
1 Introduction
and Preliminaries

This chapter serves two purposes. The first purpose is to prepare the reader for amore
systematic development in later chapters of the methods of real analysis through

some introductory accounts of a few specific topics. The second purpose is, in view of
the possible situation where some readers might not be conversant with basic concepts
in elementary abstract analysis, to acquaint them with the fundamentals of abstract ana-
lysis. Nevertheless, readers are assumed to have some basic training in rigorous analysis
as usually offered by courses in advanced calculus, and to have some acquaintance with
the rudiments of linear algebra.

Throughout the book, the field of real numbers and that of complex numbers are
denoted, respectively, by R and C, while the set of all positive integers and the set of
all integers are denoted byN andZ respectively.

The standard set-theoretical terminology is assumed; but terminology and notations
regarding mappings will now be briefly recalled. If T is a mapping from a set A into a set
B (expressed by T : A → B), T(a) denotes the element in B which is associated with
a ∈ A under the mapping T; for a subset S of A, the set {T(x) : x ∈ S} is denoted by
TS and is called the image of S under T; thus T{a} = {T(a)}. T(a) is sometimes simply
written asTa if no confusion is possible, and at times, an element a of a set and the set {a}
consisting of an element are not clearly distinguished as different objects. For example,
Ta and T{a} may not be distinguished and Ta is also called the image of a under T. A
mappingT : A → B is said to be one-to-one or injective ifTa = Ta′ leads to a = a′, and
is said to be surjective if TA = B; T is bijective if it is both injective and surjective. If
TA = B,T is also referred to as a mapping fromA onto B. Mappings are also called maps.
Synonyms for maps are operators and transformations. As usual, a map from a set intoR
orC is called a function.

Some convenient notations for operations on sets are now introduced. Regarding a
familyF = {Aα}α∈I of sets indexed by an index set I, the union

⋃
α∈I Aα is also expressed

by
⋃

F ; if A and B are sets in a vector space and α a scalar, the set {x + y : x ∈ A, y ∈ B}
is denoted by A + B, and the set {αx : x ∈ A} by αA.
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1.1 Summability of systems of real numbers

Summability of systems of real numbers is a special case in the theory of integration, to
be treated in Chapter 2, but it reveals many essential points of the theory.

For a set S, the family of all nonempty finite subsets of S will be denoted by F(S).
Consider now a system {cα}α∈I of real numbers indexed by an index set I. The system
{cα}α∈I will be denoted simply by {cα} if the index set I is assumed either explicitly or
implicitly. The system is said to be summable if there is ℓ ∈ R, such that for any ε > 0
there is A ∈ F(I), with the property that whenever B ∈ F(I) and B ⊃ A, then

∣∣∣∣
∑
α∈B

cα – ℓ

∣∣∣∣ < ε. (1.1)

Exercise 1.1.1 Show that if ℓ in the preceding definition exists, then it is unique.

If {cα} is summable, the uniquely determined ℓ in the above definition is called the
sum of {cα} and is denoted by

∑
α∈I cα .

Before we go further it is worthwhile remarking that the convergence of the series∑∞
n=1 cn depends on the order 1 < 2 < 3 < · · · and

∑
n∈N cn, if it exists, does not

depend on how N is ordered. Hence
∑

n∈N cn may not exist while
∑∞

n=1 cn exists. We
will come back to this remark in Exercise 1.1.5.

Theorem 1.1.1 If {c(1)α }α∈I and {c
(2)
α }α∈I are summable, then so is {ac

(1)
α + bc(2)α }α∈I for

fixed real numbers a and b, and

∑
α∈I

(
ac(1)α + bc(2)α

)
= a
∑
α∈I

c(1)α + b
∑
α∈I

c(2)α .

Proof We may assume that |a| + |b| > 0, and for convenience put
∑

α∈I c
(1)
α = l1,∑

α∈I c
(2)
α = l2. Let ε > 0 be given, there are A1 and A2 in F(I) such that

when B1, B2 are in F(I) with B1 ⊃ A1, B2 ⊃ A2, we have |
∑

α∈B1 c
(1)
α – l1| <

ε
|a|+|b| and |

∑
α∈B2 c

(2)
α – l2| < ε

|a|+|b| . Choose now A = A1 ∪ A2, then for B ∈ F(I)

with B ⊃ A, we have |
∑

α∈B(ac
(1)
α + bc(2)α ) – (al1 + bl2)| ≤ |a||

∑
α∈B c

(1)
α – l1| +

|b||
∑

α∈B c
(2)
α – l2| <

|a|ε
|a|+|b| +

|b|ε
|a|+|b| = ε. This shows that {ac(1)α + bc(2)α } is summable

and
∑

α∈I(ac
(1)
α + bc(2)α ) = al1 + bl2. !

Theorem 1.1.2 If cα ≥ 0 ∀α ∈ I, then {cα} is summable if and only if
{∑

α∈A
cα : A ∈ F(I)

}
(1.2)

is bounded.
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Proof That boundedness of (1.2) is necessary for {cα} to be summable is left as an
exercise. Now we show that boundedness of (1.2) is sufficient for {cα} to be sum-
mable. Let ℓ be the least upper bound of {

∑
α∈A cα : A ∈ F(I)}; for any ε > 0 there

is A ∈ F(I) such that

0 ≤ ℓ –
∑
α∈A

cα < ε. (1.3)

Let now B ∈ F(I) and B ⊃ A, then
∣∣∣∣
∑
α∈B

cα – ℓ

∣∣∣∣ = ℓ –
∑
α∈B

cα ≤ ℓ –
∑
α∈A

cα < ε. !

Wenote beforemoving on that if a subset S ofR is bounded from above, then the least
upper bound of S exists uniquely and is denoted by sup S; similarly, if S is bounded from
below, then the greatest lower bound exists uniquely and is denoted by inf S. If S = {sα :
α ∈ I}, then inf S and sup S are also expressed, respectively, by infα∈I sα and supα∈I sα .

Exercise 1.1.2 Show that boundedness of (1.2) is necessary for {cα} to be summable.

Because of Theorem 1.1.2, if {cα} is a system of nonnegative real numbers and is not
summable, then we write

∑
α∈I cα = +∞. Hence,

∑
α∈I cα always has a meaning if {cα}

is a system of nonnegative numbers.

Theorem 1.1.3 (Cauchy criterion) A system {cα} is summable if and only if for any ε > 0
there is A ∈ F(I), such that |

∑
α∈B cα| < ε whenever B ∈ F(I) and A ∩ B = ∅.

Proof Sufficiency: Choose A ∈ F(I) such that |
∑

α∈B cα| < 1 for B ∈ F(I), satisfying
A ∩ B = ∅, then obviously if B ∈ F(I) with B ∩ A = ∅, we have∑α∈B c+α < 1, where
c+α = cα or 0 according to whether cα ≥ 0 or< 0. Now, for B ∈ F(I), we have

∑
α∈B

c+α =
∑

α∈B∩A
c+α +

∑
α∈B\A

c+α <
∑
α∈A

c+α + 1,

i.e., {
∑

α∈B c+α : B ∈ F(I)} is bounded; hence by Theorem 1.1.2 {c+α} is summable.
Similarly {c–α} is summable, where c–α = –cα or 0 according to whether cα ≤ 0

or> 0. Now cα = c+α – c–α , hence {cα} is summable by Theorem (1.1).
The necessary part is left for the reader to verify. !

Exercise 1.1.3 Suppose that {cα}α∈I is summable and that J is a nonempty subset of I.
Show that (i) {cα}α∈J is summable, and (ii)

∑
α∈I cα =

∑
α∈J cα +

∑
α∈I\ J cα .

Exercise 1.1.4 Show that {cα} is summable if and only if {|cα|} is summable; show also
that {cα} is summable if and only if

{∣∣∣∣
∑
α∈A

cα
∣∣∣∣ : A ∈ F(I)

}

is bounded.
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Exercise 1.1.5 Show that {cα}α∈N is summable if and only if the series
∑∞

α=1 cα is
absolutely convergent. Show also that

∑
α∈N cα =

∑∞
α=1 cα if {cα}α∈N is summable.

Exercise 1.1.6 Show that {cα}α∈I is summable if and and only if (i) {α ∈ I : cα ̸= 0}
is finite or countable; and (ii) if {α ∈ I : cα ̸= 0} = {α1,α2, . . .} is infinite; then the
series

∑∞
k=1 cαk converges absolutely.

Exercise 1.1.7 Suppose that for each n = 1, 2, 3, . . . , there isAn ∈ F(I), with the prop-
erty that for each A ∈ F(I), there is a positive integer N such that A ⊂ An for all
n ≥ N. Show that if {cα}α∈I is summable, then

∑
α∈I

cα = lim
n→∞

∑
α∈An

cα .

Give an example to show that it is possible that limn→∞
∑

α∈An
cα exists and is finite,

but {cα} is not summable.

Example 1.1.1 Suppose that I =
⋃

n∈N In, where In’s are pairwise disjoint. Let
{cα}α∈I be summable, then

∑
α∈I cα =

∑
n∈N(

∑
α∈In cα). By Exercise 1.1.4, we may

assume that cα ≥ 0 for all α ∈ I. It follows from
∑

α∈I cα = sup{
∑

α∈A cα : A ∈
F(I)} that

∑
α∈I cα ≤ ∑

n∈N(
∑

α∈In cα). It remains to be seen that
∑

α∈I cα ≥∑
n∈N(

∑
α∈In cα). Let k ∈ N and ε > 0. For each n = 1, . . . , k, there is a finite set

An ⊂ In such that
∑

α∈In cα <
∑

α∈An
cα + ε

k . Then, if we put Bk =
⋃k

n=1 An, we have∑
α∈I cα ≥ ∑

α∈Bk cα >
∑k

n=1(
∑

α∈In cα – ε
k ) =

∑k
n=1(

∑
α∈In cα) – ε; since ε > 0

is arbitrary,
∑

α∈I cα ≥ ∑k
n=1(

∑
α∈In cα) for each k ∈ N. Now let k → ∞ to

obtain
∑

α∈I cα ≥ ∑
n∈N(

∑
α∈In cα). Observe from the proof that {

∑
α∈In cα}n∈N is

summable.

We shall recognize in Example 2.3.3 that summability considered in this section is the
integrability with respect to the counting measure on I.

1.2 Double series

Let I = N × N = {(i, j) : i, j = 1, 2, . . .} and write cij for c(i,j). When the summability
of the system {cij} is in question, the system {cij} is referred to as a double series
and is denoted by

∑
cij. Hence the double series

∑
cij is summable if {cij} = {c(i,j)} is

summable, and
∑

(i,j)∈I cij is called the sum of the double series
∑

cij.
For a double sequence {amn}, we say that limm,n→∞ amn = ℓ, if for any ε > 0 there is a

positive integerN such that |amn – ℓ| < ε wheneverm, n ≥ N.

Theorem 1.2.1 If the double series
∑

cij is summable, then

∑

(i,j)∈I
cij = lim

m,n→∞

n∑
j=1

m∑
i=1
cij =

∞∑
j=1

∞∑
i=1
cij =

∞∑
i=1

∞∑
j=1
cij.
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Proof We show first that
∑

(i,j)∈I cij = limn,m→∞
∑n

j=1
∑m

i=1 cij. Let ℓ =
∑

(i,j)∈I cij.
Given ε > 0, there is A ∈ F(I) such that

∣∣∣∣
∑

(i,j)∈B
cij – ℓ

∣∣∣∣ < ε

whenever B ∈ F(I) and B ⊃ A. Let N = max{i ∨ j : (i, j) ∈ A}, where i ∨ j is the
larger of i and j. For n,m ≥ N, let Bmn = {(i, j) ∈ I : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, then
Bmn ∈ F(I) and Bmn ⊃ A, hence

∣∣∣∣
n∑
j=1

m∑
i=1
cij – ℓ

∣∣∣∣ =
∣∣∣∣
∑

(i,j)∈Bmn
cij – ℓ

∣∣∣∣ < ε.

This means that ℓ = limm,n→∞
∑n

j=1
∑m

i=1 cij.
Since

∑
(i,j)∈I cij =

∑
(i,j)∈I c+ij –

∑
(i,j)∈I c–ij , in the remaining part of the proof, we

may assume that cij ≥ 0 for all (i, j) ∈ I. Observe then that

ℓ = sup
n,m≥1

n∑
j=1

m∑
i=1
cij.

Hence,

ℓ ≥ lim
m→∞

( n∑
j=1

m∑
i=1
cij
)
=

n∑
j=1

∞∑
i=1
cij

for each n and consequently

ℓ ≥
∞∑
j=1

∞∑
i=1
cij.

On the other hand,

ℓ = sup
n,m≥1

n∑
j=1

m∑
i=1
cij ≤ sup

n≥1

( n∑
j=1

∞∑
i=1
cij
)
= lim

n→∞

( n∑
j=1

∞∑
i=1
cij
)

=
∞∑
j=1

∞∑
i=1
cij.

We have shown that ℓ =
∑∞

j=1
∑∞

i=1cij; similarly,

ℓ =
∞∑
i=1

∞∑
j=1
cij. !
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Example 1.2.1 If {an}n∈N and {bn}n∈N are summable, then the double series
∑

anbm
is summable and

∑
(n,m)∈N×N anbm = (

∑
n∈N an)(

∑
m∈N bm). That

∑
anbm is sum-

mable follows from Exercise 1.1.4 and the observation that {
∑

(n,m)∈A |anbm| : A ∈
F(N × N)} is bounded from above by (

∑
n∈N |an|) · (∑m∈N |bm|). Then, by

Theorem 1.2.1,
∑

(n,m)∈N×N anbm =
∑

n∈N
∑

m∈N anbm = (
∑

n∈N an)(
∑

m∈N bm).
For k ≥ 2 inN, put Ak = {(n,m) ∈ N × N : n + m = k}; then

∑
(n,m)∈N×N anbm =∑

k∈N
k≥2

(
∑

(n,m)∈Ak
anm) fromExample 1.1.1. The system {

∑
(n,m)∈Ak

anbm}k≥2 is called
the product of {an} and {bn}; we have shown that the sum of the product is the
product of the sums.

The following exercise complements Theorem 1.2.1.

Exercise 1.2.1 Copy the proof of Theorem 1.2.1 to show that if cij ≥ 0 for all i and j
inN, then the conclusion of Theorem 1.2.1 still holds, even if

∑
(i,j)∈I cij = ∞ (recall

that for a system {cα} of nonnegative numbers,
∑

α cα = ∞ means that {cα} is not
summable).

Remark For i, j inN, let

cij =

⎧
⎪⎨

⎪⎩

1 if i = j;
–1 if j = i + 1;
0 otherwise,

then
∑

cij is not summable and 0 =
∑∞

i=1
∑∞

j=1 cij ̸=
∑∞

j=1
∑∞

i=1 cij = 1.

1.3 Coin tossing

A pair of symbols H and T, associated, respectively, with nonnegative numbers p and
q such that p + q = 1 is called a Bernoulli trial and is denoted by B(p, q). A Bernoulli
trial B(p, q) is a mathematical model for the tossing of a coin, of which heads occur with
probability p and tails turn out with probability q; this explains the symbols H and T. In
particular, B( 12 ,

1
2 ) models the tossing of a fair coin.

In this section, we consider the first step towards construction of a mathematical
model for a sequence of tossing of a fair coin. For convenience, we replace H and T by
1 and 0 in this order; then an infinite sequence ω = (ω1,ω2, . . . ,ωk, . . .) of 0’s and 1’s
represents a realization of a sequence of coin tossing. Let

% = {0, 1}∞ := {ω = (ωk), ωk = 0 or 1 for each k},

wherewe adopt the usual convention of expressing an infinite sequence (ω1, . . . ,ωk, . . .)
by (ωk)with the understanding thatωk is the entry at the k-th position of the sequence. In
terminology of probability theory, elements in% are called sample points of a sequence
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of coin tossings and % is called the sample space of the sequence of tossings. Subsets of
%will often be referred to as events. Now for n ∈ N, let

%n = {0, 1}n := {(ε1, . . . , εn) : εj ∈ {0, 1}, j = 1, . . . , n},

and for (ε1, . . . , εn) ∈ %n, call the set

E(ε1, . . . , εn) = {ω = (ωk) ∈ % : ωk = εk, k = 1, . . . , n}

an elementary cylinder; but if n is to be emphasized, it is called an elementary cylinder
of rank n. A finite union of elementary cylinders is called a cylinder in%. Since intersec-
tion of two elementary cylinders is either empty or an elementary cylinder, every cylinder
in% can be expressed as a disjoint union of elementary cylinders; in fact, if Z is a cylinder
in%, there is n ∈ N andH ⊂ %n such that

Z =
⋃
{E(ε1, . . . , εn) : (ε1, . . . , εn) ∈ H},

of which one notes that E(ε1, . . . , εn)’s are mutually disjoint. Of course, a cylinder Z can
be expressed as above in many ways. We denote by Q the family of all cylinders in %.
Since% = E(0) ∪ E(1),% ∈ Q;∅ is also inQ, because it is the union of an empty family
of elementary cylinders.

Exercise 1.3.1 Show thatQ is an algebra of subsets of %, in the sense thatQ satisfies
the following conditions: (i) % ∈ Q; (ii) if Z ∈ Q, then Zc = %\Z is inQ; and (iii)
if Z1, Z2 are inQ, then Z1 ∪ Z2 is inQ.

For an event Z in Q, we define its probability P(Z) as follows. First, for an element-
ary cylinder C = E(ε1, . . . , εn), define P(C) = ( 12 )

n; intuitively, this definition of P(C)
means that we consider the modeling of a sequence of independent tossing of a fair coin.
Now if Z ∈ Q is given by

Z =
⋃
{E(ε1, . . . , εn) : (ε1, . . . , εn) ∈ H},

whereH ⊂ %n, then define

P(Z) =
∑

(ε1,...,εn)∈H
P(E(ε1, . . . , εn)) = #H · 2–n,

where #H is the number of elements inH. We claim that P(Z) is well defined. Actually if
Z is also given by

Z =
⋃
{E(ε1, . . . , εm) : (ε1, . . . , εm) ∈ H′},
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where H′ ⊂ %m, then (assuming m ≥ n) H′ = {(ε1, . . . , εm) ∈ %m : (ε1, . . . , εn) ∈
H} and therefore #H′ = #H · 2m–n; consequently

∑

(ε1,...,εm)∈H′
P(E(ε1, . . . , εm)) = #H′ · 2–m = #H · 2m–n · 2–m

= #H · 2–n = ∑

(ε1,...,εn)∈H
P(E(ε1, . . . , εn)),

implying that the definition of P(Z) is independent of how Z is expressed as a finite dis-
joint union of elementary cylinders of a given rank. We complete the definition of P by
letting P(∅) = 0. Note that P(%) = 1.

Exercise 1.3.2

(i) Show that P is additive on Q, i.e. P(Z1 ∪ Z2) = P(Z1) + P(Z2) if Z1, Z2 are
disjoint elements ofQ.

(ii) For k ∈ N and ε ∈ {0, 1}, put Ekε = {ω ∈ % : ωk = ε}. Show that

P(Ek1ε1 ∩ · · · ∩ Eknεn) =
n∏

j=1
P(Ekjεj) = 2–n

for any finite sequence k1 < k2 < · · · < kn inN.

Fromnowonwewrite dj(ω) = ωj, j = 1, 2, . . . , ifω = (ω1,ω2, . . .) ∈ %; and for each
n define a function Sn on% by

Sn(ω) =
n∑
j=1
dj(ω).

Exercise 1.3.3 Show that, for each k = 0, 1, 2, . . . , n, the set {Sn = k} := {ω ∈ % :
Sn(ω) = k} is inQ and

P({Sn = k}) =
(
n
k

)
1
2n
,

where
(n
k

)
= n!

k!(n–k)! .

For a given realizationω of a sequence of independent coin tossing, Sn(ω) is the num-
ber of heads that appear in the first n tosses and Sn(ω)

n measures the relative frequency of
appearance of heads in the first n tosses. Let

E =
{
ω ∈ % : lim

n→∞
Sn(ω)
n

=
1
2

}
;

E is easily seen to be not in Q. Nevertheless, we expect that P can be extended to be
defined on a larger family of sets than Q in such a way that P(A) can be interpreted as
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the probability of event A, and such that P(E) is defined with value 1. We expect P(E) =
1, because this is what a fair coin is accounted for intuitively. Discussion of the subject
matter of this section will be continued in Example 1.7.1, Example 2.1.1, Example 3.4.6,
and Example 7.5.2; and eventually we shall answer positively to this expectation in the
paragraph following Corollary 7.5.3.

1.4 Metric spaces and normed vector spaces

The usefulness of the concept of continuity has already surfaced in elementary analysis of
functions defined on an interval. This section considers a structure on a set which allows
one to speak of “nearness” for elements in the set, so that a concept of continuity can
be defined for functions defined on the set, parallel to that for functions defined on an
interval of the real line.We shall not treat themost general situation; instead, we consider
the situation where an abstract concept of distance can be defined between elements of
the set, because this situation abounds sufficiently for our purposes later. When the set
considered is a vector space, it is natural to consider the case where the distance defined
and the linear structure of the set mingle well, as in the case of a real line or Euclidean
plane. This leads to the concept of normed vector spaces.

Let M be a nonempty set and let ρ : M × M → [0, +∞) satisfy (i) ρ(x, y) =
ρ(y, x) ≥ 0 for all x, y ∈ M and ρ(x, y) = 0 if and only if x = y; (ii) ρ(x, z) ≤ ρ(x, y) +
ρ(y, z) for all x, y, and z inM. Such a ρ is then called ametric onM, and (M, ρ) is called
ametric space. Usually we say thatM is a metric space with metric ρ, or simply thatM is
a metric space when a certain metric ρ is explicitly or implicitly implied. For a nonempty
subset S of M the restriction of ρ to S × S is a metric on S which will also be denoted
by ρ. The metric space (S, ρ) is called a subspace of (M, ρ) and ρ is called the metric
on S inherited fromM. Unless stated otherwise, if S is a subset of a metric spaceM, S is
equipped with themetric inherited fromM. For a nonempty subsetA ofM, the diameter
of A, denoted diam A, is defined by

diamA := sup
x,y∈A

ρ(x, y);

while diamA = 0 if A = ∅.
A subset A ofM is said to be bounded if diam A < ∞. In other words, A is bounded

if {ρ(x, x0) : x ∈ A} is a bounded set inR for every x0 ∈ M.
Elements of a metric space are often called points of the space.

Example 1.4.1 Let M = Rn and for x, y ∈ Rn let ρ(x, y) = |x – y|, where |x| =
(
∑n

i=1x2i )
1
2 if x = (x1, . . . , xn) ∈ Rn. To show that ρ is a metric onRn we first estab-

lish the well-known Schwarz inequality: |x · y| ≤ |x||y| if x, y ∈ Rn, where, for x =
(x1, . . . , xn) and y = (y1, . . . , yn) inRn, x · y :=∑n

i=1 xiyi is called the inner product
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of x and y. For this purpose we note first that for x ∈ Rn, |x|2 = x · x and that we may
assume that x ̸= 0 and y ̸= 0, hence |x| > 0 and |y| > 0. For t ∈ R, we have

0 ≤ |x + ty|2 = (x + ty) · (x + ty) = |x|2 + 2t(x · y) + t2|y|2

=
(
|x| + t|y|

)2 + 2t
(
x · y – |x||y|

)
,

from which by taking t = –|x|/|y| we obtain x · y ≤ |x||y|. Then |x · y| ≤ |x||y|
follows, because –(x · y) ≤ |x|| – y| = |x||y|. Now for x, y, and z inRn, we have

ρ(x, z)2 = |x – z|2 = |x – y + y – z|2 = |x – y|2 + 2(x – y) · (y – z) + |y – z|2

≤ |x – y|2 + 2|x – y||y – z| + |y – z|2 =
(
|x – y| + |y – z|

)2

=
[
ρ(x, y) + ρ(y, z)

]2,

i.e.

ρ(x, z) ≤ ρ(x, y) + ρ(y, z).

Hence Rn is a metric space with metric ρ defined above. This metric is called the
Euclideanmetric onRn. Unless stated otherwise,Rn is considered as a metric space
with this metric, thenRn is called the n-dimensional Euclidean space.

Similarly,Cn is a metric space, with the metric ρ defined by ρ(ζ , η) = (
∑n

j=1 |ζj –
ηj|2)1/2 for ζ = (ζ1, . . . , ζn) and η = (η1, . . . , η2) inCn.Cn with this metric is called
the n-dimensional unitary space. This follows, as in the case of the Euclidean metric
for Rn, from the Schwarz inequality |ζ · η| ≤ |ζ ||η| for ζ , η in Cn, where ζ · η =∑n

j=1 ζjη̄j and |ζ | = (
∑n

j=1 |ζj|2)
1
2 . As before, if t ∈ R, we have

0 ≤ |ζ + tη|2 = (ζ + tη) · (ζ + tη) = |ζ |2 + 2t Reζ · η + t2|η|2

= (|ζ | + t|η|)2 + 2t{Re ζ · η – |ζ ||η|},

from which we infer that Re ζ · η ≤ |ζ ||η| by choosing t = –|ζ ||η|–1 if η ̸= 0. Then,
|ζ · η| ≤ |ζ ||η| follows from replacing ζ by e–iθ ζ if ζ · η = |ζ · η|eiθ . Note that for
a complex number α, ᾱ denotes the conjugate of α, while Reα denotes the real
part of α.

Example 1.4.2 For a closed finite interval [a, b] in R, let C[a, b] denote the space of
all real-valued continuous functions defined on [a, b]. For f , g ∈ C[a, b], let ρ( f , g) =
maxa≤t≤b | f (t) – g(t)|. It is easily verified that C[a, b] is a metric space with metric
ρ so defined. Unless stated otherwise, C[a, b] is equipped with this metric, which
is often referred to as the uniform metric on C[a, b]. C[a, b] is also used to denote
the space of all complex-valued continuous functions on [a, b] with metric defined
similarly. When C[a, b] denotes the latter space, it shall be explicitly indicated.

Exercise 1.4.1 Show thatRn is also a metric space, with metric ρ defined by ρ(x, y) =
max1≤i≤n |xi – yi| if x = (x1, . . . , xn) and y = (y1, . . . , yn).

A map from N, the set of all positive integers, to a set M is called a sequence in M
or a sequence of elements of M. Such a sequence will be denoted by {xn}, where xn
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is the image of the positive integer n under the mapping. If {xn} is a sequence in M,
then {xnk} is called a subsequence of {xn} if n1 < n2 < · · · < nk < · · · is a subsequence
of {n}. A sequence {xn} in a metric spaceM is said to converge to x ∈ M if for any ε > 0
there is n0 ∈ N such that ρ(xn, x) < ε whenever n ≥ n0. Since x is uniquely determ-
ined, x is called the limit of {xn} and is denoted by limn→∞ xn. That x = limn→∞ xn
is often expressed by xn → x. If limn→∞ xn exists, then we say that {xn} converges in
M and {xn} is referred to as a convergent sequence. A sequence {xn} in M is usually
expressed by {xn} ⊂ M by abuse of notation, and therefore {xn} also denotes the range
of the sequence {xn}. A sequence inM is said to be bounded if its range is bounded.

Example 1.4.3 { fn} ⊂ C[a, b] converges if and only if fn(x) converges uniformly for
x ∈ [a, b].

A sequence {xn} ⊂ M is called a Cauchy sequence if for any ε > 0, there is n0 ∈ N
such that ρ(xn, xm) < ε whenever n,m ≥ n0. Clearly, a Cauchy sequence is bounded.

Exercise 1.4.2 Show that if {xn} ⊂ M converges, then {xn} is a Cauchy sequence.

Exercise 1.4.3 Let {xn} be a Cauchy sequence. Show that if {xn} has a convergent
subsequence, then {xn} converges.

A metric spaceM is called complete if every Cauchy sequence inM converges inM.

Exercise 1.4.4 Show that bothRn and C[a, b] are complete.

Exercise 1.4.5 If instead of the uniform metric we equip C[a, b] with a new metric ρ ′,
defined by

ρ ′(f , g) =
∫ b

a
| f (t) – g(t)|dt

for f , g inC[a, b], show thatC[a, b] is not complete when considered as ametric space
with metric ρ ′.

Exercise 1.4.6 Show that any nonempty setM can be considered as a complete metric
space by defining ρ(x, y) = 0 or 1 depending on x = y or x ̸= y. Such ametric ρ is said
to be discrete.

Let M1, M2 be metric spaces with metrics ρ1 and ρ2 respectively. A map T : M1 →
M2 is said to be continuous at x ∈ M1 if for any ε > 0, there is δ > 0 such that
ρ2(T(x),T( y)) < εwheneverρ1(x, y) < δ. IfT is continuous at every point ofM1, then
T is said to be continuous onM1 and is called a continuousmap fromM1 intoM2. A con-
tinuous map from a metric spaceM intoR orC is called a continuous function onM
and is generically denoted by f . The space of all continuous real(complex)-valued func-
tions on a metric spaceM is denoted by C(M); C(M) is a real- or complex vector space
depending on whether the functions in question are real- or complex-valued.

A point x of a set A in a metric space is called an interior point of A if there is ε > 0
such that y ∈ A whenever ρ(x, y) < ε; the set of all interior points of A is denoted by

◦
A.

A setG in ametric spaceM is said to be open if
◦
G =G. The complement of an open set is
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called a closed set. For x ∈ M and r > 0, let Br(x) = {y ∈ M : ρ(y, x) < r} andCr(x) =
{y ∈ M : ρ(y, x) ≤ r}. It is easily verified that Br(x) is an open set and Cr(x) is a closed
set. Br(x) (Cr(x)) is usually referred to as the open (closed) ball centered at x and with
radius r. A point x ∈ M is said to be isolated if Br(x) = {x} for some r > 0. A setN ⊂ M
is called aneighborhood of x ∈ M ifN contains an open set which contains x; similarly, if
N contains an open set which contains a setA, thenN is called a neighborhood ofA. It is
clear that a sequence {xn} inM converges to x ∈ M if and only if, for any neighborhood
N of x, there is n0 ∈ N such that xn ∈ N whenever n ≥ n0. One notes that if x0 is an
isolated point ofM, then any map T fromM into any metric space is continuous at x0.

Note that open sets depend on themetric ρ, and when ρ is to be emphasized, an open
set in a metric space with metric ρ is more precisely said to be open w.r.t. ρ.

Exercise 1.4.7 LetM1,M2 be metric spaces and let T : M1 → M2.

(i) Show that T is continuous at x ∈ M1 if and only if, for any sequence {xn} ⊂
M1 with limn→∞ xn = x, it holds that limn→∞ T(xn) = T(x) in M2; also show
that T is continuous at x ∈ M1 if and only if, for every sequence {xn} ⊂ M1
with limn→∞ xn = x, it holds that {xn} has a subsequence {xnk} such that
limk→∞ T(xnk) = T(x).

(ii) Show that T is continuous at x ∈ M1 if and only if, for any neighborhood N of
T(x) inM2, the setT–1N = {y ∈ M1 : T( y) ∈ N} is a neighborhood of x inM1.

(iii) Show thatT is continuous onM1 if and only if for any open setG2 ⊂ M2,T–1G2
is an open subset ofM1.

Exercise 1.4.8 LetT be the family of all open subsets of ametric spaceM. Show that:

(i) ∅ andM are in T ;
(ii) A,B ∈ T ⇒ A ∩ B ∈ T ;
(iii) if {Ai}i∈I ⊂ T , then

⋃
i∈IAi ∈ T , where I is any index set.

Suppose that (M1, ρ1) and (M2, ρ2) are metric spaces. LetM1 × M2 := {(x, y) : x ∈
M1, y ∈ M2} be theCartesian product ofM1 andM2; define a metric ρ onM1 × M2 by

ρ((x, y), (x′, y′)) = ρ1(x, x′) + ρ2(y, y′)

for (x, y) and (x′, y′) in M1 × M2. It is easily verified that ρ is actually a metric on
M1 × M2. With this metric ρ, M1 × M2 is called the product space of M1 and M2 as
metric space.

Exercise 1.4.9 LetM1 × M2 be the product space of metric spacesM1 andM2.

(i) For A ⊂ M1 and B ⊂ M2, show that A × B is open in M1 × M2 if and only if
both A and B are open inM1 andM2 respectively.

(ii) Let G be an open set in M1 × M2; show that G1 := {x ∈ M1 : (x, y) ∈ G for
some y in M2} and G2 := {y ∈ M2 : (x, y) ∈ G for some x in M1} are open in
M1 andM2 respectively.
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Let K = R or C and let E be a vector space over K. Elements of K are called scal-
ars. Suppose that for each x ∈ E, there is a nonnegative number ∥x∥ associated with it
so that:

(i) ∥x∥ = 0 if and only if x is the zero element of E;
(ii) ∥αx∥ = |α|∥x∥ for all α ∈ K and x ∈ E;
(iii) ∥x + y∥ ≤ ∥x∥ + ∥y∥ for all x, y in E (triangle inequality).

ThenE is called a normed vector space (abbreviated as n.v.s.) with norm ∥ · ∥, and ∥ · ∥
is called a norm on E.

If E is a n.v.s., for x, y in E, let

ρ(x, y) = ∥x – y∥,

then ρ is a metric on E and is called the metric associated with norm ∥ · ∥. Unless stated
otherwise, we always consider this metric for a n.v.s.. The n.v.s. E with norm ∥ · ∥ is
denoted by (E, ∥ · ∥) if the norm ∥ · ∥ is to be emphasized.

Lemma 1.4.1 Suppose that E is a n.v.s. and xn → x in E, then ∥x∥ = limn→∞ ∥xn∥. In
other words, ∥ · ∥ is a continuous function on E.

Proof The lemma follows from the following sequence of triangle inequalities:

∥xn∥ – ∥xn – x∥ ≤ ∥x∥ ≤ ∥xn∥ + ∥xn – x∥. !

A normed vector space is called a Banach space if it is a complete metric space.
Both Rn and C[a, b] are Banach spaces, with norms given respectively by ∥x∥ =

(
∑n

i=1 x2i )
1
2 for x = (x1, . . . , xn) ∈ Rn and ∥ f∥ = maxa≤t≤b | f (t)| for f ∈ C[a, b].

Similarly, the unitary space Cn is a Banach space with norm ∥z∥ = (
∑n

j=1 |zj|2)
1
2 for

z = (z1, . . . , zn) inCn. The norms defined above forRn andCn are called respectively
the Euclidean norm and the unitary norm and are denoted by | · | in both cases, in
accordance with the notations introduced in Example 1.4.1; note that their associated
metrics are themetrics introduced forRn andCn in Example 1.4.1. The norm defined for
C[a, b] is called the uniform norm; its associated metric is the uniformmetric defined in
Example 1.4.2.

A class of well-known Banach spaces, the lp spaces, will be introduced in §1.6. This
class of Banach spaces anticipates the important and more general class of Lp spaces
treated in Section 2.7 and in Chapter 6.

In the remaining part of this section, linear maps from a normed vector space E into
a normed vector space F over the same fieldR or C are considered. Recall that a map
T from a vector space E into a vector space F over the same field is said to be linear if
T(αx + βy) = αT(x) + βT( y), for all x, y in E and all scalars α, β . Linear maps are more
often called linear transformations or linear operators.



14 | Introduction and Preliminaries

Exercise 1.4.10 Suppose that T is a linear transformation from E into F. Show that T
is continuous on E if and only if it is continuous at one point.

Theorem 1.4.1 Let T be a linear transformation from E into F, then T is continuous if and
only if there is C ≥ 0 such that

∥Tx∥ ≤ C∥x∥

for all x ∈ E.

Proof If there is C ≥ 0 such that ∥Tx∥ ≤ C∥x∥ holds for all x ∈ E, then T is obviously
continuous at x = 0 and hence by Exercise 1.4.10 is continuous on E.

Conversely, suppose that T is continuous on E, and is hence continuous at x = 0.
There is then δ > 0 such that if ∥x∥ ≤ δ, then ∥Tx∥ ≤ 1. Let now x ∈ E and x ̸= 0,
then

∥∥ δ
∥x∥x

∥∥ = δ, so
∥∥T
(

δ
∥x∥x

)∥∥ ≤ 1. Thus ∥Tx∥ ≤ 1
δ
∥x∥. If we choose C = 1

δ
, then

∥Tx∥ ≤ C∥x∥ for all x ∈ E. !
From this theorem it follows that ifT is a continuous linear transformation fromE into

F, then

∥T∥ := sup
x∈E, x̸=0

∥Tx∥
∥x∥ < +∞,

and is the smallest C for which ∥Tx∥ ≤ C∥x∥ for all x ∈ E. ∥T∥ is called the norm
of T. Of course, ∥T∥ can be defined for any linear transformation T from E into F; then
∥Tx∥ ≤ ∥T∥∥x∥ holds always and T is continuous if and only if ∥T∥ < +∞. Hence a
continuous linear transformation is also called a bounded linear transformation.

Exercise 1.4.11 Show that ∥T∥ = supx∈E,∥x∥=1 ∥Tx∥.

Exercise 1.4.12 Let L(E, F) be the space of all bounded linear transformations from
E into F. Show that it is a normed vector space with norm ∥T∥ for T ∈ L(E, F) as
previously defined.

Remark Any linear map T from a Euclidean space Rn into a Euclidean space Rm is
continuous. This follows from the representation of T by a matrix (ajk), 1 ≤ j ≤ m, 1 ≤
k ≤ n, of real entries, in the sense that if y = Tx, then yj =

∑n
k=1 ajkxk, j = 1, . . . ,m, where

x = (x1, . . . , xn) and y = (y1, . . . , ym), by observing that

|y|2 =
m∑
j=1

( n∑
k=1

ajkxk
)2

≤
(

m∑
j=1

n∑
k=1

a2jk

)

|x|2.

Theorem 1.4.2 If F is a Banach space, then L(E, F) is a Banach space.
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Proof Let {Tn} be a Cauchy sequence in L(E, F). Since

∥Tnx – Tmx∥ = ∥(Tn – Tm)x∥ ≤ ∥Tn – Tm∥ · ∥x∥,

{Tnx} is a Cauchy sequence in F for each x ∈ E. Since F is complete, limn→∞ Tnx
exists. Put Tx = limn→∞ Tnx. T is obviously a linear transformation from E into F.

We claim now T ∈ L(E, F). Since {Tn} is Cauchy, ∥Tn∥ ≤ C for someC > 0, and
for all n. Now, from Lemma 1.4.1,

∥Tx∥ = lim
n→∞

∥Tnx∥ ≤
(
sup
n

∥Tn∥
)
∥x∥ ≤ C∥x∥

for each x ∈ E. Hence T is a bounded linear transformation.
We show next, limn→∞ ∥Tn – T∥ = 0. Given ε > 0, there is n0 such that ∥Tn –

Tm∥ < ε if n,m ≥ n0. Let n ≥ n0, we have

∥Tn – T∥ = sup
x∈E,∥x∥=1

∥Tnx – Tx∥

= sup
x∈E,∥x∥=1

lim
m→∞

∥Tnx – Tmx∥

≤ sup
x∈E,∥x∥=1

(
sup
m≥n0

∥Tn – Tm∥
)
∥x∥

≤ sup
x∈E,∥x∥=1

ε∥x∥ = ε;

this shows that limn→∞ ∥Tn – T∥ = 0, or limn→∞ Tn = T. Thus the sequence {Tn}
has a limit in L(E, F). Therefore L(E, F) is complete. !
L(E,C), or L(E,R), depending on whether E is a complex or a real vector space, is

called the topological dual of E and is denoted by E∗; E∗ is a Banach space. Elements of
E∗ are called bounded linear functionals on E.

When E = F, L(E, F) is usually abbreviated to L(E). For S, T in L(E), S ◦ T is in L(E)
and ∥S ◦ T∥ ≤ ∥S∥ · ∥T∥, as follows directly from definitions. Usually, we shall denote
S ◦ T by ST; then for S,T, andU inL(E), (ST)U = S(TU), andwemay therefore denote
TT by T2, (TT)T by T3, . . . etc. for T ∈ L(E) free of misinterpretation. Note that
∥Tk∥ ≤ ∥T∥k for T ∈ L(E) and k ∈ N. For convenience, we put T◦ = 1, the identity
map on E.

Exercise 1.4.13 Let S be a nonempty set and consider the vector space B(S) of all
bounded real(complex)-valued functions on S. Addition and multiplication by scalar
in B(S) are usual for functions. For f ∈ B(S), let ∥ f∥ = sups∈S | f (s)|.

(i) Show that (B(S), ∥ · ∥) is a Banach space.
(ii) For a ∈ B(S), define A : B(S) → B(S) by (Af )(s) = a(s)f (s), s ∈ S. Show that

A is a bounded linear transformation from B(S) into itself and that ∥A∥ = ∥a∥.
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Exercise 1.4.14 Consider C[0, 1] and let g ∈ C[0, 1]. Define a linear functional ℓ on
C[0, 1] by

ℓ( f ) =
∫ 1

0
f (x)g(x)dx.

Show that ℓ ∈ C[0, 1]∗ and ∥ℓ∥ =
∫ 1
0 |g(x)|dx.

Exercise 1.4.15 Let g be a continuous function on [0, 1] × [0, 1] and for f ∈
C[0, 1], let the function Tf be defined by Tf (x) =

∫ 1
0 g(x, y)f ( y)dy. Show that T ∈

L(C[0, 1]) and ∥T∥ = maxx∈[0,1]
∫ 1
0 |g(x, y)|dy.

We now consider a series of elements in a n.v.s. E. A symbol of the form
∑∞

k=1 xk with
each xk in E is called a series. For each n ∈ N,

∑n
k=1 xk is called the n-th partial sum of

the series
∑∞

k=1 xk. If it happens that limn→∞
∑n

k=1 xk exists in E, say x, then the series∑∞
k=1 xk is said to be convergent in E and x is called the sum of the series,

∑∞
k=1 xk, sym-

bolically expressed by x =
∑∞

k=1 xk, i.e. when
∑∞

k=1 xk converges, we attach a meaning to
the symbol

∑∞
k=1 xk by referring to it as limn→∞

∑n
k=1 xk, or the sum of the series.

Theorem 1.4.3 Let {xk} be a sequence in a Banach space E such that
∑∞

k=1 ∥xk∥ < ∞.
Then

∑∞
k=1 xk converges in E.

Proof For n ∈ N, let yn =
∑n

k=1 xk. Then form > n inN,

∥ym – yn∥ =
∥∥∥∥

m∑
k=n+1

xk
∥∥∥∥ ≤

m∑
k=n+1

∥xk∥ → 0

as n → ∞. This means that {yn} is a Cauchy sequence in E, but the fact that E is
complete implies that {yn} converges in E, i.e. limn→∞

∑n
k=1 xk exists in E. !

Exercise 1.4.16 Suppose that
∑∞

k=1 xk is a convergent series in a n.v.s. E. Show that
∥∥∥∥

∞∑
k=1

xk
∥∥∥∥ ≤

∞∑
k=1

∥xk∥.

Exercise 1.4.17 Suppose that
∑∞

k=1 αk is a convergent series inR.

(i) If x is an element of a n.v.s. E, show that
∑∞

k=1 αkx converges in E.
(ii) If {xk} is a bounded sequence in a Banach space E and

∑∞
k=1 αk is absolutely

convergent, show that
∑∞

k=1 αkxk converges in E.

The following example, which complements Theorem 1.4.3, illustrates a method to
extract a convergent subsequence from a given sequence.

Example 1.4.4 If a series
∑∞

n=1 xn in a n.v.s. E converges whenever
∑∞

n=1 ∥xn∥ < ∞,
then E is a Banach space. To show this, let {yn} be a Cauchy sequence in E. Since
{yn} is Cauchy, there is an increasing sequence n1 < n2 < · · · < nk < · · · in N
such that ∥ynk+1 – ynk∥ < 1

k2 for each k. Then
∑∞

k=1 ∥ynk+1 – ynk∥ < ∞ and hence
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∑∞
k=1(ynk+1 – ynk) converges, which is equivalent to {ynk} being a convergent sequence.

We have shown that {yn} has a convergent subsequence; thus {yn} converges by
Exercise 1.4.3 and E is therefore complete.

Remark Weconclude this sectionwith a remark onnorms on a vector spaceE. Suppose
that ∥ · ∥′ and ∥ · ∥′′ are different norms on a vector space E, in general, ∥ · ∥′ and ∥ · ∥′′

will generate different families of open sets; but a moment’s reflection convinces us that
∥ · ∥′ and ∥ · ∥′′generate the same family of open sets if and only if there is c > 0 such that

c∥x∥′′ ≤ ∥x∥′ ≤ 1
c
∥x∥′′

for all x in E (in this case ∥ · ∥′ and ∥ · ∥′′ are said to be equivalent). We shall see in
Proposition 1.7.2 that all norms on a finite-dimensional vector space are equivalent.

1.5 Semi-continuities

For real-valued functions, the fact that the real fieldR is ordered plays an important role
in the analysis of functions. In particular, for real-valued functions defined on a metric
space, lower semi-continuity and upper semi-continuity are useful concepts that owe
their existence to R being ordered. Semi-continuities are our concern in this section.
For a subset S ofR we shall adopt the convention that inf S = ∞ and sup S = –∞ if S is
empty; and that inf S = –∞ if S is not bounded from below, while sup S = ∞ if S is not
bounded from above.

For a sequence xn, n = 1, 2, . . . , of real numbers, let

lim inf
n→∞

xn = lim
n→∞

(
inf
k≥n

xk
)
, (1.4)

lim sup
n→∞

xn = lim
n→∞

(
sup
k≥n

xk
)
. (1.5)

Notice that infk≥n xk is increasing and supk≥n xk is decreasing as n increases, hence
both limits on the right-hand sides of (1.4) and (1.5) exist, although they may not be
finite. Thus lim infn→∞ xn and lim supn→∞ xn always exist, and are called respectively the
inferior limit and the superior limit of {xn}. Clearly, lim infn→∞ xn ≤ lim supn→∞ xn.

Exercise 1.5.1

(i) Show that limn→∞ xn exists if and only if lim infn→∞ xn = lim supn→∞ xn, and
limn→∞ xn is the common value lim infn→∞ xn = lim supn→∞ xn if it exists.

(ii) Show that lim infn→∞(xn + yn) ≥ lim infn→∞ xn + lim infn→∞ yn (lim supn→∞
(xn + yn) ≤ lim supn→∞ xn + lim supn→∞ yn), if lim infn→∞ xn + lim infn→∞
yn (lim supn→∞ xn + lim supn→∞ yn) is meaningful. Note that α + β is mean-
ingful if at least one of α and β is finite, or if both α and β are either∞ or –∞.
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(iii) Show that lim infn→∞(xn + yn) ≤ lim infn→∞ xn + lim supn→∞ yn if the right-
hand side is meaningful and that lim supn→∞(xn + yn) ≥ lim infn→∞ xn +
lim supn→∞ yn if the right-hand side is meaningful.

A real-valued function f defined on a metric space M with metric ρ is said to be
lower semi-continuous (upper semi-continuous) at x ∈ M if, for every sequence {xn}
inM with x = limn→∞ xn, f (x) ≤ lim infn→∞ f (xn) (f (x) ≥ lim supn→∞ f (xn)) holds.
Lower semi-continuity and upper semi-continuity will often be abbreviated as l.s.c. and
u.s.c. respectively. It is clear that a function f is l.s.c. (u.s.c.) at x if and only if for any given
ε > 0 there is δ > 0 such that f ( y) > f (x) – ε (f ( y) < f (x) + ε) if ρ(y, x) < δ.

Exercise 1.5.2

(i) Show that f is lower semi-continuous (upper semi-continuous) at x if and only if

f (x) = lim
δ↘0

[
inf

y∈M, ρ(x,y)<δ
f ( y)

](

f (x) = lim
δ↘0

[
sup

y∈M, ρ(x,y)<δ

f ( y)
])

;

(ii) show that f is continuous at x if and only if f is both lower semi-continuous and
upper semi-continuous at x.

Because of the assertions of Exercise 1.5.2, if x is not an isolated point ofM, we define
lim infy→x f ( y) and lim supy→x f ( y) by

lim inf
y→x

f ( y) = lim
δ↘0

[
inf

y∈M, 0<ρ(x,y)<δ
f ( y)

]
;

lim sup
y→x

f ( y) = lim
δ↘0

[

sup
y∈M, 0<ρ(x,y)<δ

f ( y)

]

,

since infy∈M, 0<ρ(x,y)<δ f ( y) increases as δ decreases and supy∈M, 0<ρ(x,y)<δ f ( y) decreases
as δ decreases, both lim infy→x f ( y) and lim supy→x f ( y) exist, although they may not be
finite. If lim infy→x f ( y) = lim supy→x f ( y), the common value is called the limit of f ( y)
as y → x and is denoted by limy→x f ( y). Usually, limy→x f ( y) is simply called the limit
of the function f at x. Note that lim infy→x f ( y) and lim supy→x f ( y) are defined if f is
defined on a neighborhood of x with x excluded. If x is an isolated point of M and f is
defined at x, then lim infy→x f ( y) = lim supy→x f ( y) = limy→x f ( y) = f (x) by definition.

Exercise 1.5.3

(i) Show that lim infy→x f ( y) ≤ lim supy→x f ( y) and that f is continuous at x if and
only if limy→x f ( y) = f (x).

(ii) Show that f is l.s.c. (u.s.c.) at x if and only if f (x) ≤ lim infy→x f ( y) (f (x) ≥
lim supy→x f ( y)).
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If f is lower semi-continuous (upper semi-continuous) at every point ofM, then f is
said to be lower semi-continuous (upper semi-continuous) onM.

Exercise 1.5.4 Show that f is lower semi-continuous (upper semi-continuous) onM if
and only if {x ∈ M : f (x) > α} ({x ∈ M : f (x) < α}) is open for every α ∈ R.

Exercise 1.5.5 Let fα , α ∈ I, be a family of real-valued continuous functions defined
onM and assume that supα∈I fα(x) (infα∈I fα(x)) is finite for each x ∈ M; show that
supα∈I fα(x) (infα∈I f (x)) is lower (upper) semi-continuous onM.

Exercise 1.5.6 Suppose that f is a real-valued function defined on a metric space and
assume that f is bounded from below onM, i.e. there is c ∈ R such that f (z) ≥ c for
all z ∈ M. For each k ∈ N is defined a function fk onM by

fk(x) = inf
z∈M

{ f (z) + kρ(x, z)}, x ∈ M.

(i) Show that fk(x) is finite for all x ∈ M and

| fk(x) – fk( y)| ≤ kρ(x, y)

for all x, y inM.
(ii) Suppose that f is l.s.c. onM. Show that

f (x) = lim
k→∞

fk(x), x ∈ M.

(iii) Show that f is l.s.c. on M if and only if there is an increasing sequence { fk} of
continuous functions onM such that

f (x) = lim
k→∞

fk(x)

for all x ∈ M.

Exercise 1.5.7 A metric space M is called a compact space if every sequence in M
has a subsequence which converges in M. Show that if f is lower semi–continuous
(upper semi-continuous) on a compact metric spaceM, then f assumes its minimum
(maximum) on M. (Hint: There is a sequence {xn} in M such that limn→∞ f (xn) =
infx∈M f (x))

1.6 The space ℓp(Z)

The Banach spaces considered in this section are included in themore general class of Lp
spaces, to be introduced in Section 2.7; but it is expedient to give a separate and direct
treatment here without recourse to general theory of measure and integration.

Let Z be the set of all integers and consider the space L of all real-valued functions
defined on Z. With the usual definition of addition of functions and multiplication of a
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function by a scalar, L is a real vector space. For f ∈ L and j ∈ Z, if we denote f (j) by fj,
then f can be identified with the two-way sequence ( fj)j∈Z of real numbers and L is the
space of all sequences (aj)j∈Z of real numbers. For f ∈ L and 1 ≤ p ≤ ∞, let

∥ f∥p =

⎧
⎪⎨

⎪⎩

(∑
j∈Z | f (j)|p

) 1
p if p < ∞;

supj∈Z | f (j)| if p = ∞.

Now consider the space ℓp(Z), 1 ≤ p ≤ ∞, defined by

ℓp(Z) = { f ∈ L : ∥ f∥p < ∞}.

Presentlywe shall prove that ℓp(Z) is a vector space and∥ · ∥p is a normon ℓp(Z), but for
this purpose we first show an inequality which is a generalization of the Schwarz inequal-
ity and is called Hölder’s inequality. Two extended real numbers p, q ≥ 1 are called
conjugate exponents if 1

p +
1
q = 1 ( 1

∞ = 0; for further arithmetic conventions regarding
∞ and –∞, see the first paragraph of Section 2.2), while two nonnegative numbers α

and β will be called a convex pair if α + β = 1.

Lemma 1.6.1 If α and β is a convex pair, then for any 0 ≤ ζ , η < ∞ the following
inequality holds:

ζ αηβ ≤ αζ + βη. (1.6)

Proof Wemay assume that 0 < α,β < 1 and ζ , η > 0.
Since (1 + x)α ≤ αx + 1, for x ≥ 0, we have

yα ≤ αy + β , y ≥ 1. (1.7)

Now either ζη–1 ≥ 1 or ζ –1η ≥ 1; if ζη–1 ≥ 1, take y = ζη–1 in (1.7), while
if ζ –1η ≥ 1, take y = ζ –1η in (1.7) with α and β interchanged, then proceed
to (1.6). !

Lemma 1.6.2 (Hölder’s inequality) If x = (x1, . . . , xn) and y = (y1, . . . , yn) are inRn,
then for conjugate exponents p and q we have

n∑
j=1
|xjyj| ≤ ∥x∥p∥y∥q.

Remark Since an element x ofRn can be identified with an element f of L by f (1) =
x1, . . . , f (n) = xn, and f (j) = 0 for other j, ∥x∥p is defined.

Proof of Lemma 1.6.2 It is clear that if one of p and q is∞, the lemma is trivial, hence
we suppose that 1 < p, q < ∞. Since ∥x∥p = 0 if and only if x = 0, we may assume
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that ∥x∥p > 0 and ∥y∥p > 0. For 1 ≤ j ≤ n, choose ζ =
(

|xj|
∥x∥p

)p
and η =

(
|yj|
∥y∥q

)q
in

Lemma 1.6.1. with α = 1
p and β = 1

q , then

|xjyj|
∥x∥p∥y∥q

≤ 1
p
|xj|p

∥x∥pp
+
1
q
|yj|q

∥y∥qq
,

and consequently

n∑
j=1
|xjyj| ≤ ∥x∥p∥y∥q

(
1
p
+
1
q

)
= ∥x∥p∥y∥q. !

Exercise 1.6.1 Suppose that α > 0 and β > 0 is a convex pair. Show that

ζ αηβ = αζ + βη, ζ ≥ 0, η ≥ 0

if and only if ζ = η.

We are now in a position to prove that ℓp(Z) is a vector space and ∥ · ∥p is a norm on
ℓp(Z). That ∥ f∥p = 0 if and only if f = 0 and that λf ∈ ℓp(Z) and ∥λf∥p = |λ|∥ f∥p for
λ ∈ R and f ∈ ℓp(Z) are obvious. It only remains to show that ∥ f + g∥p ≤ ∥ f∥p + ∥g∥p
for f , g in ℓp(Z). For this purpose, we may assume that 1 < p < ∞ and ∥ f + g∥p > 0.
Under this assumption, there is A ∈ F(Z) such that

∑
j∈A | f (j) + g(j)|p > 0. For such

A, we have

0 <
∑
j∈A

| f (j) + g(j)|p ≤ ∑
j∈A

| f (j) + g(j)|p–1
(
| f (j)| + |g(j)|

)
,

from which, by using Hölder’s inequality (see Lemma 1.6.2.), we have

0 <
∑
j∈A

| f (j) + g(j)|p

≤
(∑
j∈A

| f (j) + g(j)|(p–1)q
) 1

q
{(∑

j∈A
| f (j)|p

) 1
p

+
(∑
j∈A

|g(j)|p
) 1

p
}

≤
(∑
j∈A

| f (j) + g(j)|p
) 1

q (
∥ f∥p + ∥q∥p

)
,

and thus, on dividing the last sequence of inequalities by
(∑

j∈A | f (j) + g(j)|p
) 1

q , we
obtain

(∑
j∈A

| f (j) + g(j)|p
) 1

p

≤ ∥ f∥p + ∥g∥p. (1.8)
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Now observe that (1.8) holds for any A ∈ F(Z). Taking the supremum on the left-hand
side of (1.8) over A ∈ F(Z), we see that ∥ f + g∥p ≤ ∥ f∥p + ∥g∥p. Therefore, ℓp(Z) is a
vector space and ∥ · ∥p is a norm on ℓp(Z). We shall always refer to ℓp(Z) as a normed
vector space with this norm.

Exercise 1.6.2 Let k1 < · · · < kn be a finite sequence inZ of length n; define a map T
from ℓp(Z) to the n-dimensional EuclideanRn by

T(f ) =
(
f (k1), . . . , f (kn)

)
, f ∈ ℓp(Z).

Show that T is continuous from ℓp(Z) onto Rn and that the image under T of any
open set in ℓp(Z) is an open set inRn.

Exercise 1.6.3 Suppose 1 ≤ p < ∞; show that |a1 + · · · + an|p ≤ np–1
∑n

j=1 |aj|p for
a1, . . . , an inR.

Exercise 1.6.4 Let f1, f2, . . . , fn, . . . be a Cauchy sequence in ℓp(Z); show that
limn→∞ fn(j) exists and is finite for every j ∈ Z.

Exercise 1.6.5 Show that ℓ∞(Z) is a Banach space.

Theorem 1.6.1 ℓp(Z) is a Banach space for 1 ≤ p ≤ ∞.

