Introduction
and Preliminaries

his chapter serves two purposes. The first purpose is to prepare the reader for amore

systematic development in later chapters of the methods of real analysis through
some introductory accounts of a few specific topics. The second purpose is, in view of
the possible situation where some readers might not be conversant with basic concepts
in elementary abstract analysis, to acquaint them with the fundamentals of abstract ana-
lysis. Nevertheless, readers are assumed to have some basic training in rigorous analysis
as usually offered by courses in advanced calculus, and to have some acquaintance with
the rudiments of linear algebra.

Throughout the book, the field of real numbers and that of complex numbers are
denoted, respectively, by R and C, while the set of all positive integers and the set of
all integers are denoted by IN and 7Z respectively.

The standard set-theoretical terminology is assumed; but terminology and notations
regarding mappings will now be briefly recalled. If T is a mapping from a set A into a set
B (expressed by T : A — B), T(a) denotes the element in B which is associated with
a € A under the mapping T; for a subset S of A, the set {T'(x) : x € S} is denoted by
TS and is called the image of S under T; thus T{a} = {T(a)}. T(a) is sometimes simply
written as Ta if no confusion is possible, and at times, an element a of a set and the set {a}
consisting of an element are not clearly distinguished as different objects. For example,
Ta and T{a} may not be distinguished and Ta is also called the image of a under T. A
mapping T : A — Bis said to be one-to-one or injective if Ta = Ta' leadstoa = a’,and
is said to be surjective if TA = B; T is bijective if it is both injective and surjective. If
TA = B, T is also referred to as a mapping from A onto B. Mappings are also called maps.
Synonyms for maps are operators and transformations. As usual, a map from a setinto R
or U is called a function.

Some convenient notations for operations on sets are now introduced. Regarding a
family F = {Aq }oer of sets indexed by an index set I, the union |,
by | F; if A and B are sets in a vector space and « a scalar, the set {x + y : x € A,y € B}
is denoted by A + B, and the set {orx : x € A} by 0A.

Ay is also expressed
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2 | Introduction and Preliminaries
1.1 Summability of systems of real numbers

Summability of systems of real numbers is a special case in the theory of integration, to
be treated in Chapter 2, but it reveals many essential points of the theory.

For a set S, the family of all nonempty finite subsets of S will be denoted by F(S).
Consider now a system {cy }es of real numbers indexed by an index set I. The system
{ca }uer will be denoted simply by {c, } if the index set I is assumed either explicitly or
implicitly. The system is said to be summable if there is £ € IR, such that forany & > 0
thereis A € F(I), with the property that whenever B € F(I) and B D A, then

pIY—

o E€B

< €. (1.1)

Exercise 1.1.1 Show that if £ in the preceding definition exists, then it is unique.

If {c,} is summable, the uniquely determined £ in the above definition is called the
sum of {¢, } and is denoted by ) _,_; ca-

Before we go further it is worthwhile remarking that the convergence of the series
2321 ¢, depends on the order 1 <2 <3 < --- and ZnelN c,, if it exists, does not
depend on how N is ordered. Hence ),y ¢, may not exist while > -, ¢, exists. We
will come back to this remark in Exercise 1.1.5.

Theorem 1.1.1 If{cg,l)}ael and {cff) Ywer are summable, then so is {acg,l) + bl Yuer for

fixed real numbers a and b, and

Z(acg}) + bcéz)> = aZcS) + ch‘(xZ).

ael ael o€l

Proof We may assume that |a| + |b] > 0, and for convenience put ), &M= I,

Y wel C((xz) =1. Let ¢ > 0 be given, there are A; and A, in F(I) such that
when Bj, B, are in F(I) with B; D A;, B, D A,, we have |Za€Bl c((xl) -hL| <

m and | ZaeBz c((yz) -bL| < |“|i|h|' Choose now A = A; U A,, then for B € F(I)

with B D A, we have | ZaeB(acg}) + bc((xz)) = (aly + bh)| < |a|| X_yen cg,l) - L]+
16]] 2 0en c((xz) -h| < % + % = ¢. This shows that {ac((xl) + bc((xz)}is summable

and Zae[(act(xl) + ng{Z)) = a11 + blz ]
Theorem 1.1.2 Ifc, > 0V € I, then {cy } is summable if and only if

{an:AeF(I)} (1.2)

aceA

is bounded.
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Proof That boundedness of (1.2) is necessary for {c,} to be summable is left as an
exercise. Now we show that boundedness of (1.2) is sufficient for {c, } to be sum-
mable. Let ¢ be the least upper bound of {>___, co : A € F(I)}; for any & > 0 there
is A € F(I) such that

acA

0<l-> ¢ <e. (1.3)

oA

Let now B € F(I) and B D A, then

g -4

o€B

=0-)Ycg<Ul-Y cy<e. u

o€B a€A

We note before moving on that if a subset S of R is bounded from above, then the least
upper bound of S exists uniquely and is denoted by sup S; similarly, if S is bounded from
below, then the greatest lower bound exists uniquely and is denoted by inf S. If S = {s, :
o € I}, then inf S and sup S are also expressed, respectively, by inf, 1 s, and sup,, ; .

Exercise 1.1.2 Show that boundedness of (1.2) is necessary for {c, } to be summable.

Because of Theorem 1.1.2, if {c, } is a system of nonnegative real numbers and is not
summable, then we write D _ 1 Ca = +00. Hence, D <1 ¢ always has a meaning if {c, }
is a system of nonnegative numbers.

Theorem 1.1.3 (Cauchy criterion) A system {c, } is summable if and only if for any ¢ > 0
thereis A € F(I), such that | ), cu| < € whenever B € F(I) and AN B = (.

a€B

Proof Sufficiency: Choose A € F(I) such that | ), co| < 1 for B € F(I), satisfying
A N B =, then obviously if B € F(I) with BN A = (J, we have Y __, ¢’ < 1, where

a€B "o
¢; = ¢y or 0 according to whether ¢, > 0 or < 0. Now, for B € F(I), we have

26= 2 Gt 2 <D+l

133:} a€BNA aeB\A a€A

ie,{) ,cpc, : B € F(I)}isbounded; hence by Theorem 1.1.2 {c}, } is summable.
Similarly {c,} is summable, where ¢, = —¢, or 0 according to whether ¢, < 0
or > 0.Now¢, = ¢, - ¢, , hence {c, } is summable by Theorem (1.1).
The necessary part is left for the reader to verify. |

Exercise 1.1.3 Suppose that {c, }c; is summable and that ] is a nonempty subset of I.
Show that (i) {cq Jaej is summable, and (ii) ), ca = Zae] Co + Zad\] Ca-

Exercise 1.1.4 Show that {c, } is summable if and only if { |c, | } is summable; show also
that {c, } is summable if and only if

{2

acA

:AEHD}

is bounded.
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Exercise 1.1.5 Show that {c, }4en is summable if and only if the series 2221 Cq 1S
absolutely convergent. Show also that Y _x ¢g = D oo

wet Co if {Ca e is summable.

Exercise 1.1.6 Show that {c, }4cr is summable if and and only if (i) {& € I : ¢, # 0}
is finite or countable; and (i) if {& € I : ¢, # 0} = {1, @y, ...} is infinite; then the
series Y ., co, converges absolutely.

Exercise 1.1.7 Suppose that foreachn = 1,2,3,.. ., thereis A, € F(I), with the prop-
erty that for each A € F(I), there is a positive integer N such that A C A, for all
n > N. Show that if {c, }4¢r is summable, then

D= lim ) .

acl =00 yeA,

Give an example to show that it is possible that lim,,, oo ) co exists and is finite,

but {c, } is not summable.

€A,

Example 1.1.1  Suppose that I =, I,, where I,’s are pairwise disjoint. Let

{ca}acr be summable, then Y, . co = D, n (D _ge o) By Exercise 1.1.4, we may
assume that ¢, > 0 for all a € I. It follows from ) ,_;co =sup{) ,csCa: A €

F(I)} that } i ce <D en(Dger, C)- It remains to be seen that ), ¢y >
ZneN(Zaeln co).Let k € N and ¢ > 0. For each n = 1,.. ., k, there is a finite set

A, C I, such that Zaeln o < ZaeAn Ca + % Then, if we put By, = UﬁzlAn, we have

k k .
Zael Co = ZaeBk Co > Zn:I(ZaeIn Ca — %) = Zn:I(ZaeIn Ca) - ¢&; since £ > 0
is arbitrary, ), co > Zl;=1(2aeln cy) for each k € N. Now let k — 0o to
obtain Zael Ca = ZnelN(ZaeI,, ¢ )- Observe from the proof that {Zadﬂ Co fneN is

summable.

We shall recognize in Example 2.3.3 that summability considered in this section is the
integrability with respect to the counting measure on I.

1.2 Double series

Let I=N x N ={(i,j) : j,j = 1,2,...} and write ¢; for ¢(;j. When the summability
of the system {c;} is in question, the system {c;} is referred to as a double series
and is denoted by ) | cij- Hence the double series > cj is summable if {ci]-} = {C(i'j)} is
summable, and Z(i,j) <1 Cij is called the sum of the double series ) ¢;;.

For a double sequence {a,,, }, we say that lim,, ;o dn = ¢, if forany & > 0 thereisa
positive integer N such that |a,,, - £| < & whenever m,n > N.

Theorem 1.2.1 Ifthe double series ) cj is summable, then

Z Cij = hm ZZC,']' = ZZC,} = chl]

(ij)el mn—>00 j=1 i=1 j=li=1 i=1j=1
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Proof We show first that Z(w_)d ¢ij = limy, o0 Z;l:1 Yo Let £= Z(i'j)d Cij»
Given ¢ > 0, thereis A € F(I) such that

> cij—ﬁ‘ <e¢

(ij)eB

whenever B € F(I) and B D A. Let N = max{i Vj: (i,j) € A}, where i Vj is the
larger of i and j. For n,m > N, let B,,, = {(i,j) € I: 1 <i<m, 1 <j < n}, then
B,y € F(I) and B,,, D A, hence

chij—f‘ =

j=1i=1

Z Cij_g' < E.

(i) €Bpun

This means that £ = lim,, ,— oo Z;;l ZZI Cij-
Since D, er G = D_(ij)er S — 2o (ij)er € in the remaining part of the proof, we
may assume that ¢; > 0 forall (i,j) € I. Observe then that

€= sup ) )

nm>1 j=1i=1

Hence,

£ > lim (iicij) = iicﬁ

m—>00 \ j=1i=1 j=li=1

for each n and consequently

o 0
i=1i=1
On the other hand,

€= sup iicij < sup (iicﬁ) = lim (iiCU)

nm>1 j=1i=1 n>1 \j=li=1

iicir

j=li=1

We have shown that £ = Z]o:ol Y ¢y similarly,

[e.ele el
= ZZCU |

i=1j=1
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Example 1.2.1 If {a,},en and {b,},cn are summable, then the double series Y | a,b,,

is summable and Z(n)m)e]NXN anbm = (X, cn @) (O, .en bm)- That > a,b,, is sum-
mable follows from Exercise 1.1.4 and the observation that {Z(Wl) calanbm| - A€
F(N x IN)} is bounded from above by (Y _x |as|) - (3 ,.cn |bm|)- Then, by
Theorem 1'2'11 Z(n,m)elN xIN a"bm = ZneN ZmeN a"bm = (ZneN an)(ZmeN bm)'
Fork > 2in N, put Ay = {(n,m) e Nx N:n+m=k}jthen} , »n.n dnbm =
> tex (2_(nm)ea, @nm) from Example 1.1.1. The system {4, @nbm }i>2 is called
the i)roduct of {a,} and {b,}; we have shown that the sum of the product is the
product of the sums.

The following exercise complements Theorem 1.2.1.

Exercise 1.2.1 Copy the proof of Theorem 1.2.1 to show that if ¢; > 0 for all i and j
in IN, then the conclusion of Theorem 1.2.1 still holds, even if Z( ij)er Gij = 09 (recall
that for a system {c, } of nonnegative numbers, ) ¢, = 00 means that {c, } is not
summable).

Remark Fori,jin NN, let

1 ifi=j;
Gj = -1 lf] =i+ 1,

0  otherwise,

then ) ¢; is not summable and 0 = > Z]O:ol G # Z]o:l Yooci=1

1.3 Coin tossing

A pair of symbols H and T, associated, respectively, with nonnegative numbers p and
g such that p + g = 1 is called a Bernoulli trial and is denoted by B(p, q). A Bernoulli
trial B(p, q) is a mathematical model for the tossing of a coin, of which heads occur with
probability p and tails turn out with probability g; this explains the symbols H and T. In
particular, B(% s %
In this section, we consider the first step towards construction of a mathematical

) models the tossing of a fair coin.

model for a sequence of tossing of a fair coin. For convenience, we replace H and T by
1 and 0 in this order; then an infinite sequence w = (W, s, ..., wy,...) of 0’s and 1’s
represents a realization of a sequence of coin tossing. Let

Q={0,1}* := {w = (wr), wr = 0 or 1 for each k},
where we adopt the usual convention of expressing an infinite sequence (wy, . . ., @y, . . .)

by (wy) with the understanding that wy, is the entry at the k-th position of the sequence. In
terminology of probability theory, elements in €2 are called sample points of a sequence
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of coin tossings and €2 is called the sample space of the sequence of tossings. Subsets of
2 will often be referred to as events. Now forn € IN, let

Q,={0,1}":={(e1,...,84) : 5 €{0,1}, j=1,...,n},
and for (&1,...,¢&,) € Q,, call the set
E(er,...,e0) ={w=(on) € Q:wp =6, k=1,...,n}

an elementary cylinder; but if 1 is to be emphasized, it is called an elementary cylinder
of rank n. A finite union of elementary cylinders is called a cylinder in 2. Since intersec-
tion of two elementary cylinders is either empty or an elementary cylinder, every cylinder
in €2 can be expressed as a disjoint union of elementary cylinders; in fact, if Z is a cylinder
in 2, thereisn € N and H C 2, such that

Z = J{E(ey,...,&,) : (e1,...,€,) € H},

of which one notes that E(¢y, . . ., €,)’s are mutually disjoint. Of course, a cylinder Z can
be expressed as above in many ways. We denote by Q the family of all cylinders in €2.
Since 2 = E(0) U E(1), Q2 € Q;@isalsoin Q, because it is the union of an empty family
of elementary cylinders.

Exercise 1.3.1 Show that Q is an algebra of subsets of €2, in the sense that O satisfies
the following conditions: (i) 2 € Q; (ii) if Z € Q, then Z° = Q\Z is in Q; and (iii)
ifZ,,7Z, arein Q, then Z, U Z, isin Q.

For an event Z in Q, we define its probability P(Z) as follows. First, for an element-
ary cylinder C = E(ey, ..., ¢&,), define P(C) = (%)" ; intuitively, this definition of P(C)
means that we consider the modeling of a sequence of independent tossing of a fair coin.

NowifZ € Qis given by
Z = J{E(ey,...,&,) : (e1,...,€,) € H},
where H C €2,, then define

P(Z) = Z P(E(gl)---)gn)) =#H.2—n’

(81,...,8,,)€H

where #H is the number of elements in H. We claim that P(Z) is well defined. Actually if
Z is also given by

Z= U{E(Sl)' . -)Em) : (811~ . -)gm) € H/}f
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where H' C 2,,, then (assuming m > n) H ={(e1,...,6n) € Qu: (€1,...,8,) €
H} and therefore #H’ = #H - 2™"; consequently

Y. P(E(ey,...,en))=#H - 27" =#H-2"". 2"

(gliu-rsm)eH/

=#H-2"= Y  P(E(ey,...,&,)),
(81/-~~)8n)€H

implying that the definition of P(Z) is independent of how Z is expressed as a finite dis-
joint union of elementary cylinders of a given rank. We complete the definition of P by
letting P(¥}) = 0. Note that P(2) = 1.

Exercise 1.3.2

(i) Show that P is additive on Q, i.e. P(Z, U Z,) = P(Z,) + P(Z,) if Z1, Z, are
disjoint elements of Q.

(ii) Fork € Nande € {0,1}, put Ef = {w € Q : w; = £}. Show that

P N NEY) =[] PE]) =27
j=1

for any finite sequence ky < k < --- < k,in IN.

From now on we write dj(a)) =w,j=12,...,ifw= (w1, ws,...) € Q;and for each
n define a function S,, on 2 by

$.(@) = Yd ().
j=1

Exercise 1.3.3 Show that, for each k=0,1,2,...,n, the set {S, =k} :={w e Q:
S,(w) = k}isin Q and

p(is, =1 = () 5o

n\y _ n!
where (k) RCICESIR
For a given realization  of a sequence of independent coin tossing, S, () is the num-

Su(@)

ber of heads that appear in the first n tosses and measures the relative frequency of

appearance of heads in the first n tosses. Let

- Si(w) 1
E=3weQ: lim =—1t;

n— 00 n 2

E is easily seen to be not in Q. Nevertheless, we expect that P can be extended to be
defined on a larger family of sets than Q in such a way that P(A) can be interpreted as
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the probability of event A, and such that P(E) is defined with value 1. We expect P(E) =
1, because this is what a fair coin is accounted for intuitively. Discussion of the subject
matter of this section will be continued in Example 1.7.1, Example 2.1.1, Example 3.4.6,
and Example 7.5.2; and eventually we shall answer positively to this expectation in the
paragraph following Corollary 7.5.3.

1.4 Metric spaces and normed vector spaces

The usefulness of the concept of continuity has already surfaced in elementary analysis of
functions defined on an interval. This section considers a structure on a set which allows
one to speak of “nearness” for elements in the set, so that a concept of continuity can
be defined for functions defined on the set, parallel to that for functions defined on an
interval of the real line. We shall not treat the most general situation; instead, we consider
the situation where an abstract concept of distance can be defined between elements of
the set, because this situation abounds sufficiently for our purposes later. When the set
considered is a vector space, it is natural to consider the case where the distance defined
and the linear structure of the set mingle well, as in the case of a real line or Euclidean
plane. This leads to the concept of normed vector spaces.

Let M be a nonempty set and let p : M X M — [0,+00) satisfy (i) p(x,y) =
p(y,x) > 0forallx,y € Mand p(x,y) = 0ifand only if x = y; (ii) p(x,2) < p(x,y) +
p(y,z) forall x, y, and z in M. Such a p is then called a metric on M, and (M, p) is called
a metric space. Usually we say that M is a metric space with metric p, or simply that M is
a metric space when a certain metric p is explicitly or implicitly implied. For a nonempty
subset S of M the restriction of p to S X S is a metric on S which will also be denoted
by p. The metric space (S, p) is called a subspace of (M, p) and p is called the metric
on S inherited from M. Unless stated otherwise, if S is a subset of a metric space M, S is
equipped with the metric inherited from M. For a nonempty subset A of M, the diameter
of A, denoted diam A, is defined by

diam A := sup /O(x;)’)i
x,yEA

while diam A = 0if A = /.

A subset A of M is said to be bounded if diam A < ©0. In other words, A is bounded
if {p(x,x0) : x € A} isabounded setin IR for every xy € M.

Elements of a metric space are often called points of the space.

Example 1.4.1 Let M =R" and for x,y € R" let p(x,y) = |x-y|, where |x| =
(Z?zlxiz)% ifx = (x1,...,%,) € R". To show that p is a metric on IR" we first estab-
lish the well-known Schwarz inequality: |x - y| < |x||y| if x,y € R", where, for x =
(x1,...,x,)andy = (y1,...,y,) in R, -y := Z?Zl x;y; is called the inner product
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of x and y. For this purpose we note first that forx € R", |x|* = x - x and that we may
assume that x # 0 and y # 0, hence |x| > Oand |y| > 0.Fort € IR, we have

0 < |a+ty] = (x+1y) (x+ty) = [a> +2t(x-y) + £
2
= (x| +¢ly])” +2t(x -y =[] ly]),

from which by taking t = —|x|/|y| we obtain x-y < |x||y|. Then |x-y| < |¥||y|
follows, because —(x - y) < |«|| - y| = |*||y|- Now for x, y, and z in R", we have

p(x,2)? = |x—z|2 = |x—y+y—z|2 = |x—y|2 +2(x-y)-(y-2) + |y—z|2
< -yl +2d-ylly -2l + -2 = (lx -yl + [y - 2l)°
= [p(xy) + 0 2)]",
ie.

p(x,z) =< :O(x)y) + ,0(}’;2)-

Hence R” is a metric space with metric p defined above. This metric is called the
Euclidean metric on IR”. Unless stated otherwise, IR" is considered as a metric space
with this metric, then R" is called the n-dimensional Euclidean space.

Similarly, C" is a metric space, with the metric p defined by p(¢,n) = ( Z;lzl |g; -
17]-|2)1/2 for = (¢y,...,¢,)andn = (ny,...,n,) in C". C" with this metric is called
the n-dimensional unitary space. This follows, as in the case of the Euclidean metric
for R", from the Schwarz inequality |¢ - n| < |¢]||n| for ¢, n in C", where ¢ - 1 =

n — n 1 .

ijl gnjand || = (Z;‘=1 |Zj]?)2. As before, if t € R, we have

0<|¢+tm|>=(¢+tn) (¢ +tn)=|¢|* +2tReC - 0+ ||
= (I¢] +tn])? + 2¢{Re ¢ - 1= [¢]|n]},

from which we infer that Re ¢ - n < |¢||n| by choosing t = —|¢ ||| if n # 0. Then,
1€ - n| < |¢]|n| follows from replacing ¢ by e™¢ if ¢ - = |¢ - n|e”. Note that for
a complex number o, & denotes the conjugate of o, while Re @ denotes the real
partof .

Example 1.4.2 For a closed finite interval [a, b] in R, let C[a, b] denote the space of
all real-valued continuous functions defined on [4, b]. For f, g € Cla, b],let p(f,g) =
max,<<p | f(£) - g(t)|. It is easily verified that C[a, b] is a metric space with metric
p so defined. Unless stated otherwise, C[a, b] is equipped with this metric, which
is often referred to as the uniform metric on C[a, b]. C[a, b] is also used to denote
the space of all complex-valued continuous functions on [a, b] with metric defined
similarly. When C[a, b] denotes the latter space, it shall be explicitly indicated.

Exercise 1.4.1 Show that IR" is also a metric space, with metric p defined by p(x,y) =
maxj<i<, | - yi| ifx = (x1,...,%,) andy = (y1,.. ., yn)-

A map from N, the set of all positive integers, to a set M is called a sequence in M
or a sequence of elements of M. Such a sequence will be denoted by {x,}, where x,
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is the image of the positive integer n under the mapping. If {x,} is a sequence in M,
then {x,, } is called a subsequence of {x, } ifn; < n, < -+- < m < --- isasubsequence
of {n}. A sequence {x,} in a metric space M is said to converge to x € M ifforany & > 0
there is ny € N such that p(x,,x) < & whenever n > ng. Since « is uniquely determ-
ined, x is called the limit of {x,} and is denoted by lim,_, o x,. That x = lim,_, o %,
is often expressed by x, — x. If lim,_, o x, exists, then we say that {x,} converges in
M and {x,} is referred to as a convergent sequence. A sequence {x,} in M is usually
expressed by {x,} C M by abuse of notation, and therefore {x,} also denotes the range
of the sequence {x, }. A sequence in M is said to be bounded if its range is bounded.

Example 1.4.3 {f,} C Cl[a, b] converges if and only if f,(x) converges uniformly for
x € [a,b].

A sequence {x,} C M is called a Cauchy sequence if for any ¢ > 0, there is ng € N
such that p(x,, x,,) < & whenever n,m > ny. Clearly, a Cauchy sequence is bounded.

Exercise 1.4.2 Show thatif {x,} C M converges, then {x,} is a Cauchy sequence.

Exercise 1.4.3 Let {x,} be a Cauchy sequence. Show that if {x,} has a convergent
subsequence, then {x, } converges.

A metric space M is called complete if every Cauchy sequence in M converges in M.
Exercise 1.4.4 Show that both R" and C[a, b] are complete.

Exercise 1.4.5 Ifinstead of the uniform metric we equip C[a, b] with a new metric p’,
defined by

b
P19 = [ 150 -gtola

forf,gin C[a, b], show that C[a, b] is not complete when considered as a metric space
with metric p’.

Exercise 1.4.6 Show that any nonempty set M can be considered as a complete metric
space by defining p(x,y) = 0 or 1 depending on x = y or x # y. Such a metric p is said
to be discrete.

Let M,, M, be metric spaces with metrics p; and p, respectively. Amap T : M; —
M, is said to be continuous at x € M; if for any ¢ > 0, there is § > 0 such that
p2(T(x), T(y)) < & whenever p;(x,y) < 8.1f T is continuous at every point of My, then
T is said to be continuous on M; and is called a continuous map from M, into M,. A con-
tinuous map from a metric space M into IR or C is called a continuous function on M
and is generically denoted by f. The space of all continuous real(complex)-valued func-
tions on a metric space M is denoted by C(M); C(M) is a real- or complex vector space
depending on whether the functions in question are real- or complex-valued.

A point x of a set A in a metric space is called an interior point of A if there is & > 0

such that y € A whenever p(x,y) < &; the set of all interior points of A is denoted by A.

[¢]
A set G in a metric space M is said to be open if G = G. The complement of an open set is
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called a closed set. Forx € Mandr > 0,let B,(x) = {y € M : p(y,x) < r}and C,(x) =
{y € M : p(y,x) < r}.1tis easily verified that B,(x) is an open set and C,(x) is a closed
set. B,(x) (C,(x)) is usually referred to as the open (closed) ball centered at x and with
radius r. A point x € M is said to be isolated if B,(x) = {«x} forsomer > 0. Aset N C M
is called a neighborhood of x € M if N contains an open set which contains x; similarly, if
N contains an open set which contains a set A, then N is called a neighborhood of A. It is
clear that a sequence {x,} in M converges to x € M if and only if, for any neighborhood
N of x, there is ny € IN such that x, € N whenever n > ny. One notes that if x( is an
isolated point of M, then any map T from M into any metric space is continuous at xj.

Note that open sets depend on the metric p, and when p is to be emphasized, an open
set in a metric space with metric p is more precisely said to be open w.r.t. p.

Exercise 1.4.7 Let M;, M, be metric spacesandlet T : M; — M,.

(i) Show that T is continuous at x € M; if and only if, for any sequence {x,} C
M; with lim,,_, o %, = x, it holds that lim,_, o, T(x,) = T(x) in M,; also show
that T is continuous at x € M; if and only if, for every sequence {x,} C M;
with lim, %, = «, it holds that {x,} has a subsequence {x,,} such that
limy— o0 T(x,) = T(x).

(ii) Show that T is continuous at x € M if and only if, for any neighborhood N of
T(x) in My, theset T"'N = {y € M, : T(y) € N}isaneighborhood of xin M;.

(iii) Show that T is continuous on M, if and only if for any openset G, C M,, T' G,
is an open subset of M;.

Exercise 1.4.8 Let7 be the family of all open subsets of a metric space M. Show that:

(i) AandMarein 7;
(ii) ABeT =>ANBeT;

(iii) if{A;}ier C 7, then |, ;A; € 7, where I is any index set.

iel
Suppose that (M, p;) and (M,, p,) are metric spaces. Let M; X M, := {(x,y) : x €
M,y € M,} be the Cartesian product of M; and M,; define a metric p on M; X M, by

P((x;)’); (x/))’/)) =0 (x) x/) + /020’;)/)

for (x,y) and (x,y') in M; X M,. It is easily verified that p is actually a metric on
M; X M,. With this metric p, M; X M, is called the product space of M; and M, as
metric space.

Exercise 1.4.9 Let M; x M, be the product space of metric spaces M; and M,.
(i) For A C M; and B C M,, show that A x B is open in M; X M, if and only if
both A and B are open in M; and M, respectively.

(ii) Let G be an open set in M; X M,; show that G; := {x € M; : (x,y) € G for
some y in My} and G, := {y € M, : (x,y) € G for some x in M, } are open in
M, and M, respectively.
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Let K = R or C and let E be a vector space over IK. Elements of IK are called scal-
ars. Suppose that for each x € E, there is a nonnegative number ||x|| associated with it
so that:

(i) |lx|l = 0if and only if x is the zero element of E;
(ii) lloex|| = |ee|llx]| foralla € K andx € E;
(iii) [lx+y|l < lIx|| + ||y|| for all x, y in E (triangle inequality).

Then E is called a normed vector space (abbreviated as n.v.s.) withnorm || - ||, and || - ||
is called anorm on E.
IfEisan.v.s, forx, yin E, let

p(xy) = llx-yl,
then p is a metric on E and is called the metric associated with norm || - ||. Unless stated
otherwise, we always consider this metric for a n.v.s.. The n.v.s. E with norm || - || is

denoted by (E, || - ||) if the norm || - || is to be emphasized.

Lemma 1.4.1 Suppose that E is a n.v.s. and x, — x in E, then ||x|| = lim,— o ||x,]]. In
other words, || - || is a continuous function on E.

Proof The lemma follows from the following sequence of triangle inequalities:

lloenll = llxn = 2l < lloell < flall + lloen = . n

A normed vector space is called a Banach space if it is a complete metric space.

Both R" and C[a, b] are Banach spaces, with norms given respectively by ||x|| =
Qom, xlz)% for x = (x1,...,x,) € R" and |[|f|| = max,<;<p [f(t)| for f € C[a,b].
Similarly, the unitary space C" is a Banach space with norm ||z|| = (Z;’zl |zj|2)% for
z=(zy,...,2z,) in C". The norms defined above for R" and C" are called respectively
the Euclidean norm and the unitary norm and are denoted by | - | in both cases, in
accordance with the notations introduced in Example 1.4.1; note that their associated
metrics are the metrics introduced for R” and C” in Example 1.4.1. The norm defined for
Cla, b] is called the uniform norm; its associated metric is the uniform metric defined in
Example 1.4.2.

A class of well-known Banach spaces, the ¥ spaces, will be introduced in §1.6. This
class of Banach spaces anticipates the important and more general class of L? spaces
treated in Section 2.7 and in Chapter 6.

In the remaining part of this section, linear maps from a normed vector space E into
a normed vector space F over the same field R or C are considered. Recall that a map
T from a vector space E into a vector space F over the same field is said to be linear if
T(ax + By) = aT(x) + BT(y), forall x, y in E and all scalars ¢, 8. Linear maps are more
often called linear transformations or linear operators.
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Exercise 1.4.10 Suppose that T is a linear transformation from E into F. Show that T
is continuous on E if and only if it is continuous at one point.

Theorem 1.4.1 Let T be a linear transformation from E into F, then T is continuous if and
only if there is C > O such that

ITxl < Cllxll

forallx € E.

Proof If there is C > 0 such that || Tx|| < C||x| holds for all x € E, then T is obviously
continuous at x = 0 and hence by Exercise 1.4.10 is continuous on E.

Conversely, suppose that T is continuous on E, and is hence continuous at x = 0.
There is then § > 0 such that if ||x|| < §, then || Tx|| < 1. Letnow x € Eand x # 0,
then H ”(STHx” =4, so HT(”‘ST”x) ” < 1. Thus || Tx| < %||x||. If we choose C = %, then
| Tx|| < C||x|| forallx € E. [ ]

From this theorem it follows that if T is a continuous linear transformation from E into
F, then

(| Tx|]
IT| := sup
x€E, x#0 ”x”

< 400,

and is the smallest C for which ||Tx|| < C||x]|| for all x € E. ||T|| is called the norm
of T. Of course, || T'|| can be defined for any linear transformation T from E into F; then
| Tx|| < ||T||||x|| holds always and T is continuous if and only if || T'|| < +00. Hence a
continuous linear transformation is also called a bounded linear transformation.

Exercise 1.4.11 Show that | T| = SUP, g fx=1 I Tl-

Exercise 1.4.12 Let L(E, F) be the space of all bounded linear transformations from
E into F. Show that it is a normed vector space with norm ||T|| for T € L(E,F) as
previously defined.

Remark Any linear map T from a Euclidean space R" into a Euclidean space R™ is
continuous. This follows from the representation of T by a matrix (aj), 1 <j <m,1 <
k < n, of real entries, in the sense thatif y = Tx, theny; = Y i ajXi,j = 1,...,m,where
x=(x1,...,x,) andy = (y1,...,ym), by observing that

b= (I; ajkxk>2 < (ﬁ 3 a}k) ]2,

=1 k=1

Theorem 1.4.2 IfF is a Banach space, then L(E, F) is a Banach space.
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Proof Let{T,} bea Cauchy sequence in L(E, F). Since
1T = Tonsell = [I(To = Ty)xll < 1Ty = Toll - llx1l,

{T,x} is a Cauchy sequence in F for each x € E. Since F is complete, lim,_, oo Ty
exists. Put Tx = lim,_, o, T,;x. T is obviously a linear transformation from E into F.

We claimnow T € L(E, F). Since {T, } is Cauchy, || T,,|| < C for some C > 0, and
for all n. Now, from Lemma 1.4.1,

1Tl = lim | Tyl < ((sup IT, )1l < Cl
n— 00 n

for each x € E. Hence T is a bounded linear transformation.
We show next, lim,_, o || T, — T|| = 0. Given € > 0, there is ny such that || T, —
Tl < eifn,m > ny. Let n > ny, we have

[Ty =Tl = sup | Tox— Tx]|

x€E,[|x[=1
= sup lim ||T,x - T,x|

x€E, ||x||=1 ™M

sup ((sup 1T, = Tl ) ]

x€E,||lx||=1 “m=>ng

[A

IA

sup eflxl| = &;
xeE[x]=1

this shows that lim,,_, o || T, = T|| = 0, or lim, .~ T, = T. Thus the sequence {T,}
has a limit in L(E, F). Therefore L(E, F) is complete. ]

L(E, ©), or L(E,IR), depending on whether E is a complex or a real vector space, is
called the topological dual of E and is denoted by E*; E* is a Banach space. Elements of
E* are called bounded linear functionals on E.

When E = F, L(E, F) is usually abbreviated to L(E). For S, T in L(E), S o T'isin L(E)
and [|So T|| < |IS]| - IT||, as follows directly from definitions. Usually, we shall denote
S o TbyST;thenforS, T,and Uin L(E), (ST)U = S(TU), and we may therefore denote
TT by T2, (TT)T by T3, ... etc. for T € L(E) free of misinterpretation. Note that
| T*|| < ||T||* for T € L(E) and k € N. For convenience, we put T° = 1, the identity
map on E.

Exercise 1.4.13 Let S be a nonempty set and consider the vector space B(S) of all
bounded real(complex)-valued functions on S. Addition and multiplication by scalar
in B(S) are usual for functions. For f € B(S), let || fI| = sup,s | f(s)|-

(i) Show that (B(S), | - ||) is a Banach space.

(ii) Fora € B(S), define A : B(S) — B(S) by (Af)(s) = a(s)f(s), s € S. Show that
Ais abounded linear transformation from B(S) into itself and that ||A|| = ||4]|.
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Exercise 1.4.14 Consider C[0,1] and let g € C[0, 1]. Define a linear functional £ on
C[0,1] by

€0 = [ F@eis

Show that £ € C[0,1]* and ||£|| = fol |g(x)|dx.

Exercise 1.4.15 Let g be a continuous function on [0,1] x [0,1] and for f €
C[0, 1], let the function Tf be defined by Tf(x) = fol g(x,y)f(y)dy. Show that T €

L(C[0,1]) and | T|| = maxee(o,] fiy |g(%7)]dy.

We now consider a series of elements in a n.v.s. E. A symbol of the form Y .-, x; with
each xy in E is called a series. For eachn € N, > "}, x; is called the n-th partial sum of
the series >~ x;. If it happens that lim, oo Y _,_, & exists in E, say x, then the series
Y o, % is said to be convergent in E and « is called the sum of the series, Y .-, &y, sym-
bolically expressed by x = Y -, xy, i.e. when ) o, x; converges, we attach a meaning to
the symbol >_°| x; by referring to it as lim,—, oo > ., X, or the sum of the series.

Theorem 1.4.3 Let {x;} be a sequence in a Banach space E such that Y -, |lx|| < oo.
Then'y_ oo, Xy converges in E.

Proof Forn € N,lety, =) |, xt. Thenform > nin N,

< > llxll—o0

k=n+1

m
D X

k=n+1

”ym —n ” =

as n — 00. This means that {y,} is a Cauchy sequence in E, but the fact that E is
complete implies that {y,} converges in E, i.e. lim, . Y ,_; & exists in E. [ |

Exercise 1.4.16 Suppose that Z,fil Xy is a convergent series in a n.v.s. E. Show that

o o
o] < D [l
k=1 k=1

Exercise 1.4.17 Suppose that ) .-, oy is a convergent series in IR.

(i) Ifxisanelement ofan.v.s.E, showthat Y - ax converges in E.

(ii) If {x;} is a bounded sequence in a Banach space E and ) -, o is absolutely
o0 .
convergent, show that ) r-1 @kXi converges in E.

The following example, which complements Theorem 1.4.3, illustrates a method to
extract a convergent subsequence from a given sequence.

Example 1.4.4 If a series Z:ﬁl %, in a n.v.s. E converges whenever Zi:l |, | < o0,
then E is a Banach space. To show this, let {y,} be a Cauchy sequence in E. Since
{yn} is Cauchy, there is an increasing sequence n; < n, < -+ <m <--- in N
such that [[y,,, —ynll < kiz for each k. Then Z,f:l 1Y, — ¥ |l < 00 and hence
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Y oo ny., = ¥ ) converges, which is equivalent to {y,, } being a convergent sequence.
We have shown that {y,} has a convergent subsequence; thus {y,} converges by
Exercise 1.4.3 and E is therefore complete.

Remark We conclude this section with a remark on norms on a vector space E. Suppose
that || - ||"and || - ||” are different norms on a vector space E, in general, || - |" and || - ||”
will generate different families of open sets; but a moment’s reflection convinces us that

| - [I"and || - ||”generate the same family of open sets ifand only if there is ¢ > 0 such that

1
cllxll” < flell” < zllxll”

for all x in E (in this case || - || and || - ||” are said to be equivalent). We shall see in

Proposition 1.7.2 that all norms on a finite-dimensional vector space are equivalent.

1.5 Semi-continuities

For real-valued functions, the fact that the real field R is ordered plays an important role
in the analysis of functions. In particular, for real-valued functions defined on a metric
space, lower semi-continuity and upper semi-continuity are useful concepts that owe
their existence to IR being ordered. Semi-continuities are our concern in this section.
For a subset S of IR we shall adopt the convention that inf S = 0o and sup § = —00 if S is
empty; and that inf S = —00 if S is not bounded from below, while sup S = 00 if § is not
bounded from above.
Forasequence x,,n = 1,2,..., of real numbers, let

liminfx, = lim (inf xk), (1.4)
n—00 n—00 \ k>n

limsup x, = lim (sup xk>. (1.5)
n—00 =00 \ >n

Notice that infi-, x) is increasing and sup,., x is decreasing as n increases, hence
both limits on the right-hand sides of (1.4) and (1.5) exist, although they may not be
finite. Thus lim inf, _, o, x, and lim sup,_, _ x, always exist, and are called respectively the
inferior limit and the superior limit of {x, }. Clearly, lim inf,_, o x, < lim sup s o0 Xn-

Exercise 1.5.1

(i) Show that lim,, o x, exists if and only if lim inf,_, o x, = limsup,_, . x,, and
lim,,_, o %, is the common value lim inf,_, o %, = limsup,_,  x, if it exists.

(i) Show thatliminf, o (x, +y,) > liminf, o x, + liminf, s y, (limsup, .
(%y +y,) <limsup, ,  x, +limsup, | y,), if liminf, . x, +liminf,,
yn (limsup, | . x, +limsup, . y,) is meaningful. Note that & + § is mean-
ingful if at least one of & and f is finite, or if both o and B are either 0o or —oc.
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(iii) Show that liminf, s (x, +y,) < liminf, .o x, + limsup,__ __ y, if the right-
hand side is meaningful and that limsup, , . (x, +,) > liminf, o x, +
limsup,_, .. ¥y if the right-hand side is meaningful.

A real-valued function f defined on a metric space M with metric p is said to be
lower semi-continuous (upper semi-continuous) at x € M if, for every sequence {x, }
in M with x = lim,,_, o %,, f(x) <liminf, .o f(x,) (f(x) > limsup, , . f(x,)) holds.
Lower semi-continuity and upper semi-continuity will often be abbreviated as Ls.c. and
u.s.c. respectively. It is clear that a function f is Ls.c. (u.s.c.) at x if and only if for any given

€ > Othereis§ > Osuchthatf(y) > f(x) - (f(y) < f(x) +¢)if p(y,x) <.
Exercise 1.5.2
(i) Show thatf is lower semi-continuous (upper semi-continuous) at x if and only if

F)=lim| it 0] (f(x)=;ig(1)[ sup f(y)D;

INO | yeM, p(xy) <8 yeM, p(xy) <8

(ii) show that f is continuous at x if and only if f is both lower semi-continuous and
upper semi-continuous at x.

Because of the assertions of Exercise 1.5.2, if x is not an isolated point of M, we define

liminf,_,, f(y) andlimsup,_, f(y) by

lim inf = lim inf ;
y—>x f(y) N0 _yeM,0<p(x,y)<8f(y)_

limsupf(y) = lim sup  f(y)
y—ox N0 | yeM, 0<p(xy) <8

since infyeps, 0<p(xy) <s f(y) increases as § decreases and SUpey, 0<p(x’y)<6f(y) decreases
as § decreases, both lim inf,_, . f(y) and lim sup,_, f () exist, although they may not be
finite. If lim inf, , , f(y) = lim sup, . f (y), the common value is called the limit of f(y)
as y — x and is denoted by lim,_, . f(y). Usually, lim,_, . f(y) is simply called the limit
of the function f at x. Note that liminf,_,, f(y) and lim sup,_, . f (y) are defined if f is
defined on a neighborhood of x with x excluded. If x is an isolated point of M and f is
defined at x, then lim inf,_, , f(y) = lim supy_)xf(y) = lim,_,. f(y) = f(x) by definition.

Exercise 1.5.3

(i) Show thatliminf, ,,f(y) < lim sup,, . f (y) and that f is continuous at x if and
only iflim,_, . f(y) = f(x).

(ii) Show that f is Ls.c. (us.c.) at x if and only if f(x) < liminf,_..f(y) (f(x) >
lim supy_mf(y)).
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If f is lower semi-continuous (upper semi-continuous) at every point of M, then f is
said to be lower semi-continuous (upper semi-continuous) on M.

Exercise 1.5.4 Show that f is lower semi-continuous (upper semi-continuous) on M if

and onlyif{x € M : f(x) > o} ({x € M : f(x) < «}) is open for every ¢ € R.

Exercise 1.5.5 Let f,, a € I, be a family of real-valued continuous functions defined
on M and assume that sup,,_; fo () (infyer fo (x)) is finite for each x € M; show that
sup,,; fu (x) (infyer f(x)) is lower (upper) semi-continuous on M.

Exercise 1.5.6 Suppose that f is a real-valued function defined on a metric space and
assume that f is bounded from below on M, i.e. there is ¢ € R such that f(z) > ¢ for
allz € M. For each k € N is defined a function f; on M by

filx) = inf{f(2) +kp(x,2)}, xe€M.

(i) Show that fi(x) is finite for allx € M and

|fe(x) - fil(9)] < kp(x,y)

forall x, y in M.
(i) Suppose that f isls.c. on M. Show that

fG) = lim fi(x), x € M.

(iii) Show that f is Ls.c. on M if and only if there is an increasing sequence { f} of
continuous functions on M such that

f(x) = lim fi.(x)
k—o00
forall x € M.

Exercise 1.5.7 A metric space M is called a compact space if every sequence in M
has a subsequence which converges in M. Show that if f is lower semi-continuous
(upper semi-continuous) on a compact metric space M, then f assumes its minimum
(maximum) on M. (Hint: There is a sequence {x,} in M such that lim,_, » f(x,) =

infeepn f(x))

1.6 The space (P(Z)

The Banach spaces considered in this section are included in the more general class of L?
spaces, to be introduced in Section 2.7; but it is expedient to give a separate and direct
treatment here without recourse to general theory of measure and integration.

Let Z be the set of all integers and consider the space L of all real-valued functions
defined on Z. With the usual definition of addition of functions and multiplication of a
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function by a scalar, L is a real vector space. For f € L and j € Z, if we denote f(j) by £,

then f can be identified with the two-way sequence (f;)cz of real numbers and L is the
space of all sequences (4;)jez of real numbers. Forf € Land 1 < p < 00, let

(Sealf )’ ifp < o0

Sup;cz, |fG)| if p=oo.

“f”p =

Now consider the space £/(Z), 1 < p < 00, defined by

() ={f € L: |fll, < oo}.

Presently we shall prove that £/ (7Z) is a vector space and || - || pisanorm on £# (Z), but for
this purpose we first show an inequality which is a generalization of the Schwarz inequal-
ity and is called Hélder’s inequality. Two extended real numbers p,q > 1 are called
conjugate exponents if 1% + é =1 (é = 0; for further arithmetic conventions regarding

00 and -00, see the first paragraph of Section 2.2), while two nonnegative numbers &
and B will be called a convex pairifa + 8 = 1.

Lemma1.6.1 If o and B is a convex pair, then for any 0 < {,n < o0 the following
inequality holds:

“nf <ac+pn. (1.6)

Proof We may assume that0 < o, 8 < 1and ¢, n > 0.
Since (1 + x)* < ax + 1, forx > 0, we have

Yy <ay+p, y>1 (1.7)

Now either {n™ > 1 or ¢7'np > 1; if ¢n™' > 1, take y=¢n™' in (1.7), while
if {7'n > 1, take y=¢"'n in (1.7) with o and B interchanged, then proceed
to (1.6). [ ]

Lemma 1.6.2 (Hélder’s inequality) Ifx = (x1,...,x,) andy = (y1,...,y,) arein R",
then for conjugate exponents p and q we have

n
Dolxyil < llxllpllyllg-
j=1

Remark Since an element x of R” can be identified with an element f of L by f(1) =
x1,...,f(n) = x, and f(j) = 0 for other , [|x]l, is defined.

Proof of Lemma 1.6.2 Itis clear that if one of p and q is 00, the lemma is trivial, hence
we suppose that 1 < p,q < 00. Since [|x[|, = 0 if and only if x = 0, we may assume
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1\P 1\1
that ||x||, > Oand ||y|l, > 0.For1 < j < n, choose { = (%) andn = (M) in
r q

Lemma 1.6.1. with o = }% and B = é,then

oyl _ Llsl 1 Dyl
—_ )
lxllpllylly — p NIy q Iyl

and consequently
" 1 1
2|yl < llxllpliyllg =+ = ) = llxllpllyllg- u
j=1 r 4

Exercise 1.6.1 Suppose thata > 0and B > 0is a convex pair. Show that

¢n’ =ag +p1, ¢ =0,7=0
ifand onlyif ¢ = n.

We are now in a position to prove that ¢#(7) is a vector space and || - || p isanorm on
¢¢(Z). That || f||, = Oif and only if f = 0 and that Af € €¢(Z) and [|Af|l, = |A|lIfl, for
A € Randf € £7(7Z) are obvious. It only remains to show that || f + gll, < [|fIl, + llgll,
for f, g in £ (7). For this purpose, we may assume that 1 < p < oo and ||f +gll, > 0.
Under this assumption, there is A € F(Z) such that ZjGA |f(G) +g()|f > 0. For such
A, we have

0 < X IfG) +gWIF = XIfG) + gD (IF G + 18,
jEA jEA

from which, by using Holder’s inequality (see Lemma 1.6.2.), we have

0 <2 1f()+g(IF

jEA

g (jezAlf(j) +g(j)|(p—1)q); {(Jgf(j)l”)li + (J§|g(j)|p>;}

< (zmj) +g<j>|f’) ", + Tall),

jeA

and thus, on dividing the last sequence of inequalities by (Zje AlFG) + g(j)|P)é, we

obtain

1

<Z|f(j) +g(j)|p>p = 1l + ligllp- (1.8)
J

jEA
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Now observe that (1.8) holds for any A € F(Z). Taking the supremum on the left-hand
side of (1.8) over A € F(7Z), we see that || f + gll, < [|fIl, + llgll,- Therefore, £¢(Z) isa
vector space and || - ||, is a norm on £# (7). We shall always refer to £/ (7.) as a normed
vector space with this norm.

Exercise 1.6.2 Letk; < --- < k, be a finite sequence in Z of length n; define amap T
from €7 (Z) to the n-dimensional Euclidean IR" by

T(f) = (f(k), ..., f(kn)), f € € (Z).

Show that T is continuous from ¢/ (Z) onto IR" and that the image under T of any
open set in £/ (Z) is an open set in R".

Exercise 1.6.3 Suppose 1 < p < 00; show that |a; + - - - + a,[f < n?™! Z;'zl |a;|f for
a,...,a,in R.

Exercise 1.6.4 Let fi,f2,...,fu ... be a Cauchy sequence in ¢7(Z); show that
lim, o f,(j) exists and is finite for every j € Z.

Exercise 1.6.5 Show that £°°(7Z) is a Banach space.
Theorem 1.6.1 ¢¥(7Z) is a Banach space for 1 < p < o0.

Proof The case p = 00 is relatively easy and is left as an exercise (see Exercise 1.6.5).
Consider now the case 1 < p < 00. Let f1,f,,...,fu ... be a Cauchy sequence in
£P(Z), then lim,, « f,(j) exists and is finite for each j € Z (see Exercise 1.6.4), say
f(j) = lim,— 0 fu(j). We show first that f € ¢P(Z). Since f1,f5, - - -, fu, - - - is a Cauchy
sequence, it is necessarily bounded. Let || f,||, < M foralln. Thereisny € N such that

I fo =fullp < 1, n,m = no.
Now fixm > ngandlet A € F(Z), then
jeZAIf(j) "= nlggoglfn(ﬁ " = nlgngoglfn(j) ~fn () + (DI
< timsup Y{[£,() = fu )] + [ fuDI},

n—00 jEA

from which, by Exercise 1.6.3, we have

n—0o0

YfG)P < limsup 22! {Zlan) S DI+ 21 () IP}
JEA JEA jEA

=< ZP_I{ lim sup “fn —fm||§ + “fm”?}

n— o0

<2741+ MFY).
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Thus,

YIGDF = sup SIFGIPF <2771+ M) < o0,

JEZ A€F(Z) jeA

which shows f € €/(Z). We now claim lim, . f, = f in €/(Z). Actually, given
& > 0, thereis N € N such that

”fn _fm”p <¢& nm=>N.

Now, forn > Nand A € F(%Z),

SIG) -HOF = Jim Y1fa) -HOF
jEA

jeA

< liminf || f,, _fn”§ <é&f,
m— 00
which implies

I -fil= sup IFG)-HGDP < ¢,

AcF(Z) jeA

or

If _fn”p <e¢& n=N.
In other words, lim,,_, » f, = f in £7(Z). This shows that £ (7Z) is complete and hence
is a Banach space. |
Exercise 1.6.6 Letf,gbein ¢'(Z).

(i) Show that {f(n - m)g(m)}(,m)ez =z is summable and
> fln-m)g(m) =3 > f(n-m)g(m).

(n,m)eZ <7 neZ me
(ii) Define fxg(n) =", ,f(n-m)g(m), n € Z. Show that fxg € £'(Z),
frg=gxfrand|f*gli < Iflllglh-
Exercise 1.6.7 Suppose that f € P(Z) and g € I'(Z). Show that f * g can be defined
similarly as in Exercise 1.6.6 (ii); then show thatf * g = g * f, and

If*gllp < Ifplgll

Remark For any nonempty set S and 1 < p < 00, the Banach space ¢?(S) can be
defined in the same way that £/ (7Z) is defined. The first such space is the space £*(IN)

introduced by D. Hilbert in his study of the Fredholm theory of integral equations.
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1.7 Compactness

This section is devoted to a study of compactness, introduced in Exercise 1.5.7. Existence
of mathematical objects in analysis often involves arguments of compactness: for
example, Exercise 1.5.7 guarantees that if f is a lower semi-continuous function defined
on a compact metric space M, then there exists xy € M such that

f(x0) = minf(2).

Recall from Exercise 1.5.7 that a metric space M is called a compact space if every
sequence in M has a subsequence which converges in M. One observes readily that a com-
pact metric space is necessarily complete. There is a characterization of compact metric
spaces which is often useful. To prepare for the statement of such a characterization, we
call a point x( of a metric space M a limit point of a set A C M if every neighborhood of
Xo contains a point of A other than ux,.

Exercise 1.7.1 Let A be a subset of a metric space M.

(i) Show that a point xg is a limit point of A if and only if every neighborhood of xo
contains infinitely many points of A;

(ii)) show thatA is closed ifand only ifit contains all its limit points. Infer in particular
that a finite set is closed.

Theorem 1.7.1 A metric space M is compact if and only if every infinite subset of M has a
limit point.

Proof Suppose first that M is compact and let A be an infinite subset of M. We shall
show that A has a limit point. Since A is infinite, there is a sequence {x,} in A formed
of mutually different points. As M is compact, {x,} has a subsequence {x,, } which
converges to x € M. Since {x,, } is formed of mutually different points in A and x =
limg_, oo %y, x is a limit point of A. We have shown that if M is compact, then every
infinite subset of M has a limit point.

Next, suppose that every infinite subset of M has a limit point. Let us show that M
is compact. Suppose that {x,} is a sequence in M. If the range of the sequence {x,}
is a finite set, then x,, = x,, = - -+ = «x,,, = - - - for some subsequence {n;} of {n}, and
hence the subsequence {x,, } of {x,}, being a constant sequence, converges. On the
other hand, if the range of {x, } is infinite, then it has a limit point . It is clear that x is
the limit of a subsequence of {x,, }. Thus M is compact. [ |

A subset K of a metric space is said to be compact if K is a compact metric space with
metric inherited from M. From the Bolzano—Weierstrass theorem, which states that
every bounded infinite subset of IR has a limit point, it follows that every bounded closed
subset of R is compact. Historically, the Bolzano—Weierstrass theorem is the genesis of
the concept of compact sets.
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Exercise 1.7.2 Suppose that K; DK, D --- DK, D K1 D -+ is a decreasing
sequence of nonempty compact sets in a metric space. Show that (), K, # @.

Exercise 1.7.3 Show that the Bolzano-Weierstrass theorem holds also for R¥, k > 2
and then infer that every bounded closed subset of IR¥ is compact. Show also that
every bounded closed set in the unitary space C¥ is compact.

Exercise 1.7.4

(i) Show that compact subsets of a metric space are both bounded and closed.

(ii) Show that a subset of the Euclidean space R¥ or of the unitary space C" is
compact if and only if it is both bounded and closed.

(iii) Let, for each n € Z, e, be the element of *(7Z) (see Section 1.6) such that
e(j) = 8,j, j € 7. Show that {e, },cz is a bounded and closed subset of I*(Z),
but it is not compact. Recall that J,; is the Kronecker delta, defined by §,; = 1 or
0 according to whether n = jorn #}j.

Proposition 1.7.1 If T is a continuous map from a metric space M, into a metric space M,
then for every compact set K in My, TK is a compact set in M,, i.e. continuous images of
compact sets are compact.

Proof Let K be a compact set in M;; we may assume that K is nonempty. Suppose
that {y,} is a sequence in TK; we have to show that {y,} has a subsequence which
converges to an element in TK. For each n € N, pick x, € K such that y, = Tx,.
Since K is compact, {x,} has a subsequence {x,, } such that x,, — x € K. Since T
is continuous, y,, = Tx,, — Tx. Thus the subsequence {y,, } of {y,} converges to an
element in TK. [ ]

An interesting consequence of Proposition 1.7.1 is the following proposition concern-
ing norms on a finite-dimensional vector space.

Proposition 1.7.2 If E is a finite-dimensional vector space, then any two norms || - ||" and
|| - II” on E are equivalent, in the sense that there is ¢ > 0 such that c||v]|” < ||v|" <

%||v||”forallv € E.

Proof For definiteness we assume that E is a complex vector space. Let n = dim E, and
choose a basis {vj, . . ., v,} of E. Define anorm || - || on E by

" 1/2
lvl| = {ZlajP}
j=1

ifv = Z;;l o;vj, where each; € C. LetI" be the set {v = Z;:I oV : Z;lzl |oj|* = 1}

inE. Defineamap T : C" — Eby

T(é-) = 21: é‘jvj; ¢ = (;1) sy é.n) e C".
j=
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From | T() - T < X0, 1§~ mlllyll < /A max ;< I’ [ ], where ¢ 7]
is the norm of ¢ - n in the unitary space C", it follows that T is continuous
from the unitary space C” into (E, | - ||'). Note that T is bijective. Since I' is
the image under T of the compact set {{ € C" : Z;’zl |gG)> =1} in ©* T is
compact in (E, || - ||), by Proposition 1.7.1. Now let r = inf,cr [|v||" and observe
that since I" is compact in (E, | -||’) and I" does not contain the zero element
of E, r = minyer ||v||" > 0; in other words, ||v]" > r > 0 for all v with ||v| = 1.

Now let v € E, v # 0, then ||ﬁ||/ > ror rl|v|| < ||v|I'. On the other hand, ||v]|" <
S lllvll” < Vn(maxi iz, I o]} = V/n(maxij<u 1) Ivl, or,

if we let \/n(max; <j<, [|j||") = R, we have
Iv]l” < R|lv|

for all v € E (note: we write v = Z}il o;v; for v € E). We choose then ¢’ > 0 such
that ¢ < rand % > R, then

A

vl < lvll” < Zlvll, vek

Similarly, there is ¢’ > 0 such that

Cvll < vll” < Zllvll, v ek

Then, forv € E,

¢ lv]l” = vl

A

1
Ivl” < < vl < —; vl

e’
or

"

cllvll” < lvll" < ZIIVII”,

wherec = ¢/ > 0. [ |
Corollary 1.7.1 Finite-dimensional vector subspaces of a n.v.s. E are all closed.

Proof For definiteness, assume that E is a real n.v.s. with norm || - ||. Consider any
finite-dimensional vector subspace F of E, put n = dimension of F and choose a
basis {v1,...,v,} of F. Define a new norm || - || on F as follows: for u = Z}il oV

where o, . . ., @, are real numbers, let ||ul| = (Z;’zl a].z)l/z. Clearly, || - ||" is a norm
on F. Let T be the linear map from the Euclidean space IR" onto F, defined by Tx =
27:1 x;jv; for x = (%1, ...,%,). If we denote by | - | the Euclidean norm for R”, then
| Tx||" = |x|- By Proposition 1.7.2, there is ¢ > 0 such that c|[ul| < [lull < ¢'||ul/
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foru € F; consequently, || Tx|| < ¢! Tx||' = c‘1|x| forx € R" and hence T is a con-
tinuous map from IR” into E. To show that F is closed in E, we have to show that
if {ut} is a sequence in F which converges in E, then the limit is in F. Since {u;}
converges, it is bounded, say |lux|| < A for all k for some A > 0. Now write u; =

Z;Ll oz]-(k)vj and put a® = (aik), .. .,Oty(lk)), then u; = Ta® and |oz(k)| = |lue]) <
¢ lug|l < ¢'A for each k. Thus {u;} is contained in the image K C F of the closed
ball {x € R" : |x| < ¢c'A} under T. Since closed balls in R" are compact, K is com-
pact by Proposition 1.7.1 and is therefore closed in E. Now {u;} C K implies that its

limit is in K C F. This shows that F is closed. [ ]

Corollary 1.7.2 Suppose that F is an affine subspace of R", then for each x € IR", there is
unique y in F such that |x — y| = min cp |x — z|. Furthermore, y is characterized by the
condition that (x —y) - (z—y) = 0forallz € F.

Proof We need only consider the case that F is a proper affine subspace of R”
and « is not in F. Since F is closed by Corollary 1.7.1, inf,ep |x — z| = [ > 0. Let
K ={z € F:|x-z| <2}, then inf,cr |x - z| = inf,cx |x — 2|; but, since K is com-
pact, there is y € K such that I = min,cp |x - 2| = min e |x - 2| = |x - y|. Consider
now z € F and let f(t) =[x~y +t(z-y)|* = [x—y|* + 2t(x ~y) - (z-y) + |z -
y|* for t € RR. Since f assumes minimum * at t = 0, f'(0) = 2(x - y) - (z-y) = 0.
Hence y satisfies the condition that (x —y) - (z—y) = 0 for all z € F; on the other
hand, if y € F satisfies the condition that (x—y) - (z-y) = 0 for all z € F, then
foranyz € Fwehave |x—z|> = |x—y+y-z|* =[x —y|* +2(x-y) - (y-2) + |y -
z|2 = |« —y|2 +y- z|2 > |« —y|2, ie. [x - y| = min,er |x - z|. Thus, we have shown
that there is y € F such that |x — y| = min,cr |x - z| and that y is characterized by the
condition that (x —y) - (z-y) = 0 for all z € F. It remains to show that y is unique.
Letyand y’ in F satisfy |x — y| = |« - y'| = min,cp |x — 2|, then

(x=y)(z-y)=0, (x-))-(z-y)=0
forall zin F. Choose z = y" and y respectively in these equalities; we have
(x-y)-0-y) =0 (x=y)-(y-y)=0;

subtract the first equality from the second; we have (y —y') - (y-=y') =0 = |y - y'|%,

implyingy = y/'. |

The map x > y, as asserted by Corollary 1.7.2, is called the orthogonal projection
from IR” onto F. If this map is denoted by P, then (1) Px = «x if and only if x € F; (2)
P*> = P;and (3) |[Px - Px/| < |x - «/|. That (1) and (2) hold is fairly obvious. To see that
(3) holds, observe firstly that

(x—x —Px+Px')- (Px-Px') =0,

from which it follows that [Px — Px'|* = (x - &) - (Px - Px’) < |x - «/||Px — Px| and
hence (3) holds. It follows from (3) that P is a continuous map.
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Remark If Fis a vector subspace of R", then

(i) P is actually a linear map, as follows easily from the characterization that (x —
Px) -z =0forallz € F;

(ii) since (x-Px)-Px=0, |x|* = |Px|* + |x - Px|* for every x € R"; this last
equality is called the Pythagoras relation.

Proposition 1.7.3  Suppose that T is an injective and continuous map from a compact
metric space M, into a metric space M,. Then T-!': TM; — M, is continuous.

Proof Lety € TM; and {y,} be a sequence in TM; with y = lim,_, ¥,. To show that
T~ is continuous at y, we have to show that {y,} has a subsequence {y,, } such that
limy_s o0 T’ly,,k = T*Iy (cf. Exercise 1.4.7 (i)). Let x,, = T’ly,,. Since M; is compact,
{x,} has a subsequence {x,, } which converges to x in M;. Now y, = Tx, — Tx
entails that Tx = y and hence limp_, oo T'y,, = limp o0 &, = x = T7'y. |

We shall presently give a useful characterization of compact sets in a complete metric
space corresponding to the characterization of compact sets in IR* as bounded and closed
sets (see Exercise 1.7.4 (ii)).

A finite family of open balls with radius &€ > 0 in a metric space M is called an &-net
for a subset A of M if its union contains A. A set A in a metric space is said to be totally
bounded if for any &€ > O there is an &-net for A.

Exercise 1.7.5

(i) Show thata setin R" is totally bounded if and only if it is bounded.

(ii) Show thata set A in a metric space is totally bounded if and only if for any & > 0
there is an £-net for A whose balls have their centers in A.

Lemma 1.7.1 A subset A of a metric space M is totally bounded if and only if every sequence
in A has a Cauchy subsequence. In particular, compact sets are totally bounded.

Proof Suppose that A is totally bounded and let {x,} be a sequence in A. There is a %

net for A and hence one of its balls contains a subsequence {xﬁl)} of {x,}. After the
sequence {xgl)} is chosen, we then choose a i-net for A. As before one of the balls of
this i-net contains a subsequence {x{¥} of {x{V'}. We proceed in this way to obtain
a sequence of subsequences, {xfll)}, {xflz) | A {xf,k) }, ... of {x,}, each of which is
a subsequence of the preceding one, and for each k the sequence {xflk) } is contained
in a ball of radius 2. Now, {xfl”) } is a subsequence of {x, }. For each positive integer
ng,if n > m > ng, both x,(l") and x,(ﬂ"‘) are in a ball of radius 27, hence p(x,g”) , xSn’”)) <
27"+ from which it follows that {xfl”)} is a Cauchy sequence. Thus each sequence in
A has a Cauchy subsequence.

Next, suppose that each sequence in A has a Cauchy subsequence. We are going
to show that A is totally bounded. Suppose to the contrary that for some &y > 0,
no &p-net for A exists. Choose x; € A, since B, (x;) does not cover A there is x, €
A\Bg, (x1). Suppose that xy, . . ., x, in A have been chosen so that p(x;, x]-) > g for
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i,j < nand i #j, then choose x,,; € A\ U?zl B, (x;). Such an x,,; exists because
{Bs,(x0), . .., Bs,(%4)} is not an go-net for A. But then p(x;,%;) > & fori,j < n+1
andi # j. By mathematical induction we have thus exhibited a sequence {x, } in A such
that p(x;, ;) > €9 when i # j. Such a sequence can not have a Cauchy subsequence,
this contradicts our assumption about A. Thus A is totally bounded. |

Theorem 1.7.2 A subset K of a complete metric space M is compact if and only if K is closed
and totally bounded.

Proof Suppose that K is compact, then K is closed. Since each sequence in K has a con-
vergent subsequence which is therefore Cauchy, Lemma 1.7.1 implies that K is totally
bounded. Next, suppose K is closed and totally bounded and let {x, } be a sequence in
K, then {x, } has a Cauchy subsequence {x/ } by Lemma 1.7.1. But since K is a closed
subset of a complete metric space, it is complete and hence {«,} converges in K. This
shows that K is compact. n

Let A be a subset of a metric space; the smallest closed set which contains A is called
the closure of A and is denoted by A. Obviously, A is the intersection of all those closed
sets containing A. If A = M, we say that A is dense in M, or that A is a dense subset of M.
A metric space M is said to be separable if it contains a countable dense subset. A subset
of a metric space is separable, if it is separable as a metric space; it is precompact, if its
closure is compact.

Since the closure of a totally bounded set is totally bounded, Corollary 1.7.3 follows
from Theorem 1.7.2 (see Exercise 1.7.6 and Exercise 1.7.7):

Corollary 1.7.3 A set in a complete metric space is precompact if and only if it is totally
bounded.

Exercise 1.7.6 Show that the closure of a totally bounded set is totally bounded.

Exercise 1.7.7 Show that a set in a complete metric space is precompact if and only if
it is totally bounded.

Exercise 1.7.8 Show that a totally bounded subset of a metric space is separable. In
particular, a compact subset of a metric space is separable.

Example 1.7.1 (Sequence space) This example illustrates a method to construct
a compact space from a sequence (M, o), k=1,2,..., of compact metric
spaces with diamM; < C for all k. For such a sequence, put M = [ oo, My = {x =
(X1, ..y Xk...) : & € My, k=1,2,...}. We shall often denote x = (xy,...,x%,...)
by (xi). Forx = (xi),y = (i) in M, let

x© 1
p(xy) =2 E}Ok(xk; ) (1.9)
k=1
It is clear that p is a metric on M, and with this metric diam M < 2C. If {x(”)}neN

is a sequence in M, and x € M, then ,ok(x,(cn),xk) < Kp(x™, x) for each k, from

which it follows that if lim,_ oo ™ = x in M, then lim,_ o x](cn) = x; in My for
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each k. Conversely, if lim,_, x](:') = x;. for each k, we claim that lim,_, o K =
x in M. Let € > 0 be given. There is kg € IN such that szoﬂ %pk(x,(c"),xk) <
CZE:,COH k% < % Now, since lim,,_, ,ok(x,(cn),xk) =0fork=1,...,ky, thereisL €

N such that pk(x,(cn), xp) < % fork =1,..., ko, whenevern > L. Consequently, when
n > L, we have

ko 1 00 1 ek 1 &
(n) .\ _ (n) (n)
x\,x) = X, xe) + X, x) < — + - < ¢
,O( ) 1; kz,Ok( k k) k:%ﬂ 12 ,Ok( © k) 4 l; 22

this means lim,,_, oo x = . Thus, we have shown that lim,_, x" = xin M if and
only if lim,_, » x,(C") = xt in M. for each k. We show now that M is compact. Suppose

that {x(} is a sequence in M; we have to show that {x("} has a subsequence which

converges in M. We achieve this by the well-known diagonalization procedure. Since
. CRON .

M, is compact {xin) } has a subsequence {xln’ } which converges in M; to, say, x;;

(1) (2)

(n

(n; ' . . S
then {x,’ )} has a subsequence {x, ’ )} which converges in M, to x;; continuing in

this fashion, we obtain an array of subsequences of {x("}:
(1) (1) (1)
xM ),x"2 ), ...,x("i ),

(2) (2) (2)
n n n;
x(l ),x 2 ),...,x(/ ),...

(1.10)

) 0) 0
i ), (2 ), e a7 ),

where each low contains the next one as a subsequence, and for each k € N,

(")
jl_i)réloxk’ =ux  (in My). (1.11)
()

Now, putn; =n;",j=12,.... {x")Visa subsequence of {x"} formed of the diag-

onal elements of the array (1.10). Observe that {x("f)}jzk is a subsequence of {x(”;k>)}

for each k, therefore lim;_, o, x,(cnj ) = x;. by (1.11) for each k, and consequently {x(m)}
converges in M to (xy), as we have shown previously in this example. We have shown
that {x} has a converging subsequence in M. Thus M is compact. In particular, if
each M is a finite set with discrete metric (see Exercise 1.4.6), then M is compact with
metric given by (1.9). We have encountered such a space Q2 = {0,1} x {0,1} x - -
in Section 1.3, of which one observes readily that each set in the algebra Q is a closed
subset of £2 and is hence compact.

Remark In Example 1.7.1, the assumption that diam M; < C for all k is not necessary,
because, if we replace each py by o] = (diam M) ™! py, then each (M, ,0,/() is compact and
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diam M; < 1 w.r.t. the new metric p;. Hence from any sequence (Mj, px) of compact
metric spaces, one can construct a compact sequence space as in Example 1.7.1.

Now we give a characterization of compact sets which is usually taken as the definition
for compact sets in topological spaces.

A family {S, } of subsets of a given set S is called a covering of a subset A of Sif A C
(U, Sa; then we also say that {S, } covers A. If S is a metric space and each set S, is open,
{8y} is called an open covering of A if it covers A. A subset A of a metric space is said to
have the finite covering property if every open covering of A has a finite subfamily which
covers A.

Lemma 1.7.2 Let K be a compact subset of a metric space and suppose that { Gy }yer is an
open covering of K, then there is § > 0, called a Lebesgue number of K relative to { Gy },
such that any subset A of K with diam A < § is contained in G, for some o € I.

Proof Suppose the contrary. Then for each n € IN there is a subset A, of K with diam
A, < i such that A, is contained in no G,. Then choose x,, € A,. Since K is compact,
the sequence {x,} has a subsequence {x,, } which converges to x € K. Let x € Gy,,

o € I, and choose r > 0 so that B,(x) C Gy,. If k is sufficiently large, nik < 7 and

Xy, € B:(x); consequently A,, C B,(x) C Gy,. This contradicts the fact that A, is
contained in no G, . The contradiction proves the lemma. |

Theorem 1.7.3 A subset K of a metric space M is compact if and only if K has the finite
covering property.

Proof Suppose first that K has the finite covering property. Consider a sequence {x,}
in K; we shall show that {x,} has a subsequence which converges to a point in K.
Suppose the contrary, then for each x € K, there is an open ball B, centered at x such
that x, € B, for only finitely many n. {B,}.cx is an open covering of K, hence has
a finite subfamily {Bj, . .., B;} which also covers K. Since U}l.:1 B; O K and «,, € B,
for only finitely many n for each j, x,, € K for only finitely many n, contradicting the
fact that {x, } is a sequence in K. Thus {x, } has a subsequence which converges in K,
showing that K is compact.

Next, suppose that K is compact. Let { G, } be an open covering of K; we are going
to show that { G, } has a finite subfamily which also covers K. Choose a Lebesgue num-
ber§ > 0 of K relative to { G, } according to Lemma 1.7.2. Since K is totally bounded
by Lemma 1.7.1, there is an g—net {By, ..., B} containing K. Forj = 1,. ..,k diam
KN B; < 3 implies KN B; C Gy, for some ¢, and consequently K C U]’;l Gy, ie.
{Ga,, - .., Gy} is a finite subfamily of { G, } and it covers K. This shows that K has the
finite covering property. |

Corollary 1.7.4 (Finite intersection property) Let {Ky}oer be a family of compact sets
in a metric space M with the property that intersection of any finite subfamily of {K, } is
nonempty. Then (,c; Ko # 9.

ael
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Proof Suppose the contrary, that (), Ky = @. Choose and fix oy € I. Then for
x € K,, there is a, € I such that x € K ; hence {K{}yes is an open covering

of K,,. There is therefore a finite set {&y, ..., } C I such that U]’; Kéj D Ky,
by Theorem 1.7.3; this last inclusion relation means that Ky, N Ky, N -+ N Ky,
is empty, contradicting our assumption about the family {K,}. The contradiction
proves the corollary. |

Two applications of Theorem 1.7.3 will now be given; both concerned with the uni-
formity concept. Suppose that T is a map from a metric space M; with metric p; into a
metric space M, with metric p,. T is said to be uniformly continuous on M, if for any
given & > 0, there is § > 0 such that p,(Tx, Ty) < & whenever x and y are in M; with
p1(x,y) < 8. Obviously, if T is uniformly continuous on Mj, it is, a fortiori, continuous
on M;. A sequence {T,} of maps from M, into M, is said to converge pointwise to a map
T from M into M, if Tx = lim,,_, o Tpx for eachx € M;; itis said to converge uniformly
to T on M, if for any given & > 0, there is ny € IN such that p,(T,x, Tx) < ¢ for every
x € M; whenevern > ny.

Theorem 1.7.4 If T is a continuous map from a compact metric space M, into a metric
space My, then T is uniformly continuous on M.

Proof Let € > 0 be given, and let x € M;. Since T is continuous at x, there is
8y > 0 such that p(Ty, Tx) < /2 if pi(y,x) < §,. Consider {B%Bx(x)}xeMl;
it is an open covering of M;; by Theorem 1.7.3, it contains a finite sub-
family, say {B%le (xl),...,B%% (x1)}, which also covers M;. Choose
8 = 2min{8,,,...,8,}. Suppose now that x,y € M; with p;(x,y) < 3, and let
x € Bis, (%)), 1<j<L Then pi(y,%) < p1(xy) + pi(x,x) <8+ %5xj < by,
hence p,(Ty, Tx;)) < £; since x€B s, (%), p2(Tx, Ta;) < £.  Therefore,
p2(Tx, Ty) < p2(Tx, Tx;) + p2(Tx;, Ty) < €. This shows that T is uniformly
continuous. ]

Theorem 1.7.5 (Dini) Let {f,} be a sequence of real-valued continuous functions defined on
a compact metric space M such that fi(x) < fo(x) < -+ < fu(x) < --- and converges
to a finite real number f(x) for each x € M. If, further, f is continuous on M, then the
sequence { f, } converges uniformly to f on M.

Proof Given & > 0 and x € M, there is k, € N such that 0 < f(x) - fi (x) < 3.
Because both f and f;  are continuous, there is an open ball B(x) centered at

x such that |f(y) - f(x)| < 5 and |fi (y) - fi,(x)| < § whenever y € B(x); as a

consequence, we have

0 < f() ~fe. () = |f() —f@)] + |f(x) - fi, ()] +

fe () = fe.(9)] < &

whenevery € B(x), or

0=<f(y)-fi(y) <e (1.12)
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whenever y € B(x) and k > k,. Now {B(x) : x € M} is an open covering of M; by
Theorem 1.7.3 it has a finite subfamily, say {B(x;), . . ., B(x;) }, which also covers M.
Let kg = max{k,,, ..., ky}; thenfory € Mand k > ky, it follows from (1.12) that

0<f(»)-f(y) <

because y € B(xj) for some 1 <j <!land k > kg > kx}.. Thus the sequence {f,}
converges to f uniformly on M. |

We come now, in the final part of this section, to prove a historically important the-
orem characterizing precompact sets in the n.v.s. C(X) of all continuous real(complex)-
valued functions defined on a compact metric space X with norm given by

1£1 = sup | ()] = max|f(x)]

for f € C(X), where sup,__ |f(x)| = max,ex |f(x)| is a consequence of Exercise 1.5.7.
Clearly, C(X) is a n.v.s. with norm given as such. For a compact metric space X, the norm
given previously on C(X) is implicitly assumed without further notice. Actually C(X) is
a Banach space; to show this we need a lemma.

Lemma 1.7.3 Let {f,} be a sequence of continuous functions defined on a metric space M.
Suppose that { f, } converges uniformly to a function f on M, then f is continuous on M.

Proof Letx € M. We shall show that f is continuous at x. Given ¢ > 0, by the uniform
convergence of {f,} to f on M there is ny € N such that |f,,(y) - f(y)| < § for all
y in M. Since f,, is continuous at x, there is § > 0 such that |f,,(y) - fu, (x)| < 5
whenever p(x,y) < 8.Henceif p(x,y) < §, then

L) =G = 1fao () =S|+ g (7)) = oo ()] + [ fog () = £ ()]

e € ¢
<-+-+=-=g¢g
3 3 3

which shows that f is continuous at x. |
Proposition 1.7.4 C(X) is a Banach space.

Proof Let {f,} be a Cauchy sequence in C(X); we have to show that {f,} converges
in C(X). Since |f,(x) = fu(x)| < || fu = finll for x € X, {£,(x)} is a Cauchy sequence
of scalars and hence converges to a scalar f(x) for every x in X; thus as a sequence
of functions, {f,} converges pointwise to a function f on X. Actually {f,} converges
uniformly to f on X. Given ¢ > 0, thereis ny € IN such that || f, - f,|| < &€ whenever
n,m > no, hence |f,(x) - f(x)| < € for all x in X and n,m > no, and thus | f,(x) -
f(x)| < eforallxinXifn > ny,bylettingm — 00. It follows then from Lemma 1.7.3
that f € C(X). We claim finally that lim, . || f, - fIl = 0, i.e. {f,} converges to f in
C(X). To see this, for £ > 0 given choose ny € N as above, then |f,(x) - f(x)| < ¢
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forall x € X and n > ny; this means that sup__ |f,(x) - f(x)| < &€ whenn > n, or
Ilf. —fll < &whenn > ng. Thuslim,_, ||f, - fIl = 0. ]

A family F of functions defined on a metric space M is called an equicontinuous
family if for each given & > 0 there is § > 0 such that whenever p(x,y) < §, then
|[f(x) =f(y)| < & for all f € F. Note that functions in an equicontinuous family are
necessarily uniformly continuous.

The theorem that follows is not only historically important, but is also useful in the
theory of differential equations.

Theorem 1.7.6 (Arzela-Ascoli) If X is a compact metric space, a subset K of C(X) is
precompact if and only if it is bounded in C(X) and equicontinuous as a family of
functions on X.

