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-\frac{x^{2}}{2}} \cos \xi x d x
$$

and

$$
\begin{aligned}
(F f)^{\prime}(\xi) & =\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-\frac{x^{2}}{2}}(-x \sin \xi x) d x \\
& =\frac{1}{\sqrt{2 \pi}} \xi \int_{\mathbb{R}} e^{-\frac{x^{2}}{2}} \cos \xi x d x=\xi(F f)(\xi) .
\end{aligned}
$$

The first equality follows by LDCT and the second by integration by parts. Then $(F f)(\xi)=C e^{-\frac{\xi^{2}}{2}}$ with C being a constant. But $(F f)(0)=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} e^{-\frac{x^{2}}{2}} d x$ $=1=C$. Thus $(F f)(\xi)=e^{-\frac{\xi^{2}}{2}}$. For $n>1$, if $f(x)=e^{-\frac{|x|^{2}}{2}}$, then $(F f)(\xi)=e^{-\frac{|\xi|^{2}}{2}}$.

Exercise 7.1.3 Consider the function $f(x)=e^{-\frac{1}{2} x^{2}}$ in Example 7.1.1 (ii). Use a contour integral to show that

$$
\int_{\mathbb{R}} e^{-\frac{1}{2}(x+i \xi)^{2}} d x=\int_{\mathbb{R}} e^{-\frac{1}{2} x^{2}} d x=\sqrt{2 \pi}
$$

and give a direct verification that

$$
F f(\xi)=e^{-\frac{1}{2} \xi^{2}}
$$

Theorem 7.1.1 Iff, $g \in L^{1}\left(\mathbb{R}^{n}\right),(F\{f * g\})(\xi)=(2 \pi)^{\frac{n}{2}}(F f)(\xi)(F g)(\xi)$.

Proof Observe first that $f * g \in L^{1}\left(\mathbb{R}^{n}\right)$, by the Young inequality (Theorem 6.5.1). Then,

$$
\begin{aligned}
(F\{f * g\})(\xi) & =\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}} f(x-y) g(y) d y\right) e^{-i \xi \cdot x} d x \\
& =\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}}\left(\int_{\mathbb{R}^{n}} f(x-y) e^{-i \xi \cdot(x-y)} d x\right) g(y) e^{-i \xi \cdot y} d y \\
& =\int_{\mathbb{R}^{n}}(F f)(\xi) g(y) e^{-i \xi \cdot y} d y=(2 \pi)^{\frac{n}{2}}(F f)(\xi)(F g)(\xi) .
\end{aligned}
$$

It is to be noted that since $f(x-y) g(y) e^{-i \xi \cdot x}$ is an integrable function of (x, y) in $\mathbb{R}^{2 n}$, it is legitimate to use the Fubini theorem in the above argument.
Example 7.1.2 Let $\alpha>0$. It is readily verified that $\frac{1}{\alpha} I_{\left[-\frac{\alpha}{2}, \frac{\alpha}{2}\right]} * I_{\left[-\frac{\alpha}{2}, \frac{\alpha}{2}\right]}(x)=\left(1-\frac{|x|}{\alpha}\right)^{+}$ (cf. Exercise 6.5.2), it then follows than

$$
\left(F\left(1-\frac{|x|}{\alpha}\right)^{+}\right)(\xi)=\frac{\sqrt{2 \pi}}{\alpha}\left(\frac{2 \sin \frac{\alpha}{2} \xi}{\sqrt{2 \pi} \xi}\right)^{2}=\frac{1}{\alpha} \cdot \frac{2(1-\cos \alpha \xi)}{\sqrt{2 \pi} \xi^{2}}
$$

For $f \in L^{1}\left(\mathbb{R}^{n}\right)$, the inverse Fourier integral $\check{F} f$ of f is defined by

$$
(\check{F} f)(\xi)=\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}} f(x) e^{i \xi \cdot x} d x, \quad \xi \in \mathbb{R}^{n}
$$

For $f \in L^{1}$, Ff and $\check{F} f$ are often denoted by \hat{f} and \check{f} respectively.
Exercise 7.1.4 Recall that for $a \in \mathbb{R}^{n}, \sigma>0$, and a function f on $\mathbb{R}^{n}, f^{a}(x)=f(x-a)$, $f_{\sigma}(x)=\sigma^{-n} f\left(\frac{x}{\sigma}\right)$ for $x \in \mathbb{R}^{n}$.
(i) Show that $\widehat{f^{a}}(\xi)=e^{-i \xi \cdot a \hat{f}}(\xi)$ for $f \in L^{1}$.
(ii) Show that $\widehat{\hat{f}_{\sigma}}(\xi)=\hat{f}(\sigma \xi)$.

Exercise 7.1.5 Let f, g be in L^{1}. Show that

$$
\int_{\mathbb{R}^{n}} f \hat{g} d \lambda^{n}=\int_{\mathbb{R}^{n}} \hat{f} g d \lambda^{n}
$$

Theorem 7.1.2 (Riemann-Lebesgue) Iff $\in L^{1}$, then $\hat{f} \in C_{0}\left(\mathbb{R}^{n}\right)$.
Proof If f is the function considered in Example 7.1.1 (i), then $\lim _{|\xi| \rightarrow \infty} \hat{f}(\xi)=0$; hence the theorem holds for indicator functions of cubes, by Exercise 7.1 .4 (i); as a consequence the theorem holds for finite linear combinations of indicator functions of cubes. But, as $C_{c}\left(\mathbb{R}^{n}\right)$ is dense in L^{1}, one verifies easily that the family of all finite linear combinations of indicator functions of cubes is dense in L^{1}. Thus for $f \in L^{1}$ and $\varepsilon>0$, there is a finite linear combination φ of indicator functions of cubes such
that $\|f-\varphi\|_{1}<\frac{\varepsilon}{2}$, then $|\hat{f}(\xi)| \leq|(\widehat{f-\varphi})(\xi)|+|\hat{\varphi}(\xi)|<\frac{\varepsilon}{2}+|\hat{\varphi}(\xi)|$, from which it follows that $|\hat{f}(\xi)|<\varepsilon$ if $|\xi|$ is large enough, because $\hat{\varphi} \in C_{0}\left(\mathbb{R}^{n}\right)$.
Theorem 7.1.3 For $f \in L^{1}, f$ is uniquely determined by \hat{f}; in other words, the map $f \mapsto \hat{f}$ is injective on L^{1}.
Proof Take h to be the function defined on \mathbb{R}^{n} by $h(x)=\frac{1}{(2 \pi)^{\frac{\pi}{2}}} e^{-\frac{|x|^{2}}{2}}$ (note $\int h d \lambda^{n}=1$), then $\left\{h_{\sigma}\right\}_{\sigma>0}$ is an approximate identity for L^{1}. Put $m_{\sigma} f=f * h_{\sigma}$. Then, since $\hat{h}(\xi)=$ $h(\xi)$, as in Example 7.1.1 (ii), we have

$$
\begin{aligned}
\left(m_{\sigma} f\right)(x) & =\int_{\mathbb{R}^{n}} f(y) h_{\sigma}(x-y) d y=\int_{\mathbb{R}^{n}} f(y) h_{\sigma}(y-x) d y \\
& =\sigma^{-n} \int_{\mathbb{R}^{n}} f(y) h\left(\frac{y-x}{\sigma}\right) d y \\
& =\frac{\sigma^{-n}}{(2 \pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}}\left(f(y) \int_{\mathbb{R}^{n}} e^{-i \frac{-z-x}{\sigma} \cdot z} h(z) d z\right) d y \\
& =\frac{\sigma^{-n}}{(2 \pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}}\left(f(y) \int_{\mathbb{R}^{n}} e^{-i(y-x) \cdot \frac{z}{\sigma}} h(z) d z\right) d y \\
& =\frac{1}{(2 \pi)^{\frac{n}{2}}} \int_{\mathbb{R}^{n}}\left(f(y) \int_{\mathbb{R}^{n}} e^{-i(y-x) \cdot z} h(\sigma z) d z\right) d y \\
& =\int_{\mathbb{R}^{n}} e^{i x \cdot z} \hat{f}(z) h(\sigma z) d z ;
\end{aligned}
$$

this means that the function $m_{\sigma} f$ is uniquely determined by \hat{f}. But as $m_{\sigma} f \rightarrow f$ in L^{1} as $\sigma \rightarrow 0, f$ is uniquely determined by \hat{f}.
Theorem 7.1.4 (L^{1} inversion theorem) If both f and \hat{f} are in L^{1}, then $f=(\hat{f})^{\Sigma}$, i.e. f is the inverse Fourier integral of \hat{f}.

Proof Let h and $\left\{m_{\sigma}\right\}_{\sigma>0}$ be as in the proof of Theorem 7.1.3. There we have shown that

$$
\left(m_{\sigma} f\right)(x)=\int_{\mathbb{R}^{n}} e^{i x \cdot \xi} \hat{f}(\xi) h(\sigma \xi) d \xi ;
$$

since $\left|e^{i x \cdot \xi} \hat{f}(\xi) h(\sigma \xi)\right| \leq \frac{1}{(2 \pi)^{m / 2}}|\hat{f}(\xi)|$ and $\lim _{\sigma \rightarrow 0} e^{i x \cdot \xi} \hat{f}(\xi) h(\sigma \xi)=\frac{1}{(2 \pi)^{\frac{\pi}{2}}} e^{i x \cdot \xi} \hat{f}(\xi)$, it follows from LDCT that $\lim _{\sigma \rightarrow 0}\left(m_{\sigma} f\right)(x)=(\hat{f})^{\nu}(x)$ for each $x \in \mathbb{R}^{n}$. Now, $\left.\left|\left(m_{\sigma} f\right)(x)\right| \leq \frac{1}{(2 \pi)^{\frac{n}{2}}} \right\rvert\, \hat{f} \|_{1}$ implies that $\lim _{\sigma \rightarrow 0} \int_{B_{R}(0)}\left|m_{\sigma} f-(\hat{f})^{\dagger}\right| d \lambda^{n}=0$ for any $R>0$, again by LDCT; this, together with $\lim _{\sigma \rightarrow 0} \int_{B_{R}(0)}\left|m_{\sigma} f-f\right| d \lambda^{n}=0$ (cf. Theorem 6.5.3), shows that $f=(\hat{f})^{2}$ a.e. on $B_{R}(0)$ for any $R>0$, and consequently $f=(\hat{f})^{\text {n }}$ a.e. on \mathbb{R}^{n}.

As an application of the L^{1} inversion theorem, we establish the fact that the family $\left\{\mathcal{E}_{0}, \mathcal{E}_{1}, \mathcal{E}_{2}, \ldots\right\}$ of normalized Hermite functions introduced in Example 5.8.1 is an orthonormal basis for $L^{2}(\mathbb{R})$, or equivalently, that the family $\left\{h_{0}, h_{1}, h_{2}, \ldots\right\}$ of normalized Hermite polynomials is an orthonormal basis for $L_{w}^{2}(\mathbb{R})$ where $w(x)=e^{-x^{2}}$.

Corollary 7.1.1 The family $\left\{\mathcal{E}_{0}, \mathcal{E}_{1}, \mathcal{E}_{2}, \ldots\right\}$ of normalized Hermite functions is an orthonormal basis for $L^{2}(\mathbb{R})$.

Proof By Theorem 5.8.3, we need to show that if $f \in L^{2}(\mathbb{R})$ is such that

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(x) \mathcal{E}_{n}(x) d x=0, \quad n=0,1,2, \ldots, \tag{A}
\end{equation*}
$$

then $f=0$ a.e. Recall from Example 5.8.1 that $\mathcal{E}_{n}(x)=e^{-\frac{x^{2}}{2}} h_{n}(x)$, where $h_{n}(x)$ is a polynomial of degree n and that each monomial x^{n} is a linear combination of $h_{0}(x), \ldots, h_{n}(x)$; hence if $f \in L^{2}(\mathbb{R})$ satisfies the condition (A), then it satisfies the condition

$$
\begin{equation*}
\int_{-\infty}^{\infty} f(x) e^{-\frac{x^{2}}{2}} x^{n} d x=0, \quad n=0,1,2, \ldots \tag{B}
\end{equation*}
$$

Therefore, it suffices to show that if $f \in L^{2}(\mathbb{R})$ satisfies the condition (B), then $f=0$ a.e. Now let $f \in L^{2}(\mathbb{R})$ satisfy the condition (B). Put $g(x)=f(x) e^{-\frac{x^{2}}{2}}$, then $g \in L^{1}(\mathbb{R})$, by the Schwarz inequality and

$$
\begin{aligned}
\hat{g}(t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-i t x} f(x) e^{-\frac{x^{2}}{2}} d x \\
& =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\sum_{n=0}^{\infty} \frac{(-i t x)^{n}}{n!}\right) f(x) e^{-\frac{x^{2}}{2}} d x ;
\end{aligned}
$$

but for $N \in \mathbb{N}$,

$$
\left|\sum_{n=0}^{N} \frac{(-i t x)^{n}}{n!} f(x) e^{-\frac{x^{2}}{2}}\right| \leq|f(x)| e^{|t x|} e^{-\frac{x^{2}}{2}},
$$

of which the function on the right-hand side is integrable because

$$
\int_{-\infty}^{\infty}|f(x)| e^{|x| x \mid} e^{-\frac{x^{2}}{2}} d x \leq\|f\|_{2}\left\{\int_{-\infty}^{\infty} e^{2|t x|} e^{-x^{2}} d x\right\}^{\frac{1}{2}}<\infty
$$

It follows then from LDCT that

$$
\begin{aligned}
\hat{g}(t) & =\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} \lim _{N \rightarrow \infty}\left(\sum_{n=0}^{N} \frac{(-i t x)^{n}}{n!} f(x) e^{-\frac{x^{2}}{2}}\right) d x \\
& =\lim _{N \rightarrow \infty} \frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty}\left(\sum_{n=0}^{N} \frac{(-i t)^{n}}{n!} x^{n} f(x) e^{-\frac{x^{2}}{2}}\right) d x \\
& =\lim _{N \rightarrow \infty} \frac{1}{\sqrt{2 \pi}} \sum_{n=0}^{N} \frac{(-i t)^{n}}{n!} \int_{-\infty}^{\infty} f(x) e^{-\frac{x^{2}}{2}} x^{n} d x=0
\end{aligned}
$$

by condition (B). Thus, $\hat{g}=0$ and by Theorem 7.1.4, $g(t)=(\hat{g})^{\check{y}}(t)=0$ a.e. and hence $f=0$ a.e.