Proof The case p = ∞ is relatively easy and is left as an exercise (see Exercise 1.6.5).
Consider now the case 1 ≤ p < ∞. Let f1, f2, . . . , fn, . . . be a Cauchy sequence in
ℓp(Z), then limn→∞ fn(j) exists and is finite for each j ∈ Z (see Exercise 1.6.4), say
f (j) = limn→∞ fn(j). We show first that f ∈ ℓp(Z). Since f1, f2, . . . , fn, . . . is a Cauchy
sequence, it is necessarily bounded. Let∥ fn∥p ≤ M for all n. There is n0 ∈ N such that

∥ fn – fm∥p < 1, n,m ≥ n0.

Now fixm ≥ n0 and let A ∈ F(Z), then

∑
j∈A

| f (j)|p = lim
n→∞

∑
j∈A

| fn(j)|p = lim
n→∞

∑
j∈A

| fn(j) – fm(j) + fm(j)|p

≤ lim sup
n→∞

∑
j∈A

{
| fn(j) – fm(j)| + | fm(j)|

}p,

from which, by Exercise 1.6.3, we have

∑
j∈A

| f (j)|p ≤ lim sup
n→∞

2p–1
{∑
j∈A

| fn(j) – fm(j)|p +
∑
j∈A

| fm(j)|p
}

≤ 2p–1
{
lim sup
n→∞

∥ fn – fm∥pp + ∥ fm∥pp
}

≤ 2p–1{1 +Mp}.
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Thus,

∑
j∈Z

| f (j)|p = sup
A∈F(Z)

∑
j∈A

| f (j)|p ≤ 2p–1(1 +Mp) < ∞,

which shows f ∈ ℓp(Z). We now claim limn→∞ fn = f in ℓp(Z). Actually, given
ε > 0, there isN ∈ N such that

∥ fn – fm∥p < ε, n,m ≥ N.

Now, for n ≥ N and A ∈ F(Z),

∑
j∈A

| f (j) – fn(j)|p = lim
m→∞

∑
j∈A

| fm(j) – fn(j)|p

≤ lim inf
m→∞

∥ fm – fn∥pp ≤ εp,

which implies

∥ f – fn∥pp = sup
A∈F(Z)

∑
j∈A

| f (j) – fn(j)|p ≤ εp,

or

∥ f – fn∥p ≤ ε, n ≥ N.

In other words, limn→∞ fn = f in ℓp(Z). This shows that ℓp(Z) is complete and hence
is a Banach space. !

Exercise 1.6.6 Let f , g be in ℓ1(Z).

(i) Show that { f (n – m)g(m)}(n,m)∈Z×Z is summable and
∑

(n,m)∈Z×Z

f (n – m)g(m) =
∑
n∈Z

∑
m∈Z

f (n – m)g(m).

(ii) Define f ∗ g(n) =
∑

m∈Z f (n – m)g(m), n ∈ Z. Show that f ∗ g ∈ ℓ1(Z),
f ∗ g = g ∗ f , and ∥ f ∗ g∥1 ≤ ∥ f∥1∥g∥1.

Exercise 1.6.7 Suppose that f ∈ lp(Z) and g ∈ l1(Z). Show that f ∗ g can be defined
similarly as in Exercise 1.6.6 (ii); then show that f ∗ g = g ∗ f , and

∥ f ∗ g∥p ≤ ∥ f∥p∥g∥1.

Remark For any nonempty set S and 1 ≤ p ≤ ∞, the Banach space ℓp(S) can be
defined in the same way that ℓp(Z) is defined. The first such space is the space ℓ2(N)
introduced by D. Hilbert in his study of the Fredholm theory of integral equations.



24 | Introduction and Preliminaries

1.7 Compactness

This section is devoted to a study of compactness, introduced in Exercise 1.5.7. Existence
of mathematical objects in analysis often involves arguments of compactness: for
example, Exercise 1.5.7 guarantees that if f is a lower semi-continuous function defined
on a compact metric spaceM, then there exists x0 ∈ M such that

f (x0) = min
x∈M

f (x).

Recall from Exercise 1.5.7 that a metric space M is called a compact space if every
sequence inM has a subsequencewhich converges inM. One observes readily that a com-
pact metric space is necessarily complete. There is a characterization of compact metric
spaces which is often useful. To prepare for the statement of such a characterization, we
call a point x0 of a metric spaceM a limit point of a set A ⊂ M if every neighborhood of
x0 contains a point of A other than x0.

Exercise 1.7.1 Let A be a subset of a metric spaceM.

(i) Show that a point x0 is a limit point of A if and only if every neighborhood of x0
contains infinitely many points of A;

(ii) show thatA is closed if and only if it contains all its limit points. Infer in particular
that a finite set is closed.

Theorem 1.7.1 A metric space M is compact if and only if every infinite subset of M has a
limit point.

Proof Suppose first that M is compact and let A be an infinite subset of M. We shall
show that A has a limit point. Since A is infinite, there is a sequence {xn} in A formed
of mutually different points. As M is compact, {xn} has a subsequence {xnk} which
converges to x ∈ M. Since {xnk} is formed of mutually different points in A and x =
limk→∞ xnk , x is a limit point of A. We have shown that if M is compact, then every
infinite subset ofM has a limit point.

Next, suppose that every infinite subset ofM has a limit point. Let us show thatM
is compact. Suppose that {xn} is a sequence in M. If the range of the sequence {xn}
is a finite set, then xn1 = xn2 = · · · = xnk = · · · for some subsequence {nk} of {n}, and
hence the subsequence {xnk} of {xn}, being a constant sequence, converges. On the
other hand, if the range of {xn} is infinite, then it has a limit point x. It is clear that x is
the limit of a subsequence of {xn}. ThusM is compact. !
A subset K of a metric space is said to be compact if K is a compact metric space with

metric inherited from M. From the Bolzano–Weierstrass theorem, which states that
every bounded infinite subset ofR has a limit point, it follows that every bounded closed
subset ofR is compact. Historically, the Bolzano–Weierstrass theorem is the genesis of
the concept of compact sets.
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Exercise 1.7.2 Suppose that K1 ⊃ K2 ⊃ · · · ⊃ Kn ⊃ Kn+1 ⊃ · · · is a decreasing
sequence of nonempty compact sets in a metric space. Show that

⋂
n Kn ̸= ∅.

Exercise 1.7.3 Show that the Bolzano–Weierstrass theorem holds also forRk, k ≥ 2
and then infer that every bounded closed subset of Rk is compact. Show also that
every bounded closed set in the unitary spaceCk is compact.

Exercise 1.7.4

(i) Show that compact subsets of a metric space are both bounded and closed.
(ii) Show that a subset of the Euclidean space Rk or of the unitary space Cn is

compact if and only if it is both bounded and closed.
(iii) Let, for each n ∈ Z, en be the element of l2(Z) (see Section 1.6) such that

en(j) = δnj, j ∈ Z. Show that {en}n∈Z is a bounded and closed subset of l2(Z),
but it is not compact. Recall that δnj is the Kronecker delta, defined by δnj = 1 or
0 according to whether n = j or n ̸= j.

Proposition 1.7.1 If T is a continuous map from ametric space M1 into a metric space M2,
then for every compact set K in M1, TK is a compact set in M2, i.e. continuous images of
compact sets are compact.

Proof Let K be a compact set in M1; we may assume that K is nonempty. Suppose
that {yn} is a sequence in TK; we have to show that {yn} has a subsequence which
converges to an element in TK. For each n ∈ N, pick xn ∈ K such that yn = Txn.
Since K is compact, {xn} has a subsequence {xnk} such that xnk → x ∈ K. Since T
is continuous, ynk = Txnk → Tx. Thus the subsequence {ynk} of {yn} converges to an
element in TK. !
An interesting consequence of Proposition 1.7.1 is the following proposition concern-

ing norms on a finite-dimensional vector space.

Proposition 1.7.2 If E is a finite-dimensional vector space, then any two norms ∥ · ∥′ and
∥ · ∥′′ on E are equivalent, in the sense that there is c > 0 such that c∥v∥′′ ≤ ∥v∥′ ≤
1
c ∥v∥′′ for all v ∈ E.

Proof For definiteness we assume that E is a complex vector space. Let n = dim E, and
choose a basis {v1, . . . , vn} of E. Define a norm ∥ · ∥ on E by

∥v∥ =
{ n∑

j=1
|αj|2

}1/2

if v =
∑n

j=1 αjvj, where eachαj ∈ C. Let- be the set {v =
∑n

j=1 αjvj :
∑n

j=1 |αj|2 = 1}
in E. Define a map T : Cn → E by

T(ζ ) =
n∑
j=1

ζjvj, ζ = (ζ1, . . . , ζn) ∈ Cn.
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From ∥T(ζ) –T(η)∥′ ≤∑n
j=1 |ζj – ηj|∥vj∥′ ≤√

nmax1≤ j≤ n ∥vj∥′|ζ – η|, where |ζ – η|
is the norm of ζ – η in the unitary space Cn, it follows that T is continuous
from the unitary space Cn into (E, ∥ · ∥′). Note that T is bijective. Since - is
the image under T of the compact set {ζ ∈ Cn :

∑n
j=1 |ζj|2 = 1} in Cn, - is

compact in (E, ∥ · ∥′), by Proposition 1.7.1. Now let r = infv∈- ∥v∥′ and observe
that since - is compact in (E, ∥ · ∥′) and - does not contain the zero element
of E, r = minv∈- ∥v∥′ > 0; in other words, ∥v∥′ ≥ r > 0 for all v with ∥v∥ = 1.
Now let v ∈ E, v ̸= 0, then ∥ v

∥v∥∥′ ≥ r or r∥v∥ ≤ ∥v∥′. On the other hand, ∥v∥′ ≤∑n
j=1 |αj|∥vj∥′ ≤ √

n(max1≤j≤n ∥vj∥′){
∑n

j=1 |αj|2}1/2 =
√
n(max1≤j≤n ∥vj∥′)∥v∥, or,

if we let
√
n(max1≤j≤n ∥vj∥′) = R, we have

∥v∥′ ≤ R∥v∥

for all v ∈ E (note: we write v =
∑n

j=1 αjvj for v ∈ E). We choose then c′ > 0 such
that c′ ≤ r and 1

c′ ≥ R, then

c′∥v∥ ≤ ∥v∥′ ≤ 1
c′

∥v∥, v ∈ E.

Similarly, there is c′′ > 0 such that

c′′∥v∥ ≤ ∥v∥′′ ≤ 1
c′′

∥v∥, v ∈ E.

Then, for v ∈ E,

c′c′′∥v∥′′ ≤ c′∥v∥ ≤ ∥v∥′ ≤ 1
c′

∥v∥ ≤ 1
c′c′′

∥v∥′′,

or

c∥v∥′′ ≤ ∥v∥′ ≤ 1
c
∥v∥′′,

where c = c′c′′ > 0. !
Corollary 1.7.1 Finite-dimensional vector subspaces of a n.v.s. E are all closed.

Proof For definiteness, assume that E is a real n.v.s. with norm ∥ · ∥. Consider any
finite-dimensional vector subspace F of E, put n = dimension of F and choose a
basis {v1, . . . , vn} of F. Define a new norm ∥ · ∥′ on F as follows: for u =

∑n
j=1 αjvj

where α1, . . . ,αn are real numbers, let ∥u∥′ = (
∑n

j=1 α2
j )1/2. Clearly, ∥ · ∥′ is a norm

on F. Let T be the linear map from the Euclidean spaceRn onto F, defined by Tx =∑n
j=1 xjvj for x = (x1, . . . , xn). If we denote by | · | the Euclidean norm forRn, then

∥Tx∥′ = |x|. By Proposition 1.7.2, there is c > 0 such that c∥u∥′ ≤ ∥u∥ ≤ c–1∥u∥′
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for u ∈ F; consequently, ∥Tx∥ ≤ c–1∥Tx∥′ = c–1|x| for x ∈ Rn and hence T is a con-
tinuous map from Rn into E. To show that F is closed in E, we have to show that
if {uk} is a sequence in F which converges in E, then the limit is in F. Since {uk}
converges, it is bounded, say ∥uk∥ ≤ A for all k for some A > 0. Now write uk =∑n

j=1 α
(k)
j vj and put α(k) = (α(k)

1 , . . . ,α(k)
n ), then uk = Tα(k) and |α(k)| = ∥uk∥′ ≤

c–1∥uk∥ ≤ c–1A for each k. Thus {uk} is contained in the image K ⊂ F of the closed
ball {x ∈ Rn : |x| ≤ c–1A} under T. Since closed balls inRn are compact, K is com-
pact by Proposition 1.7.1 and is therefore closed in E. Now {uk} ⊂ K implies that its
limit is in K ⊂ F. This shows that F is closed. !

Corollary 1.7.2 Suppose that F is an affine subspace ofRn, then for each x ∈ Rn, there is
unique y in F such that |x – y| = minz∈F |x – z|. Furthermore, y is characterized by the
condition that (x – y) · (z – y) = 0 for all z ∈ F.

Proof We need only consider the case that F is a proper affine subspace of Rn

and x is not in F. Since F is closed by Corollary 1.7.1, infz∈F |x – z| = l > 0. Let
K = {z ∈ F : |x – z| ≤ 2l}, then infz∈F |x – z| = infz∈K |x – z|; but, since K is com-
pact, there is y ∈ K such that l = minz∈F |x – z| = minz∈K |x – z| = |x – y|. Consider
now z ∈ F and let f (t) = |x – y + t(z – y)|2 = |x – y|2 + 2t(x – y) · (z – y) + t2|z –
y|2 for t ∈ R. Since f assumes minimum l2 at t = 0, f ′(0) = 2(x – y) · (z – y) = 0.
Hence y satisfies the condition that (x – y) · (z – y) = 0 for all z ∈ F; on the other
hand, if y ∈ F satisfies the condition that (x – y) · (z – y) = 0 for all z ∈ F, then
for any z ∈ F we have |x – z|2 = |x – y + y – z|2 = |x – y|2 + 2(x – y) · (y – z) + |y –
z|2 = |x – y|2 + |y – z|2 ≥ |x – y|2, i.e. |x – y| = minz∈F |x – z|. Thus, we have shown
that there is y ∈ F such that |x – y| = minz∈F |x – z| and that y is characterized by the
condition that (x – y) · (z – y) = 0 for all z ∈ F. It remains to show that y is unique.
Let y and y′ in F satisfy |x – y| = |x – y′| = minz∈F |x – z|, then

(x – y) · (z – y) = 0, (x – y′) · (z – y′) = 0

for all z in F. Choose z = y′ and y respectively in these equalities; we have

(x – y) · (y – y′) = 0, (x – y′) · (y – y′) = 0;

subtract the first equality from the second; we have (y – y′) · (y – y′) = 0 = |y – y′|2,
implying y = y′. !
The map x 6→ y, as asserted by Corollary 1.7.2, is called the orthogonal projection

from Rn onto F. If this map is denoted by P, then (1) Px = x if and only if x ∈ F; (2)
P2 = P; and (3) |Px – Px′| ≤ |x – x′|. That (1) and (2) hold is fairly obvious. To see that
(3) holds, observe firstly that

(x – x′ – Px + Px′) · (Px – Px′) = 0,

from which it follows that |Px – Px′|2 = (x – x′) · (Px – Px′) ≤ |x – x′||Px – Px′| and
hence (3) holds. It follows from (3) that P is a continuous map.
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Remark If F is a vector subspace ofRn, then

(i) P is actually a linear map, as follows easily from the characterization that (x –
Px) · z = 0 for all z ∈ F;

(ii) since (x – Px) · Px = 0, |x|2 = |Px|2 + |x – Px|2 for every x ∈ Rn; this last
equality is called the Pythagoras relation.

Proposition 1.7.3 Suppose that T is an injective and continuous map from a compact
metric space M1 into a metric space M2. Then T–1 : TM1 → M1 is continuous.

Proof Let y ∈ TM1 and {yn} be a sequence in TM1 with y = limn→∞ yn. To show that
T–1 is continuous at y, we have to show that {yn} has a subsequence {ynk} such that
limk→∞ T–1ynk = T–1y (cf. Exercise 1.4.7 (i)). Let xn = T–1yn. SinceM1 is compact,
{xn} has a subsequence {xnk} which converges to x in M1. Now ynk = Txnk → Tx
entails that Tx = y and hence limk→∞ T–1ynk = limk→∞ xnk = x = T–1y. !
We shall presently give a useful characterization of compact sets in a complete metric

space corresponding to the characterization of compact sets inRk as bounded and closed
sets (see Exercise 1.7.4 (ii)).

A finite family of open balls with radius ε > 0 in a metric spaceM is called an ε-net
for a subset A ofM if its union contains A. A set A in a metric space is said to be totally
bounded if for any ε > 0 there is an ε-net for A.

Exercise 1.7.5

(i) Show that a set inRn is totally bounded if and only if it is bounded.
(ii) Show that a set A in a metric space is totally bounded if and only if for any ε > 0

there is an ε-net for Awhose balls have their centers in A.

Lemma 1.7.1 A subset A of a metric space M is totally bounded if and only if every sequence
in A has a Cauchy subsequence. In particular, compact sets are totally bounded.

Proof Suppose that A is totally bounded and let {xn} be a sequence in A. There is a 1
2 -

net for A and hence one of its balls contains a subsequence {x(1)n } of {xn}. After the
sequence {x(1)n } is chosen, we then choose a 1

4 -net for A. As before one of the balls of
this 1

4 -net contains a subsequence {x
(2)
n } of {x(1)n }. We proceed in this way to obtain

a sequence of subsequences, {x(1)n }, {x(2)n }, . . . , {x(k)n }, . . . of {xn}, each of which is
a subsequence of the preceding one, and for each k the sequence {x(k)n } is contained
in a ball of radius 2–k. Now, {x(n)n } is a subsequence of {xn}. For each positive integer
n0, if n > m ≥ n0, both x(n)n and x(m)m are in a ball of radius 2–n0 , hence ρ(x(n)n , x(m)m ) ≤
2–n0+1, from which it follows that {x(n)n } is a Cauchy sequence. Thus each sequence in
A has a Cauchy subsequence.

Next, suppose that each sequence in A has a Cauchy subsequence. We are going
to show that A is totally bounded. Suppose to the contrary that for some ε0 > 0,
no ε0-net for A exists. Choose x1 ∈ A, since Bε0 (x1) does not cover A there is x2 ∈
A\Bε0 (x1). Suppose that x1, . . . , xn in A have been chosen so that ρ(xi, xj) ≥ ε0 for
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i, j ≤ n and i ̸= j, then choose xn+1 ∈ A\⋃n
i=1 Bε0 (xi). Such an xn+1 exists because

{Bε0 (x0), . . . ,Bε0 (xn)} is not an ε0-net for A. But then ρ(xi, xj) ≥ ε0 for i, j ≤ n + 1
and i ̸= j. Bymathematical inductionwe have thus exhibited a sequence {xn} inA such
that ρ(xi, xj) ≥ ε0 when i ̸= j. Such a sequence can not have a Cauchy subsequence,
this contradicts our assumption about A. Thus A is totally bounded. !

Theorem 1.7.2 A subset K of a complete metric spaceM is compact if and only if K is closed
and totally bounded.

Proof Suppose that K is compact, then K is closed. Since each sequence in K has a con-
vergent subsequence which is therefore Cauchy, Lemma 1.7.1 implies thatK is totally
bounded. Next, supposeK is closed and totally bounded and let {xn} be a sequence in
K, then {xn} has a Cauchy subsequence {x′

n} by Lemma 1.7.1. But since K is a closed
subset of a complete metric space, it is complete and hence {x′

n} converges in K. This
shows that K is compact. !
Let A be a subset of a metric space; the smallest closed set which contains A is called

the closure of A and is denoted by A. Obviously, A is the intersection of all those closed
sets containing A. If A = M, we say that A is dense inM, or that A is a dense subset ofM.
A metric spaceM is said to be separable if it contains a countable dense subset. A subset
of a metric space is separable, if it is separable as a metric space; it is precompact, if its
closure is compact.

Since the closure of a totally bounded set is totally bounded, Corollary 1.7.3 follows
from Theorem 1.7.2 (see Exercise 1.7.6 and Exercise 1.7.7):

Corollary 1.7.3 A set in a complete metric space is precompact if and only if it is totally
bounded.

Exercise 1.7.6 Show that the closure of a totally bounded set is totally bounded.

Exercise 1.7.7 Show that a set in a complete metric space is precompact if and only if
it is totally bounded.

Exercise 1.7.8 Show that a totally bounded subset of a metric space is separable. In
particular, a compact subset of a metric space is separable.

Example 1.7.1 (Sequence space) This example illustrates a method to construct
a compact space from a sequence (Mk, ρk), k = 1, 2, . . . , of compact metric
spaces with diamMk ≤ C for all k. For such a sequence, put M =

∏ ∞
k=1 Mk = {x =

(x1, . . . , xk, . . .) : xk ∈ Mk, k = 1, 2, . . .}. We shall often denote x = (x1, . . . , xk, . . .)
by (xk). For x = (xk), y = (yk) inM, let

ρ(x, y) =
∞∑
k=1

1
k2

ρk(xk, yk). (1.9)

It is clear that ρ is a metric on M, and with this metric diam M ≤ 2C. If {x(n)}n∈N
is a sequence in M, and x ∈ M, then ρk(x

(n)
k , xk) ≤ k2ρ(x(n), x) for each k, from

which it follows that if limn→∞ x(n) = x in M, then limn→∞ x(n)k = xk in Mk for
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each k. Conversely, if limn→∞ x(n)k = xk for each k, we claim that limn→∞ x(n) =
x in M. Let ε > 0 be given. There is k0 ∈ N such that

∑∞
k=k0+1

1
k2 ρk(x

(n)
k , xk) ≤

C
∑∞

k=k0+1
1
k2 < ε

2 . Now, since limn→∞ ρk(x
(n)
k , xk) = 0 for k = 1, . . . , k0, there is L ∈

N such thatρk(x
(n)
k , xk) < ε

4 for k = 1, . . . , k0, whenever n ≥ L. Consequently, when
n ≥ L, we have

ρ(x(n), x) =
k0∑
k=1

1
k2

ρk(x
(n)
k , xk) +

∞∑
k=k0+1

1
k2

ρk(x
(n)
k , xk) <

ε

4

k0∑
k=1

1
k2

+
ε

2
< ε;

this means limn→∞ x(n) = x. Thus, we have shown that limn→∞ x(n) = x inM if and
only if limn→∞ x(n)k = xk inMk for each k. We show now thatM is compact. Suppose
that {x(n)} is a sequence inM; we have to show that {x(n)} has a subsequence which
converges inM.We achieve this by thewell-knowndiagonalizationprocedure. Since

M1 is compact {x(n)1 } has a subsequence {x(n
(1)
j )

1 } which converges in M1 to, say, x1;

then {x(n
(1)
j )

2 } has a subsequence {x(n
(2)
j )

2 } which converges inM2 to x2; continuing in
this fashion, we obtain an array of subsequences of {x(n)}:

x(n
(1)
1 ), x(n

(1)
2 ), . . . , x(n

(1)
j ), . . .

x(n
(2)
1 ), x(n

(2)
2 ), . . . , x(n

(2)
j ), . . .

...

x(n
(j)
1 ), x(n

(j)
2 ), . . . , x(n

(j)
j ), . . .

...

(1.10)

where each low contains the next one as a subsequence, and for each k ∈ N,

lim
j→∞

x(n
(k)
j )

k = xk (inMk). (1.11)

Now, put nj = n( j)j , j = 1, 2, . . . . {x(nj)} is a subsequence of {x(n)} formed of the diag-

onal elements of the array (1.10). Observe that {x(nj)}j≥k is a subsequence of {x(n
(k)
j )}

for each k, therefore limj→∞ x(nj)k = xk by (1.11) for each k, and consequently {x(nj)}
converges inM to (xk), as we have shown previously in this example. We have shown
that {x(n)} has a converging subsequence in M. Thus M is compact. In particular, if
eachMk is a finite set with discretemetric (see Exercise 1.4.6), thenM is compact with
metric given by (1.9). We have encountered such a space % = {0, 1} × {0, 1} × · · ·
in Section 1.3, of which one observes readily that each set in the algebraQ is a closed
subset of% and is hence compact.

Remark In Example 1.7.1, the assumption that diamMk ≤ C for all k is not necessary,
because, if we replace eachρk byρ ′

k = (diamMk)–1ρk, then each (Mk, ρ ′
k) is compact and
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diam Mk ≤ 1 w.r.t. the new metric ρ ′
k. Hence from any sequence (Mk, ρk) of compact

metric spaces, one can construct a compact sequence space as in Example 1.7.1.

Nowwe give a characterization of compact sets which is usually taken as the definition
for compact sets in topological spaces.

A family {Sα} of subsets of a given set S is called a covering of a subset A of S if A ⊂⋃
α Sα; then we also say that {Sα} covers A. If S is a metric space and each set Sα is open,

{Sα} is called an open covering of A if it covers A. A subset A of a metric space is said to
have the finite covering property if every open covering ofA has a finite subfamily which
covers A.

Lemma 1.7.2 Let K be a compact subset of a metric space and suppose that {Gα}α∈I is an
open covering of K, then there is δ > 0, called a Lebesgue number of K relative to {Gα},
such that any subset A of K with diam A ≤ δ is contained in Gα for some α ∈ I.

Proof Suppose the contrary. Then for each n ∈ N there is a subset An of K with diam
An ≤ 1

n such thatAn is contained in noGα . Then choose xn ∈ An. SinceK is compact,
the sequence {xn} has a subsequence {xnk} which converges to x ∈ K. Let x ∈ Gα0 ,
α0 ∈ I, and choose r > 0 so that Br(x) ⊂ Gα0 . If k is sufficiently large, 1

nk < r
2 and

xnk ∈ B r
2
(x); consequently Ank ⊂ Br(x) ⊂ Gα0 . This contradicts the fact that Ank is

contained in noGα . The contradiction proves the lemma. !

Theorem 1.7.3 A subset K of a metric space M is compact if and only if K has the finite
covering property.

Proof Suppose first that K has the finite covering property. Consider a sequence {xn}
in K; we shall show that {xn} has a subsequence which converges to a point in K.
Suppose the contrary, then for each x ∈ K, there is an open ball Bx centered at x such
that xn ∈ Bx for only finitely many n. {Bx}x∈K is an open covering of K, hence has
a finite subfamily {B1, . . . ,Bl} which also covers K. Since

⋃l
j=1 Bj ⊃ K and xn ∈ Bj

for only finitely many n for each j, xn ∈ K for only finitely many n, contradicting the
fact that {xn} is a sequence in K. Thus {xn} has a subsequence which converges in K,
showing that K is compact.

Next, suppose that K is compact. Let {Gα} be an open covering of K; we are going
to show that {Gα} has a finite subfamilywhich also coversK. Choose a Lebesgue num-
ber δ > 0 ofK relative to {Gα} according to Lemma 1.7.2. SinceK is totally bounded
by Lemma 1.7.1, there is an δ

2 -net {B1, . . . ,Bk} containing K. For j = 1, . . . , k, diam
K ∩ Bj ≤ δ implies K ∩ Bj ⊂ Gαj for some αj, and consequently K ⊂ ⋃k

j=1 Gαj i.e.
{Gα1 , . . . ,Gαk} is a finite subfamily of {Gα} and it coversK. This shows thatK has the
finite covering property. !

Corollary 1.7.4 (Finite intersection property) Let {Kα}α∈I be a family of compact sets
in a metric space M with the property that intersection of any finite subfamily of {Kα} is
nonempty. Then

⋂
α∈I Kα ̸= ∅.
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Proof Suppose the contrary, that
⋂

α∈I Kα = ∅. Choose and fix α0 ∈ I. Then for
x ∈ Kα0 , there is αx ∈ I such that x ∈ Kc

αx
; hence {Kc

α}α∈I is an open covering
of Kα0 . There is therefore a finite set {α1, . . . ,αk} ⊂ I such that

⋃k
j=1 Kc

αj
⊃ Kα0 ,

by Theorem 1.7.3; this last inclusion relation means that Kα0 ∩ Kα1 ∩ · · · ∩ Kαk

is empty, contradicting our assumption about the family {Kα}. The contradiction
proves the corollary. !
Two applications of Theorem 1.7.3 will now be given; both concerned with the uni-

formity concept. Suppose that T is a map from a metric spaceM1 with metric ρ1 into a
metric space M2 with metric ρ2. T is said to be uniformly continuous on M1 if for any
given ε > 0, there is δ > 0 such that ρ2(Tx,Ty) < ε whenever x and y are inM1 with
ρ1(x, y) < δ. Obviously, if T is uniformly continuous onM1, it is, a fortiori, continuous
onM1. A sequence {Tn} of maps fromM1 intoM2 is said to converge pointwise to a map
T fromM1 intoM2 ifTx = limn→∞ Tnx for each x ∈ M1; it is said to converge uniformly
to T onM1 if for any given ε > 0, there is n0 ∈ N such that ρ2(Tnx,Tx) ≤ ε for every
x ∈ M1 whenever n ≥ n0.

Theorem 1.7.4 If T is a continuous map from a compact metric space M1 into a metric
space M2, then T is uniformly continuous on M1.

Proof Let ε > 0 be given, and let x ∈ M1. Since T is continuous at x, there is
δx > 0 such that ρ2(Ty,Tx) < ε/2 if ρ1(y, x) < δx. Consider {B 1

2 δx(x)}x∈M1 ;
it is an open covering of M1; by Theorem 1.7.3, it contains a finite sub-
family, say {B 1

2 δx1
(x1), . . . ,B 1

2 δxl
(xl)}, which also covers M1. Choose

δ = 1
2 min{δx1 , . . . , δxl}. Suppose now that x, y ∈ M1 with ρ1(x, y) < δ, and let

x ∈ B 1
2 δxj

(xj), 1 ≤ j ≤ l. Then ρ1(y, xj) ≤ ρ1(x, y) + ρ1(x, xj) < δ + 1
2δxj ≤ δxj ,

hence ρ2(Ty,Txj) < ε
2 ; since x ∈ B 1

2 δxj
(xj), ρ2(Tx,Txj) < ε

2 . Therefore,
ρ2(Tx,Ty) ≤ ρ2(Tx,Txj) + ρ2(Txj,Ty) < ε. This shows that T is uniformly
continuous. !

Theorem 1.7.5 (Dini) Let { fn} be a sequence of real-valued continuous functions defined on
a compact metric space M such that f1(x) ≤ f2(x) ≤ · · · ≤ fn(x) ≤ · · · and converges
to a finite real number f (x) for each x ∈ M. If, further, f is continuous on M, then the
sequence { fn} converges uniformly to f on M.

Proof Given ε > 0 and x ∈ M, there is kx ∈ N such that 0 ≤ f (x) – fkx(x) < ε
3 .

Because both f and fkx are continuous, there is an open ball B(x) centered at
x such that | f ( y) – f (x)| < ε

3 and | fkx( y) – fkx(x)| < ε
3 whenever y ∈ B(x); as a

consequence, we have

0 ≤ f ( y) – fkx( y) ≤ | f ( y) – f (x)| + | f (x) – fkx(x)| + | fkx(x) – fkx( y)| < ε

whenever y ∈ B(x), or

0 ≤ f ( y) – fk( y) < ε (1.12)
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whenever y ∈ B(x) and k ≥ kx. Now {B(x) : x ∈ M} is an open covering of M; by
Theorem 1.7.3 it has a finite subfamily, say {B(x1), . . . ,B(xl)}, which also coversM.
Let k0 = max{kx1 , . . . , kxl}; then for y ∈ M and k ≥ k0, it follows from (1.12) that

0 ≤ f ( y) – fk( y) < ε,

because y ∈ B(xj) for some 1 ≤ j ≤ l and k ≥ k0 ≥ kxj . Thus the sequence { fn}
converges to f uniformly onM. !
We come now, in the final part of this section, to prove a historically important the-

orem characterizing precompact sets in the n.v.s. C(X) of all continuous real(complex)-
valued functions defined on a compact metric space X with norm given by

∥ f∥ = sup
x∈X

| f (x)| = max
x∈X

| f (x)|

for f ∈ C(X), where supx∈X | f (x)| = maxx∈X | f (x)| is a consequence of Exercise 1.5.7.
Clearly,C(X) is a n.v.s. with norm given as such. For a compact metric space X, the norm
given previously on C(X) is implicitly assumed without further notice. Actually C(X) is
a Banach space; to show this we need a lemma.

Lemma 1.7.3 Let { fn} be a sequence of continuous functions defined on a metric space M.
Suppose that { fn} converges uniformly to a function f on M, then f is continuous on M.

Proof Let x ∈ M. We shall show that f is continuous at x. Given ε > 0, by the uniform
convergence of { fn} to f on M there is n0 ∈ N such that | fn0 ( y) – f ( y)| < ε

3 for all
y in M. Since fn0 is continuous at x, there is δ > 0 such that | fn0 ( y) – fn0 (x)| < ε

3
whenever ρ(x, y) < δ. Hence if ρ(x, y) < δ, then

| f ( y) – f (x)| ≤ | fn0 ( y) – f ( y)| + | fn0 ( y) – fn0 (x)| + | fn0 (x) – f (x)|

<
ε

3
+

ε

3
+

ε

3
= ε,

which shows that f is continuous at x. !
Proposition 1.7.4 C(X) is a Banach space.

Proof Let { fn} be a Cauchy sequence in C(X); we have to show that { fn} converges
in C(X). Since | fn(x) – fm(x)| ≤ ∥ fn – fm∥ for x ∈ X, { fn(x)} is a Cauchy sequence
of scalars and hence converges to a scalar f (x) for every x in X; thus as a sequence
of functions, { fn} converges pointwise to a function f on X. Actually { fn} converges
uniformly to f on X. Given ε > 0, there is n0 ∈ N such that ∥ fn – fm∥ < ε whenever
n,m ≥ n0, hence | fn(x) – fm(x)| < ε for all x in X and n,m ≥ n0, and thus | fn(x) –
f (x)| ≤ ε for all x inX if n ≥ n0, by lettingm → ∞. It follows then fromLemma1.7.3
that f ∈ C(X). We claim finally that limn→∞ ∥ fn – f∥ = 0, i.e. { fn} converges to f in
C(X). To see this, for ε > 0 given choose n0 ∈ N as above, then | fn(x) – f (x)| ≤ ε
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for all x ∈ X and n ≥ n0; this means that supx∈X | fn(x) – f (x)| ≤ ε when n ≥ n0, or
∥ fn – f∥ ≤ ε when n ≥ n0. Thus limn→∞ ∥ fn – f∥ = 0. !
A family F of functions defined on a metric space M is called an equicontinuous

family if for each given ε > 0 there is δ > 0 such that whenever ρ(x, y) < δ, then
| f (x) – f ( y)| < ε for all f ∈ F . Note that functions in an equicontinuous family are
necessarily uniformly continuous.

The theorem that follows is not only historically important, but is also useful in the
theory of differential equations.

Theorem 1.7.6 (Arzelà–Ascoli) If X is a compact metric space, a subset K of C(X) is
precompact if and only if it is bounded in C(X) and equicontinuous as a family of
functions on X.

Proof Suppose thatK is precompact. SinceC(X) is complete, as asserted by Proposition
1.7.4, K is totally bounded by Corollary 1.7.3. Let ε > 0 and let f1, . . . , fn be the cen-
ters of an ε

3 -net for K. Since f1, . . . , fn are uniformly continuous on X, by Theorem
1.7.4, there is δ > 0 such that

| fi(x) – fi( y)| <
ε

3

for i = 1, . . . , n when ρ(x, y) < δ. Consider now f ∈ K and choose j ∈ {1, . . . , n} so
that

sup
x∈X

| f (x) – fj(x)| <
ε

3
;

such j exists because f1, . . . , fn are centers of an ε
3 -net for K. Then if ρ(x, y) < δ, we

have

| f (x) – f ( y)| ≤ | f (x) – fj(x)| + | fj(x) – fj( y)| + | fj( y) – f ( y)|

<
2
3
ε + | fj(x) – fj( y)| < ε,

and therefor K is equicontinuous. Since K is totally bounded, it is bounded in C(X).
Conversely, suppose that K is bounded in C(X) and is equicontinuous as a family

of functions on X. Let ε > 0. Choose δ > 0 such that | f (x) – f ( y)| < ε
4 for f ∈ K

when f (x, y) < δ. As X is compact, there is a δ-net for X with centers x1, . . . , xn.
For simplicity’s sake, in the argument that follows we assume that functions in C(X)
are real-valued; the corresponding argument when C(X) consists of complex-valued
functions will be clear. SinceK is bounded inC(X), there is L > 0 so that | f (x)| ≤ L
for all f ∈ K and all x ∈ X. Divide the interval [–L, L] into k equal parts by the
partition

y0 = –L < y1 < · · · < yk = L,
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where k is chosen so that |yi – yi+1| < ε
4 for i = 0, . . . , k – 1. We say that an n-tuple

(yi1 , . . . , yin) of numbers y0, . . . , yk is admissible if for some f ∈ K the following
inequalities hold:

| f (xj) – yij | <
ε

4
, j = 1, . . . , n. (1.13)

Clearly, for each f ∈ K there is an n-tuple (yi1 , . . . , yin) so that (1.13) holds. Hence
the set Y of all admissible n-tuples is nonempty. Note that Y is finite. For each n-tuple
y = (yi1 , . . . , yin) in Y choose and fix an fy ∈ K so that (1.13) holds, with f replaced
by fy. Let now f ∈ K. Choose y = (yi1 , . . . , yin) in Y such that (1.13) holds. For x ∈ X
choose xj, 1 ≤ j ≤ n, so that ρ(x, xj) < δ. Then

| f (x) – fy(x)| ≤ | f (x) – f (xj)| + | f (xj) – yij | + |yij – fy(xj)| + | fy(xj) – fy(x)|,

fromwhich we infer that ∥ f – fy∥ < ε from the fact that both f and fy satisfy (1.13) as
well as from theway δ > 0 is chosen. Thus {Bε(fy) : y ∈ Y} is an ε-net forK.We have
shown that K is totally bounded. Hence K is precompact by Corollary 1.7.3. !

Example 1.7.2 Let K = { f ∈ C1[0, 1] : f (0) = a and | f ′| ≤ g}, where a ∈ R and g is
a nonnegative continuous function on [0, 1]. It is clear from Theorem 1.7.6 that K is
a precompact set in C[0, 1].

1.8 Extension of continuous functions

We consider in this section the question of when a continuous real-valued function
defined on a subset of a metric space can be extended continuously to the whole space.

Lemma 1.8.1 (Uryson) Let A, B be nonempty disjoint closed sets in a metric space M,
then there is a continuous function defined on M such that 0 ≤ f ≤ 1, f = 0 on A, and
f = 1 on B.

Proof For a set S ⊂ M, the function x 6→ ρ(x, S) := infz∈S ρ(x, z) is continuous onM.
This follows from the obvious inequality

|ρ(x, S) – ρ(y, S)| ≤ ρ(x, y)

for x, y inM. Since A and B are disjoint closed sets, ρ(x,A) + ρ(x,B) > 0 for x ∈ M,
we may then define f : M → R by

f (x) =
ρ(x,A)

ρ(x,A) + ρ(x,B)
, x ∈ M.

Clearly f is continuous and is the function to be sought. !
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Corollary 1.8.1 Let A and B be nonempty disjoint closed sets in a metric space M; then for
any pair α < β of real numbers, there is a continuous function f defined on M such that
α ≤ f ≤ β , f = α on A, and f = β on B.

Exercise 1.8.1 Prove Corollary 1.8.1.

Theorem 1.8.1 (Tietze) Suppose that g is a bounded continuous function defined on a
closed set C in a metric space M, and let γ = supx∈C |g(x)|. Then there is a continuous
function f defined on M such that f = g on C and supx∈M | f (x)| = γ .

Proof We may assume that M\C contains infinitely many points, because otherwise
M consists only of points from C and a finite number of isolated points, in which
case the theorem is trivial. Then we may pick any two points x1 and x2 outside C,
define g(x1) = –γ , g(x2) = γ , and replace C by C ∪ {x1, x2}. Thus we may assume
that minx∈C g(x) = –γ and maxx∈C g(x) = γ .

Now letA = {x ∈ C : g(x) ≤ – γ
3 },B = {x ∈ C : g(x) ≥ γ

3 }, thenA andB are dis-
joint nonempty closed sets. By Corollary 1.8.1 there is a continuous function f1 onM
such that | f1| ≤ γ

3 , f1 = – γ
3 on A and f1 = γ

3 on B. It is readily verified that |g – f1| ≤
2
3γ on C. Note that minx∈C{g(x) – f1(x)} = –2

3γ and maxx∈C{g(x) – f1(x)} = 2
3γ .

Repeat the argument of the last paragraph with g replaced by g – f1 and γ by 2
3γ ;

we obtain a continuous function f2 onM such that | f2| ≤ 1
3 · 2

3γ and |g – f1 – f2| ≤
( 23 )

2γ onC. Continuing in this fashion, we obtain a sequence { fn} of continuous func-
tions onM such that | fn| ≤ 1

3 (
2
3 )

n–1γ and |g –
∑n

j=1 fj| ≤ ( 23 )
nγ onC. It follows then

that
∑

n fn converges uniformly to a continuous function f onM and f = g onC. Now,
| f | ≤ ∑∞

j=1 | fj| ≤ ∑∞
j=1

1
3 (

2
3 )

j–1γ = γ . !

Remark The function g in Theorem 1.8.1 is usually called an extension of the func-
tion f , while f is called the restriction of g on C and is often denoted as g|C.

1.9 Connectedness

A metric space M is said to be connected if any nonempty subset of M which is both
open and closed is M itself. Obviously any discrete space cannot be connected except
when it consists of only one point. A subset of a metric spaceM is called connected if it is
connected as a metric space with its metric inherited fromM.

Exercise 1.9.1 Show that a metric space M is connected if and only if it cannot be
expressed as a disjoint union of two nonempty subsets, both of which are open.

Theorem 1.9.1 A finite closed interval inR is connected.

Proof Let the interval be I = [a, b], –∞ < a, b < ∞. Suppose that I is not connected,
then I = A ∪ B, where A ∩ B = ∅ and both A and B are nonempty open and closed in
I. We may suppose a ∈ A. Since B is bounded below by a, infB ∈ I. Since B is closed
in I, infB ∈ B and hence cannot be inA, which implies a < infB. Thus (a, inf B)⊂A,
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and infB is a limit point of A, but that A is closed implies inf B is in A, a
contradiction. !

Exercise 1.9.2

(i) Modify the arguments in the proof of Theorem 1.9.1 to show that any interval in
R is connected whether it is finite or infinite and whether it is closed, open, or
half-open.

(ii) Show that a subset A of R is connected if and only if for any pair x < y of
elements in A, [x, y] ⊂ A. Conclude then that connected sets inR are intervals.

Exercise 1.9.3 Show that every open set inR is a disjoint union of at most countably
many open intervals.

1.10 Locally compact spaces

An account of compact sets in a locally compact metric space will now be given in regard
to construction of some useful continuous functions relating to compact sets.

Ametric space X is called a locally compact space if every x inX has a compact neigh-
borhood. Clearly,Rn with the Euclidean metric is a locally compact space. We observe
the following two facts for a locally compact space X:

(i) If K is a compact subset of X, then K has a compact neighborhood.
(ii) IfK is a compact subset of X and x ∈ X\K, thenK has a compact neighborhood

Wx not containing x.

To see (i), consider the open covering {
◦
Ux}x∈K , where Ux is a compact neighbor-

hood of x, and extract from it a finite subcovering {
◦
Ux1 , . . . ,

◦
Uxk} of K; then

⋃k
j=1 Uxj

is a compact neighborhood of K. Now if x ∈ X\K, put δ = dist(x,K) > 0; then Wx =
V ∩ {y ∈ X : dist(y,K) ≤ 1

2δ} is a compact neighborhood ofK not containing x, where
V is a compact neighborhood of K as asserted in (i); thus (ii) holds.

Lemma 1.10.1 Suppose that K is a compact subset of a locally compact space X and is
contained in an open set G. Then K has a compact neighborhood V contained in G.

Proof Because of (i) we may assume that X\G ̸= ∅. For each x ∈ X let Wx be a com-
pact neighborhood of K not containing x, as in (ii), and consider the family F =
{Wx ∩ Gc : x ∈ Gc} of compact sets; Clearly,

⋂
F = ∅ and by the finite intersec-

tion property (Corollary 1.7.4) there are x1, . . . , xk inGc such that
⋂ k

j=1{Wxj ∩ Gc} =[⋂ k
j=1 Wxj

]
∩ Gc = ∅. We infer then from the last set relation that V =

⋂ k
j=1 Wxj is a

compact neighborhood of K contained inG. !
Lemma 1.10.2 Let F = {G1, . . . ,Gn} be a finite open covering of a compact set K in a

locally compact space X; then there are compact sets K1, . . . ,Kn in X such that Kj ⊂ Gj
for each j = 1, . . . , n and K ⊂ ⋃n

j=1 Kj.



38 | Introduction and Preliminaries

Proof For x ∈ K, there is j, 1 ≤ j ≤ n, such that x ∈ Gj; then Lemma 1.10.1 implies
that x has a compact neighborhood Vx ⊂ Gj. Since {

◦
Vx: x ∈ K} is an open covering

of K, there are x1, . . . , xk in K such that
⋃k

j=1
◦
Vxj⊃ K. For each j = 1, . . . , n, letFj =

{Vxi : Vxi ⊂ Gj} and put Kj =
⋃

Fj; then Kj is a compact set ⊂ Gj and
⋃n

j=1 Kj =⋃k
i=1 Vxi ⊃ K. !

Remark In Lemma 1.10.2, some of the Kj’s might be empty; but ifF has the property
that every one of its proper subfamily is not a covering of K, then each Kj is nonempty.

For a function f defined on a metric space X, we shall denote by supp f the closure
of the set {x ∈ X : f (x) ̸= 0}. If suppf (which is called the support of f ) is compact, f
is called a function with compact support. The family of all continuous functions with
compact support in a metric space X is denoted by Cc(X). Note that Cc(X) is a real or
complex vector space depending on whether real-valued or complex-valued functions
are considered. For an open set G in a metric space X, the family of all continuous func-
tions f on X with compact support such that 0 ≤ f ≤ 1 and supp f ⊂ G is to be denoted
byUc(G).

Corollary 1.10.1 Suppose that K is a compact set contained in an open set G of a locally
compact space X. Then there is f in Uc(G) such that f = 1 on K.

Proof K has a compact neighborhood V contained in G by Lemma 1.10.1; then K and
◦
V c are disjoint closed subsets of X. Using the Uryson lemma (Lemma 1.8.1), we find
a continuous function f onX such that 0 ≤ f ≤ 1, f = 0 on

◦
V c, and f = 1 onK. Since

supp f ⊂ V ⊂ G, f ∈ Uc(G). !

Suppose now that K is a compact set in a metric space X and F = {G1, . . . ,Gn} is
a finite open covering of K, then a collection {u1, . . . , un} of continuous functions is
called a partition of unity of K subordinate to F if uj ∈ Uc(Gj) for each j = 1, . . . , n
and

∑n
j=1 uj(x) = 1 for all x ∈ K.

Theorem 1.10.1 (Partition of unity) Suppose that K is a compact set in a locally compact
metric space X and that F is a finite open covering of K. Then K has a partition of unity
subordinate toF .

Proof LetF = {G1, . . . ,Gn}. There are compact sets K1, . . . ,Kn such that Kj ⊂ Gj for
each j and K ⊂ ⋃n

j=1 Kj, by Lemma 1.10.2. For each j = 1, . . . , n, it then follows from
Corollary 1.10.1 that there is a fj ∈ Uc(Gj) such that fj = 1 on Kj. Define functions
u1, . . . , un by

u1 = f1, u2 = (1 – f1)f2, . . . , un = (1 – f1) · · · (1 – fn–1)fn.
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Then, uj ∈ Uc(Gj), j = 1, . . . , n. Now

n∑
j=1

uj = 1 – (1 – f1) · · · (1 – fn), (1.14)

as can be verified from u1 = 1 – (1 – f1), u1 + u2 = 1 – (1 – f1)(1 – f2), and so on.
If x ∈ K, then x ∈ Kj for some j and therefore (1 – f1(x)) · · · (1 – fn(x)) = 0; con-
sequently

∑n
j=1 uj(x) = 1, by (1.14). !



2 A Glimpse of Measure
and Integration

This chapter gives a quick but precise exposition of the essentials of measure and
integration so that an overall view of the subject is provided at the outset.

Preliminaries on various types of families of sets and set functions defined on them are
covered in the first section, for later use in this chapter as well as in subsequent chapters.

The important Lp spaces are also introduced in this chapter for the reader to have an
early appreciation of the power of the basic convergence theorems, which, together with
the Egoroff theorem, reveal convincingly the relevance of σ -additivity of measures.

2.1 Families of sets and set functions

Sets considered in this section are subsets of a given fixed set ", which is sometimes
referred to as a universal set; the family of all subsets of " is called the power set of "
and is denoted by 2". A function τ defined on a nonempty family$ of subsets of" and
taking complex or extended real values is called a set function. If the empty set φ ∈ $,
we always require that τ(φ) = 0. But hereafter in this chapter a set function τ is always
assumed to take only nonnegative extended real values; and it is said to be finite if τ(A)
is finite for A ∈ $, while it is σ -finite if there is a sequence {An} ⊂ $ such that

⋃
$ ⊂⋃

n An and τ(An) < ∞ for each n. A set function τ ismonotone if τ(A) ≤ τ(B) for A,
B in$ with A ⊂ B. A monotone set function τ with domain$ is said to be continuous
from below at A ∈ $, if for every increasing sequence {An} ⊂ $ with A =

⋃
n An the

equality τ(A) = limn→∞ τ(An) holds. Note that since τ is monotone, limn→∞ τ(An)
exists. The set function τ is continuous from below on" if it is continuous from below
at every A ∈ $. A set function with φ in its domain is called a premeasure on".

A family P of subsets of " is called a π -system on " if A ∩ B ∈ P whenever
A and B are in P . The families {(–∞,α] : α ∈ R} and {(a, b) : –∞ < a ≤ b < ∞}
are π -systems onR.

Real Analysis. Fon-Che Liu. © Fon-Che Liu 2016. Published 2016 by Oxford University Press.
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A familyA of subsets of" is called an algebra on" if

(a1) " ∈ A;
(a2) if A ∈ A, then Ac := "\A is inA;
(a3) A ∪ B ∈ Awhenever A and B are inA.

It is readily seen that if {A1, . . . ,An} is any finite subfamily of an algebra A, then⋃n
j=1 Aj ∈ A, and consequently

⋂n
j=1 Aj ∈ A, because (

⋂n
j=1 Aj)c =

⋃n
j=1 Ac

j . One also
notes that if A, B are inA, then A\B := A ∩ Bc is inA.

A family ( of subsets of " is called a σ -algebra on " if it is an algebra on " and if
{An} is a sequence in(; then

⋃
n An ∈ (. Since (

⋂
n An)c =

⋃
n Ac

n,
⋂

n An ∈ ( if {An}
is a sequence in a σ -algebra(.

A family L of subsets of " is called a λ-system on " if the following conditions hold
forL:

(λ1) " ∈ L;
(λ2) if A ∈ L, then Ac ∈ L;
(λ3) if {An} is a disjoint sequence inL, then

⋃
n An ∈ L.

Observe that if L is a λ-system on " and if A, B are in L with A ⊂ B, then B\A ∈ L,
because B\A = Ac ∩ B = (A ∪ Bc)c.

*-systems, λ-systems, algebras, and σ -algebras on " will often be simply referred to
as π -systems, λ-systems, algebras, and σ -algebras if" is clearly implied in a statement.

We state without proof a trivial lemma for later reference.

Lemma 2.1.1 A family of subsets of" is aσ -algebra on" if and only if it is both aπ -system
and a λ-system on".

Since the intersection of any collection of λ-systems on " is a λ-system, for any fam-
ily $ of subsets of " the smallest λ-system on " containing $ exists and is denoted
by λ($). Similarly, the smallest σ -algebra on " containing $ exists and is denoted by
σ ($). We note that λ($) ⊂ σ ($) always, because any σ -algebra is a λ-system.

Aλ-system satisfies a set of conditionswhich is a little weaker than that for aσ -algebra;
but it turns out that often the set of conditions for λ-systems is much easier to verify than
that for σ -algebras. The following theoremwas first discovered byW. Sierpinski, and has
been shown to be very useful in probability theory by E.B.Dynkin. It is nowoften referred
to as the (π–λ) Theorem.

Theorem 2.1.1 (π -λTheorem) IfP is a π -system on", then λ(P) = σ (P).

Proof Let L0 = λ(P). If L0 is a π -system, then L0 is a σ -algebra, by Lemma 2.1.1,
consequently L0 ⊃ σ (P); but since L0 = λ(P) ⊂ σ (P), we have λ(P) = σ (P).
It remains therefore to show thatL0 is a π -system. For A ∈ L0, let

LA = {B ⊂ " : A ∩ B ∈ L0}.
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To show that L0 is a π -system is to show that LA ⊃ L0 for every A ∈ L0. Clearly,
LA is a λ-system. Observe then that if B ∈ P , then LB ⊃ P , since P is a π -system,
and hence LB is a λ-system containing P . Therefore, LB ⊃ L0 if B ∈ P , this means
that A ∩ B ∈ L0 if A ∈ L0 and B ∈ P , orLA ⊃ P if A ∈ L0. SinceLA is a λ-system,
we then have LA ⊃ L0 for A ∈ L0. Thus L0 is a π -system and the theorem is
proved. !
We reiterate that hereafter in this chapter set functions are assumed to take nonnegat-

ive extended real values.
We shall call a set function µ defined on an algebraA on " an additive set function

if µ(A ∪ B) = µ(A) + µ(B) whenever A,B ∈ A and A ∩ B = φ. Recall that µ(φ) = 0.
An additive set functionµ on an algebraA is σ -additive if

µ

(⋃
n
An

)
=
∑
n

µ(An),

whenever {An} is a disjoint sequence inAwith
⋃

n An ∈ A.

Exercise 2.1.1 Letµ be an additive set function defined on an algebraA on".

(i) Show thatµ is monotone.
(ii) Show that if A1, . . . ,An are inA, thenµ(

⋃n
j=1 Aj) ≤ ∑n

j=1 µ(Aj).

(iii) Show thatµ is σ -additive if and only ifµ is continuous from below onA.
(iv) Show that if {Aj}∞

j=1 ⊂ A with
⋃∞

j=1 Aj ∈ A, then µ(
⋃∞

j=1 Aj) ≤ ∑∞
j=1 µ(Aj) if

µ is σ -additive onA.

Theorem 2.1.2 Suppose that " is a compact metric space andA is an algebra of compact
subsets of". Ifµ is an additive set function onA, thenµ is σ -additive.

Proof To show that µ is σ -additive is to show that if A1 ⊂ A2 ⊂ · · · is an increasing
sequence inA such that

⋃
n An ∈ A, then µ(

⋃
n An) = limn→∞ µ(An) (cf. Exercise

2.1.1 (iii)). Let A =
⋃

n An and put Cn = A\An for each n, then
⋂

n Cn = ∅. We
claim that limn→∞ µ(Cn) = 0. If not, then µ(Cn) ≥ limn→∞ µ(Cn) > 0 implies
that Cn ̸= ∅ for all n. Then

⋂
n Cn ̸= ∅, by Exercise 1.7.2, contradicting the fact that⋂

n Cn = ∅. Now, limn→∞ µ(An) = limn→∞{µ(An) + µ(Cn)} = µ(A). !
Example 2.1.1 Consider the sequence space" = {0, 1} × {0, 1} × · · · and the addit-

ive set function P defined on the algebraQ of all cylinders in " (cf. Section 1.3). We
have seen in Example 1.7.1 that" is compact with a suitable metric and that sets inQ
are compact, hence P is a σ -additive set function onQ, by Theorem 2.1.2.

A σ -additive set functionµ defined on a σ -algebra( on" is called ameasure on%.

Exercise 2.1.2 Let µ be a σ -additive set function defined on an algebraA on " with
µ(") < ∞. Suppose that µ1 and µ2 are measures defined on a σ -algebra ( ⊃ A,
with the property thatµ1(A) = µ2(A) = µ(A) forA ∈ A. Show thatµ1(B) = µ2(B)
for B ∈ σ (A). (Hint: show thatL = {B ∈ ( : µ1(B) = µ2(B)} is a λ-system.)
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2.2 Measurable spaces and measurable functions

A function f defined on a set " and taking values in [–∞,∞] := {–∞} ∪ R ∪ {∞} is
said to be extended real-valued. The sets [–∞,∞] and [0,∞] := [0,∞) ∪ {∞} will
often also be denoted as R and R

+ respectively, while [0,∞) will also be denoted as
R+. Since, except where explicitly specified otherwise, functions considered are exten-
ded real-valued; we shall often call an extended real-valued function defined on" simply
a function on "; while if f takes values inR, f is said to be real-valued or finite-valued.
We recall some usual conventions concerning algebraic operations involving infinity
symbols ∞ and –∞: ∞ + ∞ = ∞, –∞ + (–∞) = –∞, a + ∞ = –(a – ∞) = ∞ if a
is a finite number, while for an extended real number a, a · ∞ = (–a) · (–∞) = ∞,
or –∞, depending on whether a > 0 or a < 0, and 0 · ∞ = 0 · (–∞) = 0. The sym-
bol ∞ is sometimes written +∞ for emphasis. We shall also adopt the convention that
(–∞)–1 = (∞)–1 = 0, but then ∞

∞ , –∞
–∞ , ∞

–∞ and –∞
∞ are considered not to be defined.