Proof Suppose that K is precompact. Since C(X) is complete, as asserted by Proposition
1.7.4, K is totally bounded by Corollary 1.7.3. Let ¢ > O andletfi, ..., f, be the cen-
ters of an $-net for K. Since fj, . . ., f, are uniformly continuous on X, by Theorem

1.7.4, there is § > 0 such that
€
G~ < 5

fori=1,...,nwhen p(x,y) < 8. Consider now f € K and choosej € {1,...,n}so
that

sup |f(x) - fi(x)] < £

]
xeX 3

such j exists because fy, . . ., f, are centers of an £-net for K. Then if p(x,y) < &, we
have

|f(x) - fD)| < 1f &) - ;)| + ) - ()] + () - f ()]
- §e+ £ -f()] <&,

and therefor K is equicontinuous. Since K is totally bounded, it is bounded in C(X).

Conversely, suppose that K is bounded in C(X) and is equicontinuous as a family
of functions on X. Let & > 0. Choose § > 0 such that |f(x) - f(y)| < % forf € K
when f(x,y) < 8. As X is compact, there is a §-net for X with centers xj, . . ., x,.
For simplicity’s sake, in the argument that follows we assume that functions in C(X)
are real-valued; the corresponding argument when C(X) consists of complex-valued
functions will be clear. Since K is bounded in C(X), thereis L > Oso that |f(x)| < L
for all f € K and all x € X. Divide the interval [-L,L] into k equal parts by the
partition

y=-L<y <---<y=1L
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where k is chosen so that |y; - yi,1| < § fori=0,...,k - 1. We say that an n-tuple
(i) - - -»i,) of numbers yy, ...,y is admissible if for some f € K the following
inequalities hold:

€
|f(xj)—y,-).|<z, j=1,...,n (1.13)

Clearly, for each f € K there is an n-tuple (y;, .. .,y; ) so that (1.13) holds. Hence
the set Y of all admissible n-tuples is nonempty. Note that Y is finite. For each n-tuple
y = iy --,¥,) inY choose and fix an f, € K so that (1.13) holds, with f replaced
by f,. Letnow f € K. Choosey = (i, ...,y )in Y such that (1.13) holds. Forx € X
choose x;, 1 < j < n,so that p(x, xj) < §.Then

|f(x) = f @) = |f () = f )| + 1 (x) =35 + [y, = ()] + () = ()],

from which we infer that || f - f,|| < & from the fact that both f and f, satisfy (1.13) as
well as from the way § > 0is chosen. Thus {B;(f,) : y € Y}isan -net for K. We have
shown that K is totally bounded. Hence K is precompact by Corollary 1.7.3. ]

Example 1.7.2 LetK = {f € C'[0,1] : f(0) = aand |f'| < g}, where a € R and g is
a nonnegative continuous function on [0, 1]. It is clear from Theorem 1.7.6 that K is
a precompact set in C[0, 1].

1.8 Extension of continuous functions

We consider in this section the question of when a continuous real-valued function
defined on a subset of a metric space can be extended continuously to the whole space.

Lemma 1.8.1 (Uryson) Let A, B be nonempty disjoint closed sets in a metric space M,
then there is a continuous function defined on M such that 0 < f <1, f = 0 on A, and
f=1lonB.

Proof ForasetS C M, the function x — p(x,S) := inf,cg p(x, 2) is continuous on M.
This follows from the obvious inequality

|0(x,8) - (3 9)] < p(x,y)

for x, y in M. Since A and B are disjoint closed sets, p(x, A) + p(x, B) > 0forx € M,
we may then define f : M — R by

p(x,A)
p(x,A) + p(x,B)’

x € M.

fl) =

Clearly f is continuous and is the function to be sought. |
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Corollary 1.8.1 Let A and B be nonempty disjoint closed sets in a metric space M; then for
any pair o < f3 of real numbers, there is a continuous function f defined on M such that
a <f<Bf=aonAandf = onB.

Exercise 1.8.1 Prove Corollary 1.8.1.

Theorem 1.8.1 (Tietze) Suppose that g is a bounded continuous function defined on a
closed set C in a metric space M, and let y = sup,_. |g(x)|. Then there is a continuous
function f defined on M such thatf = g on Cand sup_,, |f(x)]| = .

Proof We may assume that M\ C contains infinitely many points, because otherwise
M consists only of points from C and a finite number of isolated points, in which
case the theorem is trivial. Then we may pick any two points x; and x, outside C,
define g(x;) = -y, g(x2) = ¥, and replace C by C U {x,x,}. Thus we may assume
that min,ec g(x) = —y and max,cc g(x) = y.

NowletA = {x € C: g(x) <-%X},B={x € C:g(x) > L}, then Aand Bare dis-
joint nonempty closed sets. By Corollary 1.8.1 there is a continuous function f; on M
such that |fi| < §,fi = -L onAandf; = £ on B. Itis readily verified that |g - f;| <
%y on C. Note that min,ec{g(x) - fi(x)} = —%y and max,cc{g(x) - fi(x)} = %y.

Repeat the argument of the last paragraph with g replaced by g - f; and y by %y ;
we obtain a continuous function f, on M such that || < 3 - 3y and [g-fi - o] <
( %)2)/ on C. Continuing in this fashion, we obtain a sequence { f, } of continuous func-
tions on M such that | f,| < %(%)”’1 y and |g - Z]":ljﬂ < (%)”y on C. It follows then
that ) _ f, converges uniformly to a continuous functionf on M andf = g on C. Now,

=255 =25 3G v = u

Remark The function g in Theorem 1.8.1 is usually called an extension of the func-
tion f, while f is called the restriction of g on C and is often denoted as g|c.

1.9 Connectedness

A metric space M is said to be connected if any nonempty subset of M which is both
open and closed is M itself. Obviously any discrete space cannot be connected except
when it consists of only one point. A subset of a metric space M is called connected if it is
connected as a metric space with its metric inherited from M.

Exercise 1.9.1 Show that a metric space M is connected if and only if it cannot be
expressed as a disjoint union of two nonempty subsets, both of which are open.

Theorem 1.9.1 A finite closed interval in R is connected.

Proof Let the interval be I = [a,b], -00 < a,b < 00. Suppose that I is not connected,
then] = AU B, where A N B = {J and both A and B are nonempty open and closed in
I. We may suppose a € A. Since B is bounded below by 4, inf B € I. Since B is closed
inI,inf B € Band hence cannot be in A, which implies a < inf B. Thus (4, inf B) C A,
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and infB is a limit point of A, but that A is closed implies infB is in A, a
contradiction. |

Exercise 1.9.2

(i) Modify the arguments in the proof of Theorem 1.9.1 to show that any interval in
R is connected whether it is finite or infinite and whether it is closed, open, or
half-open.

(ii) Show that a subset A of R is connected if and only if for any pair x < y of
elementsin A, [x,y] C A. Conclude then that connected sets in R are intervals.

Exercise 1.9.3 Show that every open set in IR is a disjoint union of at most countably
many open intervals.

1.10 Locally compact spaces

An account of compact sets in a locally compact metric space will now be given in regard
to construction of some useful continuous functions relating to compact sets.

A metric space X is called a locally compact space if every x in X has a compact neigh-
borhood. Clearly, R" with the Euclidean metric is a locally compact space. We observe
the following two facts for a locally compact space X:

(i) IfKisacompact subset of X, then K has a compact neighborhood.

(ii) IfK isacompact subset of X and x € X\K, then K has a compact neighborhood
W, not containing x.

(o)
To see (i), consider the open covering {U,}xcx, where U, is a compact neighbor-

hood of x, and extract from it a finite subcovering {f]xl, RN [Oka} of K; then Uf:l Uy,

is a compact neighborhood of K. Now if x € X\K, put § = dist(x,K) > 0; then W, =
VN {yeX:dist(y,K) < 38} is a compact neighborhood of K not containing x, where
V is a compact neighborhood of K as asserted in (i); thus (ii) holds.

Lemma 1.10.1 Suppose that K is a compact subset of a locally compact space X and is
contained in an open set G. Then K has a compact neighborhood V contained in G.

Proof Because of (i) we may assume that X\ G # {J. For each x € X let W, be a com-
pact neighborhood of K not containing «, as in (ii), and consider the family F =
{W, NG : x € G} of compact sets; Clearly, [ | F = ¥ and by the finite intersec-
tion property (Corollary 1.7.4) there are xy, . . ., x in G° such that ﬂ;;l{ij NG} =

[ﬂ}il Wx]} N G° = (). We infer then from the last set relation that V' = ﬂ}il W, isa
compact neighborhood of K contained in G. |

Lemma1.10.2 Let F = {Gj,...,G,} be a finite open covering of a compact set K in a
locally compact space X; then there are compact sets Ky, . . ., K, in X such that K; C G;
foreachj=1,...,nand K C U;zl K;.
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Proof For x € K, there is j, 1 < j < n, such that x € G;j; then Lemma 1.10.1 implies

that x has a compact neighborhood V. C G;. Since {{}x x € K} is an open covering

of K, there are xy, . . ., x; in K such that U]Ill \O/ij K.Foreachj=1,...,nlet F;
{Vy : Vi, C Gj} and put K; = [ J Fj; then K; is a compact set C G; and | J, K
UL, v DK |

Remark In Lemma 1.10.2, some of the K;’s might be empty; but if 7 has the property
that every one of its proper subfamily is not a covering of K, then each K; is nonempty.

For a function f defined on a metric space X, we shall denote by supp f the closure
of the set {x € X : f(x) # 0}. If suppf (which is called the support of f) is compact, f
is called a function with compact support. The family of all continuous functions with
compact support in a metric space X is denoted by C.(X). Note that C.(X) is a real or
complex vector space depending on whether real-valued or complex-valued functions
are considered. For an open set G in a metric space X, the family of all continuous func-
tions f on X with compact support such that 0 < f < land suppf C Gisto be denoted
by U.(G).

Corollary 1.10.1  Suppose that K is a compact set contained in an open set G of a locally
compact space X. Then there is f in U,(G) such thatf = 1 on K.

Proof K has a compact neighborhood V contained in G by Lemma 1.10.1; then K and
V¢ are disjoint closed subsets of X. Using the Uryson lemma (Lemma 1.8.1), we find

a continuous function f on X such that0 < f < 1,f =0on T;", andf = 1 on K. Since
suppf C V C G,f € U/(G). |

Suppose now that K is a compact set in a metric space X and F = {Gy,...,G,} is
a finite open covering of K, then a collection {u;, ..., u,} of continuous functions is
called a partition of unity of K subordinate to F if u; € U.(G;) foreachj=1,...,n
and Z}Ll uj(x) = 1forallx € K.

Theorem 1.10.1 (Partition of unity) Suppose that K is a compact set in a locally compact
metric space X and that F is a finite open covering of K. Then K has a partition of unity
subordinate to F.

Proof Let F = {Gy, ..., G,}. There are compact sets K1, . . ., K, such that K; C G; for
eachjand K C U;’zl Kj, by Lemma 1.10.2. Foreachj = 1,.. ., n, it then follows from

Corollary 1.10.1 that there is a f; € U.(G;) such that f; = 1 on K;. Define functions
ui,...,u, by

231 :fl; U = (1 _fl)fZﬂ ey Up = (1 _fl) te (1 _fn—l)fn-
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Then, u; € Uc(Gj),j =1,...,n.Now

n

Yu=1-(1-fi)---(1-£), (1.14)

=1

as can be verified from u; = 1-(1-f;), u +uy =1 - (1 -f;)(1 -f,), and so on.
If x € K, then x € K; for some j and therefore (1-fi(x))--- (1 -f,(x)) = 0; con-
sequently Z;;I uj(x) = 1,by (1.14). [ |



A Glimpse of Measure
and Integration

his chapter gives a quick but precise exposition of the essentials of measure and
integration so that an overall view of the subject is provided at the outset.
Preliminaries on various types of families of sets and set functions defined on them are
covered in the first section, for later use in this chapter as well as in subsequent chapters.
The important L? spaces are also introduced in this chapter for the reader to have an
early appreciation of the power of the basic convergence theorems, which, together with
the Egoroff theorem, reveal convincingly the relevance of o -additivity of measures.

2.1 Families of sets and set functions

Sets considered in this section are subsets of a given fixed set €2, which is sometimes
referred to as a universal set; the family of all subsets of €2 is called the power set of €2
and is denoted by 2%. A function 7 defined on a nonempty family ® of subsets of 2 and
taking complex or extended real values is called a set function. If the empty set ¢ € P,
we always require that 7(¢) = 0. But hereafter in this chapter a set function 7 is always
assumed to take only nonnegative extended real values; and it is said to be finite if 7 (A)
is finite for A € ®, while it is o -finite if there is a sequence {A,} C ® such that | J P C
U, An and T(4,) < oo for each n. A set function 7 is monotone if T(A) < 7(B) for A,
Bin ® with A C B. A monotone set function 7 with domain @ is said to be continuous
from below at A € @, if for every increasing sequence {A4,} C ® with A =, A, the
equality 7(A) = lim,_, o, 7(A,) holds. Note that since 7 is monotone, lim, ., T(A,)
exists. The set function 7 is continuous from below on ® if it is continuous from below
atevery A € ®. A set function with ¢ in its domain is called a premeasure on 2.

A family P of subsets of €2 is called a m-system on €2 if AN B € P whenever
A and B are in P. The families {(-00, ] : « € R} and {(a,b) : —-00 < a < b < o0}
are 77 -systems on IR.

Real Analysis. Fon-Che Liu. © Fon-Che Liu 2016. Published 2016 by Oxford University Press.
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A family A of subsets of Q2 is called an algebra on €2 if

(a1) Qe
(a;) ifA € A, then A° := Q\Aisin A;
(a3) AUB € Awhenever Aand Barein A.

It is readily seen that if {A;,...,A,} is any finite subfamily of an algebra A, then
U1 4j € A and consequently (1], 4; € A, because ([, 4;)° = ., 4]. One also
notes thatif A, Bare in 4, then A\B := AN B‘isin A.

A family 3 of subsets of €2 is called a 0 -algebra on €2 if it is an algebra on €2 and if
{A,}isasequencein X; then | J, A, € X.Since (), 4,) = U, A%, (), An € Tif{A,}
is a sequence in a 0 -algebra 2.

A family £ of subsets of €2 is called a A-system on €2 if the following conditions hold
for L:

(A1) Qe L;
(A,) ifA € L, thenA° € L;
(A3) if{A,}isadisjoint sequencein £, then | J, A, € L.

Observe that if £ is a A-system on €2 and if A, B are in £ with A C B, then B\A € £,
because B\A = A° N B = (A U B°)".
[T-systems, A-systems, algebras, and o -algebras on €2 will often be simply referred to
as 7r-systems, A-systems, algebras, and o -algebras if €2 is clearly implied in a statement.
We state without proof a trivial lemma for later reference.

Lemma 2.1.1 A family of subsets of 2 is a 0 -algebra on 2 if and only if it is both a 7t -system
and a A-system on Q.

Since the intersection of any collection of A-systems on €2 is a A-system, for any fam-
ily ® of subsets of €2 the smallest A-system on §2 containing ® exists and is denoted
by A(®P). Similarly, the smallest o-algebra on €2 containing P exists and is denoted by
o (D). We note that .(®) C o () always, because any o -algebra is a A-system.

A A-system satisfies a set of conditions which is a little weaker than that for a o -algebra;
but it turns out that often the set of conditions for A-systems is much easier to verify than
that for o -algebras. The following theorem was first discovered by W. Sierpinski, and has
been shown to be very useful in probability theory by E.B. Dynkin. Itis now often referred
to as the (r-A) Theorem.

Theorem 2.1.1 (77-A Theorem) If P is a 7w-system on S, then A(P) = o (P).

Proof Let Lo = A(P). If Ly is a m-system, then L, is a 0-algebra, by Lemma 2.1.1,
consequently £y D o (P); but since Ly = A(P) C o (P), we have A(P) = o (P).
It remains therefore to show that £, is a w-system. For A € L, let

Li={BCQ:ANBe Ly
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To show that L is a 7w-system is to show that £4 D L for every A € L. Clearly,
L4 is a A-system. Observe then that if B € P, then L5 D P, since P is a w-system,
and hence L is a A-system containing P. Therefore, L5 D L, if B € P, this means
that ANB € Lyif A€ LoandB € P,or L4 D PifA € L. Since L4 is a A-system,
we then have £, D Ly for A € Ly. Thus Ly is a m-system and the theorem is
proved. |

We reiterate that hereafter in this chapter set functions are assumed to take nonnegat-
ive extended real values.

We shall call a set function x defined on an algebra A on 2 an additive set function
if W(AUB) = u(A) + u(B) whenever A,B € Aand A N B = ¢. Recall that £(¢p) = 0.
An additive set function ( on an algebra A is o -additive if

u (LnJ An) =X u(a)

whenever {4, } is a disjoint sequence in A with [ J, A, € A.
Exercise 2.1.1 Let 1 be an additive set function defined on an algebra A on 2.

(i) Show that u is monotone.

(ii) Show thatifA,,...,A, arein A, then M(U7=1 Aj) < Z}il (4;).

(iii) Show that u is o -additive if and only if 1 is continuous from below on .A.
(iv) Show that if {Aj};’f1 C Awith U]O:ol A;j € A, then M(U;’:OI Aj) < Z}ozol w(A;) if
W is o -additive on A.

Theorem 2.1.2  Suppose that 2 is a compact metric space and A is an algebra of compact
subsets of Q. If 1 is an additive set function on A, then [ is o -additive.

Proof To show that u is o-additive is to show that if A} C A, C --- is an increasing
sequence in A such that | J, A, € A, then (|, A,) = lim,— 00 £(A,) (cf. Exercise
2.1.1 (iii)). Let A =J, A, and put C, = A\A, for each n, then (), C, = 0. We
claim that lim,_, o #(C,) = 0. If not, then u(C,) > lim,_ o #(C,) > 0 implies
that C, #¥ for all n. Then (), C, # ¥, by Exercise 1.7.2, contradicting the fact that
mn C, = 0. Now, lim,_, » /’L(An) = limnaoo{M(An) + /'L(Cn)} = :U“(A)' u

Example 2.1.1 Consider the sequence space Q2 = {0,1} x {0,1} X - - - and the addit-
ive set function P defined on the algebra Q of all cylinders in €2 (cf. Section 1.3). We
have seen in Example 1.7.1 that €2 is compact with a suitable metric and that sets in Q
are compact, hence P is a 0 -additive set function on Q, by Theorem 2.1.2.

A o -additive set function w defined on a o-algebra ¥ on Q2 is called a measure on X.

Exercise 2.1.2 Let i be a o-additive set function defined on an algebra .4 on €2 with
n(2) < oo. Suppose that 1, and , are measures defined on a o-algebra £ D A,
with the property that ;1 (A) = u2(A) = w(A) forA € A. Showthat 1 (B) = 11,(B)
for B € 0 (A). (Hint: showthat £ = {B € ¥ : t1(B) = i,(B)} is a A-system.)
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2.2 Measurable spaces and measurable functions

A function f defined on a set €2 and taking values in [-00, 00] := {-00} U R U {00} is
said to be extended real-valued. The sets [-00,00] and [0, 00] := [0,00) U {00} will
often also be denoted as R and R respectively, while [0, 00) will also be denoted as
IR™. Since, except where explicitly specified otherwise, functions considered are exten-
ded real-valued; we shall often call an extended real-valued function defined on €2 simply
a function on €2; while if f takes values in IR, f is said to be real-valued or finite-valued.
We recall some usual conventions concerning algebraic operations involving infinity
symbols 00 and —00: 00 + 00 = 00, —00 + (-00) = 00, a + 00 = —(a - 00) = 00 if a
is a finite number, while for an extended real number 4, a - 00 = (-a) - (-00) = 00,
or —00, depending on whether a > 0 ora < 0, and 0- 00 = 0 - (-00) = 0. The sym-
bol 00 is sometimes written +00 for emphasis. We shall also adopt the convention that
(-00)™! = (00)™" = 0, but then 22, =2, > and == are considered not to be defined.
We also observe that 00 — 00 and 00 + (-00) are not defined.

An ordered pair (€2, X) is called a measurable space if €2 is a nonempty setand X isa
o -algebra on Q.

Given a measurable space (£2,X), a function f on € is called X-measurable if
{xe Q:f(x) > a} € X for every ¢ € R. A E-measurable function will simply be
called measurable if the measurable space (2, X) is clearly implied. More generally, a
function is said to be measurable on A € X if its domain of definition contains A and
if {x € A:f(x) > a} € X for every ¢ € IR. Observe that a function is X-measurable
if and only if {x € Q : f(x) > a} €  for all @ € R. This is clear, because {x € Q :
f(x) > 00} =¢ and {x € Q: f(x) > 00} = |, cn1x € Q : f(x) > -n}. For nota-
tional simplicity, we shall presently introduce simplified notations for sets like {x € € :
f(x) > a}. Foraset C C R and a function f on 2, the set {x € Q : f(x) € C} will be
denoted simply as {f € C}. With this notation, f is £-measurable if {f € (&, 00]} € =
foralla € R. {f € (a, 0]} will also be denoted as {f > a}. Similarly, fora < Bin R,
the sets {f € (o, )}, {f € (o, B]}, {f € [, B)} and {f € [, B]} in this order will be
denotedas{o < f < B} {o <f < B}, {o <f < B},and {o < f < B} respectively.

Constant functions are certainly measurable functions; after constant functions, meas-
urable functions of the simplest structure are the simple functions that will now be
introduced. For A C €2, we denote by I, the function defined by I, (x) = 1 or 0, accord-
ing to whether x € A or not. The function I is called the indicator function of the set A;
clearly, I is measurable if and only if A € X. A function of the form leil ajly, k € N,
a; € R, Aj € X, is called a simple function. One can verify directly that simple functions
are measurable and form a real vector space of functions.

For a metric space M we shall denote by 3(M) the smallest o -algebra on M containing
all open subsets of M and call a 3(M)-measurable function defined on M a Borel meas-
urable function (or simply a Borel function). It is easily seen that a monotone increasing
(decreasing) function defined on an interval of IR is Borel measurable. One also veri-
fies readily that lower semi-continuous functions and upper semi-continuous functions
are Borel measurable. Sets in B(M) are called Borel sets in M and B(M) is usually
referred to as the Borel field on M. B(IR) will be simply denoted by B. The smallest
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o -algebra on R containing all open subsets of R as well as sets of the form (o, 00] forall
o € Ris denoted by B. Sets in 3 are called Borel sets in R. For n > 2, B(IR") is simply
denoted by B".

Example 2.2.1 Let {f,} be a sequence of real-valued continuous functions
defined on a metric space M, and let C = {x € M : lim,_,  f,(x) exists}. Then
C=ien Uien mn,leA(k) where for k, m, n in N, Afjg ={xeM: |f(x) -

nm?

fu(x)| < %} Since each AS,’;B is open, C is a Borel set in M.

Given a measurable space (€2, X), a function defined on 2 is often referred to as a
function on (€2, ), by abuse of language, if the role of X is to be emphasized; in partic-
ular, a measurable function on (€2, X ) means a ¥-measurable function defined on 2.

Remark If f is a measurable function, then {f > o} = (), N{f > @ - i} is in X;
similarly, {f < &} = J,.ex{f <@ - +}isin X, becauseeach{f <o - -} ={f > o -
11¢isin X,

Exercise 2.2.1

(i) Show that B s the smallest & -algebra on R containing {(cr, 00] : a € R}.

(ii) Let (€2, X) be a measurable space. Show that a function f on €2 is X:-measurable
ifand onlyif {f € B} € X forall B € B.

(iii) Let (€2, ) be a measurable space. Show that iff is a finite-valued function on €2,
then f is ¥ -measurable if and only if {f € B} € X forall B € B.

For a family {f, } of functions defined on a set £2, define functions inf, f, and sup,, f, by
(inffa> (x) = inff, (x); ( supfo,) (x) = sup fu(x)

forx € Q. Inf, f, and sup, fo are sometimes expressed respectively by /\ , fy and \/ , fo-
If {f,} is a sequence of functions defined on €2, define functions liminf,_, ~ f, and

lim SUp,_, 00 fn by

(imnffe) ) = Jim, (jnf4u(9)s - (1msups )60 = Jiy (supf(4)

n— 00 m>n

for x € Q. Since uncertainty is not likely, (liminf,—. f,)(x) and (limsup, , _f,)(x)
will be simply written as lim inf, , o f,(x) and lim sup, _, . f,(x) respectively.

Naturally, if liminf,  f,(x) = limsup,_, _ f,(x), the common value is denoted by
lim,— o fo(x) and we say that the sequence {f,} converges at x. If {f,} converges at all
x € A C Q, and if we define a function f on A by f(x) = lim,_, o fu(x), then we say that
the sequence {f, } converges pointwise on A to f (notationally, f, — f on A).
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Exercise 2.2.2 Let (2, X) be a measurable space and {f,} a sequence of measurable
functions on 2.

(i) Show that both inf, f, and sup,f, are measurable functions on . (Hint:
{inf, f, >a}=U, N, >+ i})
(ii) Showthatbothliminf, . f, andlimsup, . . f, are measurable functions on €2.
(iii) Show that {x € Q : liminf,,  f,(x) = limsup, ,  f,(x)} € Z.
(iv) Show thatiflim,, ~ f,(x) exists forallx € Q,thenf = lim,, « f, is measurable.

Exercise 2.2.3 Let f be measurable. For each positive integer n, let A = {f < _n},
cm = {f> n},Bfn) ={-n+ ﬁ <f<-n+ %},iz 0,1,2,...,2n* - 1,and let

2n*-1 i
g =-nLiw+ Y |-n+- Iyw +nlce).
i=0 n ‘

Show that g, — f pointwise and show that if f, g are measurable, then fg is measur-
able; furthermore if g # 0 everywhere on X, then f/g is also measurable.

Exercise 2.2.4 Let (€2, X ) be a measurable space and f, g measurable functions on Q.
Then f + g is defined on € if and only if {f(x),g(x)} # {-00, 00} for all x € Q.
Show that if f + g is defined on €, then f + g is measurable. (Hint: {f +g > «} =
quQ{f > g} N{g > & - q} fora € R, where Q) is the set of all rational numbers.)

Since for a measurable function f on €2 and A € IR, Af is clearly measurable, we infer
from Exercise 2.2.4 that the space of all finite-valued measurable functions is a real vector
space which contains the space of all simple functions as a vector subspace.

To conclude this section, we present a useful representation for nonnegative measur-
able functions.

Theorem 2.2.1 Suppose that (2, X) is a measurable space and f is a nonnegative measur-
able function defined on Q, then there is a sequence {Aj};’fl C X such that

flw) = i ]l.IA,(a)) 2.1)

forallw € Q.

Proof Define sets Ay, ..., Aj,... recursively as follows: A} = {f > 1}, A, = {f > % +
Inb, . A =4{f = % + D ks 14}, ... Clearly each A; is in . We now show that
(2.1) holds for w € .

Observe first, that w € Q\ U]O:OI A;if and only if f (@) = 0 and that when w € Q\
U]Zol Aj, both sides of (2.1) are equal to zero. It remains to show that (2.1) holds for
w € U]ozol A]
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Forw € U]O:ol Aj, we distinguish two cases:

[Case 1] w € A; for only finitely many j.
Let jo be the largest j such that w € A;. Then,

f(a)) = -+ Z IAk(a)> Z IAk(a)> Z IAk(a)))

Jo k<;0

on the other hand, forj > jo,

flw) < ; +y IAk(w) = - + Z IAk(a))

k<] ]

hence, by letting j — 00, we have
x 1
k=1

Thus (2.1) holds in this case.
[Case2] w € A;for infinitely many j.
For infinitely many j, we have

flw) > ; +> IAk(a)) ; IAk(w);

k<]

letj — oo through such s, it follows that

f(@) = 3 11 (@) e
k=1

Now either w € Ajforj > N forsome N € N or w ¢ A; for infinitely manyj. In
the former case,

?vlr—‘

o 1 [e.¢]
flw) =3 EIAk(w) >
k=1 k=N
thus f(w) =00 =Y o, %IAk(a)); in the latter case,

flo) < ;+Z “1 (o)

k<]
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for infinitely many j and hence when j — 00 through such j’s, it follows that

1
flw) =X EIAk(w);
k=1
which together with (2.2) shows that (2.1) holds. n

Corollary 2.2.1 If f is a nonnegative measurable function, then there is a nondecreasing
sequence {s, } of nonnegative simple functions which converges to f pointwise.

Proof Let {Aj} be the sequence of measurable sets in Theorem 2.2.1. Choose the
sequence {s, } defined by

n 1 .
Sy = Z —'IA..

Exercise 2.2.5 Let f be a measurable function; show that there is a sequence {f, } of
simple functions such that |f,| < |f| and f,(w) — f(w) forallw € Q.

2.3 Measure space and integration

A triple (2, ¥, ) is called a measure space if (€2, X) is a measurable space and u is a
measure on . When () = 1, (€, , i) is called a probability space, and in this case
w is usually denoted by P.

Example 2.3.1 Let 2 be an arbitrary nonempty set and for A C 2 let (A) be the
cardinality of A if A is finite; otherwise let (A) = 0co. Obviously i is a meas-
ure on 2%, the o -algebra of all subsets of €2, and is called the counting measure
on . The measure space (£2,2%, i) will be called the measure space with counting
measure on 2.

Example 2.3.2 Let Q2 be a countable set, say Q2 = {w;,®,,..., @y, ...}, and {p,}
a sequence of nonnegative real numbers with ) - p, = 1. For A C €, let N(A) =
{neN:w, €A} and u(A) = ZneN(A) pn; then the measure space (£2,2%, i) is
called a discrete probability space.

Given a measure space (€2, ¥, i), measurable functions are extended real-valued
functions measurable in reference to the measurable space (€2, X).

We now fix a measure space (€2, X, i) and define the integral for certain measurable
functions. Recall that a simple function is a finite linear combination of indicator func-
tions of sets in 2. Clearly if f is a simple function, then f = Zle a;ly, where ary, . . ., o
are the different values assumed by f and A; = {f = «;}; we define then

k
/ S = Y a4, 23
Q i=1
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if the right-hand side of (2.3) has a meaning. It is easy to see that if [, fdu is defined and
fisexpressedasf = Zi:pBiIBw where By, . .., Bjare in ¥ and are disjoint, then

1
Qfdu = ;ﬁiM(Bi)-

In particular, [, fdu has a meaning if f is simple and nonnegative, although it is possible
that [, fdu = +o0.
If f is measurable and nonnegative, define

| i =sup [ g
Q Q

where the supremum is taken over all simple functions g with 0 < g < f. Obviously, if f
is nonnegative and simple, this definition coincides with the previously defined . ofdn
for simple functions.

For a function f defined on a set €2, define nonnegative functions f* and f~ by

fH(x) = f(x) if f(x) =0,

= 0 otherwise;

f (&) = f(x) if f(x) <0,

= 0 otherwise.

Thenf = f* - f~and |[f| = f* + f7; furthermore, if f is measurable on a measurable space
(2, X), then both f* and f~ are measurable.
Return now to the discourse interrupted by the last paragraph and let f be a measurable

function. Define
/fdu = /f+du-/f‘du
Q Q Q

if the right-hand side has a meaning. In this case, [, fdjt is said to exist and is called the
integral of f. One notes that if f is a simple function this definition of [, fdj1 coincides
with that given by (2.3). If [, fdu is finite, then f is said to be integrable. Integrability
and the integral of a measurable function so defined will be referred to more precisely as
p-integrability and the pt-integral respectively, if the measure 1 is to be emphasized. It
will be shown later that a measurable function f is integrable if and only if |f| is integrable
(see Theorem 2.5.3).

Suppose that f is a measurable function and A € X; if [, f Indju exists, it is denoted
by [, fdju and is called the integral of f over A. Obviously, if [, fdu exists, then [, fdu
exists forall A € X.
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Example 2.3.3 Let €2 be an arbitrary set and consider the counting measure 1t on £2;
then every function f on €2 is measurable and f is integrable if and only if f (x) is finite
forx € Q and {f(x)}.cq is summable.

Example 2.3.4 Consider the discrete probability space of Example 2.3.2. Let f be a
function on 2. Since every subset of €2 is measurable, f is measurable and is called
a random variable. If [, fdju exists, it is called the expectation of f. It is easily verified
that f is integrable if and only if {f (w,)p, }neN is summable.

Exercise 2.3.1 Iff and g are nonnegative simple functions and , 8 > 0, show that

[ f s pyin = [ i p [ gin

Exercise 2.3.2 Iff < gare two nonnegative measurable functions, show that f ofdn <
Jq gd-

Exercise 2.3.3 Suppose that f and g are measurable functions such that f < g, and
suppose that [, g"dju < 00. Show that |, fdj existsand [, fdu < [, gdu.

Exercise 2.3.4 Let f be a measurable function on a measure space (2, X, t) and
for each k € N let Ay = {25! < |f| < 2*}. Show that f is integrable if and only if

> o1 25 (Ar) < ooand u({|f| = 00}) = 0.

Example 2.3.5 Suppose that f is a nonnegative measurable functionand 0 < p < r <
q < o0o. Then [, f'du < [, ffdu + [ fidu. Actually, if we let A ={f <1} and
B={f>1}, then [,f'du= [oLf'du+ [Ief'du < [oIafPdu + [ Igfidu <
Joffdu+ [ fidu.

2.4 Egoroff theorem and monotone convergence
theorem

Suppose that 2 is a set and {A,, }°°, is a sequence of subsets of €2, define

limsupA, = () U Ak
n—00 nelN k>n
liminfA, = (J () Ax
n—00

nelN k>n

If limsup, , A, = liminf, ,5A,, then we say that the limit of the sequence {A,}
exists and has the common set as its limit, which is denoted by lim,_,A,. In par-
ticular, if Ay CAy C -+ CA, C Ay C--- ie {A,} is monotone increasing, or
Al DAy D -+ DA, DA D - ie {A,}is monotone decreasing, then lim, . A,
exists and equals |, Ay or [),cn An according to whether {A,} is monotone
increasing or monotone decreasing. Hence limsup, , A, = lim, o (J;-, Ax and
liminf,_, o A, = lim,_ mkz 0 A
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Exercise 2.4.1 Let {A,}°2, C 2%, where Q is an arbitrary set, and let B =
liminf, . Ay, C = limsup,_, . A,. Show that for each x € €2 we have

Ig(x) = liminfls, (x) and Ic(x) = lim sup I, (x).

n— oo
In the following, a measure space (£2, X, i) is considered and fixed throughout.

Lemma 2.4.1 (Monotone limit lemma) Let {A,}°°, C X be monotone increasing, then
,u( lim A,,) = M(UAn) = lim u(A,).
n—oo n n— o0

Proof For each positive integernlet B, = A, \ A,_;, where we put Ay = ¢, and for con-
venience let A = [ J,A,. Then A, = | J;_;Bx and A = [, Bi. Since {By} is disjoint, we
have

n(A) = %M(Bk) = lim XH:M(Bk) = lim ju(A,). u

i
k=1 T k=1
Corollary 2.4.1 Let {A,}°°, C X be monotone decreasing and j1(A;) < 00, then
,u( lim A,,) = /L(ﬂAn> = lim w(A,).
n— 00 n n— 00

Proof For each positive integer n let B, = A; \ A,, and for convenience let A = [ A,.
Then {By} is monotone increasing and A; \ A = |_J, B. From Lemma 2.4.1, we have

u(a\) = (U = im (5.

But u(A; \ A) = u(A;) - u(A) and u(B,) = u(A;) - u(A,); this completes the
proof of the corollary. |

Remark In Corollary 2.4.1 one may assume that 11(A,) < 0o for some #, instead of
n(Ar) < oo,

Exercise 2.4.2 Let (€2, X, 1) be a measure space. Suppose {A, },ex C Z.
(i) Show that i (liminf, . A,) < liminf,_, o u(A,).
(i) If u (UjZnAj) < 400 for some n, then show that u (lim supn_)ooA,,) >
limsup, o, 11(A2).
(iii) If the limit of {A,} exists and u (UjZn A,-) < 00 for some n, show that

lim,,_, o 1 (A,) exists and

u ( lim A,,) = lim w(A,).
n— o0 n—0o0
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Theorem 2.4.1 (Egorofftheorem) If{f,} is a sequence of measurable functions and f, — f
with finite limit on A € X, where L(A) < +00, then for any given &€ > 0, thereisB € X
with B C A, such that w(A \ B) < ¢ andf, — f uniformly on B.

Proof

[Step 1]

[Step 2]

We claim that for £ > 0, n > 0, there is integer N > 0 and C € X
such that C C A, u(A\ C) < ¢, and sup, _|f(x) - fu(x)| < 1 whenever
n> N.

To show this, for each n let C, =), ., {x € A : |f(x) - fu(x)| < n}.
Then C, /" A.Since t(A) < o0, thereis N such that (A\Cy) = u(A) -
u(Cy) < € by Lemma 2.4.1. Take C = Cy.

Now given & > 0. By [Step 1] for each positive integer m there is integer
N,,and C,, C Awith C,, € X such that

n(A\ Cy) < /2"

and

sup [f(x) - fu(x)| = —

1
x€C,, m

whenevern > N,,,.

Take B = ﬂil C,, then u(A\B) = ,u(Uff:l(A\Cm)) < e. Given
o >0, choose my € IN such that mio < 0. Then for n > N, , we have
If (%) - fu()] < m%, < o for all x € B, because B C C,,,. This shows that
fa — f uniformly on B. n

In plain language, Theorem 2.4.1 says that convergence of a sequence of measurable

functions on a set of finite measure implies approximate uniform convergence. From its
proof, one sees clearly that o -additivity of 1 plays a salient role through Lemma 2.4.1.
The following theorem which is called the monotone convergence theorem reveals the

distinguished feature of o -additivity of measure y through integrals.

Example 2.4.1 Suppose £(2) < 00 and {f,} is a sequence of real-valued measurable
functions such that lim,_, » f,(x) = f(x) exists and is finite for pt-a.e. x in 2. For
each k € N, by the Egoroff theorem there is By € X such that ©(2\B;) < % and
fu(x) = f(x) uniformly forx € By. Put Z = Q\ | J, By, then t(Z) < u(2\By) < %
for all k and hence (t(Z) = 0. Therefore we have shown that there are By, B,,...,7Z
in ¥ with ;£(Z) = 0 such that Q = | J, B¢ U Z and lim,_, o f,(x) = f(x) uniformly
on each By.

Exercise 2.4.3 Show that the conclusion in Example 2.4.1 still holds if (€2, &, u) is

o -finite.
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Theorem 2.4.2 (Monotone convergence theorem) Let {f, } be a monotone nondecreasing
sequence of nonnegative measurable functions. Then

[, g =t [ s

Proof Put f =lim,_,  f,; then f, < f for all n. Since fold,u < fosz <...<
fondM <---= fod,bL, we have

i [ g < [ g

It remains to show that fQ fdp < lim,_, fQ fadp. For this, it suffices to
show that lim,_, o fQ fadp > A for each finite real number A < fQ fdu. For

such a A, there is a simple function g = Z]l.zl ol such that 0 < g <f and
Jo gdn = Z;:I a; j1 (A;) > A. In the above expression for g, we may assume that
Ay, . .., are the different positive values taken by g,and hence Ay, . . ., A; are disjoint
sets in . Then @; < f on each A;. Choose & > 0 small enough so that o; — & > 0,

j=1,...,LForeachj=1,...,]land positive integer n, IetA]-(") = {x € A :fu(x) >
o — £} and define g, = Z]]'=1 (o - 8)IA(n); then 0 < g, < f, and hence
)

Y _
hm /fdu > hm Z(a]- —e)pu(4"”) = Y (aj - &) u(4)),
=1 =1

because for each j, A ( )isa nondecreasing sequence with A; as its limit. It follows then

that lim, . o0 [, fud ,u > ijl ;11 (A;) by letting & \ 0. The proofis complete. W

Exercise 2.4.4

(i) Iff and g are nonnegative measurable functions and &, B > 0, show that

| (s s =a [ g+ | gin.

(ii) Suppose thatf isintegrable and o € IR. Show that [, afdu = « [, fdu.

2.5 Concepts related to sets of measure zero

We now make some remarks on concepts connected with measure zero sets (as previ-
ously, a measure space (€2, X, i) is considered and fixed). For this purpose, a subset
A of Q is called a null set (or more precisely g-null set), if A C B €  and u(B) = 0.
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Note that countable unions of null sets are null sets. Let A = {x € € : x does not have a
property P}, if A is a null set, we say that the property P holds almost everywhere on 2
(or simply P holds almost everywhere). For example, if outside a null set, f is finite, then
we say that f is finite almost everywhere; also if lim,—, » f,(x) = f(x) exists for each «x
outside a null set, then we say that f, converges almost everywhere. If a property P holds
almost everywhere, we simply say that P holds a.e. (more precisely, jt-almost everywhere
or jt-a.e. if other measures might also be in question). Two measurable functions f and g
are said to be equivalent if f = g a.e. Clearly, if f and g are equivalent and if the integral
of one of them exists, then both of their integrals exist and are equal. If g is equivalent to
f, g is sometimes referred to as a version of f.

As we shall see, functions which appear naturally are often not defined at every point
of €2. The most important case is when they are defined outside null sets. A function f is
said to be defined a.e. on Q2 if f is defined on €2\ A, with A being a null set; and f is meas-
urable if f is measurable on £2\N for some measurable null set N' 5 A, or, equivalently, if
anew functlonf is defined byf(x) = f(x) forx € Q\N andf(x) Oforx € N, thenf is
measurable. Hence, a measurable function f which is defined a.e. on £2 can be considered
as defined on Q if it is replaced by one of f defined above; this is legitimate because any
pair of such functions f are equivalent measurable functions.

Exercise 2.5.1 Show that if f is measurable, then {f = +00} and {f = —00} are in X.
Show also that if f is integrable, then f is finite a.e.

All the results we have established so far remain true if the pointwise conditions are
replaced by conditions held almost everywhere. For example:

Theorem 2.5.1 (Egoroff theorem) If a sequence {f,} of almost everywhere finite measur-
able functions converges a.e. to a finite function f on A, where A € %, and (A) < + 00,
then for every € > 0, there is B € X, B C A such that n(A\ B) < ¢ and f, — f
uniformly on B.

Theorem 2.5.2 (Monotone convergence theorem) Let {f, } be a sequence of measurable
functions which are nonnegative and nondecreasing a.e., then

/ lim f,du = lim / fodu.
Qn—> n— oo Q

From Theorem 2.5.2 and Exercise 2.4.4 (i) there follows the following corollary.

Corollary 2.5.1 If{f,} is a sequence of a.e. nonnegative measurable functions, then

and:u Z fnd/fL

Q n=1
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Exercise 2.5.2 Let f be a measurable function. Prove the following statements:

(1) Suppose that [, fdu exists, ie. [ fdu = [, f*du - [, f~du, where the right-
hand side has a meaning. If f = f; - f, where f; and f, are nonnegative and

measurable, then
f fiu = / fudpt - / fodn,
Q Q Q

if the right-hand side has a meaning.

(i) [ofdu exists if and only if f =f; —f, for some nonnegative measurable
functions f; and f,, such that [, fidj - [, fodu is meaningful. (Hint: for f; and
f, as above, observe that f* < f; andf~ < f,.)

(iii) Iff, g are measurable functions such that fQ fdu, fQ gau, f ofdn + f o & are
meaningful, then f + g is defined a.e. and

/Q(f+g)du=/gfdu+/ggdu-

In particular, this holds true if f and g are integrable.

Exercise 2.5.3 Show that Theorem 2.5.2 still holds if {f, } is a sequence of measurable
functions bounded from below by an integrable function a.e. and is nondecreasing a.e.
(Hint: show first that f; is integrable and hence f o fadt is meaningful for each n.)

Exercise 2.5.4 Iff > 0a.e.and is measurable, then show that [, fdu = 0 if and only if
f=0ae

Exercise 2.5.5 (Beppo-Levi) Let {f,} be a monotone increasing sequence of integ-
rable functions such that sup, [ f,du < +00. Let f = lim,_,  f,. Show that —0co0 <
f < +00 ae, fisintegrable, and lim,_ o [ |fx — f|d1 = 0.

The following theorems follow from Exercise 2.5.2 (iii) and Exercise 2.4.4 (ii):
Theorem 2.5.3 A measurable function f is integrable if and only if |f| is integrable.

Theorem 2.5.4 Suppose that f and g are integrable and o, B are finite real numbers, then

/sz(af+ﬁg)du=a/szfdu+,8/9gdu.

In particular, iff < g a.e. then [, fdu < [, gdp.

Exercise 2.5.6 Suppose that (2, X, i) is a finite measure space and f a measurable
function on Q. For k € N let i := u({|f| > k}). Show that f is integrable if and
onlyif Y 2°) wp < 00. (Hint: show that > 0wy < [, [f|dun < D ) @k + 1(£2).)

Exercise 2.5.7 Suppose that f is a nonnegative measurable function. Let v : ¥ —
[0, +00] be defined by v(A) = [, fdu := [, fladu; show that (2, Z,v) is a meas-
ure space and if g > 0 is X-measurable, then [, gdv = [, gfdu (this fact is usually
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expressed by dv = fdu). Show also that a measurable function g is v-integrable if and
only if gf is (t-integrable.

Exercise 2.5.8 Suppose that f is a nonnegative integrable function. Show that for every
& > 0,thereis A € X with (A) < +00, such that

[ s> [ gin-e.

Exercise 2.5.9 Let (€2, X, u) be a measure space, and {AR, C X

(i) Showthatif ) o (Ax) < 00, then u (lim SUP;_, o Ak) =0.
(ii) Show thatiff is integrable, then

dp = lim /oo du.
/l;msupAkf k— 00 UA,»f
j=k

k—00

(iii) Letf be integrable and &¢ > 0. Show that there is § > 0 such thatif A € ¥ and
n(A) < 8, then [, |f|du < e.
(Hint: suppose the contrary. Then for each k, there is Ay € X such that
w(Ay) < k—lz and fAk |f|die > &. Then apply (i) and (ii).)

Exercise 2.5.10 Let (2, X, i) be a measure space and f a measurable function on .
Define a o -algebra o (f) on Q by

o(f)={f'B:BeB}.

(i) Suppose that fﬂfdu exists and fAfd/,L =0forall A € o(f). Show thatf = O a.e.
(ii) Suppose now thatf is integrable and g is o (f)-measurable on €2 such that

[ s~ [ s

forall A € o (f). Show that there is a null set N in o (f) such that g = f on Q\N.

2.6 Fatou lemma and Lebesgue dominated
convergence theorem

It is indicated in Section 2.4 that the monotone convergence theorem reveals the dis-
tinguished feature of o-additivity of measure through integrals. We now present two
consequences of the monotone convergence theorem which manifest behaviors of
integral under limit processes. These are the Fatou lemma and Lebesgue dominated
convergence theorem (hereafter abbreviated as LDCT).
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Theorem 2.6.1 (Fatoulemma) Let {f,} be a sequence of extended real-valued measurable
functions which is bounded from below by an integrable function. Then

/liminff,,d,u < liminf/ fadpt.
Q oo n— 00 Q

n—

Proof Let g, = infi~,fi, then g, is nondecreasing and is bounded from below by an
integrable function. By the monotone convergence theorem (see Exercise 2.5.3),

fliminffndu—/ lim g,du
Q n— 00 Qn—>OO

lim /gndu §liminf/ fadp. [
Q n—oo Q

n—0o0

Exercise 2.6.1 Show thatif {f, } is bounded from above by an integrable function, then

flimsupfndu > limsup/fnd,u.
Q Q

n—0o0 n— 00

Later, both Theorem 2.6.1 and the statement shown in Exercise 2.6.1 will be referred
to as the Fatou lemma. One notes that Theorem 2.6.1 is equivalent to a particular case
of itself, with {f, } being a sequence of nonnegative measurable functions. This particular
case is the original form of the Fatou lemma.

Theorem 2.6.2 (Lebesgue dominated convergence theorem (LDCT)) If f,, n=
1,2,... and f are measurable functions and f, — f a.e. Suppose further that |f,| < g
a.e. for all n with g being an integrable function. Then

/fdu,= lim /f,,d,u.
Q n— 00 Q

Proof {f,} is bounded from below and from above by integrable functions. Hence, by
the Fatou lemma,

limsup/fnd,u 5/ lim f,du < liminf/fndu,
Q Qn—)OO n—0o0 Q

n— 00

and consequently

/ lim f,dpu = lim /f,,d,u.
Ql’l—)oo n—oo Q .

The Lebesgue dominated convergence theorem will henceforth be abbreviated as
LDCT.
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Exercise 2.6.2 Show that under the same conditions as in LDCT we have

Jim [ Ve stan <o

Example 2.6.1 Let {f,} be a sequence of nonnegative integrable functions such that
filx) =+ > fi(x) > frp1(x) > -+ and lim,, o f,(x) = O for p-a.e. x in Q; then
Yooy (=1)"f, isintegrableand [, Yo (1) fdp = Y07 (-1)™" [, fudir. Note
first, from the well-known alternating series’s estimate | ZZ(—I)”“ fu(x)| < fix)
for p-a.e. x and any [, p in IN, that Z;’:l(—l)”“f(x) converges for pt-a.e. x. Since
|ZE:1(—1)”+1f,,(x)| < fi(x) for p-ae. x and k € N, our assertion follows from
LDCT.

Exercise 2.6.3 Let {fi} and {g.} be sequences of integrable functions such that
fi] < gk a.e. on  for each k € N. Suppose that {fi} and {gi} converge a.e. to f
and g respectively, and that g is integrable and fQ gdp = limy_, f o gkd . Show that
f is integrable and [, fdu = limy_, o [, fedit. (Hint: apply the Fatou lemma to the
sequences {g + fi.} and {g; - f¢}.)

Exercise 2.6.4 Suppose that {f,} is a sequence of measurable functions on (2, =, 1).
Show that if [, Y%, |fu]ldi < 00, then Y, f,(x) converges and is finite for a.e. x,
> > f, is integrable, and

o [o¢])

and:u = Z fnd/fL-

Q n=1 n=1JQ

Exercise 2.6.5 A family {f,} of integrable functions on a finite measure space
(R, X, ) is called uniformly integrable if for any & > 0, there is § > 0 such that if
A C X with u(A) < 8, then [, |fu|dp < ¢ for all or. Show that if {f, } is a uniformly

integrable sequence of functions on 2 which converges a.e. to an integrable function
fon €, then

lim /Q |fa = fldi = 0.

n— 00

2.7 The space LP(2, X, n)

Associated with a measure space (2, X, 1) is a family {L7(2, X, M)}pzl of Banach

spaces which plays an important role in many fields of mathematics. The introduction

and first properties of spaces L? (€2, &, i), p > 1, are our concern in this section. A more

advanced account of these spaces will be given in Chapter 6, when €2 is an open set in IR".
For a measurable function f, let

1/p
(/ [f|f’d,u) if0 < p < +00;
Q

inffM > 0: |f| <M ae}.

/1l
I1flloo

Il
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|If1l, is called the LP-norm of f; ||f||« is also called the essential sup-norm of f.

Exercise 2.7.1 Show that |[f| < ||f[l« a.e.

Recall that if p,q > 1 are such that ;1) + % = 1, then they are called conjugate expo-
nents.

Theorem 2.7.1 (Hoélder’s inequality) Ifp, g > 1 are conjugate exponents, then

/Qlfg|du = IIfglls = Ilfll,llgllq

for any measurable functions f and g.

Proof We mayassume that0 < ||f|l,, llgll; < +00,hence [f|, |g| < 00 a.e. We may fur-
(MY o (Y, 2t -1
ther assume that1 < p,q < 00.Nowlet¢ = (Ilfllp) ,n = (”g”q> 0 = p,and,B =

in Lemma 1.6.1; we have

p q
IFllel 1 lflp+1 Iglq
fllpligly = p Iflly  q ligllg

a.e. on 2, from which on integrating both sides we complete the proof. |

Exercise 2.7.2 Supposethat1 < p,q < oo are conjugate exponents and ||f||,, llgll4 are
both finite. Show that ||fgll; = I|fll,llgll4 if and only if either ||f|l,lIqll = 0 or |g|? =
A|f|f a.e. for some A > 0. (Hint: use Exercise 1.6.1.)

The following example is a variation of Holder’s inequality.

Example 2.7.1 Let p, q, and r be positive numbers satisfying % = i + é, and sup-
pose that f and g are measurable functions. Since 1 = £ + £, £ and Z are conjugate
p q r r

exponents; then, [, [fg|'due = [o(If[")7 (Ig]") = du < (Jq [fPdu)r (g |g]*du) s, by
Holder’s inequality. Hence, ||fgll, < IIfll,llgll;; When r =1, this is Holder’s
inequality.

Theorem 2.7.2 (Minkowski’s inequality) Let f, g be measurable, 1 < p < +00, then

If +glly < Ifll, + llglly

whenever f + g is meaningful a.e. on 2.
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Proof Thisis obvious when p = 1 or +00. We now consider the case 1 < p < +00, then

IF gl = [ 1+gPae= | 171+l
< [t [ 1 el
Q Q

1/q
< [f [f+g|(P_1)qu] Il + llghy 3
Q
= IIf + g If N + gl

by Holder’s inequality, where 1'% + é = 1. The theorem follows by dividing extreme

. o -1
ends of the above sequence of inequalities by ||f + g|[; , because we may assume that
0 < [If +gll, < oo. |

Exercise 2.7.3 Verify the last statement of the proof of Theorem 2.7.2. (Hint: show
thatif ||f|l, + [Igll, < +00, then ||f + g, < +00 by using Exercise 1.6.3.)

Exercise 2.7.4 Suppose 1 < p < oo and both ||f||, and ||g||, are finite. Show that

Hf"'g”p = Hf”p + ”g”p

if and only if either ||f|,[Igll, = 0 or g = Af a.e. for some A > 0.

Let now LP(£2, £, ¢) be the family of all measurable functions f with ||f|| p < +00.
From the Minkowski inequality, it is readily seen that £7 (2, X, 1) is a real vector space.
If we let

N={felr(Qxu):lfl,=0}

then f € NV if and only if f = 0 a.e. on 2. Now consider the space LP(Q2, X, i) =
LP(2,2, 1) / N; then (€2, X, i) is a vector space which consists of equivalence
classes of L7(£2, X, ju) w.r.t. the equivalence relation ~, defined by f ~ g if and only
iff = ga.e.on Q.

We shall allow ourselves the liberty of not distinguishing between a class of functions
in L7 (€2, X, ) and a function representing the class; hence, by f € LP (2, X, 1) we shall
mean that f is to be considered as a class of equivalent functions in L (2, X, i) as well
as any function from that class.

Forf € LF(Q2, X2, 1), let

1/p
Ifll, = (/ [f|Pd,u) ifl <p < +o0,
Q

and

Ifllcc = essential sup-norm off.
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Remember that in the definition above, f on the left-hand side is a class of function and
f on the right-hand side is a function representing that class. We note that the above
definition is well defined. ||f||,, is called the L”-norm of f in L” (2,2, ).

LP(Q, X, ) is called the L? space of the measure space (2, X, /t), and is often more
compactly denoted by L¥(2) or L?(i1) when ¥ and p are assumed to be known, or
when €2 and ¥ are assumed to be known.

Example 2.7.2 One notes readily that the space £ (S) introduced in the remark at the
end of Section 1.6 is the LF space of the measure space with counting measure on S. It
is easily verified that if S is infinite, then £7(S) C 24(S)if1 <p < g.

Exercise 2.7.5 Suppose that the measure space (€2, %,u) is finite and f €
L*(Q, %, w).

(i) Show that (ﬁ Jo [f[Pdm)? < (ﬁ Jo IfIFdm)V?,if1 < p <p' < oc.

1/p
@)ﬂmwmﬁm%ﬁm(mﬁjémmu) = flloo.

Exercise 2.7.6 Suppose that {f} is a sequence in L? (2, X, 1) and that {f;} converges
ae. to f € IP(, X, 1) with [|f]l, = limp_ oo [Ifkll, (1 <p < 00). Show that {f;}
converges in LP(£2, X, ) to f. (Hint: cf. Exercise 2.6.3 or observe that 227! (|f|F +

[fel") = If ~fel? = 0.)
Theorem 2.7.3 LF(R, X, i) with norm || - |, is a Banach space.

Proof Thisis obviouswhen p = +00, if one notes that when {f, } is a Cauchy sequence in
L®(R, X, i), there is a measurable null set N such that SUP,co\N [fu(@) = fn(@)| <
lfs = finlloo for all n, m in IN.

Assume now that 1 < p < + 0o andlet {f, } be a Cauchy sequence in LP (€2, X, it).
There is an increasing sequence {n}°; of positive integers such that ||f,,,, = fu.ll, <
2% k=1,2,.... Put g = Y o1 |fusr —fu|; monotone convergence theorem and
Minkowski inequality imply

00 p ! p
||g||§ = /5‘2 <I§ Ifnk+1 _fnk|> dp = /S;ll—lglo (’g lfﬂku _f”k|) du

1 p
= lim / (Z e —fnk|) du = lim
I=00 Jo \j=1 I—o00

!

p 0 p
f ll—lfgo (Z |Lfﬂk+1 _fnk”p) = (]; |Lfﬂk+1 _fnk”p) S 1)

k=1

)
Z If“k+1 _f”k |
k=1

p
p
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hence, g€ LP(2, X, ). Observe that if g(x) < 0o, then Z}ozol [fnj+1(x) -
fo,(x)| < 0o and for k > I, we have

[fi (%) = fu ()] =

]ill(fnm (x) _fﬂj(x)) = kij lfn,“ (x) _fnj (x)| -0
J= o

as | — 00. This means that {f,, (x)} is a Cauchy sequence in R. Hence, f,, — f a.e.
with f being finite a.e. But |f,,, | < |fs,| +& k= 1,2,...,impliesthatf € LF(2, X, u).
Now |f, =P < (|f| + |fu | + &) a.e; thus by LDCT we know that ||f,, —fll, —
0 as k — oo; this fact, together with {f,} being a Cauchy sequence, implies that
Il fu —=fll, = Oasn — 00.Hence LP(R2, X, 1) is complete. ]

Exercise 2.7.7 Suppose that {f;} is a sequence in LP(2, X, ), 1 < p < 00 such that
fi] < g a.e. for each k for some g € LF(2, X, ). Assume that limy_, o fy = f a.e.
Show thatf € LF(2, X, 1) and limy_, oo ||k = f1l, = O.

Exercise 2.7.8 Let f € I’(2, X, ), 1 < p < 00. Show that for any & > 0, there is
a bounded function g in L*(£2, ¥, /) such that ||f -gll, <e. (Hint: choose g as a
truncated function of f, i.e., for some M > 0, g(x) = f(x) if |f (x)| < M, and g(x) = 0
otherwise.)

Exercise 2.7.9 Suppose that {f;} is a sequence in L (€2, X, ) with > 7, [Ifell, < o00.
Show that Y °, fi converges and is finite a.e. on Q and is in LF(2, &, u) with

” Zzlfk”p = Zlfil |Lfk||p

Exercise 2.7.10 Suppose that {f,} is a convergent sequence in L*(2, X, ), p > 1.
Show that {f,} has a subsequence which converges a.e. on 2. (Hint: there is a

subsequence {f,, } of {f,} such that 3 %) [fus. = fu.,ll, < 00.)
Exercise 2.7.11 If u(2) < oo,showthat L1(2, X, u) C LP(2, X, ) forl <p < q.
Show also that for f € LF(2, X, u), |[fll, < |Lf||qu(§2)%f$ forqg > p.

Exercise 2.7.12 Suppose that 1 < p < r. Show that for any g strictly between p and r,
LU(Q, X, 1) CLP(Q, X, 1) +L(2, %, 1n).

2.8 Miscellaneous remarks

Some remarks complementing discussions presented so far in this chapter are now in
order.

2.8.1 Restriction of measure spaces

If ¥ is a o-algebra on © and A € X, then the family X|[A:={BNA:Be€ X}isa
o -algebra on A, called the restriction of X to A. If, further, (€2, £, 1) is a measure space,
the measure space (A, X|A, 1) is called the restriction to A of the original one. Since
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Y|A C X, p is defined on X|A, and hence (A, X|A, 1) is indeed a measure space with
p being understood to be restricted to X|A. Suppose now f is a X-measurable function
on €2, f|4 is then clearly a ¥|A-measurable function on A, and if f o fdu exists, so does
[ flad, and [, f|adu is obviously the same as [, fdu := [, fladu (cf. Exercise 2.5.7).
But it might happen that [, f|adu exists without [, fdi being defined, suggesting that
it is convenient sometimes to consider (A, X |4, w) instead of (€2, 3, i ); when this hap-
pens, it will be clear from the context and one does not revert to the formal procedure
described previously.

2.8.2 Measurable maps

Suppose (2, %) and (2, £) are measurable spaces. We say that a map T from Q into
€ is measurable (more prec1sely, ) |Z -measurable) if T"'A € X for every A € =.In
particular, if Q= R and T = B, then T is what we call a measurable function on Q. If
(2,2, 1) and (Q E [1) are measure spaces, then a measurable map T from €2 into Qis
measure preserving if w(TA) = 1(A) forevery A € . Now, iff is a measurable func-
tion on € and T is a measure- preserving map from £2 into Q, then f o T is measurable
on £2; furthermore, fﬁ fd[u exists if and only if f of o Tdu exists, and

/ﬁfdﬂ = /Qfonu

if either side exists. This is easily verified, if f is nonnegative; in the general case, one needs
onlytonotethatf o T =f o T-f o T.

We note at this point that if the measurable space structure of (22,%) and (Q 2) is
to be emphasized, a map T : €2 — € will also be called, by abuse of language, a map
from (2, X) to (Q E), and a measurable map from (2, ¥) to (Q E) means a E|E
measurable map from €2 to Q.

It is readily verified that if (€2;, 3;) is a measurable space fori = 1,2, 3 and T; is a meas-
urable map from (€2, ¥;) to (€241, iy1) fori = 1,2, then T, o T} is a measurable map
from (€21, ;) to (€23, 3); in particular, if f is a measurable function on (€2, ¥) and
g a Borel function on R, then g o f is a measurable function on (€2, ¥). In words, this
means that a Borel function of a measurable function is measurable; however, we shall
see in Example 4.7.2 that a measurable function of a continuous function may not be
measurable.

2.8.3 Complete measure spaces

A measure space (2, X, i) is complete if every null set is in X. One can construct a
complete measure space (€2, ¥, ji) from a measure space (2, X, i) in the following way.
Let ¥ = {B C Q:3C,Din X such that C C B C D and u(D\C) = 0}. It is clear that
¥ is a 0-algebra on 2. Now define a set function ft on X by

i(B) = n(C), (2.4)
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if C C B C D, where C and D are in ¥ with ;£(D\C) = 0. We claim that (2.4) is well
defined; this amounts to showing that if 6, D are in ¥ such that C C BC D and
w(D\C) = 0, then 1£(C) = p£(C). Now from CUC C B C D and u(D\[ CU/C?]) <
n(D\C) = 0, we infer that £(CUC) = (D) = u(C). Similarly, n(cu C) = ,u(C),
hence ,u(C) = £(C) as claimed. fi is obviously a measure on . Suppose B € x
with 1(B) = 0 and consider S C B. There are C and D in ¥ such that C C B C D,
w(D\C) = 0, and £(C) = 0. Observe that (D) = 0. Since # C S C D and u(D\@) =
w(D) = 0,S € X. This means that (2, X, 1) is complete. When (€2, X, 1) is complete,
one sees readily that (2, ¥, ji) is the same as (2, &, 11 ). The measure space (€2, >, i)
is called the completion of (R, =, it). Clearly, © C X and /i is an extension of /1.

Exercise 2.8.1 Show that if f is %.-measurable, then there is a ¥ -measurable function f
such that f = f ft-a.e. and that f is ft-integrable if and only if f is pt-integrable.

2.8.4 Integral of complex-valued functions

So far only real-valued functions are considered in regard to measurability and integra-
tion; now a brief account will be given for complex-valued functions.
A complex-valued function f defined on a set £2 can be expressed as

f=h+ih,

where f; and f, are finite real-valued functions defined by

fi(®w) = real part of f (w);
fo(@) = imaginary part of f (w),

for w € Q. Usually f; and f, are denoted respectively by Re f and Im f. If now (€2, &, i)
is a measure space, f is said to be measurable (more precisely, &-measurable), if both
Re f and Im f are measurable.

Exercise 2.8.2 Show that a complex-valued function f defined on €2 is measurable if
and only if it is X|B(C)-measurable; where B(C) is the o -algebra generated by the
family of all open subsets of the complex field C.

Ifboth Re f and Im f are integrable, f is said to be integrable and the integral |, fdu of
fisdefinedas [, Refdu + i [, Im fdju. Obviously, f is integrable if and only if |f| is integ-
rable, where |f| is the function defined by |f|(w) = |f(w)| = {Ref(w)* + Imf(a))z}% for
w € 2. One verifies easily that | [, fdu| < [, |f|du, iff is integrable, and that if f and g
are integrable, then af + Bg are integrable and [, (af + Bg)du = « [, fdu + B [, gdue

for any complex numbers o and f. For a complex-valued measurable function f, its
LP-norm ||f|lp, p > 1,is defined by

1l = -
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Then Holder inequality holds for complex-valued measurable functions, i.e.

Q

where p, g are conjugate exponents; in particular,

[

if fg is integrable. What also holds true is the Minkowski inequality,

< Ifll, - llgllg

If +glly < WFllp + lgllps

as can easily be verified. It is to be noted that since f and g are complex-valued, f + g is
defined on 2.

Now consider the space £F(2, X, i) of all complex-valued measurable functions f
such that ||f||, < oo. It follows from the Minkowski inequality that £LF (2,2, 1) is a
complex vector space. As in Section 2.7, if we let L7(€2, &, t) be the quotient space
LF(2, %, u)/N, where N is the vector subspace of LF(£2, X, i) consisting of all those
functions which are zero-valued almost everywhere. For [f] = f + N, f € LP(Q, =, ),
let [[f1ll, = IIfll,, then [I[f]ll, is well defined and LP(£2, X, i) is a complex Banach
space with this norm. As before, for f € £P(2, X, ), [f] will also be denoted by f, and
If11l, by IIfll; thus f may denote an element either of £F(€2, X, 1) or of LF (L2, X, 1)
as occasion prompts, and no confusion is possible.

Henceforth, L?(€2, £, i) will denote a real or complex Banach space as the situation
suggests.



Construction of Measures

Measure spaces provide a framework for classifying functions and for construction
of certain spaces of functions which prove to be useful in various disciplines of
mathematics; but appropriate measure spaces have to be available beforehand.

We therefore devote this early chapter to construction of measure spaces. A general
method, the inception of which began with the introduction of the Lebesgue measure
on R and Lebesgue measurable sets in IR by H. Lebesgue, will be treated firstly. This is
the method of outer measure. We shall follow the approach of C. Carathéodory, which
defines measurable sets without introducing the concept of inner measure of Lebesgue.
Construction of measure spaces from given ones by various operations will be considered

in Chapter 4.

3.1 Outer measures

A nonnegative set function p defined for all subsets A of a given set €2 is called an outer
measure on 2 if it is monotone and o -subadditive, i.e. (i) w(¥) = 0; (ii) 0 < u(A) <
u(B) if A C B; and (iii) M(U:ZlAn) < 3% i(A,), where {4,}52, is any sequence of
subsets of €2. Recall that a set function is required to take zero as its value at ¥ if {J is
in its domain of definition; (ii) is the condition of monotony; and condition (iii) is o -
subadditivity. A nonnegative set function 7 is said to be o -subadditive if T (| 2, A,) <
Z:ﬁl 7(A,) whenever A}, A,, . .. and U:il A, are in its domain of definition.

An outer measure £t on €2 is usually simply called a measure on 2. Sometimes we also
say that 1 measures €2. We emphasize that a measure on a set 2 and a measure ona o-
algebra on €2 are different objects; the former is an outer measure which is in general not
o -additive on 2%,

Let u be an outer measure on 2. Following Carathéodory, we say that a subset A of €2
is ;t-measurable if

n(B) = u(BNA) + (BN AY) (3.1)
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forall B C Qi.e, ifforany C C Aand D C A° we have

n(CUD) = u(C) + u(D).
Remark Since u(B) < u(BNA) + u(B N A°), (3.1) is equivalent to
p(B) > u(BNA) + (BN AY). (3.2)
It is easily verified that Q is p-measurable and that if w(A) =0, then A is
J-measurable.
Example 3.1.1 Let it : 2 > [0, +00] be defined by

(1(A) = cardinality of A if A is a finite set;

= 00 otherwise.

Obviously, 1 is an outer measure on 2 (recall that p is called the counting
measure on £2), and that every subset of Q is (-measurable. It happens that u is a
measure on 2.

Exercise 3.1.1 Let S C 2% have the following properties:
(i) W €S, (ii) f A€ S and B C A, then B € §, and (iii) if {A,}°°, C S, then
U, A € 8.
Define i1 : 2% — [0, 00] by

0 ifAeS

n(A) = ,
+00 otherwise.

Show that  is an outer measure on 2. What are the jt-measurable subsets of €22 If
now v : 2% — [0, 1] is defined by

v(A) = 0ifA € S,
= 1 otherwise,
then v is an outer measure on £2. What are the v-measurable subsets of 22

Exercise 3.1.2 Let (2, X, 1) be a measure space and w a nonnegative measurable
function. For A C , define j,,(A) = inf{ [, wdj. : B € £, A C B}. Show that 1,
measures $2 and every set in X is /t,,-measurable.

Suppose that i is an outer measure on 2 and A C €2, then the restriction of jt to A
denoted by i | A is defined by

nlA(B) = 1(ANB)

forB C Q.
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Exercise 3.1.3 Let 1 measure 2.

(i) Show that A C 2 is u-measurable if and only if A is 1 | B-measurable for every
subset B of €2.

(ii) Show that A is ;t | A-measurable as well as every jt-measurable set.

Exercise 3.1.4 Suppose that ;t measures €2 and that A is a ;i-measurable subset of €2.
Show that for any B C 2, u(A) + u(B) = u(AUB) + u(A N B). (Hint: evaluate
w1 (B) and (A U B) by using the definition of ;4-measurability for A.)

Exercise 3.1.5 Let i be an outer measure on 2. For A C €2, define

e(A) = inf{e(B) : A C B, Bis u-measurable};
wi(A) := sup{i(B) : B C A, Bis u-measurable}.

Show that if £ (A) < 00, then A is j-measurable if and only if 1, (A) = ©;(A).

3.2 Lebesgue outer measure on R

We construct in this section the Lebesgue outer measure on IR. This measure opens the
way for the development of modern theory of measure and integration.

For an open finite interval I = (a,b), let |I| = b — a be the length of I. If A is a subset
of IR, we denote by A(A) the set of all numbers of the form -, |I,|, where {I,} is a
sequence of open finite intervals such that |_J, I, D A, and let

2(A) = inf A(A).

Theorem 3.2.1 The set function A is an outer measure on R.

Proof Let ¢ > 0, and for each n let I, be an open interval of length £/2"; then since
(UL D ¢, wehave

00 00
Mp) <X |l =¢ed 2" =¢;
n=1 n=1

thus A(¢p) = 0.1fA C B,then A(A) D A(B),and hence A(A) < A(B). It remains to
show that if {A;} is a sequence of subsets of IR, then

A(L’CJA,C> < gk(Ak).

For this purpose, we may obviously assume that A(A;) < oo for all k. Nowlet & > 0
be given; for each k there is A € A(A;) such that

&
)\(Ak) <Al < )\(Ak) + ?
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Let Ap =Y o) |I,§k)|, where {I,Sk)},1 is a sequence of open intervals such that
U, 10 5 Ay Then, U:,Cl;l I® > U2, Ar, hence (cf. Section 1.2),

n

o0 o0 o0 o0 &
Z|I,Sk)‘ = szk)‘ = > e < D AA) +
mk k=1n=1 k=1 k=1 2k

0,0
= > A(A) + ¢
k=1

but since ka |Iflk)| € A(U,(:il Ap), )‘(Ul(:;Ak) < Zn’k|lflk)| < Z;::l)\.(Ak) +é.
Now let & decrease to zero; we obtain

A(gAk) < YA (A).

k=1
This proves that A is an outer measure on IR. |

The measure A is called the Lebesgue measure on IR. We shall show later that A admits
a fairly large class of A-measurable sets, but, for the moment, we content ourselves by
showing that every finite open interval I is A-measurable and A(I) = |I|. For this purpose,
we prove first alemma which foresees the method of Carathéodory outer measures, to be
introduced in Section 3.5.

Lemma 3.2.1 Foreache > 0,and A C R, let A.(A) be the set of all numbers of the form
> o2 |In|, where {1} is a sequence of open intervals such that A C |, I, and |I,| < &
for each n. Then A(A) = inf A, (A).

Proof Since A.(A) C A(A), A(A) < inf A (A). Observe now for any finite inter-
val I and & > 0, there are a finite number IV, ..., I%®) of open intervals such that
IC U]].Czl 19, |I(j)| <égj=1,...,k and Z}il |I(j)| < |I] + 8. Suppose that {I,,} is
a sequence of open intervals such that I, D A; then for any § > 0 and each 7,
let If,l), .. .,If,k“) be open intervals such that |I,(l])| <é&j=1,...k, I, C Ufz”l I,(,]),
and Z]I.C:"I I,SJ)| < |L,| + 8/2". Obviously, o = 3", Z]I.c:”l I,S])| isin A,(A) and o <
> > |Iu| + 8. We have shown that given § > 0, for B € A(A) thereis @ € A,(A)
such that @ < B + 8. This, means that inf A, (A) < A(A) +J; let § \ 0, we have
inf A;,(A) < A(A).Hence, A(A) = inf A, (A). [ |

Proposition 3.2.1 Euvery finite open interval I is A-measurable and A(I) = |I.

Proof Let I = (a,b) and, for 0 < ¢ < %(b —a),let ]=(a+e¢b-c¢). For a subset A
of R, consider any sequence {I,} of open intervals with |I,| < & for all n and A C
Uz LiLletdy ={n:L,N] #¢}tand P, = {n: [, N(ANI) # ¢}, thent N, =
¢ and

illnl > 3L+ X L] = AAN)) +A(ANT),
n=1

ne, nev,



Lebesgue outer measure on R | 69

from which it follows, by Lemma 3.2.1, that

AMA) > A(ANT]) + A(ANI).
But it s clear that

AMAND < AAN]) +2e,
hence,
AMA) = AAND) +A(ANT) - 2¢.

Let & N\ 0; we have

AA) > A(ANT) + A(ANT).

Therefore I is A-measurable.
To show that A(I) = |I|, we observe first that A(I) < |I|. It remains to show that
A(I) > |I|. For this purpose, we claim first that if I, . . . , I are finite open intervals

such that U]I.ll I; O ], where ] is a closed interval, then Z}il |I;| > |J]- This claim fol-
lows by induction on k: if k = 1, this claim obviously holds; suppose that the claim
holds for k — 1 and assume as we may that I contains the right endpoint of ], then

U]k;ll I; D J\Ix and hence by our induction hypotheses,

k-1
j=
thus,
k
= DV + I < 0
j=

Let now {I,} be any sequence of finite open intervals with I C |-, I,. Consider

any closed interval | in I. Since ] is compact, there is k € IN such that U)I;l I DJ.
From the claim just established, we have

k o0
Ul = 2151 = |51,
j=1 j=1

hence, |J| < inf A(I) = A(I). Since |J| can be chosen as close to |I| as one wishes,
[I| < A(I). This proves the proposition. [

Exercise 3.2.1 Show that any finite closed interval ] is A-measurable and A(J) = |]|.
(Hint: A({x}) = 0forx € R.)
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Exercise 3.2.2 Show that sets of the form (a, 00) or (-00, a) are A-measurable.

Exercise 3.2.3 Let A C IR. Show that there is a sequence {G, } of open sets containing
Asuch that L(A) = )\(ﬂ::l G,).

3.3 X-algebra of measurable sets

Suppose that p is an outer measure on €2 in this section. We reiterate that an outer
measure on a set is also simply called a measure on the set.
Proposition 3.3.1 If A is ii-measurable, then sois Q \ A = A“.
Proof Obvious. [ ]
Proposition 3.3.2 IfA;, A, are (t-measurable, then so is A; U A,.
Proof LetB C 2, then
u(B) = w(BNA) + u(BN AS)
= w(BNAY) +un((BNA)NA) +u((BNAS)NAS
> n(BN (AL UAy)) + (BN (A UA)Y),

because BN (A; UA,) = (BNA;))U(BNA) =(BNA)U(BNANA). N

Remark By induction, the union of finitely many jt-measurable sets is jt-measurable.
This fact, together with Proposition 3.3.1, implies that the intersection of finitely many
(-measurable sets is (t-measurable.

Proposition 3.3.3 If {A;}, is a disjoint sequence of j1-measurable sets in 2 and B C £,
then

u(B N {GAj}> = > u(B NA;).

j=1 J=1

Proof Let nbe a positive integer, then, since U;;l Aj is ji-measurable, we have

(rf0a) = {usf o {Us]) <nonfa o {Un])

:M(Bﬂ{@Aj}>+M(BmAn)=...:

w(50{0a}) = (a0

> (B4
j=

then,

(@
Cs=

A,-}) = Xn:M(B N A))

j=1

-
1l
1]

—
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for all n, hence

,u(B N {GAj}) > g,u(B NA).

j=1

But u(B N {U;’j1 Aj}) = M(Uj’jl BNAj) < Z;’fl p(B N A;}), by o -subadditivity of

outer measures. [ ]

Proposition 3.3.4 If {A;}, is a disjoint sequence of ji-measurable sets, then Uf:ol A; is
U-measurable.

Proof LetB C £, then

M<ij[=’le,.) cu(Bn {(’jAD

< glju(B NA)) +M<Bﬂ { Aj}c) + ioj n(BNA))
A

-

=

J

(oo ] o] s

w(B)+ > (BN A).

j=n+1

1l
—

j=n+1

If Z}ozol (BN A;j) < 00, byletting n — 00 in the above inequality, we have

//«(B N GA;) + M(B N {GAi}C> < u(B); (3.3)

=1 =1

whileif )5 (B N A) = 0o, then w(B) > u(BNUJT4) = 5 u(BNA) = oo;
hence (3.3) also holds. |

If we denote by X# the family of all ;t-measurable sets, it follows from Propositions
3.3.1, 3.3.2, and 3.3.4 that X# is both a -system and a A-system and is therefore a
o -algebra; while p is 0 -additive on X* by Proposition 3.3.3. Since X# contains all those
subsets A of €2 such that £(A) = 0, we have shown the following theorem.

Theorem 3.3.1 T* isao-algebra and (2, X, j) is a complete measure space.

For later reference, (€2, £#, i) is called the measure space for t; and X#-measurable
functions are sometimes said to be t-measurable.

We have pointed out in Section 2.4 that the monotone limit property for increasing
measurable sets, as stated in Lemma 2.4.1, reveals in a simple way the salient role played
by o -additivity of measures in the theory of measure and integration. Some outer meas-
ures possess the monotone limit property for increasing sets without requiring them to
be measurable; regular measures are among them. A measure 1t on €2 is said to be regular
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if for each B C €2, there is a t-measurable set A D Bsuch that £(A) = u(B); more gen-
erally, if ¥ is a subo -algebra of X#, we say that p is X-regular if for each B C 2, there is
A € X suchthat A D Band u(A) = u(B).

Theorem 3.3.2 IfA; C A, C--- C -+ is a sequence of sets in 2 and [ is a regular
measure on 2, then

M(L]JA;') = lim ju(A,).