A remarkable application of the Fourier integral is the Poisson summation formula, which states that

$$
\sum_{n=-\infty}^{\infty} f(2 n \pi)=\frac{1}{\sqrt{2 \pi}} \sum_{n=-\infty}^{\infty} \hat{f}(n)
$$

for integrable functions f satisfying certain condition. Usually, the Poisson summation formula is established for $f \in C^{2}(\mathbb{R})$ such that

$$
|f(x)|+\left|f^{\prime}(x)\right|+\left|f^{\prime \prime}(x)\right| \leq C\left(1+x^{2}\right)^{-1}, \quad x \in \mathbb{R},
$$

for some constant $C>0$. We shall prove the formula under weaker conditions. For an integrable function f on \mathbb{R} and $n \in \mathbb{Z}$, let

$$
f_{n}(x)=f(x+2 \pi n), \quad x \in \mathbb{R} .
$$

We first claim that $\left\{f_{n}(x)\right\}=\left\{f_{n}(x)\right\}_{n \in \mathbb{Z}}$ is summable for a.e. x in \mathbb{R}. For this purpose it is sufficient to show that $\left\{f_{n}(x)\right\}$ is summable for a.e. x in $[-\pi, \pi]$, because if $\left\{f_{n}(x)\right\}$ is summable, then $\left\{f_{n}(x+2 \pi m)\right\}=\left\{f_{n+m}(x)\right\}=\left\{f_{n}(x)\right\}$ for any $m \in \mathbb{Z}$, and hence $\sum_{n \in \mathbb{Z}} f_{n}(x+2 \pi m)=\sum_{n \in \mathbb{Z}} f_{n}(x)$. Now,

$$
\int_{-\pi}^{\pi} \sum_{n \in \mathbb{Z}}\left|f_{n}(x)\right| d x=\sum_{n \in \mathbb{Z}} \int_{-\pi}^{\pi}\left|f_{n}(x)\right| d x=\int_{\mathbb{R}}|f| d \lambda<\infty
$$

implies that $\sum_{n \in \mathbb{Z}}\left|f_{n}(x)\right|<\infty$ for a.e. x in $[-\pi, \pi]$. Hence $\left\{f_{n}(x)\right\}$ is summable for a.e. x in \mathbb{R} and if we put $[f](x)=\sum_{n \in \mathbb{Z}} f_{n}(x)$, if $\left\{f_{n}(x)\right\}$ is summable and $[f](x)=0$ otherwise, $[f]$ is defined on \mathbb{R} and periodic with period 2π. Furthermore, $[f]$ is integrable on $[-\pi, \pi]$. The function $[f]$ is called the stacked function of f. If we define for $j \in \mathbb{N}$ the function $[f]_{j}$ on \mathbb{R} by

$$
[f]_{j}(x)=\sum_{|n| \leq j} f_{n}(x),
$$

then $[f]_{j} \rightarrow[f]$ a.e. and $\left|[f]_{j}\right| \leq[|f|]$ a.e. Since $[|f|]$ is integrable on $[-\pi, \pi]$, it follows from LDCT that $[f]_{j} \rightarrow[f]$ in $L^{1}[-\pi, \pi]$. We have proved the following lemma (7.1.1).

Lemma 7.1.1 Suppose that $f \in L^{1}=L^{1}(\mathbb{R})$. Then $[f]_{j} \rightarrow[f]$ a.e. as well as in $L^{1}[-\pi, \pi]$ as $j \rightarrow \infty$.
In the immediate following, for $f \in W^{1,1}(\mathbb{R})$ we always take a version of f which is AC on every finite closed interval of \mathbb{R} (note that since $W^{1,1}(\mathbb{R})=\stackrel{\circ}{W}^{1,1}(\mathbb{R})$, $f(x)=\int_{-\infty}^{x} f^{\prime}(x) d x$ for a.e. $\left.x\right)$.
Lemma 7.1.2 If $f \in W^{1,1}(\mathbb{R})$, then $[f]$ is an $A C$ function on $[-\pi, \pi]$ and satisfies $[f](-\pi)=[f](\pi)$. Furthermore, $[f]^{\prime}=\left[f^{\prime}\right]$ a.e.

Proof We take a version of f which is AC on every finite closed interval of \mathbb{R}. Then f^{\prime} exists a.e. and is integrable on \mathbb{R}; and since

$$
\begin{align*}
f_{n}(x) & =f(x+2 n \pi)=f(-\pi+2 n \pi)+\int_{-\pi+2 n \pi}^{x+2 n \pi} f^{\prime}(s) d s \\
& =f_{n}(-\pi)+\int_{-\pi}^{x} f_{n}^{\prime}(s) d s \tag{7.1}
\end{align*}
$$

for $x \in[-\pi, \pi]$, we have

$$
\begin{equation*}
[f]_{j}(x)=[f]_{j}(-\pi)+\int_{-\pi}^{x}\left[f^{\prime}\right]_{j}(s) d s, \quad x \in[-\pi, \pi] . \tag{7.2}
\end{equation*}
$$

As $\left[f^{\prime}\right]_{j} \rightarrow\left[f^{\prime}\right]$ in $L^{1}[-\pi, \pi]$ as $j \rightarrow \infty$, by Lemma 7.1.1, $\lim _{j \rightarrow \infty} \int_{-\pi}^{x}\left[f^{\prime}\right]_{j}(s) d s=$ $\int_{-\pi}^{x}\left[f^{\prime}\right](s) d s$ for $x \in[-\pi, \pi]$; we conclude that $\lim _{j \rightarrow \infty}[f]_{j}(-\pi)$ exists and is finite by letting $j \rightarrow \infty$ in (7.2) for x such that $\lim _{j \rightarrow \infty}[f]_{j}(x)=[f](x)$. Because $|f| \in$ $W^{1,1}(\mathbb{R})$, we also know that $\lim _{j \rightarrow \infty}[|f|]_{j}(-\pi)$ exists and is finite, from which follows that $\left\{f_{n}(-\pi)\right\}$ is summable and hence $[f](-\pi)=\lim _{j \rightarrow \infty}[f]_{j}(-\pi)$. Now for any finite subset F of \mathbb{Z} and $x \in[-\pi, \pi]$,

$$
\sum_{n \in F}\left|\int_{-\pi}^{x} f_{n}^{\prime}(s) d s\right| \leq \int_{-\pi}^{x} \sum_{n \in F}\left|f_{n}^{\prime}(s)\right| d s \leq \int_{-\pi}^{x}\left[\left|f^{\prime}\right|\right](s) d s<\infty,
$$

implying that $\left\{\int_{-\pi}^{x} f_{n}^{\prime}(s) d s\right\}$ is summable for each $x \in[-\pi, \pi]$. We then infer from (7.1) that $\left\{f_{n}(x)\right\}$ is summable and $[f](x)=\lim _{j \rightarrow \infty}[f]_{j}(x)$ for each $x \in[-\pi, \pi]$. Now let $j \rightarrow \infty$ in (7.2); we have

$$
[f](x)=[f](-\pi)+\int_{-\pi}^{x}\left[f^{\prime}\right](s) d s, \quad x \in[-\pi, \pi] ;
$$

consequently $[f]$ is AC on $[-\pi, \pi]$ and $[f]^{\prime}=\left[f^{\prime}\right]$ a.e. on $[-\pi, \pi]$. Finally, $[f](-\pi)=$ $\sum_{n \in \mathbb{Z}} f_{n}(-\pi)=\sum_{n \in \mathbb{Z}} f_{n+1}(-\pi)=\sum_{n \in \mathbb{Z}} f_{n}(\pi)=[f](\pi)$.

Lemma 7.1.3 Iff $\in W^{1,1}(\mathbb{R})$, then

$$
\sum_{k \in \mathbb{Z}} f(2 \pi k)=\lim _{j \rightarrow \infty} \frac{1}{\sqrt{2 \pi}} \sum_{|n| \leq j} \hat{f}(n) .
$$

Proof Since $[f]$ is an $A C$ function on $[-\pi, \pi]$, by Lemma 7.1.2, from Theorem 5.9.6 we know that

$$
[f](0)=\lim _{j \rightarrow \infty} S_{j}([f], 0)=\lim _{j \rightarrow \infty} \frac{1}{\sqrt{2 \pi}} \sum_{|k| \leq j} \widehat{[f]}(k),
$$

where $\widehat{[f]}(k), k \in \mathbb{Z}$, are the Fourier coefficients of $[f]$; but

$$
\begin{aligned}
\widehat{[f]}(k) & =\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi}[f](x) e^{-i k x} d x=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} \sum_{n \in \mathbb{Z}} f(x+2 \pi n) e^{-i k x} d x \\
& =\frac{1}{\sqrt{2 \pi}} \sum_{n \in \mathbb{Z}} \int_{-\pi}^{\pi} f(x+2 \pi n) e^{-i k x} d x=\frac{1}{\sqrt{2 \pi}} \int_{\mathbb{R}} f(x) e^{-i k x} d x=\hat{f}(k),
\end{aligned}
$$

hence, $[f](0)=\sum_{n \in \mathbb{Z}} f(2 \pi n)=\lim _{j \rightarrow \infty} \frac{1}{\sqrt{2 \pi}} \sum_{|k| \leq j \leq j} \hat{f}(k)$.
Theorem 7.1.5 (Poisson summation formula) Iff $\in W^{2,1}(\mathbb{R})$, then $\{\hat{f}(n)\}$ is summable and

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} f(2 \pi n)=\frac{1}{\sqrt{2 \pi}} \sum_{n \in \mathbb{Z}} \hat{f}(n) . \tag{7.3}
\end{equation*}
$$

Proof In view of Lemma 7.1.3, it is sufficient to show that $\{\hat{f}(n)\}$ is summable.
Since $f \in W^{2,1}(\mathbb{R}), f^{\prime} \in W^{1,1}(\mathbb{R})$. Then $\left[f^{\prime}\right]=[f]^{\prime}$ is AC and is therefore in $L^{2}[-\pi, \pi]$. Now,

$$
\widehat{[f]}(k)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi}[f](x) e^{-i k x}=\frac{i}{k} \frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi}[f]^{\prime}(x) e^{-i k x} d x=\frac{i}{k}\left[\widehat{f]^{\prime}}(k),\right.
$$

if $k \neq 0$ (note $[f](-\pi)=[f](\pi)$), hence,

$$
\begin{aligned}
\sum_{k \in \mathbb{Z}}|\widehat{[f]}(k)| & =|\widehat{[f]}(0)|+\sum_{k \neq 0} \frac{1}{|k|}\left|\widehat{[f]^{\prime}}(k)\right| \\
& \leq|\widehat{[f]}(0)|+\left(\sum_{k \neq 0} \frac{1}{k^{2}}\right)^{\frac{1}{2}}\left(\sum_{k \in \mathbb{Z}}\left|\widehat{[f]^{\prime}}(k)\right|^{2}\right)^{\frac{1}{2}}<\infty,
\end{aligned}
$$

because $\sum_{k \in \mathbb{Z}}\left|\widehat{[f]^{\prime}}(k)\right|^{2}=\left\|[f]^{\prime}\right\|_{2}^{2}$. Thus $\{\widehat{f f]}(n)\}$ is summable. We have shown in the proof of Lemma 7.1.3 that $\hat{f}(n)=\widehat{[f]}(n)$ for $n \in \mathbb{Z}$, hence $\{\hat{f}(n)\}$ is summable.

Example 7.1.3 Let $g(x)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{x^{2}}{2}}$, and for $t>0$ let $g_{t}(x)=\frac{1}{\sqrt{2 \pi t}} e^{-\frac{x^{2}}{2 t^{2}}}, x \in \mathbb{R}$. The family $\left\{g_{t}\right\}$ is called the Gauss kernel. From Example 7.1.1 (ii) and Exercise 7.1 .4 (ii), $\hat{g}_{t}(\xi)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{t^{2} \xi^{2}}{2}}$. Using (7.3), we conclude that

$$
\frac{1}{\sqrt{2 \pi} t} \sum_{n \in \mathbb{Z}} e^{-\frac{(2 \pi n)^{2}}{2 t^{2}}}=\frac{1}{2 \pi} \sum_{n \in \mathbb{Z}} e^{-\frac{n^{2} t^{2}}{2}}
$$

from which on replacing t by $2 \pi \sqrt{t}$, we have

$$
\begin{equation*}
\frac{1}{\sqrt{2 \pi t}} \sum_{n \in \mathbb{Z}} e^{-\frac{n^{2}}{2 t}}=\sum_{n \in \mathbb{Z}} e^{-2 \pi^{2} n^{2} t} \tag{7.4}
\end{equation*}
$$

The relation (7.4) is Jacobi's identity for the theta function θ,

$$
\begin{equation*}
\theta(t)=t^{-\frac{1}{2}} \theta\left(\frac{1}{t}\right), \quad t>0 \tag{7.5}
\end{equation*}
$$

where $\theta(t)=\sum_{n \in \mathbb{Z}} e^{-\pi n^{2} t}$.
Example 7.1.4 Consider the Poisson kernel $P_{t}(x)=\frac{1}{\pi} \frac{t}{t^{2}+x^{2}}, t>0, x \in \mathbb{R}$. From the Cauchy integral formula, if $\xi>0$ and $y<-t$,

$$
\int_{\mathbb{R}} \frac{e^{-i \xi x} d x}{(x-i t)(x+i t)}-\int_{\mathbb{R}} \frac{e^{-i \xi(x+i y)} d x}{(x+i y-i t)(x+i y+i t)}=2 \pi i\left(\frac{e^{-\xi t}}{-2 i t}\right)=\frac{\pi}{t} e^{-\xi t}
$$

where $\frac{e^{-\xi t}}{-2 i t}$ is the value of the function $\frac{e^{-i \xi z}}{z-i t}$ at $z=-i t$. But,

$$
\int_{\mathbb{R}} \frac{e^{-i \xi(x+i y)} d x}{(x+i y)^{2}+t^{2}}=e^{\xi y} \int_{\mathbb{R}} \frac{e^{-i \xi x}}{(x+i y)^{2}+t^{2}} d x \rightarrow 0
$$

as $y \rightarrow-\infty$. Hence $\int_{\mathbb{R}} \frac{e^{-i \xi x}}{x^{2}+t^{2}} d x=\frac{\pi}{t} e^{-\xi t}$ if $\xi>0$.
If $\xi<0$, take $y>t$ and then let $y \rightarrow \infty$; we obtain $\int_{\mathbb{R}} \frac{e^{-i \xi x}}{x^{2}+t^{2}} d x=\frac{\pi}{t} e^{\xi t}$ by the same argument. Thus $\widehat{P}_{t}(\xi)=\frac{1}{\sqrt{2 \pi}} \frac{t}{\pi} \int_{\mathbb{R}} \frac{e^{-i \xi x}}{x^{2}+t^{2}} d x=\frac{1}{\sqrt{2 \pi}} e^{-|\xi| t}$. Apply (7.3); we have

$$
\begin{equation*}
\sum_{n \in \mathbb{Z}} P_{t}(2 n \pi)=\frac{t}{\pi} \sum_{n \in \mathbb{Z}} \frac{1}{t^{2}+(2 n \pi)^{2}}=\frac{1}{2 \pi} \sum_{n \in \mathbb{Z}} e^{-|n| t}=\frac{1}{2 \pi} \frac{1+e^{-t}}{1-e^{-t}} \tag{7.6}
\end{equation*}
$$

or

$$
\sum_{n \in \mathbb{Z}} \frac{1}{t^{2}+n^{2}}=\frac{\pi}{t} \frac{1+e^{-2 \pi t}}{1-e^{-2 \pi t}}
$$

on replacing t by $2 \pi t$. When $t \rightarrow 0+$, (7.6) becomes $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$.
Exercise 7.1.6 Show that $\int_{\mathbb{R}} e^{-|\xi| t} e^{i \xi x} d \xi=2 \pi P_{t}(x)$ and verify that $\widehat{P}_{t}(\xi)=\frac{1}{\sqrt{2 \pi}} e^{-|\xi| t}$.

7.2 Fourier integral on $\boldsymbol{L}^{\mathbf{2}}$

The Fourier integral for L^{2} functions will be defined by using properties of the Fourier integral operator on the space of rapidly decreasing functions.

Denote by \mathcal{S} the space of all complex-valued functions f in $C^{\infty}\left(\mathbb{R}^{n}\right)$ such that for all multi-indices α and β

$$
P_{\alpha \beta}(f):=\sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha} \partial^{\beta} f(x)\right|<\infty,
$$

where $x^{\alpha}=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ and $\partial^{\beta} f(x)=\frac{\partial^{|\beta|} \mid f}{\partial \lambda_{1}^{\alpha_{1}} \ldots . \partial x_{n}^{\alpha_{n}}}(x)$.
\mathcal{S} is called the Schwartz space in \mathbb{R}^{n}, and functions in \mathcal{S} are usually referred to as rapidly decreasing functions. For each pair α, β of multi-indices, $P_{\alpha \beta}(\cdot)$ is a semi-norm on \mathcal{S}. Note that (i) $\mathcal{D}:=C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}$; and (ii) the function $e^{-\frac{|x|^{2}}{2}}$ is in \mathcal{S}.