We also observe that∞ – ∞ and∞ + (–∞) are not defined.
An ordered pair (",() is called ameasurable space if" is a nonempty set and( is a

σ -algebra on".
Given a measurable space (",(), a function f on " is called %-measurable if

{x ∈ " : f (x) > α} ∈ ( for every α ∈ R. A (-measurable function will simply be
called measurable if the measurable space (",() is clearly implied. More generally, a
function is said to be measurable on A ∈ ( if its domain of definition contains A and
if {x ∈ A : f (x) > α} ∈ ( for every α ∈ R. Observe that a function is (-measurable
if and only if {x ∈ " : f (x) > α} ∈ ( for all α ∈ R. This is clear, because {x ∈ " :
f (x) > ∞} = φ and {x ∈ " : f (x) > –∞} =

⋃
n∈N{x ∈ " : f (x) > –n}. For nota-

tional simplicity, we shall presently introduce simplified notations for sets like {x ∈ " :
f (x) > α}. For a set C ⊂ R and a function f on ", the set {x ∈ " : f (x) ∈ C} will be
denoted simply as {f ∈ C}. With this notation, f is (-measurable if {f ∈ (α,∞]} ∈ (

for all α ∈ R. {f ∈ (α,∞]} will also be denoted as {f > α}. Similarly, for α ≤ β inR,
the sets {f ∈ (α,β)}, {f ∈ (α,β]}, {f ∈ [α,β)} and {f ∈ [α,β]} in this order will be
denoted as {α < f < β}, {α < f ≤ β}, {α ≤ f < β}, and {α ≤ f ≤ β} respectively.

Constant functions are certainlymeasurable functions; after constant functions, meas-
urable functions of the simplest structure are the simple functions that will now be
introduced. For A ⊂ ", we denote by IA the function defined by IA(x) = 1 or 0, accord-
ing to whether x ∈ A or not. The function IA is called the indicator function of the setA;
clearly, IA is measurable if and only if A ∈ (. A function of the form

∑k
j=1 αjIAj , k ∈ N,

αj ∈ R,Aj ∈ (, is called a simple function. One can verify directly that simple functions
are measurable and form a real vector space of functions.

For ametric spaceMwe shall denote byB(M) the smallestσ -algebra onM containing
all open subsets ofM and call a B(M)-measurable function defined onM a Borelmeas-
urable function (or simply a Borel function). It is easily seen that a monotone increasing
(decreasing) function defined on an interval of R is Borel measurable. One also veri-
fies readily that lower semi-continuous functions and upper semi-continuous functions
are Borel measurable. Sets in B(M) are called Borel sets in M and B(M) is usually
referred to as the Borel field on M. B(R) will be simply denoted by B. The smallest
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σ -algebra onR containing all open subsets ofR as well as sets of the form (α,∞] for all
α ∈ R is denoted by B. Sets in B are called Borel sets inR. For n ≥ 2, B(Rn) is simply
denoted byBn.

Example 2.2.1 Let {fn} be a sequence of real-valued continuous functions
defined on a metric space M, and let C = {x ∈ M : limn→∞ fn(x) exists}. Then
C =

⋂
k∈N

⋃
l∈N

⋂
n,m≥l A(k)

nm , where for k, m, n in N, A(k)
nm = {x ∈ M : |fn(x) –

fm(x)| < 1
k }. Since each A

(k)
nm is open, C is a Borel set inM.

Given a measurable space (",(), a function defined on " is often referred to as a
function on (",(), by abuse of language, if the role of( is to be emphasized; in partic-
ular, a measurable function on (",() means a(-measurable function defined on".

Remark If f is a measurable function, then {f ≥ α} =
⋂

m∈N{f > α – 1
m} is in (;

similarly, {f < α} =
⋃

m∈N{f ≤ α – 1
m} is in(, because each {f ≤ α – 1

m} = {f > α –
1
m}

c is in(.

Exercise 2.2.1

(i) Show thatB is the smallest σ -algebra onR containing {(α,∞] : α ∈ R}.
(ii) Let (",() be ameasurable space. Show that a function f on" is(-measurable

if and only if {f ∈ B} ∈ ( for all B ∈ B.
(iii) Let (",() be ameasurable space. Show that if f is a finite-valued function on",

then f is(-measurable if and only if {f ∈ B} ∈ ( for all B ∈ B.

For a family {fα} of functions defined on a set", define functions infα fα and supα fα by

(
inf
α
fα
)
(x) = inf

α
fα(x);

(
sup
α

fα
)
(x) = sup

α

fα(x)

for x ∈ ". Infα fα and supα fα are sometimes expressed respectively by
∧

α fα and
∨

α fα .
If {fn} is a sequence of functions defined on ", define functions lim infn→∞ fn and
lim supn→∞ fn by

(
lim inf
n→∞

fn
)
(x) = lim

n→∞

(
inf
m≥n

fm(x)
)
;

(
lim sup
n→∞

fn
)
(x) = lim

n→∞

(
sup
m≥n

fm(x)
)

for x ∈ ". Since uncertainty is not likely, (lim infn→∞ fn)(x) and (lim supn→∞ fn)(x)
will be simply written as lim infn→∞ fn(x) and lim supn→∞ fn(x) respectively.

Naturally, if lim infn→∞ fn(x) = lim supn→∞ fn(x), the common value is denoted by
limn→∞ fn(x) and we say that the sequence {fn} converges at x. If {fn} converges at all
x ∈ A ⊂ ", and if we define a function f on A by f (x) = limn→∞ fn(x), then we say that
the sequence {fn} converges pointwise on A to f (notationally, fn → f on A).
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Exercise 2.2.2 Let (",() be a measurable space and {fn} a sequence of measurable
functions on".

(i) Show that both infn fn and supn fn are measurable functions on ". (Hint:
{infn fn > α} =

⋃
m
⋂

n{fn > α + 1
m}.)

(ii) Show that both lim infn→∞ fn and lim supn→∞ fn aremeasurable functions on".
(iii) Show that {x ∈ " : lim infn→∞ fn(x) = lim supn→∞ fn(x)} ∈ (.
(iv) Show that if limn→∞ fn(x) exists for all x ∈ ", then f = limn→∞ fn ismeasurable.

Exercise 2.2.3 Let f be measurable. For each positive integer n, let A(n) = {f < –n},
C(n) = {f ≥ n}, B(n)

i = {–n + i
n ≤ f < –n + i+1

n }, i = 0, 1, 2, . . . , 2n2 – 1, and let

gn = –nIA(n) +
2n2–1∑
i=0

(
–n +

i
n

)
IB(n)i

+ nIC(n) .

Show that gn → f pointwise and show that if f , g are measurable, then fg is measur-
able; furthermore if g ̸= 0 everywhere on X, then f/g is also measurable.

Exercise 2.2.4 Let (",() be a measurable space and f , g measurable functions on ".
Then f + g is defined on " if and only if {f (x), g(x)} ̸= {–∞,∞} for all x ∈ ".
Show that if f + g is defined on ", then f + g is measurable. (Hint: {f + g > α} =⋃

q∈Q{f > q} ∩ {g > α – q} for α ∈ R, whereQ is the set of all rational numbers.)

Since for a measurable function f on " and λ ∈ R, λf is clearly measurable, we infer
from Exercise 2.2.4 that the space of all finite-valuedmeasurable functions is a real vector
space which contains the space of all simple functions as a vector subspace.

To conclude this section, we present a useful representation for nonnegative measur-
able functions.

Theorem 2.2.1 Suppose that (",() is a measurable space and f is a nonnegative measur-
able function defined on", then there is a sequence {Aj}∞

j=1 ⊂ ( such that

f (ω) =
∞∑
j=1

1
j
IAj(ω) (2.1)

for allω ∈ ".

Proof Define sets A1, . . . ,Aj, . . . recursively as follows: A1 = {f ≥ 1}, A2 = {f ≥ 1
2 +

IA1}, . . . , Aj = {f ≥ 1
j +
∑

k<j
1
k IAk}, . . . . Clearly each Aj is in (. We now show that

(2.1) holds forω ∈ ".
Observe first, that ω ∈ "\⋃∞

j=1 Aj if and only if f (ω) = 0 and that when ω ∈ "\⋃∞
j=1 Aj, both sides of (2.1) are equal to zero. It remains to show that (2.1) holds for

ω ∈ ⋃∞
j=1 Aj.
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Forω ∈ ⋃∞
j=1 Aj, we distinguish two cases:

[Case 1] ω ∈ Aj for only finitely many j.
Let j0 be the largest j such thatω ∈ Aj. Then,

f (ω) ≥ 1
j0
+
∑
k<j0

1
k
IAk(ω) =

j0∑
k=1

1
k
IAk(ω) =

∞∑
k=1

1
k
IAk(ω);

on the other hand, for j > j0,

f (ω) <
1
j
+
∑
k<j

1
k
IAk(ω) =

1
j
+

∞∑
k=1

1
k
IAk(ω);

hence, by letting j → ∞, we have

f (ω) ≤
∞∑
k=1

1
k
IAk(ω).

Thus (2.1) holds in this case.
[Case 2] ω ∈ Aj for infinitely many j.

For infinitely many j, we have

f (ω) ≥ 1
j
+
∑
k<j

1
k
IAk(ω) =

j∑
k=1

1
k
IAk(ω);

let j → ∞ through such j’s, it follows that

f (ω) ≥
∞∑
k=1

1
k
IAk(ω). (2.2)

Now eitherω ∈ Aj for j ≥ N for someN ∈ N orω /∈ Aj for infinitely many j. In
the former case,

f (ω) ≥
∞∑
k=1

1
k
IAk(ω) ≥

∞∑
k=N

1
k
= ∞,

thus f (ω) = ∞ =
∑∞

k=1
1
k IAk(ω); in the latter case,

f (ω) <
1
j
+
∑
k<j

1
k
IAk(ω)
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for infinitely many j and hence when j → ∞ through such j’s, it follows that

f (ω) ≤
∞∑
k=1

1
k
IAk(ω),

which together with (2.2) shows that (2.1) holds. !

Corollary 2.2.1 If f is a nonnegative measurable function, then there is a nondecreasing
sequence {sn} of nonnegative simple functions which converges to f pointwise.

Proof Let {Aj} be the sequence of measurable sets in Theorem 2.2.1. Choose the
sequence {sn} defined by

sn =
n∑
j=1

1
j
IAj .

!

Exercise 2.2.5 Let f be a measurable function; show that there is a sequence {fn} of
simple functions such that |fn| ≤ |f | and fn(ω) → f (ω) for allω ∈ ".

2.3 Measure space and integration

A triple (",(,µ) is called a measure space if (",() is a measurable space and µ is a
measure on(. Whenµ(") = 1, (",(,µ) is called a probability space, and in this case
µ is usually denoted by P.

Example 2.3.1 Let " be an arbitrary nonempty set and for A ⊂ " let µ(A) be the
cardinality of A if A is finite; otherwise let µ(A) = ∞. Obviously µ is a meas-
ure on 2", the σ -algebra of all subsets of ", and is called the counting measure
on ". The measure space (", 2",µ) will be called the measure space with counting
measure on".

Example 2.3.2 Let " be a countable set, say " = {ω1,ω2, . . . ,ωn, . . .}, and {pn}
a sequence of nonnegative real numbers with

∑∞
n=1 pn = 1. For A ⊂ ", let N(A) =

{n ∈ N : ωn ∈ A} and µ(A) =
∑

n∈N(A) pn; then the measure space (", 2",µ) is
called a discrete probability space.

Given a measure space (",(,µ), measurable functions are extended real-valued
functions measurable in reference to the measurable space (",().

We now fix a measure space (",(,µ) and define the integral for certain measurable
functions. Recall that a simple function is a finite linear combination of indicator func-
tions of sets in(. Clearly if f is a simple function, then f =

∑k
i=1 αiIAi , where α1, . . . ,αk

are the different values assumed by f and Ai = {f = αi}; we define then
∫

"

fdµ =
k∑
i=1

αiµ(Ai), (2.3)
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if the right-hand side of (2.3) has a meaning. It is easy to see that if
∫
"
fdµ is defined and

f is expressed as f =
∑l

i=1βiIBi , where B1, . . . ,Bl are in( and are disjoint, then

∫

"

fdµ =
l∑

i=1
βiµ(Bi).

In particular,
∫
"
fdµ has a meaning if f is simple and nonnegative, although it is possible

that
∫
"
fdµ = +∞.

If f is measurable and nonnegative, define

∫

"

fdµ = sup
∫

"

gdµ,

where the supremum is taken over all simple functions g with 0 ≤ g ≤ f . Obviously, if f
is nonnegative and simple, this definition coincides with the previously defined

∫
"
fdµ

for simple functions.
For a function f defined on a set", define nonnegative functions f + and f – by

f +(x) = f (x) if f (x) ≥ 0,
= 0 otherwise;

f –(x) = –f (x) if f (x) ≤ 0,
= 0 otherwise.

Then f = f + – f – and |f | = f + + f –; furthermore, if f is measurable on a measurable space
(",(), then both f + and f – are measurable.

Return now to the discourse interrupted by the last paragraph and let f be ameasurable
function. Define

∫

"

fdµ =
∫

"

f +dµ –
∫

"

f –dµ

if the right-hand side has a meaning. In this case,
∫

& fdµ is said to exist and is called the
integral of f . One notes that if f is a simple function this definition of

∫
"
fdµ coincides

with that given by (2.3). If
∫
"
fdµ is finite, then f is said to be integrable. Integrability

and the integral of a measurable function so defined will be referred to more precisely as
µ-integrability and theµ-integral respectively, if the measureµ is to be emphasized. It
will be shown later that a measurable function f is integrable if and only if |f | is integrable
(see Theorem 2.5.3).

Suppose that f is a measurable function and A ∈ (; if
∫
"
f IAdµ exists, it is denoted

by
∫
A fdµ and is called the integral of f over A. Obviously, if

∫
"
fdµ exists, then

∫
A fdµ

exists for all A ∈ (.
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Example 2.3.3 Let " be an arbitrary set and consider the counting measure µ on ";
then every function f on" is measurable and f is integrable if and only if f (x) is finite
for x ∈ " and {f (x)}x∈" is summable.

Example 2.3.4 Consider the discrete probability space of Example 2.3.2. Let f be a
function on ". Since every subset of " is measurable, f is measurable and is called
a random variable. If

∫
"
fdµ exists, it is called the expectation of f . It is easily verified

that f is integrable if and only if {f (ωn)pn}n∈N is summable.

Exercise 2.3.1 If f and g are nonnegative simple functions and α, β ≥ 0, show that
∫

"

(αf + βg)dµ = α

∫

"

fdµ + β

∫

"

gdµ.

Exercise 2.3.2 If f ≤ g are two nonnegativemeasurable functions, show that
∫
"
fdµ ≤∫

"
gdµ.

Exercise 2.3.3 Suppose that f and g are measurable functions such that f ≤ g, and
suppose that

∫
"
g+dµ < ∞. Show that

∫
"
fdµ exists and

∫
"
fdµ ≤

∫
"
gdµ.

Exercise 2.3.4 Let f be a measurable function on a measure space (",(,µ) and
for each k ∈ N let Ak = {2k–1 ≤ |f | < 2k}. Show that f is integrable if and only if∑∞

k=1 2k–1µ(Ak) < ∞ andµ({|f | = ∞}) = 0.

Example 2.3.5 Suppose that f is a nonnegative measurable function and 0 ≤ p < r <

q < ∞. Then
∫
"
f rdµ ≤

∫
"
f pdµ +

∫
"
f qdµ. Actually, if we let A = {f ≤ 1} and

B = {f > 1}, then
∫
"
f rdµ =

∫
"
IAf rdµ +

∫
"
IBf rdµ ≤

∫
"
IAf pdµ +

∫
"
IBf qdµ ≤∫

"
f pdµ +

∫
"
f qdµ.

2.4 Egoroff theorem and monotone convergence
theorem

Suppose that" is a set and {An}∞
n=1 is a sequence of subsets of", define

lim sup
n→∞

An =
⋂
n∈N

⋃
k≥n

Ak;

lim inf
n→∞

An =
⋃
n∈N

⋂
k≥n

Ak.

If lim supn→∞An = lim infn→∞An, then we say that the limit of the sequence {An}
exists and has the common set as its limit, which is denoted by limn→∞An. In par-
ticular, if A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ An+1 ⊂ · · · i.e. {An} is monotone increasing, or
A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ An+1 ⊃ · · · i.e. {An} is monotone decreasing, then limn→∞An
exists and equals

⋃
n∈N An or

⋂
n∈N An according to whether {An} is monotone

increasing or monotone decreasing. Hence lim supn→∞ An = limn→∞
⋃

k≥n Ak and
lim infn→∞ An = limn→∞

⋂
k≥n Ak.
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Exercise 2.4.1 Let {An}∞
n=1 ⊂ 2", where " is an arbitrary set, and let B =

lim infn→∞ An, C = lim supn→∞ An. Show that for each x ∈ "we have

IB(x) = lim inf
n→∞

IAn(x) and IC(x) = lim sup
n→∞

IAn(x).

In the following, a measure space (",(,µ) is considered and fixed throughout.

Lemma 2.4.1 (Monotone limit lemma) Let {An}∞
n=1 ⊂ ( be monotone increasing, then

µ
(

lim
n→∞

An

)
= µ

(⋃
n
An

)
= lim

n→∞
µ(An).

Proof For each positive integer n let Bn = An \ An–1, where we put A0 = ∅, and for con-
venience let A =

⋃
nAn. Then An =

⋃n
k=1Bk and A =

⋃
kBk. Since {Bk} is disjoint, we

have

µ(A) =
∞∑
k=1

µ(Bk) = lim
n→∞

n∑
k=1

µ(Bk) = lim
n→∞

µ(An). !

Corollary 2.4.1 Let {An}∞
n=1 ⊂ ( be monotone decreasing andµ(A1) < ∞, then

µ
(

lim
n→∞

An

)
= µ

(⋂
n
An

)
= lim

n→∞
µ(An).

Proof For each positive integer n let Bn = A1 \ An, and for convenience let A =
⋂

nAn.
Then {Bk} is monotone increasing and A1 \ A =

⋃
kBk. From Lemma 2.4.1, we have

µ(A1\A) = µ

(⋃
k
Bk
)
= lim

n→∞
µ(Bn).

But µ(A1 \ A) = µ(A1) – µ(A) and µ(Bn) = µ(A1) – µ(An); this completes the
proof of the corollary. !

Remark In Corollary 2.4.1 one may assume that µ(An) < ∞ for some n, instead of
µ(A1) < ∞.

Exercise 2.4.2 Let (",(,µ) be a measure space. Suppose {An}n∈N ⊂ (.

(i) Show thatµ (lim infn→∞ An) ≤ lim infn→∞ µ(An).

(ii) If µ
(⋃

j≥n Aj

)
< +∞ for some n, then show that µ

(
lim supn→∞ An

)
≥

lim supn→∞ µ(An).

(iii) If the limit of {An} exists and µ
(⋃

j≥n Aj

)
< ∞ for some n, show that

limn→∞ µ(An) exists and

µ
(
lim
n→∞

An

)
= lim

n→∞
µ(An).
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Theorem 2.4.1 (Egoroff theorem) If {fn} is a sequence of measurable functions and fn → f
with finite limit on A ∈ (, whereµ(A) < +∞, then for any given ε > 0, there is B ∈ (

with B ⊂ A, such thatµ(A \ B) < ε and fn → f uniformly on B.

Proof

[Step 1] We claim that for ε > 0, η > 0, there is integer N > 0 and C ∈ (

such that C ⊂ A, µ(A \ C) < ε, and supx∈C|f (x) – fn(x)| ≤ η whenever
n≥N.

To show this, for each n let Cn =
⋂

m≥n{x ∈ A : |f (x) – fm(x)| ≤ η}.
ThenCn ↗ A. Sinceµ(A) < ∞, there isN such thatµ(A\CN) = µ(A) –
µ(CN) < ε by Lemma 2.4.1. Take C = CN .

[Step 2] Now given ε > 0. By [Step 1] for each positive integer m there is integer
Nm and Cm ⊂ Awith Cm ∈ ( such that

µ(A \ Cm) < ε/2m

and

sup
x∈Cm

|f (x) – fn(x)| ≤ 1
m

whenever n ≥ Nm.
Take B =

⋂∞
m=1 Cm, then µ(A\B) = µ(

⋃∞
m=1(A\Cm)) < ε. Given

σ > 0, choose m0 ∈ N such that 1
m0

< σ . Then for n ≥ Nm0 , we have
|f (x) – fn(x)| ≤ 1

m0
< σ for all x ∈ B, because B ⊂ Cm0 . This shows that

fn → f uniformly on B. !

In plain language, Theorem 2.4.1 says that convergence of a sequence of measurable
functions on a set of finite measure implies approximate uniform convergence. From its
proof, one sees clearly that σ -additivity of µ plays a salient role through Lemma 2.4.1.
The following theorem which is called themonotone convergence theorem reveals the
distinguished feature of σ -additivity of measureµ through integrals.

Example 2.4.1 Suppose µ(") < ∞ and {fn} is a sequence of real-valued measurable
functions such that limn→∞ fn(x) = f (x) exists and is finite for µ-a.e. x in ". For
each k ∈ N, by the Egoroff theorem there is Bk ∈ ( such that µ("\Bk) < 1

k and
fn(x)→ f (x) uniformly for x ∈ Bk. PutZ = "\⋃k Bk, thenµ(Z) ≤ µ("\Bk) < 1

k
for all k and hence µ(Z) = 0. Therefore we have shown that there are B1,B2, . . . ,Z
in ( with µ(Z) = 0 such that " =

⋃
k Bk ∪ Z and limn→∞ fn(x) = f (x) uniformly

on each Bk.

Exercise 2.4.3 Show that the conclusion in Example 2.4.1 still holds if (",(,µ) is
σ -finite.
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Theorem 2.4.2 (Monotone convergence theorem) Let {fn} be amonotone nondecreasing
sequence of nonnegative measurable functions. Then

∫

"

lim
n→∞

fndµ = lim
n→∞

∫

"

fndµ.

Proof Put f = limn→∞ fn; then fn ≤ f for all n. Since
∫
"
f1dµ ≤

∫
"
f2dµ ≤ · · · ≤∫

"
fndµ ≤ · · · ≤

∫
"
fdµ, we have

lim
n→∞

∫

"

fndµ ≤
∫

"

fdµ.

It remains to show that
∫
"
fdµ ≤ limn→∞

∫
"
fndµ. For this, it suffices to

show that limn→∞
∫
"
fndµ ≥ λ for each finite real number λ <

∫
"
fdµ. For

such a λ, there is a simple function g =
∑l

j=1 αiIAj such that 0 ≤ g ≤ f and∫
"
gdµ =

∑n
j=1 αj µ (Aj)> λ. In the above expression for g, we may assume that

α1, . . . ,αl are the different positive values taken by g, and henceA1, . . . ,Al are disjoint
sets in (. Then αj ≤ f on each Aj. Choose ε > 0 small enough so that αj – ε > 0,
j = 1, . . . , l. For each j = 1, . . . , l and positive integer n, let A(n)

j = {x ∈ Aj : fn(x) >

αj – ε} and define gn =
∑l

j=1(αj – ε)IA(n)
j
; then 0 ≤ gn ≤ fn and hence

lim
n→∞

∫

"

fndµ ≥ lim
n→∞

l∑
j=1
(αj – ε)µ(A(n)

j ) =
l∑

j=1
(αj – ε)µ(Aj),

because for each j,A(n)
j is a nondecreasing sequence withAj as its limit. It follows then

that limn→∞
∫
"
fndµ ≥ ∑l

j=1 αjµ(Aj) by letting ε ↘ 0. The proof is complete. !
Exercise 2.4.4

(i) If f and g are nonnegative measurable functions and α,β ≥ 0, show that
∫

"

(αf + βg)dµ = α

∫

"

fdµ + β

∫

"

gdµ.

(ii) Suppose that f is integrable and α ∈ R. Show that
∫
"

αfdµ = α
∫
"
fdµ.

2.5 Concepts related to sets of measure zero

We now make some remarks on concepts connected with measure zero sets (as previ-
ously, a measure space (",(,µ) is considered and fixed). For this purpose, a subset
A of " is called a null set (or more precisely µ-null set), if A ⊂ B ∈ ( and µ(B) = 0.
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Note that countable unions of null sets are null sets. Let A = {x ∈ " : x does not have a
property P}, if A is a null set, we say that the property P holds almost everywhere on "

(or simply P holds almost everywhere). For example, if outside a null set, f is finite, then
we say that f is finite almost everywhere; also if limn→∞ fn(x) = f (x) exists for each x
outside a null set, then we say that fn converges almost everywhere. If a property P holds
almost everywhere, we simply say that P holds a.e. (more precisely,µ-almost everywhere
orµ-a.e. if other measures might also be in question). Twomeasurable functions f and g
are said to be equivalent if f = g a.e. Clearly, if f and g are equivalent and if the integral
of one of them exists, then both of their integrals exist and are equal. If g is equivalent to
f , g is sometimes referred to as a version of f .

As we shall see, functions which appear naturally are often not defined at every point
of". The most important case is when they are defined outside null sets. A function f is
said to be defined a.e. on" if f is defined on"\A, with A being a null set; and f is meas-
urable if f is measurable on"\N for somemeasurable null setN ⊃ A, or, equivalently, if
a new function f̂ is defined by f̂ (x) = f (x) for x ∈ "\N and f̂ (x) = 0 for x ∈ N, then f̂ is
measurable. Hence, a measurable function f which is defined a.e. on" can be considered
as defined on " if it is replaced by one of f̂ defined above; this is legitimate because any
pair of such functions f̂ are equivalent measurable functions.

Exercise 2.5.1 Show that if f is measurable, then {f = +∞} and {f = –∞} are in (.
Show also that if f is integrable, then f is finite a.e.

All the results we have established so far remain true if the pointwise conditions are
replaced by conditions held almost everywhere. For example:

Theorem 2.5.1 (Egoroff theorem) If a sequence {fn} of almost everywhere finite measur-
able functions converges a.e. to a finite function f on A, where A ∈ (, and µ(A) < +∞,
then for every ε > 0, there is B ∈ (, B ⊂ A such that µ(A \ B) < ε and fn → f
uniformly on B.

Theorem 2.5.2 (Monotone convergence theorem) Let {fn} be a sequence of measurable
functions which are nonnegative and nondecreasing a.e., then

∫

"

lim
n→∞

fndµ = lim
n→∞

∫

"

fndµ.

From Theorem 2.5.2 and Exercise 2.4.4 (i) there follows the following corollary.

Corollary 2.5.1 If {fn} is a sequence of a.e. nonnegative measurable functions, then

∫

"

∞∑
n=1

fndµ =
∞∑
n=1

∫

"

fndµ.
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Exercise 2.5.2 Let f be a measurable function. Prove the following statements:

(i) Suppose that
∫
"
fdµ exists, i.e.

∫
"
fdµ =

∫
"
f +dµ –

∫
"
f –dµ, where the right-

hand side has a meaning. If f = f1 – f2 where f1 and f2 are nonnegative and
measurable, then

∫

"

fdµ =
∫

"

f1dµ –
∫

"

f2dµ,

if the right-hand side has a meaning.
(ii)

∫
"
fdµ exists if and only if f = f1 – f2 for some nonnegative measurable

functions f1 and f2, such that
∫
"
f1dµ –

∫
"
f2dµ is meaningful. (Hint: for f1 and

f2 as above, observe that f + ≤ f1 and f – ≤ f2.)
(iii) If f , g are measurable functions such that

∫
"
fdµ,

∫
"
gdµ,

∫
"
fdµ +

∫
"
gdµ are

meaningful, then f + g is defined a.e. and
∫

"

(f + g)dµ =
∫

"

fdµ +
∫

"

gdµ.

In particular, this holds true if f and g are integrable.

Exercise 2.5.3 Show that Theorem 2.5.2 still holds if {fn} is a sequence of measurable
functions bounded frombelow by an integrable function a.e. and is nondecreasing a.e.
(Hint: show first that f –n is integrable and hence

∫
"
fndµ is meaningful for each n.)

Exercise 2.5.4 If f ≥ 0 a.e. and is measurable, then show that
∫
"
fdµ = 0 if and only if

f = 0 a.e.

Exercise 2.5.5 (Beppo–Levi) Let {fn} be a monotone increasing sequence of integ-
rable functions such that supn

∫
fndµ < +∞. Let f = limn→∞ fn. Show that –∞ <

f < +∞ a.e., f is integrable, and limn→∞
∫
|fn – f |dµ = 0.

The following theorems follow from Exercise 2.5.2 (iii) and Exercise 2.4.4 (ii):

Theorem 2.5.3 Ameasurable function f is integrable if and only if |f | is integrable.

Theorem 2.5.4 Suppose that f and g are integrable and α, β are finite real numbers, then
∫

"

(αf + βg)dµ = α

∫

"

fdµ + β

∫

"

gdµ.

In particular, if f ≤ g a.e. then
∫
"
fdµ ≤

∫
"
gdµ.

Exercise 2.5.6 Suppose that (",(,µ) is a finite measure space and f a measurable
function on ". For k ∈ N let ωk := µ({|f | > k}). Show that f is integrable if and
only if

∑∞
k=1 ωk < ∞. (Hint: show that

∑∞
k=1 ωk ≤

∫
"
|f |dµ ≤ ∑∞

k=1 ωk + µ(").)

Exercise 2.5.7 Suppose that f is a nonnegative measurable function. Let ν : ( →
[0, +∞] be defined by ν(A) =

∫
A fdµ :=

∫
"
fIAdµ; show that (",(, ν) is a meas-

ure space and if g ≥ 0 is (-measurable, then
∫
"
gdν =

∫
"
gfdµ (this fact is usually
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expressed by dν = fdµ). Show also that a measurable function g is ν-integrable if and
only if gf isµ-integrable.

Exercise 2.5.8 Suppose that f is a nonnegative integrable function. Show that for every
ε > 0, there is A ∈ ( withµ(A) < +∞, such that

∫

A
fdµ >

∫

"

fdµ – ε.

Exercise 2.5.9 Let (",(,µ) be a measure space, and {Ak}∞
k=1 ⊂ (.

(i) Show that if
∑∞

k=1 µ(Ak) < ∞, thenµ
(
lim supk→∞ Ak

)
= 0.

(ii) Show that if f is integrable, then
∫

lim sup
k→∞

Ak

fdµ = lim
k→∞

∫
∞⋃
j=k

Aj

fdµ.

(iii) Let f be integrable and ε > 0. Show that there is δ > 0 such that if A ∈ ( and
µ(A) < δ, then

∫
A |f |dµ < ε.

(Hint: suppose the contrary. Then for each k, there is Ak ∈ ( such that
µ(Ak) < 1

k2 and
∫
Ak
|f |dµ ≥ ε. Then apply (i) and (ii).)

Exercise 2.5.10 Let (",(,µ) be a measure space and f a measurable function on ".
Define a σ -algebra σ (f ) on" by

σ (f ) = {f –1B : B ∈ B}.

(i) Suppose that
∫
"
fdµ exists and

∫
A fdµ = 0 for all A ∈ σ (f ). Show that f = 0 a.e.

(ii) Suppose now that f is integrable and g is σ (f )-measurable on" such that
∫

A
gdµ =

∫

A
fdµ

for all A ∈ σ (f ). Show that there is a null setN in σ (f ) such that g = f on"\N.

2.6 Fatou lemma and Lebesgue dominated
convergence theorem

It is indicated in Section 2.4 that the monotone convergence theorem reveals the dis-
tinguished feature of σ -additivity of measure through integrals. We now present two
consequences of the monotone convergence theorem which manifest behaviors of
integral under limit processes. These are the Fatou lemma and Lebesgue dominated
convergence theorem (hereafter abbreviated as LDCT).
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Theorem 2.6.1 (Fatou lemma) Let {fn} be a sequence of extended real-valued measurable
functions which is bounded from below by an integrable function. Then

∫

"

lim inf
n→∞

fndµ ≤ lim inf
n→∞

∫

"

fndµ.

Proof Let gn = infk≥nfk, then gn is nondecreasing and is bounded from below by an
integrable function. By the monotone convergence theorem (see Exercise 2.5.3),

∫

"

lim inf
n→∞

fndµ =
∫

"

lim
n→∞

gndµ

= lim
n→∞

∫

"

gndµ ≤ lim inf
n→∞

∫

"

fndµ. !

Exercise 2.6.1 Show that if {fn} is bounded from above by an integrable function, then
∫

"

lim sup
n→∞

fndµ ≥ lim sup
n→∞

∫

"

fndµ.

Later, both Theorem 2.6.1 and the statement shown in Exercise 2.6.1 will be referred
to as the Fatou lemma. One notes that Theorem 2.6.1 is equivalent to a particular case
of itself, with {fn} being a sequence of nonnegative measurable functions. This particular
case is the original form of the Fatou lemma.

Theorem 2.6.2 (Lebesgue dominated convergence theorem (LDCT)) If fn, n =
1, 2, . . . and f are measurable functions and fn → f a.e. Suppose further that |fn| ≤ g
a.e. for all n with g being an integrable function. Then

∫

"

fdµ = lim
n→∞

∫

"

fndµ.

Proof {fn} is bounded from below and from above by integrable functions. Hence, by
the Fatou lemma,

lim sup
n→∞

∫

"

fndµ ≤
∫

"

lim
n→∞

fndµ ≤ lim inf
n→∞

∫

"

fndµ,

and consequently

∫

"

lim
n→∞

fndµ = lim
n→∞

∫

"

fndµ. !

The Lebesgue dominated convergence theorem will henceforth be abbreviated as
LDCT.



The Space Lp(",(,µ) | 57

Exercise 2.6.2 Show that under the same conditions as in LDCTwe have

lim
n→∞

∫

"

|fn – f |dµ = 0.

Example 2.6.1 Let {fn} be a sequence of nonnegative integrable functions such that
f1(x) ≥ · · · ≥ fn(x) ≥ fn+1(x) ≥ · · · and limn→∞ fn(x) = 0 for µ-a.e. x in "; then∑∞

n=1(–1)n+1fn is integrable and
∫
"

∑∞
n=1(–1)n+1fndµ =

∑∞
n=1(–1)n+1

∫
"
fndµ. Note

first, from the well-known alternating series’s estimate |
∑l+p

n=l(–1)
n+1fn(x)| ≤ fl(x)

for µ-a.e. x and any l, p in N, that
∑∞

n=1(–1)n+1f (x) converges for µ-a.e. x. Since
|
∑k

n=1(–1)n+1fn(x)| ≤ f1(x) for µ-a.e. x and k ∈ N, our assertion follows from
LDCT.

Exercise 2.6.3 Let {fk} and {gk} be sequences of integrable functions such that
|fk| ≤ gk a.e. on " for each k ∈ N. Suppose that {fk} and {gk} converge a.e. to f
and g respectively, and that g is integrable and

∫
"
gdµ = limk→∞

∫
"
gkdµ. Show that

f is integrable and
∫
"
fdµ = limk→∞

∫
"
fkdµ. (Hint: apply the Fatou lemma to the

sequences {gk + fk} and {gk – fk}.)

Exercise 2.6.4 Suppose that {fn} is a sequence of measurable functions on (",(,µ).
Show that if

∫
"

∑∞
n=1 |fn|dµ < ∞, then

∑∞
n=1 fn(x) converges and is finite for a.e. x,∑∞

n=1 fn is integrable, and
∫

"

∞∑
n=1

fndµ =
∞∑
n=1

∫

"

fndµ.

Exercise 2.6.5 A family {fα} of integrable functions on a finite measure space
(",(,µ) is called uniformly integrable if for any ε > 0, there is δ > 0 such that if
A ⊂ ( with µ(A) ≤ δ, then

∫
A |fα|dµ ≤ ε for all α. Show that if {fn} is a uniformly

integrable sequence of functions on" which converges a.e. to an integrable function
f on", then

lim
n→∞

∫

"

|fn – f |dµ = 0.

2.7 The space Lp (&,%,µ)

Associated with a measure space (",(,µ) is a family {Lp(",(,µ)}p≥1 of Banach
spaces which plays an important role in many fields of mathematics. The introduction
and first properties of spaces Lp(",(,µ), p ≥ 1, are our concern in this section. Amore
advanced account of these spaces will be given inChapter 6, when" is an open set inRn.

For a measurable function f , let

∥f∥p =
(∫

"

|f |pdµ
)1/p

if 0 < p < +∞;

∥f∥∞ = inf{M ≥ 0 : |f | ≤ M a.e.}.
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∥f∥p is called the Lp-norm of f ; ∥f∥∞ is also called the essential sup-norm of f .

Exercise 2.7.1 Show that |f | ≤ ∥f∥∞ a.e.

Recall that if p, q ≥ 1 are such that 1
p +

1
q = 1, then they are called conjugate expo-

nents.

Theorem 2.7.1 (Hölder’s inequality) If p, q ≥ 1 are conjugate exponents, then

∫

"

|fg|dµ = ∥fg∥1 ≤ ∥f∥p∥g∥q

for any measurable functions f and g.

Proof Wemay assume that 0 < ∥f∥p, ∥g∥q < +∞, hence |f |, |g| < ∞ a.e.Wemay fur-
ther assume that 1 < p, q < ∞. Now let ζ =

(
|f |

∥f∥p

)p
,η =

(
|g|

∥g∥q

)q
,α = 1

p , andβ = 1
q

in Lemma 1.6.1; we have

|f | |g|
∥f∥p∥g∥q

≤ 1
p

|f |p

∥f∥pp
+
1
q

|g|q

∥g∥qq

a.e. on", from which on integrating both sides we complete the proof. !

Exercise 2.7.2 Suppose that 1 < p, q < ∞ are conjugate exponents and∥f∥p,∥g∥q are
both finite. Show that ∥fg∥1 = ∥f∥p∥g∥q if and only if either ∥f∥p∥q∥q = 0 or |g|q =
λ|f |p a.e. for some λ > 0. (Hint: use Exercise 1.6.1.)

The following example is a variation of Hölder’s inequality.

Example 2.7.1 Let p, q, and r be positive numbers satisfying 1
r =

1
p +

1
q , and sup-

pose that f and g are measurable functions. Since 1 = r
p +

r
q ,

p
r and

q
r are conjugate

exponents; then,
∫
"
|fg|rdµ =

∫
"
(|f |p)

r
p (|g|q)

r
q dµ ≤ (

∫
"
|f |pdµ)

r
p (
∫
"
|g|qdµ)

r
q , by

Hölder’s inequality. Hence, ∥fg∥r ≤ ∥f∥p∥g∥q. When r = 1, this is Hölder’s
inequality.

Theorem 2.7.2 (Minkowski’s inequality) Let f , g be measurable, 1 ≤ p ≤ +∞, then

∥f + g∥p ≤ ∥f∥p + ∥g∥p

whenever f + g is meaningful a.e. on".
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Proof This is obvious when p = 1 or +∞.We now consider the case 1 < p < +∞, then

∥f + g∥pp =
∫

"

|f + g|pdµ =
∫

"

|f + g|p–1|f + g|dµ

≤
∫

"

|f + g|p–1|f |dµ +
∫

"

|f + g|p–1|g|dµ

≤
[∫

"

|f + g|(p–1)qdµ
]1/q

{∥f∥p + ∥g∥p}

= ∥f + g∥p/qp {∥f∥p + ∥g∥p},

by Hölder’s inequality, where 1
p +

1
q = 1. The theorem follows by dividing extreme

ends of the above sequence of inequalities by ∥f + g∥p–1p , because wemay assume that
0 < ∥f + g∥p < ∞. !

Exercise 2.7.3 Verify the last statement of the proof of Theorem 2.7.2. (Hint: show
that if ∥f∥p + ∥g∥p < +∞, then ∥f + g∥p < +∞ by using Exercise 1.6.3.)

Exercise 2.7.4 Suppose 1 < p < ∞ and both ∥f∥p and ∥g∥p are finite. Show that

∥f + g∥p = ∥f∥p + ∥g∥p
if and only if either ∥f∥p∥g∥p = 0 or g = λf a.e. for some λ > 0.

Let now Lp(",(,µ) be the family of all measurable functions f with ∥f∥p < +∞.
From theMinkowski inequality, it is readily seen thatLp(",(,µ) is a real vector space.
If we let

N = {f ∈ Lp(",(,µ) : ∥f∥p = 0},

then f ∈ N if and only if f = 0 a.e. on ". Now consider the space Lp(",(,µ) =
Lp(",(,µ)

/
N ; then Lp(",(,µ) is a vector space which consists of equivalence

classes of Lp(",(,µ) w.r.t. the equivalence relation ∼, defined by f ∼ g if and only
if f = g a.e. on".

We shall allow ourselves the liberty of not distinguishing between a class of functions
in Lp(",(,µ) and a function representing the class; hence, by f ∈ Lp(",(,µ) we shall
mean that f is to be considered as a class of equivalent functions in Lp(",(,µ) as well
as any function from that class.

For f ∈ Lp(",(,µ), let

∥f∥p =
(∫

"

|f |pdµ
)1/p

if 1 ≤ p < +∞ ,

and

∥f∥∞ = essential sup-norm of f .
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Remember that in the definition above, f on the left-hand side is a class of function and
f on the right-hand side is a function representing that class. We note that the above
definition is well defined. ∥f∥p is called the Lp-norm of f in Lp(",(,µ).
Lp(",(,µ) is called the Lp space of the measure space (",(,µ), and is often more

compactly denoted by Lp(") or Lp(µ) when ( and µ are assumed to be known, or
when" and( are assumed to be known.

Example 2.7.2 One notes readily that the space ℓp(S) introduced in the remark at the
end of Section 1.6 is the Lp space of the measure space with counting measure on S. It
is easily verified that if S is infinite, then ℓp(S) ! ℓq(S) if 1 ≤ p < q.

Exercise 2.7.5 Suppose that the measure space (",(,µ) is finite and f ∈
L∞(",(,µ).

(i) Show that ( 1
µ(")

∫
"
|f |pdµ)1/p ≤ ( 1

µ(")

∫
"
|f |p′dµ)1/p′ , if 1 ≤ p ≤ p′ < ∞.

(ii) Show that limp→∞
(

1
µ(")

∫
"
|f |pdµ

)1/p
= ∥f∥∞.

Exercise 2.7.6 Suppose that {fk} is a sequence in Lp(",(,µ) and that {fk} converges
a.e. to f ∈ Lp(",(,µ) with ∥f∥p = limk→∞ ∥fk∥p (1 ≤ p < ∞). Show that {fk}
converges in Lp(",(,µ) to f . (Hint: cf. Exercise 2.6.3 or observe that 2p–1(|f |p +
|fk|p) – |f – fk|p ≥ 0.)

Theorem 2.7.3 Lp(",(,µ) with norm ∥ · ∥p is a Banach space.

Proof This is obviouswhen p = +∞, if one notes that when {fn} is aCauchy sequence in
L∞(",(,µ), there is a measurable null setN such that supω∈"\N |fn(ω) – fm(ω)| ≤
∥fn – fm∥∞ for all n,m inN.

Assume now that 1 ≤ p < +∞ and let {fn} be a Cauchy sequence in Lp(",(,µ).
There is an increasing sequence {nk}∞

k=1 of positive integers such that ∥fnk+1 – fnk∥p ≤
2–k, k = 1, 2, . . . . Put g =

∑∞
k=1 |fnk+1 – fnk |; monotone convergence theorem and

Minkowski inequality imply

∥g∥pp =
∫

"

(∞∑
k=1

|fnk+1 – fnk |
)p

dµ =
∫

"

lim
l→∞

( l∑
k=1

|fnk+1 – fnk |
)p

dµ

= lim
l→∞

∫

"

( l∑
k=1

|fnk+1 – fnk |
)p

dµ = lim
l→∞

∥∥∥∥
l∑

k=1
|fnk+1 – fnk |

∥∥∥∥
p

p

≤ lim
l→∞

( l∑
k=1

∥fnk+1 – fnk∥p
)p

=
(∞∑
k=1

∥fnk+1 – fnk∥p
)p

≤ 1,
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hence, g ∈ Lp(",(,µ). Observe that if g(x) < ∞, then
∑∞

j=1 |fnj+1 (x) –
fnj(x)| < ∞ and for k > l, we have

|fnk(x) – fnl(x)| =

∣∣∣∣∣
k–1∑
j=l
(fnj+1 (x) – fnj(x))

∣∣∣∣∣ ≤
k–1∑
j=l

|fnj+1 (x) – fnj(x)| → 0

as l → ∞. This means that {fnk(x)} is a Cauchy sequence inR. Hence, fnk → f a.e.
with f being finite a.e. But |fnk | ≤ |fn1 | + g, k = 1, 2, . . . , implies that f ∈ Lp(",(,µ).
Now |fnk – f |p ≤ (|f | + |fn1 | + g)p a.e.; thus by LDCT we know that ∥fnk – f∥p →
0 as k → ∞; this fact, together with {fn} being a Cauchy sequence, implies that
∥ fn – f∥p → 0 as n → ∞. Hence Lp(",(,µ) is complete. !

Exercise 2.7.7 Suppose that {fk} is a sequence in Lp(",(,µ), 1 ≤ p < ∞ such that
|fk| ≤ g a.e. for each k for some g ∈ Lp(",(,µ). Assume that limk→∞ fk = f a.e.
Show that f ∈ Lp(",(,µ) and limk→∞ ∥fk – f∥p = 0.

Exercise 2.7.8 Let f ∈ Lp(",(,µ), 1 ≤ p < ∞. Show that for any ε > 0, there is
a bounded function g in LP(",(,µ) such that ∥f – g∥p < ε. (Hint: choose g as a
truncated function of f , i.e., for someM > 0, g(x) = f (x) if |f (x)| ≤ M, and g(x) = 0
otherwise.)

Exercise 2.7.9 Suppose that {fk} is a sequence in Lp(",(,µ) with
∑∞

k=1 ∥fk∥p < ∞.
Show that

∑∞
k=1 fk converges and is finite a.e. on " and is in Lp(",(,µ) with

∥∑∞
k=1 fk∥p ≤ ∑∞

k=1 ∥fk∥p.
Exercise 2.7.10 Suppose that {fn} is a convergent sequence in Lp(",(,µ), p ≥ 1.

Show that {fn} has a subsequence which converges a.e. on ". (Hint: there is a
subsequence {fnk} of {fn} such that

∑∞
k=2 ∥fnk – fnk–1∥p < ∞.)

Exercise 2.7.11 Ifµ(") < ∞, show thatLq(",(,µ) ⊂ Lp(",(,µ) for 1 ≤ p < q.
Show also that for f ∈ Lp(",(,µ), ∥f∥p ≤ ∥f∥qµ(")

1
p –

1
q for q ≥ p.

Exercise 2.7.12 Suppose that 1 ≤ p < r. Show that for any q strictly between p and r,
Lq(",(,µ) ⊂ Lp(",(,µ) + Lr(",(,µ).

2.8 Miscellaneous remarks

Some remarks complementing discussions presented so far in this chapter are now in
order.

2.8.1 Restriction of measure spaces

If ( is a σ -algebra on " and A ∈ (, then the family (|A := {B ∩ A : B ∈ (} is a
σ -algebra onA, called the restriction of( toA. If, further, (",(,µ) is a measure space,
the measure space (A,(|A,µ) is called the restriction to A of the original one. Since
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(|A ⊂ (, µ is defined on (|A, and hence (A,(|A,µ) is indeed a measure space with
µ being understood to be restricted to (|A. Suppose now f is a (-measurable function
on ", f |A is then clearly a (|A-measurable function on A, and if

∫
"
fdµ exists, so does∫

A f |Adµ, and
∫
A f |Adµ is obviously the same as

∫
A fdµ :=

∫
"
fIAdµ (cf. Exercise 2.5.7).

But it might happen that
∫
A f |Adµ exists without

∫
"
fdµ being defined, suggesting that

it is convenient sometimes to consider (A,(|A,µ) instead of (",(,µ); when this hap-
pens, it will be clear from the context and one does not revert to the formal procedure
described previously.

2.8.2 Measurable maps

Suppose (",() and ("̂, (̂) are measurable spaces. We say that a map T from " into
"̂ is measurable (more precisely, %|%̂-measurable) if T–1A ∈ ( for every A ∈ (̂. In
particular, if "̂ = R and (̂ = B, then T is what we call a measurable function on ". If
(",(,µ) and ("̂, (̂, µ̂) are measure spaces, then a measurable mapT from" into "̂ is
measure preserving ifµ(T–1A) = µ̂(A) for everyA ∈ (̂. Now, if f is ameasurable func-
tion on "̂ and T is a measure-preserving map from " into "̂, then f ◦ T is measurable
on"; furthermore,

∫
"̂
fdµ̂ exists if and only if

∫
"
f ◦ Tdµ exists, and

∫

"̂

fdµ̂ =
∫

"

f ◦ Tdµ

if either side exists. This is easily verified, if f is nonnegative; in the general case, one needs
only to note that f ◦ T = f + ◦ T – f – ◦ T.

We note at this point that if the measurable space structure of (",() and ("̂, (̂) is
to be emphasized, a map T : " → "̂ will also be called, by abuse of language, a map
from (",() to ("̂, (̂), and a measurable map from (",() to ("̂, (̂) means a (|(̂-
measurable map from" to "̂.

It is readily verified that if ("i,(i) is ameasurable space for i = 1, 2, 3 andTi is ameas-
urable map from ("i,(i) to ("i+1,(i+1) for i = 1, 2, then T2 ◦ T1 is a measurable map
from ("1,(1) to ("3,(3); in particular, if f is a measurable function on (",() and
g a Borel function on R, then g ◦ f is a measurable function on (",(). In words, this
means that a Borel function of a measurable function is measurable; however, we shall
see in Example 4.7.2 that a measurable function of a continuous function may not be
measurable.

2.8.3 Complete measure spaces

A measure space (",(,µ) is complete if every null set is in (. One can construct a
completemeasure space (",(, µ̄) from ameasure space (",(,µ) in the followingway.
Let ( = {B ⊂ " : ∃C, D in ( such that C ⊂ B ⊂ D and µ(D\C) = 0}. It is clear that
( is a σ -algebra on". Now define a set function µ̄ on( by

µ̄(B) = µ(C), (2.4)
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if C ⊂ B ⊂ D, where C and D are in ( with µ(D\C) = 0. We claim that (2.4) is well
defined; this amounts to showing that if Ĉ, D̂ are in ( such that Ĉ ⊂ B ⊂ D̂ and
µ(D̂\Ĉ) = 0, then µ(Ĉ) = µ(C). Now from C ∪ Ĉ ⊂ B ⊂ D and µ(D\[C ∪ Ĉ]) ≤
µ(D\C) = 0, we infer that µ(C ∪ Ĉ) = µ(D) = µ(C). Similarly, µ(C ∪ Ĉ) = µ(Ĉ);
hence µ(Ĉ) = µ(C) as claimed. µ̄ is obviously a measure on (. Suppose B ∈ (

with µ̄(B) = 0 and consider S ⊂ B. There are C and D in ( such that C ⊂ B ⊂ D,
µ(D\C) = 0, and µ(C) = 0. Observe that µ(D) = 0. Since ∅ ⊂ S ⊂ D and µ(D\∅) =
µ(D) = 0, S ∈ (. This means that (",(, µ̄) is complete. When (",(,µ) is complete,
one sees readily that (",(, µ̄) is the same as (",(,µ). The measure space (",(, µ̄)
is called the completion of (",(,µ). Clearly,( ⊂ ( and µ̄ is an extension ofµ.

Exercise 2.8.1 Show that if f is(-measurable, then there is a(-measurable function f̂
such that f = f̂ µ̄-a.e. and that f is µ̄-integrable if and only if f̂ isµ-integrable.

2.8.4 Integral of complex-valued functions

So far only real-valued functions are considered in regard to measurability and integra-
tion; now a brief account will be given for complex-valued functions.

A complex-valued function f defined on a set" can be expressed as

f = f1 + if2,

where f1 and f2 are finite real-valued functions defined by

f1(ω) = real part of f (ω);
f2(ω) = imaginary part of f (ω),

forω ∈ ". Usually f1 and f2 are denoted respectively by Re f and Im f . If now (",(,µ)
is a measure space, f is said to be measurable (more precisely, (-measurable), if both
Re f and Im f are measurable.

Exercise 2.8.2 Show that a complex-valued function f defined on " is measurable if
and only if it is (|B(C)-measurable; where B(C) is the σ -algebra generated by the
family of all open subsets of the complex fieldC.

If both Re f and Im f are integrable, f is said to be integrable and the integral
∫
"
fdµ of

f is defined as
∫
"
Re fdµ + i

∫
"
Im fdµ. Obviously, f is integrable if and only if |f | is integ-

rable, where |f | is the function defined by |f |(ω) = |f (ω)| = {Re f (ω)2 + Im f (ω)2} 1
2 for

ω ∈ ". One verifies easily that |
∫
"
fdµ| ≤

∫
"
|f |dµ, if f is integrable, and that if f and g

are integrable, then αf + βg are integrable and
∫
"
(αf + βg)dµ = α

∫
"
fdµ + β

∫
"
gdµ

for any complex numbers α and β . For a complex-valued measurable function f , its
Lp-norm ∥f∥p, p ≥ 1, is defined by

∥f∥p = ∥|f |∥p.
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Then Hölder inequality holds for complex-valued measurable functions, i.e.
∫

"

|fg|dµ ≤ ∥f∥p · ∥g∥q,

where p, q are conjugate exponents; in particular,
∣∣∣∣

∫

"

fgdµ
∣∣∣∣ ≤ ∥f∥p · ∥g∥q

if fg is integrable. What also holds true is the Minkowski inequality,

∥f + g∥p ≤ ∥f∥p + ∥g∥p,

as can easily be verified. It is to be noted that since f and g are complex-valued, f + g is
defined on".

Now consider the space Lp(",(,µ) of all complex-valued measurable functions f
such that ∥f∥p < ∞. It follows from the Minkowski inequality that Lp(",(,µ) is a
complex vector space. As in Section 2.7, if we let Lp(",(,µ) be the quotient space
Lp(",(,µ)/N , whereN is the vector subspace ofLp(",(,µ) consisting of all those
functions which are zero-valued almost everywhere. For [f ] = f +N , f ∈ Lp(",(,µ),
let ∥[f ]∥p = ∥f∥p, then ∥[f ]∥p is well defined and Lp(",(,µ) is a complex Banach
space with this norm. As before, for f ∈ Lp(",(,µ), [f ] will also be denoted by f , and
∥[f ]∥p by ∥f∥p; thus f may denote an element either of Lp(",(,µ) or of Lp(",(,µ)
as occasion prompts, and no confusion is possible.

Henceforth, Lp(",(,µ) will denote a real or complex Banach space as the situation
suggests.



3 Construction of Measures

Measure spaces provide a framework for classifying functions and for construction
of certain spaces of functions which prove to be useful in various disciplines of

mathematics; but appropriate measure spaces have to be available beforehand.
We therefore devote this early chapter to construction of measure spaces. A general

method, the inception of which began with the introduction of the Lebesgue measure
onR and Lebesgue measurable sets inR byH. Lebesgue, will be treated firstly. This is
the method of outer measure. We shall follow the approach of C. Carathéodory, which
defines measurable sets without introducing the concept of inner measure of Lebesgue.
Construction ofmeasure spaces from given ones by various operationswill be considered
in Chapter 4.

3.1 Outer measures

A nonnegative set functionµ defined for all subsets A of a given set! is called an outer
measure on ! if it is monotone and σ -subadditive, i.e. (i) µ(∅) = 0; (ii) 0 ≤ µ(A) ≤
µ(B) if A ⊂ B; and (iii) µ

(⋃ ∞
n=1An

)
≤ ∑∞

n=1µ(An), where {An}∞
n=1 is any sequence of

subsets of !. Recall that a set function is required to take zero as its value at ∅ if ∅ is
in its domain of definition; (ii) is the condition of monotony; and condition (iii) is σ -
subadditivity. A nonnegative set function τ is said to be σ -subadditive if τ(

⋃ ∞
n=1 An) ≤∑∞

n=1 τ(An) whenever A1,A2, . . . and
⋃ ∞

n=1 An are in its domain of definition.
An outer measureµ on! is usually simply called ameasure on". Sometimes we also

say that µ measures !. We emphasize that a measure on a set ! and a measure on a σ -
algebra on! are different objects; the former is an outer measure which is in general not
σ -additive on 2!.

Letµ be an outer measure on!. Following Carathéodory, we say that a subsetA of!
isµ-measurable if

µ(B) = µ(B ∩ A) + µ(B ∩ Ac) (3.1)

Real Analysis. Fon-Che Liu. © Fon-Che Liu 2016. Published 2016 by Oxford University Press.
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for all B ⊂ ! i.e., if for any C ⊂ A andD ⊂ Ac we have

µ(C ∪ D) = µ(C) + µ(D).

Remark Sinceµ(B) ≤ µ(B ∩ A) + µ(B ∩ Ac), (3.1) is equivalent to

µ(B) ≥ µ(B ∩ A) + µ(B ∩ Ac). (3.2)

It is easily verified that ! is µ-measurable and that if µ(A) = 0, then A is
µ-measurable.

Example 3.1.1 Letµ : 2! (→ [0, +∞] be defined by

µ(A) = cardinality of A if A is a finite set;
= ∞ otherwise.

Obviously, µ is an outer measure on ! (recall that µ is called the counting
measure on !), and that every subset of ! is µ-measurable. It happens that µ is a
measure on 2!.

Exercise 3.1.1 Let S ⊂ 2! have the following properties:
(i) ∅ ∈ S, (ii) if A ∈ S and B ⊂ A, then B ∈ S, and (iii) if {An}∞

n=1 ⊂ S, then⋃
n An ∈ S.
Defineµ : 2! (→ [0,∞] by

µ(A) =

{
0 if A ∈ S

+∞ otherwise.

Show that µ is an outer measure on !. What are the µ-measurable subsets of !? If
now ν : 2! → [0, 1] is defined by

ν(A) = 0 if A ∈ S,
= 1 otherwise,

then ν is an outer measure on!. What are the ν-measurable subsets of!?

Exercise 3.1.2 Let (!,%,µ) be a measure space and w a nonnegative measurable
function. For A ⊂ !, define µw(A) = inf{

∫
B wdµ : B ∈ %,A ⊂ B}. Show that µw

measures! and every set in% isµw-measurable.

Suppose that µ is an outer measure on ! and A ⊂ !, then the restriction of µ to A
denoted byµ⌊A is defined by

µ⌊A(B) = µ(A ∩ B)

for B ⊂ !.
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Exercise 3.1.3 Letµmeasure!.