Proof We always have
M(UA,) > lim u(A,). (3.4)
]- n—0oo

For each j, let B; be a p-measurable set such that A; C B; and wu(4A;) = u(B)).
Nowlet C; = (), By, then C; D Aj and u(C;) = pu(A;) for eachjand C, U]. C.
Therefore,

n>j

(U4 ) = w{ UG | = lim pu(C,) = lim pu(A,),
() 5(1ge) - st - g

or
0 (UA,-) < lim pu(4,).
j n—00
This last inequality, together with (3.4), proves the theorem. |

Example 3.3.1 The Lebesgue measure A on IR is a regular measure. This follows from
Exercise 3.2.3.

Exercise 3.3.1 Suppose that p is a regular measure on €2 and that B C Q2 with
u(B) < 00.Show that thereis A € £ suchthat A D Band u(CN A) = u(CN B),
for every C € X*. (Hint: show thatany A € X* satisfying A D Band (A) = u(B)
will do.)

3.4 Premeasures and outer measures

Let 2 be a nonempty set, G a class of subsets of 2 containing ¥, and 7: G — [0, +00]
satisfy T()) = 0. Recall that such a set function 7 is called a premeasure.
For a premeasure T, define 7* : 2% — [0, +00] by

7(A) = inf Zr(Ci), ACQ.

{cIXcg

CiDA
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Then t* measures 2 and is called the (outer) measure on €2 constructed from 7 by
Method I. That 7* is an outer measure on €2 follows from the same arguments as in the
proof of Theorem 3.2.1 to show that A is an outer measure on IR.

Example 3.4.1 The Lebesgue measure on R".
A set of the form I; x - -+ X I, in R", where I, ..., I, are finite intervals in IR,
is called an oriented rectangle or an oriented interval, and ]—[;l:l |I;| is called the
volume of the rectangle. Let G be the class of all open oriented rectangles in IR" and let

7(I) = volume of I if I is an open oriented rectangle.

For convenience, the empty set is considered as a degenerate open oriented rect-
angle and hence G contains the empty set #J and 7 () = 0. The measure 7* on R" is
called the Lebesgue measure on IR". The Lebesgue measure on IR" will be denoted
by A" and A"-measurable sets are called Lebesgue measurable sets. In conformity
with the notation for Lebesgue measure on IR, introduced in Section 3.2, A' will be
replaced by A. We shall denote by L the 0 -algebra of all A"-measurable sets in R" and
call £"-measurable functions Lebesgue measurable functions. Naturally, £ is to be
replaced by L. But, habitually, Lebesgue measurable sets and Lebesgue measurable
functions are usually called measurable sets and measurable functions, in this order.
Accordingly, A"-integrable functions are Lebesgue integrable and usually simply
called integrable functions. It is easily verified that if one considers closed oriented
rectangles instead of open ones in the above construction, one arrives also at A".

Exercise 3.4.1 Fore > 0,let G, be the class of all open oriented rectangles in IR" with
diameter < ¢, and 7, (I) = volume of I for I € G,. Show that the measure 7* on R" is
the Lebesgue measure.

Exercise 3.4.2 Let A" be the Lebesgue measure on R".

(i) If A,B C R" and dist(A, B) := infxez; |x—y| > 0, then A"(AUB) = 1"(A) +
S
A"(B).

(ii) Show that A"(I) = volume of I if I is an open oriented rectangle. (Hint: use
Lemma 1.7.2 to show A"(I) > volume of I.)

(iii) Show that every open oriented rectangle is A"-measurable and hence so are
open sets and closed sets in IR". (Hint: pattern the first part of the proof of
Proposition 3.2.1.)

iv) Show that any hyperplane in IR” has Lebesgue measure zero.
(iv) y hyperp gu
(v) Showthat {x € R" : |x| = r} has Lebesgue measure zero.
(vi) Show that for any A C R", A"(A +«x) = A"(A) for x € R", and A"(A) =
y
loe]"A"(A) fora € R.

Example 3.4.2 Let I = [a;,b;] X -+ X [ay, b,] be a finite closed oriented interval
in R". We assume that I is nondegenerate, i.e., ap < by for all k=1,...,n. By
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Exercise 3.4.2 (iii), continuous functions on I are Lebesgue measurable. Since con-
tinuous functions on I are bounded, they are Lebesgue integrable due to the fact
that A"(I) < 0o. We claim that for a continuous function f on I, fI fdA" is the same
as fai" ‘e f:ll f(x1, ..., %,)dxy - - - dax,, the Riemann integral of f over I. To see this,
recall first that a step function g on I is a function which takes constant value on each
of a finite number of disjoint oriented intervals in I; the union of which is I. Since f is
continuous, there is a sequence {gi } of step functions converging uniformly to f on I;
then limy_, o flgkdk” = fIfd)L". But {fI gkdA"} is a sequence of Riemann sums of f
which tends to f::" e fi‘f(xl, ..., %,)dx; - - - dx,, hence our claim holds. We shall
show in Section 4.2 that a Riemann integrable function on I is Lebesgue integrable,
and its Lebesgue integral and Riemann integral are the same.

Example 3.4.3 A continuous function f on IR is clearly Lebesgue measurable.
We claim that f is Lebesgue integrable if and only if the improper integral
f_ii f(x)dx converges absolutely. Suppose first that f is Lebesgue integrable.
Then |f| is Lebesgue integrable, hence f_c;c; [f|dA = lim,_, fIR [f [ T=nmdA =
lim,—, f[_n i |[f|dA, by the monotone convergence theorem as well as by LCDT.

But f[_n ] If|dA = f_nn |f(x)|dx, as we have shown in the previous example, thus,

f_c:; |f (x)|dx = lim,—, oo f_"n If (x)|dx = lim,—, oo f[—n,n] If|dA = f_o; |fldr < oo, or
f_f; f(x)dx converges absolutely. Conversely, if f_o; f(x)dx converges absolutely,

then fioo [f|dA = lim,,_, o f[fn,n] If|dA = lim, o0 fj; |f (%) | dax = fj; |f (x)]dx < o0.
Hence, |f| is Lebesgue integrable, and so is f. One sees easily that if either f is

Lebesgue integrable or f_zoo f(x)dx converges absolutely, then [, fdA = f_o; f(x)dx.

Exercise 3.4.3 Let f be a real-valued continuous function on IR. Show that f is
Lebesgue integrable on R if and only if for every sequence {I,} of finite disjoint open
intervals, the system { [, f(x)dx}, is summable.

Exercise 3.4.4 Show that
oo o0 St
/ Sdx = 2> (-1y / xH dx
o l+x j=0 0
for 0 < t < 1; then show that

Lo 0 |
dx = (_1)]_)
/ S0

1+x?
and evaluate Z;fo(‘l ) 1%1

Exercise 3.4.5 Suppose that f is Lebesgue integrable on IR. Define a function g on IR by

g(x) :=/ fdr, xelR.
(—OO,.’)C)

Show that g is a bounded and uniformly continuous on IR.
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Exercise 3.4.6 Find continuous functions f and g on (0,00) such that f and g* are
Lebesgue integrable on (0, 00), while f> and g are not Lebesgue integrable on (0, 00).
Compare this exercise with Example 2.7.2 and Exercise 2.7.11.

Exercise 3.4.7 Let f be a continuous function on IR* and suppose that its improper
integral on IR? is absolutely convergent. For integers m and n, let

n+l m+1
oy :f f f(x,y)dxdy.

(i) Show that {@u }(mu)e zx7z is summable.
(ii) Show that fIR f(x,7)dX(x) is a Borel measurable function of y.

(iii) Show that ff]sz(x,y)dxdy = f]szd)»z = fIR (fRf(x,y)d)»(x)) dr(y).

(Hint: assume first that f(x,y) > 0. For positive integer n, F,(y) =
f[_n n]f(x,y)dk (x) is a continuous function of y.)

Exercise 3.4.8

(i) Show that f_zoo f_(:; ) dxdy = (f_o; et dt)2,
(ii) Evaluate f_o; f_cfo e‘(x2+y2)dxdy, by using polar coordinates, and then find
[ etat.

Exercise 3.4.9 Find the following limits:

(i) lim,— oo fooo(l + %) sin( %) da.
(i) limyooo f; (1 4+ na?)(1 +2%)"dx.
(iii) lim,_ 0o fooo nsin(*)[x(1 + x*) ] Ldx.

(iv) lim,—oo [y (1+ 2)"e > du.

Exercise 3.4.10 Leto = f_f; e dx; show that

/ x2e™ dx = (2n)!(4"n!) .

o0

Exercise 3.4.11 Show that limy o [ «"(1 - x/k)*dx = n!.

Exercise 3.4.12 Show that the improper integral fol f—; In idx exists and equals
> 1o (p > 0). (Hint: expand —- as a geometric series over [0,1 — &] for 0 <
=1 (p+) p Xp 1-«x 8
e <1)

Exercise 3.4.13 Suppose that f is a Lebesgue integrable function and ¢ is a bounded
continuous function on IR. Show that F(x) = fJR f(»)@(x - y)dr(y) is a continuous
function of x in R.
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Example 3.4.4 Suppose that f is a function defined on IR? such that (i) x — f(x,y) is
Lebesgue measurable for each y, (ii) for A-a.e.x € R, f(«, ) is a continuous function
ofy, and (iii) there is a Lebesgue integrable function g on R such that |f (x, y)| < g(x)
for A-a.e. x and for all y. Show that the function defined by

E(y) = fR fyds yeR

is a continuous function on RR. Let y € R and {y,} a sequence in R converging

to y. Put f,(x) = f(x,y,), then f,(x) — f(x,y) and |f,(x)| < g(x) for A-a.e. x in RR.
It follows then from LDCT that lim, .~ F(y,) = F(y). Hence F is continuous on IR.

Exercise 3.4.14 Letf and g be as in Example 3.4.4. Assume further that y — f(x,y) is
continuously differentiable for A-a.e. x and there is an integrable function  on IR such

that |%f (%,y)| < h(x) for A-a.e. x and for all y. Let F be defined as in Example 3.4.4
show that F is continuously differentiable on IR and

F(y) = fR %f(»c,y)dx, yeR

Exercise 3.4.15 Define a function f on (0, 00) by

e ¢ e—tzx
f<x)=f0 i e (000)

Show that f is continuously differentiable on (0, 00) and is a solution of the equation
y —y+ ‘/T; \/L& =0.

Exercise 3.4.16 Suppose that f is a continuous integrable function on R. Show that
the function F : R — IR, defined by

R = 5 [ e 00)

solves F” - F = f on R.

Measurability of a given function is sometimes an issue, and is usually decided by
whether it is the limit a.e. of a sequence of measurable functions. We illustrate this using
an example.

Example 3.4.5 Suppose that f(+,y) is continuous on [0, 1] for each y € [0, 1] and
f(x, -) is continuous on [0, 1] for each x € [0, 1]. Then f is Lebesgue measurable on
[0,1] x [0, 1].

Proof Foreachn € R, definef, : [0,1] x [0,1] by

fu(%,) =f(x,§>,
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if% <y< %, k=0,1,...,n- L. Since the restriction of f, to [0, 1] x [%, I%l) is
continuous fork = 0,...,n - 1, f, is Lebesgue measurable on [0, 1] x [0, 1) for each
n € IN. To show the measurability of f, it suffices to show that f, converges to f
pointwise as n — 00. Fix (xg,0) € [0,1] X [0,1). For each & > 0 given, there is
8 = 8(x0,y0) > Osuch that |f(xo,y) - f(x0,50)| < €if[y - yo| < & by the continuity

of f(xo, -). Thus for each n > %,

<e,

|f (x0, y0) = fu(x0, 30)| = P(xo;yo) -f (xo, S)

where k = k(yo, n) with % <y < % Therefore, lim,,—, o f, (%0, y0) = f (%0, y0), and
hence f is Lebesgue measurable. |

Foranonempty class G of subsets of a set €2, denote by G, the family of all those count-
able unions of sets from G, and by G, 5 the family of all those countable intersections of
sets from Gy ; in parallel, the families G5 and G5, are defined by interchanging countable
unions and countable intersections. In a metric space, a countable intersection of open
sets is called a Gg-set and a countable union of closed sets is called a F, -set.

Proposition 3.4.1 Let v be a premeasure with domain G and suppose that there is
{G,}22, C G such that |, G, = Q2. Then for every B C , there is A € Gy such that
A D Bandt*(A) = t*(B).

Proof From the definition of t* and the assumption that there is {G,} C G such
that |, G, = Q D B, one infers that there are {ng)}n C G k=123,..., with
the property (J, G,Sk) D B for each k and limj_o ), 7(G®) = t*(B). Put A =
MU, GW, then A € G,s and A D B. It is clear from the definition of r*
that 7*({J, Gﬁk)) <> ‘L’(Gflk)), and consequently that 7*(A) < infy *(|, ng))
<liminfi o0 ), ‘L’(ng)) = 1*(B). But B C A implies 7%(B) < t*(A), hence
7*(A) = T*(B). [ |

Exercise 3.4.17

(i) Show that for any B C IR” and & > 0, there is an open set G D B such that
A"(G) < A*(B) + €.

(ii) ShowthatforanyB C IR”, thereisa Gs-set AinIR"” suchthat A D Band A"(A) =
A"(B).

Some applications of the method of constructing measures presented in this section
will now be considered. Firstly, an extension theorem of Carathéodory—Hahn is to be

established.

Theorem 3.4.1 (Carathéodory-Hahn) Suppose that T is a o-additive set function on
an algebra A on S, and let T* be the measure on Q2 constructed from T by Method L
Theno (A) C 7 and t(A) = T(A) for A € A. Furthermore, if T is o -finite, then the
restriction of T* to o (A) is the unique measure on o (A) extending t.
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Proof If we show that A C X7 and t*(A) = 7(A) for A € A, then the first part of the
theorem is proved. For A € A and B C , consider an arbitrary sequence {4, } in A
satisfying _J, A, D B, then

{A,NA}C A, {A,NA}C A

U@, NnA) >BNA, [JA, NAY) DBNA
n n

Hence,

Yot(A) =D t(A,NA)+ ) (A, NA") > t*(BNA)+ T*(BNA),

from which follows that
*(B) > t*(BNA) + T*(BN AY),

andthusA € X7,
To see that T(A) = 7*(A), observe first that T(A) > t*(A); to show 7(A) <
7*(A), pick any sequence {A,} in A with | J, A, D A and verify that

Se(A) = Y r(An4) = T (U[An mA]) _ ()

n n n

from o -subadditivity of T (cf. Exercise 2.1.1. (iv)), concluding that t*(A) > 7(A).

Suppose now that v is a measure on o (\A) such that v(A) = 7(A) for A € A. We
claim that v(A) < 7*(A) for A € 0 (A). Let A € 0(A), and consider an arbitrary
sequence {4, } in Awith [ J, A, D A. Then,

v(4) = X v(An) = 2T (4)),

concluding v(A) < t*(A).

If T is o -finite, there is an increasing sequence 2; C 2, C --- C 2, C --- in A
such that 7(£2,) < oo forall nand | J, €2, = €. For each n, from what we have just
claimed, we have for A € o (A),

v(Q2\[2, NA]) < 77 (Q,\[R, NA]),
or
V(Qn) - V(Qn nA) = T*(Qn) - t*(Qn ﬂA),

from which, using the fact that v($2,,) = 7*(2,) = 7(R2,) < 00, we have

(2, NA) > 1"(Q,NA).
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Let n — 00 in the last inequality; it follows that v(A) > 7*(A). This shows that
v(A) = 7*(A) for A € 0(A), completing the proof of the second part of the
theorem. [ |

Example 3.4.6 (Continuation of Example 2.1.1) Consider the sequence space €2, the
algebra Q of all cylinders in €2, and the set function P, defined in Section 1.3. We
know from Example 2.1.1 that P is o -additive on Q. Note that P(£2) = 1. Now by
Theorem 3.4.1, P can be extended uniquely to be a measure on 0 (Q); then the
probability space (€2, 0(Q), P) is referred to as the Bernoulli sequence space. One
can verify easily that the set E defined in the last paragraph of Section 1.3 is actu-
ally in 0 (Q) by observing that E, := {w € Q: % - % < S % + %} € Q for
n, k in N; P(E) therefore has a meaning. Note that if w = (w;) € €, then {w} =
E(wy) NE(wy,wy) N+ NE(wy,...,w)n) N---;hence any singleton set in 2 is in
0 (Q), and clearly the probability of any singleton set is zero.

Theorem 3.4.1 contains the fact that the method of outer measure is universal in
constructing measure spaces.

Corollary 3.4.1 Given a measure space (2, X, i), the measure u* on Q constructed from
w (considered as defined on X) by Method I is the unique X -regular measure on Q2 such
that u*(A) = u(A) forA € %.

Proof By Theorem 3.4.1, ¥ C ©* and u*(A) = u(A) for A € X. Since X5 = 3, it
follows from Proposition 3.4.1 that ©* is X-regular.
To prove uniqueness, let v be a X-regular measure on 2 such that v(A) = w(A)
for A € ¥.We claim that v = u*. Actually, for any set B C €2, there are A; and A; in
Y suchthatA; D B,A; D B, u*(A;) = u*(B),and v(A;) = v(B).PutA = A; N A,
then

w*(Ar) = u*(A) = u*(B) = n*(Ar);
v(42) = v(A) = v(B) = v(4y),

hence, u*(B) = u*(A) and v(B) = v(A). But A € T implies that v(A) = u(A) =
w*(A). Thus u*(B) = v(B). [ |

Exercise 3.4.18
(i) If (R, X, 1) is o -finite, show that for A € X/ thereis B € X such that B D A
and u*(B\A) = 0.

(ii) If (2, X, i) is o -finite, show that (£, £+, u*) is the completion of (2, X, 1)
(cf. Section 2.8.3).

(iii) If u measures Q2 and £ = X#, show that u* = u ifand only if  is regular.

Remark Because of Corollary 3.4.1, we may consider any measure space (€2, £, /t) as
obtained by restricting to X the X-regular measure ;£* on £2. Note that if ;¢ is a measure
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on €2, the measure u* on €2 constructed from p as a measure on X* by Method I is in
general different from the original measure 1 on 2 (cf. Exercise 3.4.18 (iii)).

Theorem 3.4.2 Let A, T be as in Theorem 3.4.1. Then X% is the largest o-algebra
containing A on which T* is o -additive.

Proof Let ¥’ be a o -algebra containing A on which 7* is o -additive. We shall show that
Y C X% .LetA € X'and B C Q.Fore > 0, thereisasequence {A, } in A such that
BcCJ,Aand ), 1(A,) < t*(B) + &.PutH = | J, A,, then H, HN A, H N A are
in X/, and

T(B)+e =) t(4,) =3 T(4) = TV (H)
=t*(HNA)+1t*(HNA") > t*(BNA) + t*(BNA)
> 7%(B).

Let ¢ \{ O in the last sequence of inequalities; we obtain t*(B) = t*(BNA) +
7*(B N A%), concluding that A € X7 . ]

Exercise 3.4.19 Use the (7-A) Theorem to prove the second part of Theorem 3.4.1.
Exercise 3.4.20

(i) Show that the measure on R" constructed from the restriction of A" to 3" by
Method Tis A",

(ii) Show that A" is not o-additive on any o-algebra on R" which contains £"
strictly.

3.5 Carathéodory measures

We shall consider in this section a class of measures on metric spaces which plays an
important role in analysis. For this purpose, we first introduce some useful notations. For
a metric space X with metric p and for nonempty subsets A, B of X, let

A B) = inf .
p(A,B) xeg’lyeBp(x,y)

When A = {x}, p({x},A) is written simply as p(x,A). In the case of R” with the
Euclidean metric p, p(A, B) is usually denoted by dist(A, B) and is called the distance
between A and B. Recall that for a metric space X, we use 3(X) to denote the o -algebra
generated by the family of all open sets of X and that sets in 5(X) are called Borel sets.

Let 1 be a measure on X, with X being a metric space, u is called a Carathéodory
measure on X if (A U B) = w(A) + w(B) whenever p(A,B) > 0.

Example 3.5.1 The Lebesgue measure on IR" is a Carathéodory measure (cf. Exercise
3.4.2(i)).
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Theorem 3.5.1 If w is a Carathéodory measure on a metric space X, then every closed subset
of X is (t-measurable.

Alemma precedes the proof of the theorem.

Lemma 3.5.1 LetA; C Ay, C -+ CA, C Ay C -+ beanincreasing sequence of sub-
sets of X such that for each n, p(A,, AS,,) > 0. Then,

u(gAn) = sup w(Ay).

Proof Obviously, /’L(U::lAﬂ) > sup, ((A,).
To show that M(U::IA,,) < sup, (A,), we may assume that sup, j1(4,) < +00.
LetD; =Ay,D, =A, \Ay,...,D, =A, \ A,_1,....Byour assumption, for any n
and m > n + 2, we have dist(D,, D,,) > 0. Then,

u(DyUDsU---UDyy) = u(Dy) + u(D3) + - - + 4 (Dak1) 5
u(Dy UDy U ---UDy) = u(Dy) + iu(Dy) + - - - + £ (Do)

for each k. Now,

k
Y u(Dyjo1) = (D1 UD3 U -+ UDy ) < u(Ager) < sup iu(A,) < +00,
j=1 n

implying that ZJO:OI p(Dyj_1) < oo. Similarly, Z;;OIM(DZj) < +00. Then,

) o D)o )

j=n+1 j=n+1

= M(An) + i /’L(Dj);

j=n+1

from which by letting n — 00, we have

M(QAj) < sup n(Ay). .

Proof of Theorem 3.5.1 Let F C X be a closed set, and let A C F, B C F*. For each
n e N, let

1
Bn={x€B:p(x,F)>—}.
n

Then, since F is closed, we have Ui:an = B. Obviously, By C B, C --- C B, C
B,.1 C ---.Now,

/O(Bn)B \ Bn+1) Z

>0
n(n+1) ’
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hence, by Lemma 3.5.1 (applied to the metric space (B, p)),

o
supu(8,) = 12 U ) = ),
n n=1
and since p(A, B,) > p(F,B,) > % > 0,

n(AUB) > u(AUB,) = u(A) + u(B,)
for each n; thus,

W(AUB) = u(4) + sup u(B,) = u(A) + u(B). u

Corollary 3.5.1 If v is a Carathéodory measure on a metric space X, then all Borel subsets
of X are -measurable.

3.6 Construction of Carathéodory measures

Let X be a metric space and 7 : G — [0, +00] a premeasure on X. For & > 0, define a
measure T, on X as follows. For A C X, let

7.(A) = iant(C,-),

where the infimum is taken over all sequences {C;} C G such that | J,C;i D A and
diam C; < ¢ for each i; 7, is the measure constructed from the restriction of 7 to G, =
{C € G : diamC < &} by Method L. Since 7.(A) increases as & decreases for A C X,
lim,_, o 7, (A) exists and we define

9(A) = lim 7.(4), A C X.
£—

Exercise 3.6.1

(i) Show that ¢ is a Carathéodory measure on X.

(ii) Show thatif G consists of open sets, then for any A C X there isa Gs-set B D A
such that 79(A) = t94(B).

We shall call 79 the measure constructed from premeasure T by Method II.

Exercise 3.6.2 Let G be the family of all bounded open intervals in IR and suppose that
f is a nonnegative integrable function on R. Define 7(I) = fI fdA forI € G andlet ¢
be the measure on IR constructed from 7 by Method II. Show that every measurable
setin R is 7%-measurable and 79(A) = / ' JdX for every measurable set A. (Hint: show
first that 4(I) = 7(I) for bounded open interval I.)

Example 3.6.1 Let X be a metric space and 0 < s < +00. Take G = 2% and let T° be
the premeasure defined by () = 0 and t°(A) = (diam A)* if A # (. The measure
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H? constructed from 7° by Method Il is called the s-dimensional Hausdorff measure
on X. Note that if we take G to be the family of all open subsets of X or the family of
all closed subsets of X, we shall arrive at the same measure H®.

Exercise 3.6.3

(i) Show that H' is the counting measure on X.
(i) IfFH'(A) < +00, show that H*(A) = 0if § > 0.
(iii) IfH'(A) > 0,showthat H'(A) = +00if0 <t < s.

Exercise 3.6.4 Show that H! on R is the Lebesgue measure on IR.

Since Hausdorff dimensional measures will not be our main concern, we shall content
ourselves by showing that the arclength of a rectifiable arc in IR? is its one-dimensional
Hausdorff measure. By an arc C in IR? we shall mean the image of a continuous injective
map from a finite closed interval [a, b] into IR?. Any continuous injective map with C as
its image is called a parametric representation of C. Let t : [a,b] — IR* be a parametric
representation of C and consider a partition P :=a =xg < x; < -+ < x; = bof [a, b].
Define

k
I=sup ) |t(x;) - t(xi1)],
P jel

where | - | is the Euclidean norm in R2. If I < oo, C is called a rectifiable arc, and I is
called the arclength of C. Since [ is the supremum of the length of all possible inscribed
polygonal arcs, it is independent of parametric representations of C.

Proposition 3.6.1 Let C be a rectifiable arc in R?, then H'(C) is the arclength of C.

Proof Let [ be the arclength of C and let ¢ : [0,1] — IR* be the parametric representa-
tion of C by arclength, with #(0) and ¢(!) the endpoints of C, i.e. the arclength from
t(0) tot(s)issfor0 < s < I. Then fors,, s, in [0, 1],

diam t[s;, 5] < |s1 - 52]-

Given & > 0, let 0 =59 < s; < --- < s, = [ be a partition of [0, ] such that |s; -
si1| < eforj=1,...,k then,

k k
1= |si—si1| = Y diamt[sp1,5] > 7. (C),
j=1

=1

hencel > H'(C).

To show [ < H*(C), we observe first that if L is a line in IR? and P the ortho-
gonal projection from IR* onto L, then for any A C R? H'(PA) < H'(A). Now let
0=sp <s; <--+ < s, =1beapartition of [0,]], and for each j = 1,.. ., k consider
the line L which passes through t(s;_; ) and t(s;) and the orthogonal projection P from
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IR? onto L. From the above observation, Hl(t([sj_l,sj])) > Hl([t(sj_l), t(s;)]) =
|t(si-1) - t(s;)|, where [t(s-1), t(s;)] is the line segment connecting t(sj_;) and t(s;);
consequently,

HI(C) = 2 H (t((5005)) = 30 [8(5) — (5)),
=1 j=1

from which one infers that H'(C) > L ]

3.7 Lebhesgue-Stieltjes measures

Given a monotone increasing function g on IR, a measure i1, on IR will be constructed,
which is suggested by the Riemann-Stieltjes integral of functions with respect to g.

For a finite open interval, I = (a,b), a < b, let T(I) = g(b) - g(a), then 7 is a pre-
measure on IR. The measure 7* on R constructed from 7 by Method I is called the
Lebesgue-Stieltjes measure generated by g and is denoted by 11,; when g(x) = «, 14,
is the Lebesgue measure on IR.

It turns out that i, is also the measure T 4 on R constructed from 7 by Method I To
see this, a preliminary result on the set of points of discontinuity of g will first be shown.

Lemma 3.7.1 The set D of points of discontinuity of g is at most countable. Furthermore D
consists only of points of jump of g.

Proof Since g is monotone, g(x+) = lim,, ., g(y) and g(x-) = lim,,,_ g(y) exist and
are finite at every point x of R. It is clear that x € D if and only if g(x+) — g(x-) > 0,
hence D consists only of points of jump of g. To show that D is at its most countable,
it is sufficient to show that D, := D N (-n,n) is at its most countable for all n € N.
Fixn € N and forx € D,, let I, be the open interval (g(x-), g(x+)) and ¢, = g(x+) -
g(x-). Consider any nonempty finite subset A of D,,, we have

2 e < g(nt) - g((-n)-),

x€A

because {I, : x € A} isa finite disjoint family of open intervals. Hence the system {c, }
indexed by x € D, is summable by Theorem 1.1.2. But the fact that ¢, > Oforx € D,
implies, by Exercise 1.1.6, that D,, is at its most countable. |

We are now going to verify that 7% = g Fix € > 0. Consider a finite open inter-
valI = (a,b), a < b, and let § > 0 be given. By Lemma 3.7.1 we can find a partition,
a=ay <x <---<x=bsuchthatxj—x;; <eforj=1,...,kand such that each
xj,j=1,...,k—1,is a point of continuity of g; then for eachj = 1,...,k -1, choose a

point y; in («j, x;,1) such that g(y;) - g(%;) < % and y; — x;_; < €. The intervals (a,y,),
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(x1,92), - - +» (%2, yk_1), and (xt_1, b) form a covering of I = (a, b), and each of them has
length < . Call these intervals Iy, . . ., I in this order, then,

k

r(1) = g(b) - g(a) = é{guj) g} > ) -6,

j=1

from which one infers (cf. the method of proof of Lemma 3.2.1) that 7, (A) = 1, (A) for
A C R,and hence 79 = [ (see Section 3.6 for definitions of 7, and ).

Theorem 3.7.1 The measure (g is a Carathéodory measure on IR which takes finite value
on each bounded set. Furthermore, there is a sequence { Gy} of open sets such that A C
(i Gk and ,ug(A) = inf} Mg(Gk); in particular, for any A C IR, thereis a Gs-set B D A
such that p, A) = g (B) (recall that the intersection of a sequence of open sets is called a
Gg-set).

Proof Since, as we have just shown, 4, is a measure on R constructed from the premeas-
ure T by Method II, 14 is a Carathéodory measure. That 1, (A) < oc0if Aisbounded
is obvious.

Nowlet A C RR. There is a sequence {I{V}, {I?}, . .. of countable coverings of A
consisting of finite open intervals such that

pg(4) = lim (1),

n

Foreachk,let G, = |, I,Ek), then

1e(A) < 1g(G) < (1),

n

from which we obtain ,(A) = infy ;t,(Gy) by letting k — oo. Finally, let B =
(i Gk, then Bis a Gs-set containing A and 1,(A) < 1y(B) < infi tto(Gi) = g (A).
Hence, j1,(A) = y(B). [ |

Lemma 3.7.2 11,([a,b]) = g(b+) - g(a-),-00 < a < b < o0.

Proof Since jug([a,b]) < g(d) - g(e) for (6d) > [a,b], g(la,b]) < g(b+) - gla-).
It remains to show that g(b+) — g(a-) < p,([a, b]).
Let {I,} be a sequence of finite open intervals such that _J, I, D [a, b], and write
I, = (an by),n=1,2,....{I,} isan open covering of ] = [/, b'] for some a’ < aand
some b’ > b. Let § > 0 be the Lebesgue number of | w.r.t. the open covering {I,}
(cf. Lemma 1.7.2),andleta’ = xy < &1 < --- < & = b’ be a partition of ] with (x; -
xi.1) <8,j=1,...,k.Put]; = [x;1,]] forj = 1,...,kand proceed as follows. First
pick n; € N with [xo, %] C I, according to Lemma 1.7.2, and let j; be the largest
integer between 1 and k such that [xo, x;, | C I,,.Ifj; = k, stop the process; otherwise,
thereisn, € Nwith [«;,%;,.1] C I, (againby Lemma 1.7.2), and let j, be the largest
integer between j; + 1 and k such that [x;,,x;,] C I,,. Obviously, n; # n,. Continue
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in this fashion, we obtain mutually different positive integers ny, . . ., n; and integers
1 <j <--- <ji=ksuchthat[x, —x; ] C form=0,1,...,1-1.Now,

”m+1

o(b+) - g(a-) < g(b) - g(a) = i (o) - g )}
< i:lrum <Y )

from which, since {I,} is any sequence of finite open intervals with | J, I, D [a, b], it
follows that g(b+) — g(a-) < p,([a, b]). [ |

Exercise 3.7.1 Showthatfora < bin IR,

:ug((a) b]) = g(b+) _g(a+)5
1g((a,)) = g(b-) - g(a+);
:ug([a) b)) = g(b_) _g(a_)-

Exercise 3.7.2 Let w be a nonnegative measurable function on IR such that
f(_oo 4 wd) < 00 for all x € R. Define a monotone increasing function g on IR by

g(x) = f(—oox] wd). Show that i, (B) = [, wdA for B € B.

From Exercise 3.7.1, we know that if g is right-continuous, then ,((a, b]) = g(b) -
g(a). Recall that a function is right-continuous if it is continuous from the right-hand
side at each point of its domain of definition. We show now that for any monotone
increasing function g on IR, g is the same as the Lebesgue-Stieltjes measure generated
by a right-continuous monotone increasing function.

Theorem 3.7.2 For a monotone increasing function g on IR, define a function § on R by
8(x) = g(oe+). Then § is right-continuous and g = |

Proof Proof of right-continuity of § is left as an exercise.
To show that s = i, we note first that an open interval (g, b) is a union of a
sequence (a,, b,],n = 1,2,.. ., of increasing half open intervals such that a, | a and
b, /' b, hence (cf. Exercise 3.7.1),

1g((a,b))

nli{go Mg((“m bn]) = nli)rgo{g(bn'l') _g(a"+)}
nli)ngo{g(bn) _g(an)} = nli)n;o{g(bﬁ') _g(an"')}
nli)ngo MQ((am bn]) = Mg((a) b));

consequently, [Lg(G) /,Lg(G) if G is open. Now let A be any subset of IR;
by Theorem 3.7.1 there are sequences {G,} and {G} of open sets such
that (), G, DA, ), G, DA, /Lg(A) infy 14,(Gy), and /,Lg(A) 1nfk,ug(Gk)
Observe that 1,(A) = infi ,ug(Gk N Gy) and tg(A) = infy 1y (G N Gy); then, since
tg(Gr N Gy) = pg(Ge N Gy), it follows that tg(A) = 11 (A). [ |
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Exercise 3.7.3 Show that the function § defined in Theorem 3.7.2 is right-continuous.

Example 3.7.1 Let D be a finite or countably infinite set in IR and v a positive-
valued function on D such that Zte(_m,x]ﬂD v(t) < 0o for all x € R. Define
a function ¢ on R by g(x) = Zte(_oo}x]m) v(t), x € R; then g is a mono-
tone increasing function. We claim that g is right-continuous. For x € R, fix
yo > x. Then, g(y) - g(x) = Zte(w]mD v(t) if y € (x,90]). If (x,90] N D is finite,
g(y) = g(x), when y is sufficiently near to x, and hence g(x+) = g(x). We may
therefore assume that D N (x,y0] is infinite and denote it by {f,},en. Since
Y nen V(ta) < 00, for given & > O there is np € N such that ) _ v(t,) < €.
Let y > x be smaller than t,...,t,, then g(y)-g(x) < Zn>n0 v(t,) < &,
and consequently g(x+) = g(x) Hence g is right-continuous at every x € R.

n>ng

The same argument also shows that D is the set of points of discontinuity of
g and g(t) - g(t-) = v(t) for t € D. Similarly, if D and v satisfy the condition
that Zte[x,oo)ﬂD v(t) < oo for all x € R, and if g is defined by g(x) =
- Zte( %00)1D v(t), x € R, then g enjoys the same properties as shown previously.

Exercise 3.7.4 Let g be a monotone increasing and right-continuous function on IR,
and denote by D the set of points of discontinuity of g. Define v(t) = g(t) - g(¢-) for
t € D, and define a function g; on R by

gi(x) = 2 (09D v(t), x>0
- Zfe(x;OJﬂD v(t), «<0O.

Show that g; is a monotone increasing and right-continuous function with D as its set
of points of discontinuity. Furthermore, the function g — g; is continuous.

Exercise 3.7.5 Let g, D, g; be as in Exercise 3.7.4, and let i = j4,, be the Lebesgue—
Stielties measure generated by g;. Show that for B € B, u(B) = ), _pp v(t), where
v(t) = g(t) - g(t-) for t € D. (Hint: show first that u(G) = Y, cqp v(t) if G is
open, and use Theorem 2.1.1.)

Suppose now that g is a monotone increasing function on a closed finite interval [a, b];
extend g to a function h on R by defining h(x) = g(a) for x < a and h(x) = g(b) for
x > b. Then the Lebesgue—Stieltjes measure (¢, on [a, b] generated by g is the restriction
of Uy, to [a, b, i.e.

Mg(A) = Mh(A)J AC [ay b]

For notational convenience, the integral of a function f w.r.t. a Lebesgue—Stieltjes meas-

ure /4y on IR or on a finite closed interval [, b] will be denoted by f_?;fdug or fabfd,ug,
as the situation suggests.
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3.8 Borel regularity and Radon measures

Recall that a measure p on a set €2 is called regular if for any A C €2, there is a u-
measurable set B D A such that (B) = £(A). Such a regularity endows p with a
significant monotone limit property, stated in Theorem 3.3.2. A further regularity along
this line for measures on metric spaces will now be introduced.

A measure (1 on a metric space X is called a Borel measure if every Borel set is -
measurable. It is said to be Borel regular if it is Borel and if for every A C X, there is a
Borel set B D A such that ;(B) = ((A); in other words, a Borel regular measure on X is
what we call a B(X)-regular measure (see the paragraph preceding Theorem 3.3.2). It is
called a Radon measure if it is Borel regular and £(K) < +00 for each compact set K.

We already know that every Carathéodory measure is Borel. Obviously, A" is a Radon
measure on R", by Exercise 3.4.17. More generally, all Lebesgue-Stieltjes measures on
IR are Radon measures by Theorem 3.7.1.

Example 3.8.1 Suppose that p is a Borel measure on a metric space X and f is a
nonnegative £/*-measurable function on X. Let v be the measure on B(X) defined by

() = [ s

for A € B(X) (cf. Exercise 2.5.7). We shall call v the indefinite integral of f with
respect to i, or simply the u-indefinite integral of f, and denote it by {fi1}. The
measure on X constructed from {f £} by Method I is denoted by {f 1+ }*; {f1t}* is the
unique Borel regular measure on X such that {fu}*(A) = {fu}(A) for A € B(X),
by Corollary 3.4.1; it is for the Borel regularity of {f/+}* that our construction starts,
with {f ¢} being originally defined on B(X). If, further, f is jt-integrable on every
compact subset of X, then {fu1}* is a Radon measure. Note that if i is o -finite and
Borel regular, then for any ¥#-measurable set S, {f u}*(S) = f o fdi. Actually, there is
aBorel set B D Ssuch that ;£(B\S) = 0 and then there is a Borel set C D (B\S) such
that 1£(C) = 0, implying that {fu}*(B\S) < {fu}*(C) = {fu}(C) = [.fdu = 0;

consequently,
Fud (B) = {fu}*(S) + {fu}"(B\S) = {fu}"(S) = {fu}*(B),

from which follows that {f . }*(S) = {fu}*(B) = {fu}(B) = fodpL = fsfdu.

When p is the Lebesgue measure on IR” and X is a Lebesgue measurable set in
R", {fi} and {f £ }* will be replaced by {f} and {f}* respectively for compactness of
expression.

The following proposition asserts that a measure constructed from a premeasure
by Method II on a metric space X is Borel regular if the domain of the premeasure
consists of Borel sets of X.

Proposition 3.8.1 Suppose that X is a metric space and T a premeasure defined on G C
B(X). Then the measure T on X constructed from T by Method II is Borel regular.



Measure-theoretical approximation of sets in R" | 89

Proof Let A C X. We may assume that 79(A) < oo. For each k € N, there is a
sequence {C{¥} in the domain of 7 such that |, C¥) D A, diam C{¥) < 1 for
each n, and ) ‘L’(Cgk)) =T (A) + % < 19(A) + % Let B=(. U, Cgk), then
B € B(X) because each C,Sk) € B(X). Since A C B, t%(A) < t%(B); but 79(B) =
limy_, o0 T1 (B) <liminfy0o ), 7(CW) < liminfi oo {T9(A) + %} =7(A),

hence 79(B) = 79(A). Recall that

71 (B) = inf)_ 7(C,),

where the infimum is taken over all sequences {C,} C G such that | J, C, D B and
diam C, < % for all n, hence, L#! (B) <>, ‘L’(CE/‘)). [ ]

Recall that if @t is a measure on 2 and A C €2, then the restriction to A of u,
denoted pt |4, is defined by £| A(B) = (A N B) for B C 2 (cf. Exercise 3.1.3).

Proposition 3.8.2 Let ( be a Borel regular measure on a metric space X and suppose that
A C X is i-measurable and (A) < +00. Then (| A is a Radon measure.

Proof Letv = p|A. Clearly, v(K) < +00 for compact K; actually, v(S) < u(A) < oo
forany S C X. Since every jt-measurable set is v-measurable, v is a Borel measure. It

remains to show that v is Borel regular. There is a Borel set B such that A C B and
w(A) = u(B) < +00. Hence, u(B\ A) = u(B) - £(A) = 0. For C C X, we have

v(C) < (uIB)(C) = (BN C) =n(CNBNA)+ur((CNB)NAS)
< u(CNA)+u(BNAS) =v(C).

Hence, v(C) = («|B)(C). We may assume then that A is Borel. Let now C C X;
there is a Borel set E D AN C such that w(E) = u(ANC).Let D=EUA% Disa
Borelsetand C C (ANC)UA° C D.SinceDNA=ENA,

v(C) =v(D) = u(DNA) = n(ENA) < u(E) = n(ANC) = v(C),

implying, v(C) = v(D). ]

3.9 Measure-theoretical approximation of sets in R"

This section is devoted to considering measure-theoretical approximation of sets in R"
by sets of familiar structure, such as open, closed, and compact sets. We observe first two
easy and useful facts about open sets in IR". For this purpose, we call an oriented rectangle
I} X --- x I, in R" an oriented cube, if |I;| = - - - = |I,|, and call it nondegenerate if
|| > Oforallj =1,...,n Oriented rectangles I and J are said to be nonoverlapping if

1nj=0.
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Proposition 3.9.1 Every open set G in IR" is the union of a countable family of nondegener-
ate and mutually nonoverlapping closed oriented cubes.

Proof Letk € N;we call an oriented closed cube I; X - -- X I, a dyadic cube of order k
if I; = [%, ’iszl]’ where [; is an integer for eachj = 1,. .., n. Let J; be the family of all
those dyadic cubes of order 1 which are contained in G; then let 7, be the family of
all those dyadic cubes of order 2 which are contained in G and are nonoverlapping
with those in Fi; proceeding in this fashion we obtain a sequence {F;} of families
of oriented cubes in G such that cubes in each F; are mutually nonoverlapping, and
nonoverlapping with those in the preceding families if j > 2. Note that some of the
JFi’s might be empty. Let F = Uj Fj, then F is a countable family of nondegenerate

and mutually nonoverlapping closed cubes such that G = | F. |

Proposition 3.9.2 Let G be an open set in IR", then there is an increasing sequence {K;} of
compact sets such that

3

G=UK. (3.5

~
11
—

Proof By Proposition 3.9.1, there is a countable family {Ci} of nondegenerate and
mutually nonoverlapping closed oriented cubes such that G =, C. Put K; =

U]1;=1 Ci, then {K;} is an increasing sequence of compact sets such that (3.5)
holds. |

Remark As a consequence of Proposition 3.9.2, B" is the o -algebra generated by the
family of all compact sets.

Lemma 3.9.1 Suppose that w is a Borel measure on IR" and B is a Borel set with
n(B) < 00, then for each & > 0 there is a compact set K C B such that 1(B\K) < e.

Proof Replacing p by 4| B if necessary, we may assume that jt is a finite measure.

Let M be the family of all those Borel sets B such that for each ¢ > 0 there are com-
pactsets K' C Band K" C B¢, suchthat u(B\K') < € and u(B°\K") < &.We claim
first that M contains all compact sets. Actually, if K is a compact set, for each & > 0
choose K’ = K and choose K” as follows: since by (3.5) K° = U]O:ol K;, where {K;} is
an increasing sequence of compact sets, (£ (K¢) = lim;_, o (£ (K;), which implies that
w(K\K;) < ¢ if j is sufficiently large; then choose K” = K; for such a sufficiently
large j. Thus M contains all compact sets. In particular, R" € M, because (R") = (J
which is compact. By definition, a Borel set B is in M if and only if B is in M, hence
B° € MifB € M.Nowlet {B;} be a disjoint sequence in M and put B = [ B, then
B= ; B;. Given that & > 0, there are compact sets K]/ C Bjand Kj’/ C B; such that

M(Bj\Kj/) < 270+ 3nd M(BJ‘E\K].”) < £2°0*Y)_ We have

1 ) o0 o0
u(BVUK) = 2 + 3 i) < S+ 3 ) <
j=1 j=1

j=l+1 j=l+1
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if I is sufficiently large, because lim;_, o Zf:oz 1 M(B;) = 0; choose K’ = U]l.:1 K] for
such an . On the other hand,

c 1\ _ c 1 o\ !
w(m0K) - nEn) < u( Ueni))
c 1! .
< ; w(B\K) < &;
hence, by choosing K” = (), K, we have shown that B € M. We have shown there-
fore that M is a A-system. Since M contains all compact sets, and since the family of
all compact sets is a 77-system, M contains 3" by the (77-1) theorem, because B" is

the o -algebra generated by the family of all compact sets (cf. Remark after Proposition
3.9.2). But M C B" by definition, hence M = 3". This completes the proof. [ |

Lemma 3.9.2 If i is a Radon measure on IR", then for a Borel set Bin R" and ¢ > 0, there
is an open set U D B such that n(U\B) < e.

Proof For each positive integer m let U,, = B,,(0), the open ball with center 0 and
radius m. Then U, \ B is a Borel set with £(U,, \ B) < (U,,) < +00, and so for
& > 0,by Lemma 3.9.1, there is a compact set K,, C U,, \ B such that

#((Un \ Kin) \ B) = (U \ B) \ K;y) < £27".

LetU = |J,,(U, \ K,,), then U is open and

B= J(UnNB) C J(Un\Ky) = U.
m=1 m=1

Now,

u(U\ B) = u(@l((um \K,») \B))

< iu«um\Km)\B) “Yel g n

m=1 m

Theorem 3.9.1 Let it be a Radon measure on IR". Then
(i) forA C R",

wn(A) = inf{u(U) : A C U, Uis open};

and
(ii) for p-measurable set A C R”,

w(A) = sup{i(K) : K C A, K is compact}.

Proof (i) We may assume that £t(A) < +00. Suppose first that A is a Borel set. By
Lemma 3.9.2, for each & > 0 thereis an open U D Asuchthat u(U \ A) < &, hence
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w(U) = u(A) + (U \ A) < u(A) + ¢, which shows that (i) holds. Now let A be
arbitrary. There is a Borel set B D A with £(A) = (B). Then,

u(A) = u(B) = inf{u(U) : U D B, Uisopen} > inf{u(U) : U D A, Uisopen},

which establishes (i), because the reverse inequality is obvious.

(ii) Let A be pu-measurable with ;£1(A) < +00 and denote | A by v; then by
Proposition 3.8.2, v is a Radon measure. By (i), given ¢ > 0, there is an open set
U D A°with v(U) < e.Let C = US, Cis closed, C C A, and

p(A\ C) =v(R"\ C) = v(C) =v(U) <,
from which,
0 < u(A)-u(C) <e.

But from p(C) = limy, 0 (Ci), where Cx = {x € C: |x| < k}, it follows that there
is a compact set K C A such that

0= /'L(A) - lu’(K) <é&,
and hence,
n(A) = sup{u(K) : K C A, K is compact}.

If £(A) =400, let Aj={xe€A:j-1=<|x| <j}, j=12,... Then each A; is
J-measurable and

() =3 n(4).
]

Since i is a Radon measure, t(4;) < +00. By what is proved above, there is a
compact set K; C A; with 1(K;) > u(4;) - 27. Now, Uj K; C Aand
l 00 ) ) )
lim M(UK]‘) = u(UKj) =2 (K > > [n(4)) -27] = oo.
j=1 j=1 j=1 j=1

I—o00

Since U]I.ZIK]- is compact for every [, we have
!
sup{i(K) : K C A, Kis compact} > sup {/L(UK)) :1=1,2,... } =+o00. W
j=1

Remark Because of Theorem 3.9.1 (i), a set E C R" is -measurable if and only if
w(G) = n(GNE) + u(G N E°) for all open sets G, where i is a Radon measure on R".
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Corollary 3.9.1 The Lebesgue measure A" is also the measure on IR" constructed by
Method I from the premeasure T on the family of all oriented closed cubes I, defined by
7(I) = volume of I.

Proof Let t* be the measure on R" constructed from 7 by Method I. For B C
R" and any sequence {I;} of oriented closed cubes with B C [ J, Ir, we have
A'(B) <Y A"(Ik) = ), t(Ix), from which follows A"(B) < t*(B). For B C
R" and & > 0, there is an open set G D B such that A"(G) <A"(B) +¢, by
Theorem 3.9.1 (i) (this fact is actually the conclusion of Exercise 3.4.17 (i)).
Now, there is a sequence {C;} of nondegenerate and mutually nonover-
lapping oriented closed cubes such that | J, Ci = G, by Proposition 3.9.1.
Since Ci’s are mutually nonoverlapping, Y, 7(Ci) = >, A"(Ci) = A"(G), and
hence ), 7(Ci) = A*(G) < A"(B) +¢&. Thus, t*(B) <), t(Cr) < A"(B) +¢,
from which follows t*(B) < A"(B), and consequently t*(B) = A"(B). ]

Exercise 3.9.1

(i) Let A C R" be Lebesgue measurable; show that there is a F, set M C A with
A"(A\M) = 0 (a F,-set is a countable union of closed sets).

(i) Letf:R" — R be Lebesgue measurable; show that f is equivalent to a Borel
measurable function. (Hint: consider first f, which is an indicator function.)

Exercise 3.9.2 Show thatasetAinIR" is measurable if and only if for every & > 0 there
isan open set G D A and a closed set C C A, such that A"(G\C) < e.

Exercise 3.9.3 Suppose that f is a Lebesgue integrable function on R".

(i) Show that for any given & > 0, there is a compact set K in R" such that

f]R,,\K [fldr" < e.

(ii) Show that limy oo Jic, JAX" = 0 for any compact set K in R" (recall that K +
x={z+x:z€K}).

(iii) Show thatlimjy|— oo [R. [f(x +y) = f(2)|dA"(x) = 2 [, |[f|dA".

Exercise 3.9.4 Let w > 0 be integrable on IR" and let 1 be a premeasure defined for
opensets G in R" by

w(G) :/Gwd)\”.

Denote by ;* the measure on R" constructed from pt by Method L.

(i) Show that *(S) = inf £(G), where the infimum is taken over all open sets G
containing S.
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(ii) Show that ;* is a Carathéodory measure and

() = / wih?

for Borel sets B.
(i) Show that £" C £*" and u*(A) = fA wdA"ifA € L.

Exercise 3.9.5 Suppose that p is a measure on a metric space X with the property
that compact sets are jt-measurable. Let E C A be subsets of X of which E is not
u-measurable. Show that there exists € > 0 such that, if K; C E and K, C A\E are
compact sets, we always have (A\(K; UK;)) > e.

3.10 Riesz measures

We introduce now a class of Radon measures on a locally compact metric space X, which
has its origin in the work of F. Riesz on representation of bounded linear functionals on
C[a, b] by measures; and we therefore refer to measures in this class as Riesz measures.

Consider and fix a locally compact metric space X. We shall denote by G the family of
all open subsets of X, and by /C the family of all compact subsets of X. A Radon measure 1
on X is called a Riesz measure if it satisfies the following conditions:

(i) ForA C X,

u(A) = inf{lu(G) : G D A, G e G};
(ii) forG € G,

1(G) = sup{u(K) : K C G,K € K}

Henceforth, condition (i) and condition (ii) will be referred to respectively as
outer regularity and inner regularity of . Note that all Radon measures on
IR" are Riesz measures, according to Theorem 3.9.1. Actually, conclusion (ii) of
Theorem 3.9.1 is stronger than inner regularity for Riesz measures; but the fol-
lowing proposition claims that finite Riesz measures satisfy the same conclusion
as that of Theorem 3.9.1 (ii).

Proposition 3.10.1 If w is a finite Riesz measure on X, then for any (1-measurable set A, we
have

u(A) =sup{u(K) : K € K,K C A}

Proof Lete& > 0. Thereis K, € K such that

Mﬁﬁumw0<§
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by the inner regularity of 1, and there is G € G such that G D A and
H(GNA) = p(G\A) < 3,
by the outer regularity of t. Now, Ko N G is a compact set contained in A and
A\(KNG)=AN(KNG)=AN(K{UG) CK{U(ANG),
hence £ (A\ (Ko N G°) < u(K§) + n(ANG) < ¢, ie.
n(A) < n(KoNG)+e <sup{u(K) : K € K,K C A} +¢.
Letting £ \( 0, we have
n(A) < sup{u(K): K € K,K C A}

That t(A) > sup{u(K) : K € K,K C A} is obvious. [ |

Suppose now that X is locally compact, and denote as in Section 1.10 by C.(X) the
space of all real continuous functions on X with compact support, andif G € G by U.(G)
the family of all those functions in C.(X) such that 0 < f < l andsuppf C G. Our main
purpose of this section is to construct a Riesz measure on X for each positive linear func-
tional on C.(X). A linear functional £ on a vector space of functions on a set is said to
be positive if £(f) > 0 whenever f > 0. Given a positive linear functional £ on C.(X),
arelated measure ¢ on X is constructed as follows. Define first a premeasure 7 on G by

©(G) =sup{{(f) : f € U(G)}, Ge€G;
then for A C X, define
w(A) =inf{t(G) : G D A, G € G}.
Observe that

(1) u(G) =1(G)forG € G;
(2) ;,L(U;’Zl Gj) < Z;’Zl u(G)) if Gy, ..., G, are in G; furthermore, if G;’s are dis-
joint, then ,u(U;.’:l Gj) = Z}il u(G)).

Clearly, (1) is a direct consequence of the obvious fact that t(G;) < 7(G,), if G
and G, are in G and G; C G,. To verify (2), let u € U.(UL, G;) and put K = supp u.
By Theorem 1.10.1, there is a partition of unity {uj,...,u,} of K subordinate to
{Gy, ..., G,}; one sees readily that u = Z;’zl uwj. Since each uy; is in U.(G;), £(u) =

Z;’zl C(uw;) < Z;’zl 7(Gj) = 2111 1(Gj), from which it follows that M(U;lzl Gj) =
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‘L’(U?:l G) < Z}il 1(Gj). Thus the first part of (2) is verified. Now if Gy,...,G,
are disjoint, we need to show that ,U,(U;l:1 Gj) > Z}il /L(Gj). For this purpose, since
M(U;I:l G;) = u(G;j) for each j, we may assume that 11(G;) < oo for each j. Given
& > 0, there is u; € U.(G;) such that u(G;) = 7(G;) < €(w;) + £ for each j. Then, u =

Z}Ll u; € Uc( U;‘zl G;), because G/’s are disjoint, and hence

u(p G)- ’(,U 6) = b - 5 tlu) = 3o n(6) -

from which ,u(U;’:1 Gj) = Z;'zl 1(G;j) follows by letting & — 0. Thus (2) is verified.

We show next that p is a Carathéodory measure on X. Let {A,} be a sequence
of subsets of X; we claim that u(| J, A,) <), i(A,). For this, we may assume that
n(A,) < oo for all n. Given € > 0 and n € N, there is an open set G, D A, such
that u(G,) < u(A,) + 5-- Then for u € U.(lJ, Gy), since suppu is compact, u €

UC(U;':O1 G;) for some 1y, and we have therefore by (2),

o) < M(@ Gj) < u(6) = LGy = Y p(a) +
j=1 n n

j=1

consequently, £(u) < ) u(A,) + € for each u € U.(|J, G,) and hence u(|J, G,) <
> (Ay) + e Thus, n(lU,Ar) < (U, Gy) <), (A,) + €. Since € > 0 is arbit-
rary, (U, An) < D, m(A,). As u(¥) =0 and p(A) < u(B) for A C B are direct
consequences of the definition of u, p is a measure on X. Suppose now that A and
B are subsets of X with p(A,B) > 0; if we put H; = {x € X : p(x,A) < %p(A,B)},
H,={xe X:p(xB) < %p(A,B)}, then H; and H, are open and disjoint. Now let G
be any open set containing A U Band put G; = H; N G, G, = H, N G, then

u(G) = u(GN (Hy UH,)) = n(Gy) + u(Gy) > n(A) + u(B),

and consequently, (A UB) > u(A) + £(B), or (AU B) = u(A) + u(B). Thus, u is
a Carathéodory measure on X. The measure (1 so constructed will be referred to as the
measure for the positive linear functional £.

Lemma 3.10.1 Suppose that £ is a positive linear functional on C.(X) and let v be the
measure for £, then | is a Radon measure on X.

Proof Since 1t is a Carathéodory measure, it is a Borel measure. From the definition of
u, for A C X there is a sequence {G, } of open sets such that (), G, D Aand j(A) =
w((), Gn), hence  is Borel regular. Now let K be a compact subset of X. By (i) of
Section 1.10, K has a compact neighborhood V, for which we know from Corollary
1.10.1 that thereis f € U.(X) such thatf = 1 on V. Clearlyifu € UC(‘;), thenu < f.

Thus pu(K) < ,u(‘c}) =sup{l(u) : u € UC(\C})} < £(f) < 00. We have shown that
/4 is a Radon measure on X. |
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Lemma 3.10.2 Suppose that £ is a positive linear functional on C.(X) and i is the measure
for €. Then,

0 = | sin
forf € C(X).

Proof Letf € C.(X)andputK = suppf.Givene > 0,forj € Z,letE; = {x € K : &j <
f(x) < e(j+ 1)}. Asf is necessarily bounded, E; = @ if |j| > k for some k € N. Since
W(E;) < u(K) < oo, for each j with |j| < k, there is an open set G; D E; such that
n(G\E;) < m andf(x) < &(j +2) forx € G;. There is a partition of unity

{u;}}jj<k of K subordinate to the finite covering {G;}|j<i of K, by Theorem 1.10.1.
Then, f = Zl jj<kfuj and hence

() =Y (fu) < X e(+2)e(w) < X e(j+2)u(G)

lil=k lil=k lil<k

55280+m{u@»+

lil<k

}

and consequently, since &€ > 0 is arbitrary, we have

o = [ g
X
but in the last inequality, if we replace f by (~f), we also have £(f) > [} fdu, and thus

Z@zﬁﬁw n

Corollary 3.10.1 If G is an open set in X, then

w(G) =sup{u(K) : K C G,K € K}.

Proof 1t is sufficient to show that
w(G) < sup{u(K) : K C G,K € K}.

Letf € U.(G), thensince f < 1, we have

aﬂ=£ﬁu= S < u(suppf),

supp f
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from which we infer that
sup{ie(K) : K C G,K € K} = sup{€(f) : f € U(G)} = u(G). ]

From Corollary 3.10.1 and the definition of i, the Radon measure  is both outer
regular and inner regular. Hence, the measure for any positive linear functional on C,(X)
is a Riesz measure.

Theorem 3.10.1 The measure 4 for a positive linear functional £ on C.(X) is the unique
Riesz measure on X, such that

ef) = /X fdp (3.6)

forallf € C.(X).

Proof Since the measure p for £ is a Riesz measure on X for which (3.6) holds, it
remains to show that if v is a Riesz measure on X, such that £(f) = [ fdv for all
f € C.(X), thenv = . To show v = p, it is sufficient to show that v(G) = u(G) for
all G € G, because both v and  are outer regular. Let now G € G. For f € U,(G),

v(G) > fodv = {(f) implies
V(G) = sup{€(f) : f € U(G)} = u(G).

To see V(G) < 1(G), consider any given compact set K C G and choose according
to Corollary 1.10.1 a function f in U.(G) such that f = 1 on K. For such a function f,
we have

b(K) < fodv —0(f) < n(G).

Thus, v(G) = sup{v(K) : K € K,K C G} < u(G). [ ]

Exercise 3.10.1 Defineanormforf € C.(X) by |[f|| = sup,y |f(x)| = maxex |f(x)].
Show that if £ is abounded positive linear functional on C.(X) as an.v.s. with the norm
previously defined, then the measure 1 for £ is a finite measure and ||£| = p(X).

Exercise 3.10.2 Suppose that X is a compact metric space. Show that a positive linear
functional on C(X) is necessarily a bounded linear functional on C(X).

Exercise 3.10.3 Let £ be a positive linear functional on C[0, 1] and let  be the
measure for £. Define a function g on [0, 1] by g(x) = ([0, x]) for x € (0,1] and
g(0) = 0. Show that the Lebesgue—Stielties measure 14, is /L.
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3.11 Existence of nonmeasurable sets

We exhibit here a nonmeasurable set in IR. For this purpose we prove first a remarkable
property of measurable sets in R.

Proposition 3.11.1 Let A be a measurable set in R with A(A) > 0, then D := {x -y :
x,y € A} contains a nondegenerate interval.

Proof We may assume that A(A) < 00. There is an open set U D A such that

AU) < (1 ; %) A(A). 6.7)

Since U = | J; It, where {I;} is a disjoint sequence of open intervals, we have A(A) =
>t A(AN1;), and hence, in view of (3.7),

1
)\'(Iko) < (1 + 5) A(A ﬂIkO) (3.8

for some ko. We now verify that I := (—%)\(Iko), %A(Iko)) CD.Lett el t#0,ie.
0<|t| < %)\.(Iko)} then (AN I,) U (A NI, + t) is contained in an interval of length
< 20(I,) - H(ANT,) N (AN, +1t) = B, by (3.8),

3 3
MANL)UANT, +1) =20(ANT,) > 2- ZA(IkO) = EA(Iko),

which contradicts the fact that (A NI,) U (AN, +1t) is contained in an inter-
val of length < %A(Iko). Thus, (ANIL,) N (AN, +t) #J; say x = y + t for some
x and y in AN, then t =x—y € D. This shows that I C D, because t =0 is
certainly in D. |

Forx € IR, let [x] denote the set of all those numbers y in IR such that x — y is rational.
Itis clear that forxand yin R, [x] and [y] are either disjoint or the same set, and [x] = [y]
if and only if x — y is rational; in particular, [x] is the set of all rational numbers if x is
rational and each set [x] is countable. Let S be a subset of IR which contains exactly
one point of each [x]. The possibility of choosing such a set follows from the axiom of
choice, which states that from any given family of sets in a universal set, a set can be
formed by choosing exactly one element from each set of the family. We note that axiom
of choice is consistent with the usual logic adopted in mathematics, and we accept it as
an axiom in our discourse. Returning to our set S, we observe first that R = [, (S + @),
where the union is taken over all rational numbers «. Actually, if s, = SN [x],then R D
U (S+a) D Uer Uglss + @} = U, g [*] = R.Itfollows then A(S) > 0, because if
A(S) =0, A(S+ &) = 0 for all rational number @ and oo = A(R) < >, A(S+«a) =0;
which is absurd. Next, note that if x and y are distinct elements of S, then x - y is irra-
tional (otherwise, x and y are from [x], contradicting the fact that S N [x] consists of
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one element). This implies that each element of the set Dy := {x -y : x,y € S} other
than 0 is irrational; consequently Dy contains no nonempty interval. Now, should S be
measurable, Dy would contain a nonempty interval, by Proposition 3.11.1. Thus, S is
nonmeasurable. This asserts the existence of nonmeasurable sets in IR.

Proposition 3.11.2 IfA is a measurable subset of R with positive measure, then A contains
a nonmeasurable set.

Proof Let S be the nonmeasurable set, previously constructed, and let Dy be the dif-
ference set S — S, as defined before. Observe first that if E is a measurable set in S,
then A(E) = 0, because if A(E) > 0; by Proposition 3.11.1 the difference set E — E
contains a nonempty interval, then so does Dy, contrary to the fact that Dy contains
no nonempty interval. Similarly, if E is a measurable set in S + o, where « is a real
number, then A(E) = 0.

Suppose now that A contains no nonmeasurable subset, then A N {S + '} is meas-
urable for each rational number o and hence A(A N {S + @}) = 0, from the previous
observation. But we know that R = | J,{S + '}, where the union is over all rational
numbers «, thus,

H(4) = TMAN{S+a}) =0,

contrary to the assumption that A(A) > 0. The contradiction asserts that A contains
anonmeasurable subset. ]

3.12 The axiom of choice and maximality principles

We have mentioned and used the axiom of choice in Section 3.11, when constructing
a nonmeasurable set in IR. A more explicit discussion on the axiom of choice will now
be made together with introduction of two maximality principles which are equivalent
to the axiom of choice. The alluded maximality principles are Hausdorff’s maximal-
ity principle and Zorn’s lemma, which are often used in construction of mathematical
objects.

Suppose that X is a nonempty set; a mapping f from 2*\{(} to X is called a choice
function for X, if f(A) € A for each nonempty subset A of X. It is clear that the axiom of
choice stated in Section 3.11 can be put in the following form:

Axiom of choice. For every nonempty set X, there is a choice function for X.

A binary relation < between some pairs of elements of a nonempty set X is called a
partial order on X if (i) x < xforallx € X; (ii) x < yandy < zforx, y,and zin X, then
x < z; and (iii) x < y and y < «x result in x = y. X is then said to be partially ordered
by <. By a partially ordered set X we understand a nonempty set partially ordered by a
certain partial order.
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A familiar situation is when X is a family of subsets of a given set, then X is partially
ordered by set inclusion, i.e. for sets A and Bin X, A < Bifand only if A C B. Such X is
always considered as partially ordered in this way.

An element x in a partially ordered set X is said to be maximal if x < y for y in X then
y = «; in the case where X is a family of subsets of a given set, then a set A in X is maximal
means that A is not a proper subset of any set in X. For example, if X is the family of all
proper vector subspaces of a vector space V and is ordered by set inclusion; then maximal
elements of X are called hyperplanes in V.

Let x, y be elements of a partially ordered set X; x is said to be comparable to y if either
x < yory < x holds; then x and y are comparable to each other. A nonempty subset C
of a partially ordered set X is called a chain in X if any two elements of C are comparable
to each other.

Hausdorff’'s maximality principle. In any partially ordered set X, there exists a max-
imal chain. In other words, there is a chain in X which is not contained in another chain

properly.

If A is a nonempty subset of a partially ordered set X, then an element b of X is called
an upper bound of Aifa < bholds foralla € X.

Zorn’s lemma. If every chain in a partially ordered set X has an upper bound, then X
has a maximal element.

It is easy to see that Zorn’s lemma follows from Hausdorff’s maximality principle. By
Hausdorff maximality principle, there is a maximal chain C in X, then C has an upper
bound b in X, by the assumption of Zorn’s lemma; then b is a maximal element of X,
because, otherwise, there is x in X such that b < x and b # «, implying that the chain
C U {«} contains C properly.

We show next that the axiom of choice is a consequence of the validity of Zorn’s
lemma. Given a nonempty set X, let 7 = 2%\ {(J}, and consider the set Y of all those map-
pings f with its domain D(f) C F and range in X, such thatf(A) € Afor A € D(f).Y is
nonempty because, for any x € X, let D(f) = {{x}} and f({x}) = x, then f € Y. Define
a partial order < on Y as follows. For f, gin Y, f < g if and only if D(f) C D(g) and
g(A) = f(A) for A € D(f). Y is obviously partially ordered by <. Now let C be a chain
in Y; define a mapping g with D(g) = (e D(f) and with g(A) = f(A) if f € C and
A € D(f). Since Cis a chain in Y, g is well defined and belongs to Y. Obviously, g is an
upper bound of C. By Zorn’s lemma, Y has a maximal element, say f. We claim that f is a
choice function for X by showing that D(f) = F. Suppose the contrary, then there is A in
Fbutnotin D(f); choose x € A andlet g be amapping from D(f) U {A} to X defined by
g(B) =f(B) forB € D(f) and g(A) = x. ThengisinY,f < g, and f # g, contradicting
that f is a maximal element in Y. Thus D(f) = F and f is a choice function for X. Hence
the axiom of choice is a consequence of Zorn’s lemma.
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The rest of this section aims to show that Hausdorff’'s maximality principle follows
from the axiom of choice, completing the establishment of the equivalence among axiom
of choice, Hausdorff’s maximality principle, and Zorn’s lemma.

Let X be a partially ordered set and F be the family of all chains in X and . Then F
satisfies the conditions:

(a) IfA € F,thenall the subsets of A are in F;
(b) ifCisachainin F,then | JCisin F.

In condition (b), _J C denotes the union of all sets in the family C. By the axiom of choice,
there is a choice function f for X. This choice function is fixed throughout the rest of this
section. For A € F,let A={x € X : AU {x} € F}; observe that A D Aand A = A if
and only if A is maximal in F. Define a mapping 7 : F > F by 7(A) = AifA = A, while
T(A) = AU {f(A\A)} if A\A # {. Since f(A\A) € Aif A\A # ¥, AU{f(A\A)} € F
and 7 is actually a mapping from F into F. Observe that A C 7(A) and 7(A)\A con-
sists of at most one element. Since A is maximal in F if and only if A = A, A is maximal
in F if and only if 7(A) = A; but if T(A) = A, A is not empty by the fact that () =
{f(UF)} #9, and thus A is a maximal chain in X. Therefore, in order to establish
Hausdorff’'s maximality principle, it is sufficient to show that T (A) = A for some A in F.
This is what we shall do in the following.
A subfamily 7 of F is called a tower if it satisfies the following conditions:

(i) WeT;
(ii) ifA € 7,thent(A) € T;and
(iii) ifCisachainin7,then|JC € 7.

Since F is a tower, and the intersection of all towers is a tower, the smallest tower 7
exists. We shall claim that 7j is a chain. For this purpose, consider the family 7, of all
those C € 7 such that if A € 7, either A C C or C C A holds, i.e. ’j\a is the family of
all those elements of 7y which are comparable to all elements of Zj; then for C € ’if) let
& (C) be the family of all those A € 7 such that either A C Cor t(C) C A.

Proposition 3.12.1 Let C € 7,. Suppose that A € Ty and A is a proper subset of C, then
7(A) C C.

Proof Suppose the contrary. Then, since T(A) € 7y, C is a proper subset of 7(A); but
this fact, together with the assumption that A is a proper subset of C, implies that
7(A)\A contains at least two elements, contradicting the fact that 7(A)\A contains
at most one element. ]

Proposition 3.12.2 IfC € 7, then £(C) = Tg.

Proof ltis sufficient to show that £ (C) is a tower. The conditions (i) and (iii) hold obvi-
ously for & (C). It remains to show that condition (ii) holds for £ (C). Let A € £(C),
then either A C Cort(C) C A.Ift(C) C A, then 7(C) C t(A), which implies that
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7(A) € £(C). Otherwise A C C, i.e. either A = C or A is a proper subset of C; in the
latter case, T(A) € £(C), by Proposition 3.12.1, while in the former, 7(A) = 7(C)
implies that 7(A) D 7(C) and hence 7(A) € £(C). Thus, condition (ii) holds for
£(C) and £(C) is a tower. [ ]

We are ready to see that 7j is a chain. Let C € To. By Proposition 3.12.2, £(C) = 7,
which means that if A € 7;, then either A C C or T (C) C A, implying that either
7(A) C 7(C) or t(C) C A and consequently T (C) € 7. Now, | JC € 7, ifC is a chain
in 'j\f) follows immediately from the definition of 7\6. As{ € 'j\f) , we have shown that ’f{, is
a tower and hence ’j:o =T. ’j\a = 7o means only that 7 is a chain.

Finally, let A = | J 7. Since 7y is a tower and a chain, A € 7 and 7(A) € 7. Then
A=|J7 D t(A), and consequently T(A) = A. Thus A is a maximal chain in X and
therefore Hausdorff’'s maximality principle holds.

We have concluded that the axiom of choice, Hausdorff’s maximality principle, and
Zorn’s lemma are each equivalent to one another.



Functions of Real Variables

his chapter starts a systematic study of properties of functions of real variables, in
terms of concepts related to measures. Properties of functions considered in this
light are usually referred to as metric properties.

We begin with a characterization of measurable functions due to N.N. Lusin. This
characterization is an intuitively satisfactory description of measurable functions and
has basic and important consequences, in so far as measurable functions are concerned.
Riemann integrable functions are then taken up and shown to be Lebesgue integrable
and their integrals in either sense are the same.

Push-forward of measures, a natural construct of measures from those given through
mappings, is then interposed for the purpose of representation of general integrals as
integrals on IR, as well as for a transformation formula of the Lebesgue integral of
functions on IR” through change of variables later in the chapter. Then there follows
naturally a more detailed study of functions of a real variable, in which considerable
emphasis is placed on study of differentiability of functions unfolding from the Lebesgue
differentiation theorem for Radon measures on R”.

Product measures are treated and followed by further studies of functions of several
real variables in later sections of the chapter.

A detailed presentation of polar coordinates in IR" is given in Section 4.11, with
applications to integral operators of potential type and integral representation of C'
functions.

4.1 Lusin theorem

Let 1t be a Borel regular measure on R”, and f a finite-valued function defined on a
p-measurable subset A of R". We suppose that £(A) < 00. We shall show that f is X /-
measurable if and only if it is almost a continuous function; “almost” in the sense given in
Theorem 4.1.1. Theorem 4.1.1, is called the Lusin theorem in this book. In the following,
W, A, and f are fixed and specified as previously.

Lemma 4.1.1 Let h be a simple function defined on A, then for ¢ > 0, there is a compact set
K C A such that h|x is continuous and (A\K) < e.

Real Analysis. Fon-Che Liu. © Fon-Che Liu 2016. Published 2016 by Oxford University Press.
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Proof In view of Proposition 3.8.2, we may assume that 1 is a Radon measure. The
simple function h can be expressed as

k
h= Z ajIA)-)
j=1

where Aj,...,A; are disjoint p-measurable subsets of A with A = U]’;lAj. For
each j=1,...,k, there is a compact set K; C A; with (A;\K;) < {, by Theorem
3.9.1 (ii). Since Kj, . . ., K; are disjoint compact sets, dist(K;, K}) > 0 if i # j; this,
together with the fact that & is constant on each Kj, shows that h| is continuous if
K := U]I.Czl K;. Now, (A\K) = Z]I.Czl 1(A\K;) < e. The Lemma is proved. ]

Theorem 4.1.1 (Lusin) Suppose that f is finite-valued and %" -measurable. Then for
& > 0, there is a compact set K C A and a continuous function g defined on IR" such that
n(A\K) < eandg = f on K.

Proof There is a sequence {f,} of simple functions defined on A such that
limy,—s 00 fm(x) = f(x) for x € A. By the Egoroff theorem and Theorem 3.9.1 (ii),
there is a compact set K' C A such that u(A\K') < z and f,, (x) converges to f(x)
uniformly for x € K'. For each m, by Lemma 4.1.1, there is a compact set K,, C A
such that f, |k, is continuous and (4(A\K,,) < 37. Set K" = Moy Koy then £, |

is continuous for each m, and

HAK") = (@(A\KW)) <yt

m=1 m=1 2m+1

Nowlet K = K’ N K”, then u(A\K) < € and

(a) each f, | x is continuous;
(b) fu|x converges uniformly to f|x.

From (a) and (b) follows the conclusion that f|x is continuous. By the Tietze
Theorem (Theorem 1.8.1) there is a continuous function g on IR" such that g = f|x
onK,org =fonk. |

Concerning the Lusin theorem, we note first that it still holds if f is finite-
valued p-a.e. on A; and secondly, if f is finite-valued p-a.e. and satisfies the con-
clusion of the Lusin theorem, then f is X#-measurable. To see this, we proceed as
follows. For each m € N there is a compact set K,, C A and a continuous func-
tion g, on R" such that u(A\K,) < % and g, =f on K,; now ) % < 0
implies p(limsup, . (A\K,,)) = 0 (cf. Exercise 2.5.9 (i)), which means that ji-a.e.
x in A is in K, if m is sufficiently large (observe that A\limsup, .  (A\K,) =
A\, U,Zm(A\Kl) =, Nz Ki = liminf,, , o Kn), or f(x) = limy—oco gu(x)
and consequently f is X*-measurable because each g, is X*-measurable due to the fact
that u is a Borel measure. Thus the conclusion of the Lusin theorem is a characterization
of X#-measurable functions on A. We state this explicitly as a theorem for later reference
and still call it the Lusin theorem.
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Theorem 4.1.2 Suppose that f is finite-valued ji-a.e. on A. Then f is £ -measurable if and
only if for any given &€ > 0, there is a compact set K C A and a continuous function g on
R" such that w(A\K) < € andf = gon K.

Exercise 4.1.1 Let f be a monotone increasing function defined on a finite open
interval (g, b) in R. Show that for any & > 0, there is a continuous and monotone
increasing function g on R such that the set {x € (a,b) : f(x) # g(x)} has Lebesgue
measure less than €. Furthermore, if f is bounded on (g, b), g can also be chosen to be
bounded by the same bound as that of f.

Exercise 4.1.2 Suppose that f is integrable on [a, b]. Show that for each & > 0 there

isg € Cla, b] such that fah |f - g|dr < e. (Hint: prove first that the conclusion holds
for bounded measurable function f.)

To conclude this section, we prove that when p is the Lebesgue measure A" on R”,
a characterization of Lebesgue measurable functions defined on an arbitrary Lebesgue
measurable subset A of R” similar to Theorem 4.1.2 holds.

Theorem 4.1.3 Let A be a Lebesgue measurable set in R". A function f which is defined and
finite almost everywhere on A is measurable if and only if for any € > 0 there is a closed set
F C A and a continuous function g on R" such that A\"(A\F) < € andf = gonF.

Proof The sufficiency part follows from the same arguments that precede the statement
of Theorem 4.1.2. We need only consider the necessity part. So, let f be a measurable
function which is defined and finite almost everywhere on A, and let £ > 0 be given.
Consider the following sequence {A;} of subsets of A : A; = {x € A : |x| < 1} and
fork > 2let Ay ={x € A: k-1 < |x| < k}. Since each set {x € R" : |x| = k} has
measure zero (see Exercise 3.4.2), |-, Ak consists of almost all points of A. Each A,
is measurable and has finite measure. By Theorem 4.1.1, for each k there is a com-
pact set F C Ay such that f|g, is continuous and A" (A;\Fi) < % Now let {gi} be
a sequence of continuous functions defined as follows: g; is a continuous function
definedon {x € R" : |x| < 1} suchthatg; = f|p, onF;;supposeg, ..., gk have been
defined, let g1 be a continuous function defined on {x € R" : || <K+ 1} such
that g,y = g on {|x| < k} and g,y = f|Fis1 on Fiyy. That {g} can be so defined
is due to Tietze’s extension theorem (Theorem 1.8.1). Then define g(x) = gi(x) if
|x| < k. Obviously, from our construction of the sequence {g;}, g is well defined and
is continuous on R". If we put F = | J, Fy, F is a closed set, F C A, and A"(A\F) =
D M(A\F) < ), & = e Itisclear thatg = f on F. [ |

4.2 Riemann and Lebesgue integral

In this section an oriented rectangle in IR" will be called an oriented interval. We
show that a Riemann integrable function defined on a closed oriented interval in R"
is Lebesgue integrable and its Lebesgue integral coincides with its Riemann integral.
First, we recall briefly the Riemann integrability. Fix a finite closed oriented interval
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I=[ay, b1] X -+ X [ay, b,], which is not degenerated i.e. a; < b;, i = 1,...,n. Unless
stated otherwise, henceforth in this section, an interval is always a finite, closed, nonde-
generate, and oriented interval. Two intervals are said to be nonoverlapping if their
interiors are disjoint. A partition P of I is a finite family {I; }]k: | of nonoverlapping inter-
vals such that I = U]’;l I;, where k depends on P; in particular, when I = [a,b] is a finite
closed interval in IR, a partition P of I is determined by asequencea =xp < %7 < -+ <
x; = b of points in [a, b] and we simply call such a sequence of points in [, b] a partition
of [a, b]. For a partition P = {I]}]k=1 of I, || P|| will be used to denote max; <j<i diam I,
and is called the mesh of P.