Define a metric ρ on \mathcal{S} by

$$
\begin{equation*}
\rho(f, g)=\sum_{\alpha, \beta} \frac{1}{e^{|\alpha|} e^{|\beta|}} \cdot \frac{P_{\alpha \beta}(f-g)}{1+P_{\alpha \beta}(f-g)} \cdot \frac{1}{n^{|\alpha|} \mid n^{|\beta|}} . \tag{7.7}
\end{equation*}
$$

Since $\left\{\frac{1}{e^{|\alpha|} e^{[\beta]}} \cdot \frac{P_{\alpha \beta}(f-g)}{1+P_{\alpha \beta}(f-g)} \cdot \frac{1}{n^{\left[\alpha \mid n^{\mid \beta]}\right.}}\right\}_{\alpha, \beta}$ is summable with sum $\leq \sum_{j, k \geq 0} \frac{1}{\overline{e^{k}{ }^{k}}}, \rho(f, g)$ is a nonnegative finite number.

Exercise 7.2.1 Show that ρ is actually a metric on \mathcal{S}.
We observe first the following elementary inequalities:

$$
\begin{align*}
(1+|x|)^{N} \leq 2^{N}\left(1+|x|^{N}\right), & N \geq 0, x \in \mathbb{R}^{n} ; \\
|x|^{N} \leq \delta^{-1} \sum_{j=1}^{n}\left|x_{j}\right|^{N}, & N \geq 0, x \in \mathbb{R}^{n} \tag{7.8}
\end{align*}
$$

where $\delta=\min _{|x|=1} \sum_{j=1}^{n}\left|x_{j}\right|^{N}$. For the first one, we may assume that $|x|>1$, then $(1+|x|)^{N} \leq(2|x|)^{N}<2^{N}\left(1+|x|^{N}\right)$; while the second inequality follows by first considering the case $|x|=1$ and then reducing the general case to this particular case.

Proposition 7.2.1 For $f \in \mathcal{S}, x^{\alpha} \partial^{\beta} f \in L^{1}$ for any multi-indices α and β.
Proof

$$
\begin{aligned}
\int_{\mathbb{R}^{n}}\left|x^{\alpha} \partial^{\beta} f(x)\right| d x & =\int_{\mathbb{R}^{n}}\left|x^{\alpha}\right|\left(1+|x|^{n+1}\right)\left|\partial^{\beta} f(x)\right| \frac{1}{1+|x|^{n+1}} d x \\
& \leq \int_{\mathbb{R}^{n}}\left|x^{\alpha}\right|\left(1+\delta^{-1} \sum_{j=1}^{n}\left|x_{j}\right|^{n+1}\right)\left|\partial^{\beta} f(x)\right| \frac{1}{1+|x|^{n+1}} d x \\
& \leq M \int_{\mathbb{R}^{n}} \frac{1}{1+|x|^{n+1}} d x<\infty,
\end{aligned}
$$

for some $M>0$, where $\delta=\min _{|x|=1} \sum_{j=1}^{n}\left|x_{j}\right|^{n+1}$ (cf. (7.8)).

Now let $f \in \mathcal{S}$, then $f \in L^{1}$ by Proposition 7.2.1, and \hat{f} is defined. We show the existence of $\frac{\partial}{\partial \xi,} \hat{f}(\xi)$ as follows. Consider for $h \neq 0$ the difference quotient

$$
\frac{\hat{f}\left(\xi_{1}, \ldots, \xi_{j}+h, \ldots, \xi_{n}\right)-\hat{f}(\xi)}{h}=\frac{1}{(2 \pi)^{n / 2}} \int f(x) e^{-i \xi \cdot x} \frac{\left(e^{-i h x_{j}}-1\right)}{h} d x
$$

Since $\left|\frac{e^{-i n x_{j}}-1}{h}\right| \leq\left|x_{j}\right|$ and $\left|x_{j}\right||f| \in L^{1}$, by Proposition 7.2.1, it follows from LDCT that $\frac{\partial}{\partial \xi,} \hat{f}(\xi)$ exists and

$$
\frac{\partial}{\partial \xi_{j}} \hat{f}(\xi)=(-i) \widehat{x_{j} f}(\xi)
$$

By Proposition 7.2.1, we can repeat the above argument with f replaced by $x_{j} f$, and obtain for any multi-index α the following formula:

$$
\begin{equation*}
\partial_{\xi}^{\alpha} \hat{f}(\xi)=(-i)^{|\alpha|} \widehat{x^{\alpha} f}(\xi) . \tag{7.9}
\end{equation*}
$$

Since $x^{\alpha} f \in L^{1}$ and $\widehat{x^{\alpha} f}$ is uniformly continuous, Proposition 7.2.2 then follows from (7.9).
Proposition 7.2.2 Iff $\in \mathcal{S}$, then $\hat{f} \in C^{\infty}\left(\mathbb{R}^{n}\right)$.
Using the Fubini theorem and integration by parts, one asserts

$$
\begin{equation*}
\widehat{\partial^{\beta} f}(\xi)=(i)^{\mid \beta} \mid \xi^{\beta} \hat{f}(\xi) \tag{7.10}
\end{equation*}
$$

for any multi-index β. Combining (7.9) and (7.10), one obtains

$$
\begin{equation*}
(i)^{|\alpha+\beta|} \xi^{\beta} \partial_{\xi}^{\alpha} \hat{f}(\xi)=\widehat{\partial_{x}^{\beta}\left(x^{\alpha} f\right)}(\xi) \tag{7.11}
\end{equation*}
$$

for any multi-indices α and β.
Theorem 7.2.1 $F \mathcal{S} \subset \mathcal{S}$, and F is a continuous map with respect to the metric ρ on \mathcal{S} defined by (7.7).
Proof That $f \in \mathcal{S}$ implies that $\hat{f} \in \mathcal{S}$ follows directly from (7.11):

$$
\sup _{\xi \in \mathbb{R}^{n}}\left|\xi^{\beta} \partial_{\xi}^{\alpha} \hat{f}(\xi)\right| \leq\left\|\widehat{\partial_{x}^{\beta}\left(x^{\alpha} f\right)}\right\|_{\infty} \leq\left\|\partial_{x}^{\beta}\left(x^{\alpha} f\right)\right\|_{1}<\infty
$$

To see that F is continuous, first observe that a sequence $\left\{f_{k}\right\} \subset \mathcal{S}$ converges to $f \in \mathcal{S}$ in the metric ρ defined by (7.7) if and only if $\lim _{k \rightarrow \infty} P_{\alpha \beta}\left(f_{k}-f\right)=0$ for each pair α, β of multi-indices. Now from (7.11),

$$
P_{\beta \alpha}\left(\hat{f}_{k}-\hat{f}\right) \leq\left\|\partial_{x}^{\beta}\left[\widehat{x^{\alpha}\left(f_{k}-f\right)}\right]\right\|_{\infty} \leq\left\|\partial_{x}^{\beta}\left[x^{\alpha}\left(f_{k}-f\right)\right]\right\|_{1}
$$

observe that if $\rho\left(f_{k}, f\right) \rightarrow 0$, then $\partial_{x}^{\beta}\left[x^{\alpha}\left(f_{k}(x)-f(x)\right)\right] \rightarrow 0$ uniformly on \mathbb{R}^{n} and

$$
\begin{aligned}
\left|\partial_{x}^{\beta}\left[x^{\alpha}\left(f_{k}(x)-f(x)\right)\right]\right| & \leq\left|\left(1+|x|^{n+1}\right) \partial_{x}^{\beta}\left[x^{\alpha}\left(f_{k}(x)-f(x)\right)\right]\right| \frac{1}{1+|x|^{n+1}} \\
& \leq M \frac{1}{1+|x|^{n+1}} .
\end{aligned}
$$

LDCT can be applied to obtain $\lim _{k \rightarrow \infty}\left\|\partial_{x}^{\beta}\left[x^{\alpha}\left(f_{k}-f\right)\right]\right\|_{1}=0$, implying that $\lim _{k \rightarrow \infty} P_{\beta \alpha}\left(\hat{f}_{k}-\hat{f}\right)=0$ and consequently $\rho\left(\hat{f}_{k}, \hat{f}\right) \rightarrow 0$.

Since $\check{f} f=\tilde{F f}$, where $\tilde{f}(x)=f(-x), \check{F}$ is also a continuous map from \mathcal{S} to \mathcal{S} w.r.t. the metric defined by (7.7).

Taking into account Theorem 7.1.4 and the fact that $\mathcal{S} \subset L^{1}$, we conclude that Theorem 7.2.2 holds.

Theorem 7.2.2 (Fourier inversion theorem) Both F and \check{F} are continuous and bijective from \mathcal{S} to \mathcal{S} and $\check{F}(F f)=f=F(\check{F} f)$ for $f \in \mathcal{S}$.

Theorem 7.2.3 (Parseval relations) For f, g in \mathcal{S} the following relations hold:
(i) $\int \hat{f} g d \lambda^{n}=\int f \hat{g} d \lambda^{n}$;
(ii) $\int f \bar{g} d \lambda^{n}=\int f \bar{g} d \lambda^{n}$.

Proof (i) is the conclusion of Exercise 7.1.5; (ii) follows from (i) by replacing f and g by f and \bar{g} respectively.
Exercise 7.2.2 Let $(f, g)=\int f \bar{g} d \lambda^{n}$ be the L^{2} inner product of f and g in \mathcal{S}. Show that (i) and (ii) in Theorem 7.2.3 are equivalent and are equivalent to any of the following relations:
(a) $(\hat{f}, g)=(f, \check{g})$;
(b) $(f, g)=(\hat{f}, \hat{g})$.

We are ready to define the Fourier integral for functions in L^{2}. Since $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in $L^{p}, 1 \leq p<\infty$, and $C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}, \mathcal{S}$ is dense in L^{2}. For $f \in L^{2}$, there is a sequence $\left\{f_{k}\right\}$ in \mathcal{S} such that $\lim _{k \rightarrow \infty}\left\|f_{k}-f\right\|_{2}=0$; a fortiori, $\left\{f_{k}\right\}$ is a Cauchy sequence in L^{2}. By relation (b) in Exercise 7.2.2, $\left\|f_{k}-f_{l}\right\|_{2}^{2}=\left\|\hat{f}_{k}-\hat{f}_{i}\right\|_{2}^{2}$ for all k, l in \mathbb{N}, therefore $\left\{\hat{f}_{k}\right\}$ is a Cauchy sequence in L^{2} and converges in L^{2} to $g \in L^{2}$. We claim that g is independent of the sequence $\left\{f_{k}\right\}$ in \mathcal{S}, which converges to f in L^{2}. Suppose that $\left\{g_{k}\right\}$ is another sequence in \mathcal{S} that converges to f in L^{2}; then $\lim _{k \rightarrow \infty}\left\|f_{k}-g_{k}\right\|_{2}=0$, but $\left\|\hat{f}_{k}-\hat{g}_{k}\right\|_{2}=\left\|f_{k}-g_{k}\right\|_{2}$ implies that $\lim _{k \rightarrow \infty} \hat{\mathrm{~g}}_{k}=\lim _{k \rightarrow \infty} \hat{f}_{k}=g$ in L^{2}. Thus g is uniquely determined by f in the way we specify; we then denote g by \hat{f}^{\prime} for the moment. From the definition, one verifies readily that $(f, g)=\left(\hat{f}^{\prime}, \hat{g}^{\prime}\right)$ for f, g in L^{2}.

Lemma 7.2.1 If $f \in L^{1} \cap L^{2}$, then $\hat{f}=\hat{f}^{\prime}$.

Proof Fix a Friederich mollifier $\left\{J_{\varepsilon}\right\}_{\varepsilon>0}$ constructed from a mollifying function $\varphi \geq 0$. For $\varepsilon>0$, let $f_{\varepsilon}=f I_{B_{1 / \varepsilon}(0)}$. Then $J_{\varepsilon} f_{\varepsilon} \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right) \subset \mathcal{S}$. We claim that $J_{\varepsilon} f_{\varepsilon} \rightarrow f$ in both L^{1} and L^{2}. Actually for $p=1$ or 2 , we have

$$
\begin{aligned}
\left\|J_{\varepsilon} f_{\varepsilon}-f\right\|_{p} & \leq\left\|J_{\varepsilon}\left(f_{\varepsilon}-f\right)\right\|_{p}+\left\|J_{\varepsilon} f-f\right\|_{p} \\
& \leq\left\|f_{\varepsilon}-f\right\|_{p}+\left\|J_{\varepsilon} f-f\right\|_{p} \rightarrow 0
\end{aligned}
$$

as $\varepsilon \rightarrow 0$. From $\left\|J_{\varepsilon} f_{\varepsilon}-f\right\|_{1} \rightarrow 0$, as $\varepsilon \rightarrow 0$, we infer that $\widehat{J_{\varepsilon} f_{\varepsilon}} \rightarrow \hat{f}$ uniformly on \mathbb{R}^{n}; while from $\left\|J_{\varepsilon} f_{\varepsilon}-f\right\|_{2} \rightarrow 0$, as $\varepsilon \rightarrow 0$, we conclude that $\widehat{J_{\varepsilon} f_{\varepsilon}} \rightarrow \hat{f}^{\prime}$ in L^{2} and, consequently, there is a sequence of ε tending to zero such that $\widehat{J_{\varepsilon} f_{\varepsilon}} \rightarrow \hat{f}^{\prime}$ a.e. on \mathbb{R}^{n}. Hence $\hat{f}=\hat{f}^{\prime}$ a.e.
Because of Lemma 7.2.1, it is natural to call \hat{f}^{\prime} the Fourier integral of f in L^{2} and also denote \hat{f}^{\prime} by \hat{f}. Similarly \check{f} is also defined for $f \in L^{2}$. We shall also use F and \check{F} to denote the maps $f \mapsto \hat{f}$ and $f \mapsto \check{f}$ respectively from L^{2} onto L^{2}. Note that $(f, g)=(\hat{f}, \hat{g})=(\check{f}, \check{g})$ for f, g in L^{2}.
Exercise 7.2.3 Show that both F and \check{F} are linear bijective isometries from L^{2} onto itself and $\check{F}=F^{-1}$.
Exercise 7.2.4 Suppose that $f \in W^{k, 2}\left(\mathbb{R}^{n}\right), k \in \mathbb{N}$. Show that $\widehat{\partial^{\alpha} f}(\xi)=\left(i^{|\alpha|} \xi^{\alpha} \hat{f}(\xi)\right.$
for a.e. $\xi \in \mathbb{R}^{n}$ if $|\alpha| \leq k$. (Hint: $W^{k, 2}\left(\mathbb{R}^{n}\right)=\stackrel{\circ}{W}^{k, 2}\left(\mathbb{R}^{n}\right)$.)

7.3 The Sobolev space $\boldsymbol{H}^{\boldsymbol{S}}$

For each $s \in \mathbb{R}$, an inner product $(\cdot, \cdot)_{s}$ on \mathcal{S} is defined by

$$
(f, g)_{s}=\int\left(1+|\xi|^{2}\right)^{\hat{f}}(\xi) \overline{\hat{g}(\xi)} d \xi ;
$$

and the associated norm on \mathcal{S} is denoted by $|\cdot|_{s}$. Thus,

$$
|f|_{s}=\left(\int\left(1+|\xi|^{2}\right)^{s}|\hat{f}(\xi)|^{2} d \xi\right)^{\frac{1}{2}}
$$

As usual, $(f, g)=\int f \bar{g} d \lambda^{n}$ is the inner product of f and g in L^{2}.
A few basic properties of inner products $(\cdot, \cdot)_{s}$ are now listed.
(1) $(f, g)=(f, g)_{0}$.
(2) $\left|(f, g)_{0}\right| \leq|f|_{s}|g|_{-s}$. This follows directly from

$$
(f, g)_{0}=\int\left(1+|\xi|^{2}\right)^{s / 2} \hat{f}(\xi)\left(1+|\xi|^{2}\right)^{-s / 2} \hat{g}(\xi) d \xi
$$

by Schwarz's inequality.
(3) $|f|_{s}=\max _{\substack{g \in \mathcal{S} \\ g \neq 0}} \frac{\left|(f, g)_{0}\right|}{|g|-s}$. To see this, one observes first from (2) that

$$
|f|_{s} \geq \sup _{\substack{g \in \mathcal{S} \\ \xi \neq 0}} \frac{\left|(f, g)_{0}\right|}{|g|_{-s}}
$$

now, since $\left(1+|\xi|^{2}\right)^{s} \hat{f}(\xi) \in \mathcal{S}$, there is $h \in \mathcal{S}$ such that $\hat{h}(\xi)=\left(1+|\xi|^{2}\right)^{s} \hat{f}(\xi)$, and hence,

$$
\begin{aligned}
|h|_{-s}^{2} & =\int\left(1+|\xi|^{2}\right)^{-s}\left(1+|\xi|^{2}\right)^{2 s}|\hat{f}(\xi)|^{2} d \xi \\
& =\int\left(1+|\xi|^{2}\right)^{s}|\hat{f}(\xi)|^{2} d \xi=|f|_{s}^{2} ; \\
(f, h)_{0} & =\int\left(1+|\xi|^{2}\right)^{s}|\hat{f}(\xi)|^{2} d \xi=|f|_{s}^{2},
\end{aligned}
$$

resulting in $\frac{\left|(f, h)_{0}\right|}{|h|_{-s}}=|f|_{s}$.
(4) $\left|\partial^{\alpha} f\right|_{s} \leq|f|_{s+|\alpha|}$. This is obvious by (7.10).