(i) Show that A ⊂ ! is µ-measurable if and only if A is µ⌊B-measurable for every
subset B of!.

(ii) Show that A isµ⌊A-measurable as well as everyµ-measurable set.

Exercise 3.1.4 Suppose that µ measures ! and that A is a µ-measurable subset of !.
Show that for any B ⊂ !, µ(A) + µ(B) = µ(A ∪ B) + µ(A ∩ B). (Hint: evaluate
µ(B) andµ(A ∪ B) by using the definition ofµ-measurability for A.)

Exercise 3.1.5 Letµ be an outer measure on!. For A ⊂ !, define

µe(A) := inf{µ(B) : A ⊂ B, B isµ-measurable};
µi(A) := sup{µ(B) : B ⊂ A, B isµ-measurable}.

Show that ifµ(A) < ∞, then A isµ-measurable if and only ifµe(A) = µi(A).

3.2 Lebesgue outer measure on R

We construct in this section the Lebesgue outer measure onR. This measure opens the
way for the development of modern theory of measure and integration.

For an open finite interval I = (a, b), let |I| = b – a be the length of I. If A is a subset
of R, we denote by &(A) the set of all numbers of the form

∑∞
n=1 |In|, where {In} is a

sequence of open finite intervals such that
⋃

n In ⊃ A, and let

λ(A) = inf&(A).

Theorem 3.2.1 The set function λ is an outer measure onR.

Proof Let ε > 0, and for each n let In be an open interval of length ε/2n; then since⋃
In ⊃ φ, we have

λ(φ) ≤
∞∑
n=1

|In| = ε
∞∑
n=1

2–n = ε;

thus λ(φ) = 0. IfA ⊂ B, then&(A) ⊃ &(B), and hence λ(A) ≤ λ(B). It remains to
show that if {Ak} is a sequence of subsets ofR, then

λ

(⋃
k
Ak

)
≤

∞∑
k=1

λ(Ak).

For this purpose, we may obviously assume that λ(Ak) < ∞ for all k. Now let ε > 0
be given; for each k there is λk ∈ &(Ak) such that

λ(Ak) ≤ λk < λ(Ak) +
ε

2k
.
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Let λk =
∑∞

n=1 |I(k)n |, where {I(k)n }n is a sequence of open intervals such that⋃ ∞
n=1 I(k)n ⊃ Ak. Then,

⋃ ∞
n,k=1 I(k)n ⊃ ⋃ ∞

k=1 Ak, hence (cf. Section 1.2),

∑
n,k

∣∣I(k)n
∣∣ =

∞∑
k=1

∞∑
n=1

∣∣I(k)n
∣∣ =

∞∑
k=1

λk <
∞∑
k=1

{
λ(Ak) +

ε

2k

}

=
∞∑
k=1

λ(Ak) + ε;

but since
∑

n,k |I(k)n | ∈ &(
⋃ ∞

k=1 Ak), λ(
⋃ ∞

k=1 Ak) ≤ ∑
n,k
∣∣I(k)n

∣∣ <
∑∞

k=1λ(Ak) + ε.
Now let ε decrease to zero; we obtain

λ

(∞⋃
k=1

Ak

)
≤

∞∑
k=1

λ(Ak).

This proves that λ is an outer measure onR. !
Themeasureλ is called theLebesguemeasure onR.We shall show later thatλ admits

a fairly large class of λ-measurable sets, but, for the moment, we content ourselves by
showing that every finite open interval I isλ-measurable andλ(I) = |I|. For this purpose,
we prove first a lemmawhich foresees themethod of Carathéodory outermeasures, to be
introduced in Section 3.5.

Lemma 3.2.1 For each ε > 0, and A ⊂ R, let&ε(A) be the set of all numbers of the form∑∞
n=1 |In|, where {In} is a sequence of open intervals such that A ⊂ ⋃

n In and |In| < ε

for each n. Then λ(A) = inf&ε(A).

Proof Since &ε(A) ⊂ &(A), λ(A) ≤ inf&ε(A). Observe now for any finite inter-
val I and δ > 0, there are a finite number I(1), . . . , I(k) of open intervals such that
I ⊂ ⋃ k

j=1 I(j), |I(j)| < ε, j = 1, . . . , k, and
∑k

j=1 |I(j)| < |I| + δ. Suppose that {In} is
a sequence of open intervals such that

⋃
In ⊃ A; then for any δ > 0 and each n,

let I(1)n , . . . , I(kn)n be open intervals such that |I(j)n | < ε, j = 1, . . . , kn, In ⊂ ⋃ kn
j=1 I

(j)
n ,

and
∑kn

j=1 |I
(j)
n | < |In| + δ/2n. Obviously, α =

∑∞
n=1
∑kn

j=1 |I
(j)
n | is in &ε(A) and α <∑∞

n=1 |In| + δ. We have shown that given δ > 0, for β ∈ &(A) there is α ∈ &ε(A)
such that α < β + δ. This, means that inf&ε(A) ≤ λ(A) + δ; let δ ↘ 0, we have
inf&ε(A) ≤ λ(A). Hence, λ(A) = inf&ε(A). !

Proposition 3.2.1 Every finite open interval I is λ-measurable and λ(I) = |I|.

Proof Let I = (a, b) and, for 0 < ε < 1
2 (b – a), let J = (a + ε, b – ε). For a subset A

of R, consider any sequence {In} of open intervals with |In| < ε for all n and A ⊂⋃ ∞
n=1 In. Letϑ1 = {n : In ∩ J ̸= φ} andϑ2 = {n : In ∩ (A ∩ Ic) ̸= φ}, thenϑ1 ∩ ϑ2 =

φ and
∞∑
n=1

|In| ≥ ∑
n∈ϑ1

|In| +
∑
n∈ϑ2

|In| ≥ λ(A ∩ J) + λ(A ∩ Ic),
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from which it follows, by Lemma 3.2.1, that

λ(A) ≥ λ(A ∩ J) + λ(A ∩ Ic).

But it is clear that

λ(A ∩ I) ≤ λ(A ∩ J) + 2ε,

hence,

λ(A) ≥ λ(A ∩ I) + λ(A ∩ Ic) – 2ε.

Let ε ↘ 0; we have

λ(A) ≥ λ(A ∩ I) + λ(A ∩ Ic).

Therefore I is λ-measurable.
To show that λ(I) = |I|, we observe first that λ(I) ≤ |I|. It remains to show that

λ(I) ≥ |I|. For this purpose, we claim first that if I1, . . . , Ik are finite open intervals
such that

⋃ k
j=1 Ij ⊃ J, where J is a closed interval, then

∑k
j=1 |Ij| ≥ |J|. This claim fol-

lows by induction on k: if k = 1, this claim obviously holds; suppose that the claim
holds for k – 1 and assume as we may that Ik contains the right endpoint of J, then⋃ k–1

j=1 Ij ⊃ J\Ik and hence by our induction hypotheses,

k–1∑
j=1
|Ij| ≥ |J\Ik|,

thus,

|J| ≤ |J\Ik| + |Ik| ≤
k∑
j=1
|Ij|.

Let now {In} be any sequence of finite open intervals with I ⊂ ⋃ ∞
n=1 In. Consider

any closed interval J in I. Since J is compact, there is k ∈ N such that
⋃ k

j=1 Ij ⊃ J.
From the claim just established, we have

|J| ≤
k∑
j=1
|Ij| ≤

∞∑
j=1
|Ij|,

hence, |J| ≤ inf&(I) = λ(I). Since |J| can be chosen as close to |I| as one wishes,
|I| ≤ λ(I). This proves the proposition. !

Exercise 3.2.1 Show that any finite closed interval J is λ-measurable and λ(J) = |J|.
(Hint: λ({x}) = 0 for x ∈ R.)
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Exercise 3.2.2 Show that sets of the form (a,∞) or (–∞, a) are λ-measurable.

Exercise 3.2.3 Let A ⊂ R. Show that there is a sequence {Gn} of open sets containing
A such that λ(A) = λ(

⋂ ∞
n=1 Gn).

3.3 #-algebra of measurable sets

Suppose that µ is an outer measure on ! in this section. We reiterate that an outer
measure on a set is also simply called a measure on the set.

Proposition 3.3.1 If A isµ-measurable, then so is! \ A = Ac.

Proof Obvious. !
Proposition 3.3.2 If A1, A2 areµ-measurable, then so is A1 ∪ A2.

Proof Let B ⊂ !, then

µ(B) = µ(B ∩ A1) + µ(B ∩ Ac
1)

= µ(B ∩ A1) + µ((B ∩ Ac
1) ∩ A2) + µ((B ∩ Ac

1) ∩ Ac
2)

≥ µ(B ∩ (A1 ∪ A2)) + µ(B ∩ (A1 ∪ A2)c),

because B ∩ (A1 ∪ A2) = (B ∩ A1) ∪ (B ∩ A2) = (B ∩ A1) ∪ (B ∩ Ac
1 ∩ A2). !

Remark By induction, the union of finitely many µ-measurable sets is µ-measurable.
This fact, together with Proposition 3.3.1, implies that the intersection of finitely many
µ-measurable sets isµ-measurable.

Proposition 3.3.3 If {Aj}∞
j=1 is a disjoint sequence of µ-measurable sets in ! and B ⊂ !,

then

µ

(
B ∩

{∞⋃
j=1
Aj

})
=

∞∑
j=1

µ(B ∩ Aj).

Proof Let n be a positive integer, then, since
⋃ n–1

j=1 Aj isµ-measurable, we have

µ

(
B ∩

{ n⋃
j=1
Aj

})
= µ

(
B ∩

{ n⋃
j=1
Aj

}
∩
{n–1⋃
j=1
Aj

})
+ µ

(
B ∩

{ n⋃
j=1
Aj

}
∩
{n–1⋃
j=1
Aj

}c)

= µ

(
B ∩

{n–1⋃
j=1
Aj

})
+ µ(B ∩ An) = · · · =

n∑
j=1

µ(B ∩ Aj);

then,

µ

(
B ∩

{∞⋃
j=1
Aj

})
≥ µ

(
B ∩

{ n⋃
j=1
Aj

})
=

n∑
j=1

µ(B ∩ Aj)
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for all n, hence

µ

(
B ∩

{∞⋃
j=1
Aj

})
≥

∞∑
j=1

µ(B ∩ Aj).

But µ(B ∩ {
⋃ ∞

j=1 Aj}) = µ(
⋃ ∞

j=1 B ∩ Aj) ≤ ∑∞
j=1 µ(B ∩ Aj), by σ -subadditivity of

outer measures. !
Proposition 3.3.4 If {Aj}∞

j=1 is a disjoint sequence of µ-measurable sets, then
⋃ ∞

j=1 Aj is
µ-measurable.

Proof Let B ⊂ !, then

µ

(
B ∩

∞⋃
j=1
Aj

)
+ µ

(
B ∩

{∞⋃
j=1

Aj

}c)

≤
n∑
j=1

µ(B ∩ Aj) + µ

(
B ∩

{ n⋃
j=1

Aj

}c)
+

∞∑
j=n+1

µ(B ∩ Aj)

= µ

(
B ∩

{ n⋃
j=1
Aj

})
+ µ

(
B ∩

{ n⋃
j=1

Aj

}c)
+

∞∑
j=n+1

µ(B ∩ Aj)

= µ(B) +
∞∑

j=n+1
µ(B ∩ Aj).

If
∑∞

j=1µ(B ∩ Aj) < ∞, by letting n → ∞ in the above inequality, we have

µ

(
B ∩

∞⋃
j=1
Aj

)
+ µ

(
B ∩

{∞⋃
j=1

Ai

}c)
≤ µ(B); (3.3)

while if
∑∞

j=1µ(B ∩ Aj) = ∞, thenµ(B) ≥ µ
(
B ∩ ⋃ ∞

j=1Aj
)
=
∑∞

j=1µ(B ∩ Aj) = ∞;
hence (3.3) also holds. !
If we denote by %µ the family of all µ-measurable sets, it follows from Propositions

3.3.1, 3.3.2, and 3.3.4 that %µ is both a π -system and a λ-system and is therefore a
σ -algebra; whileµ is σ -additive on%µ by Proposition 3.3.3. Since%µ contains all those
subsets A of! such thatµ(A) = 0, we have shown the following theorem.

Theorem 3.3.1 %µ is a σ -algebra and (!,%µ,µ) is a complete measure space.

For later reference, (!,%µ,µ) is called themeasure space forµ; and%µ-measurable
functions are sometimes said to beµ-measurable.

We have pointed out in Section 2.4 that the monotone limit property for increasing
measurable sets, as stated in Lemma 2.4.1, reveals in a simple way the salient role played
by σ -additivity of measures in the theory of measure and integration. Some outer meas-
ures possess the monotone limit property for increasing sets without requiring them to
bemeasurable; regular measures are among them. Ameasureµ on! is said to be regular
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if for each B ⊂ !, there is aµ-measurable setA ⊃ B such thatµ(A) = µ(B); more gen-
erally, if% is a subσ -algebra of%µ, we say thatµ is%-regular if for each B ⊂ !, there is
A ∈ % such that A ⊃ B andµ(A) = µ(B).

Theorem 3.3.2 If A1 ⊂ A2 ⊂ · · · ⊂ · · · is a sequence of sets in ! and µ is a regular
measure on!, then

µ

(⋃
j
Aj

)
= lim

n→∞
µ(An).

Proof We always have

µ

(⋃
j
Aj

)
≥ lim

n→∞
µ(An). (3.4)

For each j, let Bj be a µ-measurable set such that Aj ⊂ Bj and µ(Aj) = µ(Bj).
Now let Cj =

⋂
n≥j Bn, then Cj ⊃ Aj and µ(Cj) = µ(Aj) for each j and Cn ↗ ⋃

j Cj.
Therefore,

µ

(⋃
j
Aj

)
≤ µ

(⋃
j
Cj

)
= lim

n→∞
µ(Cn) = lim

n→∞
µ(An),

or

µ

(⋃
j
Aj

)
≤ lim

n→∞
µ(An).

This last inequality, together with (3.4), proves the theorem. !
Example 3.3.1 The Lebesgue measure λ onR is a regular measure. This follows from

Exercise 3.2.3.

Exercise 3.3.1 Suppose that µ is a regular measure on ! and that B ⊂ ! with
µ(B) < ∞. Show that there isA ∈ %µ such thatA ⊃ B andµ(C ∩ A) = µ(C ∩ B),
for every C ∈ %µ. (Hint: show that any A ∈ %µ satisfying A ⊃ B andµ(A) = µ(B)
will do.)

3.4 Premeasures and outer measures

Let ! be a nonempty set, G a class of subsets of ! containing ∅, and τ : G → [0, +∞]
satisfy τ(∅) = 0. Recall that such a set function τ is called a premeasure.

For a premeasure τ , define τ ∗ : 2! → [0, +∞] by

τ ∗(A) = inf
{Ci}∞i=1⊂G⋃

Ci⊃A

∑
i
τ(Ci), A ⊂ !.
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Then τ ∗ measures ! and is called the (outer) measure on ! constructed from τ by
Method I. That τ ∗ is an outer measure on ! follows from the same arguments as in the
proof of Theorem 3.2.1 to show that λ is an outer measure onR.

Example 3.4.1 The Lebesgue measure onRn.
A set of the form I1 × · · · × In in Rn, where I1, . . . , In are finite intervals in R,

is called an oriented rectangle or an oriented interval, and
∏ n

j=1 |Ij| is called the
volume of the rectangle. LetG be the class of all open oriented rectangles inRn and let

τ(I) = volume of I if I is an open oriented rectangle.

For convenience, the empty set is considered as a degenerate open oriented rect-
angle and hence G contains the empty set ∅ and τ(∅) = 0. The measure τ ∗ onRn is
called the Lebesgue measure onRn. The Lebesgue measure onRn will be denoted
by λn and λn-measurable sets are called Lebesgue measurable sets. In conformity
with the notation for Lebesgue measure onR, introduced in Section 3.2, λ1 will be
replaced byλ.We shall denote byLn theσ -algebra of allλn-measurable sets inRn and
call Ln-measurable functions Lebesgue measurable functions. Naturally, L1 is to be
replaced by L. But, habitually, Lebesgue measurable sets and Lebesgue measurable
functions are usually called measurable sets and measurable functions, in this order.
Accordingly, λn-integrable functions are Lebesgue integrable and usually simply
called integrable functions. It is easily verified that if one considers closed oriented
rectangles instead of open ones in the above construction, one arrives also at λn.

Exercise 3.4.1 For ε > 0, let Gε be the class of all open oriented rectangles inRn with
diameter< ε, and τε(I) = volume of I for I ∈ Gε . Show that the measure τ ∗

ε onRn is
the Lebesgue measure.

Exercise 3.4.2 Let λn be the Lebesgue measure onRn.

(i) If A,B ⊂ Rn and dist(A,B) := inf x∈A
y∈B

|x – y| > 0, then λn(A ∪ B) = λn(A) +
λn(B).

(ii) Show that λn(I) = volume of I if I is an open oriented rectangle. (Hint: use
Lemma 1.7.2 to show λn(I) ≥ volume of I.)

(iii) Show that every open oriented rectangle is λn-measurable and hence so are
open sets and closed sets in Rn. (Hint: pattern the first part of the proof of
Proposition 3.2.1.)

(iv) Show that any hyperplane inRn has Lebesgue measure zero.
(v) Show that {x ∈ Rn : |x| = r} has Lebesgue measure zero.
(vi) Show that for any A ⊂ Rn, λn(A + x) = λn(A) for x ∈ Rn, and λn(αA) =

|α|nλn(A) for α ∈ R.

Example 3.4.2 Let I = [a1, b1] × · · · × [an, bn] be a finite closed oriented interval
in Rn. We assume that I is nondegenerate, i.e., ak < bk for all k = 1, . . . , n. By
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Exercise 3.4.2 (iii), continuous functions on I are Lebesgue measurable. Since con-
tinuous functions on I are bounded, they are Lebesgue integrable due to the fact
that λn(I) < ∞. We claim that for a continuous function f on I,

∫
I fdλ

n is the same
as
∫ bn
an · · ·

∫ b1
a1 f (x1, . . . , xn)dx1 · · · dxn, the Riemann integral of f over I. To see this,

recall first that a step function g on I is a function which takes constant value on each
of a finite number of disjoint oriented intervals in I; the union of which is I. Since f is
continuous, there is a sequence {gk} of step functions converging uniformly to f on I;
then limk→∞

∫
I gkdλ

n =
∫
I fdλ

n. But {
∫
I gkdλ

n} is a sequence of Riemann sums of f
which tends to

∫ bn
an · · ·

∫ b1
a1 f (x1, . . . , xn)dx1 · · · dxn, hence our claim holds. We shall

show in Section 4.2 that a Riemann integrable function on I is Lebesgue integrable,
and its Lebesgue integral and Riemann integral are the same.

Example 3.4.3 A continuous function f on R is clearly Lebesgue measurable.
We claim that f is Lebesgue integrable if and only if the improper integral∫∞
–∞ f (x)dx converges absolutely. Suppose first that f is Lebesgue integrable.
Then |f | is Lebesgue integrable, hence

∫∞
–∞ |f |dλ = limn→∞

∫
R |f |I[–n,n]dλ =

limn→∞
∫
[–n,n] |f |dλ, by the monotone convergence theorem as well as by LCDT.

But
∫
[–n,n] |f |dλ =

∫ n
–n |f (x)|dx, as we have shown in the previous example, thus,∫∞

–∞ |f (x)|dx = limn→∞
∫ n
–n |f (x)|dx = limn→∞

∫
[–n,n] |f |dλ =

∫∞
–∞ |f |dλ < ∞, or∫∞

–∞ f (x)dx converges absolutely. Conversely, if
∫∞
–∞ f (x)dx converges absolutely,

then
∫∞
–∞ |f |dλ = limn→∞

∫
[–n,n] |f |dλ = limn→∞

∫ n
–n |f (x)|dx =

∫∞
–∞ |f (x)|dx < ∞.

Hence, |f | is Lebesgue integrable, and so is f . One sees easily that if either f is
Lebesgue integrable or

∫∞
–∞ f (x)dx converges absolutely, then

∫
R fdλ =

∫∞
–∞ f (x)dx.

Exercise 3.4.3 Let f be a real-valued continuous function on R. Show that f is
Lebesgue integrable onR if and only if for every sequence {In} of finite disjoint open
intervals, the system {

∫
In f (x)dx}n is summable.

Exercise 3.4.4 Show that
∫ t

0

2x
1 + x2

dx = 2
∞∑
j=0
(–1)j

∫ t

0
x2j+1dx

for 0 < t < 1; then show that
∫ 1

0

2x
1 + x2

dx =
∞∑
j=0
(–1)j

1
j + 1

,

and evaluate
∑∞

j=0(–1)j
1
j+1 .

Exercise 3.4.5 Suppose that f is Lebesgue integrable onR. Define a function g onR by

g(x) :=
∫

(–∞,x)
fdλ, x ∈ R.

Show that g is a bounded and uniformly continuous onR.
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Exercise 3.4.6 Find continuous functions f and g on (0,∞) such that f and g2 are
Lebesgue integrable on (0,∞), while f 2 and g are not Lebesgue integrable on (0,∞).
Compare this exercise with Example 2.7.2 and Exercise 2.7.11.

Exercise 3.4.7 Let f be a continuous function on R2 and suppose that its improper
integral onR2 is absolutely convergent. For integersm and n, let

αmn =
∫ n+1

n

∫ m+1

m
f (x, y)dxdy.

(i) Show that {αmn}(m,n)∈Z×Z is summable.
(ii) Show that

∫
R f (x, y)dλ(x) is a Borel measurable function of y.

(iii) Show that
∫∫

R2 f (x, y)dxdy =
∫
R2 fdλ2 =

∫
R

(∫
R f (x, y)dλ(x)

)
dλ(y).

(Hint: assume first that f (x, y) ≥ 0. For positive integer n, Fn(y) =∫
[–n,n] f (x, y)dλ(x) is a continuous function of y.)

Exercise 3.4.8

(i) Show that
∫∞
–∞
∫∞
–∞ e–(x2+y2)dxdy = (

∫∞
–∞ e–t2dt)2.

(ii) Evaluate
∫∞
–∞
∫∞
–∞ e–(x2+y2)dxdy, by using polar coordinates, and then find∫∞

–∞ e–t2dt.

Exercise 3.4.9 Find the following limits:

(i) limn→∞
∫∞
0 (1 + x

n)
–n sin( xn)dx.

(ii) limn→∞
∫ 1
0 (1 + nx2)(1 + x2)–ndx.

(iii) limn→∞
∫∞
0 n sin( xn)[x(1 + x2)]–1dx.

(iv) limn→∞
∫ n
0 (1 +

x
n)

ne–2xdx.

Exercise 3.4.10 Let α =
∫∞
–∞ e–x2dx; show that
∫ ∞

–∞
x2ne–x

2
dx = (2n)!(4nn!)–1α.

Exercise 3.4.11 Show that limk→∞
∫ k
0 xn(1 – x/k)kdx = n!.

Exercise 3.4.12 Show that the improper integral
∫ 1
0

xp
1–x ln

1
x dx exists and equals∑∞

j=1
1

(p+j)2 (p > 0). (Hint: expand 1
1–x as a geometric series over [0, 1 – ε] for 0 <

ε < 1.)

Exercise 3.4.13 Suppose that f is a Lebesgue integrable function and ϕ is a bounded
continuous function onR. Show that F(x) =

∫
R f (y)ϕ(x – y)dλ(y) is a continuous

function of x inR.
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Example 3.4.4 Suppose that f is a function defined onR2 such that (i) x (→ f (x, y) is
Lebesgue measurable for each y, (ii) for λ-a.e. x ∈ R, f (x, y) is a continuous function
of y, and (iii) there is a Lebesgue integrable function g onR such that |f (x, y)| ≤ g(x)
for λ-a.e. x and for all y. Show that the function defined by

F(y) =
∫

R
f (x, y)dx, y ∈ R

is a continuous function on R. Let y ∈ R and {yn} a sequence in R converging
to y. Put fn(x) = f (x, yn), then fn(x) → f (x, y) and |fn(x)| ≤ g(x) for λ-a.e. x in R.
It follows then from LDCT that limn→∞ F(yn) = F(y). Hence F is continuous onR.

Exercise 3.4.14 Let f and g be as in Example 3.4.4. Assume further that y (→ f (x, y) is
continuously differentiable for λ-a.e. x and there is an integrable function h onR such
that | ∂

∂y f (x, y)| ≤ h(x) for λ-a.e. x and for all y. Let F be defined as in Example 3.4.4
show that F is continuously differentiable onR and

F′(y) =
∫

R

∂

∂y
f (x, y)dx, y ∈ R.

Exercise 3.4.15 Define a function f on (0,∞) by

f (x) =
∫ ∞

0

e–t2x

1 + t2
dt, x ∈ (0,∞).

Show that f is continuously differentiable on (0,∞) and is a solution of the equation
y′ – y +

√
π

2
1√
x = 0.

Exercise 3.4.16 Suppose that f is a continuous integrable function on R. Show that
the function F : R → R, defined by

F(x) =
1
2

∫

R
e–|x–y|f (y)dλ(y),

solves F′′ – F = f onR.

Measurability of a given function is sometimes an issue, and is usually decided by
whether it is the limit a.e. of a sequence of measurable functions. We illustrate this using
an example.

Example 3.4.5 Suppose that f (·, y) is continuous on [0, 1] for each y ∈ [0, 1] and
f (x, ·) is continuous on [0, 1] for each x ∈ [0, 1]. Then f is Lebesgue measurable on
[0, 1] × [0, 1].

Proof For each n ∈ R, define fn : [0, 1] × [0, 1] by

fn(x, y) = f
(
x,
k
n

)
,
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if k
n ≤ y < k+1

n , k = 0, 1, . . . , n – 1. Since the restriction of fn to [0, 1] × [ kn ,
k+1
n ) is

continuous for k = 0, . . . , n – 1, fn is Lebesgue measurable on [0, 1] × [0, 1) for each
n ∈ N. To show the measurability of f , it suffices to show that fn converges to f
pointwise as n → ∞. Fix (x0, y0) ∈ [0, 1] × [0, 1). For each ε > 0 given, there is
δ = δ(x0, y0) > 0 such that |f (x0, y) – f (x0, y0)| < ε if |y – y0| < δ by the continuity
of f (x0, ·). Thus for each n > 1

δ
,

|f (x0, y0) – fn(x0, y0)| =
∣∣∣∣f (x0, y0) – f

(
x0,

k
n

)∣∣∣∣ < ε,

where k = k(y0, n) with k
n ≤ y0 < k+1

n . Therefore, limn→∞ fn(x0, y0) = f (x0, y0), and
hence f is Lebesgue measurable. !
For a nonempty classG of subsets of a set!, denote byGσ the family of all those count-

able unions of sets from G, and by Gσδ the family of all those countable intersections of
sets from Gσ ; in parallel, the families Gδ and Gδσ are defined by interchanging countable
unions and countable intersections. In a metric space, a countable intersection of open
sets is called aGδ-set and a countable union of closed sets is called a Fσ -set.

Proposition 3.4.1 Let τ be a premeasure with domain G and suppose that there is
{Gn}∞

n=1 ⊂ G such that
⋃

n Gn = !. Then for every B ⊂ !, there is A ∈ Gσδ such that
A ⊃ B and τ ∗(A) = τ ∗(B).

Proof From the definition of τ ∗ and the assumption that there is {Gn} ⊂ G such
that

⋃
n Gn = ! ⊃ B, one infers that there are {G(k)

n }n ⊂ G, k = 1, 2, 3, . . . , with
the property

⋃
n G(k)

n ⊃ B for each k and limk→∞
∑

n τ(G(k)
n ) = τ ∗(B). Put A =⋂

k
⋃

n G(k)
n , then A ∈ Gσδ and A ⊃ B. It is clear from the definition of τ ∗

that τ ∗(
⋃

n G(k)
n ) ≤ ∑

n τ(G(k)
n ), and consequently that τ ∗(A) ≤ infk τ ∗(

⋃
n G(k)

n )
≤ lim infk→∞

∑
n τ(G(k)

n ) = τ ∗(B). But B ⊂ A implies τ ∗(B) ≤ τ ∗(A), hence
τ ∗(A) = τ ∗(B). !

Exercise 3.4.17

(i) Show that for any B ⊂ Rn and ε > 0, there is an open set G ⊃ B such that
λn(G) ≤ λn(B) + ε.

(ii) Show that for anyB ⊂ Rn, there is aGδ-setA inRn such thatA ⊃ B andλn(A) =
λn(B).

Some applications of the method of constructing measures presented in this section
will now be considered. Firstly, an extension theorem of Carathéodory–Hahn is to be
established.

Theorem 3.4.1 (Carathéodory–Hahn) Suppose that τ is a σ -additive set function on
an algebra A on !, and let τ ∗ be the measure on ! constructed from τ by Method I.
Then σ (A) ⊂ %τ ∗ and τ(A) = τ ∗(A) for A ∈ A. Furthermore, if τ is σ -finite, then the
restriction of τ ∗ to σ (A) is the unique measure on σ (A) extending τ .
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Proof If we show thatA ⊂ %τ ∗ and τ ∗(A) = τ(A) for A ∈ A, then the first part of the
theorem is proved. For A ∈ A and B ⊂ !, consider an arbitrary sequence {An} inA
satisfying

⋃
n An ⊃ B, then

{An ∩ A} ⊂ A, {An ∩ Ac} ⊂ A;
⋃
n
(An ∩ A) ⊃ B ∩ A,

⋃
n
(An ∩ Ac) ⊃ B ∩ Ac.

Hence,
∑
n

τ(An) =
∑
n

τ(An ∩ A) +
∑
n

τ(An ∩ Ac) ≥ τ ∗(B ∩ A) + τ ∗(B ∩ Ac),

from which follows that

τ ∗(B) ≥ τ ∗(B ∩ A) + τ ∗(B ∩ Ac),

and thus A ∈ %τ ∗ .
To see that τ(A) = τ ∗(A), observe first that τ(A) ≥ τ ∗(A); to show τ(A) ≤

τ ∗(A), pick any sequence {An} inAwith
⋃

n An ⊃ A and verify that

∑
n

τ(An) ≥ ∑
n

τ(An ∩ A) ≥ τ

(⋃
n
[An ∩ A]

)
= τ(A)

from σ -subadditivity of τ (cf. Exercise 2.1.1. (iv)), concluding that τ ∗(A) ≥ τ(A).
Suppose now that ν is a measure on σ (A) such that ν(A) = τ(A) for A ∈ A. We

claim that ν(A) ≤ τ ∗(A) for A ∈ σ (A). Let A ∈ σ (A), and consider an arbitrary
sequence {An} inAwith

⋃
n An ⊃ A. Then,

ν(A) ≤ ∑
n

ν(An) =
∑
n

τ(An),

concluding ν(A) ≤ τ ∗(A).
If τ is σ -finite, there is an increasing sequence!1 ⊂ !2 ⊂ · · · ⊂ !n ⊂ · · · inA

such that τ(!n) < ∞ for all n and
⋃

n !n = !. For each n, from what we have just
claimed, we have for A ∈ σ (A),

ν(!n\[!n ∩ A]) ≤ τ ∗(!n\[!n ∩ A]),

or

ν(!n) – ν(!n ∩ A) ≤ τ ∗(!n) – τ ∗(!n ∩ A),

from which, using the fact that ν(!n) = τ ∗(!n) = τ(!n) < ∞, we have

ν(!n ∩ A) ≥ τ ∗(!n ∩ A).
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Let n → ∞ in the last inequality; it follows that ν(A) ≥ τ ∗(A). This shows that
ν(A) = τ ∗(A) for A ∈ σ (A), completing the proof of the second part of the
theorem. !

Example 3.4.6 (Continuation of Example 2.1.1) Consider the sequence space !, the
algebra Q of all cylinders in !, and the set function P, defined in Section 1.3. We
know from Example 2.1.1 that P is σ -additive on Q. Note that P(!) = 1. Now by
Theorem 3.4.1, P can be extended uniquely to be a measure on σ (Q); then the
probability space (!, σ (Q), P) is referred to as the Bernoulli sequence space. One
can verify easily that the set E defined in the last paragraph of Section 1.3 is actu-
ally in σ (Q) by observing that Enk := {w ∈ ! : 1

2 –
1
k < Sn(w)

n < 1
2 +

1
k } ∈ Q for

n, k in N; P(E) therefore has a meaning. Note that if w = (wk) ∈ !, then {w} =
E(w1) ∩ E(w1,w2) ∩ · · · ∩ E(w1, . . . ,w)n) ∩ · · · ; hence any singleton set in! is in
σ (Q), and clearly the probability of any singleton set is zero.

Theorem 3.4.1 contains the fact that the method of outer measure is universal in
constructing measure spaces.

Corollary 3.4.1 Given a measure space (!,%,µ), the measureµ∗ on! constructed from
µ (considered as defined on %) by Method I is the unique %-regular measure on ! such
thatµ∗(A) = µ(A) for A ∈ %.

Proof By Theorem 3.4.1, % ⊂ %µ∗ and µ∗(A) = µ(A) for A ∈ %. Since %σδ = %, it
follows from Proposition 3.4.1 thatµ∗ is%-regular.

To prove uniqueness, let ν be a %-regular measure on ! such that ν(A) = µ(A)
for A ∈ %. We claim that ν = µ∗. Actually, for any set B ⊂ !, there are A1 and A2 in
% such thatA1 ⊃ B,A2 ⊃ B,µ∗(A1) = µ∗(B), and ν(A2) = ν(B). PutA = A1 ∩ A2,
then

µ∗(A1) ≥ µ∗(A) ≥ µ∗(B) = µ∗(A1);
ν(A2) ≥ ν(A) ≥ ν(B) = ν(A2),

hence, µ∗(B) = µ∗(A) and ν(B) = ν(A). But A ∈ % implies that ν(A) = µ(A) =
µ∗(A). Thusµ∗(B) = ν(B). !

Exercise 3.4.18

(i) If (!,%,µ) is σ -finite, show that for A ∈ %µ∗ there is B ∈ % such that B ⊃ A
andµ∗(B\A) = 0.

(ii) If (!,%,µ) is σ -finite, show that (!,%µ∗ ,µ∗) is the completion of (!,%,µ)
(cf. Section 2.8.3).

(iii) Ifµmeasures! and% = %µ, show thatµ∗ = µ if and only ifµ is regular.

Remark Because of Corollary 3.4.1, we may consider any measure space (!,%,µ) as
obtained by restricting to% the%-regular measureµ∗ on!. Note that ifµ is a measure
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on !, the measure µ∗ on ! constructed from µ as a measure on %µ by Method I is in
general different from the original measureµ on! (cf. Exercise 3.4.18 (iii)).

Theorem 3.4.2 Let A, τ be as in Theorem 3.4.1. Then %τ ∗ is the largest σ -algebra
containingA on which τ ∗ is σ -additive.

Proof Let%′ be a σ -algebra containingA onwhich τ ∗ is σ -additive.We shall show that
%′ ⊂ %τ ∗ . LetA ∈ %′ andB ⊂ !. For ε > 0, there is a sequence {An} inA such that
B ⊂ ⋃

n An and
∑

n τ(An) ≤ τ ∗(B) + ε. PutH =
⋃

n An, thenH,H ∩ A,H ∩ Ac are
in%′, and

τ ∗(B) + ε ≥ ∑
n

τ(An) =
∑
n

τ ∗(An) ≥ τ ∗(H)

= τ ∗(H ∩ A) + τ ∗(H ∩ Ac) ≥ τ ∗(B ∩ A) + τ ∗(B ∩ Ac)
≥ τ ∗(B).

Let ε ↘ 0 in the last sequence of inequalities; we obtain τ ∗(B) = τ ∗(B ∩ A) +
τ ∗(B ∩ Ac), concluding that A ∈ %τ ∗ . !

Exercise 3.4.19 Use the (π -λ) Theorem to prove the second part of Theorem 3.4.1.

Exercise 3.4.20

(i) Show that the measure on Rn constructed from the restriction of λn to Bn by
Method I is λn.

(ii) Show that λn is not σ -additive on any σ -algebra on Rn which contains Ln

strictly.

3.5 Carathéodory measures

We shall consider in this section a class of measures on metric spaces which plays an
important role in analysis. For this purpose, we first introduce some useful notations. For
a metric space X with metric ρ and for nonempty subsets A, B of X, let

ρ(A,B) = inf
x∈A,y∈B

ρ(x, y).

When A = {x}, ρ({x},A) is written simply as ρ(x,A). In the case of Rn with the
Euclidean metric ρ, ρ(A,B) is usually denoted by dist(A,B) and is called the distance
between A and B. Recall that for a metric space X, we use B(X) to denote the σ -algebra
generated by the family of all open sets of X and that sets inB(X) are called Borel sets.

Let µ be a measure on X, with X being a metric space, µ is called a Carathéodory
measure on X ifµ(A ∪ B) = µ(A) + µ(B) whenever ρ(A,B) > 0.

Example 3.5.1 The Lebesgue measure onRn is a Carathéodory measure (cf. Exercise
3.4.2 (i)).
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Theorem 3.5.1 Ifµ is a Carathéodorymeasure on ametric space X, then every closed subset
of X isµ-measurable.

A lemma precedes the proof of the theorem.

Lemma 3.5.1 Let A1 ⊂ A2 ⊂ · · · ⊂ An ⊂ An+1 ⊂ · · · be an increasing sequence of sub-
sets of X such that for each n, ρ(An,Ac

n+1) > 0. Then,

µ

(∞⋃
n=1

An

)
= sup

n
µ(An).

Proof Obviously,µ
(⋃ ∞

n=1An
)

≥ supn µ(An).
To show thatµ

(⋃ ∞
n=1An

)
≤ supn µ(An), wemay assume that supn µ(An) < +∞.

LetD1 = A1,D2 = A2 \ A1, . . . ,Dn = An \ An–1, . . . . By our assumption, for any n
andm ≥ n + 2, we have dist(Dn,Dm) > 0. Then,

µ(D1 ∪ D3 ∪ · · · ∪ D2k–1) = µ(D1) + µ(D3) + · · · + µ(D2k–1) ;
µ(D2 ∪ D4 ∪ · · · ∪ D2k) = µ(D2) + µ(D4) + · · · + µ(D2k)

for each k. Now,

k∑
j=1

µ(D2j–1) = µ(D1 ∪ D3 ∪ · · · ∪ D2k–1) ≤ µ(A2k–1) ≤ sup
n

µ(An) < +∞,

implying that
∑∞

j=1 µ(D2j–1) < ∞. Similarly,
∑∞

j=1µ(D2j) < +∞. Then,

µ

(∞⋃
j=1
Aj

)
= µ

(
An ∪

∞⋃
j=n+1

Aj

)
= µ

(
An ∪

∞⋃
j=n+1

Dj

)

≤ µ(An) +
∞∑

j=n+1
µ(Dj),

from which by letting n → ∞, we have

µ

(∞⋃
j=1
Aj

)
≤ sup

n
µ(An).

!
Proof of Theorem 3.5.1 Let F ⊂ X be a closed set, and let A ⊂ F, B ⊂ Fc. For each

n ∈ N, let

Bn =
{
x ∈ B : ρ(x, F) >

1
n

}
.

Then, since F is closed, we have
⋃ ∞

n=1Bn = B. Obviously, B1 ⊂ B2 ⊂ · · · ⊂ Bn ⊂
Bn+1 ⊂ · · · . Now,

ρ(Bn,B \ Bn+1) ≥ 1
n(n + 1)

> 0,
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hence, by Lemma 3.5.1 (applied to the metric space (B, ρ)),

sup
n

µ(Bn) = µ

(∞⋃
n=1

Bn
)
= µ(B),

and since ρ(A,Bn) ≥ ρ(F,Bn) ≥ 1
n > 0,

µ(A ∪ B) ≥ µ(A ∪ Bn) = µ(A) + µ(Bn)

for each n; thus,

µ(A ∪ B) ≥ µ(A) + sup
n

µ(Bn) = µ(A) + µ(B). !

Corollary 3.5.1 If µ is a Carathéodory measure on a metric space X, then all Borel subsets
of X areµ-measurable.

3.6 Construction of Carathéodory measures

Let X be a metric space and τ : G → [0, +∞] a premeasure on X. For ε > 0, define a
measure τε on X as follows. For A ⊂ X, let

τε(A) = inf
∑
i
τ(Ci),

where the infimum is taken over all sequences {Ci} ⊂ G such that
⋃

iCi ⊃ A and
diamCi ≤ ε for each i; τε is the measure constructed from the restriction of τ to Gε =
{C ∈ G : diam C ≤ ε} by Method I. Since τε(A) increases as ε decreases for A ⊂ X,
limε→0 τε(A) exists and we define

τ d(A) = lim
ε→0

τε(A), A ⊂ X.

Exercise 3.6.1

(i) Show that τ d is a Carathéodory measure on X.
(ii) Show that if G consists of open sets, then for any A ⊂ X there is a Gδ-set B ⊃ A

such that τ d(A) = τ d(B).

We shall call τ d the measure constructed from premeasure τ byMethod II.

Exercise 3.6.2 LetG be the family of all bounded open intervals inR and suppose that
f is a nonnegative integrable function onR. Define τ(I) =

∫
I fdλ for I ∈ G and let τ d

be the measure onR constructed from τ by Method II. Show that every measurable
set inR is τ d-measurable and τ d(A) =

∫
A fdλ for everymeasurable setA. (Hint: show

first that τ d(I) = τ(I) for bounded open interval I.)

Example 3.6.1 Let X be a metric space and 0 ≤ s < +∞. Take G = 2X and let τ s be
the premeasure defined by τ s(∅) = 0 and τ s(A) = (diamA)s if A ̸= ∅. The measure
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Hs constructed from τ s byMethod II is called the s-dimensional Hausdorffmeasure
on X. Note that if we take G to be the family of all open subsets of X or the family of
all closed subsets of X, we shall arrive at the same measureHs.

Exercise 3.6.3

(i) Show thatH0 is the counting measure on X.
(ii) IfHs(A) < +∞, show thatHs+δ(A) = 0 if δ > 0.
(iii) IfHs(A) > 0, show thatHt(A) = +∞ if 0 ≤ t < s.

Exercise 3.6.4 Show thatH1 onR is the Lebesgue measure onR.

Since Hausdorff dimensional measures will not be our main concern, we shall content
ourselves by showing that the arclength of a rectifiable arc inR2 is its one-dimensional
Hausdorff measure. By an arc C inR2 we shall mean the image of a continuous injective
map from a finite closed interval [a, b] intoR2. Any continuous injective map with C as
its image is called a parametric representation of C. Let t : [a, b] → R2 be a parametric
representation of C and consider a partitionP := a = x0 < x1 < · · · < xk = b of [a, b].
Define

l = sup
P

k∑
j=1

|t(xj) – t(xj–1)|,

where | · | is the Euclidean norm in R2. If l < ∞, C is called a rectifiable arc, and l is
called the arclength of C. Since l is the supremum of the length of all possible inscribed
polygonal arcs, it is independent of parametric representations of C.

Proposition 3.6.1 Let C be a rectifiable arc inR2, then H1(C) is the arclength of C .

Proof Let l be the arclength of C and let t : [0, l] → R2 be the parametric representa-
tion of C by arclength, with t(0) and t(l) the endpoints of C, i.e. the arclength from
t(0) to t(s) is s for 0 ≤ s ≤ l. Then for s1, s2 in [0, l],

diam t[s1, s2] ≤ |s1 – s2|.

Given ε > 0, let 0 = s0 < s1 < · · · < sk = l be a partition of [0, l] such that |sj –
sj–1| < ε for j = 1, . . . , k, then,

l =
k∑
j=1

|sj – sj–1| ≥
k∑
j=1

diam t[sj–1, sj] ≥ τ 1
ε (C),

hence l ≥ H1(C).
To show l ≤ H1(C), we observe first that if L is a line in R2 and P the ortho-

gonal projection fromR2 onto L, then for any A ⊂ R2, H1(PA) ≤ H1(A). Now let
0 = s0 < s1 < · · · < sk = l be a partition of [0, l], and for each j = 1, . . . , k consider
the line Lwhich passes through t(sj–1) and t(sj) and the orthogonal projection P from
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R2 onto L. From the above observation, H1(t([sj–1, sj])) ≥ H1([t(sj–1), t(sj)]) =
|t(sj–1) – t(sj)|, where [t(sj–1), t(sj)] is the line segment connecting t(sj–1) and t(sj);
consequently,

H1(C) =
k∑
j=1

H1(t([sj–1, sj])) ≥
k∑
j=1

|t(sj–1) – t(sj)|,

from which one infers thatH1(C) ≥ l. !

3.7 Lebesgue–Stieltjes measures

Given a monotone increasing function g onR, a measure µg onR will be constructed,
which is suggested by the Riemann–Stieltjes integral of functions with respect to g.

For a finite open interval, I = (a, b), a ≤ b, let τ(I) = g(b) – g(a), then τ is a pre-
measure on R. The measure τ ∗ on R constructed from τ by Method I is called the
Lebesgue–Stieltjes measure generated by g and is denoted by µg; when g(x) = x, µg
is the Lebesgue measure onR.

It turns out thatµg is also the measure τ d onR constructed from τ byMethod II. To
see this, a preliminary result on the set of points of discontinuity of g will first be shown.

Lemma 3.7.1 The set D of points of discontinuity of g is at most countable. Furthermore D
consists only of points of jump of g.

Proof Since g is monotone, g(x+) = limy→x+ g(y) and g(x–) = limy→x– g(y) exist and
are finite at every point x ofR. It is clear that x ∈ D if and only if g(x+) – g(x–) > 0,
henceD consists only of points of jump of g. To show thatD is at its most countable,
it is sufficient to show that Dn := D ∩ (–n, n) is at its most countable for all n ∈ N.
Fix n ∈ N and for x ∈ Dn, let Ix be the open interval (g(x–), g(x+)) and cx = g(x+) –
g(x–). Consider any nonempty finite subset A ofDn, we have

∑
x∈A

cx ≤ g(n+) – g((–n)–),

because {Ix : x ∈ A} is a finite disjoint family of open intervals. Hence the system {cx}
indexed by x ∈ Dn is summable by Theorem 1.1.2. But the fact that cx > 0 for x ∈ Dn
implies, by Exercise 1.1.6, thatDn is at its most countable. !

We are now going to verify that τ d = µg . Fix ε > 0. Consider a finite open inter-
val I = (a, b), a < b, and let δ > 0 be given. By Lemma 3.7.1 we can find a partition,
a = a0 < x1 < · · · < xk = b, such that xj – xj–1 < ε for j = 1, . . . , k and such that each
xj, j = 1, . . . , k – 1, is a point of continuity of g; then for each j = 1, . . . , k – 1, choose a
point yj in (xj, xj+1) such that g(yj) – g(xj) < δ

k and yj – xj–1 ≤ ε. The intervals (a, y1),
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(x1, y2), . . . , (xk–2, yk–1), and (xk–1, b) form a covering of I = (a, b), and each of them has
length≤ ε. Call these intervals I1, . . . , Ik in this order, then,

τ(I) = g(b) – g(a) =
k∑
j=1
{g(xj) – g(xj–1)} >

k∑
j=1

τ(Ij) – δ,

from which one infers (cf. the method of proof of Lemma 3.2.1) that τε(A) = µg(A) for
A ⊂ R, and hence τ d = µg (see Section 3.6 for definitions of τε and τ d).

Theorem 3.7.1 The measure µg is a Carathéodory measure onR which takes finite value
on each bounded set. Furthermore, there is a sequence {Gk} of open sets such that A ⊂⋂

k Gk andµg(A) = infk µg(Gk); in particular, for any A ⊂ R, there is a Gδ-set B ⊃ A
such thatµg(A) = µg(B) (recall that the intersection of a sequence of open sets is called a
Gδ-set).

Proof Since, as we have just shown,µg is ameasure onR constructed from the premeas-
ure τ byMethod II,µg is a Carathéodory measure. Thatµg(A) < ∞ ifA is bounded
is obvious.

Now let A ⊂ R. There is a sequence {I(1)n }, {I(2)n }, . . . of countable coverings of A
consisting of finite open intervals such that

µg(A) = lim
k→∞

∑
n

τ(I(k)n ).

For each k, letGk =
⋃

n I(k)n , then

µg(A) ≤ µg(Gk) ≤ ∑
n

τ(I(k)n ),

from which we obtain µg(A) = infk µg(Gk) by letting k → ∞. Finally, let B =⋂
k Gk, then B is aGδ-set containing A andµg(A) ≤ µg(B) ≤ infk µg(Gk) = µg(A).

Hence,µg(A) = µg(B). !
Lemma 3.7.2 µg([a, b]) = g(b+) – g(a–), –∞ < a ≤ b < ∞.

Proof Since µg([a, b]) ≤ g(d) – g(c) for (c, d) ⊃ [a, b], µg([a, b]) ≤ g(b+) – g(a–).
It remains to show that g(b+) – g(a–) ≤ µg([a, b]).

Let {In} be a sequence of finite open intervals such that
⋃

n In ⊃ [a, b], and write
In = (an, bn), n = 1, 2, . . . . {In} is an open covering of J = [a′, b′] for some a′ < a and
some b′ > b. Let δ > 0 be the Lebesgue number of J w.r.t. the open covering {In}
(cf. Lemma 1.7.2), and let a′ = x0 < x1 < · · · < xk = b′ be a partition of J with (xj –
xj–1) ≤ δ, j = 1, . . . , k. Put Jj = [xj–1, xj] for j = 1, . . . , k and proceed as follows. First
pick n1 ∈ N with [x0, x1] ⊂ In1 according to Lemma 1.7.2, and let j1 be the largest
integer between 1 and k such that [x0, xj1 ] ⊂ In1 . If j1 = k, stop the process; otherwise,
there is n2 ∈ Nwith [xj1 , xj1+1] ⊂ In2 (again by Lemma 1.7.2), and let j2 be the largest
integer between j1 + 1 and k such that [xj1 , xj2 ] ⊂ In2 . Obviously, n1 ̸= n2. Continue
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in this fashion, we obtain mutually different positive integers n1, . . . , nl and integers
1 ≤ j1 < · · · < jl = k such that [xjm – xjm+1 ] ⊂ Inm+1 form = 0, 1, . . . , l – 1. Now,

g(b+) – g(a–) ≤ g(b′) – g(a′) =
l∑

m=1
{g(xjm) – g(xjm–1 )}

≤
l∑

m=1
τ(Inm) ≤ ∑

n
τ(In),

from which, since {In} is any sequence of finite open intervals with
⋃

n In ⊃ [a, b], it
follows that g(b+) – g(a–) ≤ µg([a, b]). !

Exercise 3.7.1 Show that for a < b inR,

µg((a, b]) = g(b+) – g(a+);
µg((a, b)) = g(b–) – g(a+);
µg([a, b)) = g(b–) – g(a–).

Exercise 3.7.2 Let w be a nonnegative measurable function on R such that∫
(–∞,x] wdλ < ∞ for all x ∈ R. Define a monotone increasing function g on R by
g(x) =

∫
(–∞,x] wdλ. Show thatµg(B) =

∫
B wdλ for B ∈ B.

From Exercise 3.7.1, we know that if g is right-continuous, then µg((a, b]) = g(b) –
g(a). Recall that a function is right-continuous if it is continuous from the right-hand
side at each point of its domain of definition. We show now that for any monotone
increasing function g onR, µg is the same as the Lebesgue–Stieltjes measure generated
by a right-continuous monotone increasing function.

Theorem 3.7.2 For a monotone increasing function g on R, define a function ĝ on R by
ĝ(x) = g(x+). Then ĝ is right-continuous andµĝ = µg .

Proof Proof of right-continuity of ĝ is left as an exercise.
To show that µĝ = µg , we note first that an open interval (a, b) is a union of a

sequence (an, bn], n = 1, 2, . . . , of increasing half open intervals such that an ↘ a and
bn ↗ b, hence (cf. Exercise 3.7.1),

µg((a, b)) = lim
n→∞

µg((an, bn]) = lim
n→∞

{g(bn+) – g(an+)}

= lim
n→∞

{ĝ(bn) – ĝ(an)} = lim
n→∞

{ĝ(bn+) – ĝ(an+)}

= lim
n→∞

µĝ((an, bn]) = µĝ((a, b));

consequently, µĝ(G) = µg(G) if G is open. Now let A be any subset of R;
by Theorem 3.7.1 there are sequences {Gn} and {Ĝn} of open sets such
that

⋂
n Gn ⊃ A,

⋂
n Ĝn ⊃ A, µg(A) = infk µg(Gk), and µĝ(A) = infk µĝ(Ĝk).

Observe that µg(A) = infk µg(Gk ∩ Ĝk) and µĝ(A) = infk µĝ(Gk ∩ Ĝk); then, since
µg(Gk ∩ Ĝk) = µĝ(Gk ∩ Ĝk), it follows thatµg(A) = µĝ(A). !



Lebesgue–Stieltjes measures | 87

Exercise 3.7.3 Show that the function ĝ defined in Theorem 3.7.2 is right-continuous.

Example 3.7.1 Let D be a finite or countably infinite set in R and v a positive-
valued function on D such that

∑
t∈(–∞,x]∩D v(t) < ∞ for all x ∈ R. Define

a function g on R by g(x) =
∑

t∈(–∞,x]∩D v(t), x ∈ R; then g is a mono-
tone increasing function. We claim that g is right-continuous. For x ∈ R, fix
y0 > x. Then, g(y) – g(x) =

∑
t∈(x,y]∩D v(t) if y ∈ (x, y0]. If (x, y0] ∩ D is finite,

g(y) = g(x), when y is sufficiently near to x, and hence g(x+) = g(x). We may
therefore assume that D ∩ (x, y0] is infinite and denote it by {tn}n∈N . Since∑

n∈N v(tn) < ∞, for given ε > 0 there is n0 ∈ N such that
∑

n>n0 v(tn) < ε.
Let y > x be smaller than t1, . . . , tn0 , then g(y) – g(x) ≤ ∑

n>n0 v(tn) < ε,
and consequently g(x+) = g(x). Hence g is right-continuous at every x ∈ R.
The same argument also shows that D is the set of points of discontinuity of
g and g(t) – g(t–) = v(t) for t ∈ D. Similarly, if D and v satisfy the condition
that

∑
t∈[x,∞)∩D v(t) < ∞ for all x ∈ R, and if g is defined by g(x) =

–
∑

t∈(x,∞)∩D v(t), x ∈ R, then g enjoys the same properties as shown previously.

Exercise 3.7.4 Let g be a monotone increasing and right-continuous function on R,
and denote byD the set of points of discontinuity of g. Define v(t) = g(t) – g(t–) for
t ∈ D, and define a function gd onR by

gd(x) =

{∑
t∈(0,x]∩D v(t), x ≥ 0

–
∑

t∈(x,0]∩D v(t), x < 0.

Show that gd is a monotone increasing and right-continuous function withD as its set
of points of discontinuity. Furthermore, the function g – gd is continuous.

Exercise 3.7.5 Let g, D, gd be as in Exercise 3.7.4, and let µ = µgd be the Lebesgue–
Stielties measure generated by gd. Show that for B ∈ B, µ(B) =

∑
t∈B∩D v(t), where

v(t) = g(t) – g(t–) for t ∈ D. (Hint: show first that µ(G) =
∑

t∈G∩D v(t) if G is
open, and use Theorem 2.1.1.)

Suppose now that g is amonotone increasing function on a closed finite interval [a, b];
extend g to a function h on R by defining h(x) = g(a) for x < a and h(x) = g(b) for
x > b. Then the Lebesgue–Stieltjesmeasureµg on [a, b] generated by g is the restriction
ofµh to [a, b], i.e.

µg(A) = µh(A), A ⊂ [a, b].

For notational convenience, the integral of a function f w.r.t. a Lebesgue–Stieltjes meas-
ure µg onR or on a finite closed interval [a, b] will be denoted by

∫∞
–∞ fdµg or

∫ b
a fdµg ,

as the situation suggests.
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3.8 Borel regularity and Radon measures

Recall that a measure µ on a set ! is called regular if for any A ⊂ !, there is a µ-
measurable set B ⊃ A such that µ(B) = µ(A). Such a regularity endows µ with a
significant monotone limit property, stated in Theorem 3.3.2. A further regularity along
this line for measures on metric spaces will now be introduced.

A measure µ on a metric space X is called a Borel measure if every Borel set is µ-
measurable. It is said to be Borel regular if it is Borel and if for every A ⊂ X, there is a
Borel set B ⊃ A such thatµ(B) = µ(A); in other words, a Borel regular measure on X is
what we call aB(X)-regular measure (see the paragraph preceding Theorem 3.3.2). It is
called a Radonmeasure if it is Borel regular andµ(K) < +∞ for each compact set K.

We already know that every Carathéodory measure is Borel. Obviously, λn is a Radon
measure onRn, by Exercise 3.4.17. More generally, all Lebesgue–Stieltjes measures on
R are Radon measures by Theorem 3.7.1.

Example 3.8.1 Suppose that µ is a Borel measure on a metric space X and f is a
nonnegative%µ-measurable function onX. Let ν be themeasure onB(X) defined by

ν(A) =
∫

A
fdµ

for A ∈ B(X) (cf. Exercise 2.5.7). We shall call ν the indefinite integral of f with
respect to µ, or simply the µ-indefinite integral of f , and denote it by {fµ}. The
measure on X constructed from {fµ} by Method I is denoted by {fµ}∗; {fµ}∗ is the
unique Borel regular measure on X such that {fµ}∗(A) = {fµ}(A) for A ∈ B(X),
by Corollary 3.4.1; it is for the Borel regularity of {fµ}∗ that our construction starts,
with {fµ} being originally defined on B(X). If, further, f is µ-integrable on every
compact subset of X, then {fµ}∗ is a Radon measure. Note that if µ is σ -finite and
Borel regular, then for any%µ-measurable set S, {fµ}∗(S) =

∫
S fdµ. Actually, there is

a Borel set B ⊃ S such thatµ(B\S) = 0 and then there is a Borel setC ⊃ (B\S) such
that µ(C) = 0, implying that {fµ}∗(B\S) ≤ {fµ}∗(C) = {fµ}(C) =

∫
C fdµ = 0;

consequently,

{fµ}∗(B) ≤ {fµ}∗(S) + {fµ}∗(B\S) = {fµ}∗(S) ≤ {fµ}∗(B),

from which follows that {fµ}∗(S) = {fµ}∗(B) = {fµ}(B) =
∫
B fdµ =

∫
S fdµ.