_ Consider now a bounded function f defined on I. For an interval | C I, let
fi = supxejf(x) andf; = infue; f(x). If P = {I]}]":1 is a partition of I, put

k _ k
S, P) = ShIE - SUP) = Tfylh)
j=1 j=1

where |J| denote the volume of the interval J. A partition P is said to be finer than a
partition Q if every interval in Q is a union of intervals in P. One verifies easily that if P

is finer than Q, then

S(fiP) =S(£;Q);  S(f;P) = S(f;Q).

For partitions P and Q of I, denote by P Vv Q the partition of I formed by all the nonde-
generate intersections of intervals of P and those of Q. P Vv Q is finer than both P and
Q, hence

S(/iP)=S(/PvQ)=S(f;PvQ)=S(f;Q),

and consequently

igfg(f; P) = sup S(f; P).
P

infp S(f; P) is called the Darboux upper integral of f over I and is denoted by fl f
while sup S(f; P) is called the Darboux lower integral of f over I and is denoted by

[.f- We have shown that
ff =< ff:'
J1 I

if [ f = f_I f, then the common value, denoted [, f(x)dx, is called the Riemann integral
of f over I, and f is then said to be Riemann integrable over I.

Exercise 4.2.1 Show that a bounded function f defined on I is Riemann integrable if
and only if for any & > 0 there is a partition P of I such that S(f; P) - S(f; P) < e.
In particular, infer that continuous functions defined on I are Riemann integrable.
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For a bounded function f on I, we define related functions f and f as follows:

f@) = lim o SO% - f) = Jim su 6f(y)-

Lemma 4.2.1 f is lower semi-continuous and f is upper semi-continuous on I. Hence both
are Borel measurable, and therefore are Lebesgue measurable.

Proof Since f = ~(~f), we need only show that f is lower semi-continuous.

Let A € IR; we shall show that E; := {_f > A}isopeninl. Leta € E;, then thereis
8 > 0, such that

inf f(y) > A

|y-a| <28
yel

Nowletx € I'and |x — a| < §; then |y — x| < § entails that |y - a| < 26 and hence,

inf f(y) > inf f(y) > A.

[y-x| <8 [y-a| <268
yel yel

Consequently, x € E; and E,, is open in I. This shows thatf is lower semi-continuous
onl. |

Lemma4.2.2 [,f= [,fd\", [,f = [ fdr"

Proof Choose a sequence {P;} of partitions of I such that limi_, o S(f; P) = fI f.
Since we still have lim_, o _S( f; Q) = fI f,if each Qg is finer than P, we may assume
that ||P|| — 0 as k — oo. Let Py = {Ii(k)}:-l:"l and define f;(x) :-fl(k) ifx € [Ii(k)),
i=1,...,m and fi(x) = 0 otherwise, where for an interval J = [xcl,dl] X oo X
[cuy dn), [J) denotes the half-open interval [¢;,d;) X - -+ X [c,, d,). We claim now
that if x € I\ Uy, UX, aIf"), then limi_ oo fi(x) = f(x). For each § > 0, since
|Pell = 0 as k — oo, infl, y<sf(y) < fe(x), if k is sufficiently large, hence
infly_y <5 f(y) < liminfi oo fi(x) and consequently f(x) <liminfi_ o fi(x). On
the other hand, for each , fy(x) < infj, 5 f(y) if 6 > 0 is small enough, or fi(x) <
f(x) and hence limsup, _, _ fi(x) < f(x) Thus,

lim sup f;.(x) Sf(x) < lim

k—o00 k—

(i)rgf fi(x) < limsup fi(x),

k—o00

or f(x) = limi_, o0 fe(x), as we claim. Now the set (-, U2, alfk) has Lebesgue

measure zero and |fi(x)| < M :=sup,; | f(x)|; we may apply the Lebesgue dom-
inated convergence theorem to obtain the equality [ f = limi oo S(f;Ps) =

limg oo [, fedA" = [ fd". Similarly, [ f = [ fdA". n
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Theorem 4.2.1 A bounded function f onI is Riemann integrable if and only if f is continuous
at almost all points of I.

Proof Sincef < f < fonlIand

[ fgn = [ - [s

f is Riemann integrable if and only if f = f almost everywhere on I. But from
Lemma 4.2.1, we know that f is lower semi-continuous and f is upper semi-
continuous; it follows that f = f almost everywhere on I means, through the inequal-

itiesf < f < f on1, that f is continuous almost everywhere on I (cf. Exercise 1.5.2 (i)
and (ii)). [ |

Theorem 4.2.2 A Riemann integrable function f on I is Lebesgue integrable and

fIf(x)dx = fIfdk”.

Proof Since_f <f Sf on I, and_f(x) =j(x) for almost all x in I, as we have shown in
the proof of Theorem 4.2.1,f = f almost everywhere on I and is therefore measurable.
As f is bounded and measurable, it is Lebesgue integrable. Now [, fdA" = [ fdA" =
_fI f= fl f (x)dx. [ ]

We note in passing that the function on [0, 1] which takes value 1 on irrational num-
bers and takes value 0 on rational numbers is not Riemann integrable, but is Lebesgue
integrable with Lebesgue integral being 1.

Exercise 4.2.2 Let f be a function defined on IR whose improper integral f_zz f(x)dx
converges absolutely. Show that f is Lebesgue integrable on R and [y fdX =

fj;f(x)dx

Exercise 4.2.3 Give an example to show that the conclusion in Exercise 4.2.2 does not
holdif | j; f(x)dx converges, but not absolutely.

We strongly suggest that readers verify that results similar to the conclusion of
Exercise 4.2.2 hold for other types of improper integrals.

Notational convention Because of Theorem 4.2.2 and Exercise 4.2.2, we often write
[ fdr" as [, f(x)dx; also, we use f:f(x)dx, faoof(x)dx, f_boof(x)dx, and f_iif(x)dx
to denote [, fdA if Iis [a, b], [a, 00), (~00, b], and (~00, 0) in this order. More gener-
ally, for a Borel measure 1 on IR, fab fdu, faoo fdu, f_hoo fdu, and f_(:; fdu are similarly
connoted.
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4.3 Push-forward of measures and distribution
of functions

Distribution of a measurable function on a measure space is now considered with its
application to representation of the integral of Borel functions of the function as integral
on R. For this purpose, a natural method of constructing new measures from one given
through mappings will be presented first.

Suppose that © measures €2 and that t is a map from €2 to a set X; define a set function
ts 4 ON 2X by

ten(A) = n(t'A), ACX.

Obviously, t; 1 is a measure on Xj; it is called the push-forward of 1 through the map ¢.
Let A C Xbesuch that A is i-measurable, then t ' A is 1 | B-measurable for any subset
B of 2 by Exercise 3.1.3 (i). Thus if C is any subset of X, we have, since (t 'A)° = t A",

w|B(tC) = u|B('CNt'A) + w|B('CNttAY),
or,

t ([ B)(C) = t: (1 [B)(CNA) + t: (1| B)(C N AY).

The last equality means that A is t: (i | B)-measurable for any subset B of 2. Conversely,
suppose that a subset A of X is t:( | B)-measurable for any subset B of Q; then if we
choose C = X in the last equality, it follows that

ts (| B)(X) = t: (1| B)(A) + t (| B)(AY),

or,

1IB(Q) = u|B(tA) + u|B({tA}),

and hence,

nw(B) = u(BNt'A) + u(BN{t'A})
for any subset B of €2, implying that ¢ ' A is t-measurable. We have shown the following
proposition.

Proposition 4.3.1 Let A be a subset of X, then, t ' A is ji-measurable if and only if A is
ts(j4| B)-measurable for every subset B of 2.

Corollary 4.3.1 A subset A of X is ts pi-measurable if t ' A is y-measurable.

Exercise 4.3.1 Show that if t is injective, then A C X is t; u-measurable if and only if
t 1A is pi-measurable.



Push-forward of measures and distribution of functions | 111

Proposition 4.3.2 If i is a finite regular measure on 2, then A C X is ty j4- measurable if
and only if t ' A is jt-measurable.

Proof Because of Corollary 4.3.1, we need only show that if A is t;jt-measurable, then
t 1A is i-measurable.
Choose C € X# such that t'A C Cand u(t'A) = £(C). Using the conclusion
of Exercise 3.1.4, we have

w(CNETAY) + w(CUtTAY) = u(C) + w(tA°)
= u(tA) + p(t'A%)
=t (A) + te 1t (A) = tpu(X)
= () = n(CUtA%);

since j is finite, we may cancel out the term p(C U t'A°) from the far left-hand
side and the far right-hand side in the above sequence of equalities to obtain ;£(C N
(t1A)°) = 0. Thus C N (t1A)° is u-measurable. But from t A C C, we have t 1A =
C\(C N (tA)°) and hence t ' A is ;t-measurable. |

Suppose now that (€2, X, 1) is a measure space and t is a map from 2 into a set X. Let
1" be the measure on €2 constructed from p by Method I; ;* is the unique X-regular
measure on 2 such that u*(A) = u(A) for A € X as asserted by Corollary 3.4.1. Define
X :={ACX:t"'Ae X} Since T C T* and pu*(A) = u(A) for Ae =, ;X C
4 (by Corollary 4.3.1) and t:j1*(A) = (¢t 'A) for A € t, X. For notational simpli-
city, denote the restriction of ts 4™ to t: X by t.j1; then (X, t: X, ts/4) is a measure space
called the push-forward of (€2, X, 1) through the map t. Note that the map ¢ from Q2
into X is measure-preserving from (€2, &, i) to (X, t+ £, ts i) (cf. Section 2.8.2).

Exercise 4.3.2 Let (2, X, 1) be a measure space and ¢ a map from €2 into a set X.

(i) Show that a function f on X is t:X-measurable if and only if fot is
> -measurable.

(i) Show thatiff > 0is ts X-measurable, then [ fdt:p = [, f o tdu.

(iii) Show that if f is t;X-measurable, then [ fdt.n = [ f o tdu if one of the
integrals is meaningful.

(Hint: start with f as an indicator function of a set.)

Example 4.3.1 (Cf. Exercise 3.4.2 (vi)) Suppose that Q = X = R", and ¥ is the
o -algebra L" of all Lebesgue measurable sets in R".

(i) For a € R” fixed, let t be the mapping tx = x + a, x € R". Then t,L" = L",
t:A" = A" hence,

f(x+a)dx = f(x)dx,
Rn IRYI

if fIR" f(x)dx exists, i.e. the Lebesgue integral is translation invariant on R”".
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(i) For ¢ € R, a #0, consider the mapping tx = ax. Then, t;L" = L", t;A" =
ﬁk", hence,

1

]Rnf(ax)dx = o] /]Rnf(x)dx,

iff]Rnf(x)dx exists. In particular, take f = I (o), then A"(B,(0)) = r"A"(B;(0)).

Exercise 4.3.3 Suppose thatf is Lebesgue measurable on IR and is periodic with period
I > 0ie.f(x) = f(x + 1) forx € IR. Suppose further that f is integrable on [0, I]. Show

that f is integrable on [, a + [] and folfd)u = f;”fd)» foranya € R.

Exercise 4.3.4 Suppose that t is a continuous and monotone increasing function
defined on afinite interval [a, b]. Putc = t(a) and d = t(b). Show that for any Borel set
A C [¢,d], tspte(A) = A(A), where i, is the Lebesgue-Stieltjes measure generated
by t. (Hint: for any interval I openin [, d], tept¢(I) = |I|.)

Suppose now that f is a finite-valued measurable function on a measure space
(2, X, ). Sincef is X -measurable, f; ¥ contains all Borel subsets of IR and f; 4 is a meas-
ure on B. Considered as a measure on B, f; 14 is called the distribution of f. If g is a Borel
function on IR, then g o f is X -measurable and

/gdf#u=/g0fdu @.1)
R Q

if one of the integrals exists. In particular, if g is taken to be g(t) = |[t|,1 < p < o0, then

| vspae= |t

Thus, [, |f|[Pdi can be expressed as an integral on R w.r.t. the measure f;/t. When
nw{f <t}) < ooforeveryt € R, put

F(t) = u({f < t}) = u(f ' (-00,1]),

then F is a monotone increasing function and we might expect [ |¢|Pdfsit to be the
improper Riemann-Stieltjes integral [ |¢|PdF := lim -« fab |t|P dF. We shall see that this
is actually true (cf. Exercise 4.5.6).

Exercise 4.3.5 Show that the function F, previously defined, is right-continuous i.e.
F(t) = F(t+). Moreover, lim;_, o, F(t) = 0, lim;_, o F(t) = ().

The function F is called the distribution function of f. When a function F is men-
tioned as the distribution function of a measurable function f, it is implicitly assumed
that u({f < t}) < oo for every t € R. One sees easily that if f is measurable and finite
a.e. on €2, its distribution f; 1 and distribution function can be similarly defined.

As we have seen in Section 3.8, F generates a Lebesgue—Stieltjes measure jtr on R. It
turns out that ;up = f; 14 on I3, as the following theorem claims.
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Theorem 4.3.1 Suppose that F is the distribution function of a finite-valued measurable
function f on a measure space (2, X, ). Then, (R, B, fei) = (R, B, iur), where jur is
the Lebesgue—Stieltjes measure generated by F, and

/ gofdu = / gdur, 4.2)
Q R

for any Borel measurable function g on IR whose [up-integral exists.

Proof Since F is right-continuous, r((a,b]) = F(b) - F(a), from which by letting
a — —00, we have

pr((-00,b]) = F(b) = u(f (<00, b]) = feu((-00, b])

for b € R. Now fix a € R and consider the family F of all B € B such that
pur((-00,a] N B) = fep((-00, a] N B).Itis clear that F is a A-system and it contains
all sets of the form (-00, b], b € RR. Since the family of all sets of the form (-00, b],
b € R, is a w-system and B is the smallest o -algebra containing all sets of the form
(-00, b], it follows from the (77-A) theorem that F = 3. Thus,

MF((_OO; a] N B) If#,bL((—OO, a] N B)

forall B € B. From this, by lettinga — 00, we infer that z(B) = f¢(B) forall B € B,
or (R, B, ur) = (R, B, f:1t). Then (4.2) follows from (4.1). ]

In the final part of this section we demonstrate using an example the fact that measure
spaces, which look very different from one another in appearance, might be the same
measure space in different forms.

Example 4.3.2 Let (£2,0(Q),P) be the Bernoulli sequence space of Example 3.4.6.
Defineamapt: Q2 — [0,1] by

tlw)=) =, w=(v)e .
=1 2
Note that 0.w,w,ws - - - is a binary expansion of t(w). For x € [0,1], t'x con-

sists of either two elements or one element, depending on whether x is a binary
rational number or not, except that t 10 consists of one element; when x is a bin-
n &

ary rational number in (0,1], say x = } 7, 5 with &, = 1, then ¢ 'x consists of

(e1,---,84.1,1,0,0,0,...)and (¢y,...,8,.1,0,1,1,1,...). Therefore if we put
Q={weQ: w; = 1 for infinitely many j},

then Q\ﬁ is countable and hence Q € o (Q) with P(ﬁ) = 1. One sees readily that
if  is the restriction of ¢ to ﬁ, t is bijective from Qto (0,1]. As in Section 1.3, for
a finite sequence €1,...,€&, of 0 and 1, the elementary cylinder {w € Q : w; =&,
j=1,...,n}in Q of rank n is denoted by E(¢y, . .., &,); and we let £ be the family
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of empty set /) and all elementary cylinders of all ranks in €2. £ is a 7 -system on £2,
andif welet & = {(ENQ:E € &}, then Eisarn- -system on Q.

(i)

(i)

(iii)

Observe first that 0(5) G(Q)|Q Actually, ¥ :={A€o(Q):AN Qe
0(5)} is a 0-algebra on €2 containing &, 1mply1ng E D U(E) 0(Q)D X%,
or £ =0(Q)=0(£), and hence U(Q)|S2 - 0(5), that 0(5) C 0(Q)|Q
follows from the fact that o (Q)| Qisao- algebra on Q containing E.

For any elementary cylinder E(ey,...,¢&,) of positive rank n in €, put

E(el, ...,&)=EN Q. Observe that fﬁ(el, ooy 8) = (o, + 2—1,,], where a =

Z;'Zl %, and since # is bijective on Q to (0,1], (o, 0 + = 1 = E(el, . ,en),
implying that #P((o,cx + Zin]) =P(E(ey,..., &) = £ =r((,a + L ])

Now, if we let 7= {tA: A e g}, the}\l 7 is a n- systern on (0,1]. Denote
temporarily, in this example, by B3 and 3 the Borel fields on [0, 1] and on (0, 1]
respectively, and let

M={BeB:i'Beo(f)andP(:'B) = A(B)}.

As tis bijective from Q 2 to (0,1], M is easily seen to be a A-system on (0, 1]
contalmngI andaso (Z ) = B we conclude by the (7r-1) theorem that M = B
ie.BC t#a(g) and £P(B) = A(B) forall B € B.

We have shown in (ii) that Bc t#a (5) and #.P(B) = )»(B) for all B € B; now
it will be shown that B=to (5 ) and thus ((0, 1], B, A) is the push-forward
of (Q, 0(5 ), P) through the map t. For this purpose, it is sufficient to claim
that tA € BlfA eo(€). Consider M = {Ae 0(5) tA € B} Clearly, M is
a 0 -algebra on Q containing £andhence M = o (5 ).

From the conclusions in (i) and (iii) and the fact that tis bijective from Q to (0,1],
we conclude that B € Bif and only if i™'B € o (£) (equivalently, A € 0(5 ) if and
onlyiftA € B) and that P = A on B and t;'!A =Pono (5) Therefore, (Q o (5), P)
and ((0 1] B )») are the same measure space labeled differently. Since 0(5 ) =
U(Q)|Q and Q\Q is countable, ([0,1], B, 1) is the push-forward of (2,0 (Q), P)
through t and B € Bifand onlyift'B € ¢ (Q).

Exercise 4.3.6 Let (©2,0(Q), P) and t be as in Example 4.3.2 and P* be the measure
on 2 constructed from P by Method 1. Show that £:P* = A on [0, 1].

4.4 Functions of hounded variation

This section is devoted to the study of an important class of real-valued functions defined
on a finite closed interval I = [a, b]. This is the class of functions of bounded variation.
Functions in this section are all understood to be real-valued and defined on I.

For a real number o, a* denotes o or 0 according to whether « > 0 or ¢ < 0, and
a” := (—a)*.Itis easily verified thata = o™ -, (@ + B)" < o™ + B, and (0 + B)” <

o+ B

for any real numbers o and .
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Recall that a finite sequence a = xp < x; < --- < &7 = b of points is called a parti-
tion of the interval I, where [ varies from partition to partition. A generic partition of an

interval will be denoted by P.
Suppose that f is a functionand P : a = xp < x; < - -+ < %7 = b apartition of I, let

1
PA(fi P) = 2{f () - (x50}
j=1

N P) = XU ) - fos )}
j=1

and
1
Vo (f;P) = X1 () —f(x0)]|
j=1
Observe that
VI(f; P) = P5(f; P) + NL(f; P).
Now put
Pi(f) = sup P (f; P);
NS (f) = SI;PNg(f; P);
and

VI(f) = sup VI(f; P).
P

P’(f) and N®(f) are called respectively the positive and the negative variation of
f over I, while V?(f) is called the total variation of f over I. When a = b, Vi(f) =
P’(f) = N’(f) = 0, by definition. A function f is said to be of bounded variation on
1if VP(f) < 0o. Observe that a continuously differentiable function f is of bounded vari-

ation over I and Vf (f) < fab |/ (x)|dx, and that a monotone function f is of bounded
variation on I with V?(f) = |£(b) - f(a)|.

Exercise 4.4.1 Show that V’(f) = P'(f) + N:(f).

Exercise 4.4.2 Ifa < ¢ < b, show that P2(f) = P5(f) + P*(f) and similarly for negat-
ive and total variation.

Exercise 4.4.3 Show that if f and g are of bounded variation on I, then af + Bg is
also of bounded variation on I for any real numbers o and , and Vf (af + Bg) <

|V (F) + |BIVZ (g)-
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Now suppose that f is a function of bounded variation on I. Let x € I and P be a
partition of [, x], then

£) (@) = SFG) Gy} = P P) - N2 )
j=1
< P(f) -N;(f; P),
f(x) -f(a) + N;(f; P) = P(f),
from which one infers that
f(x) < f(a) + P(f) - N; (f)-

Similarly, one has

fx) = f(a) = P{(f; P) - N (f),

and hence
f(x) = f(a) + NG (f) = P;(f),
f(x) = f(a) + Po(f) - NG (f)-
Consequently,

f(x) =f(a) + P(f) -N;(f), x€lL (4.3)

Since PX(f) and N*(f) are monotone increasing in x, it follows from (4.3) that f is a
difference of two monotone increasing functions. Conversely, when f is a difference of
two monotone increasing functions, then f is of bounded variation on I. Thus the first
part of the following theorem has been shown.

Theorem 4.4.1 A function f is of bounded variation on I if and only if f is a difference of
two monotone increasing functions. Furthermore, if f is of bounded variation on I and
f=fi —fo where fi and f, are monotone increasing and fy(a) = f(a), then there is a
monotone increasing function ¢ on I with ¢(a) = 0 such that

filx) =f(a) + Pi(f) + o(x);  falx) = NG(f) + o(x)

forx € L.
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Proof It remains to show the second part of the theorem. So suppose that f is of
bounded variation on I and f = f; — f,, where f; and f, are monotone increasing and
fi(a) = f(a). From monotony of f; and f,, one verifies that fora < «’ < x” < b,

&) -f6D} = {A(") -A() +LG) - L&)} = A7) - A);
&) -} ={AG") -AG) +AE) - L&)} < LG -LE).

From the preceding inequalities it then follows that for a < x <y < b and any
partition P of [x, y],

Pg/c(f)' 7)) ffl()’) —fl(x)i Nyx(f; 7)) Efz()’) —fz(x),

and hence

Pf) =f(y) -1();  NU(f) =f(y) - o). (4.4)

In particular,
Pi(f) = fix) -f(a);  N;(f) < falx)

forx € I. Let p(x) = fi(x) — {f(a) + P*(f)}, then ¢ > O and ¢(a) = 0; from f(a) +
Pi(f) - Ni(f) = f(x) = fi(x) - fo(x), it follows that f,(x) = N%(f) + ¢(x) forx € I.

It remains to see that ¢ is monotone increasing. For x < y in I we have

¢(y) - 9() = fi(y) - ilx) - {PL(f) - PL()} = i(y) - (%) - PL(f) = 0,
by applying the first inequality in (4.4). This shows that ¢ is monotone
increasing. |

Henceforth, a function of bounded variation on I will simply be called a BV function
on I. For a BV function f, let functions fp, fn, and fy be defined by

fo(x) = Po(f); fu(x) = NG(f);  andfyv(x) = VE(f),

then the second part of Theorem 4.4.1 could be interpreted as saying that the decom-
position f = f(a) + fp - fy is the minimal decomposition of f into the difference of
monotone increasing functions if a partial order < on the family of all monotone increas-
ing functions on I is defined as follows: f < g if and only if g - f is nonnegative and
monotone increasing on I.

Theorem 4.4.2 Suppose that f is a BV function on L If f is right(left)-continuous at xo €
[a,b) (xo € (a,b]), then so are fp, f, and fy.

Proof Since f(x) - f(a) = fp(x) - fy(x) and fyr (x) = fp(x) + fiv(x),
o) = 5 0o (8) +£3) (@)} and ) = 5 L) ) + (@)}
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forx € I,itis therefore sufficient to show that fy is right-continuous at x,. For this, we
have to show that f-(xo+) = fy(x0), or ijg*h (f) > Oash — 0+.

Suppose the contrary, then 8y = fi/(xo+) — fy(x9) > 0. Let § = %30, and choose
h; > 0 small enough so that xp + h; < b and Vngrhl (f) < 26. Since V;(;’Jrhl (f) >4,
there is a partition xy < x; < -+ < &7 = %o + h; such that

I
2 1f () = f(x5-0)] > 8.
j=1

As f is right-continuous at x, there is h, > 0 with x9 + h, < x; such that

|f(x1) = f (%0 + ha)| + Z]l.zz | /(%) - f(x;-1)| > &; hence Vz":ﬁ” (f) > 8. Now repeat
the above argument with h; replaced by h,, to obtain 0 < h3 < h, such that

V2 (£) > §. Then,

XQ+I’I

28 > VR (f) > VEIR(f) + VI (f) > 26,

x0+h3 x0+h2

which is absurd. Thus fy is right-continuous at x. [ |

Example 4.4.1 Let f be a Lebesgue integrable function on I and define

H@=a+/f®&,xeL @s)

a being a constant. Then F is a BV function and

b
VY(F) = / |f()]dt.

Actually, for any partition P : a = xy < x; < --- < x; = b, we have

/xv f(t)at

/)

VEP) - 3 = [ s

hence,

b
V! (F) 5/ |f(t)]dt < oo. (4.6)

Now, by Exercise 4.1.2, for any € > 0 there is a step function g such that

b
[ 150 st <.
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Choose a partition P :a=x9 < x; < --+ < x; = b of I such that {xg,x1,...,%}
contains all the endpoints of the open intervals on which g is constant. We have then,

[

/)

/x xi g(t)dt

/)

> F() - F1)] = X
j=1 i=1

j=

1
=D
j=1

3| [ 60 g

oy Moy
=1

j=1 Xj-1

| o -gtar

b b
> [ el [ 150 - g0l
ah ’ b
> / lg(6)]|dt — & > / |f(t)]dt - 2e.
Thus,
V!(F) > /b |f(£)|dt - 2e.
Lete — 0; we have VO(F) > fab |f(t)|dt, and hence
b
Vi) - [ ol

by (4.6).

The function F, defined by (4.5), with f being Lebesgue integrable on I, is called an

indefinite integral of f.

Exercise 4.4.4 Let F be an indefinite integral of f on I; show that Fp(x) = f:f*(t)dt
and Fy(x) = f:f‘(t)dt. (Hint: use the fact that Fp(x) = %{Fv(x) +F(x) - F(a)}
and Fy(x) = 3{Fy(x) - F(x) + F(a)}.)

4.5 Riemann-Stieltjes integral

The Rieman-Stieltjes integral of bounded functions on I will be defined along the same

lines that the Riemann integral is defined. Suppose that g is a monotone increasing

function defined on a finite closed interval I = [a, b].

GivenapartitionP : a=xy <x; <--- <x=boflandj=1,...,];put

Pig = g(x;) - g(x;1)-
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For a bounded function f on I, and P as above, let

G= _inf f@), = s fG);

xe[xj‘l’xj xe [x)',l,x]']

and
I B L
_Sg(fﬂ’) = 2;1;7’;‘& S(f,P) = ;fj73j8~
= =

Observe that for any partitions P and Q of I, the following sequence of inequalities holds:

_Sg(f)P) S_Sg(fJP 4 Q_) = Sg(fyp Vv Q) = gg(f; Q) 4.7)

Now let fabfdg = supp _Sg(f, P) and f_abfdg = infp S;(f, P); by (4.7) both f:fdg and
fabfdg are finite and f:fdg < f:fdg. In the case where fabfdg = fabfdg,f is said to be

Riemann-Stieltjes integrable w.r.t. g and the common value, denoted fu b fdg, is called
the Riemann-Stieltjes integral of f w.r.t. g. From (4.7), Theorem 4.5.1 follows directly:

Theorem 4.5.1 Let g be monotone increasing on [a, b]. A bounded function f on [a, b] is

Riemann—Stieltjes integrable w.r.t. g if and only if for any € > 0, there is a partition P of
[a, b] such that

Sg(f,P) —_Sg(f,’P) <.

Example 4.5.1 Let g be a monotone increasing function on [, b]. (i) Iff is continuous
on [a, b], then fab fdg exists. (ii) If f is a BV function and g is continuous, then [ b fdg

exists.

Clearly, (i) is an easy consequence of Theorem 4.5.1, while (ii) follows also from
Theorem 4.5.1 if one notes that for any partition P :a=x9 < x; < -+ <, = b of

[a,6],
S,(f,P) -8 (fP) = 2, -T)Pe)
= Xn:V:f ()Pg < VI(f) max Pg.
j=1 =

Example 4.5.2 Suppose that w is a nonnegative Lebesgue integrable function on [a, b],
and g is an indefinite integral of w (cf. Example 4.4.1), then any Riemann integrable
function f on [, b] is Riemann-Stieltjes integrable w.r.t. g on [4, b] and

/ g - / o



Riemann-Stieltjes integral | 121

For a partition P : a = xy < #; < --- < &, = b, define a function f” by f” (x) =J_rj
ifx € [xj1,%) andfp(b) = f(b); similarly deﬁnefp byf73 (x) =f ifx € [x1,%;) and
- - -

,_fp(b) = f(b). Now choose a sequence {(P®} of partitions so that IP®| — 0 as
k— 00, and

} b
(P > [ st s (P®) > [ g

Obviously,

0P = [ 7 w0t 5,6P0) = [ wioa

Since f is Riemann integrable, f is continuous at almost all points of [4, b], and hence

- P k)
fp(k)w —fwae; [ w—fwae

- (k)
Ifwe put M = sup, 1 [f(t)], |fp(k>w| < Muw, |f7) w| < Mw, hence by LDCT

b
kli)n;o Sg(f; P(k)) = /‘; f(t)w(t)dt = kl_i)ngoigg(f, P(k)),

and thus

/a_ e f g = f fOwdt,

i.e.f is Riemann-Stieltjes integrable w.r.t. g on [a, b] and f:fdg = f:f(t)w(t)dt.

Exercise 4.5.1 Suppose that f is continuous on [, b] and g is monotone increasing on

[a,b].

(i) Show that fub fdg = fab fdg = inf gg( f,P), where the infimum is taken over all
those partitions P, the endpoints of whose intervals other than a and b are points
of continuity of g.

(ii) Show that /" fdg = [ fdu,.

The following Lemma is a generalization of Lemma 4.2.2 whenn = 1.
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Lemma 4.5.1 Suppose that g is a right-continuous and monotone increasing function on
[a,b], and f a bounded function on [a, b] which is continuous wherever g is discontinuous,

then
b b b b
/fdg:/ fdpug; /fdg:/ faug,

where,_f(x) = limg_, o4 inf|y,x|<5f(y) andf(x) = limg_, o, sup|y_x|<5f(y).

Proof By Lemma 4.2.1, both f and f are Lebesgue measurable. It is clear thatf <f < f
on [a, b]. Choose a sequence {P¥)} of partitions of [a, b] such that || P*¥)|| — 0,and

b =b

For each k € N, let P®) be g = x(()k) < xik) <. < x,(fk‘) = b, and define fi(x) =
infx}.(ff <t=a? f(t)ifx e (x](fl)) x].(k)] and fi(a) = f(a). As we have shown in the proof
of Lemma 4.2.2, limj_, o fi(x) = f (%) if x € [, b], but is not an endpoint of inter-

vals of the partitions PW® k=1,2,.... Now, since f is continuous wherever g
is discontinuous and g is right-continuous, we may assume that all the endpoints
of the intervals of the partitions %) are points of continuity of g, except pos-
sibly b. Hence fi(x) — f(x) for pg-ae. x in [a,b); but if b is a point of dis-

continuity of g, then f is continuous at b and hence fi(b) — f(b) =f(b). Thus,
lim—, oo fi(x) = f(x) for pig-ae. x of [a,b], and f:,_fd,ug = limi_ oo f:fkdug by
LDCT, because |fi(x)| < sup,_,, |f(t)|- Since g is right-continuous, i,((c,d]) =
g(d) —g(c) for a<c<d<b; we have _Sg(f, P(k)) = fabfkdug. Consequently,

fubfdug = 1imkﬁoo_Sg(f, P = _fabfdg. Similarly, fabj_(d,u,g = fuhfdg. |

Theorem 4.5.2 Suppose that g is a right-continuous and monotone increasing function on
[a, b] and f is a bounded function which is continuous at the jig-a.e. point of [a, b], then f
is Riemann—Stieltjes integrable w.r.t. g, and

| g - | g

Proof We claim first that f is j,-measurable. Fromf < f < f and the fact that f is con-
tinuous j14-a.e., it follows thatf (x) = f(x) = f(x) for Hg-a.e.xin [a, b]; hencef differs

fromf only on a set A with ,ug(A) =0. Butf is Borel measurable by Lemma 4.2.1,
and is therefore j1,-measurable from the fact that i, is a Carathéodory measure.
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Thus f is (t,-measurable as we claim. Now, f = f =f Mg-a.e. implies, together with
Lemma 4.5.1, that

/ g - / fa - / g - / g - [ e

which entails that f is Riemann-Stieltjes integrable w.r.t. g and fab fdg = fab fdu,. W

Theorem 4.5.3 (Integration by parts) Suppose that f and g are monotone increasing
functions on [a, b] and at least one of them is continuous. Then

b b
/ fdg = £(b)g(b) - f(a)g(a) - / odf.

Proof Note firstly that | ’ fdg and [ b gdf exist, from Example 4.5.1. Let P: a = xy <
x1 < --+ < x; = bbe a partition of [a, b], then

5,0, P) = X2 [a() - 5]
j=1

- F(D)gb) - f(@ga) - X gl ) G) —(551))
j=1
= f(b)g(b) - f(a)g(a) - S (&, P),

from which, by taking a sequence {7} of partitions such that
_ rb b
khm Sg(f’ 'p(k)) - _/ fdg and khm —Sf(gl P(k)) - / gdf;

we obtain,
b b b
/ fg = f fg = f(D)g(8) - f(a)gla) - f odf

b
= £(b)g(b) - f(a)gla) - f odf. u

Exercise 4.5.2 Under the same assumptions as in Theorem 4.5.3, show that

b b
[ e = 10) - f@gta) - [ sy

(Hint: cf. Exercise 4.5.1.)
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Now suppose that g is a BV function on [a, b] and write g = g; — g, where g;(x) =
g(a) + gp(x) and g (x) = gn(x) for x € [a, b]. Recall that gp(x) = P¥(g) and gn(x) =
N*(g), x € [a,b]. A bounded function f on [a,b] is called Riemann-Stieltjes integ-
rable w.r.t. g if it is Riemann-Stieltjes integrable w.r.t. g; and g, and in this case the

Riemann-Stieltjes integral of f w.r.t. g, denoted [ ’ fdg, is defined by

/ g - / g - / 'l

With this definition, Corollary 4.5.1 of Theorem 4.5.3 follows, by using Theorem 4.4.2.

Corollary 4.5.1 Suppose that f and g are BV functions on [a, b] and at least one of them is
continuous, then

b b
f fdg = £(0)g(b) - f(a)g(a) - f of.

Theorem 4.5.4 (Second mean-value theorem) Suppose that f is an integrable function on
a finite interval [a, b] and ¢ is a monotone function on [a, b], then thereis ¢ € [a, b] such
that

/ﬂ " i = o(a) / i+ o(h) / '

Firstly we prove alemma.

Lemma4.5.2 Let f and ¢ be as in Theorem 4.5.4 and, further @ is assumed to be
nonnegative and monotone decreasing, then there is c € [a, b] such that

| " i = ol [ s

Proof We may assume that ¢(a) > 0, because otherwise ¢ = 0and the lemma s trivial.
Define a function F on [a, b] by

F(x) = /xfdk, x € [a,b].

By Corollary 4.5.1 and Example 4.5.2, we have

b b b
[ o = E0)o6) - E@ota) - [ i = 50)(e) - [ gsin

hence,

b b
[ ofih. < Mo(b) - M / dp = My (b) + Mig(a) - o(b)} = M (a),
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or ﬁ fab @fdh < M, where M = maxe[,] F(x). Similarly, if m = min,e[,) F(x),
thenm < ﬁ f: @fd; thus,

1 b
me s [ otz
¢(a) Jo
from which, by the intermediate-value theorem for continuous functions, there is ¢ €

[a, b] such that ﬁ f: @fdr = F(c) = [ fda. [ |

Proof of Theorem 4.5.4 Consider first the case where ¢ is monotone decreasing.
Since ¢ — ¢(b) is nonnegative and monotone decreasing, by Lemma 4.5.2 there is

¢ € [a,b] such that ["{p - @(b)}fdh = {¢(a) - @(b)} [ fdh, or

/ub ofdd. = p(b) /abfdk +{g(a) - o(b) /ucfdk
= ¢(a) /acfdk +¢(b) /bed)\_

If ¢ is monotone increasing, replacing ¢ by —¢ in the argument above, we also
conclude that there is ¢ € [a, b] such that

/a " fih = o(a) / i+ o(b) / e .

Corollary 4.5.2 Letf be integrable on [a, b] and ¢ be nonnegative and monotone increasing
on [a,b]; then thereis c € [a, b] such that

/abwfd/\ = ¢(b) /Chfdk-

Proof Replace ¢ in Theorem 4.5.4 by ¢ — ¢(a). |

Remark Lemma 4.5.2, Theorem 4.5.4, and Corollary 4.5.2 will all be referred to as the
second mean-value theorem.

Exercise 4.5.3 Show that the following improper integrals exist: (i) fooo Si%dx; (ii)
o o
[ S gy,
0

e*-1

Exercise 4.5.4 Suppose that h is an integrable function on [4, b] and g is an indefin-
ite integral of h. Show that if f is a Riemann integrable function on [, b], then f is
Riemann-Stieltjes integrable w.r.t. g, and

/jfdgz/abﬂqdk.
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Exercise 4.5.5 Suppose that u and v are integrable functions on [a, b] and that U and
V are respectively indefinite integrals of u and v. Show that

b b
/ Uvda = UGV (b) - U(a)V(a) - / Vidy.

Exercise 4.5.6 Let f be a measurable and finite a.e. function on a measure space
(R, X, ). Suppose that u({f < t}) < oo forevery t € R and let F(t) = u({f <
t}) for t € R. Define the improper Riemann-Stieltjes integral [, |¢|’dF by

b
/ |t[PdF = lim / [t|PdF, 1 <p < 0.
R i

Show that [, |f|Pdu = [ |t|PdF.

A characterization of functions which are indefinite integrals will be taken up after a
treatise on differentiation is given in Section 4.6.

4.6 Covering theorems and differentiation

Our purpose in this section is to establish the Lebesgue differentiation theorem for
Radon measures on R" and to give some of its relevant applications. To do this, we shall
first exhibit a useful procedure of selecting a sequence of disjoint balls from a given col-
lection of balls in IR", and deduce from it two covering theorems in IR"; one of which is
elementary but will be useful when we study the Hardy-Littlewood maximal function in
Chapter 6, and the other is a Vitali type covering theorem that is the main tool for the
proof of the Lebesgue differentiation theorem.

For convenience, the diameter of a set A is denoted by A instead of diam A, for the
moment, and a ball is either open or closed with positive radius unless, specified explicitly.
For a ball B, we shall denote byﬁ the ball concentric with B and with radius five times
that of B.

A collection C of balls in IR" is said to be admissible if sup,_, 6B < 00. Given an
admissible collection C of balls in R", we select a disjoint sequence {B]- }, finite or infinite,
from C by the following procedure. Let dy = supy_. 6B, then 0 < dy < 00. Choose a
ball B, in C such that §B; > %do. Suppose now that By, . . ., B, are disjoint balls chosen
from C;if BN U}"il B; # { for every B € C, stop the procedure; otherwise, let

dm=sup{8B:B€C,BﬂUB,-=@ )

j=1

and choose aball B,,,,; from C which is disjoint with U]":ll Bjand with 6B,,,; > %dm. Thus

a disjoint sequence {B;}, finite or infinite, is obtained by this procedure. Such a procedure
of selecting {B;} from C will be referred to as Procedure(S).
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Lemma 4.6.1 Suppose that C is an admissible collection of balls in R" and {B;} is a
sequence of disjoint balls selected from C by Procedure(S). Then cither {B;} is infinite
and inf; 8B; > 0 or | JC C | B (recall that | J C := |Ugcc B).

Proof 1f {B;} is finite, say {B;} = {By,...,B,}, meaning that if B € C, then BN
U;"IB' # (. Let jo be the smallest j, 1 < j < m, such that BN B; # . If j, = 1, then
8B < dy < 2By; while if jo > 2, BN UJO 1B @ and 6B < dj,_; < 26B;,. Hence,
4B < 28B;, holds, this fact, together with B N B, # ¢J, implies that B C EO. Thus,

Ucc U
Now suppose that {B;} is infinite and inf; §B; = 0. Let again B € C. Since B > 0
and inf; B; = 0, there is jo € N arbitrarily large such that §B > 24B;,. But then

BN UJO 1B- # }, because otherwise 8Bj, < 8B < 1d;,_,, contradicting the way B;,
is selected by Procedure(S). Since BN U’ o B; # (), argue as in the first paragraph of
the proofto conclude that B is contained in one of§1 Yoo ’/‘Ejo—l ,andhence B C | ; /E]
Consequently, | JC C U]E [

Lemma 4.6.1 leads immediately to the following basic covering theorem.

Theorem 4.6.1 Let C be an admissible collection of balls in R"; then there is a disjoint
sequence {B;} of balls from C such that

A(ye) <5t Z 1" (B)). (4.8)
]

Proof Let {B;} be a sequence of disjoint balls selected from C by Procedure(S) By
Lemma 4.6.1, either {B;} is infinite and inf B; > 0 or [ JC C |; B If {B;} is infin-

ite and inf; §B; > 0, then the rlght -hand side of (4.8) is 00 and (4 8) holds trivially.
Suppose now that Ucc U B Then,

A(UC) < 4By = 8" 3 A" (BY),
] ]

because A"(Ej) = §"A"(B;), by Example 4.3.1 (ii). ]

We come now to a Vitali type covering theorem. Let E be a subset of IR"; a collection
)V of subsets of R" is called a Vitali cover of E if for every x in E and any positive number &
thereis Vin V, such that §V < ¢ and x € V. The following covering theorem is a simple
version of the well-known Vitali covering theorem, but it suffices for our purpose.

Theorem 4.6.2 (Vitali) Let E be a subset of R" with A"(E) < 00, and suppose that ) is
a collection of closed balls in IR" which forms a Vitali cover of E. Then there is a sequence

{B;} of disjoint balls from V such that 1" (E\ | ; B;) = 0.

Proof Choose an open set G D E such that A"(G) < 00, and let

C={VeV:VCG,V<1}L
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Then C is an admissible collection of closed balls and is a Vitali cover of E. Now
select a sequence {B;} of disjoint balls from C by Procedure(S). If {B;} is finite,
say {B;} = {By,..., By}, then VN U]"il B; # () for every V € C. Take any x € E
and & > 0, choose V € C such that x € V and 8V < ¢, then dist(x, U]ril Bj) <
dist(x, VN (U, Bj) < 8V < &. Since & > 0 is arbitrary and [ J, B is closed, we
infer that x € U]"il BjorE C U;Zl Bj, and hence 1"(E\ U]'il B;) = 0. Suppose now
that {B;} is infinite. Since Zj A'(B;) = A”(Uj B;) < M'(G) < o0,inf;>;8(B;) = 0for
any | € IN. Observe then that for any I € N, {B;};>,; is a sequence of balls selected
from the admissible collection

1
c® .= {VGC:VCG\UBj},

j=1

by Procedure(S). Since inf(,, 8B; = 0, it follows from Lemma 4.6.1 that U cO
szm Bj; consequently,

A (E\L:JIB;> = A (U C(Z)) < Y A(B)=3" Y A"(B),

j>1+1 j=l+1

because C? is a Vitali cover of E\ U]Z: 1 Bj. Now from

A" (E\ UB]-> <\ (E\ _LZJB,-) <5" > A'(B))
j j=1

j=I+1
forl € N, we obtain A"(E\ U]. B;) = 0 bylettingl — oo. ]
Remark In Theorem 4.6.2, E is not required to be measurable.

Exercise 4.6.1 Show that the union of any family C of closed balls in R" is Lebesgue
measurable. (Hint: consider the Vitali cover V of |_J C, which consists of all closed
balls each of which is contained in a ball of C).

Exercise 4.6.2 Show that Theorem 4.6.2 still holds if V is a Vitali cover of E consisting
of open balls.

Exercise 4.6.3 Describe in R" a procedure for selecting a sequence of disjoint closed
cubes, from a collection C of closed cubes of positive bounded side lengths similar to
Procedure(S), when C is an admissible collection of closed cubes so that Lemma 4.6.1
holds for such a collection C. Then state the Vitali covering theorem for Vitali covers
of E consisting of closed (open) cubes, where E is a subset of R" with A"(E) < o0.

Lebesgue differentiation of Radon measures on IR" is the subject we shall treat in the
remaining part of this section. The differentiation is taken w.r.t. Lebesgue measure and
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with closed balls as base in the sense which will be defined. For the sake of simplicity in
expression, a generic closed ball in IR" is henceforth denoted by B in this section.

Since the expression “A”"-almost everywhere" appears often, it will hereafter be
replaced by “almost everywhere". In other words, a property which holds almost every-
where w.r.t. Lebesgue measure A" in IR" will simply be said to hold almost everywhere.
Accordingly, “A"-a.e." is often replaced by “a.e.”", and A"-null sets will simply be called
null sets.

Suppose that f is a set function (not necessarily taking only nonnegative values)
defined for all closed balls inside an open set 2 C R" and x € €2, define

ipintf(8) = lim { it £(8)]:
lir;ljgpf (B) := hng+{ sup f (B) }

x€B

Clearly, liminfg,,f(B) <limsupy , f(B); in the case liminfz,, f(B)=
limsupy , f(B), the common value is denoted by limp_,,f(B) and we say that

limg_, , f(B) exists. In the above definitions, B certainly denotes a generic closed ball B
in 2.

Exercise 4.6.4 Show that limp_,, f(B) exists and is a finite number ! if and only if for
any given &€ > 0 thereis o > 0, such that

|f(B)-1| <&
whenever B < o and x € B.

Now let 1 be a Radon measure on an open set 2 C IR"; it is said to be differentiable

(B)

w.r.t. Lebesgue measure A" at x € €2 with closed balls as base if limp_, , f G exists. Since

the differentiation of Radon measures on IR" is always taken in this sense in what follows,

if limp_, % exists, we simply say that  is differentiable at x with derivate & T L (x) :=
limp_, , ﬁ We shall show that y is differentiable with finite derivate at a.e. x of 2, and

that the function % which is defined and finite almost everywhere on €2 is measurable.

5"(}133)) and D,u(x) = lim supy_, ﬁ((B)) for x € 2. Note that

Du(x) < Du(x) for everyx € .

anr
Put Di(x) = liminfg_,

Lemma 4.6.2 IfDu > aonS C Q for somea > 0, then u(S) > aA"(S).

Proof Clearly we may assume that o > 0. For € IN, let §;={x € S: |x| <[} and
let G be any open set which contains S; and is contained in 2. Now for any ¢ > 0
sufficiently small so that o — & > 0, consider the family V of all those closed balls
B C G such that £(B) > (a — €)A"(B). Since V is a Vitali cover of S; and A"(S;) <
00, there is a disjoint sequence {B;} of balls from V' such that 1"(S;\ [ ; B;) =0,
by Vitali the covering theorem (Theorem 4.6.2). Then, (& — £)A"(S;) < (o - &)1"
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(U,B) = X, (e - )" (B) < ¥, u(B) = (U, B) < (G), and since s is a
Radon measure, it follows that (a — €)A"(S;) < i(S;) and consequently, by letting
I — 00, (o - €)A"(S) < u(S) follows, as both A" and p are regular measures and S;
increases to S when I — 00 (cf. Theorem 3.3.2). Finally, let £ Y\ 0 to conclude the
proof. |

Corollary 4.6.1 Dju < 00 almost everywhere on S2.

Proof Since Q2 =|J;.({x € @ : dist(x, Q) > %} N{xeR":|x| <1}), Q is a
countable union of compact sets; it is sufficient to show that A"({x € K :
Du(x) = 0o}) = 0 for any compact set in 2. For such a compact set K, put
S ={x € K: Du(x) = oo}. Since for any « > 0, D > o on S, by Lemma 4.6.2,
A(S) < é,u(S) < é,u(K), which implies that 1" (S) = 0 by letting o« — 00, because
uw(K) < oo. [ |

Lemma 4.6.3 Suppose that Du < B on S C 2 for some B > O; then there is a null set
N C Ssuchthat £(S\N) < BA"(S).

Proof Suppose first that " (S) < 00.Forl, k € N, take an open set G;, which contains S
and is contained in Q with A" (G) < A™(S) + % , and consider the family V of all those
closed balls B C Gy such that u(B) < (B + %)A"(B); V is clearly a Vitali cover of S.
Since A"(S) < 00, by the Vitali covering theorem there is a disjoint sequence {B;} of
balls from )V such that A"(S\ U]_ B;) = 0.If we let Ny = S\ U]. B; (observe that {B;}

depends on ! and k), Ny} is a null set contained in S and (S + %))L”(Gk) > (B + %)
k”(Uj B]-) > ;,L(U]. Bj) > M(S\Nl,k)- Now let N = Ul,kNl,ki N is anull setin S and
(B + %))»”(S) =(B+ %) infy A" (Gy) > u(S\N) for each I. We simply let | — 00 to
conclude that £t (S\N) < BA"(S).

If A"(S) = 00, for each I € N, put §; = {x € S : |x| < I}, then A"(S;) < 00. By
the first part of the proof, for each I € IN there is a null set N C §; such that
w(SI\N;) < BA*(S1); then, N = [ ;N is a null set and u(S\N) < u(S\N;) <
BA"(S1) < BAY(S), from which i (S\N) < BA"(S) follows by letting! — co. W

Theorem 4.6.3 (Lebesgue) ;}fﬁ exists and is finite almost everywhere on 2.

Proof Since Dy < 0o almost everywhere on €2, by Corollary 4.6.1, it is only
necessary to show that ;if, exists almost everywhere on 2. If we put E =

{xeQ: D,u(x) > _p,u(x)}, this amounts to showing that A"(E) = 0; but since
Du >0, E= U(oz,ﬁ) E(o{,ﬁ)) where E(a,ﬁ) = {x €Q: Dlu“(x) >a>fp> _D/L(x)};
with (a, B) being a generic pair of rational numbers «, 8 such that @ > > 0, and
since all such pairs («, B) form a countable set, it suffices to show that A" (E(, 5)) = 0
for any such pairs of rational numbers. For such a pair (o, 8), put S = E(, ). We
now show that A"(S) = 0. Suppose the contrary that A"(S) > 0, then thereis/ € N
such that if we put §; = {x € S : |x| < I} then 0o > 1"(§;) > 0. Now D < B on
Sj;; by Lemma 4.6.3 there is a null set N inside S; such that ©(S\N) < BA"(S));
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on the other hand, the fact that Dy > o on S)\N implies, by Lemma 4.6.2, that
aA"(8) = ar"(S)\N) < u(8/\N). Thus,

n(SI\N) < BA"(S) < aA"(Sp) = ar"(S)\N) < u(S/\N),

the absurdity of which shows that A"(S) = 0. [ ]

If we let D denote the set of all x € €2 such that jf; (x) exists and is finite, D is measur-

able because D is the complement in €2 of a null set and null sets are measurable. We shall
i
for measurability of functions defined a.e. on €2). For x € D, dm L (x) = limp_, . M((B)), a

fortiori, % (x) = lim,_, ﬂ(cc((fc)))) , where C,(x) is the closed ball centered at x and with

show in a moment that <£- is measurable as a function defined a.e. on € (cf. Section 2.5

radius r > 0. Now if, as before, B, (x) denotes the open ball centered at x and with radius
r > 0, we claim that

L aBw)
B0 = I 5 oy

To see this one needs only to observe thatif ¥’ = #(1 - r) for 0 < r < 1, then

u(Cr(x) MG (x) w(Cr(x)) _ n(B(x) _ pu(Clx))
(G () - (C) (G () ~ 2B )~ A(GH)

(1-r)"

where the relation A"(C,(x)) = (1 -r)"A"(C,(x)) has been used (cf. Example 4.3.1
(ii)), and (4.9) follows as r — 0.

Lemma 4.6.4 ;ﬁ, is measurable.

Proof For x € Q and r > 0, let Q,(x) = B,(x) N 2. First, we show that as a func-
tion of x, n(2,(x)) is lower semi-continuous on D (r being fixed). For x € D,
let I, denote the indicator function of the set €2,(x), then u(2,(x)) = fQ Ldu.
Suppose now that {x;} is a sequence in D tending to x. Since I, — I, on €2,(x)
and I, =0 on Q\Q,(x), I, <liminfy_, I,,. It follows from the Fatou Lemma
that w(2,(x)) = fQ Ldu < liminfi_, o fQ L, dp = liminfi_, oo (2,(x1)). Hence,
u(2,(x)) is lower semi-continuous as a function of x on D and is therefore meas-
urable on D. Similarly, 2"(£2,(x)) is lower semi-continuous on D. By choosing a
sequence of r tending to zero, we have

A ) = lim w(B,() _ . H(S ()
d?»” 20 20(B, (%) 0 A(R,(x))

forx € D, hence jﬁ, is measurable on D (note that 2,(x) = B,(x) if r is small). Since
Q\D is a null set

, d)m is measurable. |
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du

drr
Exercise 3.9.1(ii), jﬁ has a Borel measurable version and we shall henceforth take
to be a Borel measurable function on €2.

is usually extended from D to 2 by defining it to be zero on ©\D. In view of

dp
drr

Lemma 4.6.5 ForanyBorelsetS C €, [ %dk" < u(8). Inparticular [, ;%d)\" < 00
for compact sets K C €.

Proof Letgbe ageneric nonnegative and Borel measurable simple function on €2 satisfy-
ingg < % -Is; there are disjoint Borel sets Ay, . .., A;in S and nonnegative numbers

ay,...,arsuchthatg = Z]l':l ;l4,. Then,

1
/ gd)\.n = Za]A"(A])
Q j=1

But i1(4;) = a;A"(4;),j = 1,...,1, by Lemma 4.6.2, consequently,

[ s <> uia) = (ZA) < ()
j=1

j=1

and hence,

du du /
L= | = LA = dr" < u(S).
/Sdm /QW s sgp REgE n(S) n

Lemma 4.6.5 implies that {jﬁ A"}* is a Radon measure on Q2 (cf. Example 3.8.1).

Recall that {jﬁ A"} denotes the indefinite integral of % with respect to A". Since indef-

inite integrals, considered later in this chapter, are always A"-indefinite integrals, the
notation {jf; A"} is simplified to {jf} for compactness of expression. Similarly, for a
nonnegative measurable function f defined on 2, {fA"} will be replaced by {f}. With
this notational convention, if f is locally integrable on €2 in the sense that f is integ-

du ;s
T }* is a Radon

rable on compact sets in €2, then { f}* is a Radon measure on 2. Thus {
measure on 2.
Another immediate consequence of Lemma 4.6.5 is the following.

Corollary 4.6.2 Forany S C ©, {2£3*(S) < u(S).

Proof If S is a Borel set, then {jﬁ F(S) = [ jﬁ d\" < u(S), by Lemma 4.6.5; for gen-

eral S, the same inequality follows from the fact that both {jﬁ }* and w are Borel

regular. ]

Remark As shown in Example 3.8.1, {f}*(S) = [,fdA" if S is a measurable subset

of  and f a nonnegative measurable function. Hence, {%}*(S) = Jq :f; dA"if S is a

measurable subset of Q2.
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Corollary 4.6.3 Iff is a nonnegative and locally integrable function on 2, then - { f}* = f

dan
Jpfar"
A"(B)

a.e. on §2; i.e. for almost all x € €2, limp_, = f(x); in particular,

1
I S N (4.10)
f(x) rl_rf(l) )\‘n(Br(x)) B,(x)f

for almost every x € Q.

Proof Put g = di" {f}*. By Corollary 4.6.2 and the remark following it, [, gdA" =
{g}*(S) < {f}*(S) = [, fd\" for any measurable set S C 2, hence g < f a.e.on Q.
Now, put E = {g < f}; we will show that A" (E) = 0 to conclude that f = g a.e. For

this we need only show that A" (E’) = 0, where

E = {x € E: lim 3 (B) exists} .
B—«x )\,”(B)

Suppose the contrary, that A"(E") > 0, then there are numbers0 < 8 < & < 00 and
R > O such that the set S={x € E' : |x| < R,f(x) > a > B > g(x)} has positive
Lebesgue measure. Let G be any open set containing S and contained in €2, and con-
sider the family V of all B C G satisfying BA"(B) > {f}*(B). V is a Vitali cover of S;
by the Vitali covering theorem, there is a disjoint sequence {B;} of balls from V such
that A" (S\ Uj B;) = 0 (note that 1"(S) < o0). Then,

BI(G) = A" (L]J B,) - X pE) > XUV B - {f}*<LjJ Bj)

= | fir> / fa,
U, B S

from which it follows that SA"(S) > fsfdk”; on the other hand fsfdk” > a)r'(S),
hence,

BAN(S) = / " > ai(s),

the absurdity of which shows that A"(E) = 0. That (4.10) holds for almost all x € 2
follows from (4.9). |

Example 4.6.1 (Density and approximate continuity) Let D be a measurable subset of

R" with A"(D) > 0.Forx € R", iflimg_, , %&D) exists, the limit is called the dens-
ity of D at x. Certainly, the density is nonnegative and < 1.Ifthe density of D at xis 1,
xis called a density point of D; while x is called a point of dispersion of D if the density
of D at x is 0. A measurable function f on D is said to have approximate limit [ at x if x
is a density point of the set {y € D : |f(y) - I| < &} forevery & > 0, and the approx-

imate limit [ will be denoted by aplim _, . f (y)- The function f is called approximately

—X
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continuous atx € Difaplim _, f (y) = f(x). We claim that (i) almost every point of
Dis a density point of D, and almost every point of D¢ is a point of dispersion of D, and
(ii) a measurable function f on D is approximately continuous a.e. on D. Assertion (i)
is a direct consequence of Corollary 4.6.3, by choosing f to be the indicator function
of D. Observe that (i) implies that if g is a continuous function on R”, then f is approx-
imately continuous at almost every point of the set {x € D : f(x) = g(x)}. It is clear
now that (ii) follows from this observation and the Lusin theorem (Theorem 4.1.1).

Exercise 4.6.5 Suppose that A is a measurable subset of R". Show that dist(y, A) =
o(]y - x|) asy — « for almost every x in A.

For a locally integrable function f on €2, the set L(f) of all those points x € Q such
that limp_, , ﬁ [ 1f(») = f(x)|dy = 0is called the Lebesgue set of .

Theorem 4.6.4 Iff is locally integrable on 2, then A"(QQ\L(f)) = 0, i.e. L(f) consists of
almost all points of 2.

Proof Denote by y the set of all rational numbers in IR. For a € y, thereis a null set E,
in €2 such that for x € Q\E,, the following holds, by Corollary 4.6.3:

tim o [ WO - aldy = 1f(w) -,

PutE = Uaey E,, then "(E) = 0. For x € Q\E and ¢ > 0, thereis a € y such that
|f(x) - a| < & hence,

lir;j;lp (B /., |f(y) = f(x)]dy < lir;jllp 7 (B) /B{If(y) —a| + | f(x) - a}dy

=2[f(x) - a| < 2e.

Since & >0 is arbitrary, we have limsupy ﬁ [51f(») -f(x)| =0, or
Theorem 4.6.5 Iff is locally integrable on S2, then

for almost every x € Q.

Proof Forx € L(f),

/ F(9)dy—f()| < / £(5) —F)ldy

)J‘(B) = )J'(B)

for any closed ball B containing x; then limp_, . [, fdA" = f(x) follows. [ |
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As an application of Theorem 4.6.5, we shall now prove that the space C.(£2) of all
those continuous functions on €2, each of which vanishes outside a compact subset of €2,
is dense in LF (2, L"|€2, 1"):

Proposition 4.6.1 C.(S2) is densein LP (2, L"|2,1"),1 < p < o0.

Proof Let f € LF(2,L"|2,1") and & > 0. For each ke N, put Fp={x € Q:
dist(x, Q°) > %}ﬂ Cr(0); {Fi} is an increasing sequence of compact sets in
Q and Q2 = Uka. Set fi = If, then lim;_  fi(x) = f(x) for all x € Q and
|fc| <|f|]- LDCT implies that limi_, o [|fx - fIl, = 0. There is then ko such that

T — < z. Now, for each | € N, let gi(x) = x) 1 x)| < I, otherwise
Il feo = fllp < 5 for each I € NN, let g(x) = fi,(x) if |fi, (x)] <1, oth
let g(x)=0. By LDCT again, there is [ € N such that [|g, - fi,Il, < % Put
g2 =g,; g is a bounded function and g =0 outside Fi,. For 0 <r < ZLko’ define
(gl (x) = m [B,(x) g(y)dy, if x € Fy; otherwise let [g],(x) = 0. Obviously,
(gl € C(R2), |[gl/| <l on Fy, and [g], =0 outside Fy,. [g], is therefore
in LP(L, L, 1"). Since lim,_,o[g], = g a.e, by Theorem 4.6.5, LDCT implies

lim, ¢ ||[g]; — gll, =0. Choose 0 < ry < i such that ||[g],, - gll, < 5-Then,g,, €

Co(Q) and |If - [glillp = If ~fiollp + ILfio — gllp + llg — [l 1l < & u

Theorem 4.6.6 Suppose that D is a measurable set in R" with positive measure. Then
L (D, L"|D, A") is separable for 1 < p < oo.

Proof Inthe proof, we shall denote by L¥ (A) the space LP (A, L|A, A") if A € L. Since if
{ug}ren is dense in L¥ (IR"), then {ule}ke]N is dense in L¥ (D), it is sufficient to show
that L?(IR") is separable.

We call the indicator function of an oriented interval I; X --- X I, an element-
ary unit function of order k, if each I;, j=1,...,n, is of the form I; = [zlik, l’zlkl),
l; € Z. Consider now the family & of all finite linear combinations of elementary
unit functions of all possible order with rational coefficients. It is clear that £ is a
countable set in L?(IR"). Let u € C.(IR") and & > 0. As u vanishes outside ] =]; x
+++ X J, with each J; = [-no, no] for some ny € N, and u is uniformly continuous
on ], for any given £ > 0 there is g € £ such that [lu - g||, < &; hence the closure
of £ in LP(IR") contains C.(IR"). Thus the closure of £ in L?(IR") is L*(IR"), by
Proposition 4.6.1. |

Lemma 4.6.6 There is a Radon measure ¢ on Q2 such that |1 = {jﬁ Y+ ie u(S) =

GLA(S) + @(S) forall S C Q.

Proof Denote by IC(£2) the family of all compact sets in €2. Both ¢t and { ;)’fn }* take finite
value on K(€2); we define ¢; on IC(2) by

05 = ) - { 2] 1)

for K € K(£2). By Corollary 4.6.2, ¢; > 0. Observe that
(i) ¢, is monotone on K(L2),i.e.forK; C K, in K(R2), ¢1(K;) < ¢1(K,).
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(ii) For any finite number of disjoint sets Kj, . . ., K; in K(2),

(iii)

1 1
0 (UK) =2,
j=1 j=1
Now define ¢ on B(2) by

@(A) = sup ¢1(K)

for A € B(L2), where the supremum is taken over all K € K(Q2) with K C A.
Then ¢ is an extension of ¢; and

n )—{ } (4) + p(4) 61

for A € B(£2). That ¢ is an extension of ¢; follows from (i), while (4.11) holds
by taking the limit as j — 00 on both sides of

(i) = {22 )+ o),

for a sequence {K;} C () such that lim;, o p(K;) = 1(A), limj, o
d)a' EY(K) = dm} (A), and lim;_, o ¢(K;) = ¢(A). That such a sequence

{K;} exists follows by applying Theorem 3.9.1 (ii) to 4 and (4L31* and by
definition of .

dan

If now {A;} is a disjoint sequence of Borel sets in a given compact set K C £,

then both ,LL(U A)) and{dln }*(U A;) are finite, and by (4.11),

o(un)=u(ua) {5} (us)

-5 fuay- {35} W -2

hence we have:

For disjoint sequence {A;} C B(2) with Uj Aj C K for some compact set
Kin £,

w(UA;) - Tol).

j
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Next, we claim that ¢ is o'-additive on B(£2). Let {A;} be any disjoint sequence in
B(€2). For any compact set K C [, 4),

00 = (UK A} ) = Sokn4) < S o(a),
J J J
by (iii), and the obvious fact that ¢ is monotone on B(£2). Consequently,
(p(UA]) =2 o(4). (4.12)
j j

On the other hand, fix] € N and for each j = 1,.. ., [ take an arbitrary compact set
K; C Aj, then

1 1

w(UA,—) > w(U K,-) =2 ¢(K), (4.13)
j =1 =1

by monotony of ¢ on B(£2) and (ii); since each K; is an arbitrary compact set in A;, it

follows from (4.13) that

qo(UAj) >3 o4),
J4) =
and hence,

w(LjJ Aj) > Sol).

The last inequality shows, together with (4.12), that o (| ; A) =) J ¢(4;). Thus @ is
o -additive on B(L2).
Now construct from ¢ on B(£2) a measure on 2 by Method I, which is the unique

B(£2)-regular extension of ¢ by Corollary 3.4.1 and hence is a Radon measure. The

jfn * + @ holds

follows from (4.11) and Borel regularity of i, {% }*, and ¢. ]

Radon measure so constructed is to be denoted also by ¢. That i = {

Theorem 4.6.7 (Lebesgue decomposition theorem) There is a null set N C 2 such that

du )"
= N.
% {W} + L

Proof By Lemma 4.6.6, there is a Radon measure ¢ on €2 such that

du |*
= . 4.14
T »
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Choose a null set N; C Q such that, for x € Q\Nj, the derivates limg ., fn(B)

(B)’
% , and limp_, , ;’;((B)) exist and are finite, and further, dm{ dm} (x) =

L. (x). That such a null set N exists is a consequence of Theorem 4.6.3 and Corollary

hmB—) x

d)J‘
4.6.3. From the choice of Nj and (4.14), one concludes that the derivate W(x) =0
forx € 2\Ny, and hence, in view of Lemma 4.6.3, there is anull set N, C €2\ N such
that 9(2\(N; UN,)) = 0. Put N = N; U N»; Nisanull set, and forany S C €,

@(SNN) = ¢(S) = (SN (R\N)) +9(SNN) = (SN N),

or
@(S) = p(SNN).
Now,
;man>={%?}(smN>+wsmN> o(S),
consequently,

m&:{ }(9 ﬁ@—{ }($+u6ﬂN)

forany S C €2; in other words,

du )™
N. [ ]
u {d/\n} + L

jfn }* + (N in Theorem 4.6.7 is called the

The decomposition of i into the sum {
Lebesgue decomposition of 1.

Concepts of absolute continuity and singularity for measures are introduced now for
the purpose of singling out a distinguishing feature of the Lebesgue decomposition the-
orem. Suppose i and v are measures on a set $2. The measure ( is said to be v-absolutely
continuous if ;t(A) = 0 whenever V(A) = 0; and p is said to be v-singular if ;& = u|N
where V(N) = 0. If Q is a subset of R”, then a measure 14 on 2 being A"-absolute con-
tinuous or A"-singular will simply be said to be absolutely continuous or singular, in this
order.

In the decomposition p = {jﬁ * + | N, where A"(N) = 0, as claimed by Theorem
4.6.7, { T - }* is absolutely continuous and j| N is singular. Thus, Theorem 4.6.7 claims

that any Radon measure on €2 can be decomposed into an absolutely continuous part
and a singular part. We shall see presently that such a decomposition is unique.

Lemma 4.6.7 If i is an absolutely continuous Radon measure on €2, then . = {dm 1
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Proof By Theorem 4.6.7,

n

du |*
N,
{d/\n} +pl

where A"(N) = 0; but absolute continuity of u implies #(N) =0 and hence
WIN = 0. |

Lemma 4.6.8 If 1 is a singular Radon measure on 2, then gﬁ =0a.e on 2.

Proof There are null sets N and N’ in €2 such that

du |*
N
{dk"} +pl

U

and
w= N,
by Theorem 4.6.7 and singularity of 1. For any set S C Q\N’, we have
n(S) =u(SNN') = u(®) =0,

and hence,

0=M(S)={%} (8)+ u(NNS),

a fortiori, {jﬁ, 1¥(S) = 0. Since {L}*(S) = s dit gan = 0 for any measurable

din dar
S C Q\N/, ;if, = 0 a.e.on 2\N’, and consequently j){ﬁ = 0a.e.on . |

Theorem 4.6.8 For a Radon measure (1 on §2, the Lebesgue decomposition (1 = {jf,, P+
(N, where A"(N) = 0, is the unique decomposition of | into a sum of an absolutely

continuous and a singular Radon measure.

Proof Let it = [4, + |4s be a decomposition of i into the sum of an absolutely continu-
ous Radon measure 4, and a singular Radon measure 1t,. Then,

du  du,  dug
= +

da™  dan o dAn

. dps dp _ dpta
almost everywhere on 2. Since 2 =0ae on £, by Lemma 4.6.8, -7 = Do e

From Lemma 4.6.7, ji, = {fl‘)f;‘ 1= 5)’; . Letu = {gﬁ }* + N be the Lebesgue

decomposition of w; then by what has just being proved,

dp

2L (9 INGS) = )+ NS

1(S) = 1a(S) + 1u(S) = {
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in particular, if ©(S) < 00, us(S) = w|N(S), from which u; = u|N follows by
Theorem 3.3.2, because both 11 and | N are regular. |

Exercise 4.6.6 Let H" be the n-dimensional Hausdorff measure on IR”.

(i) Show that H" is a Radon measure on IR".

(ii) Show that % (x) = a, forallx € R", where &, is a constant depending only on
the dimension n.

(iii) Show that H" = a,A".

The results in this section will be applied in Section 4.7 to study differentiability of
functions of a real variable; while differentiability of measures in a general setting will
be taken up in Section 5.7, where a decomposition theorem similar to Theorem 4.6.8 is

established.

4.7 Differentiability of functions of a real variable
and related functions

Differentiability of functions of a real variable will be studied through differentiation of
Lebesgue—Stieltjes measures generated by monotone functions. An important subclass
of the class of BV functions will be introduced. This is the class of absolutely continuous
functions, which is much larger than the class of continuously differentiable functions,
but enjoys many useful properties of the latter; in particular, the formula of integration
by parts holds for absolutely continuous functions.

We start with the almost everywhere differentiability for monotone functions.

Lemma 4.7.1 If g is a finite-valued monotone increasing function on IR, then the deriv-

ative ¢’ exists and is finite almost everywhere on R and g’ is measurable. Furthermore,

dp
r_ Al
g = ae.

Proof Let u, be the Lebesgue-Stieltjes measure generated by g. We know from
Theorem 4.6.3 that the derivate

dig (D)
28 (x) = lim =82
T

exists and is finite for x in a subset D of R with A(IR\D) = 0, where I denotes a generic
finite closed interval in R. We claim that for x € D, g’(x) exists and equals %(x).
Note first that points in D are necessarily points of continuity of g and 1,([a, b]) =

g(b) - g(a) if g is continuous at a and b (cf. Lemma 3.7.2). Now for x € D, ify — x+

g()-glx) _ dug

prare i (x); in general, for any

through points of continuity of g, then lim,,_, .,
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y > x, choose points of continuity y’ and y” such thatx <y’ < y < y” and such that

. f—x . ! —x
lim,, ., ﬁsz = lim,, o, yyj = 1, then,

(yy/ _—:) g(y/y)/ :i(x) - g(y))) :i(x) - (yy”_—;) g(y;)/ :i(x),

from which by taking the limit as y — x+, we obtain lim, ., ‘M = dug( ).

Similarly, lim,_, ‘% = lim,_, g(xi_# dug £ (x). Thus, g (x) = A s (x) for
x € D. This means that ¢’ exists almost everywhere on IR. That g’ is measurable follows

from Lemma 4.6.4 and the fact that g’ = —* a.e. |

Theorem 4.7.1 Iff is a BV function on aﬁnite closed interval [a, b], then [ exists a.e. on
la, b] and is integrable. Furthermore,

vz [ Iria

forx € [a,b].
Proof Put fi(x) = f(a) + P*(f) and f,(x) = N*(f) for x € [a,b]; then f; and f, are

monotone increasing on [a,b] and f = f; — f,. That f exists a.e. on [a,b] and is
measurable follows from Lemma 4.7.1 by extending f; and f, to be defined and mono-
tone increasing on IR, as in the last paragraph of Section 3.7 and by extending f by
f=fi-fronR.Thenf" =f] - f; a.e.onR.

If for i = 1,2, we let 1; be the Lebesgue—Stieltjes measure on IR generated by f;
then from the Lebesgue decomposition theorem,

_ d,LL,' " dui *_ 1 %
Mi—{dT} +MiLNi)2{d7} ={f'}%

where N; is a null set in R and d“ ‘ = f/ a.e, by Lemma 4.7.1. As a consequence,

for x€[a,b], Pi(f) =fi(x) fl(a) > i([a,x)) = [T fidx; similarly, N*(f) >
[ fidh. Now, VA(f) = BX(f) + NEP) = ¥ 4 £ = [ || d. That 1 5
integrable follows from |’ ’ |f'|dr < VP(f) < oc. |

Remark Although the measurability of ¢’ in Lemma 4.7.1 follows from that of %
by Lemma 4.6.4, if a measurable function f is differentiable a.e., the measurability of
f’ follows from the measurability of the limit of a sequence of measurable functions.
Actually,

£ = lim k{f (v+ 1) f<x>}

if f'(x) exists, and for each k € N, k{f(x + %) — f(x)} is a measurable function of .
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Exercise 4.7.1 Letf be amonotone increasing function on a finite closed interval [a, b].
Show thatf(x) = f(a) + [ f'd\ forallx € [a, b] if and only if the Lebesgue-Stieltjes

measure (i generated by f is absolutely continuous.

In the remaining part of this section, functions are finite-valued and defined on a finite
closed interval [a, b]; and for a function f and an interval I in [a, b] with endpoints ¢ < d,
the difference f(d) - f(c) will be denoted by f(I).

A monotone increasing function f is said to be absolutely continuous if the
Lebesgue—Stieltjes measure 1y generated by f is absolutely continuous. Hence, by
Exercise 4.7.1, a monotone increasing function f is absolutely continuous if and only if

1) =@+ [ fa

holds for all x € [a, b]. We shall characterize absolute continuity of a monotone increas-
ing function by a property which can be adopted to define absolute continuity for general
functions.

Lemma 4.7.2 For a monotone increasing function f, the following two statements are
equivalent:

(I) f is absolutely continuous.

(II) Given any & > 0, there is § > 0 such that if {I;} is a disjoint sequence of intervals
open in [a, b] with Z]. |I;| < &, then Z]. |fT)] < e.

Proof For convenience, put 1 = [if.
To show the implication (I) = (II), note first that since u({x}) =0 for all
x € [a,b], u({x}) = f(x+) - f(x=) = 0, i.e. f is continuous on [a, b]. From Lemma
4.6.7, fub Z—’fd)» = u([a,b]) < 00, hence j—’; is integrable. Now let &€ > 0 be given;
by Exercise 2.5.9 (iii) there is § > 0 such that if A is a measurable set in [a, b] with

A(A) < 8, then fA Z—‘;dl < ¢&; if {I;} is a disjoint sequence of intervals opezl in [a,b]
with > || <8, then A(U, ;) <6 and 3, |f(L)] = 3, f(I)) = fU,-Ii Tk <e.
Thus (II) holds.

Suppose now that (II) holds. We will show thatif N isa null setin [a, b], u(N) = 0.
Given & > 0, choose § > 0 according to (II). There is a set G open in [g, b] such
that G D N and A(G) < 6. But, since G = U/' I;, where {I;} is a disjoint sequence of
intervals openin [a,b], >, || = A(G) < §, and consequently,

n(N) = 1w(G) =2 n(L) = 2 f(I) <¢ (4.15)
J J

by (II), where the obvious fact that if (II) holds, f is continuous on [a,b] and
w(I;) =f(I;), has been used. Since (4.15) holds for arbitrary & > 0, u(N) = 0. ]

Exercise 4.7.2 Show that a monotone increasing and absolutely continuous function
maps null sets to null sets.
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We take Lemma 4.7.2 as a hint for defining absolute continuity for general functions.

A function f is said to be absolutely continuous if condition (II) in Lemma 4.7.2 holds

for f. Condition (II) in Lemma 4.7.2 will be referred to as condition (AC), and an

absolutely continuous function is usually simply called an AC function. Immediately fol-

lowing, if P : xp = ¢ < ®; < --- < a7 = d is a partition of [, d], the intervals (x;_1, x;),

j=1,...,1 are called the intervals of P; and if f is a function defined on [c,d],
! .

> -1 |f (%) = f(-1)| will be denoted by | f(P)|.

Lemma 4.7.3 An AC function f is a BV function.

Proof Since f satisfies condition (AC), there is § > 0 such that if {I;} is a disjoint
sequence of intervals open in [a, b] with 3, |Ij| <4, then }; |f(I})| < 1. Divide
[a,b] into m nonoverlapping closed intervals of equal length < §, and consider one
of these subintervals, say J. Let P be any partition of ], then |f(P)| < 1, because the

intervals of P are in | and the sum of their lengths is smaller than §. Since P is an
arbitrary partition of ], the total variation of f over ] is less than or equal to 1. Hence,

VE(f) < m. ]
Recall that if f is a BV function, the functions fp, fy, and fy are defined by

fo(x) =Pi(f); fa(x) =N3(f); fv(x) = V()
forx € [a,b].
Lemma 4.7.4 Iff is a BV function, then the following three statements are equivalent:

(I) fisan AC function.
(I1) fv is an AC function.
(III) Both fp and fiy are AC functions.
Proof The implication of (II) = (1) and the equivalence of (II) <> (III) are obvious. It
remains to show the implication of (I) = (II).
Suppose (I) holds. For ¢ > 0 given, choose § > 0 according to condition (AC).

We are going to show that if {I;} is a disjoint sequence of intervals open in [a, b]
with Z]. |I;| < &, then Z;fV(I}) < &. For each j, let P; be an arbitrary partition of

I;, and let {I]Ej ) }k be the finite family of intervals of 7, then | j{IIEj )}k is a sequence
of disjoint intervals open in [a, b] and Zi > |I]EJ)| = Zj |I;| < 6. From the choice

of 8,52 |f(I,E}))| =2 |f(P))| < &; consequently, 3. fy(I;) < &, by taking the
supremum of Z]. |f(P;)| first for all partitions P; of Ij, and then for all parti-

tions P, of I, and so on. Thus, fy satisfies condition (AC) and is therefore an
AC function. [ |

A functionf is called an indefinite integral if there is an integrable function g such that

f(x)=c+/ gd\ 4.16)
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for some constant ¢ and all x € [a,b]. More precisely, if (4.16) holds, f is called an
indefinite integral of g.
Exercise 4.7.3 Show thatiff is an indefinite integral of g, then f' = g a.e.

Theorem 4.7.2 A function f is an AC function if and only if it is an indefinite integral.