The Sobolev space H^{s} is the completion of \mathcal{S} under the norm $|\cdot|_{s}$. The Sobolev space H^{s} is a Hilbert space for each $s \in \mathbb{R}$. Observe that in the case $s \geq 0$, if $\left\{f_{k}\right\}$ is a Cauchy sequence in \mathcal{S} in the norm $|\cdot|_{s}$, then it is a Cauchy sequence in L^{2}, hence it is legitimate to identify each element of $H^{s}, s \geq 0$, with an element of L^{2}. Those elements of L^{2} which belong to H^{s} can be characterized as follows.

Theorem 7.3.1 An elementf of L^{2} is in $H^{s}, s \geq 0$, if and only if there is a sequence $\left\{f_{k}\right\} \subset \mathcal{S}$ such that $\left\|f_{k}-f\right\|_{2} \rightarrow 0$ as $k \rightarrow \infty$ and $\sup _{k}\left|f_{k}\right|_{s}<\infty$.

Proof If $f \in H^{s}$, there is $\left\{f_{k}\right\} \subset \mathcal{S}$ such that $\left|f_{k}-f\right|_{s} \rightarrow 0$ as $k \rightarrow \infty$, a fortiori, $\| f_{k}$ $f \|_{2} \rightarrow 0$ as $k \rightarrow \infty$ and $\sup _{k}\left|f_{k}\right|_{s}<\infty$.

Conversely, suppose that there is a sequence $\left\{f_{k}\right\} \subset \mathcal{S}$ such that $\left\|f_{k}-f\right\|_{2} \rightarrow 0$ and $\sup _{k}\left|f_{k}\right|_{s}<\infty$. By the Banach-Saks theorem (Theorem 5.10.2), there is a subsequence $\left\{g_{k}\right\}$ of $\left\{f_{k}\right\}$ and g in H^{s} such that $\left|\frac{1}{N} \sum_{k=1}^{N} g_{k}-g\right|_{s} \rightarrow 0$ as $N \rightarrow \infty$, a fortiori, $\left\|\frac{1}{N} \sum_{k=1}^{N} g_{k}-g\right\|_{2} \rightarrow 0$. But $\left\|g_{k}-f\right\|_{2} \rightarrow 0$ implies that $\left\|\frac{1}{N} \sum_{k=1}^{N} g_{k}-f\right\|_{2} \rightarrow 0$, and consequently $f=g$. Thus $f \in H^{s}$.
Exercise 7.3.1 Show that if k is a nonnegative integer, then $W^{k, 2}\left(\mathbb{R}^{n}\right)=H^{k}$, in the sense that $W^{k, 2}\left(\mathbb{R}^{n}\right)=H^{k}$ as set and the norms $\|\cdot\|_{k, 2}$ and $|\cdot|_{k}$ are equivalent.

We will now show that in tempo with s becoming larger, elements of H^{s} become smoother. This is the content of the Sobolev lemma.

A preliminary lemma is shown first.

Lemma 7.3.1 Suppose that $s \in \mathbb{R}$ and k is a nonnegative integer such that $s-k>\frac{n}{2}$; then there is $C>0$ such that

$$
\max _{x \in \mathbb{R}^{n}} \sum_{|\alpha| \leq k}\left|\partial^{\alpha} f(x)\right| \leq C|f|_{s}
$$

for $f \in \mathcal{S}$.
Proof Since $\widehat{\partial^{\alpha} f}(\xi)=(i)^{|\alpha|} \xi^{\alpha} \hat{f}(\xi), \widehat{\partial^{\alpha} f}$ is in \mathcal{S}; it follows from Fourier's Inversion theorem (Theorem 7.2.2) that

$$
\begin{aligned}
\partial^{\alpha} f(x) & =(2 \pi)^{-\frac{n}{2}} \int e^{i x \cdot \xi}(i)^{|\alpha|} \xi^{\alpha} \hat{f}(\xi) d \xi \\
& =(2 \pi)^{-\frac{n}{2}}(i)^{|\alpha|} \int e^{i x \cdot \xi} \xi^{\alpha}\left(1+|\xi|^{2}\right)^{\frac{(s-k)}{2}} \hat{f}(\xi)\left(1+|\xi|^{2}\right)^{\frac{(k-s)}{2}} d \xi
\end{aligned}
$$

and hence, when $|\alpha| \leq k$,

$$
\begin{aligned}
\left|\partial^{\alpha} f(x)\right|^{2} & \leq(2 \pi)^{-n} \int\left|\xi^{\alpha}\right|^{2}\left(1+|\xi|^{2}\right)^{s-k}|\hat{f}(\xi)|^{2} d \xi \cdot \int\left(1+|\xi|^{2}\right)^{k-s} d \xi \\
& \leq C^{\prime} \int \frac{|\xi|^{2|\alpha|}}{\left(1+|\xi|^{2}\right)^{k}}\left(1+|\xi|^{2}\right)^{s}|\hat{f}(\xi)|^{2} d \xi \\
& \leq C|f|_{s}^{2},
\end{aligned}
$$

where we have used the obvious fact that $\int\left(1+|\xi|^{2}\right)^{k-s} d \xi<\infty$. Thus,

$$
\max _{x \in \mathbb{R}^{n}} \sum_{|\alpha| \leq k}\left|\partial^{\alpha} f(x)\right| \leq C|f|_{s},
$$

with $C>0$ depending only on s, k, and n.
Theorem 7.3.2 (Sobolev lemma) Suppose that $s \in \mathbb{R}$ and k is a nonnegative integer such that $s-k>\frac{n}{2}$; then $H^{s} \subset C^{k}\left(\mathbb{R}^{n}\right)$.

Proof Consider f in H^{s}. There is a sequence $\left\{f_{k}\right\} \subset \mathcal{S}$ such that $\left|f_{k}-f\right|_{s} \rightarrow 0$ as $k \rightarrow \infty$; $\left\{f_{k}\right\}$ is therefore a Cauchy sequence in H^{s}. From Lemma 7.3.1, there is $C>0$ such that

$$
\max _{x \in \mathbb{R}^{n}} \sum_{|\alpha| \leq k}\left|\partial^{\alpha}\left(f_{m}(x)-f_{l}(x)\right)\right| \leq C\left|f_{m}-f_{l}\right|_{s} \rightarrow 0
$$

as $m, l \rightarrow \infty$, which means that $\left\{f_{k}\right\}$ converges uniformly on \mathbb{R}^{n} to a function g in $C^{k}\left(\mathbb{R}^{n}\right)$. Then, $\int_{|x| \leq R}\left|f_{k}(x)-g(x)\right|^{2} d x \rightarrow 0$ as $k \rightarrow \infty$ for any $R>0$;
but $\lim _{k \rightarrow \infty}\left|f_{k}-f\right|_{s}=0$ implies that $\lim _{k \rightarrow \infty}\left\|f_{k}-f\right\|_{2}=0$, and therefore that $\int_{|x| \leq R}\left|f_{k}(x)-f(x)\right|^{2} d x \rightarrow 0$ as $k \rightarrow \infty$. Now,

$$
\begin{aligned}
\left\{\int_{|x| \leq R}|f(x)-g(x)|^{2} d x\right\}^{\frac{1}{2}} \leq & \left\{\int_{|x| \leq R}\left|f(x)-f_{k}(x)\right|^{2} d x\right\}^{\frac{1}{2}} \\
& +\left\{\int_{|x| \leq R}\left|f_{k}(x)-g(x)\right|^{2} d x\right\}^{\frac{1}{2}} \rightarrow 0
\end{aligned}
$$

as $k \rightarrow \infty$, hence, $\int_{|x| \leq R}|f(x)-g(x)|^{2} d x=0$ and consequently $f=g$ a.e. on $B_{R}(0)$. Since $R>0$ is arbitrary, $f=g$ a.e. on \mathbb{R}^{n}.

7.4 Weak solutions of the Poisson equation

We illustrate the use of Sobolev space in this section by considering the existence and regularity of weak solutions of the Poisson equation,

$$
\begin{equation*}
\Delta u=f . \tag{7.12}
\end{equation*}
$$

A classical solution u of (7.12) on an open domain Ω of \mathbb{R}^{n} is a function u, defined on Ω such that $\Delta u(x)=f(x)$ for a.e. x of Ω. If f is continuous and u is a C^{2} classical solution of (7.12) on Ω, then for any $v \in C_{c}^{\infty}(\Omega)$, we have

$$
\int_{\Omega} f v d \lambda^{n}=\int v \Delta u d \lambda^{n}=\int u \Delta v d \lambda^{n} .
$$

Therefore, when f is locally integrable on Ω, a locally integrable function u on Ω is called a weak solution of (7.12) if

$$
\int_{\Omega} f v d \lambda^{n}=\int u \Delta v d \lambda^{n}
$$

for all $v \in C_{c}^{\infty}(\Omega)$.
Exercise 7.4.1 Show that a C^{2} function u on Ω is a classical solution of (7.12) if and only if it is a weak solution of (7.12).
We shall first prove the following regularity result for weak solutions of (7.12).
Theorem 7.4.1 Suppose that $f \in C^{\infty}(\Omega)$. Then any locally L^{2} weak solution of (7.12) is in $C^{\infty}(\Omega)$.

The proof of Theorem 7.4.1 is preceded by some preliminaries relating to Friederich mollifiers. We fix a Friederich mollifier $\left\{J_{\varepsilon}\right\}_{\varepsilon>0}$ with a mollifying function φ which is
nonnegative and satisfies the symmetry property: $\varphi(-x)=\varphi(x)$ for all x in \mathbb{R}^{n}. For example, we may take φ to be the function defined by $\varphi(x)=c \exp \left\{-\frac{1}{1-|x|}\right\}$ if $|x|<1$ and $\varphi(x)=0$ if $|x| \geq 1$, where c is a positive constant chosen so that $\int \varphi d \lambda^{n}=1$.
Lemma 7.4.1 Let $\left\{J_{\varepsilon}\right\}$ be a Friederich mollifier as previously specified.
(i) $\left\|J_{\varepsilon} f\right\|_{p} \leq\|f\|_{p}$ for $f \in L^{p}, 1 \leq p<\infty$.
(ii) $\left(J_{\varepsilon} f, g\right)=\left(f, J_{\varepsilon} g\right)$ for $f, g \in L^{2}$.
(iii) Iff $\in C^{1}\left(\mathbb{R}^{n}\right)$, then $\frac{\partial}{\partial x_{j}} J_{\varepsilon} f(x)=J_{\varepsilon} \frac{\partial f}{\partial x_{j}}(x)$ for all $x \in \mathbb{R}^{n}$ and $j=1, \ldots, n$.
(iv) Iff $\in \mathcal{S}$, then $J_{\varepsilon} f \in \mathcal{S}$ and $\left|J_{\varepsilon} f\right|_{s} \leq|f|_{s}$.

Proof (i) is known in Section 4.10; (ii) follows directly from the definition of J_{ε} and the assumption that $\varphi(-x)=\varphi(x)$; while (iii) is a consequence of applying LDCT to the difference quotient involved in the definition of partial derivatives; it remains to show (iv). Since $J_{\varepsilon} f=f * \varphi_{\varepsilon}, \widehat{J_{\varepsilon} f}=(2 \pi)^{\frac{n}{2}} \hat{f} \cdot \hat{\varphi}_{\varepsilon}$, which implies immediately that $\widehat{J_{\varepsilon} f} \in \mathcal{S}$, but by the Fourier inversion theorem, $J_{\varepsilon} f=\left(\widehat{J_{\varepsilon} f}\right)^{\vee}$ and hence $J_{\varepsilon} f \in \mathcal{S}$. Now,

$$
\begin{aligned}
\left|J_{\varepsilon} f\right|_{s}^{2} & =\int\left(1+|\xi|^{2}\right)^{s}\left|\widehat{J_{\varepsilon} f}(\xi)\right|^{2} d \xi=(2 \pi)^{n} \int\left(1+|\xi|^{2}\right)^{s}|\hat{f}(\xi)|^{2}\left|\hat{\varphi}_{\varepsilon}(\xi)\right|^{2} d \xi \\
& \leq\left\|\varphi_{\varepsilon}\right\|_{1} \int\left(1+|\xi|^{2}\right)^{s}|\hat{f}(\xi)|^{2} d \xi=|f|_{s}^{2} .
\end{aligned}
$$

Hence $\left|J_{\varepsilon} f\right|_{s} \leq|f|_{s}$.
Lemma 7.4.2 There is a constant $C>0$ such that

$$
|v|_{s} \leq C\left(|\Delta v|_{s-2}+|v|_{s-1}\right)
$$

for all $v \in \mathcal{S}$.
Proof For $\xi \in \mathbb{R}^{n}$, we have

$$
\left(1+|\xi|^{2}\right)^{2}=1+2|\xi|^{2}+|\xi|^{4}<|\xi|^{4}+2\left(1+|\xi|^{2}\right)<2\left\{|\xi|^{4}+\left(1+|\xi|^{2}\right)\right\}
$$

hence,

$$
\begin{aligned}
|v|_{s}^{2} & =\int\left(1+|\xi|^{2}\right)^{s}|\hat{v}(\xi)|^{2} d \xi \\
& <2 \int\left(1+|\xi|^{2}\right)^{s-2}\left\{|\xi|^{4}+\left(1+|\xi|^{2}\right)\right\}|\hat{v}(\xi)|^{2} d \xi \\
& =2\left\{\int\left(1+|\xi|^{2}\right)^{s-2}|\widehat{\Delta v}(\xi)|^{2} d \xi+\int\left(1+|\xi|^{2}\right)^{s-1}|\hat{v}(\xi)|^{2} d \xi\right\} \\
& =2\left(|\Delta v|_{s-2}^{2}+|v|_{s-1}^{2}\right) \\
& \leq 2\left(|\Delta v|_{s-2}+|v|_{s-1}\right)^{2},
\end{aligned}
$$

and consequently,

$$
|v|_{s} \leq \sqrt{2}\left(|\Delta v|_{s-2}+|v|_{s-1}\right) .
$$

Proof of Theorem 7.4.1 For $x \in \Omega$, there is $g \in C_{c}^{\infty}(\Omega)$, which takes a constant value in the neighborhood of x; it is therefore sufficient to prove that $g u \in C^{\infty}\left(\mathbb{R}^{n}\right)$ for each $g \in C_{c}^{\infty}(\Omega)$.