When µ is the Lebesgue measure on Rn and X is a Lebesgue measurable set in
Rn, {fµ} and {fµ}∗ will be replaced by {f } and {f }∗ respectively for compactness of
expression.

The following proposition asserts that a measure constructed from a premeasure
by Method II on a metric space X is Borel regular if the domain of the premeasure
consists of Borel sets of X.

Proposition 3.8.1 Suppose that X is a metric space and τ a premeasure defined on G ⊂
B(X). Then the measure τ d on X constructed from τ by Method II is Borel regular.



Measure-theoretical approximation of sets in Rn | 89

Proof Let A ⊂ X. We may assume that τ d(A) < ∞. For each k ∈ N, there is a
sequence {C(k)

n } in the domain of τ such that
⋃

n C(k)
n ⊃ A, diamC(k)

n ≤ 1
k for

each n, and
∑

n τ(C(k)
n ) ≤ τ 1

k
(A) + 1

k ≤ τ d(A) + 1
k . Let B =

⋂
k
⋃

n C(k)
n , then

B ∈ B(X) because each C(k)
n ∈ B(X). Since A ⊂ B, τ d(A) ≤ τ d(B); but τ d(B) =

limk→∞ τ 1
k
(B) ≤ lim infk→∞

∑
n τ(C(k)

n ) ≤ lim infk→∞{τ d(A) + 1
k } = τ d(A),

hence τ d(B) = τ d(A). Recall that

τ 1
k
(B) = inf

∑
n

τ(Cn),

where the infimum is taken over all sequences {Cn} ⊂ G such that
⋃

n Cn ⊃ B and
diamCn ≤ 1

k for all n, hence, τ 1
k
(B) ≤ ∑

n τ(C(k)
n ). !

Recall that if µ is a measure on ! and A ⊂ !, then the restriction to A of µ,
denotedµ⌊A, is defined byµ⌊A(B) = µ(A ∩ B) for B ⊂ ! (cf. Exercise 3.1.3).

Proposition 3.8.2 Let µ be a Borel regular measure on a metric space X and suppose that
A ⊂ X isµ-measurable andµ(A) < +∞. Thenµ⌊A is a Radon measure.

Proof Let ν ≡ µ⌊A. Clearly, ν(K) < +∞ for compactK; actually, ν(S) ≤ µ(A) < ∞
for any S ⊂ X. Since everyµ-measurable set is ν-measurable, ν is a Borel measure. It
remains to show that ν is Borel regular. There is a Borel set B such that A ⊂ B and
µ(A) = µ(B) < +∞. Hence,µ(B \ A) = µ(B) – µ(A) = 0. For C ⊂ X, we have

ν(C) ≤ (µ⌊B)(C) = µ(B ∩ C) = µ(C ∩ B ∩ A) + µ((C ∩ B) ∩ AC)
≤ µ(C ∩ A) + µ(B ∩ AC) = ν(C).

Hence, ν(C) = (µ⌊B)(C). We may assume then that A is Borel. Let now C ⊂ X;
there is a Borel set E ⊃ A ∩ C such that µ(E) = µ(A ∩ C). Let D = E ∪ Ac; D is a
Borel set and C ⊂ (A ∩ C) ∪ Ac ⊂ D. SinceD ∩ A = E ∩ A,

ν(C) ≤ ν(D) = µ(D ∩ A) = µ(E ∩ A) ≤ µ(E) = µ(A ∩ C) = ν(C),

implying, ν(C) = ν(D). !

3.9 Measure-theoretical approximation of sets in Rn

This section is devoted to considering measure-theoretical approximation of sets inRn

by sets of familiar structure, such as open, closed, and compact sets. We observe first two
easy and useful facts about open sets inRn. For this purpose, we call an oriented rectangle
I1 × · · · × In in Rn an oriented cube, if |I1| = · · · = |In|, and call it nondegenerate if
|Ij| > 0 for all j = 1, . . . , n. Oriented rectangles I and J are said to be nonoverlapping if
◦
I ∩

◦
J= ∅.
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Proposition 3.9.1 Every open set G inRn is the union of a countable family of nondegener-
ate and mutually nonoverlapping closed oriented cubes.

Proof Let k ∈ N; we call an oriented closed cube I1 × · · · × In a dyadic cube of order k
if Ij =

[ lj
2k ,

lj+1
2k
]
, where lj is an integer for each j = 1, . . . , n. LetF1 be the family of all

those dyadic cubes of order 1 which are contained in G; then let F2 be the family of
all those dyadic cubes of order 2 which are contained in G and are nonoverlapping
with those in F1; proceeding in this fashion we obtain a sequence {Fj} of families
of oriented cubes in G such that cubes in each Fj are mutually nonoverlapping, and
nonoverlapping with those in the preceding families if j ≥ 2. Note that some of the
Fj’s might be empty. Let F =

⋃
j Fj, then F is a countable family of nondegenerate

and mutually nonoverlapping closed cubes such thatG =
⋃

F . !
Proposition 3.9.2 Let G be an open set inRn, then there is an increasing sequence {Kj} of

compact sets such that

G =
∞⋃
j=1

Kj. (3.5)

Proof By Proposition 3.9.1, there is a countable family {Ck} of nondegenerate and
mutually nonoverlapping closed oriented cubes such that G =

⋃
k Ck. Put Kj =⋃ j

k=1 Ck, then {Kj} is an increasing sequence of compact sets such that (3.5)
holds. !

Remark As a consequence of Proposition 3.9.2, Bn is the σ -algebra generated by the
family of all compact sets.

Lemma 3.9.1 Suppose that µ is a Borel measure on Rn and B is a Borel set with
µ(B) < ∞, then for each ε > 0 there is a compact set K ⊂ B such thatµ(B\K) < ε.

Proof Replacingµ byµ⌊B if necessary, we may assume thatµ is a finite measure.
LetM be the family of all those Borel setsB such that for each ε > 0 there are com-

pact setsK′ ⊂ B andK′′ ⊂ Bc, such thatµ(B\K′) < ε andµ(Bc\K′′) < ε.We claim
first thatM contains all compact sets. Actually, if K is a compact set, for each ε > 0
choose K′ = K and choose K′′ as follows: since by (3.5) Kc =

⋃ ∞
j=1 Kj, where {Kj} is

an increasing sequence of compact sets, µ(Kc) = limj→∞ µ(Kj), which implies that
µ(Kc\Kj) < ε if j is sufficiently large; then choose K′′ = Kj for such a sufficiently
large j. ThusM contains all compact sets. In particular,Rn ∈ M, because (Rn)c = ∅
which is compact. By definition, a Borel set B is inM if and only if Bc is inM, hence
Bc ∈ M if B ∈ M. Now let {Bj} be a disjoint sequence inM and put B =

⋃
Bj, then

Bc =
⋂

j Bcj . Given that ε > 0, there are compact sets K′
j ⊂ Bj and K′′

j ⊂ Bcj such that
µ(Bj\K′

j) < ε2–(j+1) andµ(Bcj\K′′
j ) < ε2–(j+1). We have

µ

(
B\

l⋃
j=1

K′
j

)
=

l∑
j=1

µ(Bj\K′
j ) +

∞∑
j=l+1

µ(Bj) <
ε

2
+

∞∑
j=l+1

µ(Bj) < ε,
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if l is sufficiently large, because liml→∞
∑∞

j=l+1 µ(Bj) = 0; choose K′ =
⋃ l

j=1 K′
j for

such an l. On the other hand,

µ

(
Bc\⋂

j
K′′
j

)
= µ

(⋂
j
Bcj\

⋂
j
K′′
j

)
≤ µ

( ⋃
j
(Bcj\K′′

j )
)

≤ ∑
j

µ(Bcj\K′′
j ) < ε;

hence, by choosing K′′ =
⋂

j K′′
j , we have shown that B ∈ M. We have shown there-

fore thatM is a λ-system. SinceM contains all compact sets, and since the family of
all compact sets is a π -system,M contains Bn by the (π -λ) theorem, because Bn is
theσ -algebra generated by the family of all compact sets (cf. Remark after Proposition
3.9.2). ButM ⊂ Bn by definition, henceM = Bn. This completes the proof. !

Lemma 3.9.2 Ifµ is a Radonmeasure onRn, then for a Borel set B inRn and ε > 0, there
is an open set U ⊃ B such thatµ(U\B) < ε.

Proof For each positive integer m let Um = Bm(0), the open ball with center 0 and
radius m. Then Um \ B is a Borel set with µ(Um \ B) ≤ µ(Um) < +∞, and so for
ε > 0, by Lemma 3.9.1, there is a compact set Km ⊂ Um \ B such that

µ((Um \ Km) \ B) = µ((Um \ B) \ Km) < ε2–m.

LetU =
⋃

m(Um \ Km), thenU is open and

B =
∞⋃
m=1

(Um ∩ B) ⊂
∞⋃
m=1

(Um \ Km) = U.

Now,

µ(U \ B) = µ

( ∞⋃
m=1

((Um \ Km) \ B)
)

≤
∞∑
m=1

µ((Um\Km)\B) <
∞∑
m=1

ε
1
2m

= ε. !

Theorem 3.9.1 Letµ be a Radon measure onRn. Then
(i) for A ⊂ Rn,

µ(A) = inf{µ(U) : A ⊂ U, U is open};

and
(ii) forµ-measurable set A ⊂ Rn,

µ(A) = sup{µ(K) : K ⊂ A, K is compact}.

Proof (i) We may assume that µ(A) < +∞. Suppose first that A is a Borel set. By
Lemma 3.9.2, for each ε > 0 there is an openU ⊃ A such thatµ(U \ A) < ε, hence
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µ(U) = µ(A) + µ(U \ A) < µ(A) + ε, which shows that (i) holds. Now let A be
arbitrary. There is a Borel set B ⊃ Awithµ(A) = µ(B). Then,

µ(A) = µ(B) = inf{µ(U) : U ⊃ B, U is open} ≥ inf{µ(U) : U ⊃ A, U is open},

which establishes (i), because the reverse inequality is obvious.
(ii) Let A be µ-measurable with µ(A) < +∞ and denote µ⌊A by ν; then by

Proposition 3.8.2, ν is a Radon measure. By (i), given ε > 0, there is an open set
U ⊃ Ac with ν(U) < ε. Let C = Uc, C is closed, C ⊂ A, and

µ(A \ C) = ν(Rn \ C) = ν(Cc) = ν(U) < ε,

from which,

0 ≤ µ(A) – µ(C) < ε.

But fromµ(C) = limk→∞ µ(Ck), whereCk = {x ∈ C : |x| ≤ k}, it follows that there
is a compact set K ⊂ A such that

0 ≤ µ(A) – µ(K) < ε,

and hence,

µ(A) = sup{µ(K) : K ⊂ A, K is compact}.

If µ(A) = +∞, let Aj = {x ∈ A : j – 1 ≤ |x| < j}, j = 1, 2, . . . Then each Aj is
µ-measurable and

µ(A) =
∑
j
µ(Aj).

Since µ is a Radon measure, µ(Aj) < +∞. By what is proved above, there is a
compact set Kj ⊂ Aj withµ(Kj) ≥ µ(Aj) – 2–j. Now,

⋃
j Kj ⊂ A and

lim
l→∞

µ

( l⋃
j=1
Kj

)
= µ

(∞⋃
j=1
Kj

)
=

∞∑
j=1

µ(Kj) ≥
∞∑
j=1
[µ(Aj) – 2–j] = ∞.

Since
⋃ l

j=1Kj is compact for every l, we have

sup{µ(K) : K ⊂ A, K is compact} ≥ sup
{
µ

( l⋃
j=1
Kj

)
: l = 1, 2, . . .

}
= +∞. !

Remark Because of Theorem 3.9.1 (i), a set E ⊂ Rn is µ-measurable if and only if
µ(G) = µ(G ∩ E) + µ(G ∩ Ec) for all open setsG, whereµ is a Radon measure onRn.
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Corollary 3.9.1 The Lebesgue measure λn is also the measure on Rn constructed by
Method I from the premeasure τ on the family of all oriented closed cubes I, defined by
τ(I) = volume of I.

Proof Let τ ∗ be the measure on Rn constructed from τ by Method I. For B ⊂
Rn and any sequence {Ik} of oriented closed cubes with B ⊂ ⋃

k Ik, we have
λn(B) ≤ ∑

k λn(Ik) =
∑

k τ(Ik), from which follows λn(B) ≤ τ ∗(B). For B ⊂
Rn and ε > 0, there is an open set G ⊃ B such that λn(G)≤ λn(B) + ε, by
Theorem 3.9.1 (i) (this fact is actually the conclusion of Exercise 3.4.17 (i)).
Now, there is a sequence {Ck} of nondegenerate and mutually nonover-
lapping oriented closed cubes such that

⋃
k Ck = G, by Proposition 3.9.1.

Since Ck’s are mutually nonoverlapping,
∑

k τ(Ck) =
∑

k λn(Ck) = λn(G), and
hence

∑
k τ(Ck) = λn(G) ≤ λn(B) + ε. Thus, τ ∗(B) ≤ ∑

k τ(Ck) ≤ λn(B) + ε,
from which follows τ ∗(B) ≤ λn(B), and consequently τ ∗(B) = λn(B). !

Exercise 3.9.1

(i) Let A ⊂ Rn be Lebesgue measurable; show that there is a Fσ set M ⊂ A with
λn(A\M) = 0 (a Fσ -set is a countable union of closed sets).

(ii) Let f : Rn → R be Lebesgue measurable; show that f is equivalent to a Borel
measurable function. (Hint: consider first f , which is an indicator function.)

Exercise 3.9.2 Show that a setA inRn is measurable if and only if for every ε > 0 there
is an open setG ⊃ A and a closed set C ⊂ A, such that λn(G\C) < ε.

Exercise 3.9.3 Suppose that f is a Lebesgue integrable function onRn.

(i) Show that for any given ε > 0, there is a compact set K in Rn such that∫
Rn\K |f |dλ

n < ε.

(ii) Show that lim|x|→∞
∫
K+x fdλ

n = 0 for any compact set K inRn (recall that K +
x = {z + x : z ∈ K}).

(iii) Show that lim|y|→∞
∫
Rn |f (x + y) – f (x)|dλn(x) = 2

∫
Rn |f |dλn.

Exercise 3.9.4 Let w ≥ 0 be integrable onRn and let µ be a premeasure defined for
open setsG inRn by

µ(G) =
∫

G
wdλn.

Denote byµ∗ the measure onRn constructed fromµ byMethod I.

(i) Show that µ∗(S) = infµ(G), where the infimum is taken over all open sets G
containing S.
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(ii) Show thatµ∗ is a Carathéodory measure and

µ∗(B) =
∫

B
wdλn

for Borel sets B.
(iii) Show thatLn ⊂ %µ∗ andµ∗(A) =

∫
A wdλ

n if A ∈ Ln.

Exercise 3.9.5 Suppose that µ is a measure on a metric space X with the property
that compact sets are µ-measurable. Let E ⊂ A be subsets of X of which E is not
µ-measurable. Show that there exists ε > 0 such that, if K1 ⊂ E and K2 ⊂ A\E are
compact sets, we always haveµ(A\(K1 ∪ K2)) ≥ ε.

3.10 Riesz measures

We introduce now a class of Radonmeasures on a locally compact metric spaceX, which
has its origin in the work of F. Riesz on representation of bounded linear functionals on
C[a, b] by measures; and we therefore refer to measures in this class as Riesz measures.

Consider and fix a locally compact metric space X. We shall denote by G the family of
all open subsets ofX, and byK the family of all compact subsets ofX. A Radonmeasureµ

on X is called a Riesz measure if it satisfies the following conditions:

(i) For A ⊂ X,

µ(A) = inf{µ(G) : G ⊃ A,G ∈ G};

(ii) forG ∈ G,

µ(G) = sup{µ(K) : K ⊂ G,K ∈ K}.

Henceforth, condition (i) and condition (ii) will be referred to respectively as
outer regularity and inner regularity of µ. Note that all Radon measures on
Rn are Riesz measures, according to Theorem 3.9.1. Actually, conclusion (ii) of
Theorem 3.9.1 is stronger than inner regularity for Riesz measures; but the fol-
lowing proposition claims that finite Riesz measures satisfy the same conclusion
as that of Theorem 3.9.1 (ii).

Proposition 3.10.1 Ifµ is a finite Riesz measure on X, then for anyµ-measurable set A, we
have

µ(A) = sup{µ(K) : K ∈ K,K ⊂ A}.

Proof Let ε > 0. There is K0 ∈ K such that

µ(Kc
0) = µ(X\K0) <

ε

2
,
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by the inner regularity ofµ, and there isG ∈ G such thatG ⊃ Ac and

µ(G ∩ A) = µ(G\Ac) <
ε

2
,

by the outer regularity ofµ. Now, K0 ∩ Gc is a compact set contained in A and

A\(K0 ∩ Gc) = A ∩ (K0 ∩ Gc)c = A ∩ (Kc
0 ∪ G) ⊂ Kc

0 ∪ (A ∩ G),

henceµ(A\(K0 ∩ Gc) ≤ µ(Kc
0) + µ(A ∩ G) < ε, i.e.

µ(A) < µ(K0 ∩ Gc) + ε ≤ sup{µ(K) : K ∈ K,K ⊂ A} + ε.

Letting ε ↘ 0, we have

µ(A) ≤ sup{µ(K) : K ∈ K,K ⊂ A}.

Thatµ(A) ≥ sup{µ(K) : K ∈ K,K ⊂ A} is obvious. !
Suppose now that X is locally compact, and denote as in Section 1.10 by Cc(X) the

space of all real continuous functions onX with compact support, and ifG ∈ G byUc(G)
the family of all those functions inCc(X) such that 0 ≤ f ≤ 1 and supp f ⊂ G. Ourmain
purpose of this section is to construct a Riesz measure on X for each positive linear func-
tional on Cc(X). A linear functional ℓ on a vector space of functions on a set is said to
be positive if ℓ(f ) ≥ 0 whenever f ≥ 0. Given a positive linear functional ℓ on Cc(X),
a related measureµ on X is constructed as follows. Define first a premeasure τ on G by

τ(G) = sup{ℓ(f ) : f ∈ Uc(G)}, G ∈ G;

then for A ⊂ X, define

µ(A) = inf{τ(G) : G ⊃ A,G ∈ G}.

Observe that

(1) µ(G) = τ(G) forG ∈ G;
(2) µ(

⋃ n
j=1 Gj) ≤ ∑n

j=1 µ(Gj) if G1, . . . ,Gn are in G; furthermore, if Gj’s are dis-
joint, thenµ(

⋃ n
j=1 Gj) =

∑n
j=1 µ(Gj).

Clearly, (1) is a direct consequence of the obvious fact that τ(G1) ≤ τ(G2), if G1
and G2 are in G and G1 ⊂ G2. To verify (2), let u ∈ Uc(

⋃ n
j=1 Gj) and put K = supp u.

By Theorem 1.10.1, there is a partition of unity {u1, . . . , un} of K subordinate to
{G1, . . . ,Gn}; one sees readily that u =

∑n
j=1 uuj. Since each uuj is in Uc(Gj), ℓ(u) =∑n

j=1 ℓ(uuj) ≤ ∑n
j=1 τ(Gj) =

∑n
j=1 µ(Gj), from which it follows that µ(

⋃ n
j=1 Gj) =
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τ(
⋃ n

j=1 Gj) ≤ ∑n
j=1 µ(Gj). Thus the first part of (2) is verified. Now if G1, . . . ,Gn

are disjoint, we need to show that µ(
⋃ n

j=1 Gj) ≥ ∑n
j=1 µ(Gj). For this purpose, since

µ(
⋃ n

j=1 Gj) ≥ µ(Gj) for each j, we may assume that µ(Gj) < ∞ for each j. Given
ε > 0, there is uj ∈ Uc(Gj) such that µ(Gj) = τ(Gj) < ℓ(uj) + ε

n for each j. Then, u =∑n
j=1 uj ∈ Uc(

⋃ n
j=1 Gj), becauseGj’s are disjoint, and hence

µ

( n⋃
j=1

Gj

)
= τ

( n⋃
j=1

Gj

)
≥ ℓ(u) =

n∑
j=1

ℓ(uj) ≥
n∑
j=1

µ(Gj) – ε,

from whichµ(
⋃ n

j=1 Gj) ≥ ∑n
j=1 µ(Gj) follows by letting ε → 0. Thus (2) is verified.

We show next that µ is a Carathéodory measure on X. Let {An} be a sequence
of subsets of X; we claim that µ(

⋃
n An) ≤ ∑

n µ(An). For this, we may assume that
µ(An) < ∞ for all n. Given ε > 0 and n ∈ N, there is an open set Gn ⊃ An such
that µ(Gn) < µ(An) + ε

2n . Then for u ∈ Uc(
⋃

n Gn), since supp u is compact, u ∈
Uc(
⋃ n0

j=1 Gj) for some n0, and we have therefore by (2),

ℓ(u) ≤ µ

( n0⋃
j=1

Gj

)
≤

n0∑
j=1

µ(Gj) ≤ ∑
n

µ(Gn) ≤ ∑
n

µ(An) + ε;

consequently, ℓ(u) ≤ ∑
n µ(An) + ε for each u ∈ Uc(

⋃
n Gn) and hence µ(

⋃
n Gn) ≤∑

n µ(An) + ε. Thus, µ(
⋃

n An) ≤ µ(
⋃

n Gn) ≤ ∑
n µ(An) + ε. Since ε > 0 is arbit-

rary, µ(
⋃

n An) ≤ ∑
n µ(An). As µ(∅) = 0 and µ(A) ≤ µ(B) for A ⊂ B are direct

consequences of the definition of µ, µ is a measure on X. Suppose now that A and
B are subsets of X with ρ(A,B) > 0; if we put H1 = {x ∈ X : ρ(x,A) < 1

2ρ(A,B)},
H2 = {x ∈ X : ρ(x,B) < 1

2ρ(A,B)}, then H1 and H2 are open and disjoint. Now let G
be any open set containing A ∪ B and putG1 = H1 ∩ G,G2 = H2 ∩ G, then

µ(G) ≥ µ(G ∩ (H1 ∪ H2)) = µ(G1) + µ(G2) ≥ µ(A) + µ(B),

and consequently,µ(A ∪ B) ≥ µ(A) + µ(B), orµ(A ∪ B) = µ(A) + µ(B). Thus,µ is
a Carathéodory measure on X. The measure µ so constructed will be referred to as the
measure for the positive linear functional ℓ.

Lemma 3.10.1 Suppose that ℓ is a positive linear functional on Cc(X) and let µ be the
measure for ℓ, thenµ is a Radon measure on X.

Proof Since µ is a Carathéodory measure, it is a Borel measure. From the definition of
µ, forA ⊂ X there is a sequence {Gn} of open sets such that

⋂
n Gn ⊃ A andµ(A) =

µ(
⋂

n Gn), hence µ is Borel regular. Now let K be a compact subset of X. By (i) of
Section 1.10, K has a compact neighborhood V , for which we know from Corollary
1.10.1 that there is f ∈ Uc(X) such that f = 1 on V . Clearly if u ∈ Uc(

◦
V), then u ≤ f .

Thus µ(K) ≤ µ(
◦
V) = sup{ℓ(u) : u ∈ Uc(

◦
V)} ≤ ℓ(f ) < ∞. We have shown that

µ is a Radon measure on X. !
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Lemma 3.10.2 Suppose that ℓ is a positive linear functional on Cc(X) andµ is the measure
for ℓ. Then,

ℓ(f ) =
∫

X
fdµ

for f ∈ Cc(X).

Proof Let f ∈ Cc(X) and putK = supp f . Given ε > 0, for j ∈ Z, letEj = {x ∈ K : εj <
f (x) ≤ ε(j + 1)}. As f is necessarily bounded, Ej = ∅ if |j| > k for some k ∈ N. Since
µ(Ej) ≤ µ(K) < ∞, for each j with |j| ≤ k, there is an open set Gj ⊃ Ej such that
µ(Gj\Ej) < 1

(2k+1)(|j|+2) and f (x) ≤ ε(j + 2) for x ∈ Gj. There is a partition of unity
{uj}|j|≤k of K subordinate to the finite covering {Gj}|j|≤k of K, by Theorem 1.10.1.
Then, f =

∑
|j|≤k fuj and hence

ℓ(f ) =
∑
|j|≤k

ℓ(fuj) ≤ ∑
|j|≤k

ε(j + 2)ℓ(uj) ≤ ∑
|j|≤k

ε(j + 2)µ(Gj)

≤ ∑
|j|≤k

ε(j + 2)
{
µ(Ej) +

1
(2k + 1)(|j| + 2)

}

≤
∫

X
fdµ + 2εµ(K) + ε,

and consequently, since ε > 0 is arbitrary, we have

ℓ(f ) ≤
∫

X
fdµ;

but in the last inequality, if we replace f by (–f ), we also have ℓ(f ) ≥
∫
X fdµ, and thus

ℓ(f ) =
∫

X
fdµ. !

Corollary 3.10.1 If G is an open set in X, then

µ(G) = sup{µ(K) : K ⊂ G,K ∈ K}.

Proof It is sufficient to show that

µ(G) ≤ sup{µ(K) : K ⊂ G,K ∈ K}.

Let f ∈ Uc(G), then since f ≤ 1, we have

ℓ(f ) =
∫

X
fdµ =

∫

supp f
fdµ ≤ µ(supp f ),
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from which we infer that

sup{µ(K) : K ⊂ G,K ∈ K} ≥ sup{ℓ(f ) : f ∈ Uc(G)} = µ(G). !

From Corollary 3.10.1 and the definition of µ, the Radon measure µ is both outer
regular and inner regular. Hence, the measure for any positive linear functional onCc(X)
is a Riesz measure.

Theorem 3.10.1 The measure µ for a positive linear functional ℓ on Cc(X) is the unique
Riesz measure on X, such that

ℓ(f ) =
∫

X
fdµ (3.6)

for all f ∈ Cc(X).

Proof Since the measure µ for ℓ is a Riesz measure on X for which (3.6) holds, it
remains to show that if ν is a Riesz measure on X, such that ℓ(f ) =

∫
X fdν for all

f ∈ Cc(X), then ν = µ. To show ν = µ, it is sufficient to show that ν(G) = µ(G) for
all G ∈ G, because both ν and µ are outer regular. Let now G ∈ G. For f ∈ Uc(G),
ν(G) ≥

∫
X fdν = ℓ(f ) implies

ν(G) ≥ sup{ℓ(f ) : f ∈ Uc(G)} = µ(G).

To see ν(G) ≤ µ(G), consider any given compact set K ⊂ G and choose according
to Corollary 1.10.1 a function f inUc(G) such that f = 1 on K. For such a function f ,
we have

ν(K) ≤
∫

X
fdν = ℓ(f ) ≤ µ(G).

Thus, ν(G) = sup{ν(K) : K ∈ K,K ⊂ G} ≤ µ(G). !
Exercise 3.10.1 Define a norm for f ∈ Cc(X) by ∥f∥ = supx∈X |f (x)| = maxx∈X |f (x)|.

Show that if ℓ is a bounded positive linear functional onCc(X) as a n.v.s. with the norm
previously defined, then the measureµ for ℓ is a finite measure and ∥ℓ∥ = µ(X).

Exercise 3.10.2 Suppose that X is a compact metric space. Show that a positive linear
functional on C(X) is necessarily a bounded linear functional onC(X).

Exercise 3.10.3 Let ℓ be a positive linear functional on C[0, 1] and let µ be the
measure for ℓ. Define a function g on [0, 1] by g(x) = µ([0, x]) for x ∈ (0, 1] and
g(0) = 0. Show that the Lebesgue–Stielties measureµg isµ.
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3.11 Existence of nonmeasurable sets

We exhibit here a nonmeasurable set inR. For this purpose we prove first a remarkable
property of measurable sets inR.

Proposition 3.11.1 Let A be a measurable set in R with λ(A) > 0, then D := {x – y :
x, y ∈ A} contains a nondegenerate interval.

Proof Wemay assume that λ(A) < ∞. There is an open setU ⊃ A such that

λ(U) <

(
1 +

1
3

)
λ(A). (3.7)

SinceU =
⋃

k Ik, where {Ik} is a disjoint sequence of open intervals, we have λ(A) =∑
k λ(A ∩ Ik), and hence, in view of (3.7),

λ(Ik0 ) <

(
1 +

1
3

)
λ(A ∩ Ik0 ) (3.8)

for some k0. We now verify that I := (– 1
2λ(Ik0 ),

1
2λ(Ik0 )) ⊂ D. Let t ∈ I, t ̸= 0, i.e.

0 < |t| < 1
2λ(Ik0 ), then (A ∩ Ik0 ) ∪ (A ∩ Ik0 + t) is contained in an interval of length

< 3
2λ(Ik0 ). If (A ∩ Ik0 ) ∩ (A ∩ Ik0 + t) = ∅, by (3.8),

λ((A ∩ Ik0 ) ∪ (A ∩ Ik0 + t)) = 2λ(A ∩ Ik0 ) > 2 · 3
4
λ(Ik0 ) =

3
2
λ(Ik0 ),

which contradicts the fact that (A ∩ Ik0 ) ∪ (A ∩ Ik0 + t) is contained in an inter-
val of length < 3

2λ(Ik0 ). Thus, (A ∩ Ik0 ) ∩ (A ∩ Ik0 + t) ̸= ∅; say x = y + t for some
x and y in A ∩ Ik0 , then t = x – y ∈ D. This shows that I ⊂ D, because t = 0 is
certainly inD. !
For x ∈ R, let [x] denote the set of all those numbers y inR such that x – y is rational.

It is clear that for x and y inR, [x] and [y] are either disjoint or the same set, and [x] = [y]
if and only if x – y is rational; in particular, [x] is the set of all rational numbers if x is
rational and each set [x] is countable. Let S be a subset of R which contains exactly
one point of each [x]. The possibility of choosing such a set follows from the axiom of
choice, which states that from any given family of sets in a universal set, a set can be
formed by choosing exactly one element from each set of the family. We note that axiom
of choice is consistent with the usual logic adopted in mathematics, and we accept it as
an axiom in our discourse. Returning to our set S, we observe first thatR =

⋃
α(S + α),

where the union is taken over all rational numbers α. Actually, if sx = S ∩ [x], thenR ⊃⋃
α(S + α) ⊃ ⋃

x∈R
⋃

α{sx + α} =
⋃

x∈R [x] = R. It follows thenλ(S) > 0, because if
λ(S) = 0, λ(S + α) = 0 for all rational number α and ∞ = λ(R) ≤ ∑

α λ(S + α) = 0;
which is absurd. Next, note that if x and y are distinct elements of S, then x – y is irra-
tional (otherwise, x and y are from [x], contradicting the fact that S ∩ [x] consists of
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one element). This implies that each element of the set D0 := {x – y : x, y ∈ S} other
than 0 is irrational; consequently D0 contains no nonempty interval. Now, should S be
measurable, D0 would contain a nonempty interval, by Proposition 3.11.1. Thus, S is
nonmeasurable. This asserts the existence of nonmeasurable sets inR.

Proposition 3.11.2 If A is a measurable subset ofRwith positive measure, then A contains
a nonmeasurable set.

Proof Let S be the nonmeasurable set, previously constructed, and let D0 be the dif-
ference set S – S, as defined before. Observe first that if E is a measurable set in S,
then λ(E) = 0, because if λ(E) > 0; by Proposition 3.11.1 the difference set E – E
contains a nonempty interval, then so does D0, contrary to the fact that D0 contains
no nonempty interval. Similarly, if E is a measurable set in S + α, where α is a real
number, then λ(E) = 0.

Suppose now that A contains no nonmeasurable subset, then A ∩ {S + α} is meas-
urable for each rational number α and hence λ(A ∩ {S + α}) = 0, from the previous
observation. But we know thatR =

⋃
α{S + α}, where the union is over all rational

numbers α, thus,

λ(A) ≤ ∑
α

λ(A ∩ {S + α}) = 0,

contrary to the assumption that λ(A) > 0. The contradiction asserts that A contains
a nonmeasurable subset. !

3.12 The axiom of choice and maximality principles

We have mentioned and used the axiom of choice in Section 3.11, when constructing
a nonmeasurable set in R. A more explicit discussion on the axiom of choice will now
be made together with introduction of two maximality principles which are equivalent
to the axiom of choice. The alluded maximality principles are Hausdorff’s maximal-
ity principle and Zorn’s lemma, which are often used in construction of mathematical
objects.

Suppose that X is a nonempty set; a mapping f from 2X\{∅} to X is called a choice
function for X, if f (A) ∈ A for each nonempty subset A of X. It is clear that the axiom of
choice stated in Section 3.11 can be put in the following form:

Axiomof choice. For every nonempty setX, there is a choice function forX.

A binary relation ≤ between some pairs of elements of a nonempty set X is called a
partial order onX if (i) x ≤ x for all x ∈ X; (ii) x ≤ y and y ≤ z for x, y, and z inX, then
x ≤ z; and (iii) x ≤ y and y ≤ x result in x = y. X is then said to be partially ordered
by ≤. By a partially ordered set X we understand a nonempty set partially ordered by a
certain partial order.
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A familiar situation is when X is a family of subsets of a given set, then X is partially
ordered by set inclusion, i.e. for sets A and B in X, A ≤ B if and only if A ⊂ B. Such X is
always considered as partially ordered in this way.

An element x in a partially ordered set X is said to bemaximal if x ≤ y for y in X; then
y = x; in the case whereX is a family of subsets of a given set, then a set A in X is maximal
means that A is not a proper subset of any set in X. For example, if X is the family of all
proper vector subspaces of a vector spaceV and is ordered by set inclusion; thenmaximal
elements of X are called hyperplanes in V .

Let x, y be elements of a partially ordered setX; x is said to be comparable to y if either
x ≤ y or y ≤ x holds; then x and y are comparable to each other. A nonempty subset C
of a partially ordered set X is called a chain in X if any two elements of C are comparable
to each other.

Hausdorff’smaximality principle. In any partially ordered setX, there exists a max-
imal chain. In otherwords, there is a chain inXwhich is not contained in another chain
properly.

If A is a nonempty subset of a partially ordered set X, then an element b of X is called
an upper bound of A if a ≤ b holds for all a ∈ X.

Zorn’s lemma. If every chain in a partially ordered setX has an upper bound, thenX
has amaximal element.

It is easy to see that Zorn’s lemma follows from Hausdorff’s maximality principle. By
Hausdorff maximality principle, there is a maximal chain C in X, then C has an upper
bound b in X, by the assumption of Zorn’s lemma; then b is a maximal element of X,
because, otherwise, there is x in X such that b ≤ x and b ̸= x, implying that the chain
C ∪ {x} contains C properly.

We show next that the axiom of choice is a consequence of the validity of Zorn’s
lemma.Given a nonempty setX, letF = 2X\{∅}, and consider the setY of all thosemap-
pings f with its domainD(f ) ⊂ F and range in X, such that f (A) ∈ A for A ∈ D(f ). Y is
nonempty because, for any x ∈ X, let D(f ) = {{x}} and f ({x}) = x, then f ∈ Y . Define
a partial order ≤ on Y as follows. For f , g in Y , f ≤ g if and only if D(f ) ⊂ D(g) and
g(A) = f (A) for A ∈ D(f ). Y is obviously partially ordered by ≤. Now let C be a chain
in Y ; define a mapping g with D(g) =

⋃
f∈C D(f ) and with g(A) = f (A) if f ∈ C and

A ∈ D(f ). Since C is a chain in Y , g is well defined and belongs to Y . Obviously, g is an
upper bound of C. By Zorn’s lemma, Y has a maximal element, say f . We claim that f is a
choice function forX by showing thatD(f ) = F . Suppose the contrary, then there isA in
F but not inD(f ); choose x ∈ A and let g be amapping fromD(f ) ∪ {A} toX defined by
g(B) = f (B) for B ∈ D(f ) and g(A) = x. Then g is in Y , f ≤ g, and f ̸= g, contradicting
that f is a maximal element in Y . ThusD(f ) = F and f is a choice function for X. Hence
the axiom of choice is a consequence of Zorn’s lemma.
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The rest of this section aims to show that Hausdorff’s maximality principle follows
from the axiom of choice, completing the establishment of the equivalence among axiom
of choice, Hausdorff’s maximality principle, and Zorn’s lemma.

Let X be a partially ordered set and F be the family of all chains in X and ∅. Then F
satisfies the conditions:

(a) If A ∈ F , then all the subsets of A are inF ;
(b) if C is a chain inF , then

⋃
C is inF .

In condition (b),
⋃

C denotes the union of all sets in the family C. By the axiomof choice,
there is a choice function f for X. This choice function is fixed throughout the rest of this
section. For A ∈ F , let Â = {x ∈ X : A ∪ {x} ∈ F}; observe that Â ⊃ A and Â = A if
and only ifA is maximal inF . Define amapping τ : F (→ F by τ(A) = A if Â = A, while
τ(A) = A ∪ {f (̂A\A)} if Â\A ̸= ∅. Since f (̂A\A) ∈ Â if Â\A ̸= ∅, A ∪ {f (̂A\A)} ∈ F
and τ is actually a mapping from F into F . Observe that A ⊂ τ(A) and τ(A)\A con-
sists of at most one element. Since A is maximal in F if and only if Â = A, A is maximal
in F if and only if τ(A) = A; but if τ(A) = A, A is not empty by the fact that τ(∅) =
{f (
⋃

F)} ̸= ∅, and thus A is a maximal chain in X. Therefore, in order to establish
Hausdorff’s maximality principle, it is sufficient to show that τ(A) = A for some A inF .
This is what we shall do in the following.

A subfamily T ofF is called a tower if it satisfies the following conditions:

(i) ∅ ∈ T ;
(ii) if A ∈ T , then τ(A) ∈ T ; and
(iii) if C is a chain in T , then

⋃
C ∈ T .

Since F is a tower, and the intersection of all towers is a tower, the smallest tower T0
exists. We shall claim that T0 is a chain. For this purpose, consider the family T̂0 of all
those C ∈ T0 such that if A ∈ T0, either A ⊂ C or C ⊂ A holds, i.e. T̂0 is the family of
all those elements of T0 which are comparable to all elements of T0; then for C ∈ T̂0 let
ξ(C) be the family of all those A ∈ T0 such that either A ⊂ C or τ(C) ⊂ A.

Proposition 3.12.1 Let C ∈ T̂0. Suppose that A ∈ T0 and A is a proper subset of C, then
τ(A) ⊂ C.

Proof Suppose the contrary. Then, since τ(A) ∈ T0, C is a proper subset of τ(A); but
this fact, together with the assumption that A is a proper subset of C, implies that
τ(A)\A contains at least two elements, contradicting the fact that τ(A)\A contains
at most one element. !

Proposition 3.12.2 If C ∈ T̂0, then ξ(C) = T0.

Proof It is sufficient to show that ξ(C) is a tower. The conditions (i) and (iii) hold obvi-
ously for ξ(C). It remains to show that condition (ii) holds for ξ(C). Let A ∈ ξ(C),
then eitherA ⊂ C or τ(C) ⊂ A. If τ(C) ⊂ A, then τ(C) ⊂ τ(A), which implies that
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τ(A) ∈ ξ(C). Otherwise A ⊂ C, i.e. either A = C or A is a proper subset of C; in the
latter case, τ(A) ∈ ξ(C), by Proposition 3.12.1, while in the former, τ(A) = τ(C)
implies that τ(A) ⊃ τ(C) and hence τ(A) ∈ ξ(C). Thus, condition (ii) holds for
ξ(C) and ξ(C) is a tower. !
We are ready to see that T0 is a chain. Let C ∈ T̂0. By Proposition 3.12.2, ξ(C) = T0,

which means that if A ∈ T0, then either A ⊂ C or τ(C) ⊂ A, implying that either
τ(A) ⊂ τ(C) or τ(C) ⊂ A and consequently τ(C) ∈ T̂0. Now,

⋃
C ∈ T̂0 if C is a chain

in T̂0 follows immediately from the definition of T̂0. As ∅ ∈ T̂0, we have shown that T̂0 is
a tower and hence T̂0 = T0. T̂0 = T0 means only that T0 is a chain.

Finally, let A =
⋃

T0. Since T0 is a tower and a chain, A ∈ T0 and τ(A) ∈ T0. Then
A =

⋃
T0 ⊃ τ(A), and consequently τ(A) = A. Thus A is a maximal chain in X and

therefore Hausdorff’s maximality principle holds.
We have concluded that the axiom of choice, Hausdorff’s maximality principle, and

Zorn’s lemma are each equivalent to one another.



4 Functions of Real Variables

This chapter starts a systematic study of properties of functions of real variables, in
terms of concepts related to measures. Properties of functions considered in this

light are usually referred to as metric properties.
We begin with a characterization of measurable functions due to N.N. Lusin. This

characterization is an intuitively satisfactory description of measurable functions and
has basic and important consequences, in so far as measurable functions are concerned.
Riemann integrable functions are then taken up and shown to be Lebesgue integrable
and their integrals in either sense are the same.

Push-forward of measures, a natural construct of measures from those given through
mappings, is then interposed for the purpose of representation of general integrals as
integrals on R, as well as for a transformation formula of the Lebesgue integral of
functions on Rn through change of variables later in the chapter. Then there follows
naturally a more detailed study of functions of a real variable, in which considerable
emphasis is placed on study of differentiability of functions unfolding from the Lebesgue
differentiation theorem for Radon measures onRn.

Product measures are treated and followed by further studies of functions of several
real variables in later sections of the chapter.

A detailed presentation of polar coordinates in Rn is given in Section 4.11, with
applications to integral operators of potential type and integral representation of C1

functions.

4.1 Lusin theorem

Let µ be a Borel regular measure on Rn, and f a finite-valued function defined on a
µ-measurable subset A ofRn. We suppose thatµ(A) < ∞. We shall show that f is!µ-
measurable if and only if it is almost a continuous function; “almost" in the sense given in
Theorem 4.1.1. Theorem 4.1.1, is called the Lusin theorem in this book. In the following,
µ, A, and f are fixed and specified as previously.

Lemma 4.1.1 Let h be a simple function defined on A, then for ε > 0, there is a compact set
K ⊂ A such that h|K is continuous andµ(A\K) < ε.

Real Analysis. Fon-Che Liu. © Fon-Che Liu 2016. Published 2016 by Oxford University Press.
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Proof In view of Proposition 3.8.2, we may assume that µ is a Radon measure. The
simple function h can be expressed as

h =
k∑
j=1

αjIAj ,

where A1, . . . ,Ak are disjoint µ-measurable subsets of A with A =
⋃k

j=1 Aj. For
each j = 1, . . . , k, there is a compact set Kj ⊂ Aj with µ(Aj\Kj) < ε

k , by Theorem
3.9.1 (ii). Since K1, . . . ,Kk are disjoint compact sets, dist(Ki,Kj) > 0 if i ̸= j; this,
together with the fact that h is constant on each Kj, shows that h|K is continuous if
K :=

⋃k
j=1 Kj. Now,µ(A\K) =∑k

j=1 µ(Aj\Kj) < ε. The Lemma is proved. !

Theorem 4.1.1 (Lusin) Suppose that f is finite-valued and !µ-measurable. Then for
ε > 0, there is a compact set K ⊂ A and a continuous function g defined onRn such that
µ(A\K) < ε and g = f on K.

Proof There is a sequence { fm} of simple functions defined on A such that
limm→∞ fm(x) = f (x) for x ∈ A. By the Egoroff theorem and Theorem 3.9.1 (ii),
there is a compact set K′ ⊂ A such that µ(A\K′) < ε

2 and fm(x) converges to f (x)
uniformly for x ∈ K′. For each m, by Lemma 4.1.1, there is a compact set Km ⊂ A
such that fm|Km is continuous and µ(A\Km) < ε

2m+1 . Set K
′′ =

⋂∞
m=1 Km, then fm|K′′

is continuous for eachm, and

µ(A\K′′) = µ

( ∞⋃
m=1

(A\Km)
)

<
∞∑
m=1

ε

2m+1
=

ε

2
.

Now let K = K′ ∩ K′′, thenµ(A\K) < ε and

(a) each fm|K is continuous;
(b) fm|K converges uniformly to f |K .

From (a) and (b) follows the conclusion that f |K is continuous. By the Tietze
Theorem (Theorem 1.8.1) there is a continuous function g onRn such that g = f |K
on K, or g = f on K. !
Concerning the Lusin theorem, we note first that it still holds if f is finite-

valued µ-a.e. on A; and secondly, if f is finite-valued µ-a.e. and satisfies the con-
clusion of the Lusin theorem, then f is !µ-measurable. To see this, we proceed as
follows. For each m ∈ N there is a compact set Km ⊂ A and a continuous func-
tion gm on Rn such that µ(A\Km) < 1

m2 and gm = f on Km; now
∑

m
1
m2 < ∞

implies µ(lim supm→∞(A\Km)) = 0 (cf. Exercise 2.5.9 (i)), which means that µ-a.e.
x in A is in Km if m is sufficiently large (observe that A\ lim supm→∞(A\Km) =
A\⋂∞

m=1
⋃

l≥m(A\Kl) =
⋃∞

m=1
⋂

l≥m Kl = lim infm→∞ Km), or f (x) = limm→∞ gm(x)
and consequently f is!µ-measurable because each gm is!µ-measurable due to the fact
thatµ is a Borel measure. Thus the conclusion of the Lusin theorem is a characterization
of!µ-measurable functions onA. We state this explicitly as a theorem for later reference
and still call it the Lusin theorem.
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Theorem 4.1.2 Suppose that f is finite-valuedµ-a.e. on A. Then f is!µ-measurable if and
only if for any given ε > 0, there is a compact set K ⊂ A and a continuous function g on
Rn such thatµ(A\K) < ε and f = g on K.

Exercise 4.1.1 Let f be a monotone increasing function defined on a finite open
interval (a, b) in R. Show that for any ε > 0, there is a continuous and monotone
increasing function g onR such that the set {x ∈ (a, b) : f (x) ̸= g(x)} has Lebesgue
measure less than ε. Furthermore, if f is bounded on (a, b), g can also be chosen to be
bounded by the same bound as that of f .

Exercise 4.1.2 Suppose that f is integrable on [a, b]. Show that for each ε > 0 there
is g ∈ C[a, b] such that

∫ b
a | f – g|dλ < ε. (Hint: prove first that the conclusion holds

for bounded measurable function f .)

To conclude this section, we prove that when µ is the Lebesgue measure λn onRn,
a characterization of Lebesgue measurable functions defined on an arbitrary Lebesgue
measurable subset A ofRn similar to Theorem 4.1.2 holds.

Theorem 4.1.3 Let A be a Lebesgue measurable set inRn. A function f which is defined and
finite almost everywhere on A is measurable if and only if for any ε > 0 there is a closed set
F ⊂ A and a continuous function g onRn such that λn(A\F) < ε and f = g on F.

Proof The sufficiency part follows from the same arguments that precede the statement
of Theorem 4.1.2. We need only consider the necessity part. So, let f be a measurable
function which is defined and finite almost everywhere on A, and let ε > 0 be given.
Consider the following sequence {Ak} of subsets of A : A1 = {x ∈ A : |x| < 1} and
for k ≥ 2 let Ak = {x ∈ A : k – 1 < |x| < k}. Since each set {x ∈ Rn : |x| = k} has
measure zero (see Exercise 3.4.2),

⋃∞
k=1 Ak consists of almost all points of A. Each Ak

is measurable and has finite measure. By Theorem 4.1.1, for each k there is a com-
pact set Fk ⊂ Ak such that f |Fk is continuous and λn(Ak\Fk) < ε

2k . Now let {gk} be
a sequence of continuous functions defined as follows: g1 is a continuous function
defined on {x ∈ Rn : |x| ≤ 1} such that g1 = f |F1 onF1; suppose g1, . . . , gk have been
defined, let gk+1 be a continuous function defined on {x ∈ Rn : |x| ≤ k + 1} such
that gk+1 = gk on {|x| ≤ k} and gk+1 = f |Fk+1 on Fk+1. That {gk} can be so defined
is due to Tietze’s extension theorem (Theorem 1.8.1). Then define g(x) = gk(x) if
|x| ≤ k. Obviously, from our construction of the sequence {gk}, g is well defined and
is continuous on Rn. If we put F =

⋃
k Fk, F is a closed set, F ⊂ A, and λn(A\F) =∑

k λn(Ak\Fk) <
∑

k
ε
2k = ε. It is clear that g = f on F. !

4.2 Riemann and Lebesgue integral

In this section an oriented rectangle in Rn will be called an oriented interval. We
show that a Riemann integrable function defined on a closed oriented interval in Rn

is Lebesgue integrable and its Lebesgue integral coincides with its Riemann integral.
First, we recall briefly the Riemann integrability. Fix a finite closed oriented interval
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I = [a1, b1] × · · · × [an, bn], which is not degenerated i.e. ai < bi, i = 1, . . . , n. Unless
stated otherwise, henceforth in this section, an interval is always a finite, closed, nonde-
generate, and oriented interval. Two intervals are said to be nonoverlapping if their
interiors are disjoint. A partition P of I is a finite family {Ij}kj=1 of nonoverlapping inter-
vals such that I =

⋃k
j=1 Ij, where k depends onP ; in particular, when I = [a, b] is a finite

closed interval inR, a partitionP of I is determined by a sequence a = x0 < x1 < · · · <

xl = b of points in [a, b] and we simply call such a sequence of points in [a, b] a partition
of [a, b]. For a partition P = {Ij}kj=1 of I, ∥P∥ will be used to denote max1≤j≤k diam Ij,
and is called themesh ofP .

Consider now a bounded function f defined on I. For an interval J ⊂ I, let
f̄J = supx∈J f (x) and f-- J = infx∈J f (x). IfP = {Ij}kj=1 is a partition of I, put

S̄( f ,P) =
k∑
j=1

f̄Ij |Ij|; S-- ( f ,P) =
k∑
j=1

f-- Ij |Ij|,

where |J| denote the volume of the interval J. A partition P is said to be finer than a
partitionQ if every interval inQ is a union of intervals inP . One verifies easily that ifP
is finer thanQ , then

S̄( f ;P) ≤ S̄( f ;Q); S-- ( f ;P) ≥ S-- ( f ;Q).

For partitionsP andQ of I, denote byP ∨ Q the partition of I formed by all the nonde-
generate intersections of intervals of P and those of Q . P ∨ Q is finer than both P and
Q , hence

S̄( f ;P) ≥ S̄( f ;P ∨ Q) ≥ S-- ( f ; P ∨ Q) ≥ S-- ( f ;Q),

and consequently

inf
P
S̄( f ;P) ≥ sup

P
S-- ( f ;P).

infP S̄( f ;P) is called the Darboux upper integral of f over I and is denoted by
∫
I f ,

while supP S-- ( f ;P) is called the Darboux lower integral of f over I and is denoted by∫
I f . We have shown that

∫

I
f ≤

∫

I
f ;

if
∫
I f =

∫
I f , then the common value, denoted

∫
I f (x)dx, is called theRiemann integral

of f over I, and f is then said to be Riemann integrable over I.

Exercise 4.2.1 Show that a bounded function f defined on I is Riemann integrable if
and only if for any ε > 0 there is a partitionP of I such that S̄( f ;P) – S-- ( f ;P) < ε.
In particular, infer that continuous functions defined on I are Riemann integrable.
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For a bounded function f on I, we define related functions f-- and f̄ as follows:

f-- (x) = lim
δ→0+

inf
|y–x|<δ

f ( y); f̄ (x) = lim
δ→0+

sup
|y–x|<δ

f ( y).

Lemma 4.2.1 f-- is lower semi-continuous and f̄ is upper semi-continuous on I. Hence both
are Borel measurable, and therefore are Lebesgue measurable.

Proof Since f̄ = –(–f ), we need only show that f-- is lower semi-continuous.
Let λ ∈ R; we shall show that Eλ := {f-- > λ} is open in I. Let a ∈ Eλ, then there is

δ > 0, such that

inf
|y–a|<2δ

y∈I

f ( y) > λ.

Now let x ∈ I and |x – a| < δ; then |y – x| < δ entails that |y – a| < 2δ and hence,

inf
|y–x|<δ
y∈I

f ( y) ≥ inf
|y–a|<2δ

y∈I

f ( y) > λ.

Consequently, x ∈ Eλ and Eλ is open in I. This shows that f-- is lower semi-continuous
on I. !

Lemma 4.2.2
∫
I f =

∫
I f-- dλ

n,
∫
I f =

∫
I f̄ dλ

n.

Proof Choose a sequence {Pk} of partitions of I such that limk→∞ S-- ( f ;Pk) =
∫
I f .

Since we still have limk→∞ S-- ( f ;Qk) =
∫
I f , if eachQk is finer thanPk, wemay assume

that ∥Pk∥ → 0 as k → ∞. Let Pk = {I(k)i }nki=1 and define fk(x) = f-- I(k)i
if x ∈ [I(k)i ),

i = 1, . . . , nk and fk(x) = 0 otherwise, where for an interval J = [c1, d1] × · · · ×
[cn, dn], [J) denotes the half-open interval [c1, d1) × · · · × [cn, dn). We claim now
that if x ∈ I\⋃∞

k=1
⋃nk

i=1 ∂I(k)i , then limk→∞ fk(x) = f-- (x). For each δ > 0, since
∥Pk∥ → 0 as k → ∞, inf|y–x|<δ f ( y) ≤ fk(x), if k is sufficiently large, hence
inf|y–x|<δ f ( y) ≤ lim infk→∞ fk(x) and consequently f-- (x) ≤ lim infk→∞ fk(x). On
the other hand, for each k, fk(x) ≤ inf|y–x|<δ f ( y) if δ > 0 is small enough, or fk(x) ≤
f-- (x) and hence lim supk→∞ fk(x) ≤ f-- (x). Thus,

lim sup
k→∞

fk(x) ≤ f-- (x) ≤ lim inf
k→∞

fk(x) ≤ lim sup
k→∞

fk(x),

or f-- (x) = limk→∞ fk(x), as we claim. Now the set
⋃∞

k=1
⋃nk

i=1 ∂I(k)i has Lebesgue
measure zero and | fk(x)| ≤ M := supx∈I | f (x)|; we may apply the Lebesgue dom-
inated convergence theorem to obtain the equality

∫
I f = limk→∞ S-- ( f ;Pk) =

limk→∞
∫
I fkdλ

n =
∫
I f-- dλ

n. Similarly,
∫
f =

∫
I f̄ dλ

n. !
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Theorem 4.2.1 Abounded function f on I is Riemann integrable if and only if f is continuous
at almost all points of I.

Proof Since f-- ≤ f ≤ f̄ on I and

∫

I
f =

∫

I
f-- dλ

n ≤
∫

I
f̄ dλn =

∫

I
f ,

f is Riemann integrable if and only if f-- = f̄ almost everywhere on I. But from
Lemma 4.2.1, we know that f-- is lower semi-continuous and f̄ is upper semi-
continuous; it follows that f-- = f̄ almost everywhere on I means, through the inequal-
ities f-- ≤ f ≤ f̄ on I, that f is continuous almost everywhere on I (cf. Exercise 1.5.2 (i)
and (ii)). !

Theorem 4.2.2 A Riemann integrable function f on I is Lebesgue integrable and∫
I f (x)dx =

∫
I fdλ

n.

Proof Since f-- ≤ f ≤ f̄ on I, and f-- (x) = f̄ (x) for almost all x in I, as we have shown in
the proof of Theorem4.2.1, f = f-- almost everywhere on I and is thereforemeasurable.
As f is bounded and measurable, it is Lebesgue integrable. Now

∫
I fdλ

n =
∫
I f-- dλ

n =∫
I f =

∫
I f (x)dx. !

We note in passing that the function on [0, 1] which takes value 1 on irrational num-
bers and takes value 0 on rational numbers is not Riemann integrable, but is Lebesgue
integrable with Lebesgue integral being 1.

Exercise 4.2.2 Let f be a function defined onR whose improper integral
∫∞
–∞ f (x)dx

converges absolutely. Show that f is Lebesgue integrable on R and
∫
R fdλ =∫∞

–∞ f (x)dx.

Exercise 4.2.3 Give an example to show that the conclusion in Exercise 4.2.2 does not
hold if

∫∞
–∞ f (x)dx converges, but not absolutely.

We strongly suggest that readers verify that results similar to the conclusion of
Exercise 4.2.2 hold for other types of improper integrals.

Notational convention Because of Theorem 4.2.2 and Exercise 4.2.2, we often write∫
A fdλ

n as
∫
A f (x)dx; also, we use

∫ b
a f (x)dx,

∫∞
a f (x)dx,

∫ b
–∞ f (x)dx, and

∫∞
–∞ f (x)dx

to denote
∫
I fdλ if I is [a, b], [a,∞), (–∞, b], and (–∞,∞) in this order. More gener-

ally, for a Borel measure µ on R,
∫ b
a fdµ,

∫∞
a fdµ,

∫ b
–∞ fdµ, and

∫∞
–∞ fdµ are similarly

connoted.
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4.3 Push-forward of measures and distribution
of functions

Distribution of a measurable function on a measure space is now considered with its
application to representation of the integral of Borel functions of the function as integral
onR. For this purpose, a natural method of constructing new measures from one given
through mappings will be presented first.

Suppose thatµmeasures' and that t is a map from' to a setX; define a set function
t#µ on 2X by

t#µ(A) = µ(t–1A), A ⊂ X.