Proof 1t is obvious that an indefinite integral is an AC function. Suppose now that f is
an AC function. Both fp and fyy are AC functions, by Lemma 4.7.4, hence,

5= [ gt o) = [ g

forallx € [a, b], by Exercise 4.7.1. Then,

£(2) = £(a) + fo(x) — () = Fa) + / AT

for all x € [a,b]. This shows that f is an indefinite integral (f; - fx is integrable
because both f; and f}; are integrable). [ ]

Exercise 4.7.4 Show that a function f is AC if and only if f’ exists a.e., ' is integrable,
andf(x) =f(a) + [ f'drforallx € [a,b].

Corollary 4.7.1 If f is an AC function, then f, = 0 a.e. on {f; > 0} and f}, = 0 a.e. on
{f; > 0}; in other words, (f')* = fp a.e.and (f')” = f}; a.e.

Proof Since f' = f; - f}; a.e., by Example 4.4.1, V'(f) = f: |fp - fx|d2; on the other
hand, V?(f) = P(f) + NE(f) = [ fydh + [ f{,d2, since both fp and fy are AC, by

Lemma 4.7.4. Now, fy + f = |fo - ful and ['{fp + fie = | fp - f|}dA = 0 imply that
fo +fx = |fb — fx| a-€. From the last equality, the conclusion of the corollary follows
directly. |

Exercise 4.7.5 Suppose that f is a BV function.

(i) Show thatif VX(f) = /7 |f'|dA, then

= [ 50 - [(res s - [@ra

forallx € [a,b].
(ii) Show thata BV function f is AC if and only if V2 (f) = f: |f'|dx.
Exercise 4.7.6 A monotone increasing function f is said to be singular if f' = 0 a.e.

Show that every monotone increasing function is a sum of an AC function and a
singular function.
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Exercise 4.7.7 Let{f,}beasequence of AC functions on [a, b] such thatlim,_, », f,(a)
exists and is finite, and { | } convergesin L' [a, b]. Show that { ,, } converges uniformly
on [a, b] to an AC function.

Example 4.7.1 (Cantor’s ternary function) Let I, = [0, 1] and let J, = (1 2) be the
middle third open interval of Iy. Then Iy\Jo = [0, %] U [% ,1], and call [0, 3] and
[%, 1] Iy, I;; respectively. The open middle thirds of I;; and I, are denoted Jy;, J1»
respectively. Continue in this fashion; on the kth step we obtain 2 open intervals
Ji1s - - - s Juok ordered from left to right, each of length (%)k“. Put G = ;o U}Z:k1 Jiis
then A (G) = Y 1o Zk(%)k+1 = 1. The set P := I\ G s the intersection of a decreasing
sequence of nonempty compact sets, and is therefore a nonempty compact set, called
Cantor’s ternary set. P is small in the sense that A(P) = 0; but we shall see that P is
large in the sense that cardinality of P is the same as that of Iy = [0, 1]. A function f
will now be defined on [0, 1] as follows. For x € [0, 1], express x in ternary expansion

Il
.Mg

\
I
T
@ | >

) 8;’ € {0,' 1;2})

andlet g; = %8]- for all j. The function f is defined by

1
2n

E?I"Tf

£(x) = z

ife; € {0,2}forj=1,...,n-1,and e, = 1forsome n; otherwise, letf(x) = Z]o:ol %
Function f is well defined, since the only situation where x has two ternary expansions
that might lead to different values of f(x) is when the sequence {¢;} of one of the
expansions is of the form: for some #, €1, ...,&,.1 are in {0,2}, &, = 1, and either

g =0forj>n+1lorg =2forj> n+1;in the first case x can also be expressed as

_ n-1¢§ 0 o0 2 . . .
x = Z] 13 et s 3}.,andln either expansion
n-1 ;. 1
f(x Z ~i _n’
12 2

while in the second case x can also be expanded as

T
L

X
Il
~.
Il
—_
@ | >

2 0
+—+ —
3" i ¥

and f(x) also has the value Z" ! 9 + —. The function so defined is called Cantor’s
ternary function.
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Exercise 4.7.8 Let f be the Cantor’s ternary function.

(i) Show that f is a monotone increasing and continuous function with f(0) = 0
andf(1) = 1.
(ii) Show that each open interval Ji,k=0,1,2,..;j=1,..., 2%, defined above is

_1 & _1 & .
of the form (Z;’zl ¥+ 3%1, ;’:1 3+ 3%) for some n, where &4, ..., &,_; are in

{0,2}. Also show that f is constant on each such interval and find the value.
(iii) Show thatifxandyin [0,1] satisfy [x — y| < 3%, then |f(x) - f(y)] < zi
(iv) Show that fpfd,uf = %

Exercise 4.7.9 Let P be the Cantor’s ternary set defined previously.

(i) Showthatx € Pifand onlyifx has a ternary expansionx = Y % , where each

j=1
8]' S {0, 2}
(ii) Show that Cantor’s ternary function maps P onto [0, 1].

(ili) Anumberxin [0, 1] is called a ternary rational number if x = 3 where mand n
are nonnegative integers with 0 < m < 3".Let P, be the set obtained by remov-
ing all those ternary rational numbers in (0, 1) from P. Show that the Cantor’s
ternary function is 1-1 on Py,

(iv) Show that the cardinality of P is the same as that of [0, 1].

Example 4.7.1 (Continued) The Cantor’s ternary function f is constant on each open
interval Ji; and hence f* = 0 a.e. on [0, 1]. Cantor’s ternary function is the most well-

known singular function. Observe that V'(f) = 1, but fub |f'|dx = 0; hence f is not
an AC function. The Cantor’s ternary set P is perfect i.e. P is the set of all of its own
limit points. Thus P is a perfect compact null set with cardinality that of R.

Example 4.7.2 We now use Cantor’s ternary function f on [0, 1] to exhibit the fact that
a measurable function of a continuous function may not be measurable.

Define a function g on [0, 1] by g(x) = f(x) + x, where f is Cantor’s ternary func-
tion. Evidently, g is strictly increasing on [0, 1] and maps [0, 1] continuously onto
[0,2]. The complement G of Cantor’s ternary set P in [0, 1] is an open set which is
mapped by g onto an open set in [0,2] of measure 1 (note that each interval com-
ponent of G is mapped by f to a point, and is hence mapped by g onto an interval
of the same length); as a result, ¢ maps the Cantor’s ternary set P onto a compact
set K of measure 1. By Proposition 3.11.2, K contains a nonmeasurable set W. Since
g 'W C Pand A(P) = 0,¢g"'Wisanull set and is therefore measurable. Put A = g7' W
and let h = I; h is measurable. Because g is a continuous and injective map from the
compact set [0, 1] onto [0,2], g™ is a continuous function from [0,2] onto [0, 1],
by Proposition 1.7.3. Now h o g™ is not measurable, because {ho g™ > 0} =W
is nonmeasurable. Thus, a measurable function of a continuous function could be
nonmeasurable.
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For a right-continuous BV function g on [a, b], let ,LL; and Mg be the Lebesgue—
Stieltjes measures generated by gp and gy respectively, and let 11p = puy — i1, Note

that both gp and gy are right-continuous, by Theorem 4.4.2. If f is both ;- and
(., -measurable on [a, b] and is integrable w.r.t. u; and Mgy We define

g
/ g = / 't - | .

The measure |ug| := Mg + 1y s called the total variational measure generated by g,
while M; and p, are called respectively the positive variational measure and the neg-
ative variational measure generated by g. If f is a bounded function on [a, b] which is

/a bfdg = f bfdgp— / bfdgN

exists and is finite, by Theorem 4.5.2.

continuous | (tg|-a.e., then

Exercise 4.7.10 Suppose that g is an AC function. Show that a Riemann integrable
function f is continuous |f44|-a.e. Then conclude that | ’ fdg is defined and fab fdg =
fab fg'di. (Hint: cf. Example 4.5.2.)

Theorem 4.7.3 (Integration by parts) Let f, g be AC functions on [a, b], then

b b
[ 5 =100 -s(s@ - [ g

Proof We may assume that both f and g are monotone increasing, then by
Theorem 4.5.3,

b b
/ fdg = £(b)g(b) - f(a)g(a) - / odf.

But by Example 4.5.2,

| g - / e / gt = / o,

hence,

b b
[ 5= w350 ~stagte - [ g .
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Exercise 4.7.11 Letf and gbe AC functions. Show that the product fgis AC, and (using

integration by parts)
d d d
[ @@= [ e [ ga

foralla < ¢ < d < b, and conclude that (fg)' = f'g + fg' a.e.
Exercise 4.7.12 Let f be an integrable function on [a, b] with the property that

b
/ fg/dk =0

for all AC functions g such that g(a) = g(b) = 0. Show that f = constant a.e.
(Hint: putc = fabfdk, and let

g<x>:/:(f—bfa)dx

forx € [a,b]. Observe that g(a) = g(b) = 0 and evaluate f:(f - 3=)%dA.)

Exercise 4.7.13 Let f and g be integrable functions on [a, b] and suppose that

b b
/ dx = —/ ghdA

for all AC functions h with h(a) = h(b) = 0. Show that f is equivalent to an AC
functionf and ' = ga.e.

Theorem 4.7.4 (Change of variable) Suppose that g is a monotone increasing AC function
on [a,b]. Put c = g(a) and d = g(b). Then for any nonnegative measurable function f on
(¢, d], the function (f o g)g is measurable and

/ . = / (fog)gdh.

Proof From |I| = u,(g™'I), for any interval I open in [¢,d], it follows that A(G) =
tg(g ™' G) for any set G open in [c, d], and hence for any Borel set B in [, d] we have
(cf. Exercise 4.3.4 and recall that i, is absolutely continuous)

: du S ‘ ,
A(B) = 11,(g 'B) = / d—kgd)» = / Iyipg'dh = / (Ig 0 g)g'dn,
g'B a a

or

A(B) = /H(IB 0g)g'dh,
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where H = {g’ > 0}. Note that for a Borel set Bin [c, d], Is o g is a Borel measurable
function and (I3 o g)g is measurable; but in general I o g may not be measurable for
measurable set A C [, d]; however, we claim that (I4 o g)g’ is measurable and

b
A(A) = f (In 0 g)g dA.

To see this, first consider the case where A is a null set in [, d]. Choose a Borel set B

in [¢,d] such that B D Aand A(B) = A(A) = 0, then

A(B) = /;{(IB 0g)g'dr =0,

which implies that Iy o g = 0 a.e. on H and, a fortiori, [ o g = 0 a.e. on H. Therefore
I, o gis measurable on H; as a consequence, (I, o g)g’ = 0 a.e. on [a, b] and is there-
fore measurable. Now, let A be any measurable set in [, d] and choose a Borel set B in
[c,d] suchthat B D Aand A(B) = A(A); then S := B\Aisanullsetand (Is 0 g)g' = 0
a.e. as we have just proved. But (Isog)g = (Inog+Isog)g = (Ia0g)g ae. on
[a,b], hence (I4 o g)g’ is measurable and

b b
A(A) = A(B) = / (Igog)g'dr = / (I 0 g)g'dA.

If f > 0 is measurable, f = Z}ozol ;_'IA;' , where each A; is a measurable set in [c, d], by
Theorem 2.2.1. Then,

ffd)» S - > ona) =3 (1, 0 g
c j=1]

a

b b
= f lim Z —_(IAj 0g)gdhr = / lim {(Z IA) }g dh
a l—>ooj=1 j a j=1 j

= f b(f o g)g'dh,

where (f o g)g’ = lim/_, Z}l.zl %(IA]. o g)g is measurable because it is the limit of
. I
measurable functions ) -1 %( I 0g)g. |

Remark The change of variable formula in Theorem 4.7.4 is familiar in integral cal-
culus. Here, it is shown under much relaxed conditions on f and g. Note that one of
the delicacies in the proof is the measurability of (f o g)¢/, although f o g may not be
measurable, as we see in Example 4.7.2.
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4.8 Product measures and Fubini theorem

We digress in this section from the main theme of the chapter, to the construction and
properties of product measures, before going to further studies of functions of several real
variables. Consider measure spaces (2;, £;, ;), i=1,2, and let R = {A; X A, : A; €
Y, i=1,2}. Ris aw-system. Sets in R are called measurable rectangles. The o -algebra
o (R) on Q; X 2, generated by R is denoted by £; ® X,. For E C ©; X €, and
(w1, wy) € Q; X Q,, we define sets E,,, and E** by

EWl = {)’ € QZ : (Wl)y) € E})' E™ = {x S Ql : (x, Wz) € E}

E,,, and E"* are called respectively the w,-section and w,-section of E.
The lemma that follows is easily verified.

Lemma 4.8.1 Let X be the family of all E C €21 X €2 such thatE,, € X,,E* € X, for
all (wy, wy) € Q1 X Q,, then X is a o -algebra containing R.

Corollary 4.8.1 X D ¥ ® X».

Corollary 4.8.2 If f is X; ® X,-measurable, then for (wy,w;) € Q2 X 2y, x>
f(x,wy) andy > f(wy,y) are respectively X - and X,-measurable.

Proof Since Ig(x,w;) = Igw (x) and Ig(wy,y) = Ig,, (y) for E C Q) x ,, it follows
from Lemma 4.8.1 and Corollary 4.8.1 that the corollary holds if f is the indicator
function of a set in ¥; ® X,. Then the corollary holds for ¥; ® ¥,-measurable
simple functions. For general nonnegative ¥; ® X,-measurable functions, the corol-

lary follows by Theorem 2.2.1; this is sufficient to conclude that the corollary
holds. u

Lemma 4.8.2 Suppose that both (21,21, 1u1) and (2, Ty, 4y) are o-finite and
E€ X, ® X, then wyt+> uy(E,,) is X-measurable and wy +> pi(E"*) is
3,-measurable, and

fMZ(Ewl)dMI(WI)zf Ml(sz)dﬂz(Wz)-
Q Q,

Proof €2; and €2, can be expressed as

a-Ue® o-_e®
1 - n 2 = n
n=1 n=1

where {le)} C Xy, {Q,(f)} C X, are both disjoint and ,ui(QEl")) <oofori=1,2
and n =1,2,.... Consider the family M of all those E € ¥; ® X,, such that the
conclusions of the lemma hold if E is replaced by E N (Y x Q) for all n and m.
It is simply routine to verify that M is a A-system. But it is to be noted that the only
place where EN (Qfll) X fo)) requires considering is when one verifies that if E is
in M then E° is in M. Since E € M is easily seen to satisfy the conclusions of the
lemma, and since M D R, the lemma follows from the (77-A) theorem. [ ]



Product measures and Fubini theorem | 151

Now, forE € X; ® X,, define

1 X a(E) = | pa(Ew)dii(wi) = [ 1 (B™)dpa(wa).
Q) Q0

Then 4] X |4, is a measure on X; ® X, and (2 X 5, X1 ® Xy, (U1 X U2) is a
measure space, called the product space of (25, X1, 1) and (£2,, £y, i42). The
measure [ X W, is called the product measure of (7 and p,. One notes that
p1 X a(Ar X Ay) = i (A pa(4z) if Ay X Ay € R

Proposition 4.8.1  Suppose that both (21, X1, 1) and (2, Lo, 42) are o finite,
then [y X [y is the unique measure on X1 @ X, such that 11 X ny(A; X A;) =
,LLl(Al)[/Lz(Az)for allA1 € X andA2 € X,.

Proof Let disjoint sequences {Q,Sl)} C X, and {Q,(nz)} C X, be as in the proof of
Lemma 4.8.2, and suppose that 1 is a measure on X; ® X, such that £(A; x A;) =
w1(Ar)pa(Ay) forall A} € X and A, € %,. Consider the family F of all E€ £; ®
3, such that

nENQY x QD)) = i x w(EN [P x @)

for all n and m. Then F is a A-system containing all measurable rectangles. Since the
family R of all measurable rectangles is a 77 -system, it follows from the (77-1) theorem
that 7 = X; ® ¥, andthus it = 1 X i,. |

Theorem 4.8.1 (Simple version of Fubini theorem)

(i) (Tonelli) Iff is ¥ ® X,-measurable and f > 0, then x > szf(x, wy)dps (wy)
is X1-measurable, y > fQIf(wl,y)dle(wl) is Xo-measurable, and

/szd“l s fQ [ szf(WbWZ)sz(Wz)] dpua ()
- sz [ Qlf(wllWZ)d:ul(Wl)] dits (ws).

(i) Iff is g X po-integrable, then conclusions in (i) also hold for f.

Proof Since (ii) is an obvious consequence of (i), it is sufficient to prove (i). If E €
%) ® ¥, andf = I, then (i) follows from Lemma 4.8.2 and hence the lemma holds
for nonnegative simple functions. Iff is a nonnegative X; ® X,-measurable function,
by Theorem 2.2.1,

1
ZE hm Z IAk)

]—)OOkl

where each Ay € ¥; ® %,, then (i) follows from the monotone convergence
theorem. u
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In general, itis not true that the product space of two o -finite complete measure spaces
is complete. For example, consider (R, £ ® £, A X 1), where L is the o -algebra of all
Lebesgue measurable sets in IR and A the Lebesgue measure on IR. As we have shown in
Section 3.11 there is a nonmeasurable set S C IR. Choose any nonempty null set N in IR,
and consider the set N x Sin R?. Forw € N, (N x S),, = Sisnotin £; hence N x Sis
notin L ® L. ButN x SC N x RandA x A(N x R) = A(N)A(R) = 0,thus N x S
isaA x A-null set whichisnotin £ ® L. (R* £ ® L, A x A) is therefore not complete
and cannot be (IR?, £2, A?).

Exercise 4.8.1 Show that (R¥, £F! AF1) is the completion of the measure space
(R¥, £F @ L' A% x A!) for k, 1in N. (Hint: verify first that B(R*') ¢ £F ® £'and
A (B) = Ak x AN(B) for B € B(RF).)

Suppose now that both (€2, 31, t1) and (£2,, X5, 42 ) are o -finite complete measure
spaces; then corresponding to Theorem 4.8.1, the following theorem holds.

Theorem 4.8.2 (Fubini) Let (2; X Q, X1 ® X, 41 X Uy) be the completion of
(21 X 25, 21 ® X, 1 X [h2).

(i) (Tonelli) If f is nonnegative Xy ® X,-measurable, then for py-a.e. wy in Q; and
[a-a.e. wy in 25,

v > f(wy,v) is Xy-measurable;

u > f(u,wy) is £;-measurable.

Furthermore,

wy = / (w1, wy)d,(wy) is Xy -measurable;
Q2

wy = / f(Wh ws)dy (wy) is Xo-measurable,
Q)

and

/ fduy x py = / |: f(Wl; Wz)dﬂz(Wz)] diy (wy)
QxQ, Q Q,

-[ [ [ f(wl,m)dm(wl)] dua(wy)

(i) Iff is g X o-integrable, then the same statements in (i) hold for f.

Lemma 4.8.3 Suppose that E € X; ® X, and 1y X (2 (E) = 0. Then for any subset D
of E, the following statements hold:

(1) D, € %, and j1,(D,,) = 0 for ju1-a.e. wy in Q.
(2) D" € £ and pu;(D") = 0 for py-a.e. wy in Q2,.
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Proof Since jt; x p,(E) = le a(Ey, )dp (wr) = fQZ p1(E*)dpa(wy) = 0, and both
w2 (E,,) and w1 (E*?) are nonnegative, (4,(E,, ) =0 for u;-a.e. wy and pq(E*2) =0
for p,-a.e. wy. For such w; and ws, D,,, and D"* are in X, and X, respectively,
because D,,, C E,,, D** C E*?, and both (22, £, ;) and (2, £,, ,) are com-
plete. Trivially, for such w; and w, (£ (D,,, ) = 1 (D*?) =0. ]

Proof of Theorem 4.8.2 Since (ii) follows from (i) easily, it suffices to prove (i).

If f > 0is X; ® X)-measurable, f = Z]o:ol ]l.IAj, where each A; is in X; ® X, as
claimed by Theorem 2.2.1. It is therefore sufficient to consider the case f =14 for
A€ X ® X,. There are B and C in ¥; ® X, such that BC A C C with u; x
(2 (C\B) = 0. This means that A = BU Dwhere D C E := C\B. From Lemma 4.8.3,
for p1-a.e. w; and py-ae. wy, D, € ¥, with p,(D,,) =0 and D** € X; with
w1 (D"?) = 0; for such w; and w,,

V= IA(WI, V) = IAW1 (V) = IBW1 UD,,, (V) = IBW1 (V) + IDW1 (V)
and

u k= IA(u, Wz) = IAwZ (u) = IBWZUDWZ (ll) = Isz (u) + IDwz (u)

are respectively 2,- and X;-measurable. Furthermore,

wy = IA(Wh V)d/'LZ(V) = /'LZ(Bwl ))
Q2

and

wy > I (u,wy)dpy (u) = g (B*?)
Q

are respectively 2 ;- and ¥,-measurable by Lemma 4.8.2, and hence,

/S;z |:/;zl IA(wl’wz)d/j“Z(WZ)] dpa(w,) = /Qz w1 (B )dpis (wr).

Thus (i) holds for f = I, because by Lemma 4.8.2,

/ t2(By, )iy (wy) = w1 (B*?)dpy(wy) = iy X pa(B),
Q) Q0

and 141 X 12(B) = 1 X 2 (4) = [g ., Iaditr X pa. u



154 | Functions of Real Variables

Example 4.8.1 We use the Fubini theorem to evaluate fio; e dx (cf. Exercise 3.4.7
and Exercise 3.4.8). First note that since f_‘:; e dx < 00 as an improper integral,
fIR e di(x) = f_o; e dax by Exercise 3.4.7 (i). From the Fubini theorem,

/}R 2 e D2 (x,y) = fR [ fR exzdx(x)} eV dr(y) = [ /}R exzdx]z.

Now,

f e B2 () = lim f f e dady
R2 L—o0 PP <L?

L 2 5 L 5
lim f p/ e” dodp = lim 27‘[/ pe? dp
L—o0 0 0 pP—>00 0

L d >
lim JT/ —(=e")dp =m.
o dp

L—o0

Hence [°, e dx = [ [Jx: e @) dxdy] o /7. By the Fubini theorem, again one
finds that fIR" e dx =73,

Exercise 4.8.2
i) Show that [™° de = 00.
(i) ———

. i . b s . . _ .
(ii) Show that fooo BEdy = limy_, o0 f, 2%dx = T by integrating e sinx over a
suitable domain in the first quadrant of R?.

Exercise 4.8.3 Let (2, X, 1) be a o-finite measure space and f a nonnegative
Y-measurable function on Q. Put Gy = {(w,y) € Q2 x [0,00): 0 <y < f(w)}.
Show that Gy € ¥ ® Band u x A(Gy) = fodu.

Exercise 4.8.4 Let f(x,y) = ﬁ if (x,y) #(0,0), and f(0,0) = 0. Verify that
f_ll ( f_ll f(x, y)dx) dy = f_ll ( f_ll f(x, y)dy) dx = 0,and decide whether f is Lebesgue
integrable on [-1,1] x [-1,1] or not.

Exercise 4.8.5 Show that fooo(zgl e sinx)dx = Z]o:l fooo ¢7” sin xdx and use this

fact to show that [~ 2% dx = Z]O:l #

Exercise 4.8.6

(i) Show that fooo ta“—:tdt = 00 by considering the double integral

1 [e%e) 1
———dt ) dx.
/0 <,/0 1 + x2t2 ) ¥
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(ii) Show that f OOO ( tan—:t )?dt = 7 In 2 by integrating the triple integral

1 1 o 1 1
. t .
e

Example 4.8.2 Let {f,} be a sequence of L(2; x €2,, £1 ® ¥, 41 X U3), in which
it converges to f. We claim that there is a subsequence {f, } of {f,} such that
for pi-ae. x limg_, o sz |fue(%,9) = f(x,5)|du2(y) = 0. Define F, F, on ; by
F(x) = fQZf(x,y)d,uz(y) and F,(x) = szf,,(x,y)d,uz(y). Note that F, F,’s are
measurable on (2}, X, ;t;) and le |Fu - Fldu, = f91><92 |fo = fldrer X i, by the
Fubini theorem. Consequently, lim,_, ~ le |Fu - F|du, = 0, and, by Exercise 2.7.9,
{F,} has a subsequence {F, } which converges to F a.e. on €2;. Now, the Fatou
lemma implies that le limy—, o0 |Fp, - Fldpty < liminfi_, o le |Fu, — F|dpty =0,
which means limy_, o |F,, — F| = 0 j41-a.e. on 4, or

i [ 16 Go0) - o) =

for u1-a.e. x in 21, as we claim.

We conclude this section by applying the Fubini theorem to prove a measurability
result which we shall need later. For this purpose, define first a map ¢ from R*" to R" by
t(x,y) = x — y, where x and y are in R". If f is a Borel measurable function on R”, then
f o tis Borel measurable on R*", because {f o t > &} = t'{f > «}, which s a Borel set
in R*". Note that for A C R", the y-section (t 'A) of t 'Ais A +y := {x+y: x € A}.

Lemma 4.8.4 IfAisanull setin R", then t ' A is a null set in R*".

Proof Thereis a Borel set B D A with A"(B) = 0. Now t "' Bis a Borel set in IR*"; by the
Fubini theorem,

28 = [ = [ ( [ LIB(x,y)dx"(x)) ()

_ / B G) = [ (B ()

- / A (B)dA" = / 0dA" = 0,

i.e.t'Bisanull setin R*.Butt'A C t'Bimplies that t ' A is a null set. |

Proposition 4.8.2 Iff is a measurable function on R", then f o t is a measurable function
on R*".

Proof There is a Borel function g on IR” such that f = g + h, where h = 0 a.e. on R".
Sincefot=got+hotandgotisBorel measurable, f ot is measurable if h ot is
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measurable. We claim that 4 o t = 0 a.e. on IR?". There is anull set A C R" such that
h=00onR"A.Thenhot=0ont"'(R"\A) = (t'R")\t'A = R*\t'A. But, by
Lemma 4.8.4,t ' Aisanull setin R*", hence h o t = 0 a.e. on R*". Sinceho t = 0 a.e.
on R*", it is measurable; consequently, f o tis measurable. [ |

4.9 Smoothing of functions

Our concern in this section is the smoothing of functions and approximation of functions
by smooth ones. The method we shall use is that of the Friederichs mollifier.

We define first some function spaces which will be frequently considered later. Given
an open set 2 in IR" and a positive integer k, we shall denote by C*() the vector space
of all functions defined on €2 which have continuous partial derivatives up to order k, and
denote by C*(2) the space (), C*(£2). The functions considered are either real-valued
or complex-valued, as will either be clear from context or explicitly stated. For a function
f defined on €2, recall that the closure in 2 of the set { f # 0} is called the support of f and
is denoted by supp f. If supp f is a compact set, then f is said to have compact support.
The subspace of C*(2), which consists of all functions in C¥() with compact support,
is denoted by C*(2); C>°(£2) is similarly defined.

For a measurable subset Q of R, the space LF(£2, £"|€2, ") will be simply denoted
by LP(S2), for convenience, and accordingly the space of all those measurable func-
tions which are in L?(K) for every compact subset K of Q2 is denoted by L‘f o ().
Usually L} (2) is simply denoted by Lj,.(2) and its elements are called locally

loc
integrable functions on §2; correspondingly, functions in L () are called locally L?

loc
functions on 2.

Some notations regarding multi-indices are now introduced. By multi-index, we mean
an ordered n-tuple o = (e, . . ., @,) of nonnegative integers for some integer n > 1 (n
will be clearly implied from the context). For a multi-index « = (ay, ..., ,), the sum

>+, o; and the product H;':l a;! are denoted respectively by || and a!; while if x =

j=1
. . . . ||
(%1, .. .,%,) € R", x* will stand for 17", . . ., x,". The partial derivative symbol 5 d

x‘fl - Qa"
will be abbreviated to gfi ord;.
We are now ready to define the Friederichs mollifier. Let ¢ € C°(IR") with
f @dA" =1. For definiteness, assume that supp ¢ C C;(0), the closed ball in R”
centered at 0 and with radius 1. Such a function ¢ is called a mollifying function. For
& >0, define ¢, (x) = £"¢(%) for x € R"; then supp ¢, C C¢(0) and [ @.dA" = 1, by
Example 4.3.1 (ii).
Corresponding to such a function ¢ and € > 0, we define a linear transformation J,
which maps functions f in Lj,.(£2) to functions defined on 2, = {x € Q : dist(x, Q°) >

e}, by

]&f(x) = f()’)%(x -)’)dy; x € 2.
Ce(x)
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Note that C;(x) C 2 for x € Q,, hence f is integrable on C,(x) and J.f(x) is defined;
moreover, since ¢, (x — y) = 0 for y outside C; (x), we may consider the defining integral
for J.f (x) as over the whole space IR”, thus

Jof (x) = / £(3)n x  )db.

The family {J, }+~0, which depends on ¢, is called a Friederichs mollifier. We often
consider the case ¢ > 0, but for the moment, we do not impose this restriction.
The most well-known such nonnegative function ¢ is that defined as follows:

Ce "M, if|x| < 1;
o(x) = ,
0, if x| > 1,
where C is chosen so thatf<pd)»" =1.

Exercise 4.9.1

(i) Showthat].f € C(L,).
(ii) More generally, suppose that h is a continuous function on R" with supph C
C.(0); show that [ f(y)h(x - y)dy s a continuous function of x € €2,.

Exercise 4.9.2 Show that [ f(y)@.(x - y)dy = [ f(x - y)@:(y)dy, for x € Q..

Proposition 4.9.1 Iff € C(Q), J.f(x) — f(x) uniformly on any compact subset of 2 as
e — 0.

Proof Let K C Q be compact. Fix 0 < &y < dist(K, Q) and let F={x e Q:
dist(x, K) < &o}.Fis compact. Since f is uniformly continuous on F, for o > 0, there
is 8 > Owith 8 < &, such that |f(x) - f(y)| < o ifx,yarein Fand |x - y| < 8. For
x € K,0 < ¢ < 8§, wehave

T () - )] = \ 60 -5t

<o / |pe|dA" < oMy,

where M, = [ |p|dA". ]
Proposition 4.9.2 Forf € Lioc(R2), Jof € C°(2).

Proof For h # 0, consider the difference quotient for x € €2,,

(x+he —y) — s (x -
Cf e o) Jf () = f fp Pt f 2CheVi
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where ¢; = (8]-1, AU (Sjn) with 8 being 1 or zero according to whether or not k = j.
When  is small, dist(x + hej, Q) > &y > ¢, and for all such small enough h, ¢ (x +
he; — y) = 0 for y outside a compact set K in ; therefore,

/f(y)qoe(whe;—i)—we(x—y)dyz fg(y)sos(mhe,-—i)—qaa(x—y)dy_

Now,
@s(x + hej - y) - ge(x - ) e
x ]);l H‘fgﬁ% Zj(z) M,
and hence
e hej —y) — e (x -
e R®)
on K. By LDCT,
9 e L , _ 0pe
a6 = Jim s 1) =19} = [ FOIZEE G-

So far we have only used the fact that ¢, € C*°(IR") with supp ¢. C C.(0). Hence,
we may repeat the argument to obtain

o] ||
Sl = [ 1050,

By Exercise 4.9.1 (ii), each %]8 f is continuous on £2;. [ |

Exercise 4.9.3 IfKisacompactsetand G is an open set containing K, then there is C*
function g with suppg C Gand0 < g < 1,suchthatg = 1on K.

Remark When f € LF(Q2), 1 < p < 00, we may consider f as defined on R" by
defining f to be zero outside €2; then J,f is defined for x € IR" and hence for x € €2.

Theorem 4.9.1 Forf € L/ (R2),p > 1, we have ||Jfll, < LI fll,, where L = L(@, p).

Proof By the previous remark, we may assume that 2 = R”.
That ||Jefll, < LIlfll, when p=1 or oo is obvious. We consider the case
1 < p < 00.In this case, let g > 1 be the exponent conjugate to p, i.e. ‘% + é = 1, then,
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151 = | [ 130,65

5/|f(y)||<ps(x—y)|dy=/If(x—y)llfpe(y)ldy

=| [re-nrnoms) | [ o)
=C{/|f(x—y)|P|<ﬂe(}’)|d)’};»

where C = { [ |¢.(y)|dy}/1={f |g0(y)|dy}$. In one of the steps above, we have
used Hélder’s inequality w.r.t. the measure v with dv = |@.|dA" (cf. Exercise 2.5.7).
Now the Fubini theorem implies

1 < f ( f G y)|p|gog(y)|dy>dx

- cf’/ (f If(x—y)lpl%(y)ldx)dy
_ CPIIfIIfiZ/ lo(y)|dy = CCUIfIIE,

or,

IJeflly < LUfllp)
where L =L(¢,p). Note that (x,y) — |f(x-y)|¢:(y) is measurable by
Proposition 4.8.2. |

Exercise 4.9.4 Show that if ¢ > 0, the constant L in Theorem 4.9.1 can be taken
to be 1.

Theorem 4.9.2 Iff € I’(Q),1 < p < 00, thenlimy—¢ ||Jof - fll, = 0.

Proof We may assume that {2 = IR". Let o > 0 be given. By Proposition 4.6.1, there
is g € C,(R") such that If-gll, < ﬁ, where L = L(g,p) is the constant in
Theorem 4.9.1. Now,

”]sf _f”p = ”]&f‘]sg +]sg -8 +g_f||p
f ”]S(f_g)”p + H]sg_g”p + ”g _f”p
<@+ DIf-glly+ 1eg - gllp

g
<7 ]eg - gllp
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where we have used the inequality ||J.(f -g) ”E\S L||f-gll, as asserted by
Theorem 4.9.1. Let K be the support of g and put K = {x € R" : dist(x,K) < 1}.
Kisa compact set, outside which both g and J,g vanish if 0 < ¢ < 1. Hence, from
Proposition 4.9.1,

O \?
g -alt = [ heg-gPinr < (%)
K

or,

o
I]eg —gll, < Py
if ¢ is sufficiently small, say ¢ < 8. This means that [|J.f - fll, < 5 + lJ:g - gll, < o,
ife <. ]

Corollary 4.9.1 C°(2) isdensein LF(2),1 < p < 00.

Proof Let f € LP(R2), 1 < p < 00, and fix o > 0. By Proposition 4.6.1, there is g €
C.(€2) such that || f - gll, < 5; while from Theorem 4.9.2, if ¢ > 0 is small enough,
IJeg - gll, < 5. Since g has compact support in €2, J.g has compact support in 2 if &

is small enough. Hence if ¢ is small enough, J.g € C>°(2) and ||J:g - glly, < %; but
then [|f — Jegll, < IIf —gll, + llg - Jegll, < 0. n

Exercise 4.9.5 Suppose that ¢(x) = ¢(—x) for all x in R" and let f, g be in L*(R").
Show that

(]Ef)gd)»"=/ fegd\".
R" R

4.10 Change of variables for multiple integrals

A transformation formula for multiple integrals under changes of variables will be proved
in this section. The changes of variables to be considered are C' diffeomorphisms, which
we shall now describe. Let €2 be an open set in R". Amap t = (t,...,t,) from € into
R" is called a C' map if its component functions t; are continuously differentiable, i.e.
first-order partial derivatives of each t; exist and are continuous on 2. For x € €2, the lin-
ear map from IR” into IR” represented by the matrix (g—; (x)) in reference to the standard

basis of R" is called the differential of ¢ at x, and is denoted by d,t. By the standard basis
of R" we mean the basis formed by ey, . . ., e,, where for each j, ¢; = (8]-1, R 8]-,,), with
Jjk being 1 or 0 according to whether k = jor k # j. The symbols §j. are called Kronecker
symbols. In this section, linear maps from IR" to IR" are represented by matrices with ref-
erence to the standard basis. The determinant of (g—i (x)) , called the Jacobian of t at x,
/)
is to be denoted by J(#; x). When ¢ is a linear map, t;(x) = Z;’Zl tix; forx = (%1, ..., %),
where (t;) is the matrix representing t; it follows then that (%(x)) = (t;), ie. dit = t.
/)
For a linear map t, the determinant of the matrix representing t is usually denoted by
dett, thus J(t; x) = detd,t if t is a C' map. A C' map t from  into R" is called a
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C' diffeomorphism if it is injective and d,t is invertible for all x € Q. By the inverse
function theorem, if t is a C' difftomorphism from €2 into R”, then ¢! is a C' diffeo-
morphism from t$2 onto 2 and J(¢; x) ™! = J(+'!; tx) for x € . Note that J(¢; x) # 0 for
all x in 2.

We consider first the transformation formula for integrals when changes of variables
are invoked by invertible linear maps. We follow the usual practice of denoting linear
maps by capital letters, and, for convenience, the matrix representing a linear map T
is also denoted by T. The matrices derived from the unit matrix I by elementary row
operations are called elementary matrices. They are of the following three types:

(i) Atype(l) elementary matrix is one obtained from I by multiplying a row of I by
a nonzero real number ;

(i) atype(2) elementary matrix is one obtained from I by multiplying a row of I by
a nonzero real number and then adding it to a different row of I;

(iii) atype(3) elementary matrix is one obtained from I by interchanging two rows
ofI.

Note that if T is an elementary matrix of type(1), then det T = ¢; while det T =1 or
-1, according to whether T is of type(2) or type(3). If T is an elementary matrix, the
corresponding linear map T is called an elementary linear map of the same type.

Lemma 4.10.1 If T is an elementary linear map and f > 0 is a measurable function on R"
such that f o T is measurable, then

/ far® = |detT|/ f o TdA" 4.17)
R R»

Proof Suppose that T is of type(1), then f o T(xy, ..., x,) = f(x1,.. oy Xy ., %,) for
somej=1,...,nand c # 0. By expressingx = (x1,...,%),...,%,) asx = («x;,&;) and
using the Fubini theorem, we have

/fon)J‘:/]Rl (/Rf(xl,...,cxj,...,xn)dxj>dfcj

1 A
= H -~ fRf(xl, ey Xjy e .,x,,)dxi dx]

1
= — | s,
lc| JRro

where f]Rf(xl, ey €Ky Xy )dXy = |%| fRf(xl, ooy Xjy ..., %,)dx; follows from the
fact stated in Example 4.3.1 (ii). Hence,

fd\" = |c| / foTd\" = |det T| f o Td\".
R~ R" R"

Similarly, (4.17) can be verified for the case when T is of type(2) or of
type(3). |
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If T is an invertible linear map from IR" onto IR" then, as is well known in element-
ary linear algebra, after a finite number of elementary row operations the corresponding
matrix T becomes the unit matrix I, i.e.

I=8---8-T,
where Sy, . . ., Sk are elementary matrices, or
-1 -1 _
S -8 =T,

where each §;! is also elementary and of the some type as §;; in terms of maps, this means
that the invertible linear map T is a composition of a finite number of elementary linear
maps, i.e.

T=Tyo---0Ty (4.18)

with each T being elementary.

Theorem 4.10.1 If T is an invertible linear map from R" onto R" and f is a measurable
function on R", then f o T is measurable; and if f is either nonnegative or integrable,

/ fAA" = | det T| / fo Tdx". (4.19)
R" R»

Proof 1t is sufficient to prove (4.19) for the case f > 0. Suppose first that f > 0 is Borel
measurable, then since f o T is Borel and T is of the form (4.18), we have from
Lemma 4.10.1,

1
|detT|fRnfonA":1‘[|det1;| RnfoTlo---oTzd)\”

j=1

I-1
= <H|detTj|> . |detT1|/ (foTyo-+-0Tpy)o TidA"
Rn

j=1

=[]|det T}| foTyo--- 0T d)\"
j R

1l

I
=
S
=

Thus (4.19) holds when f is a nonnegative Borel function on R”".

Now suppose that f is nonnegative and measurable. We claim first that f o T is
measurable. Let B € B"; we have to show that (f o T)™'B = T-!(f'B) is measur-
able. As f~'B is measurable, f'B = AU C, where A is a Borel set and A"(C) =0
(cf. Exercise 3.9.1 (i)). There is a Borel set D D C such that A"(D) = 0. The
indicator function Ip of D is a Borel function; by what we have proved in the
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first part, |detT]| fIRﬂ Ip o TdA" = A"(D) = 0; then fan Ip o Td\" =0, and con-
sequentlyIp o T =0ae.Butlpo T = It-ipandIp o T = O a.e.imply A"(T~'D) = 0.
Since T-'C C T™'D, A"(T~'C) = 0. Thus T~'C is measurable. Now, (f o T)™'B =
T'(AUC) = T"'AU T'C shows that (f o T)™'B is measurable. We have shown
the claim that f o T is measurable. Since f o T is measurable, we can repeat the first
part of the proof to conclude that (4.19) holds. |

Corollary 4.10.1  For a measurable set A C R", TA is measurable and A"(TA) =
|detT|A"(A).

Proof In Theorem 4.10.1, replace T by T~! and consider f = I,. |

Corollary 4.10.2 Lebesgue measure is invariant under rotations.

Proof LetA C R"and T be arotation of R"; we have to show that A"(TA) = A"(A). By
Corollary 4.10.1, A"(TA) = | det T|A"(A) = A"(A), because the matrix representing
T is an orthogonal matrix and the determinant of an orthogonal matrixis 1 or-1. W

Now let t be a C! diffeomorphism from €2 into IR". Define a measure A"t on €2 by
A't(A) = A'(tA), A C Q.

That A"t measures €2 is obvious. Since t is bijective from €2 to t£2, the measure A"t on
€2 can be considered as a copy of A" on the open set ££2; actually a subset A of €2 is A"t-
measurable if and only if tA is A"-measurable, and both t and ¢! are measure preserving
(cf. Section 2.8.2). Furthermore, since a subset B of €2 is Borel if and only if B is Borel, it
follows that A"t is a Radon measure on €2.

Proposition 4.10.1 Iff > 0 is measurable on t$, then f o t is ©*"*-measurable on Q and

/ fdx" = / f o tdAt. (4.20)
tQ2 Q

Proof Iff = I, for a measurable set A, then f o t = I;14, where t ' A is A"t-measurable;
it follows that (4.20) holds in this case. For the general case, (4.20) follows from
Theorem 2.2.1 and what has just been shown. |

Remark Since A" = t;A"t on t£2, Proposition 4.10.1 follows also from Exercise 4.3.2.

Lemma 4.10.2 A"t is absolutely continuous on 2.

Proof Let Q C €2 be a nondegenerate oriented closed cube, ie. Q =1; x - -+ X I,
where Ij,...,I, are finite closed intervals in IR of the same positive length.
Suppose that f is a continuously differentiable function defined on a neigh-
borhood of Q, and consider two points x and y in Q. Let a function g on

[0,1] be defined by g(s) = f(x+s(y-x)); then f(y)-f(x)=_g(1)-g(0)=
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Ji g @ds = [ L wrsy-2)) - - )] de = f2 Ve sy -2) - -
x)ds, where Vf = (aa—i ye. of ) is the gradient of f. Hence,

*J 9x,

1
[f(y) -f(x)| < |y—x|/ |Vf(x+s(y —x))]|ds. 4.21)
0
Applying (4.21) to each component function of £, we have
n 1 2
1) - @) < by -2 [/ |V + s(y - x))lds] =< ly-+"M(Q)*,
i=1 LJo

or

[t(y) - t(x)| < |y - x[M(Q), (4.22)

where M(Q)? = max,eqQ ZZ;’:I g—;(z) ‘2.

Suppose now that A is a null set in €2. Since €2 is a countable union of open sets G,
with G being a compact subset of 2 (cf. Proposition 3.9.2), to show that A"t(A) = 0,
we may assume that A is a null set in an open set G, with G a compact set in Q. Given
that & > 0, there is a sequence {Qy} of nondegenerate closed oriented cubes in G
suchthat(JQr D Aand ), 1"(Qx) < &, by Corollary 3.9.1. For each k, let ¢ be the
center of Qy, and apply (4.22) forx = ¢ and y € Qy, to obtain

|t(y) — t(c)| = |y - a|M(Qw),

which implies that tQy — t(c;) C C,(t(c)) with r = ( % diam Q;)M, where M? =

2
- n dt;
maX,eg D ;i FP (z)| ,and consequently,

NG

2

AF(EQ) = A (6Qe — He)) < (o ((e))) = ( ) AH(C1(0))2"(QV),

by Example 4.3.1. Now,

w(a) = (U Q) = 2 A(Q) = X A(Q)
k k k
= (2H) #e i@ < (L) meos
from which, by letting ¢ — 0, we conclude that A"t(A) = 0. ]

Corollary 4.10.3 A C Q2 ismeasurable if and only if tA is measurable. Also, A is measurable
if and only if it is A" t-measurable.



Change of variables for multiple integrals | 165

Proof If Ais measurable, then A = B U N, with B a Borel setand N a null set. By Lemma
4.10.2, A"(tN) = A"t(N) = 0; hence tN is a null set and is therefore measurable. Now,
tA = tB U tN implies that tA is measurable. Conversely, if tA is measurable, then A is
measurable by the same argument, but with 2 replaced by €2 and t replaced by t .

Since A C 2 is A"t-measurable if and only if tA is measurable, the second part of
the corollary follows from the first part. |

Lemma 4.10.3 Fora.e. xin 2, ‘;%t (x) = | detd,t|.

Proof 1t is sufficient to show that lim,_, o XA?((CC’((;)))) = | detd,t| forx € 2, where C,(x) is
the closed ball centered at x and with radius r.

Let x € 2 and suppose first that d,t = I, the identity map of R". Write

t(y) —t(x) = dt(y —x) + R(x,y) = (y —x) + R(x, y). (4.23)

Since ¢ is differentiable at x, for each & > 0, there is § > 0 such that |[R(x,y)| <
ely-«|if |y - x| < 8. Nowif0 < r < &, we have from (4.23),

tC,.(x) —t(x) C (1 +¢&)(C,(x) —x),

then A"(tC,(x)) = A"(tC,(x) — t(x)) = (1 +&)"A"(C,(x) - x) = (1 +£)"2"(C,(x)),

and hence

. A"t(C, (x)) ;
hr:l_f;lp () <(l+e&)" (4.24)

We show next that C := C,(;_)(t(x)) is contained in tC, (x) if 0 < r < §. Observe
first that, by (4.23), tI" is outside C, where I' is the boundary of C,(x). To show
that C C tC,(x) is to show that the line segment [t(x),z] := {t(x) + s(z - t(x)) :
0 <s <1} C tC/(x) foreachz € dC. Let z € dC be fixed. Define a set L of positive
numbers by

L={0<p<1:tx)+s(z-t(x)) € tC(x)forall0 <s < p}.

By the inverse function theorem, f maps a neighborhood of x in C, (x) onto a neigh-
borhood of £(x); hence L is nonempty. Let py = sup L. We claim that py € L. Note
first that (0, pp) C L. Choose a sequence {s;} in (0, pp) such that s; — po and let
zj = t(x) + 5j(z — t(x)). Then z; € tC,(x) for eachj. Since z; — zo0 := t(x) + po(z -
t(x)) and t™' is continuous, we infer that t'zj — t'zo and t 'z € C,(x) (note
that each t"lzj € C,(x)). Now, t(t 'zo0) = zoo implies that py € L. We assert then
that po = 1. If py < 1, t 'z € B,(x), because tI is outside C; then by the inverse
function theorem again, t maps a neighborhood of t 'z, in B,(x) onto a neighbor-
hood of z4; this would imply that L contains numbers larger than p,, contradicting
the definition of py. Now py = 1 means the line segment [t(x), z] is contained in
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tC,(x). Thus C is contained in tC,(x), or tC,(x) — t(x) D (1 - &)(C,(t(x)) - t(x)).
Hence,

A"t(Co(x)) = A"(tC(x)) = A" (tC,(x) ~ t(x)) = (1 -€)"A"(C(x)),

or

e

Letting ¢ — 0in (4.24) and (4.25), we have

_ At(C(x))

im ——= =1.

=0 A"(C,(x))
This shows that lim,_, izt((g((;)))) = 1, if dyt = I. In general, for x € €2, consider the
map t = (d,t)™ ot,thend,t = (d,t)™! o d,t = I, hence,

AEH(C,(x
}i’}, ﬁ = 1. (4.26)
Now, by Corollary 4.10.1,
A"t(C(x)) = A"(1C,(x)) = A" (dut 0 (dit)™ (tC,(x)))
= | detd.t|A"(#C,(x)),
from which it follows that
ri_l‘)l‘(l) % = | det d.t| rlg)r(l) % = | detd,t|,
by (4.26). [ |

Theorem 4.10.2 Suppose that t is a C* diffeomorphism from an open set Q in R" into R";
then if f is a measurable function on t$2, f o t is measurable on 2, and if, furthermore, f is
nonnegative or integrable, then,

f St = / (f 0 ) ()]t 2)|dA" (). wa1)
tQ2 Q

Proof Since A C t2 is measurable if and only if t ' A is measurable by Corollary 4.10.3,
we infer that if f = I, then f is measurable if and only if f o t = I;-14 is measurable. It
follows then from Theorem 2.2.1 that a nonnegative function f is measurable if and
onlyif f o tis measurable; from this it follows that f is measurable on £€2 if and only if
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f o tis measurable. In particular if f is measurable on t£2, then f o t is measurable on
Q. To verify (4.27), we need only consider the case f > 0. By Proposition 4.10.1,

f fdr" = / f o tdA"t. (4.28)
tQ Q

Since A"t is absolutely continuous,

AH(A) = / o - f | det d,f|dn"(x) = / (6 )] dA" ()
A A A

for measurable A C €2 by Lemma 4.10.3; it follows then from Exercise 2.5.7 that
Jof otdr"t = [, (f o £)(x)|J(t; x)|dA" (x); combining the last equality with (4.28),
we conclude that (4.27) holds. [ ]

We illustrate the way to use Theorem 4.10.2 by an example.

Example 4.10.1 Consider the map t from the open set Q2 := {(p,0) : 0 < p < 00,
0 < 0 < 27} in R?into R? by

(xl; x2) = t(,O, 9) = (/0 cost, p Sin@))

then, %—’;)1 = cos 0, % = -psinb; %—’;2 =sin0, % = p cos 6. Hence,
cosf —psinb
di,oyt =1 . =p>0.
(0,0) sinf p cosf P

tisactuallya C' diffeomorphism from €2 onto t2 = {(x1,x,) € R* : %, #0,0rx; =0
but x; < 0}, i.e. t€2 is obtained from R? by taking away the positive x;-axis and the
origin. Now if f > 0 is measurable, then, since A*(IR*\t2) = 0, we have

/szdkz = /mfd” = /Q(fot)(p,e)pdkz(p,e)

00 27
:f <f of (p cos@,psin@)d@) dp,
0 0

where we have the applied the Fubini theorem in the last step.

Exercise 4.10.1 Suppose that f is a measurable function on R? and is either nonnegat-
ive or integrable.

(i) Show that

/Rf(x,y,Z)dﬁ(x,y,z) =ff(p cos g, p sing,z) pdA*(p, ¢, z)
3 G

o0 2 0
= / / f f(P cos @, p sin @, z) pdpdpdz,
-00 J0 0

where G=(0,00) x (0,27) x R={(p,¢,2) : 0< p <00,0 < ¢ <27,z€ R}.
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(ii) Show that

/ f(%,y,2)d3> (%, 2)
R3

= /f(,o sinf cos @, p sin @ sin @, p cos0) p* sindr>(p, 6, @)
H

o0, 21
= f / f f(psin® cos @, p sinf sin @, p cos B) p* sin Odpdhdp,
o Jo Jo

where H = (0,00) x (0,7) x (0,27) = {(p,0,¢) : 0<p <00,0<6 <7,
0<g@<2m}

4.11 Polar coordinates and potential integrals

In Example 4.10.1, p and 6 are the polar coordinates of the point (p cos@, p sin6)
in R?, and df is the line element on the unit circle S', described by (cos,sin @),
0 < 6 < 27; while in Exercise 4.10.1 (ii), o, ¢, and 0 are the so-called spherical coordin-
ates of the point (0 sin & cos @, p sin @ sin ¢, p cos @) in R?, and sin Odgd® is the surface
element on the unit sphere S* in IR?, described by (sin 6 cos ¢, sin 6 cos ¢, cos6), 0 <
@ < 27,0 < 6 < 7. Therefore, for nonnegative measurable function f on R? or R?,

we have
fsz(x)dAZ(x) = /OOO (/;1 pf(px’)dl(x’)) dp; (4.29)

/Rsf(x)dﬁ(x) = fooo <fsz pzf(px’)do(x’)) dp, (4.30)

where x = px’ with p = |x| and &" € S' or §?, depending on x € R? or R?, dl is the line
element on S!, and do the surface element on S?. The discussion so far is formal; we shall
now put it on a solid basis for R" in general.

Forx € R" := R"\{0}, write x = px’, where p = |x|and &’ = |x|"xisin §"! = {x €
R" : |x| = 1}; p and &’ are called the polar coordinates of x € R". The polar coordin-
ates of a point x € IR” will be written as an ordered pair (p,«’) and hence is represented
as a point in (0,00) x S". Let p be the map x — (p,«) from R" to (0,00) x "4 p
is obviously a bijection and both p and p~* are continuous; it follows that a function f on
R" is A"-measurable if and only if f o p~" is psA"-measurable on (0,00) x S"!, where
p#A" is the measure on (0,00) x S"!, defined by p:A"(A) = A"(p~'A) for subsets A of
(0,00) x "' (cf. Exercise 4.3.1 and note that 1" = (p7'):(psA")). We then infer from
Exercise 4.3.2 that if f is a nonnegative measurable or an integrable function on R", then

fd)\” = fd)L" = / f op_ldp#k". (4.31)
R R» (0,00) xSt
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We shall presently show that psA" is a product measure. A Borel measure o on §"
will be defined first; this measure is interpreted as measuring the surface area of sets in
S"! and is therefore called the surface measure on S"!. For E C $"! and r > 0, let E,
be the set | J{oE : 0 < @ < r} in R"; clearly, E, = rE; and E, is a Borel set in R", if
E € B(S"!). It then follows that

A'(E,) = r"A"(E;) (4.32)

for E € B(S"'), by Example 4.3.1 (ii). Observe now that if » > 0, E1,;,\E; is a spheric-
ally sliced section of the cone | J{oE : @ > 0} of thickness k, and hence it is natural to
define the surface area of E € B(S"!), as

hhm I’lil)\.n(E1+h\E1) = hhm hil[(l + I’l)n - 1])\,”(1‘31) = n)»"(El),
—0+ —0+

where we have applied (4.32) with r = 1 + h. Thus we let o (E) = nA"(E;) for E €
B(S"1). 1t is readily verified that o is a finite measure on B(S"™!), and the measure on
$"! constructed from o by Method I is the unique Radon measure on "}, extending o
on B(8"!) (this measure is also denoted by ¢ ), and (S§"™*, £, ) is the completion of
(8", B(8"1), 0) (cf. Exercise 3.4.18).

From (4.32), we have

WE) =0 (E) =i @) [ g =o(E) [ o
0 0
for E € B(S"') and hence, by Borel regularity of o, E, is measurable and

\"(E,) = o (E) / p"dp (4.33)
0

for any o -measurable set E in $"! (see Exercise 4.11.1).

Exercise 4.11.1 Let E be a 0-measurable set in $"; show that E, is measurable and
(4.33) holds. (Hint: there are Borel sets F and G in §"! such that F C E C G and
o(G\F) = 0.)

Now let y be the unique Radon measure on (0, 00) such that y (B) = fB 0" dp for
Borel sets B in (0,00). Since y (A) = 0 if and only if L(A) = 0 for any A C (0,00), it
follows that y-measurable sets in (0, 00) are exactly the Lebesgue measurable sets in
(0, 00).

Lemma 4.11.1 For o-measurable sets E in S and measurable sets A in (0, 00),

Y X 0(A X E) = psA"(A X E).
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Proof For a fixed o -measurable set E in $"!, let M be the family of all measurable sets
A in (0, 00) such that for every positive integer n,

y x 6(AN (0,n] x E) = p:A"(AN (0,n] x E),

then, ¥ X 0 (A X E) = p:A"(A x E) for A € M. Since p:1"((0,7] x E) = A"(E,),
we infer from (4.33) that M contains IT = {(0,r] : r > 0}, which is a 77-system on
(0,00). It is routine to verify that M is a A-system, and the (77-)) theorem implies
that M contains all Borel sets in (0, 00). Now if A is a measurable set in (0, 00), there
are Borel sets C and D in (0, 0¢) such that C C A C Dand A(D\C) = y(D\C) =0,
hence,

y X 0(C x E) = psA"(C X E) < ps1"(A X E) < p+A"(D x E)
=y xo(DxE)=y xo(C x E),

from which it follows that ¥ x 0 (A X E) = psA"(A X E). |
Lemma 4.11.2 B((0,00) x $"') C ¥ ® £ C nr,

Proof Since both (0,00) and S"! are separable as metric space, every open set in
(0,00) x §"! is a countable union of sets of the form A x B, where A is open in
(0,00) and B is open in $"'; open sets in (0,00) X S" ! are X¥ ® X7 -measurable
and hence B((0,00) x $"1) C ¥ ® X°. To show that T ® X° C TP* it is
sufficient to show that A x B € 2" if A € £7 and B € %°. There are Borel sets C
and D in (0, 00) such that C C A C D and y(D\C) = 0, and there are Borel sets E
and Fin "' such that E C B C Fand o (F\E) = 0; then,

y x o(D x F\C x E) =0,
and by Lemma 4.11.1,
p:A"(D x F\C x E) =0,

from which we infer that A x B=C x EUN, where N C D x F\C x E and is
therefore a p;A"-null set. Thus N is psA"-measurable and so is A x B, because C X E
is a Borel set in (0,00) X S"! and is therefore psA-measurable. |

Since ¥ X o is the unique measure on X" ® 7 such that y x 0(A X E) =
v (A)o (E) for measurable set A C (0,00), and E € X7 by Proposition 4.8.1, it fol-
lows from Lemma 4.11.1 and Lemma 4.11.2 that psA" = y X 0 on X7 ® X°. Since
B((0,00) x $"1) C £¥ ® £?, by Lemma 4.11.2, one concludes that the space
((0,00) x §"1, TP p.A") is the completion of ((0,00) x S",T7 ® X9,y x o),
from the fact that psA" is Borel regular (cf. Exercise 3.4.18). That psA" is Borel regular
follows from the Borel regularity of A" and the fact that B (R") = p'B((0,00) x S*1).
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Then, on account of (4.31), we infer immediately that if f is a nonnegative measurable
function or an integrable function on R”, then

fdk”z/ fopdy x o;
R (0,00) x S

consequently, if we put f(p,0) = f o p~*(p,0), we have from the Fubini theorem the
following theorem.

Theorem 4.11.1 (Integral in polar coordinates) Iff is a nonnegative measurable function
or an integrable function on IR", then

) fs ( /0 o, G)dp) dos ().

Example 4.11.1  Suppose that 0 <o <n and let T'y(x,y) = |x-y|™®, then for
any r > 0,

/ Lo )d0"(5) = / Fa(0,3)d3"(3)
B, (x) B,(0)

= / (p“/ p“do(@)) dp = %r"*“, (4.34)
0 gn-1 n—-—o

Exercise 4.11.2 Let b, be the Lebesgue measure of the unit ball in R", and let
=TT, Jo* cod 0d0 forn > 2.

where w,_; = o (8" 1).

(i) Show thatb, = 2"l, forn > 2.

(11) Show that bzk = %nk and b2k+1 = 22k+1 (Zkk:l)[nk'

(Hint: express b, in terms of b,_; by using the Fubini theorem.)
Exercise 4.11.3
(i) Show that f]R” e dx = 2l fooo t:'etdt and w,_; = %ﬁl), where I'(x) =
fooo et dt,
(ii) Compare (i) and Exercise 4.11.2 (ii) to find I'(% ) forn € N.

In the remaining part of this section, a brief account of integral operators of potential
type will be given, with an application to integral representation of C' functions.
For0 < a < n,let Iy, be the function on R" x IR” defined by

1
o~ &7

Foz(x)é) = (x,E) € R" x R"
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Given a bounded measurable set {2 with positive measure in R", we denote by
Q the smallest closed ball centered at 0 and containing €2, i.e. Q= Cr(0), where
R= SUP.cq |x|

Lemma 4.11.3 Foru € L'(Q),

/ P (3 ) [u(8)|d6 < 0o
Q

forae.xin R".

Proof Let R be the radius of the ball ﬁ, by the Fubini theorem and (4.34),

fCZR(O) (/Q ra(x,s)lu(é)ws) dx=fg|u(s)| o Lo (s, & )dudé

/ u(®)| f [ (3 & )dxde
Q Cir(§)

Wn-1 n—o

2Ry [ Juce)le < oo

IA

ie. fQ Iy (%, &)|u(&)|dE is an integrable function of x on C,z(0). Hence, fQ Cy(x, &)
|u(§)|dé < oo fora.e.xin Cr(0); while if x is outside C;7(0), [, Ta (x,é)|u(§)|d§
< [ |u(&)|dé < oc.

Because of Lemma 4.11.3, for u € L'(£2), a function K, u can be defined a.e. on IR" by

(Kat) () = f Fo( E)u(E)ds, xR

Kyu is a function measurable by the Fubini theorem; therefore K, is a linear operator
from L'(€2) into the space of measurable functions on IR". We call K, an integral
operator of potential type and I', a potential kernel.

Theorem 4.11.2  Suppose that Q2 and D are two bounded measurable sets of positive
measure in R", then K, is a bounded linear operator from LP(S2) into LF (D).

Proof When p = 1 or 00, the theorem is obvious. We assume that 1 < p < 00. Since
Q is bounded, u € L'(Q2) if u € LF(£2), and hence (K,u)(x) = fQ Co(x, &)u(&)ds

is finite for a.e. x in IR". Let the radius of the ball € U D be R,ie. R = sup,.q p |¥|,
then for x € Cg(0),
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|(Rat) ()| < / P (&) [u(8)| T (3 £) 1 dé

= (fg Fa(x,$)|u(5)|”d.§); (/Q Fa(x;é)dg);
( fQ Fa(x,%“)|u(§)|pd§); ( /CM Fa(x,g)dg);

_ [%} ( | ra<x,s>|u<s>|fﬂds);,

where q is the conjugate exponent of p and (4.34) is applied in the last step. Now,
Wy-1 (ZR)nia
n-o

A

denoting by M, we have

IKull < M / f (&) |u(8) P dé d
D JQ
M / / P (s, £)|u(E) P dde
QJD
<M f (&) / Lo (3 &)dde
Q Car(§)
<M ullb g,

where (4.34) is again applied in the last step, and || - || »0 ||+ |lp, denote respectively
the norms on L (D) and L?(L2). Thus || Ky || < M = @1 QR ]

n-o

It is easy to see that, more generally, if b is a bounded measurable function defined on
D x £, the function Kgu defined for u € L'(2) by

(Kou)(x) = / by €)' (o € (8 )dE
Q

is finite for a.e. x in R"; furthermore, K’ is a bounded linear operator from L?(2) into
L#(D), p > 1 with norm ||[KS|| < C%, where C = ||b|loc and R = sup_ o p |%]-
Of course, we assume as before that €2 and D are bounded measurable sets with positive

measure in R”.

Theorem 4.11.3 If Q2 and D are compact sets in IR" with positive measure, and b is a con-
tinuous function on D x 2, then K® maps every bounded measurable function u into a
continuous function on D.
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Proof Fix x € D and for § > 0, let h € R" be such that |h| < § and x + h € D; for
suchan h,

|(K2u)(x +h)- (Kgu)(x)|

/Q (b + by )T+ I &) — b, €) T (x, £) ()

< ||u||oo||b||oof (To(a+ by €) + T £)}de
Bys(x

+ ||u||oofm3 I BT 16) b )T )l

Dl ((38)" + (28)")

n—-o

+ 1l f b+ Iy £)T (x4 Iy £) = b, &) (3 £)]
Q\Bys (x)

=< llulloollblloo

because by (4.34),

e 8 n-o
f Ty (x+ b &)dE sf Fo(e e < 213
Bys(x) Bys(x+h) h-o

Wy_1 (28)11—11

f Lo £)dE <
Bys(x)

Now, given & > 0, choose § > 0 such that |lullecllblleo{(38)"* + (28)"*} < £.
Sinceboth 'y (x + h, &) and Ty (x,E) < 87 for & € Q\B,s(x), and

|b(x + h;S)Fa(x + h)é) - b(x;%-)ra(x;s)l
< lbllco|Ta(x+h &) ~ Talx,§)] + Talx, §)|b(x + 1 §) - b(x,§)],

we can then choose 0 < 0y < 6 such that

|b(x + 1, &)T0 (2 + 1, &) = b(x,E)Ta (%, 8)| < {2(llullos vV DA ()} e

for all £ € Q\Bys(x) whenever |h| <0y and x+h €D, and consequently
|(Kbu)(x + h) — (Ku)(x)| < & whenever |h| < 0y and x+h € D. Thus, Klu is
continuous at x € D. ]

Exercise 4.11.4 Show that if b is a continuous function on R" x €2, then Kgu is con-
tinuous on R” for u € L>°(2), where € is a compact set with positive measure

in R".

Theorem 4.11.4 (Integral representation of C' functions) Suppose that €2 is a bounded
open convex domain in IR", then there is a bounded map A from Q x  to R" which is
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continuous off the diagonal of 2 X €, such that if u is a C* function on Q with Vu €
LY(Q), then

u(x) = ﬁ /Q u(E)de - /Q A% E) - Vu(E)Tos (o €)de (@39
forx € Q.
Proof Fixx € Q.For& € Q,let
gt) =u(x+t(6-x), 0=<t<],

then, g'(t) = Vu(x + t(§ —x)) - (§ —x) and

u(x) = u(&) - /0 Vu(x+t(E —x)) - (§ —x)dt. (4.36)

When 0 < t < 1, the map & > z = x + t(§ —x) is an invertible affine map with
Jacobian t" atall ¢ € IR"; we may use Theorem 4.10.2 to obtain

z-x| 1
—dz

Vu(z) - "

f9|vu(x+t(g %)) (8 —x)|de Z/x

+t(Q-x)

- [ o @IV -l i
Q

hence,
1
/ / VuCo+ t(z - x)) - (€ - »)|dedt
0o Ja
1
_ f Va(z) - (z - )| / Lo () dedz,

Q 0

But I, .)(2) =0, when 0 < t < %, where I(x,z) is the length of the line

segment from x to the boundary of 2 thfough z, thus,
1
/ / IVuCoe + 15 —x)) - (€ )| dede
QJo

= NAZORE (ffjj’f, 1)

1 n n |
;Lqu(Z)Hl(x,Z) — |z = |"}T -1 (%, 2)dz;

Il

A

now, for 0 < p < dist(x, Q°), we have

/ [Vu(z)|[{l(x,2)" - |z - x|"} 1 (x,2)dz < M/ o1 (x,2)dz < 00,
B, (x) Bn(x)

0
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because |Vu(z)| is bounded on B, (x), and consequently

fgfo (VaCe + £ —x)) - (& - )|dtde < oo.

We have shown that Vu(x + t(§ —«x)) - (§ — x) is an integrable function of (&,t)
on € x [0,1] for x € Q. Integrate both sides of (4.36) w.r.t. & over Q to obtain
(denoting A"(£2) by |€2]),

u(x)|sz|=fgu(s)ds_/9/0 Vule+ £ - 2)) - ( - x)dbde

:/Qu(é)dé—%/;zVu(z)-(z—x){l(x)z)n —l}dz,

|2 - "

by repeating the previous steps with |Vu(x+t(§ —x)) - (§ - x)| replaced by
Vu(x +t(§ —x)) - (§ - x), as assured by the Fubini theorem. Now let A be the map
from 2 x 2 to R”, defined by

1 [l(x,ﬁ)”— |x - &

| ](s—x),

A(x &) =
ifx #& and A(x, &) = 0;ifx = £, then

1
9= i / u(E)ds - f Al ) - Vu(E)Ty (v, £)de

for x in €. Obviously, A is continuous off the diagonal of 2 x 2 and
4Gy §)] < L(diam "|Q] Y, since 10 §)" - [x~ £]" = I(x )" (1- 155 ) <
I(x,&)" < (diam Q)" ifx # £. |

Corollary 4.11.1 Letu € C'(R"). Suppose that u and all of its partial derivatives of first
order are integrable. Then,

£ (4.37)

L[ o),

we) = e g

forx € R", where by, is the Lebesgue measure of the unit ball in R".
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Proof Observe first that % is integrable on IR" as a function of &; actually for

o > 0, we have

/ |(x - §)- Vu(é)lg
R |-
f LG V©)]
e S RN\, () [ = &["
1 1
- £t (o) V)l B, () [x = &" B /]Rn |Vul®)]ds
< 09,

by recalling that pr ) Wdé = w,_1P.
Forx € R"and R > 0, apply Theorem 4.11.4 with €2 = Bg(x), to obtain

uw=—— [ (e

by JBy()

1 |§ — "
- anbn /B:R(x) v(s :XJ) vu(é)rn l(xfg)dé:

1 1 (5 - x)-Vu(S)
= dé - -4
R"D, /I;R(x) u(é) : nb, ‘/B:R(x) |%- - x|n :

1
Sl WRCREAZOT

because A(x, &) = W [Rngfjr] (& — x) in this case. Now, let R — 00 to conclude

that

1 (§ —x)-W(%“)d‘g _ 1 (x-§)-Vu(§)

u(x) = - 2 Ve =
nb, Jr» |& — x| nb, Jr» |- &|

dg,

on noting that

1
W) < - [ (@)l >0
R"b, /l;R(x) R” | |
and
1
\% d \Y% 0
v < oo [ vul -

as R — oo; while fBR(x) %d& — f]R" Wd& as R — oo due to the
fact that % is integrable on IR" as a function of §. ]
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Exercise 4.11.5 Suppose that u € C'(2) and C,(x) C 2. Show that

u() = b,

{/B,(O)u(x +E)dé - % /;n_l Or(rn - pn)g_;(x + PS)d,OdG(S)} .

Example 4.11.2 Let u be a C! function on the ball Bg(x) in R" such that Vu is integ-
rable on B (x). We establish here the following estimate for the mean of the Lipschitz

quotient of u at x:

1 |u(§) - u(x)|

- d M(Vu,x),
) S e on] = M(Vu)

1 n
where M(Vu, x) = sup,_,.p TG fB,(x) | Vu|dr".
As in the first step of the proof of Theorem 4.11.4, we have

/}3}{(@% <[ <f01|vu(x+t(s_x))|dt> g
_ /01 (fBR(x) IVux + (& _x))|ds;> dt
_ /0 1 ( /B 3 |vu(z)|tldz> dt

= )\,”(BR(-’?C))/ )\-n(BRt x)) Bae
< A" (Br(x))M(Vuy,x),

|Vu(z)|dzdt

from which (4.38) follows.

(4.38)



Basic Principles of Linear
Analysis

Mathematical objects studied in linear analysis are linear transformations between
vector spaces endowed with proper concepts of limit. Linear analysis, there-
fore, provides suitable language and framework for modeling linear phenomena, and,
moreover, often suggests feasible methods for solving the corresponding problems. This
is most clearly seen in the case of linear algebra when the vector spaces concerned are
finite-dimensional.

This chapter is devoted to the most basic principles of linear analysis. Emphasis will
be placed on the case when vector spaces are normed vector spaces, although weaker
concepts of limit other than in terms of norm will occasionally be considered in view of
subsequent applications.

The first basic principles are those arising from the Baire category theorem, and those
from separation of sets by hyperplanes. These principles will be presented first, because
they are fundamental in many constructs of linear analysis.

In the latter part of the chapter, considerable weight is laid on geometric aspects of lin-
ear analysis, with the introduction of Hilbert spaces. The main ingredients are the Riesz
representation of continuous linear functionals on Hilbert spaces and Fourier expansion
of elements of a Hilbert space with respect to an orthonormal basis.

Recall that vector spaces considered in our discourse are either over the complex field
C or over the real field R; when specification is desirable, they are called complex vector
spaces or real vector spaces, according to whether they are over the complex or the real
field. As usual, the smallest vector subspace containing a subset S of a vector space is

called the vector space spanned by S and is denoted by (S).

5.1 The Baire category theorem

The Baire category theorem reveals a deep property of complete metric spaces; it is not
usually applied directly, but through its consequences, such as the principle of uniform
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boundedness and the open mapping theorem. We shall present in this section the Baire
category theorem and the principle of uniform boundedness; while the open mapping
theorem and some of its consequences will be treated in Section 5.2.

Let M be a metric space. A subset S of M is said to be nowhere dense in M if the closure
S of S contains no nonempty open balls of M. A subset A of M is said to be of the first
category if A is a countable union of nowhere dense subsets of M. Otherwise A is said to
be of the second category.

Theorem 5.1.1 (Baire category theorem) A complete metric space M is of the second
category.

Proof Itisrequired to show that if M is a union U:il S, of closed sets, then one of the S,
contains a nonempty open ball. Suppose the contrary, then each S; has a nonempty
intersection with every open ball. Thus if By is an open ball with radius 1, $§ N B, con-
tains an open ball B; = B, (x;) as well as the closed ball C; = C,, (x;) with r; < %
Then S5 N By contains an open ball B, = B,,(x;) and the closed ball C, = C,, (x2)

with ry, < 2% Proceed in this way; a sequence of open balls {B;}, By = B, («x1), is

obtained such that the closed ball Cry1 := C,,, (%141) C Si,; NBrand 0 < 1 < 27k
k=1,2,.... Since {C¢} is decreasing, {x6, %41, . - .} C Cy, the sequence {x}is a
Cauchy sequence, hence x; — xin M.Butforeachk,x € Cx C By_j,0rx € ﬂijl By,
hence, x € (N2, S = (Uro, Sk)° = 0, which is absurd. |

Theorem 5.1.2 (Principle of uniform boundedness) Let {f, } be a family of continuous
nonnegative functions defined on a Banach space X with the following properties:

(1) fa(x+y) <fo(x) +fou(y) for x, y in X and for each o;
(2) fo(Ax) = |A|fu(x), for & € C or R (depending on whether X is a complex or a real
space), x € X and for each ou; and

(3) sup,, fu(x) < 00 foreachx € X.

Then thereis N > 0, such that

sup fo (x) < N||x||

forallx € X.

Proof Foreachn € N, let

Sp={xeX:fu(x) <nVa}=xeX:fu(x) <n}

Each S, is closed and from (3), X = |, Sy. By Theorem 5.1.1, for some ny, S,
contains a ball B = C,(xo), or

sup fo(x) < no.

o;xEB
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Now, there is N > 0 such that

fa(x) <N

forall o if || x|| = 1. To see this, for x € X with ||x|| = 1 and any «,

fulx) = }faux) < é{fO,(rx + x0) + fu(=x0))

=< ! {no +sgpfa(—x0)} =: N.

r

Now, forany x # 0 and any ¢,

x
fa(x) = |1x|/fe (W) = Nlfa]|. n

Actually, the principle of uniform boundedness is usually referred to the following
special case of Theorem 5.1.2.

Theorem 5.1.3 Let {T,} C L(X,Y), where X is a Banach space and Y a n.v.s. Then
sup,, | To |l < oo ifand only if sup,, || Tex|| < +00 for each x € X.

Proof That sup, ||T,|| < oo implies that sup, || Tox| < 0o for all x € X is obvi-
ous; to show the other direction of implication, let f,(x) = || T4x|| and apply
Theorem S5.1.2. n

Theorem 5.1.4 (Banach-Steinhaus) Let {T,} C L(X, Y), where X is a Banach space and
Y a n.v.s. Suppose that Tx = lim,, oo Ty exists for eachx € X. Then T € L(X,Y) and
ITI < liminf, 0 | Tall < sup, [|Tu|l < 0.

Proof T is obviously a linear operator from X into Y. Since lim,,_, o, T, exists, it follows
that sup, || T,x|| < o0 and hence sup, || T,|| < 00, by Theorem 5.1.3. Now,

lim T,x
n— o0

IT|l = sup || Tx|| = sup

llxll=1 llll=1

= sup <lirn ||T,,x||) < sup <liminf||T,,|| - ||x||)

flaf=1 N0 lxfl=1 > "

= liminf || T, || < sup || T,|| < oo. m
n— oo n

Exercise 5.1.1 Let{T,} C L(X,Y), where both X and Y are Banach spaces. A neces-
sary and sufficient condition for lim,_, o, T, to exist for each x € X is:

{ (1) lim,_ o T,x exists for x in a dense subset of X;

(2)  {|IT,|I}is bounded.
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Theorem 5.1.5 (C.Neumann) Suppose that T is a bounded linear operator from a Banach
space X into itself with ||T|| < 1. Then (1 - T)™" exists, (1 - T)™" € L(X), and (1 -
T) = limyoo D gy TFa = Y pop Thx.

Proof Foreachx € X, letx, = ZZ:O T*x. Since forn > m,

< ( ) ||T||’<)||x||,

k=m+1

3 Trx

k=m+1

”xn - xm” =

{x,} is a Cauchy sequence in X. Let Sx = lim,_, o0 %, = lim, 00 (D[, T*x). By
Theorem 5.1.4, S is a bounded linear operator. Now,

(1-T)Sx=(1-T) (nl_i)moog(:)Tkx> = lim_ ((1 -T) kzo Tkx)

= lim (x - T""'x) = «,
n— o0

because || T"'x|| < | T||""!|lx|| = O, implying that T"'x — 0; similarly,
S(1-T)x=xforx € X.HenceS=(1-T)" [ |

Exercise 5.1.2 Suppose that T € L(X), T # 0, where X is a Banach space. Show that
for & € C with |A| < | T|I"! the operator I — AT is bijective. Expand (I - AT)™! in
terms of A and T and their powers.

We now apply the Baire category theorem to show the existence of continuous
functions on the finite closed interval [a, b] which are nowhere differentiable on [a, b].
Fix a finite closed interval [a, b] and let I = [a,c], where b < ¢ < o0.

Lemma 5.1.1 Suppose that f € C(I) and let ¢ > 0 and L > 0 be given. Then there is a
continuous and piece-wise linear function g on I such that max.er |g(x) — f(x)| < €, and
the absolute value of the slope of each line segment of the graph of g is greater than L.

Proof Let$ > Obe chosenso that |f(x) — f(y)| < % if |x - y| < 8. Consider a partition
a=x) <X < <xp) < =cofl,with |x;— x| < Sforj=1,...,k andlet
Py = (x0,f(x0)), Py = (o1, f(31) + %8); oo Pr= (g, f (o) + (—1)j_1%3); oo Pr=
(xr,f(xr)). Let g be the piece-wise linear function whose graph consists of
the line segments [Py, P;], [Py, P2],...,[Pi1,Pc]. Then g is continuous and
max,er |g(x) - f(x)| < &.If we choose § small enough, then the absolute value of the
slope of each [P;_1, P;],j = 1,. ..,k is greater than L. [ |

Theorem 5.1.6 There is a continuous function on [a, b] which is nowhere differentiable on
[a,b].

Proof LetI = [a,c], b < ¢ < 00.Itis sufficient to show that there is f € C(I) such that
f is not differentiable at every point of [a, b]; actually, should f be differentiable from
the left at b, the function f + g is differentiable nowhere on [g, b] if g is a continu-
ous function on [a, b] which is differentiable on [, b), but not differentiable from
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the left at b. As usual, we endow C(I) with sup-norm, then C(I) is a complete met-
ric space. Consider the set S of functions f in C(I) such that for some & € [a, b], the

set { w :0<h<c- b} is bounded. Clearly, S contains all functions in C(I)

which are differentiable somewhere on [a, b]. Forn € N, let

f(E+h)-£(§)
h

Sn={f€S: Snforsomeée[a,b]}.