Consider now any $g \in C_{c}^{\infty}(\Omega)$. In order to show that $g u \in C^{\infty}\left(\mathbb{R}^{n}\right)$, it is sufficient to show that $g u \in H^{s}$ for all $s \in \mathbb{N}$, by the Sobolev lemma (Theorem 7.3.2); but since $\left\|J_{\varepsilon}(g u)-g u\right\|_{2} \rightarrow 0$ as $\varepsilon \rightarrow 0$, from Theorem 7.3.1, it is sufficient to show that given $g \in C_{c}^{\infty}(\Omega)$, for each $s \in \mathbb{N}$, there is a constant $C_{s}>0$ such that

$$
\begin{equation*}
\left|J_{\varepsilon}(g u)\right|_{s} \leq C_{s}, \quad \varepsilon>0 \tag{7.13}
\end{equation*}
$$

When $s=0$, (7.13) is a consequence of $\left\|J_{\varepsilon}(g u)\right\|_{2} \leq\|g u\|_{2}$ (cf. Lemma 7.4.1 (i)). Suppose that (7.13) holds for $s-1$, we are going to show that (7.13) holds for s. Using the Fubini theorem and integration by parts, we have for $v \in \mathcal{S}$,

$$
\begin{aligned}
\left(\Delta\left(J_{\varepsilon}(g u)\right), v\right) & =\left(J_{\varepsilon}(g u), \Delta v\right)=\left(g u, \Delta J_{\varepsilon} v\right)=\left(u, g\left(\Delta J_{\varepsilon} v\right)\right) \\
& =\left(u, \Delta\left(g J_{\varepsilon} v\right)\right)-\left(u, 2 \sum_{j=1}^{n} \frac{\partial g}{\partial x_{j}} \frac{\partial J_{\varepsilon} v}{\partial x_{j}}+J_{\varepsilon} v \cdot \Delta g\right) \\
& =\left(f, g J_{\varepsilon} v\right)-2 \sum_{j=1}^{n}\left(J_{\varepsilon}\left(u \frac{\partial g}{\partial x_{j}}\right), \frac{\partial v}{\partial x_{j}}\right)+\left(J_{\varepsilon}(u \Delta g), v\right),
\end{aligned}
$$

where Lemma 7.4.1 has been applied. Hence,

$$
\begin{aligned}
& \left|\left(\Delta J_{\varepsilon}(g u), v\right)\right| \\
\leq & \left\{\left|J_{\varepsilon}(g f)\right|_{s-2}|v|_{2-s}+2 \sum_{j=1}^{n}\left|J_{\varepsilon}\left(u \frac{\partial g}{\partial x_{j}}\right)\right|_{s-1} \cdot\left|\frac{\partial v}{\partial x_{j}}\right|_{1-s}+\left|J_{\varepsilon}(u \Delta g)\right|_{s-1}|v|_{1-s}\right\} \\
\leq & |v|_{2-s}\left\{\left|J_{\varepsilon}(g f)\right|_{s-2}+2 \sum_{j=1}^{n}\left|J_{\varepsilon}\left(u \frac{\partial g}{\partial x_{j}}\right)\right|_{s-1}+\left|J_{\varepsilon}(u \Delta g)\right|_{s-1}\right\},
\end{aligned}
$$

where (2) and (4) in Section 7.3 are used. Thus, by (3) in Section 7.3, we conclude that

$$
\begin{equation*}
\left|\Delta\left(J_{\varepsilon}(g u)\right)\right|_{s-2} \leq\left|J_{\varepsilon}(g f)\right|_{s-2}+2 \sum_{j=1}^{n}\left|J_{\varepsilon}\left(u \frac{\partial g}{\partial x_{j}}\right)\right|_{s-1}+\left|J_{\varepsilon}(u \Delta g)\right|_{s-1} . \tag{7.14}
\end{equation*}
$$

Now from Lemma 7.4.2,

$$
\begin{equation*}
\left|J_{\varepsilon}(g u)\right|_{s} \leq C\left(\left|\Delta J_{\varepsilon}(g u)\right|_{s-2}+\left|J_{\varepsilon}(g u)\right|_{s-1}\right) . \tag{7.15}
\end{equation*}
$$

Substitute (7.14) into (7.15); we have

$$
\left|J_{\varepsilon}(g u)\right|_{s} \leq C^{\prime}\left(\left|J_{\varepsilon}(g f)\right|_{s-2}+2 \sum_{j=1}^{n}\left|J_{\varepsilon}\left(u \frac{\partial g}{\partial x_{j}}\right)\right|_{s-1}+\left|J_{\varepsilon}(u \Delta g)\right|_{s-1}+\left|J_{\varepsilon}(g u)\right|_{s-1}\right) .
$$

But $\left|J_{\varepsilon}(g f)\right|_{s-2} \leq|g|_{s-2}$, by Lemma 7.4.1 (iv), and

$$
2 \sum_{j=1}^{n}\left|J_{\varepsilon}\left(u \frac{\partial g}{\partial x_{j}}\right)\right|_{s-1}+\left|J_{\varepsilon}(u \Delta g)\right|_{s-1}+\left|J_{\varepsilon}(g u)\right|_{s-1} \leq C_{s}^{\prime}
$$

by the assumption that (7.13) holds for $(s-1)$. Therefore,

$$
\left|J_{\varepsilon}(g u)\right|_{s} \leq C_{s}=|g f|_{s-2}+C_{s}^{\prime} .
$$

Regarding the existence of weak solutions of the Poisson equation (7.12), we now establish the existence and uniqueness of a weak solution of (7.12) in $\stackrel{\circ}{W}^{1,2}(\Omega)$ when Ω is bounded and $f \in L^{2}(\Omega)$.
Theorem 7.4.2 Suppose that Ω is bounded and $f \in L^{2}(\Omega)$, then there is a unique weak solution of (7.12) in $\stackrel{\circ}{W}^{1,2}(\Omega)$.

Proof It is only necessary to consider the case that f and solutions to be sought are real-valued; therefore $\stackrel{\circ}{W}^{1,2}(\Omega)$ is assumed to consist of real-valued functions. By the Poincaré inequality (Theorem 6.6.3), $\stackrel{\circ}{W}^{1,2}(\Omega)$ can be considered as a Hilbert space with the inner product

$$
(u, v)_{1}^{\prime}=\sum_{j=1}^{n} \int_{\Omega} \frac{\partial u}{\partial x_{j}} \frac{\partial v}{\partial x_{j}} d \lambda^{n}
$$

for u, v in $\stackrel{\circ}{W}^{1,2}(\Omega)$. Since $|(f, v)| \leq\|f\|_{2}\|v\|_{2} \leq\|f\|_{2}\|v\|_{1,2} \leq C\|f\|_{2}|v|_{1,2}$ for all $v \in \stackrel{\circ}{W}^{1,2}(\Omega)$, by (6.31), the linear functional $v \mapsto-\int_{\Omega} f v d \lambda^{n}$ is a bounded linear functional on $\stackrel{\circ}{W}^{1,2}(\Omega)$; it then follows from the Riesz representation theorem that there is $u \in \stackrel{1}{W}^{1,2}(\Omega)$, such that

$$
-\int_{\Omega} f v d \lambda^{n}=(v, u)_{1}^{\prime}=\sum_{j=1}^{n} \int_{\Omega} \frac{\partial v}{\partial x_{j}} \frac{\partial u}{\partial x_{j}} d \lambda^{n}
$$

for $v \in \stackrel{\circ}{W}^{1,2}(\Omega)$ and therefore for $v \in C_{c}^{\infty}(\Omega)$ in particular. But if $v \in C_{c}^{\infty}(\Omega)$,

$$
\int_{\Omega} \frac{\partial v}{\partial x_{j}} \frac{\partial u}{\partial x_{j}} d \lambda^{n}=-\int_{\Omega} \frac{\partial^{2} v}{\partial x_{j}^{2}} u d \lambda^{n}
$$

for each $j=1, \ldots, n$; thus we have

$$
\int_{\Omega} f v d \lambda^{n}=\int_{\Omega} u \Delta v d \lambda^{n}
$$

for $v \in C_{c}^{\infty}(\Omega)$. Hence u is a weak solution of (7.12).
Suppose now that $w \in \stackrel{\circ}{W}^{1,2}(\Omega)$ is also a weak solution of (7.12). Then,

$$
\int_{\Omega}(u-w) \Delta v d \lambda^{n}=-\sum_{j=1}^{n} \int_{\Omega} \frac{\partial(u-w)}{\partial x_{j}} \frac{\partial v}{\partial x_{j}} d \lambda^{n}=0
$$

for all $v \in C_{c}^{\infty}(\Omega)$. We claim now that

$$
\sum_{j=1}^{n} \int_{\Omega} \frac{\partial(u-w)}{\partial x_{j}} \frac{\partial v}{\partial x_{j}} d \lambda^{n}=0
$$

for all $v \in \stackrel{1}{W}^{1,2}(\Omega)$. Let $v \in \stackrel{\circ}{W}^{1,2}(\Omega)$; choose a sequence $\left\{v_{k}\right\}$ in $C_{c}^{\infty}(\Omega)$ such that $\lim _{k \rightarrow \infty}\left|v-v_{k}\right|_{1,2}=0$; then,

$$
\begin{aligned}
& \sum_{j=1}^{n} \int_{\Omega} \frac{\partial(u-w)}{\partial x_{j}} \frac{\partial v}{\partial x_{j}} d \lambda^{n} \\
= & \sum_{j=1}^{n} \int_{\Omega} \frac{\partial(u-w)}{\partial x_{j}} \frac{\partial v_{k}}{\partial x_{j}} d \lambda^{n}+\sum_{j=1}^{n} \int_{\Omega} \frac{\partial(u-w)}{\partial x_{j}} \frac{\partial\left(v-v_{k}\right)}{\partial x_{j}} d \lambda^{n} \\
= & \sum_{j=1}^{n} \int_{\Omega} \frac{\partial(u-w)}{\partial x_{j}} \frac{\partial\left(v-v_{k}\right)}{\partial x_{j}} d \lambda^{n},
\end{aligned}
$$

and consequently from Schwarz inequality,

$$
\left|\sum_{j=1}^{n} \int_{\Omega} \frac{\partial(u-w)}{\partial x_{j}} \frac{\partial v}{\partial x_{j}} d \lambda^{n}\right|=\left|\left(u-w, v-v_{k}\right)_{1}^{\prime}\right| \leq|u-w|_{1,2} \cdot\left|v-v_{k}\right|_{1,2} \rightarrow 0
$$

as $k \rightarrow \infty$. Hence,

$$
\sum_{j=1}^{n} \int_{\Omega} \frac{\partial(u-w)}{\partial x_{j}} \frac{\partial v}{\partial x_{j}} d \lambda^{n}=0
$$

for $v \in \stackrel{\circ}{W}^{1,2}(\Omega)$. Since $u-w \in \stackrel{\circ}{W}^{1,2}(\Omega)$, we have

$$
0=\sum_{j=1}^{n} \int_{\Omega}\left[\frac{\partial(u-w)}{\partial x_{j}}\right]^{2} d \lambda^{n}=|u-w|_{1,2}^{2},
$$

implying that $u=w$. Therefore, (7.12) has a unique weak solution in $\stackrel{\circ}{W}^{1,2}(\Omega)$.

7.5 Fourier integral of probability distributions

The Fourier integral of probability distributions will be discussed in this section, with an application to the central limit theorem in probability theory. This is preceded by a very brief introduction of the necessary basic notions, terminology, and notations in the probability theory, as formulated by A.N. Kolmogoroff.

Kolmogoroffs formulation of probability theory is based on measure theory. A measure space (Ω, Σ, P) with $P(\Omega)=1$ is called a probability space, of which Ω is called the sample space; and sets in the σ-algebra Σ are called events (more precisely, measurable events); and for $A \in \Sigma, P(A)$ is referred to as the probability of event A. A measurable function on the sample space Ω is called a random variable (often abbreviated as r.v.). Random variables are usually denoted by capital Roman letters, such as X, Y, Z, \ldots etc. It should be noted that a probability space is usually a construct suggested by first observations of outcomes of experiments on a random phenomenon; these outcomes are referred to as sample points and form the sample space Ω. Such a construct provides a solid mathematical framework to discuss questions related to the random phenomenon; such questions are usually addressed in terms of random variables. Our construction of the Bernoulli sequence space, starting with Section 1.3 and through Examples 1.7.1, 2.1.1, and 3.4.6, illustrates revealingly the point we just made. Henceforth, random variables are assumed to take finite real value P-almost everywhere and hence for a random variable, we always consider a finite real-valued version (for a probability space, P-almost everywhere is expressed as P-almost surely and is abbreviated as a.s.). Suppose that X is a random variable; if $\int_{\Omega} X d P$ exists, it is called the expectation of X and is denoted by $E(X)$; if $E(X)$ is finite, $\int_{\Omega}|X-E(X)|^{2} d P$ is called the variance of X and is denoted by $\operatorname{Var}(X)$. The σ-algebra $\sigma(X):=\left\{X^{-1}(B): B \in \mathcal{B}\right\}$ is the smallest sub σ-algebra of Σ relative to which X is measurable; as implied by Exercise 2.5.10 (ii), if $E(X)$ is finite, the family $\left\{\int_{A} X d P: A \in \sigma X\right\}$ characterizes the r.v. X, or intuitively, $\left\{\int_{A} X d P: A \in \sigma(X)\right\}$ is the information one obtains by observing the r.v. X. This suggests considering $\sigma(X)$ as where the information regarding X resides. Accordingly, the σ-algebra Σ is where information on all random variables resides. As we know, in Example 4.3.2, the Bernoulli sequence space and $([0,1], \mathcal{B} \mid[0,1], \lambda)$ are measure-theoretically the same space, hence the choice of probability space is for convenience, and not of primary importance.

The most simple but fundamental notion in probability theory is that of independence. We shall discuss independence at some length to give a touch of the flavor of a basic aspect of probabilistic argument; however the notion of conditioning, basic and fundamental as it is, will not be touched upon here.

In the following, random variables are in reference to a fixed probability space (Ω, Σ, P) and σ-algebras on Ω are always sub σ-algebras of Σ. A finite family $\left\{\Sigma_{1}, \ldots, \Sigma_{k}\right\}$ of σ-algebras on Ω is said to be independent if for any choice of $A_{j} \in \Sigma_{j}$, $j=1, \ldots, k, P\left(\bigcap_{j=1}^{k} A_{j}\right)=\prod_{j=1}^{k} P\left(A_{j}\right)$ holds. A family $\left\{\Sigma_{\alpha}\right\}$ of σ-algebras on Ω is said to be independent if all of its finite subfamilies are independent. If $\left\{\Sigma_{\alpha}\right\}$ is independent, then $\Sigma_{\alpha}^{\prime} s$ are said to be independent. For a family $\left\{A_{\alpha}\right\}$ of events, the σ-algebra $\sigma\left(\left\{A_{\alpha}\right\}\right)$ is abbreviated to $\sigma\left(A_{\alpha}^{\prime} s\right)$; in particular, if $A \in \Sigma, \sigma(A)=\left\{\emptyset, A, A^{c}, \Omega\right\}$. Events
$A_{\alpha}, \alpha \in I$, are said to be independent if $\left\{\sigma\left(A_{\alpha}\right)\right\}_{\alpha \in I}$ is independent. It is readily verified that events $A_{\alpha}^{\prime} s$ are independent if and only if for any finite set of indices $\alpha_{1}, \ldots, \alpha_{k}$, $P\left(\bigcap_{l=1}^{k} A_{\alpha_{l}}\right)=\prod_{l=1}^{k} P\left(A_{\alpha_{l}}\right)$.

Given a sequence A_{1}, A_{2}, \ldots of events, let $\mathcal{T}=\mathcal{T}\left(A_{1}, A_{2}, \ldots\right)=\bigcap_{n=1}^{\infty} \sigma\left(A_{n}\right.$, $\left.A_{n+1}, \ldots\right)$. Events in \mathcal{T} are referred to as tail events of the sequence $\left\{A_{n}\right\}$. It is evident that $\lim \inf _{n \rightarrow \infty} A_{n}$ and $\lim \sup _{n \rightarrow \infty} A_{n}$ are tail events of the sequence $\left\{A_{n}\right\}$. The following zero-one law of Kolmogoroff is a far-reaching consequence of the notion of independence.