Obviously, t#µ is a measure on X; it is called the push-forward of µ through the map t.
LetA ⊂ X be such that t–1A isµ-measurable, then t–1A isµ⌊B-measurable for any subset
B of' by Exercise 3.1.3 (i). Thus if C is any subset of X, we have, since (t–1A)c = t–1Ac,

µ⌊B(t–1C) = µ⌊B(t–1C ∩ t–1A) + µ⌊B(t–1C ∩ t–1Ac),

or,

t#(µ⌊B)(C) = t#(µ⌊B)(C ∩ A) + t#(µ⌊B)(C ∩ Ac).

The last equality means that A is t#(µ⌊B)-measurable for any subset B of'. Conversely,
suppose that a subset A of X is t#(µ⌊B)-measurable for any subset B of '; then if we
choose C = X in the last equality, it follows that

t#(µ⌊B)(X) = t#(µ⌊B)(A) + t#(µ⌊B)(Ac),

or,

µ⌊B(') = µ⌊B(t–1A) + µ⌊B({t–1A}c),

and hence,

µ(B) = µ(B ∩ t–1A) + µ(B ∩ {t–1A}c)

for any subset B of', implying that t–1A isµ-measurable. We have shown the following
proposition.

Proposition 4.3.1 Let A be a subset of X, then, t–1A is µ-measurable if and only if A is
t#(µ⌊B)-measurable for every subset B of'.

Corollary 4.3.1 A subset A of X is t#µ-measurable if t–1A isµ-measurable.

Exercise 4.3.1 Show that if t is injective, then A ⊂ X is t#µ-measurable if and only if
t–1A isµ-measurable.
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Proposition 4.3.2 If µ is a finite regular measure on ', then A ⊂ X is t#µ- measurable if
and only if t–1A isµ-measurable.

Proof Because of Corollary 4.3.1, we need only show that if A is t#µ-measurable, then
t–1A isµ-measurable.

Choose C ∈ !µ such that t–1A ⊂ C and µ(t–1A) = µ(C). Using the conclusion
of Exercise 3.1.4, we have

µ(C ∩ t–1Ac) + µ(C ∪ t–1Ac) = µ(C) + µ(t–1Ac)
= µ(t–1A) + µ(t–1Ac)
= t#µ(A) + t#µ(Ac) = t#µ(X)
= µ(') = µ(C ∪ t–1Ac);

since µ is finite, we may cancel out the term µ(C ∪ t–1Ac) from the far left-hand
side and the far right-hand side in the above sequence of equalities to obtain µ(C ∩
(t–1A)c) = 0. Thus C ∩ (t–1A)c isµ-measurable. But from t–1A ⊂ C, we have t–1A =
C\(C ∩ (t–1A)c) and hence t–1A isµ-measurable. !
Suppose now that (',!,µ) is a measure space and t is a map from' into a setX. Let

µ∗ be the measure on ' constructed from µ by Method I; µ∗ is the unique !-regular
measure on' such thatµ∗(A) = µ(A) for A ∈ ! as asserted by Corollary 3.4.1. Define
t#! := {A ⊂ X : t–1A ∈ !}. Since ! ⊂ !µ∗ and µ∗(A) = µ(A) for A ∈ !, t#! ⊂
!t#µ∗ (by Corollary 4.3.1) and t#µ∗(A) = µ(t–1A) for A ∈ t#!. For notational simpli-
city, denote the restriction of t#µ∗ to t#! by t#µ; then (X, t#!, t#µ) is a measure space
called the push-forward of (',!,µ) through the map t. Note that the map t from '

into X is measure-preserving from (',!,µ) to (X, t#!, t#µ) (cf. Section 2.8.2).

Exercise 4.3.2 Let (',!,µ) be a measure space and t a map from' into a set X.

(i) Show that a function f on X is t#!-measurable if and only if f ◦ t is
!-measurable.

(ii) Show that if f ≥ 0 is t#!-measurable, then
∫
X fdt#µ =

∫
'
f ◦ tdµ.

(iii) Show that if f is t#!-measurable, then
∫
X fdt#µ =

∫
'
f ◦ tdµ if one of the

integrals is meaningful.

(Hint: start with f as an indicator function of a set.)

Example 4.3.1 (Cf. Exercise 3.4.2 (vi)) Suppose that ' = X = Rn, and ! is the
σ -algebraLn of all Lebesgue measurable sets inRn.

(i) For a ∈ Rn fixed, let t be the mapping tx = x + a, x ∈ Rn. Then t#Ln = Ln,
t#λn = λn, hence,

∫

Rn
f (x + a)dx =

∫

Rn
f (x)dx,

if
∫
Rn f (x)dx exists, i.e. the Lebesgue integral is translation invariant onRn.
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(ii) For α ∈ R, α ̸= 0, consider the mapping tx = αx. Then, t#Ln = Ln, t#λn =
1

|α|n λ
n, hence,

∫

Rn
f (αx)dx =

1
|α|n

∫

Rn
f (x)dx,

if
∫
Rn f (x)dx exists. In particular, take f = IB1(0), then λn(Br(0)) = rnλn(B1(0)).

Exercise 4.3.3 Suppose that f is Lebesguemeasurable onR and is periodic with period
l > 0 i.e. f (x) = f (x + l) for x ∈ R. Suppose further that f is integrable on [0, l]. Show
that f is integrable on [a, a + l] and

∫ l
0 fdλ =

∫ a+l
a fdλ for any a ∈ R.

Exercise 4.3.4 Suppose that t is a continuous and monotone increasing function
defined on a finite interval [a, b]. Put c = t(a) and d = t(b). Show that for anyBorel set
A ⊂ [c, d], t#µt(A) = λ(A), where µt is the Lebesgue–Stieltjes measure generated
by t. (Hint: for any interval I open in [c, d], t#µt(I) = |I|.)

Suppose now that f is a finite-valued measurable function on a measure space
(',!,µ). Since f is!-measurable, f#! contains all Borel subsets ofR and f#µ is ameas-
ure onB. Considered as a measure onB, f#µ is called the distribution of f . If g is a Borel
function onR, then g ◦ f is!-measurable and

∫

R
gdf#µ =

∫

'

g ◦ fdµ (4.1)

if one of the integrals exists. In particular, if g is taken to be g(t) = |t|p, 1 ≤ p < ∞, then
∫

'

| f |pdµ =
∫

R
|t|pdf#µ.

Thus,
∫
'
| f |pdµ can be expressed as an integral on R w.r.t. the measure f#µ. When

µ({ f ≤ t}) < ∞ for every t ∈ R, put

F(t) = µ({ f ≤ t}) = µ( f –1(–∞, t]),

then F is a monotone increasing function and we might expect
∫
R |t|pdf#µ to be the

improper Riemann–Stieltjes integral
∫
|t|pdF := lim b→∞

a→–∞

∫ b
a |t|pdF. We shall see that this

is actually true (cf. Exercise 4.5.6).

Exercise 4.3.5 Show that the function F, previously defined, is right-continuous i.e.
F(t) = F(t+). Moreover, limt→–∞ F(t) = 0, limt→∞ F(t) = µ(').

The function F is called the distribution function of f . When a function F is men-
tioned as the distribution function of a measurable function f , it is implicitly assumed
that µ({ f ≤ t}) < ∞ for every t ∈ R. One sees easily that if f is measurable and finite
a.e. on', its distribution f#µ and distribution function can be similarly defined.

As we have seen in Section 3.8, F generates a Lebesgue–Stieltjes measureµF onR. It
turns out thatµF = f#µ onB, as the following theorem claims.
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Theorem 4.3.1 Suppose that F is the distribution function of a finite-valued measurable
function f on a measure space (',!,µ). Then, (R,B, f#µ) = (R,B,µF), where µF is
the Lebesgue–Stieltjes measure generated by F, and

∫

'

g ◦ fdµ =
∫

R
gdµF , (4.2)

for any Borel measurable function g onR whoseµF-integral exists.

Proof Since F is right-continuous, µF((a, b]) = F(b) – F(a), from which by letting
a → –∞, we have

µF((–∞, b]) = F(b) = µ( f –1(–∞, b]) = f#µ((–∞, b])

for b ∈ R. Now fix a ∈ R and consider the family F of all B ∈ B such that
µF((–∞, a] ∩ B) = f#µ((–∞, a] ∩ B). It is clear thatF is a λ-system and it contains
all sets of the form (–∞, b], b ∈ R. Since the family of all sets of the form (–∞, b],
b ∈ R, is a π -system and B is the smallest σ -algebra containing all sets of the form
(–∞, b], it follows from the (π -λ) theorem thatF = B. Thus,

µF((–∞, a] ∩ B) = f#µ((–∞, a] ∩ B)

for allB ∈ B. From this, by letting a → ∞, we infer thatµF(B) = f#(B) for allB ∈ B,
or (R,B,µF) = (R,B, f#µ). Then (4.2) follows from (4.1). !
In the final part of this section we demonstrate using an example the fact that measure

spaces, which look very different from one another in appearance, might be the same
measure space in different forms.

Example 4.3.2 Let (', σ (Q), P) be the Bernoulli sequence space of Example 3.4.6.
Define a map t : ' → [0, 1] by

t(ω) =
∞∑
j=1

ωj

2j
, ω = (ωj) ∈ '.

Note that 0.ω1ω2ω3 · · · is a binary expansion of t(ω). For x ∈ [0, 1], t–1x con-
sists of either two elements or one element, depending on whether x is a binary
rational number or not, except that t–10 consists of one element; when x is a bin-
ary rational number in (0, 1], say x =

∑n
j=1

εj
2j with εn = 1, then t–1x consists of

(ε1, . . . , εn–1, 1, 0, 0, 0, . . .) and (ε1, . . . , εn–1, 0, 1, 1, 1, . . .). Therefore if we put

'̂ = {ω ∈ ' : ωj = 1 for infinitely many j},

then '\'̂ is countable and hence '̂ ∈ σ (Q) with P('̂) = 1. One sees readily that
if t̂ is the restriction of t to '̂, t̂ is bijective from '̂ to (0, 1]. As in Section 1.3, for
a finite sequence ε1, . . . , εn of 0 and 1, the elementary cylinder {ω ∈ ' : ωj = εj,
j = 1, . . . , n} in ' of rank n is denoted by E(ε1, . . . , εn); and we let E be the family
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of empty set ∅ and all elementary cylinders of all ranks in '. E is a π -system on ',
and if we let Ê = {E ∩ '̂ : E ∈ E}, then Ê is a π -system on '̂.

(i) Observe first that σ (Ê) = σ (Q)|'̂. Actually, ! := {A ∈ σ (Q) : A ∩ '̂ ∈
σ (Ê)} is a σ -algebra on ' containing E , implying ! ⊃ σ (E) = σ (Q) ⊃ !,
or ! = σ (Q) = σ (E), and hence σ (Q)|'̂ ⊂ σ (Ê); that σ (Ê) ⊂ σ (Q)|'̂
follows from the fact that σ (Q)|'̂ is a σ -algebra on '̂ containing Ê .

(ii) For any elementary cylinder E(ε1, . . . , εn) of positive rank n in ', put
Ê(ε1, . . . , εn) = E ∩ '̂. Observe that t̂̂E(ε1, . . . , εn) = (α,α + 1

2n ], where α =∑n
j=1

εj
2j , and since t̂ is bijective on '̂ to (0, 1], t̂–1(α,α + 1

2n ] = Ê(ε1, . . . , εn),
implying that t̂#P((α,α + 1

2n ]) = P(̂E(ε1, . . . , εn)) = 1
2n = λ((α,α + 1

2n ]).
Now, if we let Î = {t̂A : A ∈ Ê}, then Î is a π -system on (0, 1]. Denote
temporarily, in this example, by B and B̂ the Borel fields on [0, 1] and on (0, 1]
respectively, and let

M = {B ∈ B̂ : t̂–1B ∈ σ (Ê) and P(t̂–1B) = λ(B)}.

As t̂ is bijective from '̂ to (0, 1], M is easily seen to be a λ-system on (0, 1]
containing Î; and asσ (Î) = B̂, we conclude by the (π -λ) theorem thatM = B̂,
i.e. B̂ ⊂ t̂#σ (Ê) and t̂#P(B) = λ(B) for all B ∈ B̂.

(iii) We have shown in (ii) that B̂ ⊂ t̂#σ (Ê) and t̂#P(B) = λ(B) for all B ∈ B̂; now
it will be shown that B̂ = t̂#σ (Ê) and thus ((0, 1], B̂, λ) is the push-forward
of ('̂, σ (Ê), P) through the map t̂. For this purpose, it is sufficient to claim
that t̂A ∈ B̂ if A ∈ σ (Ê). ConsiderM = {A ∈ σ (Ê) : t̂A ∈ B̂}. Clearly,M is
a σ -algebra on '̂ containing Ê and henceM = σ (Ê).

From the conclusions in (ii) and (iii) and the fact that t̂ is bijective from '̂ to (0, 1],
we conclude that B ∈ B̂ if and only if t̂–1B ∈ σ (Ê) (equivalently, A ∈ σ (Ê) if and
only if t̂A ∈ B̂) and that t̂#P = λ on B̂ and t̂–1# λ = P onσ (Ê). Therefore, ('̂, σ (Ê), P)
and ((0, 1], B̂, λ) are the same measure space labeled differently. Since σ (Ê) =
σ (Q)|'̂ and '\'̂ is countable, ([0, 1],B, λ) is the push-forward of (', σ (Q), P)
through t and B ∈ B if and only if t–1B ∈ σ (Q).

Exercise 4.3.6 Let (', σ (Q), P) and t be as in Example 4.3.2 and P∗ be the measure
on' constructed from P byMethod I. Show that t#P∗ = λ on [0, 1].

4.4 Functions of bounded variation

This section is devoted to the study of an important class of real-valued functions defined
on a finite closed interval I = [a, b]. This is the class of functions of bounded variation.
Functions in this section are all understood to be real-valued and defined on I.

For a real number α, α+ denotes α or 0 according to whether α ≥ 0 or α < 0, and
α– := (–α)+. It is easily verified thatα = α+ – α–, (α + β)+ ≤ α+ + β+, and (α + β)– ≤
α– + β– for any real numbers α and β .
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Recall that a finite sequence a = x0 < x1 < · · · < xl = b of points is called a parti-
tion of the interval I, where l varies from partition to partition. A generic partition of an
interval will be denoted byP .

Suppose that f is a function andP : a = x0 < x1 < · · · < xl = b a partition of I, let

Pba( f ;P) =
l∑

j=1
{ f (xj) – f (xj–1)}+;

Nb
a( f ;P) =

l∑
j=1
{ f (xj) – f (xj–1)}–;

and

Vb
a ( f ;P) =

l∑
j=1

| f (xj) – f (xj–1)|.

Observe that

Vb
a ( f ;P) = Pba( f ;P) + Nb

a( f ;P).

Now put

Pba( f ) = sup
P

Pba( f ;P);

Nb
a( f ) = sup

P
Nb

a( f ;P);

and

Vb
a ( f ) = sup

P
Vb
a ( f ;P).

Pba( f ) and Nb
a( f ) are called respectively the positive and the negative variation of

f over I, while Vb
a ( f ) is called the total variation of f over I. When a = b, Vb

a ( f ) =
Pba( f ) = Nb

a( f ) = 0, by definition. A function f is said to be of bounded variation on
I if Vb

a ( f )< ∞. Observe that a continuously differentiable function f is of bounded vari-
ation over I and Vb

a ( f ) ≤
∫ b
a | f ′(x)|dx, and that a monotone function f is of bounded

variation on I with Vb
a ( f ) = | f (b) – f (a)|.

Exercise 4.4.1 Show that Vb
a ( f ) = Pba( f ) + Nb

a( f ).

Exercise 4.4.2 If a < c < b, show that Pba( f ) = Pca( f ) + Pbc ( f ) and similarly for negat-
ive and total variation.

Exercise 4.4.3 Show that if f and g are of bounded variation on I, then αf + βg is
also of bounded variation on I for any real numbers α and β , and Vb

a (αf + βg) ≤
|α|Vb

a ( f ) + |β|Vb
a (g).
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Now suppose that f is a function of bounded variation on I. Let x ∈ I and P be a
partition of [a, x], then

f (x) – f (a) =
l∑

j=1
{ f (xj) – f (xj–1)} = Pxa( f ;P) – Nx

a( f ;P)

≤ Pxa( f ) – N
x
a( f ;P),

or

f (x) – f (a) + Nx
a( f ;P) ≤ Pxa( f ),

from which one infers that

f (x) ≤ f (a) + Pxa( f ) – N
x
a( f ).

Similarly, one has

f (x) – f (a) ≥ Pxa( f ;P) – Nx
a( f ),

and hence

f (x) – f (a) + Nx
a( f ) ≥ Pxa( f ),

or

f (x) ≥ f (a) + Pxa( f ) – N
x
a( f ).

Consequently,

f (x) = f (a) + Pxa( f ) – N
x
a( f ), x ∈ I. (4.3)

Since Pxa( f ) and Nx
a( f ) are monotone increasing in x, it follows from (4.3) that f is a

difference of two monotone increasing functions. Conversely, when f is a difference of
two monotone increasing functions, then f is of bounded variation on I. Thus the first
part of the following theorem has been shown.

Theorem 4.4.1 A function f is of bounded variation on I if and only if f is a difference of
two monotone increasing functions. Furthermore, if f is of bounded variation on I and
f = f1 – f2, where f1 and f2 are monotone increasing and f1(a) = f (a), then there is a
monotone increasing function ϕ on I with ϕ(a) = 0 such that

f1(x) = f (a) + Pxa( f ) + ϕ(x); f2(x) = Nx
a( f ) + ϕ(x)

for x ∈ I.
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Proof It remains to show the second part of the theorem. So suppose that f is of
bounded variation on I and f = f1 – f2, where f1 and f2 are monotone increasing and
f1(a) = f (a). Frommonotony of f1 and f2, one verifies that for a ≤ x′ < x′′ ≤ b,

{ f (x′′) – f (x′)}+ = { f1(x′′) – f1(x′) + f2(x′) – f2(x′′)}+ ≤ f1(x′′) – f1(x′);
{ f (x′′) – f (x′)}– = { f1(x′′) – f1(x′) + f2(x′) – f2(x′′)}– ≤ f2(x′′) – f2(x′).

From the preceding inequalities it then follows that for a ≤ x < y ≤ b and any
partitionP of [x, y],

Pyx( f ;P) ≤ f1( y) – f1(x); Ny
x( f ;P) ≤ f2( y) – f2(x),

and hence

Pyx( f ) ≤ f1( y) – f1(x); Ny
x( f ) ≤ f2( y) – f2(x). (4.4)

In particular,

Pxa( f ) ≤ f1(x) – f (a); Nx
a( f ) ≤ f2(x)

for x ∈ I. Let ϕ(x) = f1(x) – { f (a) + Pxa( f )}, then ϕ ≥ 0 and ϕ(a) = 0; from f (a) +
Pxa( f ) – Nx

a( f ) = f (x) = f1(x) – f2(x), it follows that f2(x) = Nx
a( f ) + ϕ(x) for x ∈ I.

It remains to see that ϕ is monotone increasing. For x < y in I we have

ϕ( y) – ϕ(x) = f1( y) – f1(x) – {Pya( f ) – P
x
a( f )} = f1( y) – f1(x) – Pyx( f ) ≥ 0,

by applying the first inequality in (4.4). This shows that ϕ is monotone
increasing. !
Henceforth, a function of bounded variation on I will simply be called a BV function

on I. For a BV function f , let functions fP, fN , and fV be defined by

fP(x) = Pxa( f ); fN(x) = Nx
a( f ); and fV(x) = Vx

a ( f ),

then the second part of Theorem 4.4.1 could be interpreted as saying that the decom-
position f = f (a) + fP – fN is the minimal decomposition of f into the difference of
monotone increasing functions if a partial order≺ on the family of all monotone increas-
ing functions on I is defined as follows: f ≺ g if and only if g – f is nonnegative and
monotone increasing on I.

Theorem 4.4.2 Suppose that f is a BV function on I. If f is right(left)-continuous at x0 ∈
[a, b) (x0 ∈ (a, b]), then so are fP, fN, and fV .

Proof Since f (x) – f (a) = fP(x) – fN(x) and fV(x) = fP(x) + fN(x),

fP(x) =
1
2
{ fV(x) + f (x) – f (a)} and fN(x) =

1
2
{ fV(x) – f (x) + f (a)}
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for x ∈ I, it is therefore sufficient to show that fV is right-continuous at x0. For this, we
have to show that fV(x0+) = fV(x0), or Vx0+h

x0 ( f ) → 0 as h → 0+.
Suppose the contrary, then δ0 = fV(x0+) – fV(x0) > 0. Let δ = 2

3δ0, and choose
h1 > 0 small enough so that x0 + h1 ≤ b and Vx0+h1

x0 ( f ) < 2δ. Since Vx0+h1
x0 ( f ) > δ,

there is a partition x0 < x1 < · · · < xl = x0 + h1 such that

l∑
j=1

| f (xj) – f (xj–1)| > δ.

As f is right-continuous at x0, there is h2 > 0 with x0 + h2 < x1 such that
| f (x1) – f (x0 + h2)| +

∑l
j=2 | f (xj) – f (xj–1)| > δ; henceVx0+h1

x0+h2 ( f ) > δ. Now repeat
the above argument with h1 replaced by h2, to obtain 0 < h3 < h2 such that
Vx0+h2
x0+h3 ( f ) > δ. Then,

2δ > Vx0+h1
x0 ( f ) ≥ Vx0+h2

x0+h3 ( f ) + Vx0+h1
x0+h2 ( f ) > 2δ,

which is absurd. Thus fV is right-continuous at x0. !
Example 4.4.1 Let f be a Lebesgue integrable function on I and define

F(x) = α +
∫ x

a
f (t)dt, x ∈ I, (4.5)

α being a constant. Then F is a BV function and

Vb
a (F) =

∫ b

a
| f (t)|dt.

Actually, for any partitionP : a = x0 < x1 < · · · < xl = b, we have

Vb
a (F;P) =

l∑
j=1

∣∣∣∣∣

∫ xj

xj–1
f (t)dt

∣∣∣∣∣ ≤
∫ b

a
| f (t)|dt,

hence,

Vb
a (F) ≤

∫ b

a
| f (t)|dt < ∞. (4.6)

Now, by Exercise 4.1.2, for any ε > 0 there is a step function g such that

∫ b

a
| f (t) – g(t)|dt < ε.
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Choose a partition P : a = x0 < x1 < · · · < xl = b of I such that {x0, x1, . . . , xl}
contains all the endpoints of the open intervals on which g is constant. We have then,

l∑
j=1

|F(xj) – F(xj–1)| =
l∑

j=1

∣∣∣∣∣

∫ xj

xj–1
f (t)dt

∣∣∣∣∣

≥
l∑

j=1

∣∣∣∣∣

∫ xj

xj–1
g(t)dt

∣∣∣∣∣ –
l∑

j=1

∣∣∣∣∣

∫ xj

xj–1
( f (t) – g(t))dt

∣∣∣∣∣

=
l∑

j=1

∫ xj

xj–1
|g(t)|dt –

l∑
j=1

∣∣∣∣∣

∫ xj

xj–1
( f (t) – g(t))dt

∣∣∣∣∣

≥
∫ b

a
|g(t)|dt –

∫ b

a
| f (t) – g(t)|dt

≥
∫ b

a
|g(t)|dt – ε ≥

∫ b

a
| f (t)|dt – 2ε.

Thus,

Vb
a (F) ≥

∫ b

a
| f (t)|dt – 2ε.

Let ε → 0; we have Vb
a (F) ≥

∫ b
a | f (t)|dt, and hence

Vb
a (F) =

∫ b

a
| f (t)|dt,

by (4.6).

The function F, defined by (4.5), with f being Lebesgue integrable on I, is called an
indefinite integral of f .

Exercise 4.4.4 Let F be an indefinite integral of f on I; show that FP(x) =
∫ x
a f +(t)dt

and FN(x) =
∫ x
a f –(t)dt. (Hint: use the fact that FP(x) = 1

2 {FV(x) + F(x) – F(a)}
and FN(x) = 1

2 {FV(x) – F(x) + F(a)}.)

4.5 Riemann–Stieltjes integral

The Rieman–Stieltjes integral of bounded functions on I will be defined along the same
lines that the Riemann integral is defined. Suppose that g is a monotone increasing
function defined on a finite closed interval I = [a, b].

Given a partitionP : a = x0 < x1 < · · · < xl = b of I and j = 1, . . . , l; put

Pjg = g(xj) – g(xj–1).
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For a bounded function f on I, andP as above, let

f-- j = inf
x∈[xj–1,xj]

f (x), f̄ j = sup
x∈[xj–1,xj]

f (x);

and

S-- g( f ,P) =
l∑

j=1
f-- jPjg, S̄g( f ,P) =

l∑
j=1

f̄ jPjg.

Observe that for any partitionsP andQ of I, the following sequence of inequalities holds:

S-- g( f ,P) ≤ S-- g( f ,P ∨ Q) ≤ S̄g( f ,P ∨ Q) ≤ S̄g( f ,Q). (4.7)

Now let
∫ b
a fdg = supP S-- g( f ,P) and

∫ b
a fdg = infP S̄g( f ,P); by (4.7) both

∫ b
a fdg and

∫ b
a fdg are finite and

∫ b
a fdg ≤

∫ b
a fdg. In the case where

∫ b
a fdg =

∫ b
a fdg, f is said to be

Riemann–Stieltjes integrable w.r.t. g and the common value, denoted
∫ b
a fdg, is called

theRiemann–Stieltjes integral of f w.r.t. g. From (4.7), Theorem 4.5.1 follows directly:

Theorem 4.5.1 Let g be monotone increasing on [a, b]. A bounded function f on [a, b] is
Riemann–Stieltjes integrable w.r.t. g if and only if for any ε > 0, there is a partition P of
[a, b] such that

S̄g( f ,P) – S-- g( f ,P) < ε.

Example 4.5.1 Let g be a monotone increasing function on [a, b]. (i) If f is continuous
on [a, b], then

∫ b
a fdg exists. (ii) If f is a BV function and g is continuous, then

∫ b
a fdg

exists.

Clearly, (i) is an easy consequence of Theorem 4.5.1, while (ii) follows also from
Theorem 4.5.1 if one notes that for any partition P : a = x0 < x1 < · · · < xn = b of
[a, b],

S̄g( f ,P) – S-- g( f ,P) =
n∑
j=1
(f-- j – f̄ j)Pj(g)

≤
n∑
j=1

Vxj
xj–1 ( f )Pjg ≤ Vb

a ( f ) max
1≤j≤n

Pjg.

Example 4.5.2 Suppose thatw is a nonnegative Lebesgue integrable function on [a, b],
and g is an indefinite integral of w (cf. Example 4.4.1), then any Riemann integrable
function f on [a, b] is Riemann–Stieltjes integrable w.r.t. g on [a, b] and

∫ b

a
fdg =

∫ b

a
f (t)w(t)dt.
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For a partition P : a = x0 < x1 < · · · < xn = b, define a function f̄P by f̄P(x) = f̄j
if x ∈ [xj–1, xj) and f̄P(b) = f (b); similarly define f--

P by f--
P(x) = f-- j if x ∈ [xj–1, xj) and

f--
P(b) = f (b). Now choose a sequence {P(k)} of partitions so that ∥P(k)∥ → 0 as
k→ ∞, and

S̄g( f ,P(k)) →
∫ b

a
fdg; S-- g( f ,P

(k)) →
∫ b

a
fdg.

Obviously,

S̄g( f ,P(k)) =
∫ b

a
f̄P

(k)
(t)w(t)dt; S-- g( f ,P

(k)) =
∫ b

a
f--
P(k)

(t)w(t)dt.

Since f is Riemann integrable, f is continuous at almost all points of [a, b], and hence

f̄P
(k)
w→ fw a.e.; f--

P(k)

w→ fw a.e.

If we putM = supt∈[a,b] | f (t)|, | f̄P
(k)w| ≤ Mw, | f--

P(k)

w| ≤ Mw, hence by LDCT

lim
k→∞

S̄g( f ,P(k)) =
∫ b

a
f (t)w(t)dt = lim

k→∞
S-- g( f ,P

(k)),

and thus

∫ b

a
fdg =

∫ b

a
fdg =

∫ b

a
f (t)w(t)dt,

i.e. f is Riemann–Stieltjes integrable w.r.t. g on [a, b] and
∫ b
a fdg =

∫ b
a f (t)w(t)dt.

Exercise 4.5.1 Suppose that f is continuous on [a, b] and g is monotone increasing on
[a, b].

(i) Show that
∫ b
a fdg =

∫ b
a fdg = inf S̄g( f ,P), where the infimum is taken over all

those partitionsP , the endpoints of whose intervals other than a and b are points
of continuity of g.

(ii) Show that
∫ b
a fdg =

∫ b
a fdµg .

The following Lemma is a generalization of Lemma 4.2.2 when n = 1.
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Lemma 4.5.1 Suppose that g is a right-continuous and monotone increasing function on
[a, b], and f a bounded function on [a, b] which is continuous wherever g is discontinuous,
then

∫ b

a
fdg =

∫ b

a
f-- dµg;

∫ b

a
fdg =

∫ b

a
f̄ dµg ,

where f-- (x) = limδ→0+ inf|y–x|<δ f ( y) and f̄ (x) = limδ→0+ sup|y–x|<δ f ( y).

Proof By Lemma 4.2.1, both f-- and f̄ are Lebesgue measurable. It is clear that f-- ≤ f ≤ f̄
on [a, b]. Choose a sequence {P(k)} of partitions of [a, b] such that ∥P(k)∥ → 0, and

∫ b

a
fdg = lim

k→∞
S-- g( f ,P

(k));
∫ b

a
fdg = lim

k→∞
S̄g( f ,P(k)).

For each k ∈ N, let P(k) be a = x(k)0 < x(k)1 < · · · < x(k)nk = b, and define fk(x) =
infx(k)j–1≤t≤x(k)j

f (t) if x ∈ (x(k)j–1, x
(k)
j ] and fk(a) = f (a). As we have shown in the proof

of Lemma 4.2.2, limk→∞ fk(x) = f-- (x) if x ∈ [a, b], but is not an endpoint of inter-
vals of the partitions P(k), k = 1, 2, . . . . Now, since f is continuous wherever g
is discontinuous and g is right-continuous, we may assume that all the endpoints
of the intervals of the partitions P(k) are points of continuity of g, except pos-
sibly b. Hence fk(x) → f-- (x) for µg-a.e. x in [a, b); but if b is a point of dis-
continuity of g, then f is continuous at b and hence fk(b) → f (b) = f-- (b). Thus,
limk→∞ fk(x) = f-- (x) for µg-a.e. x of [a, b], and

∫ b
a f-- dµg = limk→∞

∫ b
a fkdµg by

LDCT, because | fk(x)| ≤ supa≤t≤b | f (t)|. Since g is right-continuous, µg((c, d]) =
g(d) – g(c) for a≤ c< d≤ b; we have S-- g( f ,P

(k)) =
∫ b
a fkdµg . Consequently,

∫ b
a f-- dµg = limk→∞ S-- g( f ,P

(k)) =
∫ b
a fdg. Similarly,

∫ b
a f̄ dµg =

∫ b
a fdg. !

Theorem 4.5.2 Suppose that g is a right-continuous and monotone increasing function on
[a, b] and f is a bounded function which is continuous at theµg-a.e. point of [a, b], then f
is Riemann–Stieltjes integrable w.r.t. g, and

∫ b

a
fdg =

∫ b

a
fdµg .

Proof We claim first that f isµg-measurable. From f-- ≤ f ≤ f̄ and the fact that f is con-
tinuousµg-a.e., it follows that f-- (x) = f (x) = f̄ (x) forµg-a.e. x in [a, b]; hence f differs
from f-- only on a set A with µg(A) = 0. But f-- is Borel measurable by Lemma 4.2.1,
and is therefore µg-measurable from the fact that µg is a Carathéodory measure.
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Thus f is µg-measurable as we claim. Now, f-- = f = f̄ µg-a.e. implies, together with
Lemma 4.5.1, that

∫ b

a
fdg =

∫ b

a
f-- dµg =

∫ b

a
fdµg =

∫ b

a
f̄ dµg =

∫ b

a
fdg,

which entails that f is Riemann–Stieltjes integrable w.r.t. g and
∫ b
a fdg =

∫ b
a fdµg . !

Theorem 4.5.3 (Integration by parts) Suppose that f and g are monotone increasing
functions on [a, b] and at least one of them is continuous. Then

∫ b

a
fdg = f (b)g(b) – f (a)g(a) –

∫ b

a
gdf .

Proof Note firstly that
∫ b
a fdg and

∫ b
a gdf exist, from Example 4.5.1. Let P : a = x0 <

x1 < · · · < xl = b be a partition of [a, b], then

S̄g( f ,P) =
l∑

j=1
f (xj)[g(xj) – g(xj–1)]

= f (b)g(b) – f (a)g(a) –
l∑

j=1
g(xj–1)[f (xj) – f (xj–1)]

= f (b)g(b) – f (a)g(a) – S-- f (g,P),

from which, by taking a sequence {P(k)} of partitions such that

lim
k→∞

S̄g( f ,P(k)) =
∫ b

a
fdg and lim

k→∞
S-- f (g,P

(k)) =
∫ b

a
gdf ,

we obtain,

∫ b

a
fdg =

∫ b

a
fdg = f (b)g(b) – f (a)g(a) –

∫ b

a
gdf

= f (b)g(b) – f (a)g(a) –
∫ b

a
gdf . !

Exercise 4.5.2 Under the same assumptions as in Theorem 4.5.3, show that
∫ b

a
fdµg = f (b)g(b) – f (a)g(a) –

∫ b

a
gdµf .

(Hint: cf. Exercise 4.5.1.)
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Now suppose that g is a BV function on [a, b] and write g = g1 – g2, where g1(x) =
g(a) + gP(x) and g2(x) = gN(x) for x ∈ [a, b]. Recall that gP(x) = Pxa(g) and gN(x) =
Nx

a(g), x ∈ [a, b]. A bounded function f on [a, b] is called Riemann–Stieltjes integ-
rable w.r.t. g if it is Riemann–Stieltjes integrable w.r.t. g1 and g2, and in this case the
Riemann–Stieltjes integral of f w.r.t. g, denoted

∫ b
a fdg, is defined by

∫ b

a
fdg =

∫ b

a
fdg1 –

∫ b

a
fdg2.

With this definition, Corollary 4.5.1 of Theorem 4.5.3 follows, by using Theorem 4.4.2.

Corollary 4.5.1 Suppose that f and g are BV functions on [a, b] and at least one of them is
continuous, then

∫ b

a
fdg = f (b)g(b) – f (a)g(a) –

∫ b

a
gdf .

Theorem 4.5.4 (Secondmean-value theorem) Suppose that f is an integrable function on
a finite interval [a, b] and ϕ is a monotone function on [a, b], then there is c ∈ [a, b] such
that

∫ b

a
ϕfdλ = ϕ(a)

∫ c

a
fdλ + ϕ(b)

∫ b

c
fdλ.

Firstly we prove a lemma.

Lemma 4.5.2 Let f and ϕ be as in Theorem 4.5.4 and, further ϕ is assumed to be
nonnegative and monotone decreasing, then there is c ∈ [a, b] such that

∫ b

a
ϕfdλ = ϕ(a)

∫ c

a
fdλ.

Proof Wemay assume thatϕ(a) > 0, because otherwiseϕ ≡ 0 and the lemma is trivial.
Define a function F on [a, b] by

F(x) =
∫ x

a
fdλ, x ∈ [a, b].

By Corollary 4.5.1 and Example 4.5.2, we have

∫ b

a
Fdϕ = F(b)ϕ(b) – F(a)ϕ(a) –

∫ b

a
ϕdF = F(b)ϕ(b) –

∫ b

a
ϕfdλ;

hence,
∫ b

a
ϕfdλ ≤ Mϕ(b) –M

∫ b

a
dϕ = Mϕ(b) +M{ϕ(a) – ϕ(b)} = Mϕ(a),
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or 1
ϕ(a)

∫ b
a ϕfdλ ≤ M, where M = maxx∈[a,b] F(x). Similarly, if m = minx∈[a,b] F(x),

thenm ≤ 1
ϕ(a)

∫ b
a ϕfdλ; thus,

m ≤ 1
ϕ(a)

∫ b

a
ϕfdλ ≤ M,

from which, by the intermediate-value theorem for continuous functions, there is c ∈
[a, b] such that 1

ϕ(a)

∫ b
a ϕfdλ = F(c) =

∫ c
a fdλ. !

Proof of Theorem 4.5.4 Consider first the case where ϕ is monotone decreasing.
Since ϕ – ϕ(b) is nonnegative and monotone decreasing, by Lemma 4.5.2 there is
c ∈ [a, b] such that

∫ b
a {ϕ – ϕ(b)}fdλ = {ϕ(a) – ϕ(b)}

∫ c
a fdλ, or

∫ b

a
ϕfdλ = ϕ(b)

∫ b

a
fdλ + {ϕ(a) – ϕ(b)

∫ c

a
fdλ

= ϕ(a)
∫ c

a
fdλ + ϕ(b)

∫ b

c
fdλ.

If ϕ is monotone increasing, replacing ϕ by –ϕ in the argument above, we also
conclude that there is c ∈ [a, b] such that

∫ b

a
ϕfdλ = ϕ(a)

∫ c

a
fdλ + ϕ(b)

∫ b

c
fdλ. !

Corollary 4.5.2 Let f be integrable on [a, b] andϕ be nonnegative andmonotone increasing
on [a, b]; then there is c ∈ [a, b] such that

∫ b

a
ϕfdλ = ϕ(b)

∫ b

c
fdλ.

Proof Replace ϕ in Theorem 4.5.4 by ϕ – ϕ(a). !

Remark Lemma 4.5.2, Theorem 4.5.4, and Corollary 4.5.2 will all be referred to as the
secondmean-value theorem.

Exercise 4.5.3 Show that the following improper integrals exist: (i)
∫∞
0

sin x
x dx; (ii)∫∞

0
sin x
ex–1dx.

Exercise 4.5.4 Suppose that h is an integrable function on [a, b] and g is an indefin-
ite integral of h. Show that if f is a Riemann integrable function on [a, b], then f is
Riemann–Stieltjes integrable w.r.t. g, and

∫ b

a
fdg =

∫ b

a
fhdλ.
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Exercise 4.5.5 Suppose that u and v are integrable functions on [a, b] and that U and
V are respectively indefinite integrals of u and v. Show that

∫ b

a
Uvdλ = U(b)V(b) – U(a)V(a) –

∫ b

a
Vudλ.

Exercise 4.5.6 Let f be a measurable and finite a.e. function on a measure space
(', !,µ). Suppose that µ({ f ≤ t}) < ∞ for every t ∈ R and let F(t) = µ({ f ≤
t}) for t ∈ R. Define the improper Riemann–Stieltjes integral

∫
R |t|pdF by

∫

R
|t|pdF = lim

b→∞
a→–∞

∫ b

a
|t|pdF, 1 ≤ p < ∞.

Show that
∫
'
| f |pdµ =

∫
R |t|pdF.

A characterization of functions which are indefinite integrals will be taken up after a
treatise on differentiation is given in Section 4.6.

4.6 Covering theorems and differentiation

Our purpose in this section is to establish the Lebesgue differentiation theorem for
Radon measures onRn and to give some of its relevant applications. To do this, we shall
first exhibit a useful procedure of selecting a sequence of disjoint balls from a given col-
lection of balls inRn, and deduce from it two covering theorems inRn; one of which is
elementary but will be useful when we study the Hardy–Littlewood maximal function in
Chapter 6, and the other is a Vitali type covering theorem that is the main tool for the
proof of the Lebesgue differentiation theorem.

For convenience, the diameter of a set A is denoted by δA instead of diamA, for the
moment, and a ball is either open or closedwith positive radius unless, specified explicitly.
For a ball B, we shall denote by B̂ the ball concentric with B and with radius five times
that of B.

A collection C of balls in Rn is said to be admissible if supB∈C δB < ∞. Given an
admissible collection C of balls inRn, we select a disjoint sequence {Bj}, finite or infinite,
from C by the following procedure. Let d0 = supB∈C δB, then 0 < d0 < ∞. Choose a
ball B1 in C such that δB1 ≥ 1

2d0. Suppose now that B1, . . . ,Bm are disjoint balls chosen
from C; if B ∩⋃m

j=1 Bj ̸= ∅ for every B ∈ C, stop the procedure; otherwise, let

dm = sup

{

δB : B ∈ C, B ∩
m⋃
j=1

Bj = ∅
}

,

and choose a ballBm+1 fromC which is disjointwith
⋃m

j=1 Bj andwith δBm+1 ≥ 1
2dm. Thus

a disjoint sequence {Bj}, finite or infinite, is obtained by this procedure. Such a procedure
of selecting {Bj} from C will be referred to as Procedure(S).
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Lemma 4.6.1 Suppose that C is an admissible collection of balls in Rn and {Bj} is a
sequence of disjoint balls selected from C by Procedure(S). Then either {Bj} is infinite
and infj δBj > 0 or

⋃
C ⊂ ⋃

j B̂j (recall that
⋃

C :=
⋃

B∈C B).

Proof If {Bj} is finite, say {Bj} = {B1, . . . ,Bm}, meaning that if B ∈ C, then B ∩⋃m
j=1 Bj ̸= ∅. Let j0 be the smallest j, 1 ≤ j ≤ m, such that B ∩ Bj ̸= ∅. If j0 = 1, then

δB ≤ d0 ≤ 2B1; while if j0 ≥ 2, B ∩⋃j0–1
j=1 Bj = ∅ and δB ≤ dj0–1 ≤ 2δBj0 . Hence,

δB ≤ 2δBj0 holds; this fact, together with B ∩ Bj0 ̸= ∅, implies that B ⊂ B̂j0 . Thus,⋃
C ⊂ ⋃m

j=1 B̂j.
Now suppose that {Bj} is infinite and infj δBj = 0. Let again B ∈ C. Since δB > 0

and infj δBj = 0, there is j0 ∈ N arbitrarily large such that δB > 2δBj0 . But then
B ∩⋃j0–1

j=1 Bj ̸= ∅, because otherwise δBj0 < 1
2δB ≤ 1

2dj0–1, contradicting the way Bj0
is selected by Procedure(S). Since B ∩⋃j0–1

j=1 Bj ̸= ∅, argue as in the first paragraph of
the proof to conclude thatB is contained in one of B̂1, . . . , B̂j0–1, and henceB ⊂ ⋃

j B̂j.
Consequently,

⋃
C ⊂ ⋃

j B̂j. !
Lemma 4.6.1 leads immediately to the following basic covering theorem.

Theorem 4.6.1 Let C be an admissible collection of balls in Rn; then there is a disjoint
sequence {Bj} of balls from C such that

λn(
⋃

C) ≤ 5n
∑
j

λn(Bj). (4.8)

Proof Let {Bj} be a sequence of disjoint balls selected from C by Procedure(S). By
Lemma 4.6.1, either {Bj} is infinite and inf δBj > 0 or

⋃
C ⊂ ⋃

j B̂j. If {Bj} is infin-
ite and infj δBj > 0, then the right-hand side of (4.8) is ∞ and (4.8) holds trivially.
Suppose now that

⋃
C ⊂ ⋃

j B̂j. Then,

λn(
⋃

C) ≤ ∑
j

λn(̂Bj) = 5n
∑
j

λn(Bj),

because λn(̂Bj) = 5nλn(Bj), by Example 4.3.1 (ii). !
We come now to a Vitali type covering theorem. Let E be a subset ofRn; a collection

V of subsets ofRn is called aVitali cover ofE if for every x inE and any positive number ε
there isV inV , such that δV < ε and x ∈ V . The following covering theorem is a simple
version of the well-known Vitali covering theorem, but it suffices for our purpose.

Theorem 4.6.2 (Vitali) Let E be a subset ofRn with λn(E) < ∞, and suppose that V is
a collection of closed balls inRn which forms a Vitali cover of E. Then there is a sequence
{Bj} of disjoint balls from V such that λn(E\⋃j Bj) = 0.

Proof Choose an open setG ⊃ E such that λn(G) < ∞, and let

C = {V ∈ V : V ⊂ G, δV ≤ 1}.



128 | Functions of Real Variables

Then C is an admissible collection of closed balls and is a Vitali cover of E. Now
select a sequence {Bj} of disjoint balls from C by Procedure(S). If {Bj} is finite,
say {Bj} = {B1, . . . ,Bm}, then V ∩⋃m

j=1 Bj ̸= ∅ for every V ∈ C. Take any x ∈ E
and ε > 0, choose V ∈ C such that x ∈ V and δV < ε, then dist(x,

⋃m
j=1 Bj) ≤

dist(x,V ∩⋃m
j=1 Bj) ≤ δV < ε. Since ε > 0 is arbitrary and

⋃m
j=1 Bj is closed, we

infer that x ∈ ⋃m
j=1 Bj or E ⊂ ⋃m

j=1 Bj, and hence λn(E\⋃m
j=1 Bj) = 0. Suppose now

that {Bj} is infinite. Since
∑

j λ
n(Bj) = λn(

⋃
j Bj) ≤ λn(G) < ∞, infj≥l δ(Bj) = 0 for

any l ∈ N. Observe then that for any l ∈ N, {Bj}j≥l+1 is a sequence of balls selected
from the admissible collection

C(l) :=

{

V ∈ C : V ⊂ G\
l⋃

j=1
Bj

}

,

by Procedure(S). Since infj≥l+1 δBj = 0, it follows from Lemma 4.6.1 that
⋃

C(l) ⊂⋃
j≥l+1 B̂j; consequently,

λn

(

E\
l⋃

j=1
Bj

)

≤ λn
(⋃

C(l)
)

≤ ∑
j≥l+1

λn(̂Bj) = 5n
∑
j≥l+1

λn(Bj),

because C(l) is a Vitali cover of E\⋃l
j=1 Bj. Now from

λn

(

E\⋃
j
Bj

)

≤ λn

(

E\
l⋃

j=1
Bj

)

≤ 5n
∑
j≥l+1

λn(Bj)

for l ∈ N, we obtain λn(E\⋃j Bj) = 0 by letting l → ∞. !

Remark In Theorem 4.6.2, E is not required to be measurable.

Exercise 4.6.1 Show that the union of any family C of closed balls in Rn is Lebesgue
measurable. (Hint: consider the Vitali cover V of

⋃
C, which consists of all closed

balls each of which is contained in a ball of C).

Exercise 4.6.2 Show that Theorem 4.6.2 still holds if V is a Vitali cover of E consisting
of open balls.

Exercise 4.6.3 Describe inRn a procedure for selecting a sequence of disjoint closed
cubes, from a collection C of closed cubes of positive bounded side lengths similar to
Procedure(S), when C is an admissible collection of closed cubes so that Lemma 4.6.1
holds for such a collection C. Then state the Vitali covering theorem for Vitali covers
of E consisting of closed (open) cubes, where E is a subset ofRn with λn(E) < ∞.

Lebesgue differentiation of Radon measures onRn is the subject we shall treat in the
remaining part of this section. The differentiation is taken w.r.t. Lebesgue measure and
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with closed balls as base in the sense which will be defined. For the sake of simplicity in
expression, a generic closed ball inRn is henceforth denoted by B in this section.

Since the expression “λn-almost everywhere" appears often, it will hereafter be
replaced by “almost everywhere". In other words, a property which holds almost every-
where w.r.t. Lebesgue measure λn inRn will simply be said to hold almost everywhere.
Accordingly, “λn-a.e." is often replaced by “a.e.", and λn-null sets will simply be called
null sets.

Suppose that f is a set function (not necessarily taking only nonnegative values)
defined for all closed balls inside an open set' ⊂ Rn and x ∈ ', define

lim inf
B→x

f (B) := lim
σ→0+

{
inf
δB<σ
x∈B

f (B)
}
;

lim sup
B→x

f (B) := lim
σ→0+

{
sup
δB<σ
x∈B

f (B)
}
.

Clearly, lim infB→x f (B) ≤ lim supB→x f (B); in the case lim infB→x f (B) =
lim supB→x f (B), the common value is denoted by limB→x f (B) and we say that
limB→x f (B) exists. In the above definitions, B certainly denotes a generic closed ball B
in'.

Exercise 4.6.4 Show that limB→x f (B) exists and is a finite number l if and only if for
any given ε > 0 there is σ > 0, such that

| f (B) – l| < ε

whenever δB < σ and x ∈ B.

Now letµ be a Radonmeasure on an open set' ⊂ Rn;µ is said to be differentiable
w.r.t. Lebesguemeasure λn at x ∈ 'with closed balls as base if limB→x

µ(B)
λn(B) exists. Since

the differentiation of Radonmeasures onRn is always taken in this sense in what follows,
if limB→x

µ(B)
λn(B) exists, we simply say that µ is differentiable at x with derivate dµ

dλn (x) :=
limB→x

µ(B)
λn(B) . We shall show thatµ is differentiable with finite derivate at a.e. x of', and

that the function dµ
dλn which is defined and finite almost everywhere on' is measurable.

Put D-- µ(x) = lim infB→x
µ(B)
λn(B) and D̄µ(x) = lim supB→x

µ(B)
λn(B) for x ∈ '. Note that

D-- µ(x) ≤ D̄µ(x) for every x ∈ '.

Lemma 4.6.2 If D̄µ ≥ α on S ⊂ ' for some α ≥ 0, thenµ(S) ≥ αλn(S).

Proof Clearly we may assume that α > 0. For l ∈ N, let Sl = {x ∈ S : |x| < l} and
let G be any open set which contains Sl and is contained in '. Now for any ε > 0
sufficiently small so that α – ε > 0, consider the family V of all those closed balls
B ⊂ G such that µ(B) > (α – ε)λn(B). Since V is a Vitali cover of Sl and λn(Sl) <

∞, there is a disjoint sequence {Bj} of balls from V such that λn(Sl\
⋃

j Bj) = 0,
by Vitali the covering theorem (Theorem 4.6.2). Then, (α – ε)λn(Sl) ≤ (α – ε)λn
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(
⋃

j Bj) =
∑

j(α – ε)λn(Bj) <
∑

j µ(Bj) = µ(
⋃

j Bj) ≤ µ(G), and since µ is a
Radon measure, it follows that (α – ε)λn(Sl) ≤ µ(Sl) and consequently, by letting
l → ∞, (α – ε)λn(S) ≤ µ(S) follows, as both λn andµ are regular measures and Sl
increases to S when l → ∞ (cf. Theorem 3.3.2). Finally, let ε ↘ 0 to conclude the
proof. !

Corollary 4.6.1 D̄µ < ∞ almost everywhere on'.

Proof Since ' =
⋃

l∈N({x ∈ ' : dist(x,'c) ≥ 1
l } ∩ {x ∈ Rn : |x| ≤ l}), ' is a

countable union of compact sets; it is sufficient to show that λn({x ∈ K :
D̄µ(x) = ∞}) = 0 for any compact set in '. For such a compact set K, put
S = {x ∈ K : D̄µ(x) = ∞}. Since for any α > 0, D̄µ ≥ α on S, by Lemma 4.6.2,
λn(S) ≤ 1

α
µ(S) ≤ 1

α
µ(K), which implies thatλn(S) = 0 by lettingα → ∞, because

µ(K) < ∞. !

Lemma 4.6.3 Suppose that D-- µ ≤ β on S ⊂ ' for some β ≥ 0; then there is a null set
N ⊂ S such thatµ(S\N) ≤ βλn(S).

Proof Suppose first thatλn(S) < ∞. For l, k ∈ N, take an open setGk which contains S
and is contained in'withλn(Gk) < λn(S) + 1

k , and consider the familyV of all those
closed balls B ⊂ Gk such that µ(B) < (β + 1

l )λ
n(B); V is clearly a Vitali cover of S.

Since λn(S) < ∞, by the Vitali covering theorem there is a disjoint sequence {Bj} of
balls from V such that λn(S\⋃j Bj) = 0. If we let Nl,k = S\⋃j Bj (observe that {Bj}
depends on l and k), Nl,k is a null set contained in S and (β + 1

l )λ
n(Gk) ≥ (β + 1

l )
λn(
⋃

j Bj) > µ(
⋃

j Bj) ≥ µ(S\Nl,k). Now let N =
⋃

l,k Nl,k; N is a null set in S and
(β + 1

l )λ
n(S) = (β + 1

l ) infk λn(Gk) ≥ µ(S\N) for each l. We simply let l → ∞ to
conclude thatµ(S\N) ≤ βλn(S).

If λn(S) = ∞, for each l ∈ N, put Sl = {x ∈ S : |x| ≤ l}, then λn(Sl) < ∞. By
the first part of the proof, for each l ∈ N there is a null set Nl ⊂ Sl such that
µ(Sl\Nl) ≤ βλn(Sl); then, N =

⋃
l Nl is a null set and µ(Sl\N) ≤ µ(Sl\Nl) ≤

βλn(Sl) ≤ βλn(S), from whichµ(S\N) ≤ βλn(S) follows by letting l → ∞. !

Theorem 4.6.3 (Lebesgue) dµ
dλn exists and is finite almost everywhere on'.

Proof Since D̄µ < ∞ almost everywhere on ', by Corollary 4.6.1, it is only
necessary to show that dµ

dλn exists almost everywhere on '. If we put E =
{x ∈ ' : D̄µ(x) > D-- µ(x)}, this amounts to showing that λn(E) = 0; but since
D-- µ≥ 0, E =

⋃
(α,β) E(α,β), where E(α,β) = {x ∈ ' : D̄µ(x) ≥ α > β ≥ D-- µ(x)},

with (α,β) being a generic pair of rational numbers α, β such that α > β ≥ 0, and
since all such pairs (α,β) form a countable set, it suffices to show that λn(E(α,β)) = 0
for any such pairs of rational numbers. For such a pair (α,β), put S = E(α,β). We
now show that λn(S) = 0. Suppose the contrary that λn(S) > 0, then there is l ∈ N
such that if we put Sl = {x ∈ S : |x| < l} then ∞ > λn(Sl) > 0. Now D-- µ ≤ β on
Sl; by Lemma 4.6.3 there is a null set N inside Sl such that µ(Sl\N) ≤ βλn(Sl);
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on the other hand, the fact that D̄µ ≥ α on Sl\N implies, by Lemma 4.6.2, that
αλn(Sl) = αλn(Sl\N) ≤ µ(Sl\N). Thus,

µ(Sl\N) ≤ βλn(Sl) < αλn(Sl) = αλn(Sl\N) ≤ µ(Sl\N),

the absurdity of which shows that λn(S) = 0. !
If we letD denote the set of all x ∈ ' such that dµ

dλn (x) exists and is finite,D is measur-
able becauseD is the complement in' of a null set and null sets aremeasurable.We shall
show in a moment that dµ

dλn is measurable as a function defined a.e. on' (cf. Section 2.5
for measurability of functions defined a.e. on '). For x ∈ D, dµ

dλn (x) = limB→x
µ(B)
λn(B) , a

fortiori, dµ
dλn (x) = limr→0

µ(Cr(x))
λn(Cr(x))

, where Cr(x) is the closed ball centered at x and with
radius r > 0. Now if, as before, Br(x) denotes the open ball centered at x and with radius
r > 0, we claim that

dµ
dλn (x) = lim

r→0

µ(Br(x))
λn(Br(x))

. (4.9)

To see this one needs only to observe that if r′ = r(1 – r) for 0 < r < 1, then

(1 – r)n
µ(Cr′(x))
λn(Cr′(x))

=
λn(Cr′(x))
λn(Cr(x))

µ(Cr′(x))
λn(Cr′(x))

≤ µ(Br(x))
λn(Br(x))

≤ µ(Cr(x))
λn(Cr(x))

,

where the relation λn(Cr′(x)) = (1 – r)nλn(Cr(x)) has been used (cf. Example 4.3.1
(ii)), and (4.9) follows as r → 0.

Lemma 4.6.4 dµ
dλn is measurable.

Proof For x ∈ ' and r > 0, let 'r(x) = Br(x) ∩ '. First, we show that as a func-
tion of x, µ('r(x)) is lower semi-continuous on D (r being fixed). For x ∈ D,
let Ix denote the indicator function of the set 'r(x), then µ('r(x)) =

∫
'
Ixdµ.

Suppose now that {xk} is a sequence in D tending to x. Since Ixk → Ix on 'r(x)
and Ix = 0 on '\'r(x), Ix ≤ lim infk→∞ Ixk . It follows from the Fatou Lemma
that µ('r(x)) =

∫
'
Ixdµ ≤ lim infk→∞

∫
'
Ixkdµ = lim infk→∞ µ('r(xk)). Hence,

µ('r(x)) is lower semi-continuous as a function of x on D and is therefore meas-
urable on D. Similarly, λn('r(x)) is lower semi-continuous on D. By choosing a
sequence of r tending to zero, we have

dµ
dλn (x) = lim

r→0

µ(Br(x))
λn(Br(x))

= lim
r→0

µ('r(x))
λn('r(x))

for x ∈ D, hence dµ
dλn is measurable onD (note that'r(x) = Br(x) if r is small). Since

'\D is a null set, dµ
dλn is measurable. !
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dµ
dλn is usually extended from D to ' by defining it to be zero on '\D. In view of

Exercise 3.9.1(ii), dµ
dλn has a Borel measurable version and we shall henceforth take dµ

dλn

to be a Borel measurable function on'.

Lemma 4.6.5 For any Borel set S ⊂ ',
∫
S

dµ
dλn dλn ≤ µ(S). In particular

∫
K

dµ
dλn dλn < ∞

for compact sets K ⊂ '.

Proof Let g be a generic nonnegative andBorelmeasurable simple function on' satisfy-
ing g ≤ dµ

dλn ·IS; there are disjoint Borel sets A1, . . . ,Al in S and nonnegative numbers
α1, . . . ,αl such that g =

∑l
j=1 αjIAj . Then,

∫

'

gdλn =
l∑

j=1
αjλ

n(Aj).