0<h<c-b

Observe that S = |, S,. We claim first that each S,, is closed. Let {f;} be a sequence
in S, which converges to f in C(I). To claim that S, is closed is to show that f € S,.
For each k, there is & € [a, b] such that

fe(& +h) - fe(&)
h

<n.

0<h<c-b

Since [a, b] is compact, {£;} has a subsequence which converges to & € [q,b]. If
necessary, replace {fi.} by a subsequence of itself; we may assume that {£;} converges
to£.For0 < h < c-bande > 0,thereisN = N(h, &) € Nsuchthatk > Nimplies
sup, ; [fie(x) - f(x)| < %. Since f is uniformly continuous on I and & — £, there
is Ny > N such that [f(&) - f(§)| < 2 and |f(& + ) - f(& + h)| < 2 whenever
k > N,. Thus, for k > N;, we have

‘w' < %{lfk@k +h) = fe(§0)] + |f(5) = f(E)] + |fi(i) - £ (&)

+|f (& +h) - fi(Ee + h)| + |[f(§ +h) - f(& + h)|}

fe(& +h) - fi(&)
h

< +e<n+¢g;

hence, sup0<h§c_b|w| < n+¢fore > 0, consequently,

f(&+h)-£()
h

<n

0<h<c-b

andf € §,. This shows that S,, is closed forn € IN.

Next we claim that each S, is nowhere dense in C(I). For this, it is sufficient to show
that C(I)\S, is dense in C(I). Consider f € C(I) and & > 0; we claim that there is
g € C(I)\S, such that sup,; |g(x) - f(x)| < €. Let g be the continuous and piece-
wise linear function in Lemma S.1.1 corresponding to € and L = n, then, g € C(I)\S,
and sup,_; |g(x) - f(x)| < &. Hence, C(I)\S, is dense in C(I), and therefore S, is
nowhere dense in C(I). Since S = | J, S, and each S, is closed and nowhere dense in
C(I), S is of the first category. By Theorem 5.1.1, C(I) is of the second category and
therefore there is f € C(I)\S. Since S contains all functions which are somewhere
differentiable on [a, b], f is nowhere differentiable on [a, b]. |
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An interesting application of Theorem $5.1.3 is considered in Exercise 5.9.1, to show
the existence of a continuous periodic function whose Fourier series diverges at a point.

5.2 The open mapping theorem

Theorem 5.2.1 (Banach open mapping theorem) Suppose that T is a bounded linear map
from a Banach space X onto a Banach space Y. Then T maps open sets into open sets.

Proof Since T(G + x0) = TG + Txy, it suffices to prove that if G is a neighborhood of 0
in X, then TG contains an open ball centered at O in Y.

Step 1. A weaker claim will be shown first. Here is the claim: Let BX be an open
ball in X centered at 0, then there is an open ball B" in Y centered at 0 such that
BY C TBX. For the proof, the open ball in X centered at x with radius r will be denoted
by BX(x); the connotation of BY (y) as an open ball in Y is similarly defined. Let B* =
BX(0) and U = B’g (0). Then, X = |J2,(nU), and Y = TX = | J;2, nTU. The Baire

category theorem implies that there is 19 such that n)TU = noTU contains an open

ballin Y and hence TU contains an open ball, say BZ (). Sincej € TU, thereisxg € U

such that yo = Txg € BY (), and therefore BY (yo) C BY() C TU. Now put BY =
2 2

BY (0), then,
2

BY=B§(yO)—yO CTU-Txy C TU-Tx, C T(U + U) C TBX,

as is claimed.
Step 2. Let G be any open set containing 0 in X and let BX(0) C G. Put B} =

BY(0). By Step 1, there is a ball BY = BY(0) in Y such that B} C TBjg. It will be
2

shown that TBi((O) D Bg. For this purpose, IetBlX = Bg(O), &= 3mi=12,....By

Step 1, there is a sequence B} = BZI_ (0) ofballs in Y such that n; — 0and B C TBY.

For y € B}, there is xy € By such that ||y - Txo|| < 7;; then there is x; € B such
that ||y — Txo — Tx; || < 1. Proceeding in this way, we find a sequence {x;} such that

n=12,.... Now, | Z:Snl x| < ZZ:"I &; — 0 uniformly in [ as m — 00, which
implies that {) ., x;} is a Cauchy sequence. Set x = lim,_, o ) ., &;, then

< N

i
i=0

Tx = lim T(in) = lim ) Tx; =y.

n— 00 20 n—00 23

But ||x|| < Z?:oo |l ]| < Z?:Oo s =riex € BX(0), hence y € TBX(0). |
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Corollary 5.2.1 If T is an injective continuous linear map from a Banach space onto a
Banach space, then T~ is a bounded linear map.

Exercise 5.2.1 As a complement to Theorem 5.2.1, show that if [ is a nonzero linear
functional on a n.v.s. not necessarily continuous, then I maps open sets into open sets.

Exercise 5.2.2 Let X be a n.v.s. and F a closed vector subspace of X. For x € X, let
[x] =x+F.

(i) Showthat[x] = [y]ifand onlyify € [x].

(i) Define [x] + [y] = [x +y], A[x] = [A«] (A scalar). Show that both operations
are well defined and X/F := {[«] : x € X} becomes a vector space under these
operations.

(iii) For[x] € X/F, define ||[x]|| = infye[s [lyll. Show that [|[x]]| is well defined and
that it defines a norm on X/F.

(iv) Definet : X +> X/Fby t(x) = [x]. Show that 7 is a linear open mapping from
X onto X/F. The map 7 is called the canonical map from X onto X/F.

5.3 The closed graph theorem

For n.v.s.s X and Y over the same field, a n.v.s. X @ Y, called the direct sum of X and
Y, is constructed as follows. Let X ® Y = {[x,y] : « € X, y € Y}, on which vector space
operations are defined by

[xl;yl] + [x2ry2] = [xl + X2, )1 +}’2];‘ Ol[x;y] = [O(x; Oly];

and a norm is defined by

1T,y 11 = Ll + lyl1232.

This norm is so chosen, that when X and Y are inner product spaces (to be introduced
later in Section 5.6),s0is X @ Y.

That X @ Y isan.v.s.is a direct consequence of its definition. Observe that when both
X and Y are Banach spaces, sois X @ Y.

Henceforth, by a linear operator T from a vector space X into a vector space Y, we
shall mean that the domain of T, denoted D(T), is a vector subspace of X, not necessarily
the whole space X. Now, if both X and Y are n.v.s.’s over the same field, and if T'is a linear
operator from X into Y, T is called a closed operator if its graph G(T) := {[x, Tx] : x €
D(T)}is closedin X @ Y;ie.if {x,} C D(T) withlim,_, x, = xand lim,_, » Tx, =y,
thenx € D(T) and Tx = y.If T is alinear operator from X into Y and the closure of G(T)
in X @ Y is the graph of a linear operator, then T is called closable.
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Example 5.3.1 Let X =Y =C[0,1], D(T) ={f € X:f' € X} and Tf =f for f €
D(T). Then T is not bounded on D(T), but T is a closed operator. That T is not
bounded on D(T) follows from

”Tfn” = ””fn—l”; n= 1;2) ceey
where f,(t) = t",t € [0,1]. That T is closed is left as an exercise.

Exercise 5.3.1 Show that the linear operator T in Example 5.3.1 is closed.

Remark Foralinear operator, its domain of definition has to be specified. For example,
the differential operator T in Example 5.3.1 has to be considered as a different operator if
its domain of definition D(T) is changed to D(T) = {f € X : f/” € X}. Note that when
defined on the new domain of definition, T is not closed, but closable.

Proposition 5.3.1 IfX andY are n.v.s.’s, then a linear operator from X into Y is closable if
and only if

{x,} ¢ D(T), lim x,=0, and lim Tx, =y, theny=0. (5.1)

n— 00 n— 00

Proof That (5.1) is necessary for T to be closable is obvious. To show that (5.1) is

sufficient for T to be closable, let [x,y] € G(T), i.e. there is [x,, Tx,] € G(T) such

that [x,, Tx,] — [x,y]. Define Sx = y. Because of (5.1), one verifies easily that S is

well defined i.e. if [x,, Tx,] — [x,y]and [x, Tx|] — [x,y], theny’ = y. Clearly, Sis

linear and G(S) = G(T). [ |

Example 5.3.2 Let Q2 be an open set in R", C, € CH(Q) for a = (ay,...,a),
with |a| = oy + -+ + &, < k. Define D(A) = {f € L*(Q) N CK(Q) : Af € L*(Q)},
where A = Z| o=k C,9%. Then Ais a closable linear operator from L*(£2) into L*(£2).
If{f;} C D(A),f; = 0inL*(R2), and Af, — gin L*(2), then forany ¢ € C>*(Q),

= lim i ( > Ca(x)aaﬁ(x)) @(x)dx

j—> |0[|§k

= lim [ 3 (-DI9%(Ca (%) () )f (x)dx

j—> o0 Q |a|§k
- im [ (A =0
]j— o© Q

which implies that g = 0. By Proposition 5.3.1, A is closable. Note that in the sequence
of equalities above, the Fubini theorem and integration by parts have been used.

Exercise 5.3.2 Show thatif T is a 1-1 closed operator, then T~! is also closed.
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Theorem 5.3.1 (Closed graph theorem) A closed operator T with D(T) = X, a Banach
space, and range in a Banach space Y, is bounded.

Proof G(T) is a closed subspace of X @ Y, and is therefore a Banach space. The linear
operator U : G(T) +> X defined by

Ulx, Tx] =x, x€X

is clearly one-to-one and continuous. Since U(G(T)) = X, by Corollary 5.2.1, U™
is a continuous linear map from X onto G(T), thus T = VU™! is continuous, where
V[, Tx] = T« is a continuous linear map from G(T) to Y. [ |

The following exercise is a comment on Theorem 5.3.1.

Exercise 5.3.3 Let X be the space of all sequences (ai)ren of real numbers such that
ar # 0 only for finitely many k’s. X is a vector space under the usual way of defining
addition and multiplication by scalars. For (a;) in X, let || (ar) || = max; |ak|; then X is
an.v.s. Define T : X — X by T(a;) = (kai). Show that X is a closed operator on X,
but is not bounded.

5.4 Separation principles

Consider a real vector space X; a subset E of X is said to be convex if ax + By € E
whenever x and y are in E and «, B are nonnegative numbers with @ + B = 1. Eis called a
convex cone if it is convex and YE C Eforall y > 0.ForasetS C X, there is a smallest
convex set containing S. The smallest convex set containing S is called the convex hull
of § and is usually denoted by Conv S, while the smallest convex cone containing S will
be denoted by Con S. For x # y in X, Conv{x, y} is usually denoted by [, y] and is called
the line segment with endpoints x and y, while, for x # 0 in X, Con{x} is called the half
line through x. In R, the convex set A1 := {x = (x1,...,x¢) : x>0,j=1,...,k
Zf: , % = 1} is called the standard (k - 1)-simplex. Elements in X of the form Z;;l 0x;
(k varies from element to element), where x1,...,x; are in X and o = (a1, ...,0) €
AR are called convex combinations of x4, . . ., xg; if x1, ...,z arein S C X, they are
called convex combinations of elements in S.

For convenience, the fact that a real-valued function f assumes values > « on a set
A will be expressed by f(A) > «; the meaning of each of the expressions f(A) > «,
f(A) <a,andf(A) < « is parallelly given.

Exercise 5.4.1 LetS C X. Prove the following statements:

(i) ConvSis the set of all convex combinations of elements in S.
(i) ConS={YF yx:keN ap,..., % €S9 >0j=1,...,k}
(iii) Sisa convex coneifand onlyif S+ S C Sand yS C Sforally > 0.
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A set E C X is said to be linearly open if forany x € Eandy € X, x + ty € Eif |t| is
small enough. Clearly, open sets in a n.v.s. X are linearly open. Note that if a linearly open
convex cone contains the origin 0, then E = X.

Exercise 5.4.2 Show thata convexset E C R" is linearly open if and only if E is open.
Exercise 5.4.3 Suppose that E is a convex cone in X, and S a convex set in X.

(i) Showthatif ENS =, thenEN (ConS) = ¢.

(ii) If S is also a convex cone, then E + S and E - S are convex cones and they are
linearly open if one of E and S is linearly open.

Theorem 5.4.1 IfE is a nonempty linearly open convex cone not containing 0, then there is
a hyperplane H such that EN H = ().

Proof Denote by F the family of all vector subspaces F of X such that FNE = (. F is
not empty, because {0} € F. Order F by set-inclusioni.e. F; < F, if F; C F, for F;
and F, in F.If 7 is a chain in ¥, then | J;_; Fisin F andis an upper bound of 7. By
Zorn’s lemma (cf. Section 3.12), F has a maximal element H.

Let D = H + E; by Exercise 5.4.3, D is a linearly open convex cone. We claim
that X = D U H U (-D) is a disjoint union. It is obvious that D N H = ¢}, and hence
(-D)NH =@.If he DN (-D), then both h and —h are in D and consequently
h+ (~h) = 0 is in D, contradicting the fact that DN H = . Thus DU H U (-D) is
a disjoint union. It remains to show that X = DU H U (-D). Let x € X, but x ¢ H.
Then H + (x) meets E, because H is a maximal element of F. Then there is h € H
and A € R, A # Osuchthath + Ax € E; asa consequence Ax € H + E = D, and then
x € Dor (-D) dependingon A > 0 or A < 0. This shows that X = DUH U (-D).

It will be shown presently that H is a hyperplane. This amounts to showing that
if x € X, but x ¢ H, then H + (x) = X. Fix such an x and let y € X, y ¢ H. One
has to show that y € H + (x) to conclude the proof. For this purpose, one may
assume that x € D and y € (D). Since [x, y] is connected (see Theorem 1.9.1) and
X=DUHU (-D),

[x)y] N {D U (—D)} g [x;)’] = [x;)’] N {D UHU (—D)})

therefore there is h € H N [x,y]. Since h € [x,y] there are > 0, 8 > 0 with o +
B =1, such that h = ax + By. Now h € H implies that h ¢ D, which forces 8 to be
> 0and hencey = %h - %x € H + (x). The proof of the theorem is complete. ~ W

Abasic principle on separation of sets by linear functional is the following consequence
of Theorem 5.4.1.

Corollary 5.4.1 Suppose that E is a nonempty linearly open convex cone in X, and C is a
nonempty convex set in X such that C N E = (}, then there is £ € X' such that £(C) > 0
and £(E) < 0.

Proof Put D = E - Con C. D is a linearly open convex cone and 0 ¢ D, because E and
Con C are disjoint, by Exercise 5.4.3. By Theorem 5.4.1, there is a hyperplane H in
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X such that H N D = . Choose ¢ € X’ with ker ¢ = H and £(D) < 0. Now, for x €
ConC,y € Ejandy > 0
£(y) < y€(x);
ye(y) < €(x).
Let y \, 0; it follows that £(y) <0 for y € E and £(x) > 0 for x € ConC. In
particular, £(C) > 0.
It remains to show that £(y) < 0 for y € E. Choose xy € X with £(xg) > 0, then

y + txg € Eif |t| is small enough, because E is linearly open. Since y + txy € E, 2y +
txg) < 0,and hence £(y) < -t€(xp) < 0ift > 0is small, as is to be shown. ]

Note that in the proof of Corollary 5.4.1 we have used the well-known fact in linear
algebra that a vector subspace of X is a hyperplane in X if and only if it is the kernel of a
nonzero linear functional on X.

A real-valued function ¢ defined on a convex set S in X is called a convex function if
(ax + ,By) < ap(x) + ,3<p(y) forany x, y in S and any convex pair (ot, B).If  is convex,
then (p(z - L) < Z 1 %9 (x;) for any convex combination Z _1 a;x; of elements
of §, as is easily seen by 1nduct10n onk.

Consider now a convex function ¢ defined on an open interval I of IR. For a <b<c

inl, fromb = &2 b c1tfollowsthat<p(b) <= sga(a) + b= Z2o(c) = ¢(a) - Z{(p(c) -
¢(a)}, or
¢(b) -¢(a) _ ¢(d) -¢(a)
b-a - c-—a '
similarly,

¢(c) - p(a) w(c) <p(b)

c—a c-b

From the sequence of inequalities,

p(b) -¢(a) _ ¢(c)-¢(a) _ ¢(c) - ¢(b)

b-a - c—-a - c-b

)

one infers that if x # y are in I, the quotient

% is bounded for y near x and

is an increasing function of y. Thus, both ¢’ (x) := lim,._,, M and ¢/ (x) =

(p(y)_(p(x) exist and are finite; furthermore, ¢’ (x) < ¢’ (x) and ¢/ (x) < ¢/ (y) if

limy—>x+

x < yareinI. Thelast inequality follows from ¢/, (x) < (p(zi _f(x) < w(y;_f( 2 for z strictly
between x and y, by letting z — y. Since the left and right derivatives of ¢ exist and are
finite at each point of I, ¢ is continuous on I. Now, for x < yin I, the inequalities ¢’ (x) <

¢, (x) < ¢ (y) < ¢/ (y) imply that both ¢/ and ¢, are monotone increasing functions
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on I. Next, for x < y < zin I, one verifies that ¢/ (x) < ¢ (y) < w(z) (p(y) , from which

@, (x) < @l (x+) < % follows when y — «x (note that ¢ is contlnuous); then
one concludes that ¢ (x) = ¢/ (x+), by letting z — «x. Thus ¢/, is a right-continuous
function; similarly, one can verify that ¢’ is a left-continuous function. The following
proposition has been proved.

Proposition 5.4.1 Suppose that ¢ is a convex function defined on an open interval I in R.
The following statements hold:

(i) The left derivative ¢’ (x) and the right derivative ¢ (x) exist and are finite at each
pointx of I; and forx < yin I, ¢/ (x) < ¢/ (x) < ¢’ (y).
(ii) Both ¢’ and ¢! are monotone increasing.
(iii) ¢! is left-continuous and @/, is right-continuous.
(iv) Forx € Iandm € [¢'(x), ¢ (x)], ¢(y) = ¢(x) + m(y - x) forally € L

Exercise 5.4.4 Show that if ¢ is a convex function on a vector space X, then, for any
t € R, theset {¢ < t}is convexand the set {¢ < t} is convex and linearly open.

Areal-valued function g on areal vector space X is called a sublinear functional on X if

(1) qlx+y) < q(x) +4q(),%yinX;
(2) q(Ax) = 2q(x),x € X,A > 0.

Note that a sublinear functional is necessarily convex.

Exercise 5.4.5 Suppose that q is a sublinear functional on X, and put Q = {q < 0}.
Show that Q is a linearly open convex cone. Also show that g(0) = 0 and —g(-x) <
g(x) forx € X.

Exercise 5.4.6 Suppose that q is the sublinear functional on R" defined by g(x) =
max; <j<, &; if x = (x1, . ..,%,). Show that a linear functional on IR” satisfies | < q if
and only if there is @ € A™! such that I(x) = Z}Ll ;.

Lemma 5.4.1 Suppose that q is a sublinear functional on X with Q = {q < 0} # (. Let
T be a map from a set T into X. Then there is £ € X', £ # 0, with £ < q such that
2(z(T)) > Oifand only ifg(Con t(T)) > 0.

Proof Suppose q(Con‘L’(T)) > 0. Then (Cont(T))N Q = . By Corollary 54.1,
thereis £ € X', ¢ # 0, such that E(Con ‘L’(T)) > 0 and E(Q) < 0. It will be shown
presently that there is 0 > 0 such that o £ < g.

Define a map f from X into R* by

f(x) = (Q(x); _é(x)); x € X,

and let C be the convex hull of f(X); then CN R2 = @, where R2 = {(r;,n,) €
R?*:r, <0,r, <0} Actually, if veC, there are xi,...,4. in X and
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a=(ay,...,a) € A such that v=(37, ojq(x), ~0(3 5, amy)); if Dr, ajq
(%) <0, then q(zllil ox;) < Zle ;q(x;) < 0, implying that Z]I.Czl ajx; € Q and
hence —f(zjl.czl ajx;) > 0; thus v ¢IR>. By Corollary 5.4.1, there is (@, ;) in R?
with @} + o > 0 such that

oy + 0y < 0 for (1’1, Tz) Elf{_z,'
R (5.2)
a1g9(x) —ol(x) >0 forx € X.

The first inequality in (5.2) shows that &; > 0, @, > 0, while the second inequality
shows thato; > Oand @, > 0,inthat Q # . Then, 0 ¢(x) < g(x) for x € X by tak-
ingo = o'ay. Then £ := o0 satisfies £ < g, ¢ #0,and £(x) > Oforx € 7(T). The
other direction of the Lemma is obvious. [ |

Remark

(i) Since q is sublinear, the condition g(Con 7(T)) > 0 in Lemma 5.4.1 is equiva-
lent to q(Convt(T)) > 0;

(i) since Q # @, £ # 0isa consequence of { < g;

(iii) when Q = ¢, Lemma 5.4.1 also holds if we do not require that £ # 0, because
in this case q(Cont(T)) > 0 always holds and ¢ is simply taken to be
the zero functional.

It follows from the preceding remarks that Lemma 5.4.1 can be generalized to the
following theorem.

Theorem 5.4.2 Suppose that q is a sublinear functional on a real vector space X and T a
map from a set T into X. Then there is £ € X' with £ < q such that £(t(T)) > 0 if and
only ifg(Con t(T)) > 0.

An immediate consequence of Theorem $5.4.2 is the following historically interesting
result of Banach.

Corollary 5.4.2 (Banach) If q is a sublinear functional on X, then thereis £ € X' such that
¢ <qonX.

Proof In Theorem 4.5.2, take 7 (t) to be the zero element of X for each t € T. ]

If, for a real vector space X and a sublinear functional q on X, we let X'(g) be the set
of all those £ € X such that £ < g, then X'(q) is obviously convex, and is nonempty, by
Corollary 5.4.2.

From Theorem $.4.2, there follow two important consequences.

Theorem 5.4.3 (Hahn-Banach) Let q be a sublinear functional on a real vector space X
and suppose that Y is a vector subspace of X and £ € Y'(q). Then thereis £ € X'(q) such

that £(y) = £(y) fory € Y.
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Proof Define a sublinear functional § on X @ Y by

g(x,y) =qx) +£(y), x€X,yeY,

and amap 7 from Y into X @ Y by

t(y)=(-y), yevy.

Since t is linear, Convt(Y) = £(Y). Now let v € Convt(Y) = £(Y). Then,
v=(y,-y) for some yeY and §(v)= q(y) +4£(-y) > 0; this means that
q(Coan(Y)) > 0. By Theorem 5.4.2, there is (E ly) € (X@Y) with (,£y) < g
such that (K ly)(y,~y) > Oforally €, where £ € X' and £y € Y. But ({,£y) < q
if and only if < gon X and £y < £ on Y. Now, £y < £ implies that £y = £ and

(f,ﬂy)(y, -y) = E(y) -ty(y) = E(y) -£(y) >0 for y € Y forces E(y) ={(y) for
yey. ]

Theorem 5.4.4 (Mazur-Otlicz) Let q be a sublinear functional on a real vector space X
and T a map from a set T into X. Suppose that 6 is a map from T into IR. Then there is
¢ € X'(q) suchthat0(t) < £(t(¢t)) forallt € T if and only if for every positive integer n,

éja,-@(tj) < q(é ozjr(tj)) (5.3)

forallty, ..., t,inTando = (ay, ..., a,) € A",

Proof Consider X = X @ R. Define § : X — R by
glx,h) =q(x) +1, x€X, A eRR,
then § is a sublinear functional on X. Let now

t(t) = (z(¢),-0(t)), teT.

Suppose that (5.3) holds, then for n € N, #;,...,t,in T and & = (o3, ...,,) €
An—l’

q(z a,-r(tp,-l_:ila,-e(tj)) _ q(z t(s))
= q(Z oz,-r(t,)) - éaﬂ(t;) > 0,

j=1

or §(Conv£(T)) > 0. By Theorem 5.4.2, there isf e X' with ¢ < g on X such that
2(#(T)) > 0.But{ = (¢, oz),Z € X,a € R,and £(x, 1) = £(x) + A forx € Xand
A € R. Observe then that ¢ < q on X means that £ < g on X and o = 1; hence,
0(t(t)=0forteT implies that 6(t) < €(t(t)) for t € T. On the other hand,
if there is £ € X’ with £ < g and €(7(t)) > 6(t) for t € T, then (5.3) obviously
holds. |
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Corollary 5.4.3 Let X, q, and T be as in Theorem 5.4.4, then

max inf€(7(T)) = infq(Conv t(T)).

tex'(q)

Proof Observe firstly that inf¢(7(T)) < infq(Conv t(T)) holds for any ¢ € X'(q),
hence SUPyex(g) inf€(7(T)) < infq(Conv7(T)), and it remains to show that
there is £ € X'(q) such that inf€(7(T)) = infq(Convt(T)). In the case where
inf g(Conv t(T)) = 00, just take any £ € X'(q) (recall that X'(q) # ¥, by Corollary
5.4.2).Ifinfq(Convt(T)) = B > —00, let a function 6 on T be defined by 6 (¢t) = 8
for all t € T. Then (5.3) holds trivially and we may apply Theorem 5.4.4 to find
¢ € X'(q) suchthat B < €(z(t)) forallt € T, ie.

inf¢(7(T)) > B = infq(Convt(T)).

But, as we observed at the beginning of the proof, inf£(7(T)) < infq(Conv 7(T)),
therefore inf (7 (T)) = infq(Conv 7(T)) and the proof is complete. [ |

Exercise 5.4.7 Show that if C is a convex set in a real n.v.s. X, such that inf,cc ||x|| =
o > 0,thenthereis! € X* with ||| = 1suchthatl(x) > o forallx € C. (Hint: apply
Corollary 5.4.3.)

The conclusion of Corollary 5.4.3 is a general form of J. von Neumann’s minimax
theorem in game theory, as illustrated in Exercise 5.4.8.

Exercise 5.4.8 (von Neumann minimax theorem) Suppose that (a;),1 <i <m, 1 <

j < n,isagivenm X n-matrix with real entries. Foreachj = 1,. . ., n, define a function
f on A" by
i

m
_];(Ol) = Zai;’ai; o= (al) o -;an) € Am_l)
i=1

and define a quadratic form A on A" x A™! by

Z aijaiﬂj-

A, B) = Y. Bfi@) = 33
j=1 j=1

m
i—1

1

Now consider the sublinear functional g on R”, defined by g(x) = max; <<, «; for
x=(x1,...,%,) € R" and let the map T from A™! to R" be defined by () =
(fi(),...,fa()). Use Corollary 5.4.3 and the assertion of Exercise 5.4.6 to show
the following minimax equality of von Neumann:

min max A(o, ) = max min A(a, B).
acAm1 Be Ar-l BeA™1 qe Am-1
Exercise 5.4.9 Let g be a sublinear functional on a real vector space X and put Q =

{x € X : q(x) < 0}. Suppose that S is a convex cone in X such that Q N S = @, and
define § on X by §(x) = infyes q(x + y).
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(i) Show that § is a sublinear functional on X and § < q.
(ii) Showthatif¢ € X'(q), then£(x) > Oforx € S.

Exercise 5.4.10 Show that Theorem 5.4.2 is a consequence of Corollary 5.4.2. (Hint:
apply Corollary 5.4.2 with q replaced by g, as defined in Exercise 5.4.9, with
S= Con(7(T)).)

Exercise 5.4.11 Show that Theorem 5.4.2, Theorem 5.4.3, and Theorem 5.4.4 are
equivalent to each other. (Hint: Corollary 5.4.2 is a special case of the Hahn-Banach
theorem.)

Exercise 5.4.12 Let Q be a proper linearly open convex cone in a real vector space X.
Fixxy € Q

(i) Show that the family L = {£ € X’ : £ < 0 on Q and £(xp) = —1} is nonempty
and that for x € X, sup,; £(x) is finite. (Hint: for x € X there is o > 0 such
that xo + ox € Q, from which assert that £(x) < Clr forf € L.)

(ii) Putg(x) = sup,; £(x) forx € X. Show that g is a sublinear functional on X and
that Q = {x € X : q(x) < 0}.

In this final part of the section our discussion is restricted to real normed vector spaces;
and our concern is the separation of convex sets by closed affine hyperplane. By an affine
hyperplane we mean a translation of a hyperplane in a vector space, i.e. an affine hyper-
plane in a vector space X is a set of the form x + H, where x € X and H is a hyperplane
in X. We recall from elementary linear algebra that a vector subspace of a vector space
X is a hyperplane if and only if it is the kernel of a nonzero linear functional on X.
Note that if £;, £, are nonzero linear functionals on X, then ker £; = ker ¢, if and only
if £; = al, for some nonzero scalar . Thus an affine hyperplane in X is a set of the form
{x € X: €(x) = o} for some £ € X' (£ #0) and some scalar «. If X is a normed vector
space, then, since the closure of a vector subspace of X is a vector subspace of X, every
hyperplane in X is either closed or dense in X. Observe that a hyperplane H = ker ¢,
¢ € X', in a normed vector space X is closed if and only if £ € X*, and hence a closed
affine hyperplane in X is of the form {x € X : £(x) = o} for some £ € X* (£ #0) and
some scalar «.

We fix now areal n.v.s. X. Nonempty sets A and B in X are said to be separated strictly
by a closed affine hyperplane if there are £ € X* and o € R suchthat(x) < a forx € A
and £(y) > « for y € B; while they are separated strictly in the strong sense if there are
¢ € X*,a € R,ande > Osuchthat{(x) < o —eforx € Aand£(y) > o + e fory € B.
Note that £ € X™* in the above definition is necessarily nonzero, and {x € X : £(x) = o}
is the closed affine hyperplane in question. A closed set of the form {x € X : £(x) < «a},
where £ € X* and o € R, is called a closed half-space in X.

Lemma 5.4.2 Let G be a nonempty open convex set in X not containing 0. Then there is
£ € X* suchthat £(x) < Oforx € G.

Proof Put E = | J,_,AG. Clearly E is a nonempty open convex cone not contain-
ing 0, and we infer from Corollary 5.4.1 by taking C = {0} that there is £ € X’ such
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that £(x) < 0 for x € E (and hence for x € G). Since G is disjoint with the hyper-
plane H :=ker ¢, H cannot be dense in X and therefore is closed. Consequently
l e X" |

Theorem 5.4.5 Any two nonempty disjoint open convex sets A and B in X can be separated
strictly by a closed affine hyperplane.

Proof Let G = A - B. G is a nonempty open convex set in X not containing 0; we infer
then from Lemma 5.4.2 that there is £ € X* such that £(x -y) < 0 for x € A and
y € B, and hence £(A) is bounded above and ¢(B) is bounded below. Observe that
£(A) and ¢(B) are open intervals. Let a = sup £(A) and b = inf £(B); then a < b.
Choose « € [a,b], then f(x) < & forx € Aand €(y) > & fory € B. Thus A and B
are separated strictly by the closed affine hyperplane {x € X : £(x) = «}. |

Theorem 5.4.6 Suppose that A and B are disjoint closed convex sets in X, one of which is
compact. Then there is a closed affine hyperplane which separates A and B strictly in the
strong sense.

Proof We may assume that B is compact and let G = X\A. Then G is an open set
containing B. For x € B, choose r, > 0 such that x + B, (0) C G. The family {x +
B i, (0)}xcp is an open covering of B, hence there are xi,...,x; in B such that
B C U}l.czl{x]— +By,, (0)}. Let r = min; <j<k %rx}. > 0, then B + B,(0) C G. Therefore
{B +B,(0)} N A =}, and consequently

{B+B,@)n{a+p,0] =0
We infer then from Theorem 5.4.5 that there are £ € X* and o € IR, such that

lx+z) <a,x €Az EB%r(O);

L(y+z) >a,y€EB, z€ B%,(O).

Now put & = sup{|€(z)| : z € B%V(O)}. Then, by choosing sequences {z; } and {z]
inB%,(O) suchthat£(z;) — gand £(z]) — -&,we conclude from £(x) < o - £(z;)
forx € Abylettingk — oo that £(x) < « - ¢; and conclude from £(y) > o - £(2]
fory € Bbylettingk — oo that £(y) > « + &. |

Exercise 5.4.13 Show that a set K in a real n.v.s. X is closed convex if and only if K is
the intersection of a family of closed half-spaces in X.

Remark Since a complex vector space is also a real vector space, sublinear functionals
are also defined on complex vector spaces. This fact is often used without being noted
explicitly.



196 | Basic Principles of Linear Analysis
5.5 Complex form of Hahn-Banach theorem

Let X be a vector space. A semi-norm on X is a sublinear functional g on X such that
q(ax) = |a|g(x) for x € X and for scalar o (cf. Remark at the end of Section 5.4). Note
that a semi-norm is nonnegative, because if g(x) < 0 for some x, then 0 = g(0) = g(x +
(—x)) < q(x) + q(-x) = 2q(x) < 0, which is absurd.

Theorem 5.5.1 Let X be a vector space and q a semi-norm on X. Suppose that £ is a linear
functional on a vector subspace Y of X such that |€| < q on Y, then there is £ € X with
|€] < qonX suchthat{(y) = £(y) fory € Y.

Proof If X is a real vector space, then the theorem is a consequence of Theorem 5.4.3,
as is easily verified. So we assume that X is a complex vector space. Write

E()’) = Z1()’) + iﬁz(}’); y € Y)

where ¢1(y) = Re £(y) and £,(y) = Im £(g). Then ¢, and ¢, are real linear functionals
onY. Since il(y) = £(iy), it follows that £, (y) = £, (iy), i.e.

£(y) = bi(y) —iti(iy), yeYv.

Obviously, |£;| < qonY.Hence there is a real linear functional él on X extending ¢,
such that |[¢;(x)| < q(x) forx € X.
Define £ on X by

E(x) = EAl(x) - iél(ix), x € X.

One can see that £ is a linear functional on X and £ extends . It remains only to show
that |€(x)| < q(x) for x € X. For any x € X, there is 8 € C with |B| = 1 such that
|¢(x)| = BE(x), then,

|£(x)| = BL(x) = £(Bx) = €1 (Bx) - it (iBx)
= 6(Bx) < q(Bx) = |B|q(x) = q(x). ]

Some relevant consequences of Theorem 5.5.1 are now considered.

Corollary 5.5.1 Let X be a normed vector space, then for any xy € X, thereis £ € X*, with
1]l = 1 such that £(xg) = ||xo]|.

Proof Suppose first thatxg # 0,andlet Y = ({xo}) be the vector subspace of X spanned
by {x0}. Define a linear functional £; on Y by

51(0”0) =olxoll,
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then |€;(axo)| = |laxoll, implying [[£;y= = 1. By Theorem 5.5.1 with q being the
norm on X, there is £ € X’ extending ¢; such that |€(x)| < |lx||. Then, £(xo) =
€1(x0) = ||lxo]l and || €] = 1.

Now if xg = 0, simply take £ to be any £ € X’ with ||£]| = 1 (note that the first part
of the proof shows that there is £ € X’ with ||£] = 1). |

Corollary 5.5.2 Let X be any normed vector space. Then for any x and y in X, x # y, there
is € X* such that £(x) # £(y). i.e. X* separates points of X.

Proof Letxg = x — y.By Corollary 5.5.1, there is £ € X* with ||£]| = 1 such that £(xp) =
lIxoll = llx - yl|. But,

|€(x) = €()| = [£(x = y)| = [€(x0)] = llxoll > O. n

Exercise 5.5.1 Show thatif xyg € X and xy # 0, then there is £ € X* with ||£]| = ||xo]|
and £(xo) = [EY

Exercise 5.5.2 Let X = L'[0,1] and Y = C[0, 1]. Choose xy € (0,1) and let £(f) =
f(xo) for f € Y.Isit possible to extend £ to a bounded linear functional on X?

For a normed vector space X, define a function (-, -) on X x X* by
(,27) =a%(x),  (%47) € X X X7,

(-, ) is called the natural pairing between X and X*.
Forx € X, letj(x) € X** := (X*)* be defined by

(a*,j(x)) = (x,x"), " € X"
The mapping j is a linear map from X into X™*, and since X* separates points of X it is
one-to-one; furthermore it is an isometry in the sense that [|j(x)|| = ||x|| forallx € X.

Theorem 5.5.2 The mappingj is a linear isometry from X into X**.

Proof 1t is left only to show that ||j(x)|| = ||x||, where ||j(x)]| is the norm of j(x) in X**.
From

i) = sup [{(x7,j(x))| = sup |(x«")]

x* ex* x* ex*
[lx* =1 [l =1

IA

sup [lx[lll«"[l = llx[l,
x*ex*
[l JI=1

it follows that [[j(x)|| < ||x|]. On the other hand, by Corollary 5.5.1, there
is «* € X* with [l«*|| =1 such that (x,x*) = ||x||, hence [[j(x)|| > |lx||. Thus,
G = llxll- n
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Because of Theorem 5.5.2 we shall consider X as embedded in X** as a normed vector
subspace through the mapping j. If X = X**, then X is called a reflexive space. A reflexive
normed vector space is necessarily a Banach space. In general, the closure of X in X** is a
Banach space, which is called the completion of X. Note that if x is in the completion of
an.v.s. X, then there is a Cauchy sequence {x, } in X C X** such that x, — x in X**.

Example 5.5.1 Let X = L*°[-1,1] and Y = C[-1,1], and let § € Y* be defined by
8(f) =f(0) forf € Y. Since § is a bounded linear functional with norm 1 on Y, it can
be extended to be a bounded linear functional on X with the same norm by the Hahn-
Banach theorem; we also denote the extended functional by §, i.e, § € L*°[-1,1]*.
It will be shown in Chapter 6 that L'[-1,1]* = L°°[~1, 1], in the sense that for £ €
L'[-1,1]* there is h € L*°[-1, 1] such that £(f) = f[-l,l}ﬂ'd)‘ forall f € L'[-1,1].
We know from this fact that § € L'[-1,1]**. But there is no h € L'[-1,1] such
that 8(f) = f[_l,l]fhd)u = f(0) for f € C[-1, 1]; this means that § ¢ L'[-1,1], i.e,,

L'[-1,1] € L'[-1,1]*
Exercise 5.5.3 Suppose that Y is a vector subspace of a n.v.s. X such that Y # X, and
let Y- = {x* € X*: (y,4*) = 0forally € Y}.

(i) For x € X\Y, show that there is x* € Y+ such that [|x*| = 1 and (x,&*) =
infyey ||« - y|l. (Hint: define I € (({x}) + Y)* by l(ax +y) = ainfyey [lx - y||
for scalar o and y € Y, then extend I to be defined on X by the Hahn-Banach
theorem.)

(ii) Forx € X, show that

areyl
lla*fI=<1 llac* f1=1

. _ > _ k
ynelgllx—yll = max |{x, x%)| = max |{x,x™)|.

Exercise 5.5.4 Let F be a closed vector subspace in a real n.v.s. X and let T be the
canonical map from X onto X/F.

(i) Suppose now that Cis an open convex set with C N F = ). Show that 7(C) is an
open convex set in X/F, not containing [0].

(ii) Suppose that Y is a vector subspace of X and C an open convex set in X, such
that C N'Y = §J; show that there is a closed hyperplane H such that H D Y and
HN C = . (Hint: use Theorem 5.4.1 in X/Y and note that a hyperplane in a
n.v.s. X is either closed or dense in X.)

5.6 Hilbert space

Let E be a vector space. For definiteness, it will be assumed that E is a complex space
throughout this section. The case of E being a real vector space can be treated similarly.

E is called an inner product space if there is a map (+,-) : E x E — C satisfying the
following conditions:

(i) (x,x) > 0Vx € E,and (x,x) = Oifand only ifx = 0;
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(ii) (-, «)islinear on E for each x € E; and

(iii) (x,y) = (3,x) forallx,yin E (forz € C, z is the conjugate of z).

The map (-, -) is called an inner product on E. We always consider a vector subspace
F of an inner product space E as an inner product space, with the inner product inherited
from that on E, i.e. the inner product on F is the restriction to F X F of that on E. Note
that when E is a real vector space, condition (iii) is replaced by (x,y) = (y,x). If E is an
inner product space, put ||x|| = (x, x)'/? forx € E.

Theorem 5.6.1 IfE is an inner product space, then for x, y in E, the following hold:

(@) llx=ylI* + ll+ ylI* = 2([lx]1* + llyl|*) (Parallelogram identity);
(b) [(x, )| < lxll - Iyl (Schwarz inequality); and
(c) llx+yll < llxll + llyll (Triangle inequality).

Proof ForxandyinE,

lx-yl* = (x—y,x—y) = |lx[|* - 2Re(x, ) + [yl (5.4)
I+ ylI* = (x+y,x+y) = [lx]|* + 2Re(x,y) + Ilyll*. (5.5)

(a) follows by adding (5.4) and (S.5).

To show (b), it is sufficient to show that |(x,y)| < 1 whenever |x|| = [ly|l = 1.
Now if [lx] = [lyll =1, |Re(x,y)| < 1 follows from (5.4) or (5.5) according to
whether Re(x,y) > 0 or R(x,y) < 0, because the far left sides of (5.4) and (5.5) are
both greater than or equal to zero. If @ € C with |#| = 1 is chosen so that (x,0y) =

|(x,)], then
|(x% )] = (x,0y) = Re(x,0y) < 1,
this concludes (b). Finally,
lx+yl* = (x+y,2+y) = Ixll* + 2Re(x,y) + lIylI®
< Nlcll® + 2l - iyl + Nyl = Cllcll + Nyl

and thus,
[+ yll < llxll + llyll- |

From Theorem 5.6.1 (c), Eis a normed vector space if the norm ||x|| of xin E is defined
by [|x|| = (, x)'/2. For an inner product space, the norm so defined is called the norm
associated with its inner product. Unless stated otherwise, for an inner product space
the norm associated with its inner product is always chosen as its norm.

An inner product space E is called a Hilbert space if it is complete when considered as
anormed vector space. Obviously, a closed vector subspace of a Hilbert space is a Hilbert
space.
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The most important class of Hilbert spaces is the class of all L*(€2, X, i) with inner
product (f, g), defined by [, fgdu for f, gin L*(2, X, it). The norm associated with this
inner product is the L*-norm. The space C" with inner product (z,w) = > ;_, zxwy for
z=(z1,...,2,) andw = (wy, ..., w,) is a particular case; the norm associated with this
inner product is the norm introduced for C" in Section 1.4, hence C" with this inner
product is called the n-dimensional unitary space. Correspondingly, the Euclidean norm

of IR is associated with the inner product (x,y) = > |_, xyx for x = (xy,...,x,) and
y= (}’1; .. ~)yn)'
Suppose that E is a finite-dimensional vector space of dimension n and let by, . .., b,

form a basis of E. For x = Z?:l xibj,y = Z;‘zl ;b in E, where the x;’s and y;’s are scalars,

define (x,y) = Z]": 1 %;yj. E is clearly a Hilbert space with inner product so defined. Then
it follows from Proposition 1.7.2 that every finite-dimensional inner product space is a
Hilbert space.

An example of infinite-dimensional Hilbert space is the real space £*(Z) considered
in Section 1.6 whose norm is associated with the inner product (x,y) = ZkeZ Xy for
x = (x¢) and y = (y). We shall also use £*(7Z) to denote the complex Hilbert space of all
those complex sequences (z;)rez such that ), |zk|* < 00, and with inner product
(z,w) := Yoy zuwk for z = (z¢) and w = (wy.). Whether £2(Z) is a complex or real
space will either be stated explicitly or occasioned by context.

As inner product on an inner product space is a generalization of the scalar product for
vectors in three-dimensional Euclidean space in which two nonzero vectors are perpen-
dicular to each other if and only if their scalar product is zero. Therefore, two elements
x and y in an inner product space E are said to be orthogonal if (x,y) = 0, and, for a
nonempty subset A of E, call the set A~ := {x € E : (x,y) = 0Vy € A}, the orthogonal
complement of A in E. Obviously, A" is a closed vector subspace of E.

Exercise 5.6.1 Let M be a vector subspace of an inner product space E; show that M N
Mt = {0}. Also show that if an element x of E can be expressed as the sum x = y + z
of an element y in M and an element z in M+, then such an expression is unique.

Theorem 5.6.2 (Orthogonal projection theorem) Suppose that E is a Hilbert space and
M a closed vector subspace of E. Then for any x € E, there is a unique element y € M such
that

X — = min ||x — zZ||. 5.6
=yl = min [lx - 2] 5.6

Furthermore, y is characterized by
x-y€ Mt (5.7)

Proof Letw = inf,cp ||« — z||. There is a sequence {y, } in M such that

1
o < x-yl* <o*+=, n=12....
n
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By parallelogram identity,

G = %) = G = )1 + 1[G = %) + G =) I

2 2
= 2(lly = 2% + Iy — 2lI?) < 4e? + =+ =,
n m

2 1 1
x| <2(-+—,
nom

from which it follows that {y, } is a Cauchy sequence in M. Since M is complete, there
isy € M such thatlim,_, ||y, - y|| = 0. Then,

or

Yn *Ym
2

2 2
150 = Yl §4a2+—+——4‘
n m

2 . 2 2
[x=ylI” = lim [lx -y, | = o
n—>00

ie.
x—-y| =a = inf ||x-z|| = min [|x - z]|.
o~y = @ = inf [l 2] = min |~
We have shown that there is y € M such that

X — = min ||x — z||.
= y1l = min [lx - 2]

Now let y be any element of M which satisfies (5.6); then forz € M and t € R, we
have

lx—y-tzll* = lx - ylI> - 2Re(x - y, 2)t + £ ||,
or
0 < llx—y-tzl* - - yl> < 2Re(x -y, 2)t + £|}zII"
Then fort > 0,
0 < 2Re(x —y,2) + t]z||%,
and hence,
Re(x - y,2) <0,
by letting t ~\, O; while fort < 0,

0> -2Re(x-y,z) + tlz|I?
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holds, and by letting t ,/ 0, we have
Re(x -y,z) > 0.
Hence,
Re(x -9 z) = 0. (5.8)

If we replace z in (5.8) by iz, then Im(x - y,z) = 0. Thus (x - y,z) = 0, i.e. y satisfies
(5.7). Suppose now that (5.6) holds fory = y and y” in M, then (x - ',y —y") =0 =
(x-y",y =y") = 0by (5.7), and consequently,

(y/ _y//}y/ _y//) — (x_y// +y/ _x)y/ _y//) — 0’

which implies that ||y’ —»"|| =0 or ¥ =y”". Hence, there is unique y € M that
satisfies (5.6).
Finally, suppose y € M satisfies (5.7), then forz € M,

lx—z* = lI(x-y) + (3= 2)|I> = |x = y* + 2Re(x - y,y = 2) + ||y - z|I?
=l = ylI> + [ly - zlI* > llx -yl

or y satisfies (5.6). |

The map that associates each x € X with the unique element y in M which satisfies
(5.6) (or (5.7)) is called the orthogonal projection from X onto M. This map will be
denoted by Py.

Corollary 5.6.1 Suppose that M is a closed vector subspace of a Hilbert space E; then every
x € E can be expressed uniquely as x = y + z, wherey € M and z € M. In other words,
E=M&M".

Proof For x € E, let y = Pyix. Then x —y € M, by (5.7), hence x =y + (x —y) =
y +z, where y € M and z € M. The uniqueness of such an expression follows from
Exercise 5.6.1. |

Exercise 5.6.2 Let M be a closed vector subspace of a Hilbert space E.

(i) Show that Py, is linear and that the following properties hold:
(a) Pyx = xifand only if x € M; (b) P4, = Pag; and (c) [|Pyx|| < ||| for all
x € E.

(ii) Show that 1 — Py = PyL.
(iii) Show that ||x||* = ||Pyx||* + ||Pypex||* for x € E (Pythagoras relation).

Theorem 5.6.3 (Riesz representation theorem) IfE is a Hilbert space, and x* € E*, then
there is a unique yo € E such that

<x) x*> = (x;)’o); x € E.
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Furthermore,

™11 = Ilyoll,

and the map x* — yq is conjugate linear (an operator T from a vector space into a vector
space is conjugate linear if T(ox + By) = @Tx + BTy for all x, y in D(T) and all scalars
a and B).

Proof If x* = 0, take yo = 0. Suppose now that x* # 0 and let M = kerx* := {x € E :
(x,x*) = 0}. M is clearly a closed vector subspace of E. Since x* # 0, there is xg €
M+ such that (xg,x*) = 1. Now let x € E and put A = (x,x*). By Corollary 5.6.1,
x=y+z,wherey € Mandz € M*, hence, A = (x,4*) = (z,x") = (Axg, x*), or (z —
Axo, x*) = 0, which means that z — Axy € M. But z — Axj is also in M, consequently
z = Axp, by Exercise 5.6.1. Now, from x = y + Axo we have (x,x0) = (y + Axo, x0) =
Mloll® = (%, %) || x0 [|*. If we take yo = ”;#, then (x,y0) = (x,4*) for x € E. Suppose
that y; € E also satisfies (x,x*) = (x,y,) for all x € E, then (y, - yo,x) = 0 for all x
in E; in particular, (y, - y0,, - ¥0) = 0 or ||y, — yoll = 0, implying y; = yo. Hence,
there is unique yo € E satisfying (x,x*) = (x,)0) for all x in E. From (x,x*) =
(3, y0) it follows readily that [lx* | < Ilyoll; but [7o]1> = (v0,0) = | oy )| < Ilyoll -
llx*||, hence, [[yoll < |lx*||. Thus |[lyoll = [|«*||. That x* — y, is conjugate linear is
obvious. |

Exercise 5.6.3

(i) Denote by R the map x* > y in Theorem 5.6.3. Show that E* is a Hilbert space
with inner product (-, -),, defined by («*,y*). = (Ry*, Rx*) for x*, y* in E*.

(ii) Show that Hilbert spaces are reflexive.

Example 5.6.1 Define on C[0, 1] an inner product by

(f.g) = f f(OgDdt, f,g € Clo,1].

We claim that C[0, 1] is not complete with the norm associated with this inner
product. We denote this inner product space by C[0,1] in this example. Let f
be the indicator function of [%, 1] on [0,1] and for each integer n > 2, let f,
be a continuous function such that 0 < f, <1 and coincides with f on [0, % -
%] U [%, 1]. Then f, — f in L*[0,1], ie, ||fu —fllo — 0. Let g be any function
in C[O; 1], then Ife - gll2 = IIf -gll2 = Ilfa -fll2 and h?nce liminf, .« ||fu -gll >
f - gll» > 0. Thus {f,}, which is a Cauchy sequence in C[0, 1], does not converge in
C[o,1].

The Riesz representation theorem for linear functionals on Hilbert spaces might lead
to far reaching results, even when the spaces concerned are finite dimensional. We illus-
trate this fact by proving an interesting result of A.P. Calderén and A. Zygmund about
Friederich mollifiers. Recall that from a real-valued C* function ¢ on R" with compact
support in the unit closed ball C;(0) and with f @dA" = 1, one can construct a family
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{Je}eo of operators on Lo (IR") in the following way (cf. Section 4.9). For &€ > 0, let
@e(x) = 8‘”(%) for x € R", then supp ¢, C C.(0) and fgoed)»" = 1. If f € Lio.(R"),
define a function J,f by

1= [ 00 -pi0), xe R

The family {J }+~o depends on ¢ and is called a Friederich mollifier.

Theorem 5.6.4 (Calderén-Zygmund) For each k € N, there is a Friederichs mollifier
UeYeso such that J.p = p for every polynomial p of degree < k defined on IR".

Proof Let E be the space of all real polynomials p of degree < k on IR". E is a real vector
space of finite dimension. Choose a nonnegative and nonzero C* function 1 on R"
with supp 7 C C;(0) and define an inner product (-, -) on Eby (p,q) = fIR" pqndr”
for p, g in E. Since dim E < o0, E is a Hilbert space. Let | be a linear functional on E
defined by

I(p) =p(0), peE

Since dim E < 00, every linear functional on E is bounded. By Theorem 5.6.3, there
is o € E such that

p(0) = (p,q0) = N pqondA”.

If we choose p to be the constant polynomial 1 in the above equality, we have
fIR" qondA" = 1. Let ¢ = qon and {J; }¢~o the corresponding Friederich mollifier.
Now forp € Eandx € R",

o) = [ p0e-paro) = [ p0) (2E)6ro)
- [ bl 0001 0) =5u(0) = (),

where p,(y) = p(x - €y). |

Another remarkable application of the Riesz representation theorem will be presented
in Section 5.7.

5.7 Lebesgue-Nikodym theorem

We consider in this section an interesting application of the Riesz representation theorem
to measure theory.

Let (€2, X) be a measurable space, and suppose that /« and v are finite measures on X.
The following theorem asserts that v can be decomposed in a certain way relative to .
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Theorem 5.7.1 (Lebesgue-Nikodym theorem) Let (2, X) be a measurable space, and

W, V finite measures on %. Then there is a unique h € L' (2, X, u) and a p-null set N,
such that

v(A) = f hdu +v(ANN), A€ X. (5.9)
A

Proof Let p =  + v; then p is a finite measure on X. Consider the real Hilbert space
L*(2, T, p) and consider the linear functional £ on L*(2, %, p), defined by

aﬂ:/ﬁu

Since

10

IA

(fir)” ([ 2)" 2w { o]

V()22 ()

£ is abounded linear functional on L?(2, &, p). By the Riesz representation theorem
there is unique g € L*(Q, %, p), such that

[sv= [ o = [ sain+ [ v

forallf € L*(Q, X%, p),or

/ﬂu@w=fmm (5.10)

forallf € L*(2, %, p).

We claim first that there is a y-null set N such that 0 < g(x) < 1forx € Q\N. Let
Al ={xeQ:g(x) <0}and Ay = {x € Q: g(x) > 1}. If we let f = I, in (5.10),
then 0 < v(A;) < fAl(l ~g)dv = fAl gdp, from which it follows that ©(A4;) = 0.
Next choose f = I4, in (5.10); we have 0 > fAz(l ~-g)dv = fAz gdp > (Ay). This
implies that £(A;) = 0. Put N = A; UA,, then u(N) =0 and 0 < g(x) < 1 for
x € Q\N.

We show next that (5.10) holds for every nonnegative measurable function f which
vanishes on N. Suppose that f is such a function; for each positive integer n, let
fu =f Anjief,(x) = f(x)iff(x) < n,otherwisef,(x) = n.Sincel —~g > Oandg >0
on Q\N, 0<f,(1-g) /f(1-g), and 0 <f,g /" fg, then from the monotone
convergence theorem and the fact that (5.10) holds for each f, it follows that

ff(l ~-g)dv = nlggoff”(l ~-g)dv = nlggo ffngdu = /fgdu.
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This shows that (5.10) holds for every such function. For A € &, let B=AN
($2\N); then (5.10) holds for the function f := I(1 - g)~' and we have [ Izdv =

fIBIL_ng = fAIQ\N . %gd,u, or

V(AN (Q\N)) = / hd

A

if we put h= IQ\N%g. Note that h > 0, and, since fQ hdu = v(\N) < 00,

he LY, 2, 1u). Now,
b(A) = v(A N (2\N)) + v(ANN) = / hdp + v(ANN),

hence (5.9) holds. Now suppose that there is ¥’ € L'(€2, ¥, #) and p-null set N,
such that

v(A):fh/dM+v(AﬂN/), A€ Z;
A

ifweput N = N UN/, then [, ¢ hdu = [, «. Wduforall A € ¥,and consequently

h=H p-ae on Q\N;but N being a j-null set implies that & = i’ i-a.e. on 2. Thus
h is unique. |

Exercise 5.7.1 Show that Theorem S5.7.1 holds if both 4 and v are o -finite. But in this
case h may not be pt-integrable; however it is jt-integrable if v is finite.

Measure V is said to be pt-absolutely continuous on X, if A € ¥ and u(A) =0
results in V(A) = 0; while v is u-singular on X, if there is a w-null set N such that
V(A) = (ANN) forall A € . Note that if we use * and v* to denote the outer meas-
ures on €2, constructed respectively from (1 and v on ¥ by Method I, then the definitions
given here for pt-absolute continuity and p-singularity for v as measure on X are the
same as " -absolute continuity and p*-singularity for v*, introduced in Section 4.6.

Corollary 5.7.1 (Radon-Nikodym) If it and v are o -finite measures on ¥ and v is ju-
absolutely continuous, then there is a unique nonnegative measurable function h on S2 such
that

v(A) =/hdu, AeX.
A

Proof We know that Theorem 5.7.1 also holds true if i and v are o -finite (cf. Exercise
5.7.1). We may then apply (5.9). Since (A N N) = 0 implies that v(A N N) = 0 for
all A € X by the p-absolute continuity of v, the corollary follows. |

Remark The function h in Corollary 5.7.1 is called the Radon-Nikodym derivative
of v w.r.t. i, and the conclusion of the corollary is usually referred to as the Radon-
Nikodym theorem and is expressed by dv = hdp or h = j—l‘i.
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5.8 Orthonormal families and separability

Hilbert spaces considered in this section are assumed to be of infinite dimension. The
finite-dimensional case can be treated similarly, but in a simpler fashion.
A family {e, }oes of elements in a Hilbert space E is said to be orthonormalif (e, eg) =

0 ifa#p

R PR g It is clear that an orthonormal family is linearly independent.
ifo =

Consider first a finite orthonormal family {ej};zl andletE, = ({e,...,e,}). Then E,
is a closed vector subspace of E, by Corollary 1.7.1.

Lemma 5.8.1 Let P, denote the orthogonal projection from E onto E,; then P,x =
21 (%, ¢))e; for x € E.

Proof It is clear that P,x = Z;l:l(an, ej)e]-. For each j=1,...,n, we have (x-
P,x,¢;) = 0,by (5.7), hence (Px, ¢;) = (x,¢;). [ |

Exercise 5.8.1 Suppose that {ey }ocs is an orthonormal family in a Hilbert space E.
Show that for any x € E, {|(x, ey )|*}oer is summable and )", |(x, e ) |* < [lx|*.

Now let {e}°, be an orthonormal family in E. For each n € N, put E, =
({e1, ..., eq}) and let Ey, be the closure of ({ex}°)), i.e. E is the smallest closed vector
subspace containing {ek}fjl.

Theorem 5.8.1 Forx € Ey,, we have

(i) X = Z}ﬁl (x; ek)ek; ie lim,_, “x - ZZ:I (x; ek)ek“ =0.

(ii) ”x”2 = ZISZI |(x; ek)lz'
Proof

(i): Given that & > 0, there is y € ({ec},) such that lx - y||* < &. Now, y =
Yo oger, ap € C, k=1,...,m, hence, y € E,, CE, for n > m. Thus if
n > m, we have

2 2
”x_an” S”'x—y” <é,

or, by Lemma 5.8.1,

2
<é&

n

X — Z(x; Ck)ek

k=1

ifn > m. This proves (i).
(ii): From (i),

n 2

Z (x) ek)ek

k=1

= lim
n— oo

]l
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But,
n 2 n n
D (xen)er| = (Z(x, ¢)ej, > (x, ek)€k>
k=1 j=1 k=1
= Z (x) ej)(xJ ek)(ej) ek) = Z |(x) ek)|2;
jk=1 k=1
hence ||x||* = Z,f:l |(x, ek)|2. [}

Corollary 5.8.1 (Bessel inequality) Forx € E, > 1~ |(x,ex)|* < l|x||?, and the equality
holds if and only if x € E.

Proof Let P be the orthogonal projection from E onto E, then [x||* = ||Px||* +
l|lx — Px||?, by Exercise 5.6.1. Hence ||Px||* < ||x||*. But by Theorem 5.8.1,

1w 1 2
(| Px|] =Z|(Px;ek)| =Z|(x;ek)| ’
k=1 k=1
because (x — Px, e;) = 0 for each k by (5.7). Hence,
2 2, - 2
llaell™ = llx = Pell ™ + >_ | (s, )|,
k=1

from which it follows that Y -, |(x, ex)|* < [lx|I%, and that equality holds if and only
ifx = Pxorx € Eg. |

Exercise 5.8.2

(i) Show that for x, y in E, we have

(x,y) = ki( )0, o).

(ii) ShowthatE = Ey ifand onlyif [|x||* = Y .2, |(x, ex)|* forallx € E.
(iii) Show that E = E if and only if

o
x =) (% ec)er
k=1

forallx € E.

Theorem 5.8.2 (Riesz-Fischer) Let {e; }reN be an orthonormal family in E and {0t }ren
a sequence of scalars, then there is x € E such that x =) - oye if and only if

Zk |O{k|2 < OQ.
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Proof Suppose that ) .-, |a|* < 0o. For each n € N let x, = Y |_; xer. We claim
that {x, } is a Cauchy sequence in E. Actually, forn > min N,

n n n
% = 20| =( > e, D Ol,-ej) = > aeg(ene)

k=m+1 j=m+1 kj=m+1
n
= Z |Otk|2 — 0
k=m+1

as n > m — 00, so {x,} is a Cauchy sequence, and there is x € E such that x =

. . n o
lim,, s o0 %y OF & = limy, 00 ) 1, Oker = ) o) Clkey

Next, suppose that x = Zijl orer. This means that x = lim,,_, o ZZ:I oer; but
each 22:1 arex is in E,, and hence x € Eo,. Now foreachj € IN,

n
(x,¢;) = lim (Z ager, e,-) = aj;
n— 00

k=1

consequently,
S g 2 3 2 2
2ol = 2| Go )l = llxll* < oo,
I= =1

by Theorem 5.8.1 (). [ |

An orthonormal family {;} 7, is called an orthonormal basis for E if

o0

X = Z(x; ek)ek

k=1

forallx € E.

Theorem 5.8.3 Let {ex}7°, be an orthonormal family in a Hilbert space E and define Eo,
as before.

(i) {ex}S, is an orthonormal basis for E if and only if E = Ex.

(ii) {ex}°, is an orthonormal basis for E if and only if for x € E, x = 0 whenever
(x,er) =0 for all k.

Proof 1t is clear that (i) follows from Theorem 5.8.1 (i), and the fact that if {e}72, is
an orthonormal basis, then E = E,. For the proof of (ii), in view of (i) one need only
observe that forx € E, (x — Px, ¢;) = 0 for all k, where P s the orthonormal projection
from E onto E. |

Exercise 5.8.3 Show that an orthonormal family {e; };cn in E is an orthonormal basis
for Eifand onlyif ||x[|* = Y .-, | (%, e )|* forallx € E.
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Example 5.8.1 (Hermite polynomials and Hermite functions) For nonnegative integer
nandx € R, let

2 dn 2
H,(x) = (-1)"¢" —¢™;
dx"

then H,(x) is a polynomial in x of degree n with the coefficient of x" being 2".
The polynomials H,,(x) are called Hermite polynomials and the functions v, (x) =

¢~ 7 H,(x) are called Hermite functions. We have, for nonnegative integers m and ,

[ : Y () () = / : o H, (o) H ()
d,,

dx

2
e dx,

-/ :Hm<x><—1>"

from which we conclude by repeated integration by parts that

/ : b= [ i

. dx"
_]o ifm < n;
2ty ifm=n.

Thus {0, ¥1, V2, . . .} is an orthogonal family in L*(IR). If we define the normalized
Hermite functions &, by

Eu(x) = (2"nIV/T) TP (x),

then {&,&,&,, ...} is an orthonormal family in L*(IR). Observe that
E.(x) = e Th,(x), where hn(x)z(Z"n!ﬁ)‘%Hn(x); the polynomials ho(x),

hi(x), hy(x), ... are called normalized Hermite polynomials. Observe that since
h,(x) is a polynomial of degree n, each monomial " is a linear combination of
ho(x), ..., h,(x). Let us now put w(x) = e and denote by L2(R) the space
L*(R, L, 1), where pu(A) = [, wdi = [, e dx for A € L. The space L2(R) is
called the weighted L* space on R with weight w. Then, Hermite polynomials
form an orthogonal family in L2 (IR) and normalized Hermite polynomials form an
orthonormal family in L2 (IR). We shall see in Chapter 7 that {£, &, &, . ..} is an
orthonormal basis for L*(IR), or equivalently, {h, h1, hs, . . .} is an orthonormal basis

for L2 (R) (cf. Corollary 7.1.1).

A procedure, the Gram-Schmidt process, for orthonormalizing a given countable lin-

early independent family {u;} in E is now introduced. Let e; = Hz_iH Suppose now that

e1, . - ., e, have been defined so that they form an orthonormal family and ({ey, . . ., €,}) =
({u1, ..., un}); put E, = ({e1, ..., e,}) and let z, be the image of u,,; in E, under the
orthogonal projection from E onto E,. Since u,,; is not in ({u,...,u,}), it is not

in E, and hence u,,; — z, # 0. Define e,,; = ”Z:::Z”, then |le,+1|| =1 and e,y € Ej‘
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Thus ey, . .., e, form an orthonormal family; it is readily seen that ({uy,. .., u,1})
= ({e1, .., en+1}). We have therefore defined, by induction, an orthonormal family {e; }
from {u;} such that ({e},...,e,}) = {uy,...,u,}) foralln € N.

Theorem 5.8.4 A Hilbert space E has an orthonormal basis if and only if E is separable.

Proof If E has an orthonormal basis {e;}, then the countable set Uiil{z;l:l aje; :
aEy,j=1,..., n} is dense in E; hence E is separable. We have denoted by y the
countable set of rational complex numbers.

If now E is separable, say {x,}°0; is dense in E. We may assume that x; # 0. By
an obvious selection procedure, we can select a linearly independent subsequence
{2y} of {x,} such that ({x,, }) = ({x,}). Put x,, = yi. Let {e;} be the orthonormal
family obtained from {y;} by the Gram-Schimdt procedure, then {¢; } is an orthonor-
mal family such that ({e;}) = ({yx}) = ({x}). Consequently the closure of ({e;}) is E.
Then {ex}2, is an orthonormal basis of E. [ |

5.9 The space L2[-r, 7]

Historically, the most well-known orthonormal family is {J;z—neikt}kgz in L*[-m,m]. It

was introduced by J. Fourier in his study of heat conduction by means of expansion of
functions as trigonometric series, and is usually referred to as the Fourier basis. Here
L*[-7, 7] stands for L*([-m, 7w ], L|[-7, ], ).

Forf € L'[-7, 7], the function f defined on Z by

7 _; i e—ikt
f(k)_m[nf(t) dt

is called the Fourier transform of f, and f(k)’s, k € 7, are called Fourier coeffi-

cients of f. If we put ey (t) = \lﬁe’kt, then for f € L*[-m, 7] f(k) = (f,ex), k € Z,

where [7 f (t)g(t)dt = (f, g) is the inner product for L2-spaces. It is easily verified that
(e, ) = 8kj, hence {e} is indeed an orthonormal family in L*[-7, 7 ].
We shall show in this section that {e; }1c7 is an orthonormal basis for L[, 77 ].
Letf € L'[-7, 7] and n be a nonnegative integer; define the Fourier n-th partial sum

S.(f,t) of f by

R v " e I
Sn(f;t)—k_X_:nf(k)ek(t)—k_X_ﬁn ([ s m‘“) o

o WO

We derive firstly an integral representation for S,(f, t). Define

1 n
D,(t) := Py [1 + ZZcoskt] ,

k=1



212 | Basic Principles of Linear Analysis

then,

1 1 1 n 1
sin —tD,(f) = — [sin =t + 2> _ sin =t cos kt
2 w2 e

1 1 " 1 1
= — |:sin—t+z {sin <k+ —) t —sin (k— —) t}]
T = 2 2
1 1
= —sin|n+ - )¢
2w ( 2)

hence if ¢ is not an even multiple of 77, we have

1 sin(n + %)t

D,(t) = —
®) =3 sin 2t
Now,

1 T noo

Sulfrt) = 3 f(s) k:Z_n e ds
1 T n
=5 /ﬂf(s) {1 +2];cosk(t—s)} ds;

thus,

S.(f,t) = [nf(s)Dn(t—s)ds. (5.11)

The functions D,,n = 0, 1,2, . . . are called Dirichlet kernels.

It is a common practice to extend a function on (a, b] to be a periodic function on
R with period (b - a); we follow this practice by regarding f as defined on (-7, 7] and
extend it periodically to IR with period 277 ; then,

.60 = | D=5 = [ e+ 9D, ()i

= . f(t + S)DH(S)dS = /ﬂf(t + S)Dn(S)dS,

where the last equality follows from the fact that the function s > f(t + s)D,(s) is of
period 27t (cf. Exercise 4.3.3). Thus (5.11) can be put in the form

5.(F, ) = / "+ 9D, (5)ds 5.11)

Exercise 5.9.1 Let X = {f € C[-7, 7] : f(-7r) = f(;r)}; X is a Banach space with
sup-norm. Forn = 0, 1,2, ... define £,(f) = S,(f,0) forf € X.
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(i) Showthat?, € X*,n=0,1,2,...and

16 = / 1D, (8)|dt

(ii) Show thatlim,_, o ||£,] = 00;
(iii) Show that thereisf € X such that

lim sup |S,(f,0)| = 0o

n— 00

(Hint: cf. Theorem 5.1.3.)

In general, S, (f, t) is not well behaved as n — 00, so it is expedient to consider the
Cesaro mean of the sequence: forn =0,1,2,...;let

1 n
Gn(f) t) = Zsk(f) t)'
n+1 k=0
Using (5.11) we have
1 /g n /g
o.(f,t) = —— [ f(s) D Dp(t-s)ds = / f(s)F,(t - s)ds, (5.12)
n+1J_, k=0 -

where F,,(t) = n+1 > 1o Di(t). Since

1 1 1
sin2 EtFn(t) = m Z Sll’l(k + = )tSlIl 2t
1
=— kt — k+1)t
27‘[(n+1)22{cos cos(k + 1)t}
1 1
= . -{1- 1)t
e 2T eostnr D}
B 1 2n+1
T oamne) T Y

we have

2
1 sin ﬂ1.‘
Fn(t) =
2r(n+1) \ sin Et
if t is not an even multiple of 7. F,(t), n = 0,1,2,. .., are called the Féjer kernels.
Take f = 1in (5.11) and (5.12), we have

f D, (t-s)ds :/ F,(t-s)ds=1, te[-m,m]. (5.13)

o T

Theorem 5.9.1 (Féjer) Suppose that f is continuous on -7, 7w ] and f(-7) = f(7r). Then
0.(f,t) — f(t) uniformly fort € [-m,w] whenn — oo.
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Proof From (5.13),

olf, ) —F(0)] = } [ 19 - FE - e
< [ VO -SRG-9as

Since f is continuous on [-7,7] and f(-7) = f(7), for any given & > 0, there is
8 > 0,such that when either |s - t| < S or|s - t| > 27 - §,wehave |f(s) - f(¢)| < .
It is obvious from the form of the function F, (s — t) that there is N € N such that
whenn > N,

F,(t-s) < ¢ (5.14)
sup at=5) < —— .
8<|t-s|<27-8 8 M’

where M = sup,(_ 1 |f(t)]. Forn > N, by (5.14) and the choice of 5,

a0 -FO1 = [ YO -S04

or |t-s|>2m -8

i /Sslt-s|§2n-3 V(S) _f(t)lF”(t - s)ds

e [T £
<—f F,(t-s)ds+2M- —— -2 = ¢;
2 J_ 8T M

/4

this shows that o,,(f, t) — f(t) uniformly fort € [-7, 7] whenn — 00, because our
choice of N is independent of t. |

Since each o, (f, t) is a linear combination of {J%?ek}lklfﬂ’ it follows from the Féjer
theorem that ({ ﬁek}kez ) is dense in the space of all continuous functions f on [-7, 77 ]

with f(-7) = f(r) w.rt. the L*norm in L*[-7,7]. But the latter space contains
C.(-m, ) which is dense in L?[ -7, 77 ]. As a consequence, the closure of ﬂﬁek}keZ)

in L*[-m, 7w ] is L*[ -7, 7 ]. Thus we have established the following theorem.
Theorem 5.9.2 {\/%—ﬂek}kez, where e (t) = ¢ is an orthonormal basis for L*[-7r, 7t ].

kt

Because ¢ = cos kt + i sin kt, it follows from direct computation that

Su(f,x) = %%fnf(t)dt

n

1 T b4
+—=> {f f(t) cos ktdt cos kx + / f(t) sin ktdt sin kx} .
T . .

k=1
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Hence, if we put

1 b
a, = —/ f(t)cosntdt, n=0,1,2,...;
T
- (5.15)

1 b3
b, = —/ f(t)sinntdt, n=1,23,...,
V4 =TT
then,
1 n
S.(f,x) = 5% + > {ag cos kx + by sin kx}. (5.16)
k=1

This is the traditional form of Fourier partial sums; the numbers ay, a3, by, a3, by, . ..
defined by (5.15) are called the Fourier trigonometric coefficients of the function f and
are expressed symbolically by

1 o0
flx) ~ an + > {a, cos nx + b, sin nx};

n=1

the series %ao + Z:il{a,, cos nx + by, sin nx} is usually referred to as the Fourier trigo-
nometric series of f. Whether or not f(x) = %ao + . {a, cosnx + b, sin nx} for x €
[-7r, 7] is a well-known problem in analysis, which leads to discovery of many tools in
real analysis, including the introduction of Lebesgue measure and Lebesgue integration.
Since { rek}ke 7 is an orthonormal basis for L?[a, b] if b — a = 27, our discussion so far

also holds on any interval of length 277; in particular, Fourier trigonometric coefficients
for integrable functions on such an interval are defined similarly.

Exercise 5.9.2 Consider L?[0, 27 ].

(i) Show that {7 Wird f cos x, f sinx, f cos 2x, f sin2x, ...} is an orthonor-
mal basis for L2[0, 27 ].
(ii) Forf,ginL*[0,2m], suppose that

1 o0

x) ~ —ag + Y {a, cosnx + b, sin nx},

2
n=1

1 o0
g(x) ~ 5% + > {c, cosnx + d, sin nx}.
n=1

Show that
/ fgdr = —aoco + Z{ancn +b,d, }.

(iii) Suppose that f € L*[0,27] and a, = b, = 0 for n > k for some k. Show that
f(x) = %ao + Z:;ll{an cos nx + b, sinnx} fora.e.x € [0,27].
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(iv) Suppose thatf is AC on [0,27 ] with f* € L*[0, 27 ] and satisfies f(0) = f(27).
Show that

1 2 00
— | IfPPdh = n*(Jau|* + [bul),
T Jo n=1

where a, and b, are as defined in (ii).

(v) Letfbeasin (iv). Showthat > o (|a,| + |bs|) < 00 and infer that the Fourier
trigonometric series of f converges uniformly to f on [0, 277 ].

To give a flavor of orthonormal basis in infinite-dimensional spaces, we now prove a
classical isoperimetric inequality, following A. Hurwicz.

Theorem 5.9.3 (Isoperimetric inequality) For any piece-wise C' simple closed plane curve
with given length L, the following inequality holds:

where A is the area of the region enclosed by the curve; and equality holds when and only
when the curve is a circle.

Proof Let C be such a curve and choose a parametric representation, x = x(s), y = y(s),
0 < s < L, with arclength as the parameter so that, when s goes from 0 to L, the curve
Cis traced counter clockwise. Choose the new parameter t = 27rs/L and let

1 o0
x(t) ~ —ag + Y _{a, cosnt + b, sinnt},
n=1

1 00
y(t) ~ S0+ > {cq cosnt + d, sinnt};

n=1

then, using the results in Exercise 5.9.2, we have

dx &

o ~ > {nb, cos nt — na, sinnt},
n=1

d o0

d_)t} ~ > {nd, cos nt — nc, sinnt};
n=1

and

17 | fde\* () >
A R
1

2 d 00
— / x—ydt =Y n(a,d, - buc,).
0

T dt n=1
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Slnce( )2+( )2 (2]1)2{( )2+( )2} (M)zandA fznx%dt,wehave

M8

{n*(ay + by + ¢ + d,) - 2n(a,d, — buc,)}

SR SR
i

i ag

{(nan —d,)? + (nb, +¢,)* + (n* - 1)( +d>)} > 0.

Hence A < f—;. Now, Y 2 {(na, —d,)* + (nb, + c,)* + (n* = 1)(Z +d>)} = 0 if
and only if a; =d;, by = —¢;, and a, = b, = ¢, = d, = 0 for n > 2; it follows that
i‘—; = Aifand only if

1
x = 5a0+a1 cost+bysint, y= Eco_bl cost + aj sint,

or Cis a circle. |

Theorem 5.9.4 (Weierstrass approximation theorem) Any continuous function on a finite
closed interval [a, b] can be approximated uniformly by polynomials in the interval.

Proof We may assume without loss of generality that [a,b] = [-7,7]. Since any
continuous function f on [-7, 77 ] can be expressed as

{f(m) -f(-m)}
21

fl) = f(-m) + (x+7) +g(x),

where g(-7r) = g(;r) = 0, it is sufficient to prove the theorem for continuous func-

tions f on [-7, 7] satisfying f (-7 ) = f(7r). For such a function f, 0, (f, x) — f(x)

uniformly forx € [, 77 ],by Theorem 5.9.1. Now, 0,,(f, x) is a finite linear combina-

tion of trigonometric functions cos x, sin x, cos 2x, sin 2x, . . . ; hence, each o, (f , x) can

be approximated uniformly by polynomials on [-7, 77 ] by Taylor’s theorem. Thus,

given & > 0, there s ng such thatsup,._ 1 [f(x) - 0y, (f, x)| < 3; thenletp(x) bea
8

Taylor polynomial of o,,, (f, x) such that sup el |0, (f, %) — p(x)| < £; therefore,
SUP e[-n,m] lf(x) —P(x)| < e |

Exercise 5.9.3 Let f,(x) =x", n=0,1,2,.... Show that the Gram-Schmidt pro-
cess applied to the family {fy,f1,f2, ...} in L*[a, b] yields an orthonormal basis for
L*[a,b] (~00 < a < b < 00).Whena = -1, b = 1, denote the orthonormal basis so
obtained by {7y, 711, 773, . . . }. Show that 77, is a polynomial of degree n,n = 0, 1,2, . ..
and find TTo, 1, and ).

Exercise 5.9.4 For n=0,1,2,..., let P, be the polynomial defined by P,(x) =

1 d"(«?-1)"

2l dat 1

{Po, P1, Py, ...} is an orthogonal family in L*[-1,1] and || &P, (x)dx = 0 forn > 1
and0 < k < n.

; Po, P1, Py, ... are called Legendre polynomials. Show that
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Exercise 5.9.5 Let {m, 771, 7>,...} and {Py, P1,P,,...} be as in Exercises 5.9.3 and
5.9.4. Show that for n = 0,1,2,..., there is a positive constant ¢, such that w, =
o,P,.

We digress now from the main theme of this section to discuss briefly the pointwise
convergence of Fourier trigonometric series. For this we first prove the Riemann-
Lebesgue lemma.

Lemma 5.9.1 (Riemann-Lebesgue) Iff is an integrable function on a finite interval [a, b],
then

b
llim / f(t) sinltdt = 0.

Proof If ] is an interval with endpoints ¢ < d in [a, b], then f] sin ltdt = —%{cos ld -
coslc} — 0asl — 00; consequently, the lemma holds if f is a step function. In gen-

eral, given & > 0, there is a step function g on [a, b] such that f: If(t) - g(t)]dt < £,

and therefore,

fbf(t) sin ltdt| < /b{f(t) —g(t)} sinltdt| + /bg(t) sin ltdt

b
/ g(t) sin ltdt' <e,

€
< -+
2

if 1 is sufficiently large, because the lemma holds for the step function g. |

Theorem 5.9.5 (Dini test) Suppose that f is an integrable function on (-7, 1) and is
extended to R periodically. Let ty € [~7, 7], then,

nll)rgo Su(f, to) = f(to)

if s > %{f(to +5) — f(to) } is integrable in a neighborhood of 0.