Theorem 7.5.1 (Kolmogoroff's zero-one law) If $A_{1}, A_{2}, A_{3}, \ldots$ are independent events, then every tail event of $\left\{A_{n}\right\}$ has probability zero or one.

Proof Suppose that A is a tail event of the sequence $\left\{A_{n}\right\}$. For $n \geq 2$, let \mathcal{L} be the family of all such $B \in \Sigma$, with the property that

$$
P\left(B_{1} \cap \cdots \cap B_{n-1} \cap B\right)=P\left(B_{1}\right) \cdots P\left(B_{n-1}\right) P(B),
$$

where for each $j=1, \ldots, n-1, B_{j}=A_{j}$ or Ω; then \mathcal{L} is a λ-system. Next, let \mathcal{P} be the family of all finite intersections of $A_{n}, A_{n+1}, \ldots ; \mathcal{P}$ is then a π-system and $\mathcal{P} \subset \mathcal{L}$. Hence $\sigma(\mathcal{P}) \subset \mathcal{L}$ by the $(\pi-\lambda)$ theorem. But $A \in \sigma\left(A_{n}, A_{n+1}, \ldots\right)=\sigma(\mathcal{P}) \subset \mathcal{L}$; this means that $A, A_{1}, \ldots, A_{n-1}$ are independent.

We now claim that $P(A \cap B)=P(A) P(B)$ for $B \in \sigma\left(A_{1}, A_{2}, \ldots\right)$. For this purpose, let $\mathcal{L}^{\prime}=\{B \in \Sigma: P(A \cap B)=P(A) P(B)\}$ and \mathcal{P}^{\prime} be the family of all finite intersections of A_{1}, A_{2}, \ldots; clearly, \mathcal{L}^{\prime} is a λ-system and \mathcal{P}^{\prime} a π-system. The fact that $A, A_{1}, \ldots, A_{n-1}$ are independent for each $n \geq 2$ implies that $\mathcal{P}^{\prime} \subset \mathcal{L}^{\prime}$. Thus, $\sigma\left(\mathcal{P}^{\prime}\right)=\sigma\left(A_{1}, A_{2}, \ldots\right) \subset \mathcal{L}^{\prime}$, by the $(\pi-\lambda)$ theorem, which means that $P(A \cap B)=P(A) P(B)$ for $B \in \sigma\left(A_{1}, A_{2}, \ldots\right)$; but since $A \in \sigma\left(A_{1}, A_{2}, \ldots\right), P(A)=$ $P(A)^{2}$. Hence $P(A)=0$ or 1 .
Exercise 7.5.1 Let $\mathcal{T}=\bigcap_{n} \sigma\left(A_{n}, A_{n+1}, \ldots\right)$, where A_{1}, A_{2}, \ldots are independent events. Show that if X is a \mathcal{T}-measurable random variable, then $X=$ constant a.s.

In accord with notations for certain sets introduced in the second paragraph of Section 2.2, if T is a map from a set Ω to a set S, the set $T^{-1} A, A \subset S$, will be denoted by $\{T \in A\}$; and if $T_{\alpha}: \Omega \rightarrow S_{\alpha}, \alpha \in I$, then $\bigcap_{\alpha \in I} T_{\alpha}^{-1} A_{\alpha}, A_{\alpha} \subset S_{\alpha}$, is denoted by $\left\{T_{\alpha} \in A_{\alpha}, \alpha \in I\right\}$; in particular, if X_{1}, \ldots, X_{k} are random variables, then $\bigcap_{j=1}^{k}\left\{X_{j} \in B_{j}\right\}=$ $\left\{X_{1} \in B_{1}, \ldots, X_{k} \in B_{k}\right\}$. When a probability measure P is concerned, $P(\{\cdots\})$ will be abbreviated to $P(\cdots)$.

Given a family $\left\{X_{\alpha}\right\}$ of r.v.'s, the smallest σ-algebra relative to which every X_{α} is measurable is denoted by $\sigma\left(X_{\alpha}^{\prime} s\right)$; in particular, $\sigma\left(X_{1}, \ldots, X_{k}\right)$ is the smallest σ-algebra relative to which X_{1}, \ldots, X_{k} are measurable.

Exercise 7.5.2 If X_{1}, \ldots, X_{k} are r.v.'s, let $X=\left(X_{1}, \ldots, X_{k}\right)$ be the map from Ω to \mathbb{R}^{k} defined by $X(\omega)=\left(X_{1}(\omega), \ldots, X_{k}(\omega)\right)$ for $\omega \in \Omega$. Show that $\sigma\left(X_{1}, \ldots, X_{k}\right)=$ $\left\{X^{-1} B: B \in \mathcal{B}^{k}\right\}$.

We shall call a map $X: \Omega \rightarrow \mathbb{R}^{k}, k \geq 2$ a random vector if $X^{-1} B \in \Sigma$ for all $B \in \mathcal{B}^{k}$; in other words, X is a random vector if X is $\Sigma \mid \mathcal{B}^{k}$-measurable. Put $X=$ $\left(X_{1}, \ldots, X_{k}\right)$, where X_{1}, \ldots, X_{k} are the component functions of X. Since $\left\{X^{-1} B: B \in\right.$ $\left.\mathcal{B}^{k}\right\} \supset \bigcup_{j=1}^{k}\left\{X_{j}^{-1} B_{j}: B_{j} \in \mathcal{B}\right\}$, we conclude that if X is a random vector, then X_{1}, \ldots, X_{k} are r.v.'s; on the other hand, if X_{1}, \ldots, X_{k} are r.v.'s, then X is a random vector, by Exercise 7.5.2. Thus, $X=\left(X_{1}, \ldots, X_{k}\right)$ is a random vector if and only if X_{1}, \ldots, X_{k} are r.v.'s.

A family $\left\{X_{\alpha}\right\}$ of r.v.'s is said to be independent if $\left\{\sigma\left(X_{\alpha}\right)\right\}$ is independent; then we also say that $X_{\alpha}^{\prime} s$ are independent.
Exercise 7.5.3 Suppose that $\left\{X_{\alpha}\right\}$ is an independent family of r.v.'s and that $\left\{g_{\alpha}\right\}$ is a family of Borel functions on \mathbb{R}. Show that $\left\{g_{\alpha} \circ X_{\alpha}\right\}$ is an independent family of r.v.'s.
Lemma 7.5.1 If $X_{1}, \ldots, X_{n}, n \geq 2$, are independent r.v.'s then for integer $j, 1 \leq j<n$, $\sigma\left(X_{1}, \ldots, X_{j}\right)$ and $\sigma\left(X_{j+1}, \ldots, X_{n}\right)$ are independent.
Proof Put $\widehat{X}=\left(X_{1}, \ldots, X_{j}\right)$ and $\widehat{Y}=\left(X_{j+1}, \ldots, X_{n}\right)$. In view of Exercise 7.5.2, we need to show that

$$
\begin{equation*}
P(\widehat{X} \in B, \widehat{Y} \in C)=P(\widehat{X} \in B) \cdot P(\widehat{Y} \in C) \tag{7.16}
\end{equation*}
$$

for all $B \in \mathcal{B}^{j}$ and $C \in \mathcal{B}^{n-j}$. Consider $B_{l} \in \mathcal{B}, l=1, \ldots, n$; we have

$$
\begin{aligned}
& P\left(\widehat{X} \in B_{1} \times \cdots \times B_{j}, \widehat{Y} \in B_{j+1} \times \cdots \times B_{n}\right)=P\left(X_{1} \in B_{1}, \ldots, X_{n} \in B_{n}\right) \\
& =\prod_{l=1}^{n} P\left(X_{l} \in B_{l}\right)=P\left(\widehat{X} \in B_{1} \times \cdots \times B_{j}\right) \cdot P\left(\widehat{Y} \in B_{j+1} \times \cdots \times B_{n}\right),
\end{aligned}
$$

hence, (7.16) holds for $B=B_{1} \times \cdots \times B_{j}$ and $C=B_{j+1} \times \cdots \times B_{n}$. Fix B_{j+1}, \ldots, B_{n} and let $\mathcal{N}=\left\{B \in \mathcal{B}^{j}: P\left(\widehat{X} \in B, \widehat{Y} \in B_{j+1} \times \cdots \times B_{n}\right)=P(\widehat{X} \in B) P\left(\widehat{Y} \in B_{j+1}\right.\right.$ $\left.\left.\times \cdots \times B_{n}\right)\right\}$. Evidently, \mathcal{N} is a λ-system containing the family \mathcal{P} of all sets of the form $B_{1} \times \cdots \times B_{j}$, where B_{1}, \ldots, B_{j} are in \mathcal{B}. Now \mathcal{P} is a π-system and $\sigma(\mathcal{P})=\mathcal{B}^{j}$, therefore $B^{j} \supset \mathcal{N} \supset \sigma(\mathcal{P})=\mathcal{B}^{j}$. Thus $\mathcal{N}=\mathcal{B}^{j}$. This means that

$$
P\left(\widehat{X} \in B, \widehat{Y} \in B_{j+1} \times \cdots \times B_{n}\right)=P(\widehat{X} \in B) \cdot P\left(\widehat{Y} \in B_{j+1} \times \cdots \times B_{n}\right)
$$

for $B \in B^{j}$ and B_{j+1}, \ldots, B_{n} in \mathcal{B}. Next fix $B \in \mathcal{B}^{j}$ and let

$$
\mathcal{N}^{\prime}=\left\{C \in \mathcal{B}^{n-j}: P(\widehat{X} \in B, \widehat{Y} \in C)=P(\widehat{X} \in B) \cdot P(\widehat{Y} \in C)\right\} .
$$

Argue as in the immediately preceding part of the proof, we infer that $\mathcal{N}^{\prime}=\mathcal{B}^{n-j}$ and finish the proof.
Lemma 7.5.2 Suppose that $X_{1}, \ldots, X_{n}, n \geq 2$, are independent r.v.'s, and let $1 \leq j<n$ be an integer. Then $g_{1} \circ\left(X_{1}, \ldots, X_{j}\right)$ and $g_{2} \circ\left(X_{j+1}, \ldots, X_{n}\right)$ are independent if g_{1} and g_{2} are Borel functions on \mathbb{R}^{j} and \mathbb{R}^{n-j} respectively.

Proof Let B and C be Borel sets of \mathbb{R}. Since $\left\{g_{1} \circ\left(X_{1}, \ldots, X_{j}\right) \in B\right\}=\left\{\left(X_{1}, \ldots, X_{j}\right) \in\right.$ $\left.g_{1}^{-1} B\right\}$ and $\left\{g_{2} \circ\left(X_{j+1}, \ldots, X_{n}\right) \in C\right\}=\left\{\left(X_{j+1}, \ldots, X_{n}\right) \in g_{2}^{-1} C\right\}$, and since $g_{1}^{-1} B$
and $g_{2}^{-1} C$ are in \mathcal{B}^{j} and B^{n-j} respectively, we know from Exercise 7.5 .2 that $\left\{g_{1} \circ\left(X_{1}, \ldots, X_{j}\right) \in B\right\}$ and $\left\{g_{2} \circ\left(X_{j+1}, \ldots, X_{n}\right) \in C\right\}$ are in $\sigma\left(X_{1}, \ldots, X_{j}\right)$ and $\sigma\left(X_{j+1}, \ldots, X_{n}\right)$ respectively. It then follows from Lemma 7.5.1 that

$$
\begin{aligned}
& P\left(g_{1} \circ\left(X_{1}, \ldots, X_{j}\right) \in B, g_{2} \circ\left(X_{j+1}, \ldots, X_{n}\right)\right) \\
& =P\left(g_{1} \circ\left(X_{1}, \ldots, X_{j}\right) \in B\right) \cdot P\left(g_{2} \circ\left(X_{j+1}, \ldots, X_{n}\right) \in C\right)
\end{aligned}
$$

Theorem 7.5.2 If X and Y are independent integrable r.v.'s, then $X Y$ is integrable and $E(X Y)=E(X) \cdot E(Y)$.

Proof By Exercise 7.5.3, $X^{\varepsilon_{1}}$ and $X^{\varepsilon_{2}}$ are independent, where each of the symbols ε_{1} and ε_{2} is either + or - . We may therefore assume that both X and Y are nonnegative. Observe then that if S_{1} and S_{2} are simple functions measurable w.r.t. $\sigma(X)$ and $\sigma(Y)$ respectively, then $E\left(S_{1} S_{2}\right)=E\left(S_{1}\right) \cdot E\left(S_{2}\right)$. Now, choose increasing sequences $\left\{S_{n}^{(1)}\right\}$ and $\left\{S_{n}^{(2)}\right\}$ of simple functions such that each $S_{n}^{(1)}$ is $\sigma(X)$-measurable and each $S_{n}^{(2)}$ is $\sigma(Y)$-measurable; and furthermore $S_{n}^{(1)} \nearrow X$ and $S_{n}^{(2)} \nearrow Y$ pointwise. Using the monotone convergence theorem, we have

$$
\begin{aligned}
E(X) \cdot E(Y) & =\left[\lim _{n \rightarrow \infty} E\left(S_{n}^{(1)}\right)\right]\left[\lim _{n \rightarrow \infty} E\left(S_{n}^{(2)}\right)\right]=\lim _{n \rightarrow \infty}\left[E\left(S_{n}^{(1)}\right) \cdot E\left(S_{n}^{(2)}\right)\right] \\
& =\lim _{n \rightarrow \infty} E\left(S_{n}^{(1)} S_{n}^{(2)}\right)=E(X Y)
\end{aligned}
$$

Corollary 7.5.1 If $X_{1}, \ldots, X_{n}, n \geq 2$ are independent integrable r.v.'s, then $X_{1} \cdots X_{n}$ is integrable and $E\left(X_{1} \cdots X_{n}\right)=E\left(X_{1}\right) \cdots E\left(X_{n}\right)$.

Proof When $n=2$, this is Theorem 7.5.2. Suppose now that $n \geq 3$; then $X_{1} \cdots X_{n-1}$ and X_{n} are independent, by Lemma 7.5.2, and the corollary follows by induction on n.

Corollary 7.5.2 If X_{1}, \ldots, X_{n} are independent and integrable, then

$$
\operatorname{Var}\left(\sum_{j=1}^{n} X_{j}\right)=\sum_{j=1}^{n} \operatorname{Var}\left(X_{j}\right)
$$

Proof

$$
\begin{aligned}
\operatorname{Var}\left(\sum_{j=1}^{n} X_{j}\right) & =E\left(\left[\sum_{j=1}^{n}\left\{X_{j}-E\left(X_{j}\right)\right\}\right]^{2}\right) \\
& =E\left(\sum_{j=1}^{n}\left\{X_{j}-E\left(X_{j}\right)\right\}^{2}+\sum_{j \neq k}\left\{X_{j}-E\left(X_{j}\right)\right\}\left\{X_{k}-E\left(X_{k}\right)\right\}\right) \\
& =\sum_{j=1}^{n} \operatorname{Var}\left(X_{j}\right)+\sum_{j \neq k} E\left(\left\{X_{j}-E\left(X_{j}\right)\right\}\left\{X_{k}-E\left(X_{k}\right)\right\}\right. \\
& =\sum_{j=1}^{n} \operatorname{Var}\left(X_{j}\right)
\end{aligned}
$$

because $X_{j}-E\left(X_{j}\right)$ and $X_{k}-E\left(X_{k}\right)$ are independent, by Exercise 7.5.3 if $j \neq k$, and hence $E\left(\left\{X_{j}-E\left(X_{j}\right)\right\}\left\{X_{k}-E\left(X_{k}\right)\right\}\right)=E\left(\left\{X_{j}-E\left(X_{j}\right)\right\}\right) \cdot E\left(\left\{X_{k}-E\left(X_{k}\right)\right\}\right)=0$, by Theorem 7.5.2.
A probability measure μ on \mathcal{B} is called a probability distribution and the distribution $X_{\#} P$ of a r.v. X is called the probability distribution of X (recall that $X_{\#} P(B)=P(X \in B)$ for $B \in \mathcal{B}$). A family of r.v.'s is said to be identically distributed if random variables of the family have identical probability distribution. For $p>0, E\left(|X|^{p}\right)$ is called the p-th absolute moment of the r.v. X; while if $m \in \mathbb{N}, E\left(X^{m}\right)$ is referred to as the m-th moment of X.