Butµ(Aj) ≥ αjλ
n(Aj), j = 1, . . . , l, by Lemma 4.6.2, consequently,

∫

'

gdλn ≤
l∑

j=1
µ(Aj) = µ

(
l∑

j=1
Aj

)

≤ µ(S),

and hence,
∫

S

dµ
dλn dλ

n =
∫

'

dµ
dλn · ISdλn = sup

g

∫

'

gdλn ≤ µ(S). !

Lemma 4.6.5 implies that { dµ
dλn λ

n}∗ is a Radon measure on ' (cf. Example 3.8.1).
Recall that { dµ

dλn λ
n} denotes the indefinite integral of dµ

dλn with respect to λn. Since indef-
inite integrals, considered later in this chapter, are always λn-indefinite integrals, the
notation { dµ

dλn λ
n} is simplified to { dµ

dλn } for compactness of expression. Similarly, for a
nonnegative measurable function f defined on ', { fλn} will be replaced by { f }. With
this notational convention, if f is locally integrable on ' in the sense that f is integ-
rable on compact sets in', then { f }∗ is a Radon measure on'. Thus { dµ

dλn }∗ is a Radon
measure on'.

Another immediate consequence of Lemma 4.6.5 is the following.

Corollary 4.6.2 For any S ⊂ ', { dµ
dλn }∗(S) ≤ µ(S).

Proof If S is a Borel set, then { dµ
dλn }∗(S) =

∫
S

dµ
dλn dλn ≤ µ(S), by Lemma 4.6.5; for gen-

eral S, the same inequality follows from the fact that both { dµ
dλn }∗ and µ are Borel

regular. !

Remark As shown in Example 3.8.1, { f }∗(S) =
∫
S fdλ

n if S is a measurable subset
of ' and f a nonnegative measurable function. Hence, { dµ

dλn }∗(S) =
∫
S

dµ
dλn dλn if S is a

measurable subset of'.
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Corollary 4.6.3 If f is a nonnegative and locally integrable function on', then d
dλn { f }∗ = f

a.e. on'; i.e. for almost all x ∈ ', limB→x

∫
B fdλ

n

λn(B) = f (x); in particular,

f (x) = lim
r→0

1
λn(Br(x))

∫

Br(x)
fdλn (4.10)

for almost every x ∈ '.

Proof Put g = d
dλn { f }∗. By Corollary 4.6.2 and the remark following it,

∫
S gdλ

n =
{g}∗(S) ≤ { f }∗(S) =

∫
S fdλ

n for any measurable set S ⊂ ', hence g ≤ f a.e. on'.
Now, put E = {g < f }; we will show that λn(E) = 0 to conclude that f = g a.e. For

this we need only show that λn(E′) = 0, where

E′ =
{
x ∈ E : lim

B→x

{ f }∗(B)
λn(B)

exists
}
.

Suppose the contrary, thatλn(E′) > 0, then there are numbers 0 < β < α < ∞ and
R > 0 such that the set S = {x ∈ E′ : |x| < R, f (x) > α > β > g(x)} has positive
Lebesgue measure. Let G be any open set containing S and contained in ', and con-
sider the family V of all B ⊂ G satisfying βλn(B) > { f }∗(B). V is a Vitali cover of S;
by the Vitali covering theorem, there is a disjoint sequence {Bj} of balls from V such
that λn(S\⋃j Bj) = 0 (note that λn(S) < ∞). Then,

βλn(G) ≥ βλn
(⋃

j
Bj
)
=
∑
j

βλn(Bj) >
∑
j
{ f }∗(Bj) = { f }∗

(⋃
j
Bj
)

=
∫

⋃
j Bj

fdλn ≥
∫

S
fdλn,

from which it follows that βλn(S) ≥
∫
S fdλ

n; on the other hand
∫
S fdλ

n ≥ αλn(S),
hence,

βλn(S) ≥
∫

S
fdλn ≥ αλn(S),

the absurdity of which shows that λn(E′) = 0. That (4.10) holds for almost all x ∈ '

follows from (4.9). !
Example 4.6.1 (Density and approximate continuity) Let D be a measurable subset of

Rn with λn(D) > 0. For x ∈ Rn, if limB→x
λn(B∩D)

λn(B) exists, the limit is called the dens-
ity ofD at x. Certainly, the density is nonnegative and≤ 1. If the density ofD at x is 1,
x is called a density point ofD; while x is called a point of dispersion ofD if the density
ofD at x is 0. Ameasurable function f onD is said to have approximate limit l at x if x
is a density point of the set {y ∈ D : | f ( y) – l| < ε} for every ε > 0, and the approx-
imate limit lwill be denoted by aplimy→x f ( y). The function f is called approximately
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continuous at x ∈ D if aplimy→x f ( y) = f (x). We claim that (i) almost every point of
D is a density point ofD, and almost every point ofDc is a point of dispersion ofD, and
(ii) a measurable function f onD is approximately continuous a.e. onD. Assertion (i)
is a direct consequence of Corollary 4.6.3, by choosing f to be the indicator function
ofD. Observe that (i) implies that if g is a continuous function onRn, then f is approx-
imately continuous at almost every point of the set {x ∈ D : f (x) = g(x)}. It is clear
now that (ii) follows from this observation and the Lusin theorem (Theorem 4.1.1).

Exercise 4.6.5 Suppose that A is a measurable subset of Rn. Show that dist(y,A) =
o(|y – x|) as y → x for almost every x in A.

For a locally integrable function f on ', the set L( f ) of all those points x ∈ ' such
that limB→x

1
λnB

∫
B | f ( y) – f (x)|dy = 0 is called the Lebesgue set of f .

Theorem 4.6.4 If f is locally integrable on ', then λn('\L( f )) = 0, i.e. L( f ) consists of
almost all points of'.

Proof Denote by γ the set of all rational numbers inR. For a ∈ γ , there is a null set Ea
in' such that for x ∈ '\Ea, the following holds, by Corollary 4.6.3:

lim
B→x

1
λn(B)

∫

B
| f ( y) – a|dy = | f (x) – a|.

Put E =
⋃

a∈γ Ea, then λn(E) = 0. For x ∈ '\E and ε > 0, there is a ∈ γ such that
| f (x) – a| < ε, hence,

lim sup
B→x

1
λn(B)

∫

B
| f ( y) – f (x)|dy ≤ lim sup

B→x

1
λn(B)

∫

B
{| f ( y) – a| + | f (x) – a|}dy

= 2| f (x) – a| < 2ε.

Since ε > 0 is arbitrary, we have lim supB→x
1

λn(B)

∫
B | f ( y) – f (x)| = 0, or

limB→x
1

λn(B)

∫
B | f ( y) – f (x)|dy = 0. !

Theorem 4.6.5 If f is locally integrable on', then

lim
B→x

1
λn(B)

∫

B
fdλn = f (x)

for almost every x ∈ '.

Proof For x ∈ L( f ),

∣∣∣∣
1

λn(B)

∫

B
f ( y)dy – f (x)

∣∣∣∣ ≤ 1
λn(B)

∫

B
| f ( y) – f (x)|dy

for any closed ball B containing x; then limB→x
∫
B fdλ

n = f (x) follows. !
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As an application of Theorem 4.6.5, we shall now prove that the space Cc(') of all
those continuous functions on', each of which vanishes outside a compact subset of',
is dense in Lp(',Ln|', λn):

Proposition 4.6.1 Cc(') is dense in Lp(',Ln|', λn), 1 ≤ p < ∞.

Proof Let f ∈ Lp(',Ln|', λn) and ε > 0. For each k ∈ N, put Fk = {x ∈ ' :
dist(x,'c) ≥ 1

k } ∩ Ck(0); {Fk} is an increasing sequence of compact sets in
' and ' =

⋃
k Fk. Set fk = IFk f , then limk→∞ fk(x) = f (x) for all x ∈ ' and

| fk|≤ | f |. LDCT implies that limk→∞ ∥fk – f∥p = 0. There is then k0 such that
∥ fk0 – f∥p < ε

3 . Now, for each l ∈ N, let gl(x) = fk0 (x) if | fk0 (x)| ≤ l, otherwise
let gl(x) = 0. By LDCT again, there is l0 ∈ N such that ∥gl0 – fk0∥p < ε

3 . Put
g = gl0 ; g is a bounded function and g = 0 outside Fk0 . For 0 < r < 1

2k0 , define
[g]r(x) = 1

λn(Br(x))

∫
Br(x) g( y)dy, if x ∈ F2k0 ; otherwise let [g]r(x) = 0. Obviously,

[g]r ∈ Cc('), |[g]r| ≤ lk0 on F2k0 and [g]r = 0 outside F2k0 . [g]r is therefore
in Lp(',Ln|', λn). Since limr→0[g]r = g a.e., by Theorem 4.6.5, LDCT implies
limr→0 ∥[g]r – g∥p = 0. Choose 0 < r0 < 1

2k0 such that ∥[g]r0 – g∥p < ε
3 . Then, gr0 ∈

Cc(') and ∥ f – [g]r0∥p ≤ ∥ f – fk0∥p + ∥ fk0 – g∥p + ∥g – [g]r0∥p < ε. !
Theorem 4.6.6 Suppose that D is a measurable set in Rn with positive measure. Then

Lp(D,Ln|D, λn) is separable for 1 ≤ p < ∞.

Proof In the proof, we shall denote byLp(A) the spaceLp(A,L|A, λn) ifA ∈ Ln. Since if
{uk}k∈N is dense in Lp(Rn), then {uk|D}k∈N is dense in Lp(D), it is sufficient to show
that Lp(Rn) is separable.

We call the indicator function of an oriented interval I1 × · · · × In an element-
ary unit function of order k, if each Ij, j = 1, . . . , n, is of the form Ij =

[ lj
2k ,

lj+1
2k
)
,

lj ∈ Z. Consider now the family E of all finite linear combinations of elementary
unit functions of all possible order with rational coefficients. It is clear that E is a
countable set in Lp(Rn). Let u ∈ Cc(Rn) and ε > 0. As u vanishes outside J = J1 ×
· · · × Jn with each Jj = [–n0, n0] for some n0 ∈ N, and u is uniformly continuous
on J, for any given ε > 0 there is g ∈ E such that ∥u – g∥p < ε; hence the closure
of E in Lp(Rn) contains Cc(Rn). Thus the closure of E in Lp(Rn) is Lp(Rn), by
Proposition 4.6.1. !

Lemma 4.6.6 There is a Radon measure ϕ on ' such that µ = { dµ
dλn }∗ + ϕ, i.e. µ(S) =

{ dµ
dλn }∗(S) + ϕ(S) for all S ⊂ '.

Proof Denote byK(') the family of all compact sets in'. Bothµ and { dµ
dλn }∗ take finite

value onK('); we define ϕ1 onK(') by

ϕ1(K) = µ(K) –
{
dµ
dλn

}∗
(K)

for K ∈ K('). By Corollary 4.6.2, ϕ1 ≥ 0. Observe that

(i) ϕ1 is monotone onK('), i.e. for K1 ⊂ K2 inK('), ϕ1(K1) ≤ ϕ1(K2).
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(ii) For any finite number of disjoint sets K1, . . . ,Kl inK('),

ϕ1

( l⋃
j=1

Kj

)
=

l∑
j=1

ϕ1(Kj).

Now define ϕ onB(') by

ϕ(A) = supϕ1(K)

for A ∈ B('), where the supremum is taken over all K ∈ K(') with K ⊂ A.
Then ϕ is an extension of ϕ1 and

µ(A) =
{
dµ
dλn

}∗
(A) + ϕ(A) (4.11)

for A ∈ B('). That ϕ is an extension of ϕ1 follows from (i), while (4.11) holds
by taking the limit as j → ∞ on both sides of

µ(Kj) =
{
dµ
dλn

}∗
(Kj) + ϕ(Kj),

for a sequence {Kj} ⊂ K(') such that limj→∞ µ(Kj) = µ(A), limj→∞
{ dµ
dλn }∗(Kj) = { dµ

dλn }∗(A), and limj→∞ ϕ(Kj) = ϕ(A). That such a sequence
{Kj} exists follows by applying Theorem 3.9.1 (ii) to µ and { dµ

dλn }∗, and by
definition of ϕ.

If now {Aj} is a disjoint sequence of Borel sets in a given compact setK ⊂ ',
then bothµ(

⋃
j Aj) and { dµ

dλn }∗(
⋃

j Aj) are finite, and by (4.11),

ϕ

(⋃
j
Aj

)
= µ

(⋃
j
Aj

)
–
{
dµ
dλn

}∗ (⋃
j
Aj

)

=
∑
j

{
µ(Aj) –

{
dµ
dλn

}∗
(Aj)

}
=
∑
j

ϕ(Aj),

hence we have:
(iii) For disjoint sequence {Aj} ⊂ B(') with

⋃
j Aj ⊂ K for some compact set

K in',

ϕ

(⋃
j
Aj

)
=
∑
j

ϕ(Aj).
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Next, we claim that ϕ is σ -additive on B('). Let {Aj} be any disjoint sequence in
B('). For any compact set K ⊂ ⋃

j Aj,

ϕ(K) = ϕ

(⋃
j
{K ∩ Aj}

)
=
∑
j

ϕ(K ∩ Aj) ≤ ∑
j

ϕ(Aj),

by (iii), and the obvious fact that ϕ is monotone onB('). Consequently,

ϕ

(⋃
j
Aj

)
≤ ∑

j
ϕ(Aj). (4.12)

On the other hand, fix l ∈ N and for each j = 1, . . . , l take an arbitrary compact set
Kj ⊂ Aj, then

ϕ

(⋃
j
Aj

)
≥ ϕ

( l⋃
j=1

Kj

)
=

l∑
j=1

ϕ(Kj), (4.13)

by monotony of ϕ onB(') and (ii); since each Kj is an arbitrary compact set in Aj, it
follows from (4.13) that

ϕ

(⋃

j
Aj

)
≥

l∑
j=1

ϕ(Aj),

and hence,

ϕ

(⋃
j
Aj

)
≥ ∑

j
ϕ(Aj).

The last inequality shows, together with (4.12), that ϕ(
⋃

j Aj) =
∑

j ϕ(Aj). Thus ϕ is
σ -additive onB(').

Now construct from ϕ onB(') a measure on' byMethod I, which is the unique
B(')-regular extension of ϕ by Corollary 3.4.1 and hence is a Radon measure. The
Radonmeasure so constructed is to be denoted also by ϕ. Thatµ = { dµ

dλn }∗ + ϕ holds
follows from (4.11) and Borel regularity ofµ, { dµ

dλn }∗, and ϕ. !
Theorem 4.6.7 (Lebesgue decomposition theorem) There is a null set N ⊂ ' such that

µ =
{
dµ
dλn

}∗
+ µ⌊N.

Proof By Lemma 4.6.6, there is a Radon measure ϕ on' such that

µ =
{
dµ
dλn

}∗
+ ϕ. (4.14)
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Choose a null set N1 ⊂ ' such that, for x ∈ '\N1, the derivates limB→x
µ(B)
λn(B) ,

limB→x
{ dµ
dλn }

∗(B)
λn(B) , and limB→x

ϕ(B)
λn(B) exist and are finite, and further, d

dλn { dµ
dλn }∗(x) =

dµ
dλn (x). That such a null setN1 exists is a consequence of Theorem4.6.3 andCorollary
4.6.3. From the choice of N1 and (4.14), one concludes that the derivate dϕ

dλn (x) = 0
for x ∈ '\N1, and hence, in view of Lemma 4.6.3, there is a null setN2 ⊂ '\N1 such
that ϕ('\(N1 ∪ N2)) = 0. PutN = N1 ∪ N2;N is a null set, and for any S ⊂ ',

ϕ(S ∩ N) ≤ ϕ(S) ≤ ϕ(S ∩ ('\N)) + ϕ(S ∩ N) = ϕ(S ∩ N),

or

ϕ(S) = ϕ(S ∩ N).

Now,

µ(S ∩ N) =
{
dµ
dλn

}∗
(S ∩ N) + ϕ(S ∩ N) = ϕ(S),

consequently,

µ(S) =
{
dµ
dλn

}∗
(S) + ϕ(S) =

{
dµ
dλn

}∗
(S) + µ(S ∩ N)

for any S ⊂ '; in other words,

µ =
{
dµ
dλn

}∗
+ µ⌊N. !

The decomposition of µ into the sum { dµ
dλn }∗ + µ⌊N in Theorem 4.6.7 is called the

Lebesgue decomposition ofµ.
Concepts of absolute continuity and singularity for measures are introduced now for

the purpose of singling out a distinguishing feature of the Lebesgue decomposition the-
orem. Supposeµ and ν aremeasures on a set'. Themeasureµ is said to be ν-absolutely
continuous if µ(A) = 0 whenever ν(A) = 0; and µ is said to be ν-singular if µ = µ⌊N
where ν(N) = 0. If ' is a subset ofRn, then a measure µ on ' being λn-absolute con-
tinuous or λn-singular will simply be said to be absolutely continuous or singular, in this
order.

In the decomposition µ = { dµ
dλn }∗ + µ⌊N, where λn(N) = 0, as claimed by Theorem

4.6.7, { dµ
dλn }∗ is absolutely continuous and µ⌊N is singular. Thus, Theorem 4.6.7 claims

that any Radon measure on ' can be decomposed into an absolutely continuous part
and a singular part. We shall see presently that such a decomposition is unique.

Lemma 4.6.7 Ifµ is an absolutely continuous Radon measure on', thenµ = { dµ
dλn }∗.
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Proof By Theorem 4.6.7,

µ =
{
dµ
dλn

}∗
+ µ⌊N,

where λn(N) = 0; but absolute continuity of µ implies µ(N) = 0 and hence
µ⌊N = 0. !

Lemma 4.6.8 Ifµ is a singular Radon measure on', then dµ
dλn = 0 a.e. on'.

Proof There are null setsN andN′ in' such that

µ =
{
dµ
dλn

}∗
+ µ⌊N

and

µ = µ⌊N′,

by Theorem 4.6.7 and singularity ofµ. For any set S ⊂ '\N′, we have

µ(S) = µ(S ∩ N′) = µ(∅) = 0,

and hence,

0 = µ(S) =
{
dµ
dλn

}∗
(S) + µ(N ∩ S),

a fortiori, { dµ
dλn }∗(S) = 0. Since { dµ

dλn }∗(S) =
∫
S

dµ
dλn dλn = 0 for any measurable

S ⊂ '\N′, dµ
dλn = 0 a.e. on'\N′, and consequently dµ

dλn = 0 a.e. on'. !

Theorem 4.6.8 For a Radon measure µ on ', the Lebesgue decomposition µ = { dµ
dλn }∗ +

µ⌊N, where λn(N) = 0, is the unique decomposition of µ into a sum of an absolutely
continuous and a singular Radon measure.

Proof Letµ = µa + µs be a decomposition ofµ into the sum of an absolutely continu-
ous Radon measureµa and a singular Radon measureµs. Then,

dµ
dλn =

dµa

dλn +
dµs

dλn

almost everywhere on '. Since dµs
dλn = 0 a.e. on ', by Lemma 4.6.8, dµ

dλn = dµa
dλn a.e.

From Lemma 4.6.7, µa = { dµa
dλn }∗ = { dµ

dλn }∗. Let µ = { dµ
dλn }∗ + µ⌊N be the Lebesgue

decomposition ofµ; then by what has just being proved,

µ(S) = µa(S) + µs(S) =
{
dµ
dλn

}∗
(S) + µ⌊N(S) = µa(S) + µ⌊N(S);
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in particular, if µ(S) < ∞, µs(S) = µ⌊N(S), from which µs = µ⌊N follows by
Theorem 3.3.2, because bothµs andµ⌊N are regular. !

Exercise 4.6.6 LetHn be the n-dimensional Hausdorff measure onRn.

(i) Show thatHn is a Radon measure onRn.
(ii) Show that dHn

dλn (x) = αn for all x ∈ Rn, whereαn is a constant depending only on
the dimension n.

(iii) Show thatHn = αnλ
n.

The results in this section will be applied in Section 4.7 to study differentiability of
functions of a real variable; while differentiability of measures in a general setting will
be taken up in Section 5.7, where a decomposition theorem similar to Theorem 4.6.8 is
established.

4.7 Differentiability of functions of a real variable
and related functions

Differentiability of functions of a real variable will be studied through differentiation of
Lebesgue–Stieltjes measures generated by monotone functions. An important subclass
of the class of BV functions will be introduced. This is the class of absolutely continuous
functions, which is much larger than the class of continuously differentiable functions,
but enjoys many useful properties of the latter; in particular, the formula of integration
by parts holds for absolutely continuous functions.

We start with the almost everywhere differentiability for monotone functions.

Lemma 4.7.1 If g is a finite-valued monotone increasing function on R, then the deriv-
ative g′ exists and is finite almost everywhere on R and g′ is measurable. Furthermore,
g′ = dµg

dλ a.e.

Proof Let µg be the Lebesgue–Stieltjes measure generated by g. We know from
Theorem 4.6.3 that the derivate

dµg

dλ
(x) = lim

I→x

µg(I)
|I|

exists and is finite for x in a subsetD ofRwithλ(R\D) = 0, where I denotes a generic
finite closed interval in R. We claim that for x ∈ D, g′(x) exists and equals dµg

dλ (x).
Note first that points in D are necessarily points of continuity of g and µg([a, b]) =
g(b) – g(a) if g is continuous at a and b (cf. Lemma 3.7.2). Now for x ∈ D, if y → x+
through points of continuity of g, then limy→x+

g( y)–g(x)
y→x = dµg

dλ (x); in general, for any
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y > x, choose points of continuity y′ and y′′ such that x < y′ < y < y′′ and such that
limy→x+

y′–x
y–x = limy→x+

y′′–x
y–x = 1, then,

(
y′ – x
y – x

)
g(y′) – g(x)

y′ – x
≤ g( y) – g(x)

y – x
≤
(
y′′ – x
y – x

)
g(y′′) – g(x)

y′′ – x
,

from which by taking the limit as y → x+, we obtain limy→x+
g( y)–g(x)

y–x = dµg
dλ (x).

Similarly, limy→x–
g( y)–g(x)

y–x = limy→x–
g(x)–g( y)

x–y = dµg
dλ (x). Thus, g′(x) = dµg

dλ (x) for
x∈D. Thismeans that g′ exists almost everywhere onR. That g′ ismeasurable follows
from Lemma 4.6.4 and the fact that g′ = dµg

dλ a.e. !
Theorem 4.7.1 If f is a BV function on a finite closed interval [a, b], then f ′ exists a.e. on

[a, b] and is integrable. Furthermore,

Vx
a ( f ) ≥

∫ x

a
| f ′|dλ

for x ∈ [a, b].

Proof Put f1(x) = f (a) + Pxa( f ) and f2(x) = Nx
a( f ) for x ∈ [a, b]; then f1 and f2 are

monotone increasing on [a, b] and f = f1 – f2. That f ′ exists a.e. on [a, b] and is
measurable follows fromLemma 4.7.1 by extending f1 and f2 to be defined andmono-
tone increasing on R, as in the last paragraph of Section 3.7 and by extending f by
f = f1 – f2 onR. Then f ′ = f ′1 – f ′2 a.e. onR.

If for i = 1, 2, we let µi be the Lebesgue–Stieltjes measure on R generated by fi,
then from the Lebesgue decomposition theorem,

µi =
{
dµi

dλ

}∗
+ µi⌊Ni) ≥

{
dµi

dλ

}∗
= { f ′i }

∗,

where Ni is a null set in R and dµi
dλ = f ′i a.e., by Lemma 4.7.1. As a consequence,

for x∈ [a, b], Pxa( f ) = f1(x) – f1(a) ≥ µ1([a, x)) ≥
∫ x
a f ′1dλ; similarly, Nx

a( f ) ≥∫ x
a f ′2dλ. Now, Vx

a ( f ) = Pxa( f ) + Nx
a( f ) ≥

∫ x
a ( f

′
1 + f ′2)dλ ≥

∫ x
a | f ′|dλ. That f ′ is

integrable follows from
∫ b
a | f ′|dλ ≤ Vb

a ( f ) < ∞. !

Remark Although the measurability of g′ in Lemma 4.7.1 follows from that of dµg
dλ

by Lemma 4.6.4, if a measurable function f is differentiable a.e., the measurability of
f ′ follows from the measurability of the limit of a sequence of measurable functions.
Actually,

f ′(x) = lim
k→∞

k
{
f
(
x +

1
k

)
– f (x)

}

if f ′(x) exists, and for each k ∈ N, k{ f (x + 1
k ) – f (x)} is a measurable function of x.
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Exercise 4.7.1 Let f be amonotone increasing function on a finite closed interval [a, b].
Show that f (x) = f (a) +

∫ x
a f ′dλ for all x ∈ [a, b] if and only if the Lebesgue–Stieltjes

measureµf generated by f is absolutely continuous.

In the remaining part of this section, functions are finite-valued and defined on a finite
closed interval [a, b]; and for a function f and an interval I in [a, b] with endpoints c < d,
the difference f (d) – f (c) will be denoted by f (I).

A monotone increasing function f is said to be absolutely continuous if the
Lebesgue–Stieltjes measure µf generated by f is absolutely continuous. Hence, by
Exercise 4.7.1, a monotone increasing function f is absolutely continuous if and only if

f (x) = f (a) +
∫ x

a
f ′dλ

holds for all x ∈ [a, b]. We shall characterize absolute continuity of a monotone increas-
ing function by a property which can be adopted to define absolute continuity for general
functions.

Lemma 4.7.2 For a monotone increasing function f , the following two statements are
equivalent:

(I) f is absolutely continuous.
(II) Given any ε > 0, there is δ > 0 such that if {Ij} is a disjoint sequence of intervals

open in [a, b] with
∑

j |Ij| < δ, then
∑

j | f (Ij)| < ε.

Proof For convenience, putµ = µf .
To show the implication (I) ⇒ (II), note first that since µ({x}) = 0 for all

x ∈ [a, b], µ({x}) = f (x+) – f (x–) = 0, i.e. f is continuous on [a, b]. From Lemma
4.6.7,

∫ b
a

dµ
dλ dλ = µ([a, b]) < ∞, hence dµ

dλ is integrable. Now let ε > 0 be given;
by Exercise 2.5.9 (iii) there is δ > 0 such that if A is a measurable set in [a, b] with
λ(A) < δ, then

∫
A

dµ
dλ dλ < ε; if {Ij} is a disjoint sequence of intervals open in [a, b]

with
∑

j |Ij| < δ, then λ(
⋃

j Ij) < δ and
∑

j | f (Ij)| =
∑

j f (Ij) =
∫
⋃

j Ij
dµ
dλ dλ < ε.

Thus (II) holds.
Suppose now that (II) holds.Wewill show that ifN is a null set in [a, b],µ(N) = 0.

Given ε > 0, choose δ > 0 according to (II). There is a set G open in [a, b] such
that G ⊃ N and λ(G) < δ. But, since G =

⋃
j Ij, where {Ij} is a disjoint sequence of

intervals open in [a, b],
∑

j |Ij| = λ(G) < δ, and consequently,

µ(N) ≤ µ(G) =
∑
j

µ(Ij) =
∑
j
f (Ij) < ε, (4.15)

by (II), where the obvious fact that if (II) holds, f is continuous on [a, b] and
µ(Ij) = f (Ij), has been used. Since (4.15) holds for arbitrary ε > 0,µ(N) = 0. !

Exercise 4.7.2 Show that a monotone increasing and absolutely continuous function
maps null sets to null sets.
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We take Lemma 4.7.2 as a hint for defining absolute continuity for general functions.
A function f is said to be absolutely continuous if condition (II) in Lemma 4.7.2 holds
for f . Condition (II) in Lemma 4.7.2 will be referred to as condition (AC), and an
absolutely continuous function is usually simply called anAC function. Immediately fol-
lowing, if P : x0 = c < x1 < · · · < xl = d is a partition of [c, d], the intervals (xj–1, xj),
j = 1, . . . , l are called the intervals of P ; and if f is a function defined on [c, d],∑l

j=1 | f (xj) – f (xj–1)| will be denoted by | f (P)|.

Lemma 4.7.3 An AC function f is a BV function.

Proof Since f satisfies condition (AC), there is δ > 0 such that if {Ij} is a disjoint
sequence of intervals open in [a, b] with

∑
j |Ij| < δ, then

∑
j | f (Ij)| < 1. Divide

[a, b] into m nonoverlapping closed intervals of equal length < δ, and consider one
of these subintervals, say J. LetP be any partition of J, then | f (P)| < 1, because the
intervals of P are in J and the sum of their lengths is smaller than δ. Since P is an
arbitrary partition of J, the total variation of f over J is less than or equal to 1. Hence,
Vb
a ( f ) ≤ m. !

Recall that if f is a BV function, the functions fP, fN , and fV are defined by

fP(x) = Pxa( f ); fN(x) = Nx
a( f ); fV(x) = Vx

a ( f )

for x ∈ [a, b].

Lemma 4.7.4 If f is a BV function, then the following three statements are equivalent:

(I) f is an AC function.
(II) fV is an AC function.
(III) Both fP and fN are AC functions.

Proof The implication of (II)⇒ (I) and the equivalence of (II)⇔ (III) are obvious. It
remains to show the implication of (I)⇒ (II).

Suppose (I) holds. For ε > 0 given, choose δ > 0 according to condition (AC).
We are going to show that if {Ij} is a disjoint sequence of intervals open in [a, b]
with

∑
j |Ij| < δ, then

∑
j fV(Ij) ≤ ε. For each j, let Pj be an arbitrary partition of

Ij, and let {I(j)k }k be the finite family of intervals of Pj, then
⋃

j{I
(j)
k }k is a sequence

of disjoint intervals open in [a, b] and
∑

j
∑

k |I
(j)
k | =

∑
j |Ij| < δ. From the choice

of δ,
∑

j
∑

k | f (I
(j)
k )| =

∑
j | f (Pj)| < ε; consequently,

∑
j fV(Ij) ≤ ε, by taking the

supremum of
∑

j | f (Pj)| first for all partitions P1 of I1, and then for all parti-
tions P2 of I2, and so on. Thus, fV satisfies condition (AC) and is therefore an
AC function. !
A function f is called an indefinite integral if there is an integrable function g such that

f (x) = c +
∫ x

a
gdλ (4.16)



144 | Functions of Real Variables

for some constant c and all x ∈ [a, b]. More precisely, if (4.16) holds, f is called an
indefinite integral of g.

Exercise 4.7.3 Show that if f is an indefinite integral of g, then f ′ = g a.e.

Theorem 4.7.2 A function f is an AC function if and only if it is an indefinite integral.

Proof It is obvious that an indefinite integral is an AC function. Suppose now that f is
an AC function. Both fP and fN are AC functions, by Lemma 4.7.4, hence,

fP(x) =
∫ x

a
f ′Pdλ; fN(x) =

∫ x

a
f ′Ndλ

for all x ∈ [a, b], by Exercise 4.7.1. Then,

f (x) = f (a) + fP(x) – fN(x) = f (a) +
∫ x

a
( f ′P – f

′
N)dλ

for all x ∈ [a, b]. This shows that f is an indefinite integral ( f ′P – f ′N is integrable
because both f ′P and f ′N are integrable). !

Exercise 4.7.4 Show that a function f is AC if and only if f ′ exists a.e., f ′ is integrable,
and f (x) = f (a) +

∫ x
a f ′dλ for all x ∈ [a, b].

Corollary 4.7.1 If f is an AC function, then f ′N = 0 a.e. on { f ′P > 0} and f ′P = 0 a.e. on
{ f ′N > 0}; in other words, ( f ′)+ = f ′P a.e. and ( f ′)– = f ′N a.e.

Proof Since f ′ = f ′P – f ′N a.e., by Example 4.4.1, Vb
a ( f ) =

∫ b
a | f ′P – f ′N|dλ; on the other

hand, Vb
a ( f ) = Pba( f ) + Nb

a( f ) =
∫ b
a f ′Pdλ +

∫ b
a f ′Ndλ, since both fP and fN are AC, by

Lemma 4.7.4. Now, f ′P + f ′N ≥ | f ′P – f ′N| and
∫ b
a { f

′
P + f ′N – | f ′P – f ′N|}dλ = 0 imply that

f ′P + f ′N = | f ′P – f ′N| a.e. From the last equality, the conclusion of the corollary follows
directly. !

Exercise 4.7.5 Suppose that f is a BV function.

(i) Show that if Vb
a ( f ) =

∫ b
a | f ′|dλ, then

fV(x) =
∫ x

a
| f ′|dλ; fP(x) =

∫ x

a
( f ′)+dλ; fN(x) =

∫ x

a
( f ′)–dλ

for all x ∈ [a, b].
(ii) Show that a BV function f is AC if and only if Vb

a ( f ) =
∫ b
a | f ′|dλ.

Exercise 4.7.6 A monotone increasing function f is said to be singular if f ′ = 0 a.e.
Show that every monotone increasing function is a sum of an AC function and a
singular function.
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Exercise 4.7.7 Let { fn} be a sequence of AC functions on [a, b] such that limn→∞ fn(a)
exists and is finite, and { f ′n} converges inL1[a, b]. Show that { fn} converges uniformly
on [a, b] to an AC function.

Example 4.7.1 (Cantor’s ternary function) Let I0 = [0, 1] and let J0 = ( 13 ,
2
3 ) be the

middle third open interval of I0. Then I0\J0 = [0, 13 ] ∪ [ 23 , 1], and call [0, 13 ] and
[ 23 , 1] I11, I12 respectively. The open middle thirds of I11 and I12 are denoted J11, J12
respectively. Continue in this fashion; on the kth step we obtain 2k open intervals
Jk,1, . . . , Jk,2k ordered from left to right, each of length ( 13 )

k+1. Put G =
⋃∞

k=0
⋃2k

j=1 Jkj,
thenλ(G) =

∑∞
k=0 2k(

1
3 )

k+1 = 1. The set P := I0\G is the intersection of a decreasing
sequence of nonempty compact sets, and is therefore a nonempty compact set, called
Cantor’s ternary set. P is small in the sense that λ(P) = 0; but we shall see that P is
large in the sense that cardinality of P is the same as that of I0 = [0, 1]. A function f
will now be defined on [0, 1] as follows. For x ∈ [0, 1], express x in ternary expansion

x =
∞∑
j=1

εj

3j
, εj ∈ {0, 1, 2},

and let ζj = 1
2εj for all j. The function f is defined by

f (x) =
n–1∑
j=1

ζj

2j
+

1
2n

if εj ∈ {0, 2} for j = 1, . . . , n – 1, and εn = 1 for some n; otherwise, let f (x) =
∑∞

j=1
ζj
2j .

Function f is well defined, since the only situation where x has two ternary expansions
that might lead to different values of f (x) is when the sequence {εj} of one of the
expansions is of the form: for some n, ε1, . . . , εn–1 are in {0, 2}, εn = 1, and either
εj = 0 for j ≥ n + 1 or εj = 2 for j ≥ n + 1; in the first case x can also be expressed as
x =

∑n–1
j=1

εj
3j +

0
3n +

∑∞
j≥n+1

2
3j , and in either expansion

f (x) =
n–1∑
j=1

ζj

2j
+

1
2n
,

while in the second case x can also be expanded as

x =
n–1∑
j=1

εj

3j
+

2
3n

+
∑
j≥n+1

0
3j
,

and f (x) also has the value
∑n–1

j=1
ζj
2j +

1
2n . The function so defined is called Cantor’s

ternary function.
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Exercise 4.7.8 Let f be the Cantor’s ternary function.

(i) Show that f is a monotone increasing and continuous function with f (0) = 0
and f (1) = 1.

(ii) Show that each open interval Jkj, k = 0, 1, 2, . . .; j = 1, . . . , 2k, defined above is
of the form

(∑n–1
j=1

εj
3j +

1
3n ,
∑n–1

j=1
εj
3j +

2
3n

)
for some n, where ε1, . . . , εn–1 are in

{0, 2}. Also show that f is constant on each such interval and find the value.
(iii) Show that if x and y in [0, 1] satisfy |x – y| ≤ 1

3n , then | f (x) – f ( y)| ≤ 1
2n .

(iv) Show that
∫
P fdµf = 1

2 .

Exercise 4.7.9 Let P be the Cantor’s ternary set defined previously.

(i) Show that x ∈ P if and only if x has a ternary expansion x =
∑∞

j=1
εj
3j , where each

εj ∈ {0, 2}.
(ii) Show that Cantor’s ternary function maps P onto [0, 1].
(iii) A number x in [0, 1] is called a ternary rational number if x = m

3n , wherem and n
are nonnegative integers with 0 ≤ m ≤ 3n. Let P0 be the set obtained by remov-
ing all those ternary rational numbers in (0, 1) from P. Show that the Cantor’s
ternary function is 1-1 on P0.

(iv) Show that the cardinality of P is the same as that of [0, 1].

Example 4.7.1 (Continued) The Cantor’s ternary function f is constant on each open
interval Jkj and hence f ′ = 0 a.e. on [0, 1]. Cantor’s ternary function is the most well-
known singular function. Observe that Vb

a ( f ) = 1, but
∫ b
a | f ′|dλ = 0; hence f is not

an AC function. The Cantor’s ternary set P is perfect i.e. P is the set of all of its own
limit points. Thus P is a perfect compact null set with cardinality that ofR.

Example 4.7.2 Wenow use Cantor’s ternary function f on [0, 1] to exhibit the fact that
a measurable function of a continuous function may not be measurable.

Define a function g on [0, 1] by g(x) = f (x) + x, where f is Cantor’s ternary func-
tion. Evidently, g is strictly increasing on [0, 1] and maps [0, 1] continuously onto
[0, 2]. The complement G of Cantor’s ternary set P in [0, 1] is an open set which is
mapped by g onto an open set in [0, 2] of measure 1 (note that each interval com-
ponent of G is mapped by f to a point, and is hence mapped by g onto an interval
of the same length); as a result, g maps the Cantor’s ternary set P onto a compact
set K of measure 1. By Proposition 3.11.2, K contains a nonmeasurable setW . Since
g–1W ⊂ P andλ(P) = 0, g–1W is a null set and is thereforemeasurable. PutA = g–1W
and let h = IA; h is measurable. Because g is a continuous and injective map from the
compact set [0, 1] onto [0, 2], g–1 is a continuous function from [0, 2] onto [0, 1],
by Proposition 1.7.3. Now h ◦ g–1 is not measurable, because {h ◦ g–1 > 0} = W
is nonmeasurable. Thus, a measurable function of a continuous function could be
nonmeasurable.
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For a right-continuous BV function g on [a, b], let µ+
g and µ–

g be the Lebesgue–
Stieltjes measures generated by gP and gN respectively, and let µg = µ+

g – µ–
g . Note

that both gP and gN are right-continuous, by Theorem 4.4.2. If f is both µ+
g - and

µ–
g -measurable on [a, b] and is integrable w.r.t.µ+

g andµ–
g , we define

∫ b

a
fdµg =

∫ b

a
fdµ+

g –
∫ b

a
fdµ–

g .

The measure |µg| := µ+
g + µ–

g is called the total variational measure generated by g,
while µ+

g and µ–
g are called respectively the positive variational measure and the neg-

ative variational measure generated by g. If f is a bounded function on [a, b] which is
continuous |µg|-a.e., then

∫ b

a
fdg :=

∫ b

a
fdgP –

∫ b

a
fdgN

exists and is finite, by Theorem 4.5.2.

Exercise 4.7.10 Suppose that g is an AC function. Show that a Riemann integrable
function f is continuous |µg|-a.e. Then conclude that

∫ b
a fdg is defined and

∫ b
a fdg =∫ b

a fg′dλ. (Hint: cf. Example 4.5.2.)

Theorem 4.7.3 (Integration by parts) Let f , g be AC functions on [a, b], then

∫ b

a
fg′dλ = f (b)g(b) – f (a)g(a) –

∫ b

a
gf ′dλ.

Proof We may assume that both f and g are monotone increasing, then by
Theorem 4.5.3,

∫ b

a
fdg = f (b)g(b) – f (a)g(a) –

∫ b

a
gdf .

But by Example 4.5.2,

∫ b

a
fdg =

∫ b

a
fg′dλ;

∫ b

a
gdf =

∫ b

a
gf ′dλ,

hence,

∫ b

a
fg′dλ = f (b)g(b) – f (a)g(a) –

∫ b

a
gf ′dλ. !
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Exercise 4.7.11 Let f and g beAC functions. Show that the product fg is AC, and (using
integration by parts)

∫ d

c
( fg)′dλ =

∫ d

c
f ′gdλ +

∫ d

c
fg′dλ

for all a ≤ c < d ≤ b, and conclude that ( fg)′ = f ′g + fg′ a.e.

Exercise 4.7.12 Let f be an integrable function on [a, b] with the property that
∫ b

a
fg′dλ = 0

for all AC functions g such that g(a) = g(b) = 0. Show that f = constant a.e.
(Hint: put c =

∫ b
a fdλ, and let

g(x) =
∫ x

a

(
f –

c
b – a

)
dλ

for x ∈ [a, b]. Observe that g(a) = g(b) = 0 and evaluate
∫ b
a ( f –

c
b–a)

2dλ.)

Exercise 4.7.13 Let f and g be integrable functions on [a, b] and suppose that
∫ b

a
fh′dλ = –

∫ b

a
ghdλ

for all AC functions h with h(a) = h(b) = 0. Show that f is equivalent to an AC
function f̂ and f̂ ′ = g a.e.

Theorem 4.7.4 (Change of variable) Suppose that g is a monotone increasing AC function
on [a, b]. Put c = g(a) and d = g(b). Then for any nonnegative measurable function f on
[c, d], the function ( f ◦ g)g′ is measurable and

∫ d

c
fdλ =

∫ b

a
( f ◦ g)g′dλ.

Proof From |I| = µg(g–1I), for any interval I open in [c, d], it follows that λ(G) =
µg(g–1G) for any set G open in [c, d], and hence for any Borel set B in [c, d] we have
(cf. Exercise 4.3.4 and recall thatµg is absolutely continuous)

λ(B) = µg(g–1B) =
∫

g–1B

dµg

dλ
dλ =

∫ b

a
Ig–1Bg′dλ =

∫ b

a
(IB ◦ g)g′dλ,

or

λ(B) =
∫

H
(IB ◦ g)g′dλ,
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whereH = {g′ > 0}. Note that for a Borel set B in [c, d], IB ◦ g is a Borel measurable
function and (IB ◦ g)g′ is measurable; but in general IA ◦ gmay not bemeasurable for
measurable set A ⊂ [c, d]; however, we claim that (IA ◦ g)g′ is measurable and

λ(A) =
∫ b

a
(IA ◦ g)g′dλ.

To see this, first consider the case where A is a null set in [c, d]. Choose a Borel set B
in [c, d] such that B ⊃ A and λ(B) = λ(A) = 0, then

λ(B) =
∫

H
(IB ◦ g)g′dλ = 0,

which implies that IB ◦ g = 0 a.e. onH and, a fortiori, IA ◦ g = 0 a.e. onH. Therefore
IA ◦ g is measurable onH; as a consequence, (IA ◦ g)g′ = 0 a.e. on [a, b] and is there-
foremeasurable. Now, letA be anymeasurable set in [c, d] and choose a Borel set B in
[c, d] such thatB ⊃ A andλ(B) = λ(A); then S := B\A is a null set and (IS ◦ g)g′ = 0
a.e. as we have just proved. But (IB ◦ g)g′ = (IA ◦ g + IS ◦ g)g′ = (IA ◦ g)g′ a.e. on
[a, b], hence (IA ◦ g)g′ is measurable and

λ(A) = λ(B) =
∫ b

a
(IB ◦ g)g′dλ =

∫ b

a
(IA ◦ g)g′dλ.

If f ≥ 0 is measurable, f =
∑∞

j=1
1
j IAj , where each Aj is a measurable set in [c, d], by

Theorem 2.2.1. Then,

∫ d

c
fdλ =

∫ d

c

∞∑
j=1

1
j
IAjdλ =

∞∑
j=1

1
j
λ(Aj) =

∞∑
j=1

1
j

∫ b

a
(IAj ◦ g)g′dλ

=
∫ b

a
lim
l→∞

l∑
j=1

1
j
(IAj ◦ g)g′dλ =

∫ b

a
lim
l→∞

{( l∑
j=1

1
j
IAj

)
◦ g
}
g′dλ

=
∫ b

a
( f ◦ g)g′dλ ,

where ( f ◦ g)g′ = liml→∞
∑l

j=1
1
j (IAj ◦ g)g′ is measurable because it is the limit of

measurable functions
∑l

j=1
1
j (IAj ◦ g)g′. !

Remark The change of variable formula in Theorem 4.7.4 is familiar in integral cal-
culus. Here, it is shown under much relaxed conditions on f and g. Note that one of
the delicacies in the proof is the measurability of ( f ◦ g)g′, although f ◦ g may not be
measurable, as we see in Example 4.7.2.
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4.8 Product measures and Fubini theorem

We digress in this section from the main theme of the chapter, to the construction and
properties of productmeasures, before going to further studies of functions of several real
variables. Consider measure spaces ('i,!i,µi), i = 1, 2, and let R = {A1 × A2 : Ai ∈
!i, i = 1, 2}. R is a π -system. Sets in R are calledmeasurable rectangles. The σ -algebra
σ (R) on '1 × '2 generated by R is denoted by !1 ⊗ !2. For E ⊂ '1 × '2 and
(w1,w2) ∈ '1 × '2, we define sets Ew1 and Ew2 by

Ew1 = {y ∈ '2 : (w1, y) ∈ E}; Ew2 = {x ∈ '1 : (x,w2) ∈ E}.

Ew1 and Ew2 are called respectively the w1-section and w2-section of E.
The lemma that follows is easily verified.

Lemma 4.8.1 Let! be the family of all E ⊂ '1 × '2 such that Ew1 ∈ !2, Ew2 ∈ !1 for
all (w1,w2) ∈ '1 × '2, then! is a σ -algebra containing R.

Corollary 4.8.1 ! ⊃ !1 ⊗ !2.

Corollary 4.8.2 If f is !1 ⊗ !2-measurable, then for (w1,w2) ∈ '1 × '2, x 9→
f (x,w2) and y 9→ f (w1, y) are respectively!1- and!2-measurable.

Proof Since IE(x,w2) = IEw2 (x) and IE(w1, y) = IEw1 ( y) for E ⊂ '1 × '2, it follows
from Lemma 4.8.1 and Corollary 4.8.1 that the corollary holds if f is the indicator
function of a set in !1 ⊗ !2. Then the corollary holds for !1 ⊗ !2-measurable
simple functions. For general nonnegative!1 ⊗ !2-measurable functions, the corol-
lary follows by Theorem 2.2.1; this is sufficient to conclude that the corollary
holds. !

Lemma 4.8.2 Suppose that both ('1,!1,µ1) and ('2,!2,µ2) are σ -finite and
E ∈ !1 ⊗ !2, then w1 9→ µ2(Ew1 ) is !1-measurable and w2 9→ µ1(Ew2 ) is
!2-measurable, and

∫

'1

µ2(Ew1 )dµ1(w1) =
∫

'2

µ1(Ew2 )dµ2(w2).

Proof '1 and'2 can be expressed as

'1 =
∞⋃
n=1

'(1)
n , '2 =

∞⋃
n=1

'(2)
n ,

where {'(1)
n } ⊂ !1, {'(2)

n } ⊂ !2 are both disjoint and µi('(i)
n ) < ∞ for i = 1, 2

and n = 1, 2, . . . . Consider the family M of all those E ∈ !1 ⊗ !2, such that the
conclusions of the lemma hold if E is replaced by E ∩ ('(1)

n × '(2)
m ) for all n and m.

It is simply routine to verify thatM is a λ-system. But it is to be noted that the only
place where E ∩ ('(1)

n × '(2)
m ) requires considering is when one verifies that if E is

in M then Ec is in M. Since E ∈ M is easily seen to satisfy the conclusions of the
lemma, and sinceM ⊃ R, the lemma follows from the (π -λ) theorem. !
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Now, for E ∈ !1 ⊗ !2, define

µ1 × µ2(E) =
∫

'1

µ2(Ew1 )dµ1(w1) =
∫

'2

µ1(Ew2 )dµ2(w2).

Then µ1 × µ2 is a measure on !1 ⊗ !2 and ('1 × '2,!1 ⊗ !2,µ1 × µ2) is a
measure space, called the product space of ('1,!1,µ1) and ('2,!2,µ2). The
measure µ1 × µ2 is called the product measure of µ1 and µ2. One notes that
µ1 × µ2(A1 ×A2) = µ1(A1)µ2(A2) if A1 × A2 ∈ R.

Proposition 4.8.1 Suppose that both ('1,!1,µ1) and ('2,!2,µ2) are σ -finite,
then µ1 × µ2 is the unique measure on !1 ⊗ !2 such that µ1 × µ2(A1 × A2) =
µ1(A1)µ2(A2) for all A1 ∈ !1 and A2 ∈ !2.

Proof Let disjoint sequences {'(1)
n } ⊂ !1 and {'(2)

m } ⊂ !2 be as in the proof of
Lemma 4.8.2, and suppose thatµ is a measure on!1 ⊗ !2 such thatµ(A1 × A2) =
µ1(A1)µ2(A2) for all A1 ∈ !1 and A2 ∈ !2. Consider the familyF of all E∈ !1 ⊗
!2, such that

µ(E ∩ ['(1)
n × '(2)

m ]) = µ1 × µ2(E ∩ ['(1)
n × '(2)

m ])

for all n and m. ThenF is a λ-system containing all measurable rectangles. Since the
family R of all measurable rectangles is aπ -system, it follows from the (π -λ) theorem
thatF = !1 ⊗ !2 and thusµ = µ1 × µ2. !

Theorem 4.8.1 (Simple version of Fubini theorem)

(i) (Tonelli) If f is!1 ⊗ !2-measurable and f ≥ 0, then x 9→
∫
'2

f (x,w2)dµ2(w2)
is!1-measurable, y 9→

∫
'1

f (w1, y)dµ1(w1) is!2-measurable, and
∫

'1×'2

fdµ1 × µ2 =
∫

'1

[∫

'2

f (w1,w2)dµ2(w2)
]
dµ1(w1)

=
∫

'2

[∫

'1

f (w1,w2)dµ1(w1)
]
dµ2(w2).

(ii) If f isµ1 × µ2-integrable, then conclusions in (i) also hold for f .

Proof Since (ii) is an obvious consequence of (i), it is sufficient to prove (i). If E ∈
!1 ⊗ !2 and f = IE, then (i) follows from Lemma 4.8.2 and hence the lemma holds
for nonnegative simple functions. If f is a nonnegative!1 ⊗ !2-measurable function,
by Theorem 2.2.1,

f =
∞∑
k=1

1
k
IAk = lim

l→∞

l∑
k=1

1
k
IAk ,

where each Ak ∈ !1 ⊗ !2, then (i) follows from the monotone convergence
theorem. !
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In general, it is not true that the product space of twoσ -finite completemeasure spaces
is complete. For example, consider (R2,L ⊗ L, λ × λ), where L is the σ -algebra of all
Lebesgue measurable sets inR and λ the Lebesgue measure onR. As we have shown in
Section 3.11 there is a nonmeasurable set S ⊂ R. Choose any nonempty null setN inR,
and consider the setN × S inR2. For w ∈ N, (N × S)w = S is not inL; henceN × S is
not inL ⊗ L. ButN × S ⊂ N × R and λ × λ(N × R) = λ(N)λ(R) = 0, thusN × S
is a λ × λ-null set which is not inL ⊗ L. (R2,L ⊗ L, λ × λ) is therefore not complete
and cannot be (R2,L2, λ2).

Exercise 4.8.1 Show that (Rk+l,Lk+l, λk+l) is the completion of the measure space
(Rk+l,Lk ⊗ Ll, λk × λl) for k, l inN. (Hint: verify first thatB(Rk+l) ⊂ Lk ⊗ Ll and
λk+l(B) = λk × λl(B) for B ∈ B(Rk+l).)

Suppose now that both ('1,!1,µ1) and ('2,!2,µ2) are σ -finite complete measure
spaces; then corresponding to Theorem 4.8.1, the following theorem holds.

Theorem 4.8.2 (Fubini) Let ('1 × '2,!1 ⊗ !2,µ1 × µ2) be the completion of
('1 × '2,!1 ⊗ !2,µ1 × µ2).

(i) (Tonelli) If f is nonnegative !1 ⊗ !2-measurable, then for µ1-a.e. w1 in '1 and
µ2-a.e. w2 in'2,

v 9→ f (w1, v) is!2-measurable;
u 9→ f (u,w2) is!1-measurable.

Furthermore,

w1 9→
∫

'2

f (w1,w2)dµ2(w2) is!1-measurable;

w2 9→
∫

'1

f (w1,w2)dµ1(w1) is!2-measurable,

and
∫

'1×'2

fdµ1 × µ2 =
∫

'1

[∫

'2

f (w1,w2)dµ2(w2)
]
dµ1(w1)

=
∫

'2

[∫

'1

f (w1,w2)dµ1(w1)
]
dµ2(w2).

(ii) If f isµ1 × µ2-integrable, then the same statements in (i) hold for f .

Lemma 4.8.3 Suppose that E ∈ !1 ⊗ !2 and µ1 × µ2(E) = 0. Then for any subset D
of E, the following statements hold:

(1) Dw1 ∈ !2 andµ2(Dw1 ) = 0 forµ1-a.e. w1 in'1.
(2) Dw2 ∈ !1 andµ1(Dw2 ) = 0 forµ2-a.e. w2 in'2.
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Proof Sinceµ1 × µ2(E) =
∫
'1

µ2(Ew1 )dµ1(w1) =
∫
'2

µ1(Ew2 )dµ2(w2) = 0, and both
µ2(Ew1 ) and µ1(Ew2 ) are nonnegative, µ2(Ew1 ) = 0 for µ1-a.e. w1 and µ1(Ew2 ) = 0
for µ2-a.e. w2. For such w1 and w2, Dw1 and Dw2 are in !2 and !1 respectively,
because Dw1 ⊂ Ew1 , Dw2 ⊂ Ew2 , and both ('1,!1,µ1) and ('2,!2,µ2) are com-
plete. Trivially, for such w1 and w2,µ2(Dw1 ) =µ1(Dw2 ) = 0. !

Proof of Theorem 4.8.2 Since (ii) follows from (i) easily, it suffices to prove (i).
If f ≥ 0 is !1 ⊗ !2-measurable, f =

∑∞
j=1

1
j IAj , where each Aj is in !1 ⊗ !2, as

claimed by Theorem 2.2.1. It is therefore sufficient to consider the case f = IA for
A ∈ !1 ⊗ !2. There are B and C in !1 ⊗ !2 such that B ⊂ A ⊂ C with µ1 ×
µ2(C\B) = 0. Thismeans thatA = B ∪ DwhereD ⊂ E := C\B. FromLemma 4.8.3,
for µ1-a.e. w1 and µ2-a.e. w2, Dw1 ∈ !2 with µ2(Dw1 ) = 0 and Dw2 ∈ !1 with
µ1(Dw2 ) = 0; for such w1 and w2,

v 9→ IA(w1, v) = IAw1
(v) = IBw1∪Dw1

(v) = IBw1 (v) + IDw1
(v)

and

u 9→ IA(u,w2) = IAw2 (u) = IBw2∪Dw2 (u) = IBw2 (u) + IDw2 (u)

are respectively!2- and!1-measurable. Furthermore,

w1 9→
∫

'2

IA(w1, v)dµ2(v) = µ2(Bw1 ),

and

w2 9→
∫

'1

IA(u,w2)dµ1(u) = µ1(Bw2 )

are respectively!1- and!2-measurable by Lemma 4.8.2, and hence,

∫

'1

[∫

'2

IA(w1,w2)dµ2(w2)
]
dµ1(w1) =

∫

'1

µ2(Bw1 )dµ1(w1);
∫

'2

[∫

'1

IA(w1,w2)dµ2(w2)
]
dµ2(w2) =

∫

'2

µ1(Bw2 )dµ2(w2).

Thus (i) holds for f = IA, because by Lemma 4.8.2,
∫

'1

µ2(Bw1 )dµ1(w1) =
∫

'2

µ1(Bw2 )dµ2(w2) = µ1 × µ2(B),

andµ1 × µ2(B) = µ1 × µ2(A) =
∫
'1×'2

IAdµ1 × µ2. !
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Example 4.8.1 We use the Fubini theorem to evaluate
∫∞
–∞ e–x2dx (cf. Exercise 3.4.7

and Exercise 3.4.8). First note that since
∫∞
–∞ e–x2dx < ∞ as an improper integral,∫

R e–x2dλ(x) =
∫∞
–∞ e–x2dx by Exercise 3.4.7 (i). From the Fubini theorem,

∫

R2
e–(x

2+y2)dλ2(x, y) =
∫

R

[∫

R
e–x

2
dλ(x)

]
e–y

2
dλ( y) =

[∫

R
e–x

2
dx
]2

.

Now,
∫

R2
e–(x

2+y2)dλ2(x, y) = lim
L→∞

∫∫

x2+y2≤L2
e–(x

2+y2)dxdy

= lim
L→∞

∫ L

0
ρ

∫ 2π

0
e–ρ

2
dθdρ = lim

ρ→∞
2π
∫ L

0
ρe–ρ

2
dρ

= lim
L→∞

π

∫ L

0

d
dρ

(–e–ρ
2
)dρ = π .

Hence
∫∞
–∞ e–x2dx =

[∫∫
R2 e–(x

2+y2)dxdy
] 1

2 =
√

π . By the Fubini theorem, again one

finds that
∫
Rn e–|x|

2dx = π
n
2 .

Exercise 4.8.2

(i) Show that
∫∞
0

| sin x|
x dx = ∞.

(ii) Show that
∫∞
0

sin x
x dx = limb→∞

∫ b
0

sin x
x dx = π

2 by integrating e–xy sin x over a
suitable domain in the first quadrant ofR2.