Proof Ifs — %{f (to +s) - f(to)} is integrable in a neighborhood of 0, then the function
g defined by

1 flto+s)-f(k) 1 s f(to+s)-f(to)
21 sin %s 27 sin %s s ’

g(s) =

s € [-m,m],

is integrable on [-77, 77 ]. Now, from (5.11)' we have,

8. t0) ~f(to) = [ " {Fto +5) ~f(t0)}Da(s)ds

T 1
=/ g(s)sin{n+ = )sds— 0
,,, 2

asn — 00, by the Riemann-Lebesgue lemma. |
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Exercise 5.9.6 Letf be an even function on [, 77 ] defined on [0, 7] by f(s) = 1 -

=1-3=
) T
Show that the Fourier trigonometric series of f converges uniformly to f on [-7, 77 ]
. . o0 1 7T2
In particular, verify that ) "~/ e = 5

Exercise 5.9.7 Suppose that f is a periodic function of period 277 on IR and is integrable
on [-7, 77 ]. Show thatif f = 0 on a neighborhood of ty, then S,(f,£) — 0 uniformly
on a neighborhood of t,.

Exercise 5.9.8 Suppose that f is integrable on -7, 7] and f(fo+), f (to—) exist at tg
[-7, 7 ]. Show that

Tim S,(f,t) = %{f(to—) +f(to))

if f ds < 00, and f
/5 Dn(s)ds = [T D,(s)ds = 1.)

ds < 0o for some & > 0. (Hint:

Exercise 5.9.9 Let f be a periodic function with period 7 on R, and f(s) = s for 0 <
s < 7. Find the Fourier trigonometric series for f and evaluate ) a,, where

1 T
=;/ f(s)cosnsds, n=0,1,2,....
=TT

Lemma 5.9.2 Thereisc > Os.t. | fan D,(s)ds| < cforalln € Nand0 <8 <n<m

Proof Letn € Nand0 < 6 < n < m.Itwill be clear from the following argument that
we may assume § < 2n2+1 < n; then,

sin(n+ 3)s s sin(n+21)s
< — = <1 (2n+1)
in 3 sin 35 s

2

for0 <s < ﬁ, and hence,

2. 1

el sin(m + 5 )s 2
/ (—12) <(@n+1)-

s sin =s

3 2n+1

Thus,

/5 D, (s)ds

el )
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But by the second mean-value theorem (actually, Lemma 4.5.2), there is
n’ < n such that

2 <
2n+l —

T sin(n + %)s
2 sin =S
2n+1 2

sy [ ()«

2n+1

1 1\ ,
T ycosl—cos|n+—|n
n+5 2
1

= (2n + 1) sin(

1

sin(51~

2n+1

2+1)

{(2n+1) [ﬁ—%(znlﬂ)l---“_l
ht(Gh)) -2

IA

and consequently,

Thus we may take it that ¢ = % (2 + %) |

Theorem 5.9.6 (Dirichlet-Jordan) Let f be a BV function on [-m,7]; then %ao +
Y o2 {an cosnt + b, sinnt} = lim,_o0 S, (f, £) = %{f(t—) +f(t+)}.

Proof Since f is the difference of two monotone increasing functions, we may assume
without loss of generality that f is monotone increasing, and consider f as defined
on (-7,7] and then extend f to R as a periodic function with period 277. Now
fixt € [, ]. Given that & > 0, there is § > 0 such that f(t +s) - f(t+) < 5- for
0 < s < 6, where c is the constant in Lemma 5.9.2. We choose ¢ small enough so
that f(t + s) is monotone increasing in s on [0, 8], if f(t + 0) is understood to be

F(t+). Then, [2{f(t+s) - f(t+)IDy(s)ds = {f (¢ + 8) - f(t+)} [5 Dy(s)ds for some

8’ € [0, 8] by the second-mean value theorem, and hence

&

)
/0 {f(t+5) - f(t+)}D,(s)ds| < zic o=t
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Now,

/0 " e+ 9Dy (s)ds - %f(t+)

| [[66+9- gm0,

+

(t+s) - f(t+)}D,(s)ds f;{f(t+s) —f(t+)}D,(s)ds

o [ (01 )

if n is sufficiently large, by the Riemann-Lebesgue lemma, because the func-
tion s+ M is integrable on [§,7]. Thus lim, fonf(t+s)Dn(s)ds =

sin ES

%f (t+). Similarly, lim,_ f_(; f(t+s)D,(s)ds = %'f(t—). Consequently, lim,_
fj;f(t+s)Dn(s)ds = lim,— 00 S, (f, t) = %{f(t—) +f(t+)} [ |

<é&

5.10 Weak convergence

The concept of limit for sequences in a metric space is defined in Section 1.4 in terms
of the metric of the space. When normed vector spaces are concerned, there is a weaker
form of concept of limit for sequences, towards the introduction of which we now turn.

Suppose that X is a n.v.s. and {x;} a sequence in X. If x € X satisfies (x,x™*) =
limy_, o0 (g, x*) for every x* € X*, «x is called a weak limit of the sequence {x;}; since
X* separates points of X, if x is a weak limit of {xy }, it is the only weak limit of {x; }, and
hence is the weak limit of {x;} and is denoted by w-lim;_, o, x. We often write x — x
to indicate that x = w-limy_, o x. To distinguish between weak limit and limit defined
in terms of the norm of X, the latter is called the limit in norm and we employ notation
x = limy_, oo X% Or Xy —> x to mean that x is the limit of {x;} in norm. If the weak (norm)
limit of a sequence exists, the sequence is said to be weakly convergent (convergent
in norm) or is said to converge weakly (in norm). Clearly, in a Hilbert space E,
x=w-limg_, o0 & if and only if (x, ) = lim,—, 5 (%1, y) forally € E, and x — x implies
that x — «x.

Proposition 5.10.1 A weakly convergent sequence in a n.v.s. X is bounded.

Proof Let {x;} be a weakly convergent sequence in X. For k € N, let I, be
the bounded linear functional on X*, defined by [i(x*) = (x, x*) for x* € X*.
Note that X* is a Banach space and by Theorem 5.5.2, ||lc|| = ||| for ke N.

Let x = w-limg_, o0 &, then since limy_ oo |k(x™)| = [(x,x%)|, sup, |k(x*)| < 00
for each x* € X*. By the principle of uniform boundedness (Theorem 5.1.3),
sup, ||kl = sup, [lx]l < oo. |

Remark Proposition 5.10.1 is actually contained in Theorem 5.1.4.



222 | Basic Principles of Linear Analysis

Exercise 5.10.1 Show that abounded sequence {x;} converges to x weaklyinan.v.s. X
if and only if there is S C X* such that (S) is dense in X* and (x, x*) = limy_, o (%, x™)
forx™ € S.

Exercise 5.10.2 Show that a sequence {x,} in a finite-dimensional n.v.s. X converges
weakly if and only if it converges in norm.

Theorem 5.10.1 Every bounded sequence {x;} in a Hilbert space E has a subsequence which
converges weakly in E.

Proof Let F be the closure of ({x;}) in E, then F is a Hilbert space with inner product
inherited from E. Put sup, ||x|| = M < 00. We show first that {x; } has a subsequence
which converges weakly in F.

Since {(xt, x1)}x is a bounded sequence in C, there is a subsequence {x,(cl) } of
{x¢} such thatlim_, o (x,(cl) , x1 ) exists. Suppose now that sequences {x,(cl) L., {x,(cn)}
have been chosen so that each of them except the first is a subsequence of the preced-
ing one and limkﬁoo(x,(cn), xj) exists for j = 1,...,n. Since {(x,in), Xn41) } is bounded,

,(c") } such that limg_, o0 (x](cnﬂ) , %n11) exists. Clearly,

there is a subsequence {x,(cnﬂ) }of{x
limk_mo(x,(cnﬂ) ,x;) exists forj = 1,...,n, because {x,(cwrl)} is a subsequence of {x,(cn)}.
We have therefore obtained a sequence {xl(cl) 1, {x,(cz) b, {x,(cn) }, ... of subsequences
of {x;} such that {x,(cnﬂ)} is a subsequence of {x,((n) } for each n € N and where
limk_wo(x,((n) ,%;) exists for j=1,...,n. Now, {x,(ck)} is a subsequence of {x} and
limk%oo(x,(ck) ,xj) exists for each j € IN. For convenience, put y; = x,(ck) for k € N,

then limy_, o (yx, 2) exists for z € ({x;}). Let I(z) = limp_, oo (y, z), then [ is a linear
functional on ({x}); obviously, |I(z)| < M|lz| for z € ({x}), hence I is bounded
on ({xt}), and can be extended uniquely to be a bounded linear functional on F,
still denoted by I. By the Riesz representation theorem, there is unique x € F such
that I(u) = (u,x) for u € F; in particular, for z € ({x;}), (2, %) = lim_ 00 (31, 2) i-e.
(%,2) = limg— 00 (¥, 2)- Since ({x}) is dense in F, yy — «xin F, by Exercise 5.10.1.

We claim now thaty, — xinE.Letu € E,thenu = z + v,wherez € Fandv € Ft,
by Corollary 5.6.1. Thus,

(x; u) = (xlz + V) = (x) Z) = klim ()’k; Z) = klim (yk;Z + V) = klim (yk; u)}

and hence y, — xin E. |

Exercise 5.10.3 Suppose that {e;} is an orthonormal sequence in a Hilbert space E.
Show that ¢ — 0, but 0 is not a limit of {et} in norm. (Hint: for x € E,

S e < N2

Exercise 5.10.4 (Cf. Example 2.7.2) Show thatif 1 < p < oo, thenf, — fin () if
and onlyif sup, |[fsll, < o0 andf,(w) — f(w) forallw € Q.
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Exercise 5.10.5 Suppose that X is a reflexive Banach space and {x,} is a bounded
sequence in X. Assume that X* is separable and let {x}, x5, . . .} be a countable dense
setin X*. Show that {x, } has a subsequence which converges weakly by the following
steps.

(i) Show that {x,} has a subsequence {y,} such that lim,_, o (ys, x]) exists and is
finite forall k € IN.
(i) Show thatlim, o (y,, x*) exists and is finite for all x* € X*.
(iii) Put I(x*) = lim,— oo (ys, ™). Show that I € X**, and there is x € X such that
I(x*) = (x,«*) forall x* € X*.

Theorem 5.10.2 (Banach-Saks) If {xy} is a bounded sequence in a Hilbert space E, then it
has a subsequence {y} such thatlim,_, o + > _1_, yx in norm ewxists.

Proof There is a subsequence {z;} of {x;} and x € E such that z; — x, by Theorem
5.10.1. Let 2; = z; — x, then 2 — 0. Choose inductively a subsequence {ji} of {%}
so that

—
—

(}A’l)j’nﬂ)l S DR |()A’m)A’n+1)| f

-, —
n n

foralln € IN. Then,

2

n Yo gi| =n7 (3 3)
k=1 i=1 j=1
= "2{ Gudi)+2 > Re(yAi;)A’j)}
n j-1
Sn_z{nC+2 |()A/l,5)])|}
=2 i=1

<n?{nC+2(n-1)} <n{C+2},

where C = supn{||j/n||2} < supn(||x,,|| + ||9c||)2 < 00. Thuslim,_, o #7! Zzzlj/k =0.
We complete the proof by letting y = i + x. |

Theorems 5.10.1 and 5.10.2 have already shown the relevance of weak convergence, in
that in terms of weak convergence, bounded sets in a Hilbert space reveal a certain com-
pactness property. We shall now apply Theorem S5.10.1 to prove a mean ergodic theorem
of F. Riesz which shows that bounded linear operators from a Hilbert space into itself of
a certain kind have eigenvalue 1 whose eigenspace can be explicitly described.

In the following, we fix a bounded linear operator T from a Hilbert space E into itself,
having the property that || T"|| < o« < ooforalln € N forsome« > 0.Let T} = T and

T,=YT+T*+.--+T"}forn > 2,and forx € E,putx, = Tyxforn € N.

T on

Lemma 5.10.1 Ifx € (1 - T)E, thenlim,_, o ||x,|| = 0.
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Proof Ifx € (1-T)E,i.e.x =y — Ty for some y in E, then

%y = (y = Ty)a = %{T(y ~Ty)+---+T'(y-Ty)} = %{Ty - T"y),

and hence, [|x,| < 27“||y||, from which ||x,|| — 0 follows. Now suppose that x €
(1-T)E. Given & > 0, thereis z € (1 — T)E such that ||x — z|| < £.Itis clear that

200"

I(x—2),ll < allx-z| < % Since ||z,|| — 0, by the first part of the proof, there
is ng € N such that ||z,|| < 5 whenever n > no, hence, [|x,|| = ||z, + (x—2),l <
lzall + 1 (x = 2)ull < llzall + % < & whenever n > ng. Thus ||x,|| — O. |

Lemma 5.10.2 If x is the weak limit of a subsequence of {x,}, then x is a fixed point
of T, ie. Txoo = Xoo-

Proof Let {x,} be a subsequence of {x,} such that w-lim;_, o x,, = xoo. Since
TT,x - Tyx = T,Tx - Tyx = T,(Tx —x) = (Tx —=x),, ||TTyx - Tpx|| — 0, by
Lemma S5.10.1 and hence TT,x — x. But, since for each y € E, (Tz,y) = (z,})
for some y € E and for all z € E by the Riesz representation theorem, we have
(TTpx,y) = (%,5) = (%00,9) = (Txo,y) and consequently, TT,, x — Txoo. We
infer from this last fact and the fact that TT,, x — x, that T, = xcc. [ |

To prepare for the statement of the mean ergodic theorem of Riesz, we shall say that a
sequence {T,,} C L(X,Y) converges strongly to T € L(X,Y) if lim,_, oo Tx = T for
allx € X, where X and Y are n.v.s.’s over the same scalar field C or R. To distinguish this
mode of convergence, if lim,_, ~ || T, - T|| = 0, we say that T,, converges in operator
normto T.

Theorem 5.10.3 (Mean ergodic theorem of Riesz) T, converges strongly in L(E) to a
linear operator To, with the property that TTo, = Teo.

Proof For x € E, ||x,]|| = ||£{Tx+ <o+ + T"x}|| < aflx||, hence {x,} is a bounded
sequence in E. {x, } has a subsequence {x,, } which converges weakly to xo in E. We
know from Lemma 5.10.2 that Txs, = X0, and hence (x5 ), = Xoo. We claim that
lim, 00 %, = Xoo, i.€. &, converges strongly to xoo. Now, x, = (%00 + {X — %00 })s =
(%00 ) + (% = %00 )n = Xoo + (& = Xoo )y thus [l — xeo || = [1(% = %) ll; to verify the
claim it is sufficient to show thatx — xo, € (1 — T)E, by Lemma 5.10.1. To see this, let
Y be the orthogonal complement of (1 — T)E in E and observe that x — x, = nl—k{(x -
Tx) + -+ (x— T™x)} isin (1 — T)E, because (x - T"x) = (1 -T)(1 + T +--- +
T"1)x € (1 - T)E for each m € N; then for y € Y, we have (x - x,,,y) = 0, which
implies that

(x—xoo;}’) = kl_ifgo(x_xnk)y) =0,

ie. x — Xoo € Y+ = (1 = T)E. Thus we have shown that ||x, — xo|| — 0. This last
fact shows in particular that all weakly convergent subsequences of {x,} converge
weakly to the same element x. Let x5 = Toox, then T is a linear operator from E
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into E and is the strong limit of { T, }, i.e. Toox = lim,_, o0 Ty. That T is a bounded
linear operator follows from the Banach-Steinhaus theorem (Theorem 5.1.4). From
Lemma 5.10.2, Txoo = %oo and consequently, TToox = Too, or TToo = Teo- |

Corollary 5.10.1 TTy = Teo = TooT = T%..

Proof From TTy = T, it follows that T"Toy = Too and T, T = Too foralln € IN; by
lettingn — o0 in the last equality, we obtain Tgo = Too. Toseethat Too T = Ty, note
first that T, T - T,, = %(T”Jrl - T) and hence ||T,Tx — T,x| < 27“ ||x|| for all x € E;
thus Too T = T follows. |

Exercise 5.10.6 Show that 1 is an eigenvalue of T and TE is the eigenspace of T
belonging to the eigenvalue 1.

The well-known ergodic theorem of J. von Neumann is a consequence of Theorem
5.10.3, as we shall now show.
Let (2, X, p) be a probability space. A bijective map T : 2 — Q is called a flow on

(R, X, p) if T is measurable and measure preserving.

Theorem 5.10.4 (von Neumann mean ergodic theorem) Suppose that T is a flow on a
probability space (2, , p). Define a linear operator T from L*(2, X, p) to itself by

(?f)(a)) =foT(w), w €, f eL*(RZT,p);

and let T, = %{/f+ .-+ T"}. Then for f € LX(, Z,p), Tof — f* in LX(Q, L, p).
Furthermore, Tf* = f* i.e. f*(Tw) = f*() for a.e.w € Q.
Proof Since T is a flow on (2, X,p), ||?f|| = ||f|l for all f € L*(2, =,p). Hence

||/f|| =1 and ||/T\”|| < ||/'1:||“=1 for all n € N. The theorem follows from
Theorem 5.10.3. |

Aflow T on (2, , p) is called an ergodic flowif for each f € L*($2, T, p), the element
f* in the conclusion of Theorem 5.10.4 is constant a.e. on £2.

Corollary 5.10.2 Suppose that T is an ergodic flow on (2, 2, p) and /f, /fn, ne N, are
defined as in Theorem 5.10.4. Then for f € L*(2, 5, p), T,f — [, fdpin L*(, X, p).

Proof For f € L*(, Z,p), let f* be as in Theorem 5.10.4. Since /fnf — f* in
L*(Q2,Z,p), /fnf — f*in L' (R, X, p) and, a fortiori, lim,, [, /fnfdp = [ofdp;
but [, Tfdp = [, T*fdp =--- = [ Tfdp = --- = [, fdp, from the fact that T is
measure preserving, hence [, f*dp = [, fdp. Now that f* = constant a.e. implies
f*= [ fdpae. |
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LF spaces are the most interesting examples of Banach spaces and play a salient role in
modern analysis. In this chapter basic features of L spaces are studied; in particular, their
dual spaces are identified. Special attention is directed towards L? (£2) where €2 is an open
setin R", for example, convolution and maximal function operators in LF, are treated. An
important class of function spaces, which is related to L? spaces and was first introduced
by S.L. Sobolev in his study of equations of mathematical physics, is briefly introduced in
the last section of the chapter. Further study of this class of spaces is taken up in Chapter 7
by applying the method of Fourier integrals.

Some useful inequalities for functions in L? spaces are collected in the first section for
later reference. The second section on signed and complex measures is primarily prelim-
inary in nature for this chapter, but it also has its own merit of interest, as is shown by the
Riesz representation theorem in the concluding part of the section.

6.1 Some inequalities

Some inequalities which appear frequently in studies related to L spaces are collected
here for later reference.

6.1.1 Markov inequality
Letf € LP(2, 2, 1), 1 <p < 00, then

n{If] = A} = APIFIE, 6.1)

forall A > 0.
The inequality (6.1), called the Markov inequality, follows readily from the sequence
of inequalities,

Pulf] = 1) < /

FPdu < I1£I2.
{If1=2}
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Remark Since limj o u{|f| = A} = 0 by (6.1), it follows from Exercise 2.5.9 (iii)
that limy _, o f{lf|>l} |f[Pdie = 0, and hence

klim Mu({|f] = A}) =o0. 6.2)
6.1.2 Chebyshev inequality

Let f € L*(, %, P), where (2, X,P) is a probability space, then the following
Chebyshev inequality is a special case of (6.1):

P({|f -E(f)| = ) < A7 Var(f), (6.3)
where E(f) = [, fdPand Var(f) = [, |f - E(f)|*dP.

Remark A measurable function f on a probability space is called a random variable. If
[ fAP exists, it is called the expectation of the random variable f and is denoted by E(f);
if E(f) is finite, [, |f - E(f)|*dP is called the variance of f and is denoted by Var({).
The significance of Chebyshev inequality in probability theory will become clear when
the concept of independence is introduced in Chapter 7.

6.1.3 Jensen inequality

Suppose that ¢ is a convex function defined on IR, and f is an integrable function on a
probability space (€2, X, P), then

@(E(f)) < E(p of). (6.4)

This inequality is referred to as the Jensen inequality. For the verification of (6.4), let us
putx = E(f) and choose m € [¢’ (x), ¢, (x)]. By Proposition 5.4.1 (iv),

o) +m(y-x) < o(y)
forall y € R, and hence,
¢(x) + m(f(@) - %) < ¢(f(®)) (6.5)
forall w € . It follows from (6.5) that
{pof} = |e@)|+|m||f| + |mx|,

and therefore {¢ o f}~ is integrable; consequently, [, ¢ o fdP exists. We can then integ-
rate both sides of (6.5) over €2 to obtain

¢ (x) + m(E(f) -x) < E(p of),

which reduces to (6.4), because x = E(f). Thus the Jensen inequality is verified.
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Remark If (2, X, i) is a finite measure space and f is integrable on (£2, X, 1), then
the Jensen inequality leads to

p (ﬁ /Q fdu> < ﬁ fg @ o ft. 6.6

In particular, |ﬁ fodu|p < ﬁ [|f|Pdpforl < p < oo.
6.1.4 Extended Ho&lder inequality

Suppose that fi, . .., f,, n > 3, are measurable functions on a measure space (2, &, 1)
andletp; > 1,p, > 1, ..., p, > 1 be extended real numbers such that Z?:lplfl =1,
then the following extended Holder inequality holds:

J.

To see that (6.7) holds, it is sufficient to consider the case where n = 3; then (6.7) follows

1,1 g
— + —.dIn n r
ot S ce p and p; are

[

i=1

dp < TT1fillp,- 6.7)
1

i=

inductively. So consider the case where n = 3 and let p™* =
conjugate exponents, by the Holder inequality, we have

/Q |foZf3|d/'L = “fJfZHp : ||f3||p3- (6.8)

/

Thenputp’ = % ,q = ‘% and apply the Holder inequality, to obtain

/ 1y ) 1/q
s = [ PPac= ([ pan) ([ arian)

= A5 12115,

or | fifall, < lfilly, - I f2l,- This last inequality and (6.8) imply that (6.7) holds when
3

n=>.

Exercise 6.1.1 Suppose that Q2 is a measurable subset of R" with A"(Q2) > 0, and f
is a measurable function on 2. Show that f € LF(2), 1 < p < 00, if and only if for
every € > 0, there is a closed set F C €2 and a bounded continuous function g in
LF(IR"), such that A*(Q\F) < &,f = gonF,and ||f - gll, < &. (Hint: cf. (6.2) and
Theorem 4.1.3.)

Exercise 6.1.2 Suppose that {f, },cn is an orthonormal system in L*(£2, ¥, ). Show
that forany ¢ > 0,
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Exercise 6.1.3 Suppose that {f,} is a sequence in LF(2, X, 1), 1 < p < 00, which
converges in LP (2, X, i) to f. Show that {f,} has a subsequence which converges
a.e. to f. (Hint: there are positive integers n; < ny < --- < m < --- such that

w{|fu -fl = 1) < g foreachk € N.)

Exercise 6.1.4 Suppose that > - o, = 1, where &, > 0 for each n. Show that if {8, }
is a sequence of real numbers such that ) o, &, |B,| < 00, then

p 00
< > Bl
n=1

00
> oy
n=1

forl <p < oo.

6.2 Signed and complex measures

So far the integration is taken with respect to a measure on a measurable space (£2, ),
where a measure is understood to be a nonnegative o -additive set function defined on X.
But there naturally appear set functions which may take negative values, such as electric
charges, and integration with respect to such set functions is a useful construct, such as
the potential of the electric charge distribution. Our purpose in this section is firstly to
generalize the concept of measure to cover situations when negative values might be
assumed, and then to consider complex measures. In order to do this, we extend the
concept of sum for systems of real numbers in Section 1.1 to systems which may contain
00 or —00. This can be done naturally as follows. Let {cy } <1 be a system of extended real
numbers; by considering {c, }4<s as a function on I, we say that the sum of {c, } exists if its
integral with respect to the counting measure on I exists. This integral is called the sum
of {cy } andis denotedby ), cq,0r ), co ifIis clearly implied (cf. Examples 2.3.1 and
2.3.3). Note that {c, } is summable if and only if ), ¢, exists and is finite.

Let (€2, ©) be a measurable space; a set function o : ¥ — R = R U {-00, 00} is
called a signed measure on (2, X) if

(i) o(¥)=0;
(i) if{A,} C X isadisjoint sequence, then the sum ) 0 (4,) exists and

o (U An) =Y o(A,). (6.9)

We remark first that if o (| -, A,) is finite, then ) o (A,) on The right-
hand side of (6.9) can be written as Y .-, 0 (A,) which necessarily converges
absolutely, because U:Zl A, does not depend on the order of A}, A,,....
Secondly, we call attention to the fact that condition (ii) in the above definition
forces o to satisfy condition (iii);

(iti) The signed measure o does not take both 0o and —00 as its value.
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In fact,if 6 (A) = —00, 0 (B) = oo for A, Bin X, then,
06(AUB)=0(ANB)+0(ANB°) +0(BNA)

does not make sense, because —00 and 00 both appear on the right-hand side in
all possible situations, as can easily be seen.
For definiteness, we shall assume that in the sequel, condition (iii)" holds;
(iii)’ 0(A) > —ooforallA € X.
Under this assumption, if {A,} is a disjoint sequence in X with
o (U, A,)=00,then Y o (4,) diverges to 0.

Measures on X are certainly signed measures; to distinguish them from general
signed measures, we shall sometimes refer to them as positive measures. Accordingly,
ifo(A) < O0forallA € X, 0 is called a negative measure.

Example 6.2.1 Let (2, ¥, i) be a measure space.

(i) Suppose that Ay, ..., Ay are disjoint sets from X with j1(4;) < 00,j=1,...,k
andlet ey, . . ., ot be real numbers. Define o on ¥ by

k
o(A) =) au(AN4), AeX.
j=1
The set function o is obviously a signed measure.

(ii) Suppose thatf is a measurable function with [, f~di < 00, then

G(A)zﬂfdu, Aex,

isa signed measure.

Remark Signed measure o, defined in Example 6.2.1 (ii), is usually referred to as the
indefinite integral of f; but when 2 is a metric space and B(2) C X, the indefin-
ite integral of f is sometimes restricted to 3(£2). This should not cause any confusion,
because the definite meaning of an indefinite integral will be clear from the context (cf.
Example 3.8.1).

Example 6.2.2 Consider the measurable space (IR,3) where B is the o-algebra
of all Borel sets in IR. Suppose that we order the set of all rational numbers by
Y1, V2 s Vuy - - -, and define o on BB by

o(B) = Y (_1)"%, BeB.

y,€B

Then o is a signed measure which assumes only finite values.
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Exercise 6.2.1 Verify the following statements. Let o be a signed measure on (2, X).
If{E,} C £ andE, ,then

o (lim ) =0 (UE) = lim o(E,);

n—o0

if, on the other hand, E, \(and o (E,,) < 00 for some n, then

o ( lim E) —o (mE) = lim o(,).

n— 00
Exercise 6.2.2 Show that if |0 (E)| < 0o, then |0 (F)| < ooforF C E.

We currently show that any signed measure is the difference of two positive measures,
one of which is a finite measure.

In the following discussion, a fixed signed measure o' on a measurable space (€2, X) is
considered.

A set E € X is said to be positive (negative) if 6 (ANE) > 0 (< 0) forallA € .
Obviously, any measurable subset of a positive (negative) set is positive (negative). The
empty set ¥ is both positive and negative. Certainly, if A;,A,,...,A,, ... are positive
(negative), thensois _J, A,.

The family of all positive sets will be denoted by P,;, and that of all negative sets by N/, .

Lemma 6.2.1 Let B = infgep;, 0 (E); then —00 < B < 0 and there is B € N, such that
o(B) = B.

Proof There is a sequence {B,} in NV, such that
B = lim o(B,).
n— 00
Take B = | J, B,, then B € N, and for each k,
0 (B) = 0 (Bx) + 0 (B\By) < o (By),
hence 0 (B) < limi_ o, 0(B) = B. But 6(B) > B, so o(B) = B. Since o(B) >
-00, we have —00 < 8 < 0. |

Theorem 6.2.1 (Hahn decomposition theorem) There are disjoint sets A and Bin X such
that

(i) AUB=;
(i) A€ PyandB e N,.

Proof Let B and B be as in Lemma 6.2.1, and take A = ©2\B. It remains to show that
A € P,. Suppose the contrary. Then there is a measurable set Ey C A such that
0 (Ep) < 0. Naturally E, is not negative, because otherwise B U Ey would be negat-
ive and 0 (BU Ey) = 0(B) + 0 (Ey) < B, contrary to the choice of 8. Let k; be the
smallest positive integer such that Ey contains a measurable set E; with o (E;) > %
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Now, since 0 (Eg\E;) = 0 (Ey) -0 (E;) < 0(Ep) — — < 0, we can repeat the above
argument with E, replaced by Ey\E;. So, let k, be the smallest positive integer such
that Eg\E; contains a measurable set E, with o (E,) > —2. Continue in this fashion;
we obtain a sequence of mutually disjoint measurable sets Ej, E,, .. .,E,, ... in E
and a sequence ky, ks, ..., ky, ... of positive integers such that for each n > 2, k, is
the smallest positive integer such that Eg\(E; U - - - U E, ;) contains a measurable
set E, with o (E,) > é.Since U2, Ex C Egand o (Eo)| < o0, |o (U2, Eu)| < 00

(see Exercise 6.2.2), and hence,

=0. (6.10)

Let Fy = Eo\ U2, E,, then o (Fy) = 0 (Ep) - Y .o, 0(E,) < 0(Ey) < 0. Consider
a measurable set F C Fp; we claim that o (F) < 0. If 0 (F) > 0, then o (F) > %
for some positive integer no; but (6.10) implies that ny < k, for sufficiently large n,
thus contradicting the choice of k, for such n’s, because F C Eg\ UZ; E;. for all n.
Thus, 0 (F) < 0and consequently Fj is a negative set. But then Fy U B is negative and

o (Fy U B) < B, contrary to the choice of 8. The contradiction proves the theorem.
]

The pair (A, B) in the statement of Theorem 6.2.1 is called a Hahn decomposition of
Q relative to the signed measure o, or simply a 0 -decomposition of £2. In general, Hahn
decomposition is not unique.

Exercise 6.2.3 Let 0 be the signed measure of Example 6.2.2. Find two Hahn decom-
positions of IR relative to 0.

Lemma 6.2.2 shows a close relation between any two Hahn decompositions of €2
relative to a signed measure 0.

Lemma 6.2.2 Let (A;, B;) and (A,, By) be Hahn decompositions of Q2 relative to the signed
measure 0 ; then for any E € X the following relations hold:

o(ENA) =0(ENA,); o(ENB;) =0(ENB,).

Proof Since A;\A, is positive, o(EN (A;\A)) > 0; on the other hand EN
(A1\A;) C B, implies that o (E N (A;\A;)) < 0.Hence 0 (EN (A;\A,)) = 0; sim-
ilarly, 0 (E N (A3\A;)) = 0. Now,

c(ENA) = o(ENA) +0(EN (A4\A))
=0(EN(A1UAy)) =0(ENA) +0(EN(A1\A2))
— 6(EN4,).
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Similarly, 0 (E N By) = 0 (E N By). [ ]

For a Hahn decomposition (A, B) of 2 relative to o, define for E € %,
0" (E) =0 (ENA); 0 (E)=-0(ENB); and|o|(E) = 0" (E) + 0~ (E).

Obviously, 0,07, and |0 | are positive measures on X and are independent of the chosen
Hahn decomposition (4, B), by Lemma 6.2.2. The measure |o| is called the total vari-
ational measure of o, while 0™ and 0~ are called respectively the positive variational
measure and the negative variational measure of 0. Observe that |0 (E)| < |o'|(E) for
E € X. Theorem 6.2.2 speaks for itself.

Theorem 6.2.2 The measure o~ is a finite positive measure and o =o0" -0,
Furthermore, if 0 is finite or o -finite then so are o™ and |o|.

The decompositiono = 0" - 0~ is called the Jordan decomposition of 0.

Integrals and indefinite integrals of functions w.r.t. a signed measure o are only defined
for functions f in L' (2, &, |o|) by

| sio = [ g - [ g
/Ede = f,gfd0+_/]5fda_’ EeX.

In the above definitions, f could be a complex-valued function.
Exercise 6.2.4 Show thatforE € X:

(i) o*(E) = maxpes 0 (BN E);
(ii) 07 (E) = - mingex 6 (BN E); and

(iii) |o|(E) = sup{)_.-, |o (E,)|}, where the supremum is taken over all decompos-
itions of E into countable disjoint measurable sets Ej, E,, . . ..

Exercise 6.2.5 Ifo is a finite signed measure, then

fE fdo

where the supremum is taken over all measurable functions f with |f| < 1.

|o|(E) = sup

)

Exercise 6.2.6 Leto be the signed measure in Example 6.2.1 (ii). Show thatfor E € X,
we have

)= S o @)= [fdu adlol) = [ |fldn

Also find a Hahn decomposition of €2 relative to 0.
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Exercise 6.2.7 Let o be a signed measure and 0 = 0, — 0, where 0, and o; are posit-
ive measures with 0, a finite measure. Show that there is a positive finite measure pt
on ¥ such that oy = 0* + wand 0, = 0~ + . (Hint: use Exercise 6.2.4)

Remark The conclusion of Exercise 6.2.7 means that the Jordan decomposition of a
signed measure o is the minimal decomposition of o into the difference of two positive
measures. For the corresponding fact concerning decomposition of functions of bounded
variation into the difference of two monotone increasing functions, see the paragraph
following Theorem 4.4.1.

Now let 1 be a positive measure on (€2, X ). A signed measure o on X is said to be -
absolutely continuous if o (A) = 0 whenever A € ¥ and (A) = 0. It is easily verified
that o is (t-absolutely continuous if and only if 0", 0~ are pt-absolutely continuous; thus,
o is jt-absolutely continuous if and only if |0 | is j4-absolutely continuous.

Theorem 6.2.3 Ifo is a finite signed measure, then o is jt-absolutely continuous if and only
if for any givene > O thereis§ > Osuchthatif A € X with u(A) < §,then|o|(A) <e.

Proof Sufficiency is obvious.
Necessity: Suppose the contrary. Then for some ¢ > 0 and for any n € N, there
isA, € X suchthat u(4,) <2"and|0|(A,) > &.LetA = limsup,_, ., A,, then for
each n,

IKA)=M<)§&LJA01§M(LJAO‘<§:T%

k>n k>n k>n

letting n — 00, we then have 11(A) = 0. But,

|o|(A) = lim |O’|< U Ak> > limsup |0'|(A,) > &,
n— 00 =

n— o0

which contradicts the fact that |o | is j1-absolutely continuous. |

Theorem 6.2.4 (Radon-Nikodym) If (2, X, i) is a o-finite measure space and o is
a ofinite [1-absolutely continuous signed measure on (2, X), then there is a unique
measurable function f such that [, f~du < oo, and

dmzlﬁm Aex.

Proof We know that 0" is o -finite and 0~ is finite on X. By Exercise 5.7.1, there is f, €
L'(, X, ) such that , > 0, and

o (A) = /Afzd,u, Ael;
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and there is a measurable function f; with f; > 0 such that
0" (A) = /fldu, AeX.
A
Letf = fi; - f,, then
o(A) = ffdu, AeX.
A

One can verify (cf. Exercise 6.2.6) that f~ = f, a.e,, hence [, f du < co. That f is
unique is left as an exercise. |

Exercise 6.2.8 Show that the function f in Theorem 6.2.4 is unique.

Now complex measures are introduced. Fix a measurable space (2, X); a set func-
tion 0 : ¥ — C is called a complex measure if (i) 0(¥) = 0; and (ii) o (|, A,) =
Y o2, 0 (A,) for every disjoint sequence {4, } in E. Observe that in (ii) the convergence
of Y -2, 0 (A,) does not depend on how the sequence {A,, } is ordered, hence for any dis-
joint sequence {A4,} C £, Y 2, |0(A4,)| < 00. We take a hint from Exercise 6.2.4 (iii)
to define the total variational measure |0 | of a complex measure by

o1(®) = sp {02

for E € X, where the supremum is taken over all decompositions of E into countable
disjoint measurable sets E;, E,, . . .. When o is a signed or complex measure on 5(X),
where X is a metric space, it is called a Radon (Riesz) measure if |0 |* is a Radon (Riesz)
measure on X. Recall that |0 |* is the measure on X constructed from |o | by Method L

Exercise 6.2.9 Show that the family of all complex Riesz measures on B(X) is a
complex vector space.

For A € X, let us put 0,(A) = Reo (A) and 0;(A) = Imo (A); then o, and o; are
finite signed measures on X. If f is a complex-valued |o |-integrable function on €2, the

o -integral of f is defined by
/fdcr = /fda, + i/fdo,-.
b b'e b

Suppose now that u is a positive measure on 2. A complex measure ¢ on X is ft-
absolutely continuous, if A € ¥ and ©(A) = 0 implies 0 (A) = 0. Obviously, o is u-
absolutely continuous if and only if both o, and o; are pt-absolutely continuous.

Exercise 6.2.10 A complex measure 0 on X is jt-absolutely continuous if and only if
forany & > 0, thereis 8 > Osuchthatif A € ¥ with t(A) < §, then |0 (4)| < e.
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By applying Theorem 6.2.4 to 0, and 0; we obtain Theorem 6.2.5:

Theorem 6.2.5 If (2, X, w) is a o -finite measure space and o is a j1-absolutely continuous
complex measure on X, then there is a unique (i-integrable function f on 2 such that

0(A)=/Afdu, AeX.

Henceforth, both Theorem 6.2.4 and Theorem 6.2.5 are to be referred to as the
Radon-Nikodym theorem. We note in passing that the family of complex measures on
¥ includes all finite signed measures on 2.

As an application of the notion of signed (complex) measure, we present in the final
part of this section the Riesz representation theorem for linear functions on Co(X); the
space of all continuous functions vanishing at infinity on the locally compact metric
space X. A function f on X is said to be vanishing at infinity if for any &€ > 0 there is
a compact set K such that |f(x)| < & for x € K*. The space Cy(X) is a real or complex
vector space, depending on whether the functions in question are real or complex-valued.
Equipped with the norm defined by

I£Il = sup |f(x)]

xeX

forf € Co(X), Co(X) is a normed vector space; clearly, || f|| = maxcx |f(x)|. The norm
so defined on Cy(X) is usually referred to as the uniform norm; and unless otherwise
specified, Co(X) is equipped with this norm. For definiteness, we assume that functions
in Co(X) are real-valued and hence Cy(X) is a real vector space.

Exercise 6.2.11

(i) Show that Cy(X) is a Banach space.
(ii)) Showthatiff € Co(X), thenboth f* and f~ are in Co(X).

If £ is a positive linear functional on Cy(X), it is, a fortiori, positive on C.(X); the meas-
ure i constructed in Section 3.10 for £ considered as restricted to C.(X) is also referred
to as the measure for £. As we know in Section 3.10,  is the unique Riesz measure on X
such that

o) - [ i

forallf € C.(X).

Lemma 6.2.3 Suppose that £ is a bounded positive linear functional on Co(X) and i is the
measure for £; then £(f) = fX fdu for f € Co(X) and ||£]| = n(X).

Proof Since £ is bounded, 1 is a finite measure (cf. Exercise 3.10.1).
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For f € Co(X) and & > 0, there is a compact set K in X such that |f(x)| < ¢ for
x € K°. By Corollary 1.10.1, there is g € U.(X) satisfyingg = 1 on K. Put h = fg, then
h e C./(X),and

€CF) = €(f ~h) + £(h) = €(f  h) +thdu
—er-0+ [ gins [ G-
hence,
PU)iﬁﬁMWSHw8+wAX%

because ||f - k|l = | f(1 - g)ll < sup, g |f(x)| < &.Bylettinge \ 0, we obtain

€)= [

Now, if f € Co(X) with | f|| = 1, then

()] = ‘ | sin

< /X fldu < w(x),

and consequently [|£|| < @ (X). On the other hand, for a compact set K in X, there is
afunctionf € U,(X) such thatf = 1 on K (again by Corollary 1.10.1); then,

w(K) < fX fu = (f) < el

from which i (X) < ||£]| follows by the inner regularity of ;. Thus |[£|| = ©(X). W

Suppose now that £ € Co(X)*; we shall decompose £ as a difference of two bounded
positive linear functionals on Cy(X) as follows.

Denote by Co(X)" the family {f € Co(X) : f > 0} and define a functional £* on
Co(X)* by

5(f) = sup{l(g) : g € Co(X)" and g < f}
forf € Co(X)*; since £*(f) > £(0) = 0and
€(g) < I1ell - liglh < l1ell - N fll < o0
for g € Co(X)* satisfying g < f, £* is nonnegative and £*(f) < ||£]| - || f]| < oo. Note

that £* is positively homogeneous on Co(X)" in the sense that for f € Co(X)* and
nonnegative number o, £*(af) = al*(f).



238 | ¥ Spaces

Lemma 6.2.4 The functional £* is additive, i.e. if f and g are in Co(X)", then £*(f + g) =
e (f) +£*(g).

Proof Let u, vin Co(X)* be such that u < fandv < g, then0 <u+v <f+g, and
hence,

C(f+g) = L(u+v) =£(u) +£(v),
from which it follows that
C(f+g) = (f) + £ (g).

On the other hand, ifu € Co(X)* withu < f + g, by puttingu; =u A fanduy = u -
uy, one verifies easily that

u=u;+u uy <f,anduy < g;
and thus,
€(u) = £(ur) + £(ua) = £7(f) + £°(g),
implying that £*(f +g) < £*(f) + £*(g). n
Now, extend £* to Co(X) by defining
e =) -e)
forf € Co(X).Forf € Cy(X), note thatboth f* and f~ are in Co(X)* (cf. Exercise 6.2.11

(ii)) and observe that if f = g — h, with g and h being in Co(X)*, then g = f* + u and
h=f +uforsomeu € Cy(X)", and hence,

e (f) = £7(g) - € ().
Therefore if f and g are in Co(X), we have
C(f+e) =t (fT+g") - (f +g)
=(f)+@) - (f)-°(@)
=(f) +£°(g),

i.e. £* is additive on Co(X). Obviously,
t(af) = al’(f),
forf € Co(X) and ¢ € RR. Thus £ is a positive linear functional on Cy(X). Since
[ (Ol < () + () < ML+ 171D < 20€l - 11

£* is abounded positive linear functional on Cy(X).
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Ifwelet{™ = £+ — ¢, then{™ € Co(X)*and £ = £* — £".Since forf € Co(X)* we have
(f) =L7(f) - £(f) = 0, £ is a bounded positive linear functional on Cy(X). Thus,
every £ € Co(X)* can be decomposed as the difference £* - £~ of two bounded positive
linear functionals on Cy(X). Let i, and 4_ be respectively the measure for £* and £, and
forB € B(X) put u(B) = w+(B) — 4_(B), then p is a finite signed measure on B(X) and

e(f) =fodu, f € Co(X). 6.11)

Denote as before the total variational measure of 4 on B(X) by ||, and let ||* be the
measure on X constructed from |u| by Method 1. We know from Corollary 3.4.1 that
|/4|* is the unique Borel regular measure extending ||, and, since |w|* is finite, it is a
Radon measure. We shall see presently that |u|* is a Riesz measure. For this purpose,
set for the moment v = 1, + p_, then v is a Riesz measure on X and |p|* < v. Given
that B € B(X) and ¢ > 0, by outer regularity of v and Proposition 3.10.1 there are K €
ICand G € G withK C B C G such that v(G\K) < ¢ and, a fortiori, |u|*(G\K) < &;
consequently, |u|*(G) - & < |u|"(B) < |u|*(K) + &, which in turn implies that

|e|*(B) = sup{|u|"(K) : K € K,K C B} 6.12)
and
|u|*(B) = inf{|u|*(G) : G€ G,B C G}.

Now for any S C X, there is B € B(X) such that B D S and |u|*(S) = |u|*(B) =
inf{|u|*(G) : G € G,B C G} > inf{|u|*(G) : G € G,S C G} = |u[*(S); thus,

|L[*(S) = inf{|u|*(G) : G € G,S C G},

i.e. |i|* is outer regular. Note that (6.12) implies in particular that |1|* is inner regular;
hence || is a Riesz measure on X and f is a Riesz measure on B(X). This last fact and
(6.11) prove the following Lemma 6.2.5.

Lemma 6.2.5 For{ € Co(X)* there is a finite Riesz measure i1 on 3(X) such that (6.11)
holds.

Lemma 6.2.6 Suppose that | is a finite Riesz measure on 3(X). Define a linear functional
€ on Co(X) by

0f) = fX S, f € Co(X).

Then, £ € Co(X)* and ||£] = | |(X).
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Proof Forf € Cy(X),

()] = ‘ [t [ g\ = [ 151w+ [ 15100
= [ 1 < 151110,

hence, £ € Co(X)* and || €] < |u|(X).

Let (A, B) be a Hahn decomposition of X w.r.t. u. Since |p|* is a finite Riesz
measure on X, by Proposition 3.10.1, there are K; and K, in K with K; C A and
K, C B such that |u|*(X\(K; UK,)) < . Take a continuous function g on X such
that-1 < g <1,g=10nK; and g = -1 on K; according to Corollary 1.8.1, and a
function h € U.(X) suchthath = 1 on K; U K; according to Corollary 1.10.1, and let
f =gh;then, f € C.(X),-1 <f <1,f =1onKj,andf = -1 on K;. Now,

60 = [ =) -n)s [ g

\ (K UK3)

() + 12 () + f fu

X\(K,UK,)
> || (K UK;) - |f1d]k]
X\(K;UK,)
> || (X) = 2|u|(X\(K; UKy))
= |/'L|(X) - 28)

from which, since ||f|| =1, it follows that [[€]| > |u|(X) - 2¢ and hence ||£] >
|| (X). Thus, £ € Co(X)* and ||€]| = |14|(X), because we already know that || £]| <
] (X). [ |

Theorem 6.2.6 (Riesz representation theorem) For £ € Co(X)* there is a unique finite
Riesz measure (i on B(X) such that

Mﬂ:Aﬁu (6.13)

forf € Co(f).

Proof The existence of Riesz measure ;& on B(X) such that (6.13) holds follows from
Lemma 6.2.5. Suppose that 141 and 11, are Riesz measures on 3(X) such that (6.13)
holds, with  replaced by either j4; or f4,. Then 4] — ; is a Riesz measure on B(X)
(cf. Exercise 6.2.9) such that

/de(m -M2) =0
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for all f € Co(X); it follows then from Lemma 6.2.6 that |1 — p»|(X) = 0, i.e.
|t1 = 12| is a zero measure on B(X). But, for B € B(X), 0= |u; - u2|(B) >
|t1(B) = 12(B)| implies that p1(B) = p(B). Thus the uniqueness of w is
proved. |

Example 6.2.3 Let £ be a bounded linear functional on the real space C[0, 1]. Then
there is a BV function g on [, b] such that g is right-continuous except at 0, and

of) = / flg, feclon].

Actually, let 1 be the unique Riesz measure on B([0,1]) such that fol fdu = £(f)
for f € C[0,1], and let g(0) = 0 and g(t) = n([0,t]), t € [0, 1]; then g is right-
continuous except at 0. Consider any partition 0 =ty <t < --- < t, = 1; we have
> ke 18(t) = g ()| = 2oy [ (e, te])| + |1 (£03)] < |1]([0, 1]). Therefore g
is a BV function. Clearly, £(f) = folfdg forf € C[0,1].

In the above discussion we assume that Co(X) is formed from real-valued functions;
a brief account will now be given of the case when Cy(X) consists of complex-valued
functions. Recall that a complex-valued function f can be expressed as Ref +iImf,
where Ref and Imf are respectively the real and imaginary parts of f. Suppose that
£ € Co(X)*, then

e(f) = €,(f) +iti(f),
where £,(f) = Re{£(f)}and ¢;(f) = Im{£(f)}; £, and £; are bounded linear functionals

on Cy(X) considered as a real vector space; in particular, they are bounded linear func-
tionals on the real vector space of all real-valued functions in Cy(X). By Theorem 6.2.6
there is a unique pair (i4,, i;) of finite Riesz signed measures on B(X) such that

o) = [ v [ s

for real-valued functions f in Co(X). Let us put u(B) = u,(B) + iu;(B) for B € B(X);
then p is a complex Riesz measure on 3(X), and for f € Co(X) we have

(f) =€(Ref +ilmf) = £(Ref) + il(Imf)
={,(Ref) + il;(Ref) +i{€,(Imf) + i¢;(Imf)}

:fRefd,u,+i/Refd,u,-+i/lmfd,u,—/lmfdu,-
X X X X

=/XRefd,u+ifXImfdu=/deM-

We leave it as an exercise to show the uniqueness of the Riesz measure 1 on 3(X) such
that £(f) = [, fduforf € Co(X),as wellasthe fact that || £]| = |t|(X). Hence, Theorem
6.2.6 also holds when the functions in Co(X) are complex-valued.
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Exercise 6.2.12 When Cy(X) consists of complex-valued functions and £ € Cy(X)*,
show that there is a unique Riesz measure on X such that

€)= [t fe )

Furthermore, show that for such a measure, ||£]| = |@|(X).

6.3 Linear functionals on LP

Let p and q be conjugate exponents i.e. p,q > 1 and p~' + g' = 1. We shall consider a
fixed measure space (€2, X, 1) throughout this section, therefore measurability of sets
or functions is in reference to this measure space and the measure of a set A means 4 (A)
with A € X.The space LP(£2, &, ) will be simply denoted by L forp > 1,and L’-norm
of f will be denoted by || f1|,.-

Our purpose in this section is to identify (L?)* with L7 in a sense to be specified later
when p is o -finite and p < 00.

For g € L, define a linear functional £, on L* by

6(f) = f fedu, ferr.

It follows from the Hélder inequality that £, is a bounded linear functional on L? and its
norm 14| < llgll

We shall actually show that ||£,]| = [|gll; if ¢ < 00; and that this equality holds for all
g > 1if (R, X, ) is o -finite. This means that we may consider L7 as isometrically and
isomorphically embedded in (L?)* in either case, because the map g > I, is a linear map
from L4 into (LP)*.

Lemma 6.3.1 Ifq < coandg € L, then ||gll, = [l

Proof We may assume that g # 0 on a set of positive measure, and let

_ lsl"'sgng

f °
lgld!

where sgng(x) = 0 if g(x) = 0, and = g(x)/|g(x)| if g(x) # 0. One sees easily that
sgn g is a measurable function and f € L? with || f[|, = 1. Now,

[1€gll =

[ ] = i [ it = g

This, together with [|£, || < [|gll4, shows that [[£,|| = |Igll4 |
Corollary 6.3.1 If (2, &, ) is o -finite and g € LY, then 1€e1l = llgllg-
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Proof We need only to prove that ||£,]| > ||glloc for g € L*. For this purpose we may
assume that ||g]loc > 0 and for a given 0 < & < [|g]loc, let A = {|g] = llglloc — €}
From the definition of ||g||oo, £(A) > 0. Since u is o -finite, there is an increasing
sequence {€2,} C X such that u(2,) < oo for each n and lim,_, o, 2, = Q. Then,
n(A) = lim, o0 (AN Q,) implies that (A N 2,) > 0 if n is large enough, say
n>ng;letB=ANQ,,then0 < u(B) < co.Choose f = ﬁlg@, thenf € L!
and || f|l; = 1. Now,

1
1l = ‘/fgdu‘ = FB)/Igldu > lIglloo — €,
B

from which we infer that || £;|| > ||glloo by letting & N\ 0. [ ]

For the statement of the next lemma (6.3.2), given a measurable function g which is
finite a.e. on 2, we denote by S, (g) the family of all those functions f such that || f||, = 1
and fg is integrable.

Exercise 6.3.1 Suppose that (€2, £, 1) is o -finite and g is a measurable function which
is finite a.e. on €2. Show that S,,(g) is nonempty.

Lemma 6.3.2 Suppose that (2, &, () is a 0 -finite measure space and g is measurable and
finite almost everywhere. Then,

lgllq = sup Hffgdu‘ :f € Sp(g)} :

Proof From the Hélder inequality, lIgll; > sup{| [ fgdu| : f € S,(g)}, it remains to
show the converse inequality. For this purpose we may assume that ¢ # 0 on a set
of positive measure.

Let the sequence {€2,} C X be as in the proof of Corollary 6.3.1.

Step 1. Suppose that ¢ < 00.Foreachn € N, letA, = {x € Q : |g(x)| < n} N Q,.
{A,} is an increasing sequence in ¥ such that ©(2\ |, A,) = 0. If we let
gn = gla,, then g, is bounded and # 0 on a set of positive measure when # is
sufficiently large, say n > ng. Define, for n > ny,

_ l&|"sgmg

fi >
gl

One can verify easily that | £, ||, = 1. Since f,g = l|g, ||é_q |gn|9, fog is integrable

and therefore {f, },>n, C Sp(g).Nowforn > ng, using f,g = ||gn||;_q|gn|q, we
have

ool = [ Il

= llg " /fngdu < llgll3™" sup H/fgdu‘ f € Sp(g)}:
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from which it follows that ||g,ll; < sup {}ffgdu‘ :f € Sp(g)}. But
w(\ U, As) = 0 implies that |g,| increases to |g| a.e. on €2, hence,
on letting n — 00, we obtain ||gll; < sup{| [ fedu| : f € S,(g)}. Thus,

Iglly = sup{| / fedie| : f € S,(g)}if g < oo.
Step 2. Suppose that g = 00, i.e.p = 1. Put

y = sup{vfgdu‘ :f € Sl(g)}-

We may assume that y < 00.

Given that &€ > 0, let A= {x € Q: |g(x)| > ¥ + &}. We claim that (A)=0;
otherwise, let B, = AN 2, N {|g| < n}, then 0 < u(B,) < 00 if n > ngy for some
ng € N. Put B=B,, and let f = u(B)'Izsgng. Then, |f|; =1 and ffgdu =

1(B)" [y lgldi < no, thus f e Si(g); but [fedu=pn(B)" [ylgldu >y +e,
which contradicts the definition of y. Hence, 14(A) = 0 and consequently [|glo <
y +¢&.Lete N\ 0; wehave [|g]loc < ¥. |

It is worthwhile noting that the proof of Lemma 6.3.2 actually shows that ||g]|, =
sup{Re [, fgdiw : f € S,(g)}, and that if g > 0, l|glly = sup{ [, fedis : f € S,(g) and
f=0}.

The following integral version of the Minkowski inequality follows from Lemma
6.3.2 with this note.

Corollary 6.3.2 Suppose that (21, X1, 1) and (25, Xo, L2 ) are o -finite complete meas-
ure spaces and f > 0 is X1 @ X,-measurable on ) X €2,. Then for 1 < p < o0, the
following inequality holds:

{/s;l( sz(x’y)duz(y)>lgd“1(x)};§ /522( Qlf(x:)’)pdm(x)) ;dﬂz(y)- (6.14)

Proof PutF(x) = f Q, f(x,y)dis(y), x € Q. Fis measurable using the Fubini theorem.

Step 1. Suppose that F(x) < oo for pj-ae. x Let h>0 be in S;(F) C
Lq(QI; 211 Ml)) then

/Ql hFdp, = /Q (/sz(x,y)duz(y)) h(x)dpy ()

- /92 ( Qlf(x,y)h(x)dm(96)) dua(y)

< ||h||q/;22 < Qlf(x;)’)pdﬂl(x))l/p dua(y)

-/ | ( | 1f<x,y>Pdm<x>)W da(y).
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By Lemma 6.3.2, with p replaced by g, together with the note that follows

it, we conclude that |F, < sz (lef(x,y)pdu(x))l/pd,uz(y), ie. (6.14)
holds.

Step 2. Now suppose that A = {F = oo} has positive measure. Since ) is 0-
finite, there is a measurable set Ag C A such that 0 < u;(Ay) < 00. Let

1
h=111(Ag) 11, orly, according to whether g < 00 or g = 00, then proceed
asin Step 1; we have

00 = o hFdu, < /QZ< Qlf(x;)’)pd/il(x))l/p dua(y)-

Consequently (6.14) holds, because right-hand side of (6.14) is co. m

Now we come to the main theorem of this section.

Theorem 6.3.1 If (2, X, i) is o-finite and 1 < p < o0, then L1 = (LP)*, through
the map

g4, gell

Proof We already know that L C (L?)* through the map g > £,, by Corollary 6.3.1;
it remains to show that for £ € (LF)*, there is a unique g € L7 such that £ = £,.

Step 1. Suppose that 1 (2) < oo.
ForA € X,letv(A) = £(I4). Since £ is linear, v is an additive set function
on X. Now suppose that {A,}°°, C X is disjoint, then

v (LnJAn) =v (QA) i (,FQIA”)’

hence, by putting By = [ -y, | An, We have

< |v(Bn)|

< el sy Il
= [ell[n(Bx)]YP — 0

v <LnJAn> - % v(4,)

n=1

as N — 00, because By | ¢ and (2) < 00; consequently, v(|J, A,) =
> 22 v(A,). Thus v is a complex measure on X. Since v is jt-absolutely
continuous, from the Radon-Nikodym theorem, there is g € L' such that

v(A) = [, gdu, or

o) - [ sut 615

for simple functions f.
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Step 2.

Suppose now that f € S,(g). Choose a sequence {f, } of simple functions
such that f, — f pointwise and |f,| < |f|- Then, |f.g| < |fg|, by LDCT and
(6.15),

‘ / fgdu‘  lim ‘ / fngdu‘ i [£(5)] < Il

It then follows from Lemma 6.3.2 that g € L7 and ||g|l; < [I£]|.
Now let f € L? and choose a sequence {¢, } of simple functions such that
¢» — f pointwise and |@,| < |f|, then ¢, — fin L” and by (6.15),

/ Jedp = lim f Ongdpe = lim £(g,) = £(f),

this means that £ = £, and |[€]| = [|£,]| = l|gll4-
Suppose that (2, X, 1) is o -finite.

Let {©2,} C X be as in the proof of Corollary 6.3.1. By Step 1, for each n,
thereis g, € L1 with {g, # 0} C , such that

ef) = f fendie (6.16)

for f € LP with {f # 0} C Q,,. Define g on Q2 by g(x) = g1(x) ifx € €1, and
g(x) = go(x) ifx € ©2,\Q,_; forn > 2. Then, since g,(x) = g,_1(x) fora.e.x
in Q, ; whenn > 2,g(x) = g,(x) fora.e.x € Q,,.

Nowletf € S,(g), then |fg,| < |fg| and fg, — fga.e. hence by (6.16),

Vfgdu‘ - nlgn;o|/fgndu‘ = Tim [€(flg,)| < l1E].
From Lemma 6.3.2,¢g € L1 and hence for f € L,
[t = . [ o g = tim e(1a,) =€)
where the last equality comes from the obvious fact that flo, — finL?. Then

€ =€y, and ||£]| = [|¢l4- That g is uniquely determined is obvious.

Exercise 6.3.2 shows that Theorem 6.3.1 may not hold true when p = o00.

Exercise 6.3.2 Consider L*°[0,1] and let xo € [0,1]. Show that there is £ €
L*°[0, 1]* with ||€]| = 1 such that £(f) = f(xo) for f € C[0, 1]. For this £ show that

thereisno g € L'[0, 1] such that £(f) = f[

o1 f8dA forallf € L*°[o0, 1].



Modular distribution function and Hardy-Littlewood | 247

Exercise 6.3.3 Suppose that (€2, X, ) is o-finite and 1 < p < 00. Show that L7 is

reflexive.

Exercise 6.3.4 Let D be a measurable set in IR" with positive measure. Show that
every bounded sequence in LF(D), 1 < p < 00, has a subsequence which converges
weakly. (Hint: cf. Exercise 5.10.5.)

6.4 Modular distribution function
and Hardy-Littlewood maximal function

Suppose that f is a finite a.e. measurable function on a measure space (€2, X, it ). Define
a function A : (0,00) — [0, 00] by

A(a) = u({|f] > a}). (6.17)
Then the function Ay enjoys the following properties:

(1) Afis monotone decreasing and right continuous.
(2) If|f] < |g|, thenAf < A,.

(3) If|fn| / |f|, then)% / )\.f.
(4) Iff = g+ hythen Ap(a + B) < Ag(a) + 1(B) fora, B > 0.

Properties (1)-(3) follow directly from the definition, while (4) is a consequence of
the fact that {|f| > « + B} C {|g| > a} U {|h| > B}.

The function A is usually called the distribution function of f; but the distribution
function of a measurable function is defined differently in Section 4.3, in agreement with
the distribution function of a random variable in probability theory; we shall instead call
As the modular distribution function of f.

If As(a) < 00 Yo > 0, then A generates a negative Radon measure v on (0,00)
such that

v((a,b]) = A(b) - A(a), 0<a<b<oc;

actually, v is the negative of the Radon measure generated by the monotone increas-
ing function —A;. We shall call v the Lebesque-Stieltjes measure generated by A. If ¢
is a Borel function on (0, 00) such that fooo @dv = f(o 00) @dv exists, then fooo @dv will

be denoted by fooo @dAs or fooo @(a)drs(ar) in this section, and called the Lebesque-
Stieltjes integral of ¢ w.r.t. A;.

Lemma 6.4.1 Suppose that As(a) < o0 for all ¢ > 0 and let ¢ be a nonnegative Borel
function on (0, 00), then

f @o|fldu = —/OO @(a)drs(a). (6.18)
Q 0
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Proof We have

v((a,b]) = Ap(b) - As(a) = -u({a < |f| = b}) = -u(|f] " (a, b)),

from which it follows that

v(B) = —u(|f| ")

for Borel set B in (%C ,k] (by the (7r-1) theorem), and therefore for Borel set B in
(0,00). This means that (6.18) holds if ¢ is the indicator function of Borel set B in
(0,00), and consequently, if ¢ is a nonnegative simple Borel function on (0, 00). For
a general nonnegative Borel function on (0, 00), (6.18) follows then by approxim-
ating ¢ pointwise by an increasing sequence of nonnegative simple Borel functions
on (0, 00). ]

Exercise 6.4.1 Give the detail of the first part of the proof of Lemma 6.4.1 where the
(7-1.) theorem is applied.

A measurable function f on (€2, X, i) is called a weak L* function; 0 < p < 00, if
thereis 0 < A < 00 depending only on f and p such that

AP
w({|f] > a}) < o o > 0. (6.19)

One sees readily that f is a weak L? function if and only if sup,,_, o u{|f| > a} < o0.
Exercise 6.4.2 Showthatif |f|f,0 < p < o0, isintegrable, then f is a weak L” function.

Theorem 6.4.1 Suppose that f is a weak L? function, 1 < p < 00, then we have

/ |f|Pdun = —/ o drs(a) =pf af A (o) da. (6.20)
Q 0 0

Proof Since f is a weak L? function, 1 < p < oo, Af(a) < oo forall @ > 0, hence the
first equality in (6.20) follows from Lemma 6.4.1 by taking ¢ (o) = o?. It remains to
show that

o0
/ |fIPdu :pf af A (a)da.
Q 0
We observe first that the set

E:={(qa):xeQ,0<a<|f(x)|}
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is in ¥ ® B (cf. Exercise 4.8.3). Since I is ¥ ® B-measurable, from Tonelli’s
theorem we have

/ Pl (3 @) d(j1 x 2) ()
Qx(0,00)

_ /Q ( fo Vel pap_ldk(a)> dja(x)

=fuwwmm
Q

but we also have

l/ plis(x, ) d(je x 2) ()
Q2x(0,00)

:p/oooaf"l (/{|f|>a} d,u) dr(a)

=p/(; af " As(a)da.

Hence [, |f|Pdu = pfooo a? " ap(a)do. |

The Hardy-Littlewood maximal function will now be introduced. Let f be a locally
integrable function on R"; the Hardy-Littlewood maximal function of f, denoted Mf,
is defined in terms of | f| as follows:

Mf(x) = S}Sg m B,(x) 10l 621

where Mf (x) could be infinite for some x € IR". Since, for each r > 0, the function

1

x> ——
A" (B (%)) Jb, )

|f(¥)|dy

is continuous, {Mf > «} is open for o« € IR. Hence Mf is a Borel function and is
therefore measurable. We shall from now on simply call Mf the maximal function of f.

Theorem 6.4.2 For f € L'(R"), Mf is a weak L' function. Actually there is A > 0,
depending only on n, such that

V'({Mf > a}) < Allfllie™ (6.22)

forf € L"(R") andax > 0.
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Proof For > 0, put E, = {Mf > «}. For x € E,, there is a ball B(x) centered at x
such that

/ Ol > @), 629

Since A"(B(x)) < a7 '||f|l; by (6.23), C := {B(x) : x € E,} is an admissible collec-
tion of balls. By Theorem 4.6.1, there is a disjoint sequence {By} of balls from C such
that | JC c | kﬁk, where ﬁk is concentric with By and has a radius five times that
of By. Then from (6.23),

A'(Eo) =" (UC) = ;K"@k) =5 ;A"(Bk)
<se' 3 [ O =t [ 10l

< 8"l flhe™,

from which we complete the proof by taking A = §". |

Exercise 6.4.3 For f € [’(IR"), 1 < p < 00, show that Mf is a weak L? function.
(Hint: use Jensen’s inequality to show that Mf (x) < {M|f|’(x)}'/* forx € R".)

We note at this point that although Mf isaweak L' function, it can never be integrable
except for the extreme case f = 0 a.e. To see this, suppose that f # 0 on a set of positive
measure; then fBR(O) |f|[dA" = ¢ > 0 for some R > 0 and hence if |x| > R, B := By ()

contains By (0), from which

1
A"(B)

Mf(x) > /B [fG)|dy = 27”|x|7”b;1c = co|x|™

follows, where b, is the measure of the unit ball in IR"; thus by integrating Mf over R"
using polar coordinates (cf. Theorem 4.11.1), we conclude that f MfdA\" = 0o. However,
as the following theorem shows, Mf € L7 if f € LF and the map f > Mf is a bounded
map from L? into LF whenp > 1.

Theorem 6.4.3 If1 < p < o0, thereis A, > 0 such that for f € LF(IR") we have

IMfllp < Apllflp-

Proof When p = 00, this is obvious with Ay, = 1. Consider now 1 < p < 00. For a
fixed @ > 0, define f; by

() = {f(x) if|f(x)] = &

0 otherwise,
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then, f; € L'(R") (see Exercise 6.4.4) and |f(x)| < |fi(x)| + §; hence Mf < Mf; +
%, whichimplies {Mf > o} C {Mf; > % }and consequently by Theorem 6.4.2 (note
that A can be taken to be 5"),

2-5" 25"
hog (@) < 22l = f 1)
o @ J{f=¢}

Now by (6.20),

Ml = p [ 0 g
0

o0 2 . 571
<p / ! ( / | f(x)|dx) da
0 @ J{f=%}

2|l
2-5" -p/ |f(%)] / of Pdadx
R" 0

5.5,
_ 25y / 21| £ () [P
p— 1 Rn

p
— 9P . " P — AP p

where A, = 2(15%’)1/17. [ |

Exercise 6.4.4 Show that the function f; defined at the beginning of the proof of
Theorem 6.4.3 is integrable.

As an application of maximal function, a direct proof of Theorem 4.6.4 will now be
given using Theorem 6.4.2 together with the Markov inequality (6.1). An application of
Theorem 6.4.3 to the study of Sobolev space is presented in Section 6.6. Actually, we
shall prove that if f is a locally integrable function on an open set 2 C IR”, then

lim B S |f(y) —f(x)|dy =0 (6.24)

for a.e. x € 2, and leave the proof for the general statement as an exercise. Because of
the local nature of (6.24), we may assume that f is an integrable function on IR". Put
0(f,x) =limsup, m fB,(x) |f(y) - f(x)|dy; our aim is to show that 6(f,x) = 0
for a.e. x in R", or, equivalently, to show that A"({0(f,-) > «}) = 0 for every & > 0.
Now, given that ¢ > 0, there is a continuous function g on IR” such that || f —gl|; < ¢
(cf. Exercise 6.1.1), then,

Q(f,x) :Q(f_g"'g)x) = 9(f—g;x) +9(grx) :Q(f_g;x);
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because 0(g, x) = 0; but O(f - g,x) < M(f - g)(x) + |f(x) - g(x)| and consequently,

O() >} {0 -g) =) M9 > Shu{lr ol = 2},

Hence,
MAO(S) = @) = (ANf gl + I gl <204+ D

by letting ¢ — 0, we have A"({0(f,-) > A}) = 0. Thus, 0(f,x) = 0fora.e.xin R" and
(6.24) is established.

Exercise 6.4.5 Show that limp_,, ﬁ J51f®) - f(x)|dy = 0 follows from (6.24).
(Hint: if x € B, then B C B,,(x), where r is the radius of B.)

6.5 Convolution

The operation of taking convolution was used in Section 4.9 when introducing the
Friederichs mollifier for the purpose of smoothing functions. An account of general fea-
tures of convolution for functions on IR” will be given in this section; its connection with
the Fourier integral will be seen in Chapter 7. Referring to Exercises 1.6.6 and 1.6.7, we
note in passing that convolution can be introduced for functions on groups with a meas-
ure invariant under translations w.r.t. the group operation and is often proved to be a
useful operation.
We first state Proposition 4.8.2 as a lemma for later reference.

Lemma 6.5.1 Letf be a measurable function on R", then F(x,y) := f(x - y), %,y in R", is
a measurable function on R** = R" @ R”".

Let f and g be measurable functions on IR". The convolution of f and g is the function
f * g defined for all those x for which the following integral exists and is finite:

f () = / £Ge-y)g(y)dy.

Exercise 6.5.1

(i) Show that if f * g(x) exists and is finite, then g * f(x) exists and is finite, and
g *f(x) = f * g(x).

(ii) Show that if f * g exists and is finite for a.e. x, then f * g is measurable. (Hint:
apply Lemma 6.5.1 and the Fubini theorem.)

Exercise 6.5.2 Suppose that [, b] and [, d] are finite closed intervals of equal length.
Find Ij,p) * I[.q); in particular, show that Iro oy I[_%,%](x) =a(l- %')J“, o > 0.
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Theorem 6.5.1 (Young inequality) Suppose thatf € LF,p > 1, and g € L', then f x g
exists and is finite a.e., and

If *glly < I lplglh

Proof The case where p = 00 is obvious. We consider the case where 1 < p < 00. Let

h(x,y) = f(x - y)g(y); h is measurable by Lemma 6.5.1. Using the integral version of
the Minkowski inequality (Corollary 6.3.2), we have

( / ( [ |f(x—)’)g(y)|dy)de>; 5 /( [ e <y)|de);dy

= l1fllpllglls;

then, (flR" |fRﬂf(x—y)g(y)dy‘p dx)’: < lIfll,liglli, and consequently f * g exists
and is finite a.e,, and || f * gll, < [Ifll,llgll:- [ |

Example 6.5.1 We give here another proof of Theorem $.6.1 without recourse to the
integral version of the Minkowski inequality. Since

[ ([ 1e-nriar)as= [ ([ 15e-nreoie)s
= IfI; fR leWldy = 1£ 15 glh,

therefore, [i, |f(x - y)|P|g(y)|dy < oc fora.e.x, and hence

/]R" |f(x—y)||g(y)|dy = (/}; |f(x‘)’)|p|g(y)|dy)p . ||g||1§ < oo forae. x,

which implies that f * g exists and is finite a.e., and

I1f *glly < /Rn (/I‘R |f(x—y)||g(y)|dy)p dx

<ight [ ([ -0 ) as

P
= lghi 115 0glh = 115Nl

or

I1f *glly < lIfllpliglh-

Lemma6.5.2 For fel?, 1 <p<oo, and y € R", let f'(x) =f(x~-y). Then,
lim, o L7 - fll, = 0.
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Proof Given & > 0, there is a continuous function g with compact support such that
|f -gll, < 5, by Proposition 4.6.1. Then,

I =fll,=1f-¢+¢&-g+g-fl,

I =&l + g —fllp + 118" - gl

IA

2
<3et g - gl

but since g is continuous with compact support, ||g" —gll, < % when |y| is small.
Thus, || f* - fll, < & when |y| is small. |

We shall denote by Co(IR") the space of all those continuous functions f on IR” with
the property that for any & > 0, there is R > 0 such that |f(x)| < & whenever |x| >

R. Functions in Cy(IR") are functions vanishing at infinity, introduced in Section 6.2.
Clearly, C.(R") C Co(R").

Theorem 6.5.2 Ifp and q are conjugate exponents, f € LP and g € L1, then f x g(x) exists
and is finite for all x, and f * g is bounded and uniformly continuous on IR". Furthermore,

If *glloo < Ifllpligllgs andif 1 < p < oo, thenf g € Co(R").

Proof From the Holder inequality, | f * g(x)| < IIfll,llgll, forallx, hencef * g(x) exists
and is finite for all x, and || f * glloo < I fll,lIgll4-

To show that f * g is uniformly continuous, we may assume that 1 < p < 00
(otherwise interchange p and q). Now,

|f xg(x—y) —fxg()| = |(f -f) xg)| < If - fllpligly

hence f * g is uniformly continuous on IR", by Lemma 6.5.2.

Finally, suppose that 1 < p < 0o (then1 < q < 00). Choose sequences {fi.}, {gc}
in C.(R") so that || fi = fll, — 0 and [|gr - gll; = 0 as k — o0; this is possible by
Proposition 4.6.1. Then, {f; * gi} is a sequence of continuous functions with compact
support, and

sup |fi  gk(x) - f % g(x)| = sup |fic % (g — g)(x) + (fi - f) * g ()|

xeR" xeR"
< Il fellpllge = gllg + Il fe = fllpllglly — O

as k — 00, because {f;.}, being a convergent sequence in L?, is bounded in L.

Now given & > 0, from what we have just shown choose ki large enough so
that sup . |f, * gk (%) — f * g(x)| < €, and then choose R > 0 such that f;, *
gk, (x) =0 when |x| > R; thus |f * g(x)| < &, when |x| > R. This shows thatf x g €
Co(R™). |

Remark Theorem 6.5.2 is an example showing the smoothing effect of convolution.
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Exercise 6.5.3 Show thatforf,g,and hin L', (f *x g) * h = f x (g * h).

Example 6.5.2 The Friederich mollifier {J; } ;- constructed from a mollifying function
¢ introduced in Section 4.9 can be expressed as

]sf(x) =f* ‘ps(x)) x € R,

forf € L'*°(IR"). By Proposition 4.9.2 and Theorem 6.5.2, J.f € C®(IR") N Co(RR")
iff e Lf,1 <p < oc.

Exercise 6.5.4 Show that thereisnou € L' such thatu * f = f forall f € L'. (Hint: if
there is such a u, then u * @, = ¢, foralle > 0, where ¢ is a mollifying function.)

Example 6.5.3 Suppose that f, g are in L' and f € C'(IR") with bounded partial
derivatives. Since f € C'(IR") with bounded partial derivatives, f is uniformly con-
tinuous; consequently if f * g(x) exists and is finite, then f * g(x") exists and is finite
if |«' - x| < 8, where § > 0is chosen so that |f(z) - f(z')| < 1if|z - 2/| < §. This,
together with the known fact that f * g exists and is finite a.e., shows that f * g exists
and is finite everywhere and is uniformly continuous on R". Now for any «, y in R”",

0| < Mforafixed M > 0, because partial derivatives of f are bounded. We can

x=y

then apply LDCT to infer that
0 a
—f xg(x) = —f*g(x), xeR"j=1,...,n

But from Theorem 6.5.2, g—i_ * g is bounded and continuous. Hence, f * g € C'(R")
]

and its partial derivatives are bounded.

By the Young inequality (Theorem 6.5.1), L' is closed under the binary operation
of convolution, which is associative (cf. Exercise 6.5.3) and clearly distributive w.r.t.
the addition of elements in L'. Thus with the introduction of the binary operation *
into L', L' becomes a commutative algebra; it is an example of the so-called Banach
algebras, in that it is a Banach space which is also an algebra that satisfies the inequal-
ity [l f * glli < Ilfll1ligll: for f, g in L'. Because of the conclusion of Exercise 6.5.4, there
exists no identity element in L' w.r.t. the multiplication operation *. However, if ¢ is a
mollifying function (cf. Example 6.5.2), lim; ¢ ¢, * f = f in L', by Theorem 4.9.2; such
a family {; }+- ¢ is called an approximate identity for L'. Just as we construct the approx-
imate identity {¢; }¢~0 from a mollifying function ¢, starting from an integrable function
honR" with [ hd\" = 1, we define for each t > 0 a function h, by

he(x) = £"h (’-:) xe R,

then, [ hdA" = 1. We shall see that {;};~ ¢ is an approximate identity for L.
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Lemma 6.5.3 Fore > 0andd > O, thereisty > 0 such that

/ I ()]dy < ¢,
|y|=8

whenever 0 < t < t,.

Proof Since h € L', thereis R > 0 such that f|y|zR |h(y)|dy < €. Then,

| o= [ o <
=5 b=

if % > R.We choose t; = % to complete the proof. |

Theorem 6.5.3 {h;};- is an approximate identity for L', i.e.
lim b xf -fl1 =0, felL
t—0

Proof Forf € L' and & > 0, thereis § > 0 such that

&

/]1;" |f(x-y) - f(x)]dx < 2T (6.25)

if |y| < 8. Since we may assume that || f||; > 0, thereis ty > 0 such that

&

4 f

(6.26)

[ o <
E
whenever 0 < t < t;, by Lemma 6.5.3. Now,
[ s -slane
Rn
- [ [ 4G-n s
< [ WO [ 1) -f@anay
Rn Rn
< [ ol [ ve-n - [ o

£ / I ()|d £ _
< — +-<e¢
2kl Jyes T2

if0 < t <ty by (6.25) and (6.26). [ |

dx

We know from Theorem 6.5.2 that f * h; is abounded and uniformly continuous func-
tionforeacht > 0iff € L°; we shownow, asasupplement to Theorem 6.5.3, that f * h;
converges to f uniformly on every compact set of R" ast — 0iff € L™ N C(R").
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Theorem 6.5.4 If f is a bounded continuous function on R", then lim;_,of * h; = f
uniformly on every compact set K of R".

Proof ForacompactsetKinIR"and & > 0, thereis§ > Osuchthat|f(x-y) - f(x)| <
STl h|| whenever x € K and |y| < 8. Then by Lemma 6.5.3, there is t, > 0 such that

fy|>8 |he(y)|dy < 4”f”oo if0 <t < ty. Nowforx € Kand 0 < t < t;, we have

#5051 = | [ 1O -1

< [ OIS -1l

[ O -1l [ OIS -y
<8

ly|=6

&
< Mfm«s Iht(y)|dy+2||f||oo/ Ihe () [dy

|=3
& &
<> +2floomF7 =8
2 T4l
which means that ; * f(x) — f(x) uniformly forx € Kast — 0. ]

Exercise 6.5.5 Let p(x) = ; 1+ ; and write p,(x) = tz 5 as p(x,t) for x € R and
t > 0. The function (x,t) > p(x,t) on R x (0,00) is called the Poisson kernel.