Example 7.5.1 A r.v. X is said to be normally distributed with mean m and variance σ^{2} if for $B \in \mathcal{B}$,

$$
X_{\#} P(B)=P(X \in B)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{B} \exp \left\{\frac{-(x-m)^{2}}{2 \sigma^{2}}\right\} d x
$$

where as usual we write $\exp \{\beta\}$ for e^{β} if the expression for β is complicated. If X is normally distributed with mean m and variance σ^{2}, then

$$
\begin{aligned}
E(X) & =\frac{1}{\sqrt{2 \pi} \sigma} \int_{\mathbb{R}} \exp \left\{\frac{-(x-m)^{2}}{2 \sigma^{2}}\right\} x d x \\
& =\frac{1}{\sqrt{2 \pi} \sigma} \int_{\mathbb{R}} e^{-t^{2}}(\sqrt{2} \sigma t+m) \sqrt{2} \sigma d t \\
& =\frac{m}{\sqrt{\pi}} \int_{\mathbb{R}} e^{-t^{2}} d t=m ; \\
\operatorname{Var}(X) & =\frac{1}{\sqrt{2 \pi} \sigma} \int_{\mathbb{R}} \exp \left\{\frac{-(x-m)^{2}}{2 \sigma^{2}}\right\}(x-m)^{2} d x \\
& =\frac{2 \sigma^{2}}{\sqrt{\pi}} \int_{\mathbb{R}} e^{-t^{2}} t^{2} d t=\sigma^{2} .
\end{aligned}
$$

Thus X actually has m as its expectation and σ^{2} its variance. The probability distribution μ, defined by

$$
\mu(B)=\frac{1}{\sqrt{2 \pi} \sigma} \int_{B} \exp \left\{\frac{-(x-m)^{2}}{2 \sigma^{2}}\right\} d x, \quad B \in \mathcal{B},
$$

is called the normal distribution with mean m and variance σ^{2} and is denoted by $N\left(m, \sigma^{2}\right)$. The distribution $N(0,1)$ is called the standard normal distribution.
Example 7.5.2 Consider the Bernoulli sequence space $(\Omega, \sigma(\mathcal{Q}), P)$ of Example 3.4.6. Recall that $\Omega=\left\{\omega=\left(\omega_{k}\right): \omega_{k} \in\{0,1\}, k \in \mathbb{N}\right\} ; \mathcal{Q}$ is the smallest algebra on Ω that contains all sets of the form $E\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)=\left\{\omega=\left(\omega_{k}\right): \omega_{1}=\varepsilon_{1}, \ldots, \omega_{n}=\varepsilon_{n}\right\}$, $n \in \mathbb{N}$ and $\varepsilon_{j} \in\{0,1\}, j=1, \ldots, n$, and P is the unique probability measure on $\sigma(\mathcal{Q})$ such that $P\left(E\left(\varepsilon_{1}, \ldots, \varepsilon_{n}\right)\right)=2^{-n}$. If for $j \in \mathbb{N}$ and $\varepsilon \in\{0,1\}$ let $E_{\varepsilon}^{j}=\left\{\omega=\left(\omega_{k}\right)\right.$: $\left.\omega_{j}=\varepsilon\right\}$, then we know from Exercise 1.3.2 that

$$
\begin{equation*}
P\left(E_{\varepsilon_{1}}^{j_{1}} \cap \cdots \cap E_{\varepsilon_{k}}^{j_{k}}\right)=\prod_{l=1}^{k} P\left(E_{\varepsilon_{l}}^{j_{l}}\right)=2^{-k} \tag{7.17}
\end{equation*}
$$

if $1 \leq j_{1}<\cdots<j_{k}$ is any finite sequence in \mathbb{N}. Now for $j \in \mathbb{N}$, define a r.v. X_{j} by $X_{j}(\omega)=\omega_{j}$, then $\sigma\left(X_{j}\right)=\left\{\emptyset, E_{0}^{j}, E_{1}^{j}, \Omega\right\}$; and therefore we infer from (7.17) that $\left\{\sigma\left(X_{j}\right)\right\}$ is independent and consequently the r.v.'s $X_{1}, \ldots, X_{j}, \ldots$ are independent. Clearly, the probability distribution of each X_{j} is the measure μ on \mathcal{B} such that $\mu(\{0\})=\mu(\{1\})=\frac{1}{2}$. Hence the sequence $\left\{X_{j}\right\}$ is identically distributed; furthermore $E\left(X_{j}\right)=\frac{1}{2}, \operatorname{Var}\left(X_{j}\right)=\frac{1}{8}$, and m-th moment of X_{j} is $\frac{1}{2}$ for $m \in \mathbb{N}$.

Return now to the general discussion and consider an independent and identically distributed sequence $\left\{X_{j}\right\}$ of r.v.'s. Such a sequence is usually referred to as an i.i.d. sequence. Suppose that the common probability distribution of $X_{j}^{\prime} s$ is μ, then for any Borel function g on \mathbb{R} such that $\int_{\mathbb{R}} g d \mu$ exists, we know from (4.1) that $\int_{\mathbb{R}} g d \mu=\int_{\Omega} g \circ$ $X_{j} d P$; in particular, the m-th moment is the same for all $X_{j}^{\prime} s$ if it exists for one of them. Thus $E\left(X_{j}^{2}\right)=E\left(X_{1}^{2}\right)$ for all j. Assume now that $E\left(X_{1}^{2}\right)<\infty$ and let $S_{n}=\sum_{j=1}^{n} X_{j}, n \in \mathbb{N}$. Then, $E\left(S_{n}\right)=n E\left(X_{1}\right)$ or $E\left(\frac{S_{n}}{n}\right)=E\left(X_{1}\right)$, and hence from the Chebyshev inequality (6.3), we have

$$
P\left(\left|\frac{S_{n}}{n}-E\left(X_{1}\right)\right| \geq \varepsilon\right) \leq \varepsilon^{-2} \operatorname{Var}\left(\frac{S_{n}}{n}\right)=\frac{1}{n \varepsilon^{2}} \operatorname{Var}\left(X_{1}\right)
$$

for any given $\varepsilon>0$. This is stated as a theorem.
Theorem 7.5.3 (Weak law of large numbers) Suppose that $\left\{X_{j}\right\}$ is an i.i.d. sequence of $r . v$. 's with finite second moment, then

$$
\begin{equation*}
P\left(\left|\frac{S_{n}}{n}-E\left(X_{1}\right)\right| \geq \varepsilon\right) \leq \frac{1}{n \varepsilon^{2}} \operatorname{Var}\left(X_{1}\right) \tag{7.18}
\end{equation*}
$$

for any given $\varepsilon>0$, where $S_{n}=\sum_{j=1}^{n} X_{j}$.
A sequence $\left\{Y_{j}\right\}$ of r.v.'s is said to converge in probability to a r.v. Y if $\lim _{j \rightarrow \infty} P\left(\left|Y_{j}-Y\right| \geq \varepsilon\right)=0$ for every $\varepsilon>0$; the notation $Y_{j} \rightarrow Y[P]$ is used to mean that $\left\{Y_{j}\right\}$ converges to Y in probability. Apparently, convergence of Y_{j} to Y a.s. or in L^{p}-norm as $j \rightarrow \infty$ implies that $Y_{j} \rightarrow Y[P]$, hence convergence in probability is weaker than convergence a.s. and convergence in L^{p}-norm. Since Theorem 7.5.3 implies that $\frac{S_{n}}{n} \rightarrow E\left(X_{1}\right)[P]$, it is usually referred to as the weak law of large numbers.

Theorem 7.5.4 (Strong law of large numbers) Suppose that $\left\{X_{j}\right\}$ is an independent sequence of r.v.'s such that $E\left(X_{j}\right)=0$ and $E\left(X_{j}^{4}\right) \leq C<\infty$ for $j \in \mathbb{N}$. Let $S_{n}=\sum_{j=1}^{n} X_{j}$, then $\frac{S_{n}}{n} \rightarrow 0$ a.s. as $n \rightarrow \infty$.
Proof Observe that (cf. Exercise 7.5.3):
(i) $E\left(X_{i} X_{j}^{3}\right)=E\left(X_{i}\right) E\left(X_{j}^{3}\right)=0$ if $i \neq j$;
(ii) $E\left(X_{i} X_{j}^{2} X_{k}\right)=0$ if i, j, k are different from one another; and
(iii) $E\left(X_{i} X_{j} X_{k} X_{l}\right)=0$ if i, j, k, l are different from one another; and note that
(iv) $\left\{E\left(X_{j}^{2}\right)\right\}^{2} \leq E\left(X_{j}^{4}\right) \leq C$ for all j by Jensen's inequality (6.4).

Now since $E\left(S_{n}^{4}\right)=\sum_{i, j, k, l} E\left(X_{i} X_{j} X_{k} X_{l}\right)$, we conclude from (i), (ii), and (iii) that

$$
\begin{aligned}
E\left(S_{n}^{4}\right) & =\sum_{j=1}^{n} E\left(X_{j}^{4}\right)+\binom{4}{2} \sum_{1 \leq i<j \leq n} E\left(X_{i}^{2} X_{j}^{2}\right) \\
& \leq n C+6 \sum_{1 \leq i<j \leq n} E\left(X_{i}^{2}\right) E\left(X_{j}^{2}\right) ;
\end{aligned}
$$

but $E\left(X_{i}^{2}\right) E\left(X_{j}^{2}\right) \leq \frac{1}{2}\left\{E\left(X_{i}^{2}\right)^{2}+E\left(X_{j}^{2}\right)^{2}\right\} \leq \frac{1}{2}\left\{E\left(X_{i}^{4}\right)+E\left(X_{j}^{4}\right)\right\}$, by (iv), for each pair $i<j$, and consequently

$$
E\left(S_{n}^{4}\right) \leq n C+6 \frac{n(n-1)}{2} C \leq 3 C n^{2},
$$

or

$$
E\left(\left(\frac{S_{n}}{n}\right)^{4}\right) \leq \frac{3 C}{n^{2}}
$$

The last inequality implies that $E\left(\sum_{n=1}^{\infty}\left(\frac{S_{n}}{n}\right)^{4}\right) \leq 3 C \sum_{n=1}^{\infty} \frac{1}{n^{2}}<\infty$, and hence $\sum_{n=1}^{\infty}\left(\frac{S_{n}}{n}\right)^{4}<\infty$ a.s. Then, $\lim _{n \rightarrow \infty} \frac{S_{n}}{n}=0$ a.s. follows.
Corollary 7.5.3 Let $\left\{X_{j}\right\}$ be an independent sequence of r.v.'s with bounded fourth moment such that $E\left(X_{j}\right)=E\left(X_{1}\right)$ for all $j \in \mathbb{N}$; then $\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} X_{j}=E\left(X_{1}\right)$ a.s.

Proof Put $Y_{j}=X_{j}-E\left(X_{j}\right)$; then $E\left(Y_{j}\right)=0$ for all j and $\left\{E\left(Y_{j}^{4}\right)\right\}$ is bounded. We then apply Theorem 7.5.4 to conclude the proof.

Now apply Corollary 7.5.3 to the sequence $\left\{X_{j}\right\}$ of Example 7.5.2; we have

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} X_{j}=\frac{1}{2} \text { a.s. }
$$

i.e. the event $\left\{\omega \in \Omega: \lim _{n \rightarrow \infty} \frac{S_{n}(\omega)}{n}=\frac{1}{2}\right\}$ occurs with probability one, where $S_{n}=$ $\sum_{j=1}^{n} X_{j}$; in other words, if we interpret $\left\{X_{j}\right\}$ as a sequence of tossing of a fair coin, the relative frequency with which heads appears in the first n tosses approaches $\frac{1}{2}$ as $n \rightarrow \infty$ almost certainly. This is what we proclaim in the last paragraph of Section 1.3.

As we know in Example 4.3.2, the Bernoulli sequence space $(\Omega, \sigma(\mathcal{Q}), P)$ and ($[0,1], \mathcal{B} \mid[0,1], \lambda$) are measure-theoretically the same space; it is therefore worthwhile considering the counterpart of the sequence $\left\{X_{j}\right\}$ of Example 7.5 .2 in the space $([0,1], \mathcal{B} \mid[0,1], \lambda)$. For $x \in[0,1]$, let $0 . x_{1} \ldots x_{k} \ldots$ be the binary expansion of x with
the convention that in case where two expansions are possible, the expansion with infinitely many $1^{\prime} s$ is chosen, and for $j \in \mathbb{N}$, define a r.v. Z_{j} by $Z_{j}(x)=x_{j}$. From the discussion in Example 3.4.6, one verifies readily from the independence of the sequence $\left\{X_{j}\right\}$ of Example 7.5.2 that $\left\{Z_{j}\right\}$ is independent, $E\left(Z_{j}\right)=E\left(Z_{1}\right)=\frac{1}{2}$, and $E\left(Z_{j}^{4}\right)=\frac{1}{2}$. Then,

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \sum_{j=1}^{n} Z_{j}=\frac{1}{2} \text { a.s. }
$$

i.e.

$$
\begin{equation*}
\lim _{n \rightarrow \infty} \frac{1}{n}\left\{\text { number of } 1^{\prime} \sin x_{1}, \ldots, x_{n}\right\}=\frac{1}{2} \tag{7.19}
\end{equation*}
$$

for almost every x of $[0,1]$. We call a number x in $[0,1]$ a normal number if (7.19) holds. Then (7.19) can be stated as follows.

Theorem 7.5.5 (Borel) Almost all numbers in $[0,1]$ are normal.
We now come to introduce the Fourier integral for probability distributions. The Fourier integral φ of a probability distribution μ is a function on \mathbb{R}, defined by

$$
\begin{equation*}
\varphi(t)=\int_{-\infty}^{\infty} e^{i t x} d \mu(x), \quad t \in \mathbb{R} . \tag{7.20}
\end{equation*}
$$

We call attention to inconsistency in the definition of Fourier integral for functions and for probability distributions; should consistency of definition be preferred, the function φ, defined by (7.20), would be called the Fourier inverse integral of μ. It is readily seen that $\varphi(0)=1,|\varphi(t)| \leq 1$, and φ is uniformly continuous on \mathbb{R}. In probability theory, φ is called the characteristic function of μ; and if a r.v. X has μ as its probability distribution, φ is also referred to as the characteristic function of X. Note that if φ is the characteristic function of X, then,

$$
\varphi(t)=E\left(e^{i t X}\right), \quad t \in \mathbb{R} .
$$

Exercise 7.5.4 Let φ be the characteristic function of the r.v. X, and suppose that $E(|X|)<\infty$. Show that $\varphi \in C^{1}(\mathbb{R})$ and $\varphi^{\prime}(t)=E\left(i X e^{i t X}\right)$.

Exercise 7.5.5 Show that the characteristic function φ of $N(0,1)$ is given by $\varphi(t)=e^{-\frac{t^{2}}{2}}$.

Exercise 7.5.6 Suppose that φ is the characteristic function of a probability distribution μ. Show that for $u>0$,

$$
\mu\left(\left(-\infty, \frac{-2}{u}\right] \cup\left[\frac{2}{u}, \infty\right)\right) \leq \frac{1}{u} \int_{-u}^{u}(1-\varphi(t)) d t .
$$

(Hint: $\frac{1}{u} \int_{-u}^{u}(1-\varphi(t)) d t=2 \int_{-\infty}^{\infty}\left(1-\frac{\sin u x}{u x}\right) d \mu(x) \geq 2 \int_{|x| \geq \frac{2}{\mu}}\left(1-\frac{1}{|u x|}\right) d \mu(x)$.)