(i) Forf € L'(R),let
TW@=@M:AM%%W@W (1) € R x (0,00).

Show that

—4%>/ T2 (-3, D )y
PG = [ S noro

(Hint: %(x, t), T Tp 2 (%, t), e P (x, t), 5 (x, t) are bounded on R X (to, 00) for any
to > O)
(ii) Letfand ITbeasin (i). Show that IT is harmonic on R X (0, 00). Furthermore,

if f is bounded and continuous, show that IT can be extended continuously to

R x [0,00) and that I1(x,0) = f(x) forx € R.
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6.6 The Sobolev space WkP(Q)

A brief account of Sobolev spaces, which are fundamental in modern theory of partial
differential equations and calculus of variations, will now be given.

A locally integrable function u defined on an open set 2 C R" is said to be weakly
differentiable up to order k on €2, k being a positive integer, if for any multi-index o =
(a,...,0,) with || = a1 + -+ - + o, < k there is alocally integrable function g, on €,
such that

/uaagod/\”: (—1)|a|/ga(pdk", 6.27)
Q Q

forallp € C>°(K2). Observe thatg, is uniquely determined by u in the sense that any two
such functions are equivalent. We therefore denote g, by u, . Note that uy = u(o,__ o) = w.
Clearly, functions u in C¥(2) are weakly differentiable up to order k on  with u, =
d%u. For p > 1, let W*(Q2) be the equivalence class of all such functions u in LF(£2)
which is weakly differentiable up to order k on €2 such that u, € LP(2) for all & with
|| < k. WP (2) is a vector space with the usual definition of addition and multiplication
by scalar. On W*P(2) anorm || - ||kp is defined by

’
llullep = ( > IIuallﬁ) ifp < o0;

|| <k

(6.28)
= Z ”uot”oo ifp=00-

|| <k

To see that [|ully, is actually a norm, we need only verify that triangle inequal-
1
ity holds when 1< p <00 u+ vy < (Xgqcllitally + I7alp})7 < (Xpaje
1 1
[ (X o= Ivalls)? = llullkpy + vllep, where we have used the Minkowski

inequality for I”(S) with S a finite set. Of course, there are equivalent norms for W*? (2);
for example, we may also define ||ul|;, as ZI“I <t llua |- We prefer the norm defined

in (6.28), because when p = 2, the norm comes from an inner product on wk2(Q),

defined by

()= > Uy Vo dA". (6.29)
|oe| <k v 2

If u is weakly differentiable to certain order, u,’s are called generalized partial derivat-

Jor] .
0 _, many notations related to smooth

Bx‘fl <0y

functions are also borrowed to be applied to weakly differentiable functions, for example,
if u is weakly differentiable to first order, Vu is used to denote ;f_; et 887“) and is called
the generalized gradient of u.

In what follows in this section, p and g are conjugate exponents.

ives of u, and often u,, is denoted by 0%u or
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Theorem 6.6.1 W*?(Q) is a Banach space.

Proof Let {u/)} be a Cauchy sequence in W*?(S2). For each o with |oe] < K, {ug)} is a

Cauchy sequence in L¥(£2), hence, lim;_, o ||u((xj) — gullp, = 0 for some g, € LF(2).If

we put u = go, we shall show thatu € W*r(Q) and lim;, oo [|ul) - ullgp = 0. For any
given ¢ € CX (),

f ud®@dr" — (-1)ll f go,gadxn‘

Q Q

/ (- u)d%pda + (=1)l! / (uY) - g)pd"
Q Q

< lu—uP|,13%@lly + lige - 41l l@ll,,

from which by letting j — 00, we have

/uaagadknz (—l)“/gagadk",
Q Q

and hence u is weakly differentiable up to order k with u, = g,. Thus u € W (Q).

That lim;, o0 [lu - ul) llkp = 0 follows from lim; ., oo [Jue — ug{) l, = 0, for each a with

|| < k. [ |

Theorem 6.6.1 implies in particular that W*2(Q) is a Hilbert space with inner product
defined by (6.29).

Exercise 6.6.1 A locally integrable function u defined on an open set € in R" is in
whr(Q), p > 1,if and only if for each multi-index o with || < k, there is a constant

C, > Osuch that
f ud*@d\"
Q

forall p € C2°(€2), where p, g are conjugate exponents.

= CGullellg

Exercise 6.6.2 Let{J; }-o be a Friederich mollifier and suppose that u is weakly differ-
entiable up to order k on an open set 2 C IR". Show that for any multi-index o with
|| < k, we have

9” (]Su)(x) = Jetiy (x); x € $2,
where Q. = {x € Q : dist(x, Q) > ¢}.

Exercise 6.6.3 Letu € W*(Q), 1 < p < 00. Show that there is a sequence {v;} C
C*(IR") such that for every & > 0, v; € W (Q,) when j is large and v; — u in
W*?(Q,). Note that v; € W*?(€2,) implicitly implies that the restriction of v; to &,
is also denoted by v;.
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Exercise 6.6.4 Let I be an open interval in R. Show that a locally integrable function
f onIisin WY (I) if and only if it is equivalent to a function g which is absolutely
continuous on every finite closed intervalin I and g’ € L'(I).

Theorem 6.6.2 Suppose that u € W' (IR"), then

1 (x-§) - Vu(§)
o= [ e
for a.e. x in R", where b, = 1"(B1(0)) and Vu = <7 ey 59;:)

Proof We know from Exercises 6.1.3 and 6.6.3 that there is a sequence {u;} in
C®(R") N WH(IR") such that limj_, oo [lu; — ul|1; = 0 and u;(x) — u(x) for a.e. x
in IR". Apply Corollary 4.11.1 to each u;; we have

1 (x §) - Vu,(é)

; = ", 6.30
uj(x) D o E] dg, xeR (6.30)
FixR > 0.Let = Bg,1(0), D = Bx(0), and put
Vu; -V
g](x) = | uJ(S) u(5)|d§, x € D.

|x_$|n—l

By Theorem 4.11.2, ||gill; — 0asj — 00; hence, {g} has a subsequence {g; } such
that gy (x) — Oasj — oo fora.e. xin D, by Exercise 6.1.3. Now,

1 (x-§) - (Vi (§) - Vu(§)) 1 (x-§) - Vu(§)

(%) = — d& + ;
uy () nb |x—&|" d nb, Jr» |« —&|" 4
if we show that f]Rn (x_s)'(jﬁn)_v"@))ds — Ofora.e.xinDasj — 00, thenu(x) =
nh Jr» (x_li);l@)dé for a.e. xin D. But, for x € D, we have

dg

(x-§) - (Vi (§) - Vu(§)) g‘ / |Vuy (§) - Vu(§)]
R |x = &]" S TR e

_ |Vuj/ (5) - Vu(§)|
_gj/(x)+‘/I‘Rn\Q |x_%-|n—l dé

=g+ [ [9(6) - Vule)lde o

asj — oo for those x where g (x) — 0. Thus u(x) = fan (x_fx) ;“(5) d& fora.e. x

in D. Since R > 0 is arbitrary, the theorem is proved. |
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The closure of C>°(2) in W5 (2) is denoted by W ke (R2); functions in ke () are
said to vanish on €2 in a generalized sense.

Exercise 6.6.5 Suppose that 2 is bounded and let u ew k20 (Q2). Show that u is equi-
valent to a function v € C¥(2) which can be continuously extended to be zero on 9,
together with all its partial derivatives up to order k.

Exercise 6.6.6 Show thatifu € W*?(Q), then

/uaavd)»" = (—l)'“'f ugvd\"
Q Q

forall v EI/({fk’q(Q) if || < k.

Exercise 6.6.7 Letgbein C*°(IR") satisfying0 < g < 1,g = O outside B,(0),andg=1
on B;(0). Forj € N, let g; be the function defined on R" by

g(x) =g(i'x), xeR"

(i) Suppose thatu € CHR") N WR(R™), 1 < p < 00. Show that lim;,  [|gju -
u”k,p =0.

(i) Show that W*#(IR") = W**(R")if1 < p < o0.

Theorem 6.6.3 (Poincaré) If 2 is a bounded open set in R", then on T/(\)/k’P(Q) the norm
| - llxp is equivalent to the norm | - |k, defined for u EVC\)/ kP (Q2) by

1/p
|u|k,p = (Z ”ua”p) y P <005

|ex|=k

|u|k,oo = Z Il ttge Il oo-

|| =k

Proof We prove the theorem for k = 1 and p < 00; the proof for the general case will
be clear from the proof of this particular case.

For u €W "?(2), we are going to show that there is C > 0, independent of u,

such that [[ull;, < C|u|;p. From the definition of W LP(Q2), we may assume that
u € C*(L2). By letting u = 0 outside €2, we may further assume that u € C>(I),
where I is an open oriented cube containing €2 and with side-width = I. Express I as
I=1, x I,whereI, = (a,b) C Rand, ¢ R"; thenforx € I, x canbe expressed
as (x1,%;) with x; € (a,b) and &; € I;. Now, u(x) = fxl du (t %1)dt implies that

lu(x)|P < (%1 - a)?/e fb u (t &1)|Pdt and hence,
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Il < (-a'so-a) |20 de= o | 22 :
< (b-ayy | p,

=1 119% 1,
from which it follows that

lull, < {1+ (b - a)}ull;
therefore [|ull;, < C|u|1,, where C = {1+ (b- a)P}VP Then,

lu|1p < lully < Clu|yp,

implying that || - |1, and | - |1, are equivalent. |

(o]
Remark Since |uli, < [lullg, for u eW 5 (), Theorem 6.6.3 is equivalent to the
statement that there is C > 0 such that

lulley < Clulky (6.31)

for all u eW o (2). Inequality (6.31) is called the Poincaré inequality; and Theorem
6.6.3 is usually referred to as the Poincaré inequality.

The following lemma is a generalization of Example 4.11.2.
Lemma 6.6.1 Letu € W' (RR"), 1 < p < 00, then,

u(&) - u(x
f 1) =4 je v
e |5 -4
for x in R", where M|Vu| is the maximal function of Vu.

Proof Fix a Friederichs mollifier {J}c~o, and let u, = J.u (cf. Section 4.9), then
limg ¢ [|Jew — ull1p, = 0, by Exercise 6.6.2 and Theorem 4.9.2; hence u, — u,
Vu, — Vuin I?(IR").Fixx € R"and R > 0, in terms of polar coordinates of y — x;
we have

»/Bk(x) |ug(y) - u()’)|d)’ = /0 o ‘/Snl |uk(p,9) - ”(,0;9)|d0“(9)dp
- fs /0 " |ue(p, 0) - u(p,0)|dpdo (6) — 0

as &€ \( 0. We infer then from Example 4.8.2 that there is a sequence & “\
0 such that fOR P" ug, (0,0) —u(p,0)|dp — 0 as k — oo for o-ae. 6 € "
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Then for any 0 < § <R, faR |ue, (0,0) —u(p,8)|dp — 0 as k — oo. Similarly,

f(SR |Vue (0,0) = Vu(p,0)|dp — 0as k — oo for o-ae. 6 € §"-1. Since we may
choose &;, a subsequence of &, we conclude that there is a sequence {ug} in

C*®(R") N W' (IR") such that for a.e. y in B (x)\Bs(x),
R
f |ue(x + t(y —x)) —u(x + t(y — x))|dt — 0
s
and

/5 |Vuk(x +t(y -x)) - Vu(x + t(y - x))|dt — 0

as k — 00. Therefore for a.e. y in Br(x)\Bs(x), u(x + t(y — x)) is AC on [8, R] and
%u(x +t(y-«x)) = Vu(x+ t(y —x)) - (y — x) fora.e.ton [§, R]. Then, as in Example

4112,
- 1
/ Mdé 5/ 7/ Viu(2)|dz
ENCILAOR 0 1" S8y )
"1
5/ —/ |Vu(z)|dz
o " JBu
< AM"(Br(x)) - M|Vu|(x).
We conclude the proof by letting § ~\ 0. |

Theorem 6.6.4 There is a positive constant 0 = 0(n,p), 1 < p < 00 with the property
that if u € W' (IR"), then for € > 0 there is a closed set F C R" such that ulr, the
restriction of u to F, is Lipschitz with Lipschitz constant Lip(u|), satisfying

Lip(u|g)’A"(R"\F) < 6(n,p)e.

Proof Forx,yinR", put q(x,y) = |u(y|i:z|(x)|, then
1
— q(x,y)dy < M|Vu|(x), 6.32)
OR JBg(x

from Lemma 6.6.1, where og = A"(Bg(x)). For x € R” and A > 0, let Wr(x,A) =
{y € Br(x) : q(x,y) < A}; we have from (6.1) and (6.32),

P B\ W) = 5

BR.X'

q(x,y)dy < %M|Vu|(x). (6.33)
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Now put Zs = {x € R" : M|Vu|(x) < 8}, and choose ky > 1 such that
" 2
A (BR(.?C) N BR()/)) > k—UR, R = |9C—y| (634)
0

Consider now x, y in Zs; we have from (6.33),

M|V 1
A" (Br(2)\Wr(z,ko8)) < |—u|(Z)UR < —Og, (6.39)
kod ko

for z = x or y and R = |x — y|. It follows from (6.34) and (6.35) that Wg(x, ko8) N
Wr(y,ko8) # 0; choose zg € Wr(x, kod) N Wr(y, ko8), then

q(x,y) < q(x,20) + q(y,20) < 2kod. (6.36)

Given that &€ > 0, by (6.2) there is § > 0 such that §#A"({M|Vu| > §}) < e.
Choose then a closed set F in Zs with A"(IR"\F) < 2A"({M|Vu| > 8}). The restric-
tion of u to F is a Lipschitz function with Lipschitz constant < 2k, by (6.36);
therefore (%)pk”(ﬂ{"\kﬂ) < 2¢&. We choose 6 = 0(n,p) = 2P+1kg to complete
the proof. |

Remark If M(|u| + |Vu|) is substituted for M|Vu| in Theorem 6.6.4, the closed set F
can be chosen so that ||u|r|loo + Lip(u|r) < 2Lip(u|r); this observation, together with
the known fact that u|r can be extended to a Lipschitz function v on R” such that [|v||o +
Lip(v) < A(llu|glloo + Lip(u|r)), where A is a constant depending only on n (cf. [St,
Chapter VI]), shows that Theorem 6.6.4 can be formulated as follows. A function u €
LF(R") is in W' (IR") if and only if for any given & > 0 there is a Lipschitz function v
on IR", and a closed set F such that u = von F, \"(IR"\F) < &, and ||u — v|| 1p < &

Besides, Theorem 6.6.4 also holds when p = 1, because in the last paragraph of the
proof of the theorem, § can be chosen so that A" ({M|Vu| > §}) < ¢ follows from the
improved form of Theorem 6.4.2:

A({Mf > a}) < 24a” /{ e |f|dA",

of which we refer to [St, P.7].

Since W**(Q) is a Hilbert space, it will be denoted by H*(£2); accordingly, T/({/ k2(Q)

is denoted by IfIk(Q) By Exercise 6.6.7 (ii), H K(R") = H*(R"); H*(R") is usually
abbreviated to H*. In Chapter 7, with the help of the Fourier integral, H* will also be
defined for fractional number s.



Fourier Integral
and Soholev Space H®

he Fourier integral is a useful construct in analysis which is based on an idea of
J. Fourier for resolving functions into basic harmonics in his treatment of con-
duction of heat. When functions are periodic, say of period 27, they are resolved as
Fourier series (see Section 5.9). For nonperiodic functions on R, the idea leads to a
Fourier integral. The Fourier integral for L' functions on IR" can be defined straight
away, and is treated in Section 7.1. Since L? is a Hilbert space, it is desirable to define
a Fourier integral for L* functions; but a straightforward definition for L* functions is
lacking; some variation is therefore necessary for the purpose. We shall get around this
through the Fourier integral for rapidly decreasing functions, introduced in Section 7.2.
Applications to Sobolev spaces H* and to partial differential equations are provided in
later sections of the chapter. The Fourier integral of probability distributions is intro-
duced in Section 7.5, and is applied to prove the central limit theorem of probability
theory.
A Fourier integral is also called a Fourier transform.
For the convenience of expressing certain functions defined on R”, the function x +—
f(x) will sometimes be expressed by f(x). For example, x > x* is simply denoted by ¢,
and iff is a function on IR", the function x > x“f(x) is denoted by x*f.

7.1 Fourier integral for L' functions
Forf € L' := L'(R"), define the Fourier integral Ff of f by

1
(27):

(Ef)(§) =

/f(x)e_is'xdx, & e R".
Rn

Since |f(x) e‘izf'x| = |f(x)|, Ef is defined and is finite for every & € IR". One verifies readily
that

Real Analysis. Fon-Che Liu. © Fon-Che Liu 2016. Published 2016 by Oxford University Press.
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(1) 1Eflloo < =7 If s

(am)?
(2) Ff is uniformly continuous on R” (note that this follows from LDCT).

Exercise 7.1.1 Letf(x) = ¢, x € R. Find Ff.

Exercise 7.1.2 Suppose that fi,...,f, are in L'(R) and let f(x) = ]_[;l:ljj(x]) for
x=(x1,...,x,) € R". Show that f € L'(R") and (Ff)(§) = ]_[]":1(Ff])(§,) for
5:(51;-”;5")'

Example 7.1.1

(i) For @ > 0, consider the function f = I[ 4] on RR; then (Ff)(‘;‘) = Zj%x;,
§ € R.Forn > l;f = I wo]xx[-aals (Ff)(é) = (2:‘)% H?:l Sm;sj.
This follows from Exercise 7.1.2.

x2
(ii) Forn = 1, consider the function f(x) = ¢ = . We have

_L 7%64& =; 67% cos
) (E) = ——= [ et = [ costi,
and
(E)'(8) = J%_n /R &% (Cxsin£x)d
1 2 _
—EE IRe cos Exdx = E(Ff)(&).

The first equality follows by LDCT and the second by integration by parts.
Then (Ff)(§) = Ce T with C being a constant. But (Ff)(0) = \/;271 fIR e Tdx
61

then (F)(§) = '

s
2

= 1=C.Thus (Ff)(§) = e Forn > Liff(x) =€

Exercise 7.1.3 Consider the function f(x) = ¢ in Example 7.1.1 (ii). Use a contour
integral to show that

/ 2 (iE) g / 2 dx = V27
R R
and give a direct verification that

Ff(§) = 2%
Theorem 7.1.1 Iff,g € L'(R"), (F{f * g})(§) = (2)2 (Ff)(§)(Fg) (&)
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Proof Observe first that f * g € L'(IR"), by the Young inequality (Theorem 6.5.1).
Then,

(F{f*g})(&?)-W ( / fa- y)g(y)dy> gy

: f < f(x—y)e‘i‘s'("‘y)dx)g(y)e"'é'ydy
-

" (n)

= An(Ff)(S)g(y)eiE'ydy= (270)= (Ff)(§) (Fg) (6)-

It is to be noted that since f(x — y)g(y)e* is an integrable function of (x, y) in R?",
it is legitimate to use the Fubini theorem in the above argument. |

Example 7.1.2 Let > 0. It is readily verified that e ey xIpa o 1(x) = ( - ;l)
(cf. Exercise 6.5.2), it then follows than

(F (1 ) %)) (&) = “/021_” (zj;‘_f;)z _ é 2(1\;%;@)_

Forf € L'(R"), the inverse Fourier integral Ff of f is defined by

(Ef)(&) = f(x)eis'xdx, £ e R

(2)

Forf € L', Ff and Iv:f are often denoted by f andjvf respectively.

Exercise 7.1.4 Recallthatfora € R",0 > 0,and afunctionf on R",f*(x) = f(x - a),
fo(x) = 07"f(Z) forx € R".
(i) Showthatfe(&) = e 9f(£) forf € L.
(ii) Show thatf, (£) = f(c&).
Exercise 7.1.5 Letf,gbein L'. Show that

feda" = [ fada.
Rn Rn

Theorem 7.1.2 (Riemann-Lebesgue) Iff € LY, thenf € Co(R").

Proof If f is the function considered in Example 7.1.1 (i), then limj¢| oo f(&) =0
hence the theorem holds for indicator functions of cubes, by Exercise 7.1.4 (i); as a
consequence the theorem holds for finite linear combinations of indicator functions
of cubes. But, as C.(IR") is dense in L', one verifies easily that the family of all finite
linear combinations of indicator functions of cubes is dense in L'. Thus for f € L'
and € > 0, there is a finite linear combination ¢ of indicator functions of cubes such
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that [[f - @[l < §, then [f(§)] < [(F=0)(©)] + |@(§)] < § +[¢(&)], from which it
follows that |[f(§)| < € if |§| is large enough, because ¢ € Co(R"). [ |

Theorem 7.1.3 Forf € L\, f is uniquely determined by f; in other words, the map f > f
is injective on L.

T (note [ hdA"=1),

then {h, }~0 is an approximate identity for L'. Put m, f = f * h,. Then, since h(g) =
h(€), as in Example 7.1.1 (ii), we have

Proof Take h to be the function defined on R" by h(x) = )

(mef)(x) = nf(y)ha(x—y)dy=/ﬂf(y)ha(y—x)dy

- f(y)h( )y

o o)
L o o)
SN (102 [ e b0z @

_ fR (o)

this means that the function m,f is uniquely determined by f But as m,f — fin L'
aso — 0, f is uniquely determined by f. |

Theorem 7.1.4 (L' inversion theorem) If both f and f arein L', then f = (f) i.e.f is the
inverse Fourier integral of f.

Proof Let h and {m, },~0 be as in the proof of Theorem 7.1.3. There we have shown
that

N = [ 47@hto)de;

since |65 (€)(0E)] = s F(E)] and limg oo 5T E)B(0E) = e (E),
it follows from LDCT that lim,_o(mqf)(x) = (f)'(x) for each x € R". Now,
|(mef)(x)] < o )2 |[f||1 implies that lim,_¢ fBR(O) |mef - (f)|dk" =0 for any
R > 0, again by LDCT; this, together with lim,_, fBR(O) |mef - fldA" =0 (cf.

Theorem 6.5.3), shows that f = (f)” a.e. on Bg(0) for any R > 0, and consequently
f=(f)ae.onR" [ |
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As an application of the L' inversion theorem, we establish the fact that the fam-
ily {&0, 1,5, ...} of normalized Hermite functions introduced in Example 5.8.1 is
an orthonormal basis for L*(R), or equivalently, that the family {ho, hy, hy, ...} of
normalized Hermite polynomials is an orthonormal basis for L2 (R) where w(x) = e

Corollary 7.1.1  The family {&,&1,&,, ...} of normalized Hermite functions is an
orthonormal basis for L*(RR).

Proof By Theorem 5.8.3, we need to show thatif f € L*(R) is such that
o0
(A) / f(x)E(x)dx =0, n=0,1,2,...,
—00

then f = 0 a.e. Recall from Example 5.8.1 that &, (x) = e_% h,(x), where h,(x) is
a polynomial of degree n and that each monomial x” is a linear combination of
ho(x), ..., h,(x); henceiff € L*(IR) satisfies the condition (A), then it satisfies
the condition

0 2
(B) /f(x)e‘”zx"dxzo, n=0,1,2,....

Therefore, it suffices to show that if f € L*(IR) satisfies the condition (B), then

f =0 ae. Now let f € L*(R) satisfy the condition (B). Put g(x) =f(x)e‘%, then
g € L'(R), by the Schwarz inequality and

&) = e ™f (x) e_% dx

7l

7 L (Bt

butfor N € N,

3 E et < et

of which the function on the right-hand side is integrable because

1

N S R

o0
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It follows then from LDCT that
1 o0 N (—itx)" £ )
o(t) = —— lim x)e 2
60— [ m (2550

i, 7 [ (Bt ) e

Clim 3 ‘t)" / Fx)e T xdx = 0

N—oo /27 n=0

by condition (B). Thus, § = 0and by Theorem 7.1.4,¢(t) = (§)(t) = Oa.e.and hence
f=0ae. |

A remarkable application of the Fourier integral is the Poisson summation formula,
which states that

3 fonm) = 2= 3 jon)

for integrable functions f satisfying certain condition. Usually, the Poisson summation

formula is established for f € C*(IR) such that

If ()] +|f' ()] + |f"(x)] < C(1 +x0)7, xeR,

for some constant C > 0. We shall prove the formula under weaker conditions. For an
integrable function f on R and n € 7Z, let

fu(x) = f(x +27n), x€R.

We first claim that {f,(x)} = {f,(x)},cz is summable for a.e. x in R. For this pur-
pose it is sufficient to show that {f,(x)} is summable for a.e. x in [-7, 7], because

if {f,(x)} is summable, then {f,(x + 27m)} = {f2m(x)} = {f,(x)} for any m € Z, and
hence ), , fu(x+27m) =) _, f.(x). Now,

’ PRIACIEEED ’ |fu(x)|dx = /R [f|ldr < o0

-7 ne€Z nez J -

implies that ) © _,, |fu(x)| < oo fora.e.xin [-7, 77 ]. Hence {f,(x)} is summable for a.e.
xin R and if we put [f](x) = Y, fu(x), if {f,(x)} is summable and [f](x) = 0 other-
wise, [f] is defined on IR and periodic with period 277. Furthermore, [f] is integrable on
(-7, w]. The function [f] is called the stacked function of f. If we define for j € IN the
function [f]; on R by

[f]](x) = an(x)x

|n|<j
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then [f]; — [f]a.e.and |[f];| < [|f|] a.e. Since [|f|] is integrable on [-, 77 ], it follows
from LDCT that [f]; — [f]inL'[-7, 7 ]. We have proved the following lemma (7.1.1).

Lemma7.1.1  Suppose that f € L' = L'(R). Then [f]; — [f] ae. as well as in
L'[-7,7m]asj— oo.

In the immediate following, for f € W' (IR) we always take a version of f which

is AC on every finite closed interval of R (note that since W!(IR) =V(\)/'1’1(R),
f(x)= fixoof/(x)dx fora.e. x).

Lemma7.1.2 If f € WY(R), then [f] is an AC function on [-m, 7] and satisfies

[f1(=m) = [f1(7). Furthermore, [f] = [f'] a.e.

Proof We take a version of f which is AC on every finite closed interval of R. Then f’
exists a.e. and is integrable on IR; and since

x+2nm

fulx) = f(x + 2n7) = f(-7 + 2n7) +/ f'(s)ds

() + ff,;(s)ds 1)

for x € [-m, ], we have

1) = [ () + / L xe [m 7). 72

As [f'];— [f'] in L'[-7, 7] as j—00, by Lemma 7.1.1, Iimj_)oof_’; [f"1i(s)ds =
[ [f'1(s)ds for x € [-7, 7 ]; we conclude that lim;_, o [f];(~7) exists and is finite
by letting j — 00 in (7.2) for x such that lim;_,o[f];(x) = [f](x). Because [f| €
WP(IR), we also know that lim;_, oo [|f|];(-7) exists and is finite, from which fol-
lows that {f,(-7)} is summable and hence [f](-7) = limj_, o [f];(-7 ). Now for any
finite subset F of Z and x € [-7, 7],

[ s

implying that { f_tr f(s)ds} is summable for each x € [-7,7w]. We then infer from
(7.1) that {f,(x)} is summable and [f](x) = limj_, oo [f];(x) for each x € [-7, 7].
Nowletj — 00in (7.2); we have

X

< F[fr:(s)|ds < [x[v/|](s)ds < 09,

—T ne

>
neF

1) = [f1(x) + / F16ds xe 7

consequently [f]is AC on [-7, 7] and [f]" = [f'] a.e. on [, 7 ]. Finally, [f](-7) =
Yonenfa(-70) = 2 cq o (-70) = 3 fu(mr) = [f1(70). ]
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Lemma 7.1.3 Iff € WH(RR), then

keZZf(an) = hm «/_ |y%<]f(n)

Proof Since [f] is an AC function on [-7, 7 ], by Lemma 7.1.2, from Theorem 5.9.6 we
know that

1(0) = lim §([f],0) = lim —— (k),
[f (f], \/— |k|Z<I[f

where ff\](k) , k € 7, are the Fourier coefficients of [f]; but

Gl " xe‘ikxx:; i x n)e ™ dx
U](k)—rf AWe = —— [ 5 fler2mmeted

- neZ

= — x n)e ®dx = ! x)e ™ dy =
: e Y WO )

\/EHEZ
hence, [f](0) = Y, ., f(2mn) = lim;_, \/;271 Z|k|§jf’(k). [ |

Theorem 7.1.5 (Poisson summation formula) Iff € W>'(IR), then {f(n)} is summable
and

n%f(?,nn) = «/—_ n%f(n) (7.3)

Proof In view of Lemma 7.1.3, it is sufficient to show that {f(n)} is summable.
Since f € W*!'(R), f' € W' (R). Then [f'] = [f]' is AC and is therefore in
L*[-m,7]. Now,

i

= _L g xe,ikx - xelkx = —
[f](k)—ﬂ[n[f]() /[f() de= [0,

ifk # 0 (note [f](-m) = [f](7r)), hence,

> ||

keZ

OIS - 7w

k;lo

A|+ (WZ) (kEZZ‘[f <k>\) < o

because ), |[f (&) = Ilf1'113- Thus {[f (n)} is summable. We have shown

in the proof of Lemma 7.1.3 that f(n) = [f](n) for n € Z, hence {f(n)} is
summable. (]

IA
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Example 7.1.3 Let g(x) = Vil 7, and for t > 0 let g(x) = «/21—7”672%, x € R. The
family {g; } is called the Gauss kernel. From Example 7.1.1 (ii) and Exercise 7.1.4 (ii),
&(&) = \/;2767% . Using (7.3), we conclude that

_@mn)? 1 w2

1
—_— e 22 = — e 2,
A/ 2t n% 27 n%

from which on replacing t by 27 v/t, we have

—Zezr—Z‘“’” (7.4)
V2t wez neZ

The relation (7.4) is Jacobi’s identity for the theta function 6,
1 1
o(t) =t 20 (?), t>0, (7.5)

where 6(t) =) e,

Example 7.1.4 Consider the Poisson kernel P;(x) =
Cauchy integral formula, if § > Oandy < —t,

e % 5 (4) g g6t b4
[ () ST
r (x—it)(x+it) Jr (x+iy—it)(x+iy+it) —2it t

-£t . —i§z 3
where let is the value of the function eth at z = —it. But,

t > 0, x € R. From the

T t2+x2 ’

—i& (x+iy) —iEx
i N W
R (x+iy)? + £ R (x+iy)? + £

asy — —00. Hence [} %dx = ZetifE > 0.
If§ < 0,takey > tand then lety — 00; we obtain f]R poave) dx = —e‘gtbythe same

argument. Thus P,(&) = 7 NER xzf; dx = E |§|t.Apply (7.3); we have

t 1 1 1+ef
PQnr)=—Y — = L — 7.6
SR S e w B e 9
or
3 1 w1+
w7 2+ n? Tt -t
on replacing t by 277t. When t — 0+, (7.6) becomes > -, nz = %2,

Exercise 7.1.6 Show that f]R e lEltefxdg = 271 P,(x) and verify thatﬁt(é) = ﬁe"ﬂt,
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7.2 Fourier integral on L2

The Fourier integral for L* functions will be defined by using properties of the Fourier
integral operator on the space of rapidly decreasing functions.

Denote by S the space of all complex-valued functions f in C*°(IR") such that for all
multi-indices o and

Pus(f) = sup [x0f(x)] < o0,
xeR"

where x* = x{" - - - 2% and 8°f(x) = a?wg = ().
S is called the Schwartz space in ]R” and functions in S are usually referred to as

rapidly decreasing functions. For each pair &, B of multi-indices, P,g(-) is a semi-norm

on S. Note that (i) D := C*°(IR") C S;and (ii) the function e . isin S.

Define a metric p on S by

Pys(f-g) 1

1+Pa,3(f—g) n|“|n|/3|'

(7.7)

1
P8 = 2 A
a,p €€

- 1 Pag (f-g) 1 - . 1 -
Since {elalelﬂl v R }o,p is summable with sum < Zj,kzo s P(f,8) isa

nonnegative finite number.

Exercise 7.2.1 Show that p is actually a metricon S.
We observe first the following elementary inequalities:
(1+ 2DV <2Y(1 + |«N), N >0, x € R

n 7.8
(¥ =8 SpslY, Nz xeR, 78)
]:

where § = minjy-, Z;Zl |xj|N. For the first one, we may assume that |x| > 1, then
(1+]x)N < @x])N < 2M(1 + |x[V); while the second inequality follows by first con-
sidering the case |x| = 1 and then reducing the general case to this particular case.

Proposition 7.2.1 Forf € S,x*8°f € L' for any multi-indices & and B.

Proof

f]m Ix"aﬁf(x)ld“/ 11+ DI () s | e
/ |xa|(1+3 lefl"”)la’gf(x)l T

1
<[ <o
Rre 1+ |x|*

for some M > 0, where § = miny- IZ L]t (cf (7.8)). |
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Now let f € S, then f € L' by Proposition 7.2.1, and f is defined. We show the
existence of 8%_ f(&) as follows. Consider for h # 0 the difference quotient
]

f(él)-'-)5’+h;---)$n) _f(g) 1 i .x(eiihxl _1)
7 " n) f St

Since | Z‘l | < |%j| and |x;||f| € L', by Proposition 7.2.1, it follows from LDCT that
a%f(é) exists and

—ih;
€

3 . o~
a—%f(é) = (=i)xf ().

By Proposition 7.2.1, we can repeat the above argument with f replaced by x;f, and obtain
for any multi-index « the following formula:

011 (8) = ()l (). 7.9

Since x*f € L' and ;"5‘ is uniformly continuous, Proposition 7.2.2 then follows
from (7.9).

Proposition 7.2.2 Iff € S, thenf € C°(R").

Using the Fubini theorem and integration by parts, one asserts

IPf(E) = ()PlEPf(#) (7.10)

for any multi-index . Combining (7.9) and (7.10), one obtains

(IR 32 (£) = 3 (xf) (&) .11

for any multi-indices « and B.

Theorem 7.2.1 FS C S, and F is a continuous map with respect to the metric p on S
defined by (7.7).

Proof Thatf € S implies that f € S follows directly from (7.11):

sup EPEFE)] < 16w = 10 DIl < oo

To see that F is continuous, first observe that a sequence {f;} C S convergestof € S

in the metric p defined by (7.7) if and only if limj_, oo Peg (fc —f) = O for each pair ¢,
B of multi-indices. Now from (7.11),

Prali =) < 10806 e~ )loo < 19815 G~ )]
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observe that if p(fi, f) — 0, then 8 [x* (fi(x) - f(x))] — 0 uniformly on R" and

2 (o) -S| = 1L+ ™31 o) - F

1+ |x|"+1.

LDCT can be applied to obtain lim;_ o ||8/3 [x*(fi —=f)1ll1 =0, implying that
limg o Ppo (fi - f) = 0 and consequently p(fi, f ) — 0. |

Since Ff = Ff , where f (x) = f(~x), Fis also a continuous map from S to S w.r.t. the
metric defined by (7.7).

Taking into account Theorem 7.1.4 and the fact that S C L', we conclude that
Theorem 7.2.2 holds.

Theorem 7.2.2 (Fourier inversion theorem) Both F and E are continuous and bijective

from S to S and F(Ff) = f = F(Ff) forf € S.
Theorem 7.2.3 (Parseval relations) For f, g in S the following relations hold:

@) [ fgdn" = [ fadr;
(ii) [ fgdr" = [fadr"

Proof (i) is the conclusion of Exercise 7.1.5; (ii) follows from (i) by replacing f and g
by f and g respectively. |

Exercise 7.2.2 Let (f,g) = [ fgd\" be the L? inner product of f and g in S. Show that
(i) and (ii) in Theorem 7.2.3 are equivalent and are equivalent to any of the following
relations:

@) (f,9) = (£,8);
(b) (f;g) = (]A()g)

We are ready to define the Fourier integral for functions in L*. Since C*°(IR") is dense
inL?,1 <p < 00,and C°(R") C S, Sisdensein L*. For f € L? thereisa sequence
{fc} in S such that lim;_, « ||fc - fll2 = 0; a fortlorl, {f} is a Cauchy sequence in L*. By
relation (b) in Exercise 7.2.2, ||fc - fill3 = |[fk f1||2 for all k, I in IN, therefore {fk} is a
Cauchy sequence in L and converges in L* to g € L*. We claim that g is independent of
the sequence {f } in S, which converges to f in L*. Suppose that {g; } is another sequence
in S that converges to f in L?; then limy_, o ||y — gll2 = 0, but |[fk =82 = fe - gll2
implies that limy_, oo g = limg_, o0 fk = gin L%, Thus g is uniquely determined by f in the
way we specify; we then denote g by f for the moment. From the definition, one verifies

readily that (f,g) = (f/, g)forf,gin L2

Lemma7.21 If f € L' N L% thenf =f'.
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Proof Fix a Friederich mollifier {J; };~ constructed from a mollifying function ¢ > 0.
For & > 0, let f, = fI5, (o). Then Jof; € C°(IR") C S. We claim that J.f; — f in
both L' and L*. Actually for p = 1 or 2, we have

Tefe = fllp < e (fe = F)llp + ITef = £l
= ”fs _f”p + “]sf _f”p — 0

ase& — 0.From [|Jf: - f|l1 = 0,as& — 0, we infer that]gfg — funlformly on R";
while from ||J.f. — fll. = 0, as € — 0, we conclude that ]8f8 — f in L? and, con-
sequently, there is a sequence of ¢ tending to zero such that ]8f8 — f a.e. on R".

Hencef = /' a.e. |

Because of Lemma 7.2.1, it is natural to call f the Fourier integral of f in L* and also
denote f’ by 1. Slmllarly f is also defined forf € L*. We shall also use F and F to denote the
mapsf > fandf > f respectively from L? onto L2. Note that (f,g) = (f,#) = (f, &) for
f,gin L%

Exercise 7.2.3 Show that both F and F are linear bijective isometries from L? onto itself
andF = F.

Exercise 7.2.4 Suppose that f € W*2(R"), k € N. Show that 3f(£) = (i)llgf ()
fora.e.& € R"if|a| < k. (Hint: W5 (R") = VT/""Z(IR”).)

7.3 The Sobolev space HS

For eachs € R, an inner product (-, -); on S is defined by

(. 9). = f (1+ £ P)FE)3E)de;

and the associated norm on S is denoted by | - |,. Thus,

= (f(l + IEIZ)SV(S)IZdS);

Asusual, (f,g) = [ fgdA" is the inner product of f and g in L2
A few basic properties of inner products (-, - ), are now listed.

(1) (f)g) = (f;g)O-
(2) |(f,2)o| < |fls|g|-s- This follows directly from

(F.8)o = / (L4 JE D)) + |6 P)2g(&)de,

by Schwarz’s inequality.
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(3) |f]s = maxges |(|f;|g)°| . To see this, one observes first from (2) that
o0 8l

|(f,8)o]
Ifls = sup ———;
ges |g|,s

g7

now, since (1 + |§|2)5f(f§) € S, thereish € Ssuchthat (&) = (1 + |E|2)5f(§),

and hence,
Ih2, = f (1+ [EP)(1 + |EP)* () e
- f (1+EPYFE) e = If
(F,h)o = f NG
resulting in % = |f]s-

(4) |9f|s < |f|s+|a|- This is obvious by (7.10).

The Sobolev space H* is the completion of S under the norm | - |. The Sobolev space
H® is a Hilbert space for each s € IR. Observe that in the case s > 0, if {f; } is a Cauchy
sequence in S in the norm | - |, then it is a Cauchy sequence in L?, hence it is legitimate
to identify each element of H¥, s > 0, with an element of L*. Those elements of L* which
belong to H* can be characterized as follows.

Theorem 7.3.1 Anelementf of L* isin HY,s > 0, if and only if there is a sequence {f,} C S
such that ||fc - fll, — 0ask — oo and sup, |f¢|s < oo.

Proof 1f f € H’, there is {fy} C S such that |fy - f|; = 0 as k — 00, a fortiori, ||f -
fll2 = 0Oask — ooandsup, |fi]|s < oo.

Conversely, suppose that there is a sequence {f;} C S such that ||fy - f|]l, — 0

and sup, |fi|s < 00. By the Banach-Saks theorem (Theorem 5.10.2), there is a sub-

sequence {g¢} of {f¢} and g in H® such that |§ ij:l gk —g|s — 0as N — oo, afor-

tiori, ||§ Ziilgk - glla = 0.But||gk - fll» — Oimplies that ||§ Zfilgk ~fll.—0,
and consequently f = g. Thus f € H°. |

Exercise 7.3.1 Show that if k is a nonnegative integer, then W*2(R") = H¥, in the
sense that W*?(IR") = H* as set and the norms || - || k2 and | - | are equivalent.

We will now show that in tempo with s becoming larger, elements of H® become
smoother. This is the content of the Sobolevlemma.
A preliminary lemma is shown first.
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Lemma 7.3.1 Suppose thats € R and k is a nonnegative integer such thats — k > 7; then
there is C > 0 such that

max > [3°f(x)| < C[f];

.’X!E]R" C{|<k

forf e S.

Proof Since 8"."}' (&) = (i)lgef(g), 8’0‘\f is in S; it follows from Fourier’s Inversion
theorem (Theorem 7.2.2) that

3°f(x) = )" / 5 (i)llg o (&) de

- @) () / FEsa (14 ) e (1 + [gP) S

and hence, when || < k,

) < ) f B+ [P @) e / (14 £ P)sde

|%-|2|(x
= [ s e PO P
Sclﬂs’

where we have used the obvious fact that [(1 + |§ |2)k‘5d§ < 00. Thus,

max >, |3°f(x)] < CIf]s,

x€R" |O( <k

with C > 0 depending only on s, k, and . |

Theorem 7.3.2 (Sobolevlemma) Suppose that s € R and k is a nonnegative integer such
thats —k > %; then H* C CK(R").

27

Proof Considerf in H'. Thereisasequence {f;} C Ssuchthat|fy - f|; — 0ask — o0;
{fi.} is therefore a Cauchy sequence in H*. From Lemma 7.3.1, there is C > 0 such that

max Y [9%(fu () ~fi(®)] = Clfu il — 0

xeR" |0l|<k

as m,l— 00, which means that {f;} converges uniformly on IR" to a func-
) ) g Y

tion g in C*(R"). Then, fIxISR |fi(x) — g(x)|*dx — 0 as k— oo for any R > 0;
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but limg, Lfk -f |5 =0 implies that limj_, o ||fs —fll2 =0, and therefore that
f|x|<R |fi(x) - f(x)]*dx — 0ask — 00. Now,

{ () —g<x>|2dx} < { [y —fk<x>|2dx}
[«|<R |«|<R
+ { e |fi (x) —g(x)|2dx} -0

as k — o0, hence, flxliR |f (x) — g(x)|*dx = 0 and consequently f = g a.e. on B (0).
Since R > 0is arbitrary, f = ga.e.onR". |
7.4 Weak solutions of the Poisson equation

We illustrate the use of Sobolev space in this section by considering the existence and
regularity of weak solutions of the Poisson equation,

Au =f. (7.12)
A classical solution u of (7.12) on an open domain 2 of R" is a function u, defined on

Q such that Au(x) = f(x) for a.e. x of Q2. Iff is continuous and u is a C? classical solution
of (7.12) on €, then for any v € C>°(£2), we have

/fvdk" = vaud)»” =/uAvdk”.
Q

Therefore, when f is locally integrable on €2, a locally integrable function u on €2 is called

a weak solution of (7.12) if
/fvdk" = / uAvdA"
Q

Exercise 7.4.1 Show that a C* function u on € is a classical solution of (7.12) if and
only if it is a weak solution of (7.12).

forallv € C°(2).

We shall first prove the following regularity result for weak solutions of (7.12).

Theorem 7.4.1 Suppose that f € C*°(2). Then any locally L* weak solution of (7.12) is
in C°(Q).

The proof of Theorem 7.4.1 is preceded by some preliminaries relating to Friederich
mollifiers. We fix a Friederich mollifier {J; }~o with a mollifying function ¢ which is
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nonnegative and satisfies the symmetry property: ¢(-x) = ¢(x) for all x in R". For
example, we may take ¢ to be the function defined by ¢(x) = ¢ exp{—ﬁ} if x| < 1

and ¢(x) = 0if |x| > 1, where cis a positive constant chosen so that f ed\" = 1.
Lemma 7.4.1 Let{J, } be a Friederich mollifier as previously specified.

D) Wefll, < lfllpforf € L/, 1 < p < o<

(i) Uef,8) = (f,Jeg) forf,g € L.
(iii) Iff € C'(IR"), then a%}v]‘,gf(x) =]8§—9J;(x)forallx eR'andj=1,...,n
(iv) Iff € S, then].f € S and |Jof|s < |f]s-

Proof (i) is known in Section 4.10; (ii) follows directly from the definition of J. and the
assumption that ¢ (—x) = ¢(x); while (iii) is a consequence of applying LDCT to the
difference quotient involved in the definition of partial derivatives; it remains to show
(iv). Since Jof = f * @, ]/g.\f = (2)3f - ¢¢, which implies immediately that]/J €S,
but by the Fourier inversion theorem, J.f = U:} ) and hence J.f € S.Now,

ST = f (1+ [P T &) Pde = ()" / (L+ PP TP ()P e
< lleelh / (1+ [EP)IF(E)|dE = [f|

Hence |J.f|s < |f]s- |
Lemma 7.4.2 Thereis a constant C > 0 such that
bl = C(1Av]a + [ole)
forallv e S.
Proof For& € R", we have
L+ [EP) = 1+206 + || < |E]* +2(1 +|&)) < 2{|&* + (1 + &P}

hence,
o = [Py P
<2 [@e Py el + (e P
2| [y merde « [avier) pepa]

= 2(|Av[2, + [v2)
= 2'(|AV|5—2 + |V|5—1)2;
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and consequently,
[ols < V2(1 A0 + [v]scr).

Proof of Theorem 7.4.1 For x € 2, thereis g € C>°(2), which takes a constant value
in the neighborhood of x; it is therefore sufficient to prove that gu € C*°(IR") for each
g € C(Q).

Consider nowany g € C°(2). In order to show that gu € C>*°(IR"), it is sufficient
to show that gu € H* foralls € N, by the Sobolevlemma (Theorem 7.3.2); but since
] (gu) — gull, = Oase — 0, from Theorem 7.3.1, it is sufficient to show that given
g € C°(R2), foreachs € N, there is a constant C; > 0 such that

Je(gu)|s < C, &>0. (7.13)

When s = 0, (7.13) is a consequence of ||J:(gu)|l> < llgull» (cf. Lemma 7.4.1 (i)).
Suppose that (7.13) holds for s — 1, we are going to show that (7.13) holds for s. Using

the Fubini theorem and integration by parts, we have forv € S,

(A(]e(gu)); V) = (]a(gu); Av) = (g“: A]sv) = (”;g(A]sV))

= (1, A(glov)) - (u,z - 98 ey

j=1 ax] ax]

+ Jev - Ag)

- (925 (1 (452 ) 52 ) + Otusg)0)

0x; Xj

where Lemma 7.4.1 has been applied. Hence,

|(AJ(gu), v)|
)
< [v]os {l]e(gf)|5—2 +2§ Je (”s_i)

where (2) and (4) in Section 7.3 are used. Thus, by (3) in Section 7.3, we conclude
that
dg
Je <u a_x])

[Je(gu)]s < C(|ATe(gu) |52 + |Je (gu0) ]s-1)- (7.15)

ov

< {|]€(gf)|s—2lv|2—s + Zé:

s—-1 1-s

+ US(uAg) |s—1 |V|1—s}

+ |]e(uAg) |s—1 } ’

s—1

+ |]8(uAg)|5_1. (7.14)
s—1

A0 (@))]e2 < Je(@)la+2)
j=1

Now from Lemma 7.4.2,
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Substitute (7.14) into (7.15); we have

g
Je <u8_x]>

But |J:(gf)|s-2 < |gf|s-2) by Lemma 7.4.1 (iv), and

dg
Je (ua_x])

by the assumption that (7.13) holds for (s — 1). Therefore,

|]8(gu)|s f C/ (Us(gf)lsd +2 i
j=1

+ [Je (uAg) |1 + I]s(gu)lsq) -

s-1

+ |]8(uAg)|s41 + |]8(gu)|sAl = C;)

s-1

2>
j=1

e (gu)|s < C, = |gf]o + C- n

Regarding the existence of weak solutions of the Poisson equation (7.12), we now

01,2
establish the existence and uniqueness of a weak solution of (7.12) in W (£2) when Qs

bounded and f € L*(2).

Theorem 7.4.2 Suppose that Q is bounded and f € L*(S2), then there is a unique weak
solution of (7.12) in I/T/LZ(Q).

Proof 1t is only necessary to consider the case that f and solutions to be sought are
real-valued; therefore IX/LZ(Q) is assumed to consist of real-valued functions. By the
Poincaré inequality (Theorem 6.6.3), IX/I’Z(Q) can be considered as a Hilbert space

with the inner product

n du 0
o L g

=1JQ ax, 3x]

()}

012
for v in W (). Since |(f,0)] < flhIvlls < Iflallvllz < Clflla|v]1s for al
012
v eW (2),by(6.31), thelinear functional v > — fovd)»" is abounded linear func-
012
tional on W (£2); it then follows from the Riesz representation theorem that there is

012
u €W (), such that

" [ 9w D
v L g

=1JQ 8x,- 8x,—

_ /Q fod = (v, u),

012
forv eW (L) and therefore forv € C>°(Q) in particular. Butifv € C°(2),

v 0 0?
B0 [P
o Ox; 0x; o ij
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foreachj = 1,...,n; thus we have

ffvdk" =/uAvd)»"
Q Q

forv € C>°(L2). Hence u is a weak solution of (7.12).

012
Suppose now that w €W (£2) is also a weak solution of (7.12). Then,

0 0
() 00 0
o Ox; Ou;

/Q (= ) AvdA" = - z

forallv € C2°(2). We claim now that

0 0
(W=w) 0 o g
o Ox; O

Z

012 012
forall v ew (£2). Let v eW (L); choose a sequence {v;} in C>°(£2) such that

limg_, o0 |V = vi|12 = 0; then,

Z/ Ou=w) v 1o
i1Ja

_ X”:/‘ O(u—-w) %d)»” Z (u—-w) B(V—vk)
i1Ja  0x Xj du; GEY
n d(u-w) d(v-
_ / (u-w)d(v Vk)d)\ ’
=1JQ ax] 896]
and consequently from Schwarz inequality,
d 0
(- w)—vd)un |(u—w,v—vk)/1| S<|u-wlia-|v-vlip—> 0
dx;  0x;

as k — o0. Hence,

0 ]
aw) o0

dx;  Ox;

Z

012
forv ew (). Since u - wEW (Q),wehave

n a _ 2
= [ (u W)} A" = |u-w]?,,
i-1Ja 0x; ’

012
implying that u = w. Therefore, (7.12) has a unique weak solutionin W (£2).
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7.5 Fourier integral of probability distributions

The Fourier integral of probability distributions will be discussed in this section, with
an application to the central limit theorem in probability theory. This is preceded by a
very brief introduction of the necessary basic notions, terminology, and notations in the
probability theory, as formulated by A.N. Kolmogoroff.

Kolmogoroff’s formulation of probability theory is based on measure theory. A meas-
ure space (2, X, P) with P(Q2) = 1 s called a probability space, of which 2 is called the
sample space; and sets in the o -algebra X are called events (more precisely, measurable
events); and for A € X, P(A) is referred to as the probability of event A. A measur-
able function on the sample space €2 is called a random variable (often abbreviated as
r.v.). Random variables are usually denoted by capital Roman letters, such as X, Y, Z, ...
etc. It should be noted that a probability space is usually a construct suggested by first
observations of outcomes of experiments on a random phenomenon; these outcomes are
referred to as sample points and form the sample space 2. Such a construct provides a
solid mathematical framework to discuss questions related to the random phenomenon;
such questions are usually addressed in terms of random variables. Our construction of
the Bernoulli sequence space, starting with Section 1.3 and through Examples 1.7.1,2.1.1,
and 3.4.6, illustrates revealingly the point we just made. Henceforth, random variables
are assumed to take finite real value P-almost everywhere and hence for a random vari-
able, we always consider a finite real-valued version (for a probability space, P-almost
everywhere is expressed as P-almost surely and is abbreviated as a.s.). Suppose that X
is a random variable; if fQ XdP exists, it is called the expectation of X and is denoted
by E(X); if E(X) is finite, [, |X - E(X)|*dP is called the variance of X and is denoted
by Var(X). The o -algebra o (X) := {X'(B) : B € B} is the smallest subo -algebra of
relative to which X is measurable; as implied by Exercise 2.5.10 (ii), if E(X) is finite, the
family { [, XdP : A € 0 X} characterizes the r.v. X, or intuitively, { [, XdP : A € o(X)}
is the information one obtains by observing the r.v. X. This suggests considering o (X)
as where the information regarding X resides. Accordingly, the o -algebra X is where
information on all random variables resides. As we know, in Example 4.3.2, the Bernoulli
sequence space and ([0, 1], B|[0, 1], A) are measure-theoretically the same space, hence
the choice of probability space is for convenience, and not of primary importance.

The most simple but fundamental notion in probability theory is that of independ-
ence. We shall discuss independence at some length to give a touch of the flavor of a
basic aspect of probabilistic argument; however the notion of conditioning, basic and
fundamental as it is, will not be touched upon here.

In the following, random variables are in reference to a fixed probability space
(2, %,P) and o-algebras on 2 are always subo-algebras of X. A finite family
{Z1,..., Z} of 0 -algebras on 2 is said to be independent if for any choice of Aj € %,
i=1...,k P(ﬂ]l.cz1 Aj) = H}il P(A;) holds. A family {X, } of o-algebras on €2 is said
to be independent if all of its finite subfamilies are independent. If {£,} is independ-

ent, then X s are said to be independent. For a family {A,} of events, the o -algebra
0 ({Ay}) is abbreviated to 0 (A} s); in particular, if A € X, 0 (A) = {f, A, A5, 2}. Events
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Ay, o € I, are said to be independent if {0 (Ay)}ues is independent. It is readily veri-
fied that events A/ s are independent if and only if for any finite set of indices ¢y, . . ., &,
P(mil Aaz) = l—[;;l P(Aaz)'

Given a sequence Aj,A,,... of events, let 7 =7 (A, A, ...) =2 0(A,
Aps1, - - -). Events in 7 are referred to as tail events of the sequence {A,}. It is evid-
ent that liminf, . A, and limsup,_, . A, are tail events of the sequence {A,}. The
following zero-one law of Kolmogoroff is a far-reaching consequence of the notion of
independence.

Theorem 7.5.1 (Kolmogoroff's zero—one law) If Aj, A, A, . . . are independent events,
then every tail event of {A, } has probability zero or one.

Proof Suppose that A is a tail event of the sequence {A, }. Forn > 2, let £ be the family
of all such B € %, with the property that

P(B;N---NB,; NB)=P(By)---P(B,1)P(B),

where for each j=1,...,n -1, B; = Aj or Q; then L is a A-system. Next, let P be
the family of all finite intersections of A, Ay41, . . . ; P is then a w-system and P C L.
Hence o (P) C L by the (17-1) theorem. But A € 0 (A, A1, -..) =0 (P) C L;
this means that A, A, . . ., A, ; are independent.

We now claim that P(A N B) = P(A)P(B) for B € 0 (A}, A,,...). For this pur-
pose, let L' ={Be€ X : P(ANB) =P(A)P(B)} and P’ be the family of all finite
intersections of Aj,A,,...; clearly, £ is a A-system and P’ a m-system. The
fact that A, Ay, ..., A, ; are independent for each n > 2 implies that P’ C L.
Thus, 0(P’) =0 (A, Ay, ...) C L, by the (7-1) theorem, which means that
P(ANB)=P(A)P(B) for B € 0 (A}, A,,...); butsince A € 6(A},A,,...), P(A) =
P(A)®.Hence P(A)=0or 1. [ ]

Exercise 7.5.1 Let 7 =() 0(A, Au1,...), where A}, Ay, ... are independent
events. Show that if X is a 7 -measurable random variable, then X = constant a.s.

In accord with notations for certain sets introduced in the second paragraph of
Section 2.2, if T is a map from a set 2 to a set S, the set T"'A, A C S, will be denoted
by {T € A}; and if T, : @ = S,, @ € I, then ﬂael T&lAa, Ay C Sy, is denoted by
{T, € Ay, a € I};inparticular, if Xj, . . ., X; are random variables, then ﬂ,k:l{X] € B]-} =
{Xj € By, ..., X; € Bi}. When a probability measure P is concerned, P({- - - }) will be
abbreviated to P(- - - ).

Given a family {X,} of r.v.’s, the smallest o -algebra relative to which every X, is
measurable is denoted by o (X/,s); in particular, 0 (X, . . ., X ) is the smallest o -algebra
relative to which Xj, . . ., Xj are measurable.

Exercise 7.5.2 If Xj,...,X; are r.v.’s, let X = (Xj,...,X;) be the map from Q to
RF defined by X(w) = (X;(w),...,Xi(w)) for ® € Q. Show that o (X, ..., X;) =
{X'B: B e B}.
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We shall call a map X : @ — R¥, k> 2 a random vector if X"'B € X for all
B € BY in other words, X is a random vector if X is E|Bk-measurable. Put X =
(Xi,...,X;), where Xj, ..., X; are the component functions of X. Since {X'B: B €
B} 5 U]’;l{Xj_lBj : B; € B}, we conclude that if X is a random vector, then X, . . ., X
arer.v.’s; on the other hand, if X, . . ., Xy are r.v.’s, then X is a random vector, by Exercise
7.5.2. Thus, X = (X}, ..., X}) is a random vector if and only if X, . . ., X are r.v.’s.

A family {X, } of r.v.’s is said to be independent if {o (X,,)} is independent; then we
also say that X, s are independent.

Exercise 7.5.3 Suppose that {X, } is an independent family of r.v.’s and that {g, } is a
family of Borel functions on IR. Show that {g, o X, } is an independent family of r.v.’s.

Lemma7.5.1 IfX,,...,X, n> 2, are independent r.v.’s then for integer j, 1 <j < n,
o(Xy,...,X;)and 0 (Xj,y, . .., X,) are independent.

Proof PutX = (Xy,.. ,X]) andY = (Xj+1, ...,X,). In view of Exercise 7.5.2, we need
to show that

P(XeBYeC)=P(XeB)-P(YeC) (7.16)
forall B € B and C € B"7. Consider B € B,1=1,...,n; we have
P(X€B; x---xB,Y €Bjy; x---xB,) =P(X; €By,...,X, €B,)
= ]l[P(X,eB,):P(ieB1 X - x Bj)-P(Y €Bjyy X -+ X By),
I=1

hence, (7.16) holds for B = B1/>f . >iBj and C = Bj;; x -+ X 1}11 FixBjJrl,\. ..,B,
and let N ={BeB:P(XeBYEB, x--xB,)=P(X cB)P(Y € B,
X -+ x B,)}. Evidently, \ is a A-system containing the family P of all sets of the
formB; X --- X Bj,where By, ..., B;arein B.Now Pisan-systemand o (P) = B,
therefore B D N D o (P) = B. Thus N = B'. This means that

P(XeBY€B, x--xB,)=P(X€B)-P(Y €Bjy; x---xB,)
forB € B and By, ..., B, in B. Next fix B € B/ and let
N ={CeB7.:PXeBYeC)=P(XeB) -P(Y e O}

Argue as in the immediately preceding part of the proof, we infer that N = 3"7 and
finish the proof. |

Lemma 7.5.2 SupposethatX;,...,X,,n > 2, areindependentr.v.’s,andlet1 < j < nbe
an integer. Then gy o (Xy,...,X;) and g o (Xj,1,...,X,) are independent if g and g,
are Borel functions on R/ and R respectively.

Proof Let B and Cbe Borel sets of R. Since {g; o (Xj,...,X;) € B} = {(Xy,...,X)) €
g;lB} and {g o (Xj+1, ...,X,) eC}= {(Xj+1, ..., X,) € gEIC}, and since g[lB
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and g'C are in BB and B"7 respectively, we know from Exercise 7.5.2 that
{g10(Xy,...,X;) € B} and {g o (Xjs1,...,X,) € C} are in 0(Xy,...,X;) and
O(X]-H , -, X,) respectively. It then follows from Lemma 7.5.1 that

P(gl o (X1)~ . ))(;) € B;gz © (‘Xj+1) c -)Xn))

:P(glo(leu-;}(j)EB)'P(gZO()(jH;-H;Xn)EC)' u

Theorem 7.5.2 If X and Y are independent integrable r.v.’s, then XY is integrable and
E(XY) = E(X) - E(Y).

Proof By Exercise 7.5.3, X' and X* are independent, where each of the symbols &;
and ¢, is either + or —. We may therefore assume that both X and Y are nonnegative.
Observe then that if S; and S, are simple functions measurable w.r.t. ¢ (X) and o (Y)
respectively, then E(S;S,) = E(S;) - E(S,). Now, choose increasing sequences {S,(f) }
and {Sflz)} of simple functions such that each Stgl) is 0 (X)-measurable and each S,(f)
is 0 (Y)-measurable; and furthermore Sgl) /" X and S,(f) /" Y pointwise. Using the
monotone convergence theorem, we have

E(X) - B(Y) = [ lim E(S)] [ tim B(S®)] = tim [E(s") - E(S®)]
= lim E(S\Vs?W) = E(XY). n

Corollary 7.5.1 If X;,...,X,, n > 2 are independent integrable r.v.’s, then X; - - - X,, is
integrable and E(X; - - - X,,) = E(X;) - - - E(X,,).

Proof When n = 2, this is Theorem 7.5.2. Suppose now that n > 3; then Xj - - - X, 4
and X, are independent, by Lemma 7.5.2, and the corollary follows by
induction on n. |

Corollary 7.5.2 IfX;,...,X, are independent and integrable, then

Var (Xn: Xj) = Xn:Var(Xj).
j=1 j=1

Proof

(%, - EC5)) + S0~ B9} X - E(Xo})

J

Y Var(X;) + %E({X] - E(X) HX, - E(X)}
-1 j
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because X; - E(X;) and Xi — E(X;) are independent, by Exercise 7.5.3 if j #k,
and hence E({X; - E(Xj) X - E(Xi)}) = E({X; - E(X))}) - E({X; - E(X)}) = 0,
by Theorem 7.5.2. ]

A probability measure 1 on B is called a probability distribution and the distribution
X¢Pofar.v. Xis called the probability distribution of X (recall that X, P(B) = P(X € B)
for B € B). A family of r.v.’s is said to be identically distributed if random variables
of the family have identical probability distribution. For p > 0, E(|X|?) is called the
p-th absolute moment of the r.v. X; while if m € N, E(X"™) is referred to as the m-th
moment of X.

Example 7.5.1 Ar.v. X is said to be normally distributed with mean m and variance o

iffor B € B,
/ { —(x - m)z}d
expy ————— ¢ dx,
J_ P

where as usual we write exp{8} for ¢ if the expression for f8 is complicated. If X is
normally distributed with mean m and variance o2, then

1

= / e (V20t + m)v20dt
R

2mo

_202
N

Thus X actually has m as its expectation and o2 its variance. The probability distribu-

tion (, defined by
(% - m)z}
————dx, Bebk,
V2 / {

is called the normal distribution with mean m and variance ¢ and is denoted by
N(m,o?). The distribution N(0, 1) is called the standard normal distribution.

X#P(B) = P(X S B) =

E(X) =

Var(X) =

e dt = o2

n(B) =

Example 7.5.2 Consider the Bernoulli sequence space (2,0 (Q), P) of Example 3.4.6.
Recall that Q = {w = (w) : wr € {0,1},k € N}; Q is the smallest algebra on 2
that contains all sets of the form E(&y,...,&,) = {w = (o) : w1 = €1,...,w, = &,},
n € Nandg; € {0,1},j = 1,...,n,and Pis the unique probability measure on o (Q)
such that P(E(ey,...,&,)) =2 Ifforj € N and ¢ € {0,1} let E. = {® = (o) :
w; = ¢}, then we know from Exercise 1.3.2 that

k
P(E} N---NEL) =[]PE)=2* (7.17)
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if 1 <j; <--- < jiis any finite sequence in N. Now for j € N, define a r.v. X; by
Xj(w) = wj, then o (X;) = {#, E,, E}, 2}; and therefore we infer from (7.17) that
{o(X;)} is independent and consequently the r.v.’s Xj, ..., X;, ... are independent.
Clearly, the probability distribution of each X; is the measure p on B such that
w({0}) = n({1}) = L. Hence the sequence {X;} is identically distributed; further-

2
more E(X;) = %, Var(X;) = %, and m-th moment of X is % form € N.

Return now to the general discussion and consider an independent and identically
distributed sequence {X;} of r.v.’s. Such a sequence is usually referred to as an i.i.d.
sequence. Suppose that the common probability distribution of Xj/s is w, then for any
Borel function g on IR such that f]R gdpu exists, we know from (4.1) that fIR gdu = fQ go
X;dP; in particular, the m-th moment is the same for all Xj/s if it exists for one of them.
Thus E(X]Z) = E(X7) forallj. Assume now that E(X]) < ocoandletS, = Z;zl X;,neN.
Then, E(S,) = nE(X;) or E(%) = E(X;), and hence from the Chebyshev inequality
(6.3), we have

S, S, 1
P( 2 _E(X)| = s) < & Var (—) = — Var(X;)
n n ne

for any given & > 0. This is stated as a theorem.

Theorem 7.5.3 (Weak law of large numbers) Suppose that {X;} is an i.i.d. sequence of
r.v.’s with finite second moment, then

on - E(X1)

p([

for any given € > 0, where S,, = Z;’zl X;.

1
> a) < —2Var(X1) (7.18)
ne

A sequence {Y;} of rv’s is said to converge in probability to a rv. Y if
lim;_, o P(|Y; - Y| > €) = 0 for every & > 0; the notation Y; — Y[P] is used to mean
that {Y;} converges to Y in probability. Apparently, convergence of Y; to Y as.
or in LP-norm as j — o0 implies that ¥; — Y[P], hence convergence in probab-
ility is weaker than convergence a.s. and convergence in LP-norm. Since Theorem
7.5.3 implies that % — E(X;)[P], it is usually referred to as the weak law of large

n
numbers.

Theorem 7.5.4 (Strong law of large numbers) Suppose that {X;} is an independent
sequence of r.v.’s such that E(X;) = OandE(X;‘) <C<ooforje N.LetS, = Z;':l X,

then 57 — Oas.asn — oQ.
Proof Observe that (cf. Exercise 7.5.3):
(i) E(X,—Xj3) = E(X,-)E(Xf) =0ifi #j;
(ii) E(Xi)(].sz) = 0ifi, j, k are different from one another; and
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(iii) E(Xi)(ijXl) = 0if, j, k,  are different from one another;
and note that

(iv) {E(X]z)}2 < E(Xf’) < Cforall j by Jensen’s inequality (6.4).

Now since E(S}) = k] E(X,—XijXl) , we conclude from (i), (ii), and (iii) that

Bs) - e+ (3) T s0ex)

1<i<j<n

<nC+6 ) E(X})E(X});

1<i<j<n

but EQR)E(R) = HECR) + B2} < LEK!) + BX)), by (i), for each
pair i < j, and consequently

1
nln-1) . < 3cn,

E(S}) <nC+6

S\ _ 3¢
E({ — < —.
n T on
The last inequality implies that E(Zi:l(s—;)4) <3CY.%, niz < 00, and hence
2321(%)4 < o0 a.s. Then, lim,,_, « S; = 0 a.s. follows. |

or

Corollary 7.5.3 Let {X;} be an independent sequence of r.v.’s with bounded fourth moment
such that E(X;) = E(X,) for allj € N; then lim,_, o % 27:1 X; = E(X,) ass.

Proof Put Y; = X; - E(X;); then E(Y;) = 0 for all j and {E(Y]“)} is bounded. We then
apply Theorem 7.5.4 to conclude the proof. |

Now apply Corollary 7.5.3 to the sequence {X;} of Example 7.5.2; we have

12 1
lim _Ziji as.

n—>00 1 i

Su(®)

i.e. the event {w € Q : lim,_ = %} occurs with probability one, where S, =

2;21 X;; in other words, if we interpret {X;} as a sequence of tossing of a fair coin, the

relative frequency with which heads appears in the first n tosses approaches % asn — 00
almost certainly. This is what we proclaim in the last paragraph of Section 1.3.

As we know in Example 4.3.2, the Bernoulli sequence space (£2,0(Q),P) and
([0,1],B|[0,1], 1) are measure-theoretically the same space; it is therefore worth-
while considering the counterpart of the sequence {X;} of Example 7.5.2 in the space
([0,1],B|[0,1],A). For x € [0,1], let 0.x; . .. x; . . . be the binary expansion of x with
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the convention that in case where two expansions are possible, the expansion with infin-
itely many 1's is chosen, and forj € N, define ar.v. Z; by Z;(x) = «;. From the discussion
in Example 3.4.6, one verifies readily from the independence of the sequence {X;} of
Example 7.5.2 that {Z;} is independent, E(Z;) = E(Z,) = 5, and E(Zf) = 2. Then,

| 1
lim —ZZ}-=5 as.

n—00 1 o]
ie.

1
lim —{numberof I'sinx;,...,x,} = - (7.19)
n—o00 n 2

for almost every x of [0, 1]. We call a number x in [0, 1] a normal number if (7.19) holds.
Then (7.19) can be stated as follows.

Theorem 7.5.5 (Borel) Almost all numbers in [0, 1] are normal.

We now come to introduce the Fourier integral for probability distributions. The
Fourier integral ¢ of a probability distribution 1 is a function on IR, defined by

o(t) = f e™du(x), telR. (7.20)

We call attention to inconsistency in the definition of Fourier integral for functions and
for probability distributions; should consistency of definition be preferred, the func-
tion ¢, defined by (7.20), would be called the Fourier inverse integral of . It is readily
seen that ¢(0) = 1, [¢(t)| < 1, and ¢ is uniformly continuous on RR. In probability the-
ory, ¢ is called the characteristic function of (t; and if a r.v. X has  as its probability
distribution, ¢ is also referred to as the characteristic function of X. Note that if ¢ is the
characteristic function of X, then,

o(t) = E(™), teR.
Exercise 7.5.4 Let ¢ be the characteristic function of the r.v. X, and suppose that
E(|X|) < oo.Showthat ¢ € C'(R) and ¢'(t) = E(iXe™™").
Exercise 7.5.5 Show that the characteristic function ¢ of N(0,1) is given by
p(t)=em.

Exercise 7.5.6 Suppose that ¢ is the characteristic function of a probability distribution
/. Show that for u > 0,

(2 ) fovom

(Hint:  [*,(1-9(0))de =2 [ (1~ =) dpu(w) 2 2 [, (1 - ()
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Theorem 7.5.6 Suppose that X, and X, are independent random variables with character-

istic functions ¢, and @, respectively, and let @ be the characteristic function of X; + X;,
then ¢ = @1¢;.

Proof Since ¢™ and ¢ are in dependent, we have
o(t) = E(HXi#%)) = B( i githa)

= E(¢™) - E(¢"%) = @1 ()2 (t). u

Theorem 7.5.7 (Inversion formula) Let i be a probability distribution with characteristic
function @; then fora < bin R,

L ita _ ,-ith
) = fim o [
fiu(tad) = w((8H) =

Proof Put S(L)

L sin L sin
Iy S4dt, L>0. Then s #dt =sgn6S(L|6|)
lim; o S(L) =

and
. Now consider the integral

1 LT -ita _ ,-ith
=1 | [—] o(t)dt
2T _L it
1 L o0 eit(x—a) _ eit(x—b)
= — —d dt.
2 J 1 ([ 0 it ,u(x)

From the elementary inequality |¢” — 1| < |6], we have

IR

eit(xAu) _ eit(x—h)

it

for any x € IR. We may therefore apply the Fubini theorem to the integral defin-
ingZ(L):

L) = ﬁ /: (/j wa dpu(x)
_ /: ( /OL [sin tj(:t— a) sin tf:ct- b)] dt) e

/. [Sgn(;—_a)sﬁlx— o -2

o0

S(L|x - b|):| du(x).
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Let us denote the integrand of this last integral by 0;(a,b;x) and put 6,,(x) =
lim; _, 01 (a, b; x); then,

0 ifx <aorx > b
1

Bap () = 3 ifx=aorx=1b;
1 ifa<x<b.

From the second mean-value theorem, { foa Si—rt‘tdt}a>0 is bounded and therefore
|6.(a,b;x)] <M < ocoforallL > Oandx € IR. Hence by LDCT, we conclude that

Jim 70 = [~ 0u@dut)
= () + (b)) + S (8D = p(a b)), .

Exercise 7.5.7 Let i be the probability measure on B concentrated at 0. Find the
characteristic function of & and use Theorem 7.5.7 to show that

_ L sin at °° sin at T
lim t= dt = —
L—oo Jq t 0 t 2

Corollary 7.5.4 If the probability distributions |t and v have the same characteristic
function, then (1 = v.

Proof Let  I1={(a,b]: u({a}) = u({b}) = v({a}) = v({b}) =0} U {#}, and
N ={B e B: u(B) =v(B)}. Theorem 7.5.7 implies that N' D I1. But IT is a
-system, \ is a A-system, and o (IT) = BB, hence it follows from the (77-1) theorem
that N = BB. [ ]

foralla > 0.

Corollary 7.5.4 means that the characteristic function of a probability distribution ©
uniquely determines p and is therefore named the characteristic function of .

We are ready to state and prove the central limit theorem in probability theory.
Suppose that {X;} is ani.i.d. sequence of random variables such that E(X;) = 0, Var(X;) =
E(X?) = 1,and E(|X;|*) < 0o.Forn € N, putY, = % pyp.

Theorem 7.5.8 (Central limit theorem) The characteristic function of Y, converges to the
characteristic function of N (0, 1) uniformly on any given finite interval.

Proof Denote by ¢ the common characteristic function of X;’s and by 1 the common
distribution of X;’s. Using the fundamental theorem of calculus repeatedly, we have
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tx tx 0
t":1+i/ ei9d9:1+i/ (1+i/ eisds)dQ
0 0 0
tx 0 )
=1+itx—/ (/ e’sds> do
0 0
tx 0 s
:1+itx—/ </ (1+i/ e‘rdt>ds>d0
0 0 0
1 tx 6 s
=1+itx——t2x2—i/ (/ (/ e’tdr) ds) do
2 0 0 0

1
=1 +itx - Etzxz + h(tx),
where |h(tx)| < ¢|tx|*; consequently,
it 1, 1,
() = | edu(x)=1-=t"+ [ h(tx)du(x) =1- =t + H(t). (7.21)
R 2 R 2

Note that fIR itxdju(x) = itE(X;) = 0 and f]R t2x?du(x) = tzE(ij) = t* have been
used in deriving (7.21), and that

1
|H(t)| < gE(|Xj|3)|t|3 = C|t|. (7.22)

Now let I be a finite interval in IR; then for some b > 0, |t| < bfort € I,and hence
thereisny € N, such that

1¢ 1
1-—— 35, tel (7.23)

if n > ng. Denote now by ¢, the characteristic function of Y,. We know from
Theorem 7.5.6 that

oio-s(onf2e55]) [ ()]
I CR)
() (30 ()

_ (1-;t:>n(1+G(t )",
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of which forn > ng and t € I, we have from (7.22) and (7.23),
G(t,n)| < 2Cb>n™3.

Observe now from the mean-value theorem in differential calculus that, for € R

n n

=exp{n[ln(n+oc)—lnn]}=exp{ e },

n+ o,

where 1 + «,, is between n and n + &, and consequently

a n
lim <1 + —) =é*
n— 00 n

uniformly for |a| < Bif B > 0is fixed. As a consequence,

1 tz " 2
lim (1--—) =¢?
n— 00 2n

uniformly for t € I; and since [nG(t,n)| < 2Ch3n 2 for n > np and t € I, for any
given € > Othereisn; > ngin N such thatifn > n; andt € I, then,

‘ (1 + i’lG(t, 1’1)) B enG(t,n)

n

< (7.24)

&
%
We may choose 1, sufficiently large so that,ifn > n; and t € I, then |nG(t, n)| will be
small enough so that [nG(t,n)| < £, and

1- [nG(t,n)| < U™ < 14 2[nG(t,n)|. (7.25)

Finally, using (7.24) and (7.25), we have forn > n; and t € I,

&
(1+G(tn)" =1 > &6 - = _ 1> 1-|nG(t,n)]| - Sl

13
2
€

&
(1+G(tn))" -1 < "0 4 S-1= 1+2|nG(t,n)| + S-l=e

Thus, |(1+ G(t,n))" - 1| < €ifn > nyandt € Ii.e.lim, o (1+ G(t,n))" = 1 uni-
2
formly for t € I. Summing up, we have shown that ¢, (t) converges to ¢ 2 uniformly
2
fort € I.Bute 2 is the characteristic function of N(0, 1) (cf. Exercise 7.5.5). [ ]

The following exercise illustrates the relevance of the central limit theorem.



Fourier integral of probability distributions | 297

Exercise 7.5.8 LetY, be asin Theorem 7.5.8 and 11, the probability distribution of Y,,;
and let v be N (0, 1). Furthermore, put F,(x) = ,((-00,x]) and F(x) = v((-00, x])
forx € R.

(i) Given thate > 0.Show that thereis a > 0 such that

v({|x| = a}) < &;

/’Ln({|x| > (1}) <g&n=123...,

(Hint: cf. Exercise 7.5.6 and central limit theorem.)

(ii) Show thatiff is a bounded continuous function on R, then

lim /fd,unszdv.
=00 JR R

(Hint: use (i) and Theorem 7.5.7.)

(iii) For-00 < a < B < 00, define a continuous function f, g as follows:

1, t <uq;
fa,(t) = 10, t> B;
Bt

e o<t<pB.

Now let —00 < u < x < y < 00. By applying (ii) for f = f,, and f, in this
order, show that

limsup F,(x) < F(y); F(x-) < liminfF,(x),
n—o0

n— 00

and then conclude that lim,,_, o, F,(x) = F(x) forx € RR.
(iv) Show that for any finite interval I in R,

1 2
lim wu,(I)= —— [ e 2dt.
n—>oo'u ( ) ,/27-[ /I






Postscript

Although the general basic principles of real analysis are few, because of their wide
applicability and their proven relevance over time in the development of mathemat-
ical analysis for its own purpose or for applications, manifold variations and derived
principles have emerged whose scope is seldom matched by those of other subjects in
mathematics. Therefore to write a book of reasonable size on real analysis which provides
all the variations and derived principles is deemed to be impossible. I have, no matter
how unwillingly, had to choose for discussion only those topics which are necessary for
the understanding of those modern methods in analysis which apply the so-called real
variables techniques.

Some brief treatment of Housdorff measures on Euclidean n-space and a more system-
atic discussion of real variables methods in harmonic analysis would be desirable. To do
this sufficiently well to reveal the merit of these topics would not only increase the size of
the book beyond a reasonable range, but would not really be in the reach of my capabil-
ities. In this regard, I can do no better than to refer the interested reader to the masterful

works [EG] and [St], listed in the bibliography.

Real Analysis. Fon-Che Liu. © Fon-Che Liu 2016. Published 2016 by Oxford University Press.