Theorem 7.5.6 Suppose that X_{1} and X_{2} are independent random variables with characteristic functions φ_{1} and φ_{2} respectively, and let φ be the characteristic function of $X_{1}+X_{2}$, then $\varphi=\varphi_{1} \varphi_{2}$.
Proof Since $e^{i t X_{1}}$ and $e^{i t X_{2}}$ are independent, we have

$$
\begin{aligned}
\varphi(t) & =E\left(e^{i t\left(X_{1}+X_{2}\right)}\right)=E\left(e^{i t X_{1}} \cdot e^{i t X_{2}}\right) \\
& =E\left(e^{i t X_{1}}\right) \cdot E\left(e^{i t X_{2}}\right)=\varphi_{1}(t) \varphi_{2}(t) .
\end{aligned}
$$

Theorem 7.5.7 (Inversion formula) Let μ be a probability distribution with characteristic function φ; then for $a<b$ in \mathbb{R},

$$
\mu((a, b])=\lim _{L \rightarrow \infty} \frac{1}{2 \pi} \int_{-L}^{L} \frac{e^{-i t a}-e^{-i t b}}{i t} \varphi(t) d t
$$

if $\mu(\{a\})=\mu(\{b\})=0$.
Proof Put $\quad S(L)=\int_{0}^{L} \frac{\sin t}{t} d t, \quad L>0$. Then $\quad \int_{0}^{L} \frac{\sin \theta t}{t} d t=\operatorname{sgn} \theta S(L|\theta|) \quad$ and $\lim _{L \rightarrow \infty} S(L)=\frac{\pi}{2}$. Now consider the integral

$$
\begin{aligned}
\mathcal{I}(L) & =\frac{1}{2 \pi} \int_{-L}^{L}\left[\frac{e^{-i t a}-e^{-i t b}}{i t}\right] \varphi(t) d t \\
& =\frac{1}{2 \pi} \int_{-L}^{L}\left(\int_{-\infty}^{\infty} \frac{e^{i t(x-a)}-e^{i t(x-b)}}{i t} d \mu(x)\right) d t .
\end{aligned}
$$

From the elementary inequality $\left|e^{i \theta}-1\right| \leq|\theta|$, we have

$$
\left|\frac{e^{i t(x-a)}-e^{i t(x-b)}}{i t}\right|=\frac{1}{|t|}\left|e^{i t(b-a)}-1\right| \leq b-a
$$

for any $x \in \mathbb{R}$. We may therefore apply the Fubini theorem to the integral defining $\mathcal{I}(L)$:

$$
\begin{aligned}
\mathcal{I}(L) & =\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\int_{-L}^{L} \frac{e^{i t(x-a)}-e^{i t(x-b)}}{i t} d t\right) d \mu(x) \\
& =\int_{-\infty}^{\infty}\left(\int_{0}^{L}\left[\frac{\sin t(x-a)}{\pi t}-\frac{\sin t(x-b)}{\pi t}\right] d t\right) d \mu(x) \\
& =\int_{-\infty}^{\infty}\left[\frac{\operatorname{sgn}(x-a)}{\pi} S(L|x-a|)-\frac{\operatorname{sgn}(x-b)}{\pi} S(L|x-b|)\right] d \mu(x) .
\end{aligned}
$$

Let us denote the integrand of this last integral by $\theta_{L}(a, b ; x)$ and put $\theta_{a b}(x)=$ $\lim _{L \rightarrow \infty} \theta_{L}(a, b ; x)$; then,

$$
\theta_{a b}(x)= \begin{cases}0 & \text { if } x<a \text { or } x>b \\ \frac{1}{2} & \text { if } x=a \text { or } x=b \\ 1 & \text { if } a<x<b\end{cases}
$$

From the second mean-value theorem, $\left\{\int_{0}^{\alpha} \frac{\sin t}{t} d t\right\}_{\alpha>0}$ is bounded and therefore $\left|\theta_{L}(a, b ; x)\right| \leq M<\infty$ for all $L>0$ and $x \in \mathbb{R}$. Hence by LDCT, we conclude that

$$
\begin{gathered}
\lim _{L \rightarrow \infty} \mathcal{I}(L)=\int_{-\infty}^{\infty} \theta_{a b}(x) d \mu(x) \\
=\frac{1}{2} \mu(\{a\})+\mu((a, b))+\frac{1}{2} \mu(\{b\})=\mu((a, b]) .
\end{gathered}
$$

Exercise 7.5.7 Let μ be the probability measure on \mathcal{B} concentrated at 0 . Find the characteristic function of μ and use Theorem 7.5.7 to show that

$$
\lim _{L \rightarrow \infty} \int_{0}^{L} \frac{\sin a t}{t} d t=\int_{0}^{\infty} \frac{\sin a t}{t} d t=\frac{\pi}{2}
$$

for all $a>0$.
Corollary 7.5.4 If the probability distributions μ and v have the same characteristic function, then $\mu=v$.
Proof Let $\quad \Pi=\{(a, b]: \mu(\{a\})=\mu(\{b\})=v(\{a\})=v(\{b\})=0\} \cup\{\emptyset\}, \quad$ and $\mathcal{N}=\{B \in \mathcal{B}: \mu(B)=\nu(B)\}$. Theorem 7.5.7 implies that $\mathcal{N} \supset \Pi$. But Π is a π-system, \mathcal{N} is a λ-system, and $\sigma(\Pi)=\mathcal{B}$, hence it follows from the $(\pi-\lambda)$ theorem that $\mathcal{N}=\mathcal{B}$.

Corollary 7.5.4 means that the characteristic function of a probability distribution μ uniquely determines μ and is therefore named the characteristic function of μ.

We are ready to state and prove the central limit theorem in probability theory. Suppose that $\left\{X_{j}\right\}$ is an i.i.d. sequence of random variables such that $E\left(X_{j}\right)=0, \operatorname{Var}\left(X_{j}\right)=$ $E\left(X_{j}^{2}\right)=1$, and $E\left(\left|X_{j}\right|^{3}\right)<\infty$. For $n \in \mathbb{N}$, put $Y_{n}=\frac{1}{\sqrt{n}} \sum_{j=1}^{n} X_{j}$.
Theorem 7.5.8 (Central limit theorem) The characteristic function of Y_{n} converges to the characteristic function of $N(0,1)$ uniformly on any given finite interval.
Proof Denote by φ the common characteristic function of X_{j} 's and by μ the common distribution of X_{j} 's. Using the fundamental theorem of calculus repeatedly, we have

$$
\begin{aligned}
e^{i t x} & =1+i \int_{0}^{t x} e^{i \theta} d \theta=1+i \int_{0}^{t x}\left(1+i \int_{0}^{\theta} e^{i s} d s\right) d \theta \\
& =1+i t x-\int_{0}^{t x}\left(\int_{0}^{\theta} e^{i s} d s\right) d \theta \\
& =1+i t x-\int_{0}^{t x}\left(\int_{0}^{\theta}\left(1+i \int_{0}^{s} e^{i \tau} d \tau\right) d s\right) d \theta \\
& =1+i t x-\frac{1}{2} t^{2} x^{2}-i \int_{0}^{t x}\left(\int_{0}^{\theta}\left(\int_{0}^{s} e^{i \tau} d \tau\right) d s\right) d \theta \\
& =1+i t x-\frac{1}{2} t^{2} x^{2}+h(t x),
\end{aligned}
$$

where $|h(t x)| \leq \frac{1}{6}|t x|^{3} ;$ consequently,

$$
\begin{equation*}
\varphi(t)=\int_{\mathbb{R}} e^{i t x} d \mu(x)=1-\frac{1}{2} t^{2}+\int_{\mathbb{R}} h(t x) d \mu(x)=1-\frac{1}{2} t^{2}+H(t) . \tag{7.21}
\end{equation*}
$$

Note that $\int_{\mathbb{R}} i t x d \mu(x)=i t E\left(X_{j}\right)=0$ and $\int_{\mathbb{R}} t^{2} x^{2} d \mu(x)=t^{2} E\left(X_{j}^{2}\right)=t^{2}$ have been used in deriving (7.21), and that

$$
\begin{equation*}
|H(t)| \leq \frac{1}{6} E\left(\left|X_{j}\right|^{3}\right)|t|^{3} \equiv C|t|^{3} . \tag{7.22}
\end{equation*}
$$

Now let I be a finite interval in \mathbb{R}; then for some $b>0,|t| \leq b$ for $t \in I$, and hence there is $n_{0} \in \mathbb{N}$, such that

$$
\begin{equation*}
\left(1-\frac{1}{2} \frac{t^{2}}{n}\right) \geq \frac{1}{2}, \quad t \in I \tag{7.23}
\end{equation*}
$$

if $n \geq n_{0}$. Denote now by φ_{n} the characteristic function of Y_{n}. We know from Theorem 7.5.6 that

$$
\begin{aligned}
\varphi_{n}(t) & =E\left(\exp \left\{\frac{i t}{\sqrt{n}} \sum_{j=1}^{n} X_{j}\right\}\right)=\left[\varphi\left(\frac{t}{\sqrt{n}}\right)\right]^{n} \\
& =\left[1-\frac{1}{2} \frac{t^{2}}{n}+H\left(\frac{t}{\sqrt{n}}\right)\right]^{n} \\
& =\left(1-\frac{1}{2} \frac{t^{2}}{n}\right)^{n}\left\{1+\left(1-\frac{1}{2} \frac{t^{2}}{n}\right)^{-1} H\left(\frac{t}{\sqrt{n}}\right)\right\}^{n} \\
& =\left(1-\frac{1}{2} \frac{t^{2}}{n}\right)^{n}(1+G(t, n))^{n},
\end{aligned}
$$

of which for $n \geq n_{0}$ and $t \in I$, we have from (7.22) and (7.23),

$$
|G(t, n)| \leq 2 C b^{3} n^{-\frac{3}{2}} .
$$

Observe now from the mean-value theorem in differential calculus that, for $\alpha \in \mathbb{R}$ and $n \in \mathbb{N}$,

$$
\begin{aligned}
\left(1+\frac{\alpha}{n}\right)^{n} & =\exp \left\{\ln \left(1+\frac{\alpha}{n}\right)^{n}\right\} \\
& =\exp \{n[\ln (n+\alpha)-\ln n]\}=\exp \left\{\frac{n \alpha}{n+\alpha_{n}}\right\}
\end{aligned}
$$

where $n+\alpha_{n}$ is between n and $n+\alpha$, and consequently

$$
\lim _{n \rightarrow \infty}\left(1+\frac{\alpha}{n}\right)^{n}=e^{\alpha}
$$

uniformly for $|\alpha| \leq B$ if $B>0$ is fixed. As a consequence,

$$
\lim _{n \rightarrow \infty}\left(1-\frac{1}{2} \frac{t^{2}}{n}\right)^{n}=e^{-\frac{t^{2}}{2}}
$$

uniformly for $t \in I$; and since $|n G(t, n)| \leq 2 C b^{3} n^{-\frac{1}{2}}$ for $n \geq n_{0}$ and $t \in I$, for any given $\varepsilon>0$ there is $n_{1} \geq n_{0}$ in \mathbb{N} such that if $n \geq n_{1}$ and $t \in I$, then,

$$
\begin{equation*}
\left|\left(1+\frac{n G(t, n)}{n}\right)^{n}-e^{n G(t, n)}\right|<\frac{\varepsilon}{2} . \tag{7.24}
\end{equation*}
$$

We may choose n_{1} sufficiently large so that, if $n \geq n_{1}$ and $t \in I$, then $|n G(t, n)|$ will be small enough so that $|n G(t, n)|<\frac{\varepsilon}{4}$, and

$$
\begin{equation*}
1-|n G(t, n)| \leq e^{n G(t, n)} \leq 1+2|n G(t, n)| . \tag{7.25}
\end{equation*}
$$

Finally, using (7.24) and (7.25), we have for $n \geq n_{1}$ and $t \in I$,

$$
\begin{aligned}
& (1+G(t, n))^{n}-1>e^{n G(t, n)}-\frac{\varepsilon}{2}-1 \geq 1-|n G(t, n)|-\frac{\varepsilon}{2}-1>-\varepsilon \\
& (1+G(t, n))^{n}-1<e^{n G(t, n)}+\frac{\varepsilon}{2}-1 \leq 1+2|n G(t, n)|+\frac{\varepsilon}{2}-1 \leq \varepsilon
\end{aligned}
$$

Thus, $\left|(1+G(t, n))^{n}-1\right|<\varepsilon$ if $n \geq n_{1}$ and $t \in I$ i.e. $\lim _{n \rightarrow \infty}(1+G(t, n))^{n}=1$ uniformly for $t \in I$. Summing up, we have shown that $\varphi_{n}(t)$ converges to $e^{-\frac{t}{2}}$ uniformly for $t \in I$. But $e^{-\frac{t^{2}}{2}}$ is the characteristic function of $N(0,1)$ (cf. Exercise 7.5.5).

The following exercise illustrates the relevance of the central limit theorem.

Exercise 7.5.8 Let Y_{n} be as in Theorem 7.5.8 and μ_{n} the probability distribution of Y_{n}; and let v be $N(0,1)$. Furthermore, put $F_{n}(x)=\mu_{n}((-\infty, x])$ and $F(x)=v((-\infty, x])$ for $x \in \mathbb{R}$.
(i) Given that $\varepsilon>0$. Show that there is $a>0$ such that

$$
\begin{aligned}
& v(\{|x| \geq a\})<\varepsilon \\
& \mu_{n}(\{|x| \geq a\})<\varepsilon, n=1,2,3, \ldots,
\end{aligned}
$$

(Hint: cf. Exercise 7.5.6 and central limit theorem.)
(ii) Show that if f is a bounded continuous function on \mathbb{R}, then

$$
\lim _{n \rightarrow \infty} \int_{\mathbb{R}} f d \mu_{n}=\int_{\mathbb{R}} f d v
$$

(Hint: use (i) and Theorem 7.5.7.)
(iii) For $-\infty<\alpha<\beta<\infty$, define a continuous function $f_{\alpha, \beta}$ as follows:

$$
f_{\alpha, \beta}(t)= \begin{cases}1, & t \leq \alpha ; \\ 0, & t \geq \beta ; \\ \frac{\beta-t}{\beta-\alpha}, & \alpha<t<\beta\end{cases}
$$

Now let $-\infty<u<x<y<\infty$. By applying (ii) for $f=f_{x, y}$ and $f_{u, x}$ in this order, show that

$$
\limsup _{n \rightarrow \infty} F_{n}(x) \leq F(y) ; \quad F(x-) \leq \liminf _{n \rightarrow \infty} F_{n}(x),
$$

and then conclude that $\lim _{n \rightarrow \infty} F_{n}(x)=F(x)$ for $x \in \mathbb{R}$.
(iv) Show that for any finite interval I in \mathbb{R},

$$
\lim _{n \rightarrow \infty} \mu_{n}(I)=\frac{1}{\sqrt{2 \pi}} \int_{I} e^{-\frac{t^{2}}{2}} d t .
$$

Postscript

Although the general basic principles of real analysis are few, because of their wide applicability and their proven relevance over time in the development of mathematical analysis for its own purpose or for applications, manifold variations and derived principles have emerged whose scope is seldom matched by those of other subjects in mathematics. Therefore to write a book of reasonable size on real analysis which provides all the variations and derived principles is deemed to be impossible. I have, no matter how unwillingly, had to choose for discussion only those topics which are necessary for the understanding of those modern methods in analysis which apply the so-called real variables techniques.

Some brief treatment of Housdorff measures on Euclidean n-space and a more systematic discussion of real variables methods in harmonic analysis would be desirable. To do this sufficiently well to reveal the merit of these topics would not only increase the size of the book beyond a reasonable range, but would not really be in the reach of my capabilities. In this regard, I can do no better than to refer the interested reader to the masterful works [EG] and [St], listed in the bibliography.