Exercise 4.8.3 Let (',!,µ) be a σ -finite measure space and f a nonnegative
!-measurable function on '. Put Gf = {(w, y) ∈ ' × [0,∞) : 0 < y < f (w)}.
Show thatGf ∈ ! ⊗ B andµ × λ(Gf ) =

∫
'
fdµ.

Exercise 4.8.4 Let f (x, y) = xy
(x2+y2)2 if (x, y) ̸= (0, 0), and f (0, 0) = 0. Verify that

∫ 1
–1

(∫ 1
–1 f (x, y)dx

)
dy =

∫ 1
–1

(∫ 1
–1 f (x, y)dy

)
dx = 0, and decidewhether f is Lebesgue

integrable on [–1, 1] × [–1, 1] or not.

Exercise 4.8.5 Show that
∫∞
0 (
∑∞

j=1 e–jx sin x)dx =
∑∞

j=1
∫∞
0 e–jx sin xdx and use this

fact to show that
∫∞
0

sin x
ex–1dx =

∑∞
j=1

1
1+j2 .

Exercise 4.8.6

(i) Show that
∫∞
0

tan–1 t
t dt = ∞ by considering the double integral

∫ 1

0

(∫ ∞

0

1
1 + x2t2

dt
)
dx.
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(ii) Show that
∫∞
0 ( tan

–1 t
t )2dt = π ln 2 by integrating the triple integral

∫ 1

0

(∫ 1

0

(∫ ∞

0

1
1 + x2t2

· 1
1 + y2t2

dt
)
dx
)
dy.

Example 4.8.2 Let { fn} be a sequence of L('1 × '2,!1 ⊗ !2,µ1 × µ2), in which
it converges to f . We claim that there is a subsequence { fnk} of { fn} such that
for µ1-a.e. x limk→∞

∫
'2

| fnk(x, y) – f (x, y)|dµ2( y) = 0. Define F, Fn on '1 by
F(x) =

∫
'2

f (x, y)dµ2( y) and Fn(x) =
∫
'2

fn(x, y)dµ2( y). Note that F, Fn’s are
measurable on ('1,!1,µ1) and

∫
'1

|Fn – F|dµ1 =
∫
'1×'2

| fn – f |dµ1 × µ2 by the
Fubini theorem. Consequently, limn→∞

∫
'1

|Fn – F|dµ1 = 0, and, by Exercise 2.7.9,
{Fn} has a subsequence {Fnk} which converges to F a.e. on '1. Now, the Fatou
lemma implies that

∫
'1

limk→∞ |Fnk – F|dµ1 ≤ lim infk→∞
∫
'1

|Fnk – F|dµ1 = 0,
which means limk→∞ |Fnk – F| = 0µ1-a.e. on'1, or

lim
k→∞

∫

'2

| fnk(x, y) – f (x, y)|dµ2( y) = 0

forµ1-a.e. x in'1, as we claim.

We conclude this section by applying the Fubini theorem to prove a measurability
result which we shall need later. For this purpose, define first a map t fromR2n toRn by
t(x, y) = x – y, where x and y are inRn. If f is a Borel measurable function onRn, then
f ◦ t is Borel measurable onR2n, because { f ◦ t > α} = t–1{ f > α}, which is a Borel set
inR2n. Note that for A ⊂ Rn, the y-section (t–1A)y of t–1A is A + y := {x + y : x ∈ A}.

Lemma 4.8.4 If A is a null set inRn, then t–1A is a null set inR2n.

Proof There is a Borel set B ⊃ Awith λn(B) = 0. Now t–1B is a Borel set inR2n; by the
Fubini theorem,

λ2n(t–1B) =
∫

R2n
It–1Bdλ2n =

∫

Rn

(∫

Rn
It–1B(x, y)dλn(x)

)
dλn( y)

=
∫

Rn
λn((t–1B)y)dλn( y) =

∫

Rn
λn(B + y)dλn( y)

=
∫

Rn
λn(B)dλn =

∫

Rn
0dλn = 0,

i.e. t–1B is a null set inR2n. But t–1A ⊂ t–1B implies that t–1A is a null set. !
Proposition 4.8.2 If f is a measurable function onRn, then f ◦ t is a measurable function

onR2n.

Proof There is a Borel function g on Rn such that f = g + h, where h = 0 a.e. on Rn.
Since f ◦ t = g ◦ t + h ◦ t and g ◦ t is Borel measurable, f ◦ t is measurable if h ◦ t is
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measurable. We claim that h ◦ t = 0 a.e. onR2n. There is a null set A ⊂ Rn such that
h = 0 onRn\A. Then h ◦ t = 0 on t–1(Rn\A) = (t–1Rn)\t–1A = R2n\t–1A. But, by
Lemma 4.8.4, t–1A is a null set inR2n, hence h ◦ t = 0 a.e. onR2n. Since h ◦ t = 0 a.e.
onR2n, it is measurable; consequently, f ◦ t is measurable. !

4.9 Smoothing of functions

Our concern in this section is the smoothing of functions and approximation of functions
by smooth ones. The method we shall use is that of the Friederichs mollifier.

We define first some function spaces which will be frequently considered later. Given
an open set' inRn and a positive integer k, we shall denote by Ck(') the vector space
of all functions defined on'which have continuous partial derivatives up to order k, and
denote by C∞(') the space

⋂
k Ck('). The functions considered are either real-valued

or complex-valued, as will either be clear from context or explicitly stated. For a function
f defined on', recall that the closure in' of the set { f ̸= 0} is called the support of f and
is denoted by supp f . If supp f is a compact set, then f is said to have compact support.
The subspace of Ck('), which consists of all functions in Ck(') with compact support,
is denoted by Ck

c ('); C∞
c (') is similarly defined.

For a measurable subset ' ofRn, the space Lp(',Ln|', λn) will be simply denoted
by Lp('), for convenience, and accordingly the space of all those measurable func-
tions which are in Lp(K) for every compact subset K of ' is denoted by Lploc(').
Usually L1loc(') is simply denoted by Lloc(') and its elements are called locally
integrable functions on '; correspondingly, functions in Lploc(') are called locally Lp
functions on'.

Some notations regardingmulti-indices are now introduced. Bymulti-index, wemean
an ordered n-tuple α = (α1, . . . ,αn) of nonnegative integers for some integer n > 1 (n
will be clearly implied from the context). For a multi-index α = (α1, . . . ,αn), the sum∑n

j=1 αj and the product
∏ n

j=1 αj! are denoted respectively by |α| and α!; while if x =
(x1, . . . , xn) ∈ Rn, xα will stand for xα1

1 , . . . , xαn
n . The partial derivative symbol ∂ |α|

∂xα1
1 ···∂xαn

n

will be abbreviated to ∂ |α|

∂xα or ∂α
x .

We are now ready to define the Friederichs mollifier. Let ϕ ∈ C∞
c (Rn) with∫

ϕdλn = 1. For definiteness, assume that supp ϕ ⊂ C1(0), the closed ball in Rn

centered at 0 and with radius 1. Such a function ϕ is called a mollifying function. For
ε > 0, define ϕε(x) = ε–nϕ( x

ε
) for x ∈ Rn; then suppϕε ⊂ Cε(0) and

∫
ϕεdλn = 1, by

Example 4.3.1 (ii).
Corresponding to such a function ϕ and ε > 0, we define a linear transformation Jε

whichmaps functions f in Lloc(') to functions defined on'ε = {x ∈ ' : dist(x,'c) >

ε}, by

Jεf (x) =
∫

Cε(x)
f ( y)ϕε(x – y)dy, x ∈ 'ε .
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Note that Cε(x) ⊂ ' for x ∈ 'ε , hence f is integrable on Cε(x) and Jεf (x) is defined;
moreover, since ϕε(x – y) = 0 for y outside Cε(x), we may consider the defining integral
for Jεf (x) as over the whole spaceRn, thus

Jεf (x) =
∫

f ( y)ϕε(x – y)dy.

The family {Jε}ε>0, which depends on ϕ, is called a Friederichs mollifier. We often
consider the case ϕ ≥ 0, but for the moment, we do not impose this restriction.

The most well-known such nonnegative function ϕ is that defined as follows:

ϕ(x) =

{
Ce–

1
1–|x|2 , if |x| < 1;

0, if |x| ≥ 1,

where C is chosen so that
∫

ϕdλn = 1.

Exercise 4.9.1

(i) Show that Jεf ∈ C('ε).
(ii) More generally, suppose that h is a continuous function on Rn with supp h ⊂

Cε(0); show that
∫
f ( y)h(x – y)dy is a continuous function of x ∈ 'ε .

Exercise 4.9.2 Show that
∫
f ( y)ϕε(x – y)dy =

∫
f (x – y)ϕε( y)dy, for x ∈ 'ε .

Proposition 4.9.1 If f ∈ C('), Jεf (x) → f (x) uniformly on any compact subset of' as
ε → 0.

Proof Let K ⊂ ' be compact. Fix 0 < ε0 < dist(K,'c) and let F = {x ∈ ' :
dist(x,K) ≤ ε0}. F is compact. Since f is uniformly continuous on F, for σ > 0, there
is δ > 0 with δ ≤ ε0, such that | f (x) – f ( y)| ≤ σ if x, y are in F and |x – y| < δ. For
x ∈ K, 0 < ε < δ, we have

|Jεf (x) – f (x)| =
∣∣∣∣

∫
( f ( y) – f (x))ϕε(x – y)dy

∣∣∣∣ ≤ σ

∫
|ϕε|dλn ≤ σMϕ ,

whereMϕ =
∫
|ϕ|dλn. !

Proposition 4.9.2 For f ∈ Lloc('), Jεf ∈ C∞('ε).

Proof For h ̸= 0, consider the difference quotient for x ∈ 'ε ,

1
h
{Jεf (x + hej) – Jεf (x)} =

∫
f ( y)

ϕε(x + hej – y) – ϕε(x – y)
h

dy,
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where ej = (δj1, . . . , δjn) with δjk being 1 or zero according to whether or not k = j.
When h is small, dist(x + hej,'c) ≥ ε0 > ε, and for all such small enough h, ϕε(x +
hej – y) = 0 for y outside a compact set K in'; therefore,

∫
f ( y)

ϕε(x + hej – y) – ϕε(x – y)
h

dy =
∫

K
f ( y)

ϕε(x + hej – y) – ϕε(x – y)
h

dy.

Now,

∣∣∣∣
ϕε(x + hej – y) – ϕε(x – y)

h

∣∣∣∣ ≤ max
z∈Rn

∣∣∣∣
∂ϕε

∂xj
(z)
∣∣∣∣ := Mj,

and hence

∣∣∣∣ f ( y)
ϕε(x + hej – y) – ϕε(x – y)

h

∣∣∣∣ ≤ Mj| f ( y)|

on K. By LDCT,

∂

∂xj
Jεf (x) = lim

h→0

1
h
{Jεf (x + hej) – Jεf (x)} =

∫
f ( y)

∂ϕε

∂xj
(x – y)dy.

So far we have only used the fact that ϕε ∈ C∞
c (Rn) with suppϕε ⊂ Cε(0). Hence,

we may repeat the argument to obtain

∂ |α|

∂xα
Jεf (x) =

∫
f ( y)

∂ |α|

∂xα
ϕε(x – y)dy.

By Exercise 4.9.1 (ii), each ∂ |α|

∂xα Jεf is continuous on'ε . !
Exercise 4.9.3 IfK is a compact set andG is an open set containingK, then there isC∞

function g with supp g ⊂ G and 0 ≤ g ≤ 1, such that g = 1 on K.

Remark When f ∈ Lp('), 1 ≤ p ≤ ∞, we may consider f as defined on Rn by
defining f to be zero outside'; then Jεf is defined for x ∈ Rn and hence for x ∈ '.

Theorem 4.9.1 For f ∈ Lp('), p ≥ 1, we have ∥Jεf∥p ≤ L∥ f∥p, where L = L(ϕ, p).

Proof By the previous remark, we may assume that' = Rn.
That ∥Jεf∥p ≤ L∥ f∥p when p = 1 or ∞ is obvious. We consider the case

1< p< ∞. In this case, let q > 1 be the exponent conjugate to p, i.e. 1p +
1
q = 1, then,
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|Jεf (x)| =
∣∣∣∣

∫
f ( y)ϕε(x – y)dy

∣∣∣∣

≤
∫

| f ( y)||ϕε(x – y)|dy =
∫

| f (x – y)||ϕε( y)|dy

≤
{∫

| f (x – y)|p|ϕε( y)|dy
} 1

p
{∫

|ϕε( y)|dy
} 1

q

= C
{∫

| f (x – y)|p|ϕε( y)|dy
} 1

p

,

where C = {
∫
|ϕε( y)|dy}1/q = {

∫
|ϕ( y)|dy}

1
q . In one of the steps above, we have

used Hölder’s inequality w.r.t. the measure ν with dν = |ϕε|dλn (cf. Exercise 2.5.7).
Now the Fubini theorem implies

∥Jεf∥pp ≤ Cp
∫ (∫

| f (x – y)|p|ϕε( y)|dy
)
dx

= Cp
∫ (∫

| f (x – y)|p|ϕε( y)|dx
)
dy

= Cp∥ f∥pp
∫

|ϕ( y)|dy = CpCq∥ f∥pp,

or,

∥Jεf∥p ≤ L∥ f∥p,

where L = L(ϕ, p). Note that (x, y) 9→ | f (x – y)|pϕε( y) is measurable by
Proposition 4.8.2. !

Exercise 4.9.4 Show that if ϕ ≥ 0, the constant L in Theorem 4.9.1 can be taken
to be 1.

Theorem 4.9.2 If f ∈ Lp('), 1 ≤ p < ∞, then limε→0 ∥Jεf – f∥p = 0.

Proof We may assume that ' = Rn. Let σ > 0 be given. By Proposition 4.6.1, there
is g ∈ Cc(Rn) such that ∥ f – g∥p < σ

2(L+1) , where L = L(ϕ, p) is the constant in
Theorem 4.9.1. Now,

∥Jεf – f∥p = ∥Jεf – Jεg + Jεg – g + g – f∥p
≤ ∥Jε( f – g)∥p + ∥Jεg – g∥p + ∥g – f∥p
≤ (L + 1)∥ f – g∥p + ∥Jεg – g∥p

<
σ

2
+ ∥Jεg – g∥p,
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where we have used the inequality ∥Jε( f – g)∥p ≤ L∥ f – g∥p as asserted by
Theorem 4.9.1. Let K be the support of g and put K̂ = {x ∈ Rn : dist(x,K) ≤ 1}.
K̂ is a compact set, outside which both g and Jεg vanish if 0 < ε ≤ 1. Hence, from
Proposition 4.9.1,

∥Jεg – g∥pp =
∫

K̂
|Jεg – g|pdλn <

(σ

2

)p
,

or,

∥Jεg – g∥p <
σ

2

if ε is sufficiently small, say ε < δ. Thismeans that ∥Jεf – f∥p < σ
2 + ∥Jεg – g∥p < σ ,

if ε < δ. !
Corollary 4.9.1 C∞

c (') is dense in Lp('), 1 ≤ p < ∞.

Proof Let f ∈ Lp('), 1 ≤ p < ∞, and fix σ > 0. By Proposition 4.6.1, there is g ∈
Cc(') such that ∥ f – g∥p < σ

2 ; while from Theorem 4.9.2, if ε > 0 is small enough,
∥Jεg – g∥p < σ

2 . Since g has compact support in', Jεg has compact support in' if ε
is small enough. Hence if ε is small enough, Jεg ∈ C∞

c (') and ∥Jεg – g∥p < σ
2 ; but

then ∥ f – Jεg∥p ≤ ∥ f – g∥p + ∥g – Jεg∥p < σ . !
Exercise 4.9.5 Suppose that ϕ(x) = ϕ(–x) for all x in Rn and let f , g be in L2(Rn).

Show that
∫

Rn
(Jεf )gdλn =

∫

Rn
fJεgdλn.

4.10 Change of variables for multiple integrals

A transformation formula for multiple integrals under changes of variables will be proved
in this section. The changes of variables to be considered areC1 diffeomorphisms, which
we shall now describe. Let ' be an open set inRn. A map t = (t1, . . . , tn) from ' into
Rn is called a C1 map if its component functions ti are continuously differentiable, i.e.
first-order partial derivatives of each ti exist and are continuous on'. For x ∈ ', the lin-
ear map fromRn intoRn represented by thematrix

(
∂ti
∂xj (x)

)
in reference to the standard

basis ofRn is called the differential of t at x, and is denoted by dxt. By the standard basis
ofRn we mean the basis formed by e1, . . . , en, where for each j, ej = (δj1, . . . , δjn), with
δjk being 1 or 0 according to whether k = j or k ̸= j. The symbols δjk are calledKronecker
symbols. In this section, linearmaps fromRn toRn are represented bymatrices with ref-
erence to the standard basis. The determinant of

(
∂ti
∂xj (x)

)
, called the Jacobian of t at x,

is to be denoted by J(t; x). When t is a linear map, ti(x) =
∑n

j=1 tijxj for x = (x1, . . . , xn),
where (tij) is the matrix representing t; it follows then that

(
∂ti
∂xj (x)

)
= (tij), i.e. dxt = t.

For a linear map t, the determinant of the matrix representing t is usually denoted by
det t, thus J(t; x) = det dxt if t is a C1 map. A C1 map t from ' into Rn is called a
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C1 diffeomorphism if it is injective and dxt is invertible for all x ∈ '. By the inverse
function theorem, if t is a C1 diffeomorphism from ' into Rn, then t–1 is a C1 diffeo-
morphism from t' onto' and J(t; x)–1 = J(t–1; tx) for x ∈ '. Note that J(t; x) ̸= 0 for
all x in'.

We consider first the transformation formula for integrals when changes of variables
are invoked by invertible linear maps. We follow the usual practice of denoting linear
maps by capital letters, and, for convenience, the matrix representing a linear map T
is also denoted by T. The matrices derived from the unit matrix I by elementary row
operations are called elementary matrices. They are of the following three types:

(i) A type(1) elementary matrix is one obtained from I by multiplying a row of I by
a nonzero real number c;

(ii) a type(2) elementary matrix is one obtained from I by multiplying a row of I by
a nonzero real number and then adding it to a different row of I;

(iii) a type(3) elementary matrix is one obtained from I by interchanging two rows
of I.

Note that if T is an elementary matrix of type(1), then detT = c; while detT = 1 or
–1, according to whether T is of type(2) or type(3). If T is an elementary matrix, the
corresponding linear map T is called an elementary linear map of the same type.

Lemma 4.10.1 If T is an elementary linear map and f ≥ 0 is a measurable function onRn

such that f ◦ T is measurable, then
∫

Rn
fdλn = | detT|

∫

Rn
f ◦ Tdλn. (4.17)

Proof Suppose that T is of type(1), then f ◦ T(x1, . . . , xn) = f (x1, . . . , cxj, . . . , xn) for
some j = 1, . . . , n and c ̸= 0. By expressing x = (x1, . . . , xj, . . . , xn) as x = (xj, x̂j) and
using the Fubini theorem, we have

∫

Rn
f ◦ Tdλn =

∫

Rn–1

(∫

R
f (x1, . . . , cxj, . . . , xn)dxj

)
dx̂j

=
1
|c|

∫

Rn–1

(∫

R
f (x1, . . . , xj, . . . , xn)dxj

)
dx̂j

=
1
|c|

∫

Rn
fdλn,

where
∫
R f (x1, . . . , cxj, . . . , xn)dxj = 1

|c|

∫
R f (x1, . . . , xj, . . . , xn)dxj follows from the

fact stated in Example 4.3.1 (ii). Hence,
∫

Rn
fdλn = |c|

∫

Rn
f ◦ Tdλn = | detT|

∫

Rn
f ◦ Tdλn.

Similarly, (4.17) can be verified for the case when T is of type(2) or of
type(3). !
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If T is an invertible linear map from Rn onto Rn then, as is well known in element-
ary linear algebra, after a finite number of elementary row operations the corresponding
matrix T becomes the unit matrix I, i.e.

I = S1 · · · Sk · T,

where S1, . . . , Sk are elementary matrices, or

S–1k · · · S–11 = T,

where each S–1j is also elementary and of the some type as Sj; in terms ofmaps, this means
that the invertible linear map T is a composition of a finite number of elementary linear
maps, i.e.

T = T1 ◦ · · · ◦ Tl, (4.18)

with each Tj being elementary.

Theorem 4.10.1 If T is an invertible linear map fromRn ontoRn and f is a measurable
function onRn, then f ◦ T is measurable; and if f is either nonnegative or integrable,

∫

Rn
fdλn = | detT|

∫

Rn
f ◦ Tdλn. (4.19)

Proof It is sufficient to prove (4.19) for the case f ≥ 0. Suppose first that f ≥ 0 is Borel
measurable, then since f ◦ T is Borel and T is of the form (4.18), we have from
Lemma 4.10.1,

| detT|
∫

Rn
f ◦ Tdλn =

l∏
j=1

| detTj|
∫

Rn
f ◦ T1 ◦ · · · ◦ Tldλn

=
( l–1∏

j=1
| detTj|

)
· | detTl|

∫

Rn
( f ◦ T1 ◦ · · · ◦ Tl–1) ◦ Tldλn

=
l–1∏
j=1

| detTj|
∫

Rn
f ◦ T1 ◦ · · · ◦ Tl–1dλn

= · · · =
∫

Rn
fdλn.

Thus (4.19) holds when f is a nonnegative Borel function onRn.
Now suppose that f is nonnegative and measurable. We claim first that f ◦ T is

measurable. Let B ∈ Bn; we have to show that ( f ◦ T)–1B = T–1( f –1B) is measur-
able. As f –1B is measurable, f –1B = A ∪ C, where A is a Borel set and λn(C) = 0
(cf. Exercise 3.9.1 (i)). There is a Borel set D ⊃ C such that λn(D) = 0. The
indicator function ID of D is a Borel function; by what we have proved in the
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first part, | detT|
∫
Rn ID ◦ Tdλn = λn(D) = 0; then

∫
Rn ID ◦ Tdλn = 0, and con-

sequently ID ◦ T = 0 a.e. But ID ◦ T = IT–1D and ID ◦ T = 0 a.e. imply λn(T–1D) = 0.
Since T–1C ⊂ T–1D, λn(T–1C) = 0. Thus T–1C is measurable. Now, ( f ◦ T)–1B =
T–1(A ∪ C) = T–1A ∪ T–1C shows that ( f ◦ T)–1B is measurable. We have shown
the claim that f ◦ T is measurable. Since f ◦ T is measurable, we can repeat the first
part of the proof to conclude that (4.19) holds. !

Corollary 4.10.1 For a measurable set A ⊂ Rn, TA is measurable and λn(TA) =
|detT|λn(A).

Proof In Theorem 4.10.1, replace T by T–1 and consider f = IA. !
Corollary 4.10.2 Lebesgue measure is invariant under rotations.

Proof LetA ⊂ Rn andT be a rotation ofRn; we have to show thatλn(TA) = λn(A). By
Corollary 4.10.1, λn(TA) = | detT|λn(A) = λn(A), because the matrix representing
T is an orthogonalmatrix and the determinant of an orthogonalmatrix is 1 or –1. !
Now let t be a C1 diffeomorphism from' intoRn. Define a measure λnt on' by

λnt(A) = λn(tA), A ⊂ '.

That λnt measures ' is obvious. Since t is bijective from ' to t', the measure λnt on
' can be considered as a copy of λn on the open set t'; actually a subset A of ' is λnt-
measurable if and only if tA is λn-measurable, and both t and t–1 are measure preserving
(cf. Section 2.8.2). Furthermore, since a subset B of' is Borel if and only if tB is Borel, it
follows that λnt is a Radon measure on'.

Proposition 4.10.1 If f ≥ 0 is measurable on t', then f ◦ t is!λnt -measurable on' and
∫

t'
fdλn =

∫

'

f ◦ tdλnt. (4.20)

Proof If f = IA for a measurable set A, then f ◦ t = It–1A, where t–1A is λnt-measurable;
it follows that (4.20) holds in this case. For the general case, (4.20) follows from
Theorem 2.2.1 and what has just been shown. !

Remark Since λn = t#λnt on t', Proposition 4.10.1 follows also from Exercise 4.3.2.

Lemma 4.10.2 λnt is absolutely continuous on'.

Proof Let Q ⊂ ' be a nondegenerate oriented closed cube, i.e. Q = I1 × · · · × In,
where I1, . . . , In are finite closed intervals in R of the same positive length.
Suppose that f is a continuously differentiable function defined on a neigh-
borhood of Q , and consider two points x and y in Q . Let a function g on
[0, 1] be defined by g(s) = f (x + s(y – x)); then f ( y) – f (x) = g(1) – g(0) =
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∫ 1
0 g′(s)ds =

∫ 1
0

{∑n
j=1

∂ f
∂xj (x + s(y – x)) · (yj – xj)

}
ds =

∫ 1
0 ∇f (x + s(y – x)) · (y –

x)ds, where∇f =
(

∂ f
∂x1 , . . . ,

∂ f
∂xn

)
is the gradient of f . Hence,

| f ( y) – f (x)| ≤ |y – x|
∫ 1

0
|∇f (x + s(y – x))|ds. (4.21)

Applying (4.21) to each component function of t, we have

|t( y) – t(x)|2 ≤ |y – x|2
n∑
i=1

[∫ 1

0
|∇ti(x + s(y – x))|ds

]2
≤ |y – x|2M(Q)2,

or

|t( y) – t(x)| ≤ |y – x|M(Q), (4.22)

whereM(Q)2 = maxz∈Q
∑n

i,j=1

∣∣∣ ∂ti
∂xj (z)

∣∣∣
2
.

Suppose now that A is a null set in'. Since' is a countable union of open setsG,
with G being a compact subset of' (cf. Proposition 3.9.2), to show that λnt(A) = 0,
we may assume that A is a null set in an open setG, withG a compact set in'. Given
that ε > 0, there is a sequence {Qk} of nondegenerate closed oriented cubes in G
such that

⋃
Qk ⊃ A and

∑
k λn(Qk) < ε, by Corollary 3.9.1. For each k, let ck be the

center ofQk, and apply (4.22) for x = ck and y ∈ Qk, to obtain

|t( y) – t(ck)| ≤ |y – ck|M(Qk),

which implies that tQk – t(ck) ⊂ Cr(t(ck)) with r = (12 diamQk)M, where M2 =

maxz∈G
∑n

i,j=1

∣∣∣ ∂ti
∂xj (z)

∣∣∣
2
, and consequently,

λn(tQk) = λn(tQk – t(ck)) ≤ λn(Cr(t(ck))) =
(√

nM
2

)n

λn(C1(0))λn(Qk),

by Example 4.3.1. Now,

λnt(A) ≤ λnt
(⋃

k
Qk

)
≤ ∑

k
λnt(Qk) =

∑
k

λn(tQk)

≤
(√

nM
2

)n

λn(C1(0))
∑
k

λn(Qk) <

(√
nM
2

)n

λn(C1(0))ε,

from which, by letting ε → 0, we conclude that λnt(A) = 0. !
Corollary 4.10.3 A ⊂ ' is measurable if and only if tA ismeasurable. Also, A ismeasurable

if and only if it is λnt-measurable.
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Proof IfA is measurable, thenA = B ∪ N, with B a Borel set andN a null set. By Lemma
4.10.2,λn(tN) = λnt(N) = 0; hence tN is a null set and is thereforemeasurable. Now,
tA = tB ∪ tN implies that tA is measurable. Conversely, if tA is measurable, then A is
measurable by the same argument, but with' replaced by t' and t replaced by t–1.

Since A ⊂ ' is λnt-measurable if and only if tA is measurable, the second part of
the corollary follows from the first part. !

Lemma 4.10.3 For a.e. x in', dλnt
dλn (x) = | det dxt|.

Proof It is sufficient to show that limr→0
λnt(Cr(x))
λn(Cr(x))

= | det dxt| for x ∈ ', whereCr(x) is
the closed ball centered at x and with radius r.

Let x ∈ ' and suppose first that dxt = I, the identity map ofRn. Write

t( y) – t(x) = dxt(y – x) + R(x, y) = (y – x) + R(x, y). (4.23)

Since t is differentiable at x, for each ε > 0, there is δ > 0 such that |R(x, y)| <

ε|y – x| if |y – x| < δ. Now if 0 < r < δ, we have from (4.23),

tCr(x) – t(x) ⊂ (1 + ε)(Cr(x) – x),

then λn(tCr(x)) = λn(tCr(x) – t(x)) ≤ (1 + ε)nλn(Cr(x) – x) = (1 + ε)nλn(Cr(x)),
and hence

lim sup
r→0

λnt(Cr(x))
λn(Cr(x))

≤ (1 + ε)n. (4.24)

We show next thatC := Cr(1–ε)(t(x)) is contained in tCr(x) if 0 < r < δ. Observe
first that, by (4.23), t2 is outside C, where 2 is the boundary of Cr(x). To show
that C ⊂ tCr(x) is to show that the line segment [t(x), z] := {t(x) + s(z – t(x)) :
0 ≤ s ≤ 1} ⊂ tCr(x) for each z ∈ ∂C. Let z ∈ ∂C be fixed. Define a set L of positive
numbers by

L = {0 < ρ ≤ 1 : t(x) + s(z – t(x)) ∈ tCr(x) for all 0 ≤ s ≤ ρ}.

By the inverse function theorem, t maps a neighborhood of x in Cr(x) onto a neigh-
borhood of t(x); hence L is nonempty. Let ρ0 = sup L. We claim that ρ0 ∈ L. Note
first that (0, ρ0) ⊂ L. Choose a sequence {sj} in (0, ρ0) such that sj → ρ0 and let
zj = t(x) + sj(z – t(x)). Then zj ∈ tCr(x) for each j. Since zj → z∞ := t(x) + ρ0(z –
t(x)) and t–1 is continuous, we infer that t–1zj → t–1z∞ and t–1z∞ ∈ Cr(x) (note
that each t–1zj ∈ Cr(x)). Now, t(t–1z∞) = z∞ implies that ρ0 ∈ L. We assert then
that ρ0 = 1. If ρ0 < 1, t–1z∞ ∈ Br(x), because t2 is outside C; then by the inverse
function theorem again, t maps a neighborhood of t–1z∞ in Br(x) onto a neighbor-
hood of z∞; this would imply that L contains numbers larger than ρ0, contradicting
the definition of ρ0. Now ρ0 = 1 means the line segment [t(x), z] is contained in
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tCr(x). Thus C is contained in tCr(x), or tCr(x) – t(x) ⊃ (1 – ε)(Cr(t(x)) – t(x)).
Hence,

λnt(Cr(x)) = λn(tCr(x)) = λn(tCr(x) – t(x)) ≥ (1 – ε)nλn(Cr(x)),

or

lim inf
r→0

λnt(Cr(x))
λn(Cr(x))

≥ (1 – ε)n. (4.25)

Letting ε → 0 in (4.24) and (4.25), we have

lim
r→0

λnt(Cr(x))
λn(Cr(x))

= 1.

This shows that limr→0
λnt(Cr(x))
λn(Cr(x))

= 1, if dxt = I. In general, for x ∈ ', consider the
map t̂ = (dxt)–1 ◦ t, then dxt̂ = (dxt)–1 ◦ dxt = I, hence,

lim
r→0

λnt̂(Cr(x))
λn(Cr(x))

= 1. (4.26)

Now, by Corollary 4.10.1,

λnt(Cr(x)) = λn(tCr(x)) = λn(dxt ◦ (dxt)–1(tCr(x)))
= | det dxt|λn(t̂Cr(x)),

from which it follows that

lim
r→0

λnt(Cr(x))
λn(Cr(x))

= | det dxt| limr→0

λnt̂(Cr(x))
λn(Cr(x))

= | det dxt|,

by (4.26). !
Theorem 4.10.2 Suppose that t is a C1 diffeomorphism from an open set' inRn intoRn;

then if f is a measurable function on t', f ◦ t is measurable on', and if, furthermore, f is
nonnegative or integrable, then,

∫

t'
fdλn =

∫

'

( f ◦ t)(x)|J(t; x)|dλn(x). (4.27)

Proof Since A ⊂ t' is measurable if and only if t–1A is measurable by Corollary 4.10.3,
we infer that if f = IA, then f is measurable if and only if f ◦ t = It–1A is measurable. It
follows then from Theorem 2.2.1 that a nonnegative function f is measurable if and
only if f ◦ t is measurable; from this it follows that f is measurable on t' if and only if
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f ◦ t is measurable. In particular if f is measurable on t', then f ◦ t is measurable on
'. To verify (4.27), we need only consider the case f ≥ 0. By Proposition 4.10.1,

∫

t'
fdλn =

∫

'

f ◦ tdλnt. (4.28)

Since λnt is absolutely continuous,

λnt(A) =
∫

A

dλnt
dλn dλ

n =
∫

A
| det dxt|dλn(x) =

∫

A
|J(t; x)|dλn(x)

for measurable A ⊂ ' by Lemma 4.10.3; it follows then from Exercise 2.5.7 that∫
'
f ◦ tdλnt =

∫
'
( f ◦ t)(x)|J(t; x)|dλn(x); combining the last equality with (4.28),

we conclude that (4.27) holds. !
We illustrate the way to use Theorem 4.10.2 by an example.

Example 4.10.1 Consider the map t from the open set ' := {(ρ, θ) : 0 < ρ < ∞,
0 < θ < 2π} inR2 intoR2 by

(x1, x2) = t(ρ, θ) = (ρ cos θ , ρ sin θ),

then, ∂x1
∂ρ

= cos θ , ∂x1
∂θ

= –ρ sin θ ; ∂x2
∂ρ

= sin θ , ∂x2
∂θ

= ρ cos θ . Hence,

d(ρ,θ)t =
∣∣∣∣
cos θ –ρ sin θ

sin θ ρ cos θ

∣∣∣∣ = ρ > 0.

t is actually aC1 diffeomorphism from' onto t' = {(x1, x2) ∈ R2 : x2 ̸= 0, or x2 = 0
but x1 < 0}, i.e. t' is obtained fromR2 by taking away the positive x1-axis and the
origin. Now if f ≥ 0 is measurable, then, since λ2(R2\t') = 0, we have

∫

R2
fdλ2 =

∫

t'
fdλn =

∫

'

( f ◦ t)(ρ, θ)ρdλ2(ρ, θ)

=
∫ ∞

0

(∫ 2π

0
ρf (ρ cos θ , ρ sin θ)dθ

)
dρ,

where we have the applied the Fubini theorem in the last step.

Exercise 4.10.1 Suppose that f is a measurable function onR3 and is either nonnegat-
ive or integrable.

(i) Show that
∫

R3
f (x, y, z)dλ3(x, y, z) =

∫

G
f (ρ cosϕ, ρ sinϕ, z)ρdλ3(ρ,ϕ, z)

=
∫ ∞

–∞

∫ 2π

0

∫ ∞

0
f (ρ cosϕ, ρ sinϕ, z)ρdρdϕdz,

whereG = (0,∞)× (0, 2π)×R = {(ρ,ϕ, z) : 0< ρ <∞, 0< ϕ < 2π , z∈R}.
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(ii) Show that
∫

R3
f (x, y, z)dλ3(x, y, z)

=
∫

H
f (ρ sin θ cosϕ, ρ sin θ sinϕ, ρ cos θ)ρ2 sin θdλ3(ρ, θ ,ϕ)

=
∫ ∞

0

∫ π

0

∫ 2π

0
f (ρ sin θ cosϕ, ρ sin θ sinϕ, ρ cos θ)ρ2 sin θdϕdθdρ,

where H = (0,∞) × (0,π) × (0, 2π) = {(ρ, θ ,ϕ) : 0< ρ <∞, 0< θ < π ,
0 < ϕ < 2π}.

4.11 Polar coordinates and potential integrals

In Example 4.10.1, ρ and θ are the polar coordinates of the point (ρ cos θ , ρ sin θ)
in R2, and dθ is the line element on the unit circle S1, described by (cos θ , sin θ),
0 ≤ θ < 2π ; while in Exercise 4.10.1 (ii),ρ,ϕ, and θ are the so-called spherical coordin-
ates of the point (ρ sin θ cosϕ, ρ sin θ sinϕ, ρ cos θ) inR3, and sin θdϕdθ is the surface
element on the unit sphere S2 in R3, described by (sin θ cosϕ, sin θ cosϕ, cos θ), 0 ≤
ϕ < 2π , 0 ≤ θ ≤ π . Therefore, for nonnegative measurable function f on R2 or R3,
we have

∫

R2
f (x)dλ2(x) =

∫ ∞

0

(∫

S1
ρf (ρx′)dl(x′)

)
dρ; (4.29)

∫

R3
f (x)dλ3(x) =

∫ ∞

0

(∫

S2
ρ2f (ρx′)dσ (x′)

)
dρ, (4.30)

where x = ρx′ with ρ = |x| and x′ ∈ S1 or S2, depending on x ∈ R2 orR3, dl is the line
element on S1, and dσ the surface element on S2. The discussion so far is formal; we shall
now put it on a solid basis forRn in general.

For x ∈ Ṙn := Rn\{0}, write x = ρx′, whereρ = |x| and x′ = |x|–1x is in Sn–1 := {x ∈
Rn : |x| = 1}; ρ and x′ are called the polar coordinates of x ∈ Ṙn. The polar coordin-
ates of a point x ∈ Ṙn will be written as an ordered pair (ρ, x′) and hence is represented
as a point in (0,∞) × Sn–1. Let p be the map x 9→ (ρ, x′) from Ṙn to (0,∞) × Sn–1; p
is obviously a bijection and both p and p–1 are continuous; it follows that a function f on
Ṙn is λn-measurable if and only if f ◦ p–1 is p#λn-measurable on (0,∞) × Sn–1, where
p#λn is the measure on (0,∞) × Sn–1, defined by p#λn(A) = λn(p–1A) for subsets A of
(0,∞) × Sn–1 (cf. Exercise 4.3.1 and note that λn = (p–1)#(p#λn)). We then infer from
Exercise 4.3.2 that if f is a nonnegative measurable or an integrable function onRn, then

∫

Rn
fdλn =

∫

Ṙn
fdλn =

∫

(0,∞)×Sn–1
f ◦ p–1dp#λn. (4.31)
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We shall presently show that p#λn is a product measure. A Borel measure σ on Sn–1
will be defined first; this measure is interpreted as measuring the surface area of sets in
Sn–1 and is therefore called the surface measure on Sn–1. For E ⊂ Sn–1 and r > 0, let Er
be the set

⋃
{αE : 0 < α ≤ r} in Rn; clearly, Er = rE1 and Er is a Borel set in Rn, if

E ∈ B(Sn–1). It then follows that

λn(Er) = rnλn(E1) (4.32)

for E ∈ B(Sn–1), by Example 4.3.1 (ii). Observe now that if h > 0, E1+h\E1 is a spheric-
ally sliced section of the cone

⋃
{αE : α > 0} of thickness h, and hence it is natural to

define the surface area of E ∈ B(Sn–1), as

lim
h→0+

h–1λn(E1+h\E1) = lim
h→0+

h–1[(1 + h)n – 1]λn(E1) = nλn(E1),

where we have applied (4.32) with r = 1 + h. Thus we let σ (E) = nλn(E1) for E ∈
B(Sn–1). It is readily verified that σ is a finite measure on B(Sn–1), and the measure on
Sn–1 constructed from σ byMethod I is the unique Radon measure on Sn–1, extending σ

on B(Sn–1) (this measure is also denoted by σ ), and (Sn–1,!σ , σ ) is the completion of
(Sn–1,B(Sn–1), σ ) (cf. Exercise 3.4.18).

From (4.32), we have

λn(Er) = rnλn(E1) = nλn(E1)
∫ r

0
ρn–1dρ = σ (E)

∫ r

0
ρn–1dρ

for E ∈ B(Sn–1) and hence, by Borel regularity of σ , Er is measurable and

λn(Er) = σ (E)
∫ r

0
ρn–1dρ (4.33)

for any σ -measurable set E in Sn–1 (see Exercise 4.11.1).

Exercise 4.11.1 Let E be a σ -measurable set in Sn–1; show that Er is measurable and
(4.33) holds. (Hint: there are Borel sets F and G in Sn–1 such that F ⊂ E ⊂ G and
σ (G\F) = 0.)

Now let γ be the unique Radon measure on (0,∞) such that γ (B) =
∫
B ρn–1dρ for

Borel sets B in (0,∞). Since γ (A) = 0 if and only if λ(A) = 0 for any A ⊂ (0,∞), it
follows that γ -measurable sets in (0,∞) are exactly the Lebesgue measurable sets in
(0,∞).

Lemma 4.11.1 For σ -measurable sets E in Sn–1 and measurable sets A in (0,∞),

γ × σ (A × E) = p#λn(A × E).
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Proof For a fixed σ -measurable set E in Sn–1, letM be the family of all measurable sets
A in (0,∞) such that for every positive integer n,

γ × σ (A ∩ (0, n] × E) = p#λn(A ∩ (0, n] × E),

then, γ × σ (A × E) = p#λn(A × E) for A ∈ M. Since p#λn((0, r] × E) = λn(Er),
we infer from (4.33) thatM contains 3 = {(0, r] : r > 0}, which is a π -system on
(0,∞). It is routine to verify that M is a λ-system, and the (π -λ) theorem implies
thatM contains all Borel sets in (0,∞). Now ifA is a measurable set in (0,∞), there
are Borel sets C andD in (0,∞) such that C ⊂ A ⊂ D and λ(D\C) = γ (D\C) = 0,
hence,

γ × σ (C × E) = p#λn(C × E) ≤ p#λn(A × E) ≤ p#λn(D × E)
= γ × σ (D × E) = γ × σ (C × E),

from which it follows that γ × σ (A × E) = p#λn(A × E). !
Lemma 4.11.2 B((0,∞) × Sn–1) ⊂ !γ ⊗ !σ ⊂ !p#λn .

Proof Since both (0,∞) and Sn–1 are separable as metric space, every open set in
(0,∞) × Sn–1 is a countable union of sets of the form A × B, where A is open in
(0,∞) and B is open in Sn–1; open sets in (0,∞) × Sn–1 are !γ ⊗ !σ -measurable
and hence B((0,∞) × Sn–1) ⊂ !γ ⊗ !σ . To show that !γ ⊗ !σ ⊂ !p#λn , it is
sufficient to show that A × B ∈ !p#λn if A ∈ !γ and B ∈ !σ . There are Borel sets C
and D in (0,∞) such that C ⊂ A ⊂ D and γ (D\C) = 0, and there are Borel sets E
and F in Sn–1 such that E ⊂ B ⊂ F and σ (F\E) = 0; then,

γ × σ (D × F\C × E) = 0,

and by Lemma 4.11.1,

p#λn(D × F\C × E) = 0,

from which we infer that A × B = C × E ∪ N, where N ⊂ D × F\C × E and is
therefore a p#λn-null set. ThusN is p#λn-measurable and so is A × B, because C × E
is a Borel set in (0,∞) × Sn–1 and is therefore p#λ-measurable. !
Since γ × σ is the unique measure on !γ ⊗ !σ such that γ × σ (A × E) =

γ (A)σ (E) for measurable set A ⊂ (0,∞), and E ∈ !σ by Proposition 4.8.1, it fol-
lows from Lemma 4.11.1 and Lemma 4.11.2 that p#λn = γ × σ on !γ ⊗ !σ . Since
B((0,∞) × Sn–1) ⊂ !γ ⊗ !σ , by Lemma 4.11.2, one concludes that the space
((0,∞) × Sn–1,!p#λn , p#λn) is the completion of ((0,∞) × Sn–1,!γ ⊗ !σ , γ × σ ),
from the fact that p#λn is Borel regular (cf. Exercise 3.4.18). That p#λn is Borel regular
follows from the Borel regularity of λn and the fact that B(Ṙn) = p–1B((0,∞) × Sn–1).
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Then, on account of (4.31), we infer immediately that if f is a nonnegative measurable
function or an integrable function onRn, then

∫

Rn
fdλn =

∫

(0,∞)×Sn–1
f ◦ p–1dγ × σ ;

consequently, if we put f (ρ, θ) = f ◦ p–1(ρ, θ), we have from the Fubini theorem the
following theorem.

Theorem 4.11.1 (Integral in polar coordinates) If f is a nonnegative measurable function
or an integrable function onRn, then

∫

Rn
fdλn =

∫ ∞

0

(∫

Sn–1
f (ρ, θ)dσ (θ)

)
ρn–1dρ

=
∫

Sn–1

(∫ ∞

0
ρn–1f (ρ, θ)dρ

)
dσ (θ).

Example 4.11.1 Suppose that 0 ≤ α < n and let 2α(x, y) = |x – y|–α , then for
any r> 0,
∫

Br(x)
2α(x, y)dλn( y) =

∫

Br(0)
2α(0, y)dλn( y)

=
∫ r

0

(
ρn–1

∫

Sn–1
ρ–αdσ (θ)

)
dρ =

ωn–1

n – α
rn–α , (4.34)

whereωn–1 = σ (Sn–1).

Exercise 4.11.2 Let bn be the Lebesgue measure of the unit ball in Rn, and let
ln =

∏ n
j=2
∫ π

2
0 cosj θdθ for n ≥ 2.

(i) Show that bn = 2nln for n ≥ 2.
(ii) Show that b2k = 1

k!π
k and b2k+1 = 22k+1 k!

(2k+1)!π
k.

(Hint: express bn in terms of bn–1 by using the Fubini theorem.)

Exercise 4.11.3

(i) Show that
∫
Rn e–|x|

2dx = ωn–1
2

∫∞
0 t n2 –1e–tdt and ωn–1 = nπ

n
2

2( 1
2 n+1)

, where 2(x) =
∫∞
0 tx–1e–tdt.

(ii) Compare (i) and Exercise 4.11.2 (ii) to find2( n2 ) for n ∈ N.

In the remaining part of this section, a brief account of integral operators of potential
type will be given, with an application to integral representation of C1 functions.

For 0 < α < n, let2α be the function onRn × Rn defined by

2α(x, ξ) =
1

|x – ξ |α
, (x, ξ) ∈ Rn × Rn.
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Given a bounded measurable set ' with positive measure in Rn, we denote by
'̂ the smallest closed ball centered at 0 and containing ', i.e. '̂ = CR(0), where
R = supx∈' |x|.

Lemma 4.11.3 For u ∈ L1('),

∫

'

2α(x, ξ)|u(ξ)|dξ < ∞

for a.e. x inRn.

Proof Let R be the radius of the ball '̂, by the Fubini theorem and (4.34),

∫

C2R(0)

(∫

'

2α(x, ξ)|u(ξ)|dξ
)
dx =

∫

'

|u(ξ)|
∫

C2R(0)
2α(x, ξ)dxdξ

≤
∫

'

|u(ξ)|
∫

C3R(ξ)
2α(x, ξ)dxdξ

≤ ωn–1

n – α
(3R)n–α

∫

'

|u(ξ)|dξ < ∞,

i.e.
∫
'

2α(x, ξ)|u(ξ)|dξ is an integrable function of x onC2R(0). Hence,
∫
'

2α(x, ξ)
|u(ξ)|dξ < ∞ for a.e. x in C2R(0); while if x is outside C2R(0),

∫
'

2α(x, ξ)|u(ξ)|dξ
≤
∫
'
|u(ξ)|dξ < ∞. !

Because of Lemma 4.11.3, for u ∈ L1('), a functionKαu can be defined a.e. onRn by

(Kαu)(x) =
∫

'

2α(x, ξ)u(ξ)dξ , x ∈ Rn.

Kαu is a function measurable by the Fubini theorem; therefore Kα is a linear operator
from L1(') into the space of measurable functions on Rn. We call Kα an integral
operator of potential type and2α a potential kernel.

Theorem 4.11.2 Suppose that ' and D are two bounded measurable sets of positive
measure inRn, then Kα is a bounded linear operator from Lp(') into Lp(D).

Proof When p = 1 or ∞, the theorem is obvious. We assume that 1 < p < ∞. Since
' is bounded, u ∈ L1(') if u ∈ Lp('), and hence (Kαu)(x) =

∫
'

2α(x, ξ)u(ξ)dξ
is finite for a.e. x inRn. Let the radius of the ball '̂ ∪ D be R, i.e. R = supx∈'∪D |x|,
then for x ∈ CR(0),
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|(Kαu)(x)| ≤
∫

'

2α(x, ξ)
1
p |u(ξ)|2α(x, ξ)

1
q dξ

≤
(∫

'

2α(x, ξ)|u(ξ)|pdξ
) 1

p
(∫

'

2α(x, ξ)dξ
) 1

q

≤
(∫

'

2α(x, ξ)|u(ξ)|pdξ
) 1

p
(∫

C2R(x)
2α(x, ξ)dξ

) 1
q

=
[
ωn–1(2R)n–α

n – α

] 1
q
(∫

'

2α(x, ξ)|u(ξ)|pdξ
) 1

p

,

where q is the conjugate exponent of p and (4.34) is applied in the last step. Now,
denoting ωn–1(2R)n–α

n–α byM, we have

∥Kαu∥pp,D ≤ M
p
q

∫

D

∫

'

2α(x, ξ)|u(ξ)|pdξdx

= M
p
q

∫

'

∫

D
2α(x, ξ)|u(ξ)|pdxdξ

≤ M
p
q

∫

'

|u(ξ)|p
∫

C2R(ξ)
2α(x, ξ)dxdξ

≤ M
p
q +1∥u∥pp,',

where (4.34) is again applied in the last step, and ∥ · ∥p,D, ∥ · ∥p,' denote respectively
the norms on Lp(D) and Lp('). Thus ∥Kα∥ ≤ M = ωn–1(2R)n–α

n–α . !

It is easy to see that, more generally, if b is a bounded measurable function defined on
D × ', the function Kb

αu defined for u ∈ L1(') by

(Kb
αu)(x) =

∫

'

b(x, ξ)2α(x, ξ)u(ξ)dξ

is finite for a.e. x inRn; furthermore, Kb
α is a bounded linear operator from Lp(') into

Lp(D), p ≥ 1 with norm ∥Kb
α∥ ≤ Cωn–1(2R)n–α

n–α , where C = ∥b∥∞ and R = supx∈'∪D |x|.
Of course, we assume as before that' andD are bounded measurable sets with positive
measure inRn.

Theorem 4.11.3 If ' and D are compact sets inRn with positive measure, and b is a con-
tinuous function on D × ', then Kb

α maps every bounded measurable function u into a
continuous function on D.
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Proof Fix x ∈ D and for δ > 0, let h ∈ Rn be such that |h| < δ and x + h ∈ D; for
such an h,

|(Kb
αu)(x + h) – (Kb

αu)(x)|

=
∣∣∣∣

∫

'

{b(x + h, ξ)2a(x + h, ξ) – b(x, ξ)2α(x, ξ)}u(ξ)dξ
∣∣∣∣

≤ ∥u∥∞∥b∥∞

∫

B2δ(x)
{2α(x + h, ξ) + 2α(x, ξ)}dξ

+ ∥u∥∞

∫

'\B2δ(x)
|b(x + h, ξ)2α(x + h, ξ) – b(x, ξ)2α(x, ξ)|dξ

≤ ∥u∥∞∥b∥∞
ωn–1

n – α
{(3δ)n–α + (2δ)n–α}

+ ∥u∥∞

∫

'\B2δ(x)
|b(x + h, ξ)2α(x + h, ξ) – b(x, ξ)2α(x, ξ)|dξ ,

because by (4.34),

∫

B2δ(x)
2α(x + h, ξ)dξ ≤

∫

B3δ(x+h)
2α(x + h, ξ)dξ ≤ ωn–1(3δ)n–α

n – α
,

∫

B2δ(x)
2α(x, ξ)dξ ≤ ωn–1(2δ)n–α

n – α
.

Now, given ε > 0, choose δ > 0 such that ∥u∥∞∥b∥∞{(3δ)n–α + (2δ)n–α} < ε
2 .

Since both2α(x + h, ξ) and2α(x, ξ) ≤ δ–α for ξ ∈ '\B2δ(x), and

|b(x + h, ξ)2α(x + h, ξ) – b(x, ξ)2α(x, ξ)|
≤ ∥b∥∞|2α(x + h, ξ) – 2α(x, ξ)| + 2α(x, ξ)|b(x + h, ξ) – b(x, ξ)|,

we can then choose 0 < σ0 < δ such that

|b(x + h, ξ)2α(x + h, ξ) – b(x, ξ)2α(x, ξ)| < {2(∥u∥∞ ∨ 1)λn(')}–1ε

for all ξ ∈ '\B2δ(x) whenever |h| < σ0 and x + h ∈ D, and consequently
|(Kb

αu)(x + h) – (Kb
αu)(x)| < ε whenever |h| < σ0 and x + h ∈ D. Thus, Kb

αu is
continuous at x ∈ D. !

Exercise 4.11.4 Show that if b is a continuous function onRn × ', then Kb
αu is con-

tinuous on Rn for u ∈ L∞('), where ' is a compact set with positive measure
inRn.

Theorem 4.11.4 (Integral representation of C1 functions) Suppose that ' is a bounded
open convex domain inRn, then there is a bounded map A from ' × ' toRn which is
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continuous off the diagonal of ' × ', such that if u is a C1 function on ' with ∇u ∈
L1('), then

u(x) =
1

λn(')

∫

'

u(ξ)dξ –
∫

'

A(x, ξ) · ∇u(ξ)2n–1(x, ξ)dξ (4.35)

for x ∈ '.

Proof Fix x ∈ '. For ξ ∈ ', let

g(t) = u(x + t(ξ – x)), 0 ≤ t ≤ 1,

then, g′(t) = ∇u(x + t(ξ – x)) · (ξ – x) and

u(x) = u(ξ) –
∫ 1

0
∇u(x + t(ξ – x)) · (ξ – x)dt. (4.36)

When 0 < t ≤ 1, the map ξ 9→ z = x + t(ξ – x) is an invertible affine map with
Jacobian tn at all ξ ∈ Rn; we may use Theorem 4.10.2 to obtain
∫

'

|∇u(x + t(ξ – x)) · (ξ – x)|dξ =
∫

x+t('–x)

∣∣∣∇u(z) · z – x
t

∣∣∣
1
tn
dz

=
∫

'

Ix+t('–x)(z)|∇u(z) · (z – x)|t–(n+1)dz;

hence,
∫ 1

0

∫

'

|∇u(x + t(z – x)) · (ξ – x)|dξdt

=
∫

'

|∇u(z) · (z – x)|
∫ 1

0
Ix+t('–x)(z)t–(n+1)dtdz.

But Ix+t('–x)(z) = 0, when 0 < t <
|z–x|
l(x,z) , where l(x, z) is the length of the line

segment from x to the boundary of' through z, thus,
∫

'

∫ 1

0
|∇u(x + t(ξ – x)) · (ξ – x)|dtdξ

=
1
n

∫

'

|∇u(z) · (z – x)|
(
l(x, z)n

|z – x|n
– 1
)
dz

≤ 1
n

∫

'

|∇u(z)|{l(x, z)n – |z – x|n}2n–1(x, z)dz;

now, for 0 < ρ < dist(x,'c), we have
∫

Bρ(x)
|∇u(z)|{l(x, z)n – |z – x|n}2n–1(x, z)dz ≤ M

∫

Bρ(x)
2n–1(x, z)dz < ∞,
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because |∇u(z)| is bounded on Bρ(x), and consequently

∫

'

∫ 1

0
|∇u(x + t(ξ – x)) · (ξ – x)|dtdξ < ∞.

We have shown that ∇u(x + t(ξ – x)) · (ξ – x) is an integrable function of (ξ , t)
on ' × [0, 1] for x ∈ '. Integrate both sides of (4.36) w.r.t. ξ over ' to obtain
(denoting λn(') by |'|),

u(x)|'| =
∫

'

u(ξ)dξ –
∫

'

∫ 1

0
∇u(x + t(ξ – x)) · (ξ – x)dtdξ

=
∫

'

u(ξ)dξ –
1
n

∫

'

∇u(z) · (z – x)
{
l(x, z)n

|z – x|n
– 1
}
dz,

by repeating the previous steps with |∇u(x + t(ξ – x)) · (ξ – x)| replaced by
∇u(x + t(ξ – x)) · (ξ – x), as assured by the Fubini theorem. Now let A be the map
from' × ' toRn, defined by

A(x, ξ) =
1

n|'|

[
l(x, ξ)n – |x – ξ |n

|ξ – x|

]
(ξ – x),

if x ̸= ξ and A(x, ξ) = 0; if x = ξ , then

u(x) =
1
|'|

∫

'

u(ξ)dξ –
∫

'

A(x, ξ) · ∇u(ξ)2n–1(x, ξ)dξ

for x in '. Obviously, A is continuous off the diagonal of ' × ' and
|A(x, ξ)| ≤ 1

n (diam')n|'|–1, since l(x, ξ)n – |x – ξ |n = l(x, ξ)n
(
1 – |x–ξ |n

l(x,ξ)n

)
≤

l(x, ξ)n ≤ (diam')n if x ̸= ξ . !

Corollary 4.11.1 Let u ∈ C1(Rn). Suppose that u and all of its partial derivatives of first
order are integrable. Then,

u(x) =
1
nbn

∫

Rn

(x – ξ)·∇u(ξ)
|x – ξ |n

dξ (4.37)

for x ∈ Rn, where bn is the Lebesgue measure of the unit ball inRn.



Polar coordinates and potential integrals | 177

Proof Observe first that (x–ξ)·∇u(ξ)
|x–ξ |n is integrable on Rn as a function of ξ ; actually for

ρ > 0, we have
∫

Rn

|(x – ξ)·∇u(ξ)|
|x – ξ |n

dξ

≤
∫

Bρ(x)

|∇u(ξ)|
|x – ξ |n–1

dξ +
∫

Rn\Bρ(x)

|∇u(ξ)|
|x – ξ |n–1

dξ

≤ sup
ξ∈Bρ(x)

|∇u(ξ)|
∫

Bρ(x)

1
|x – ξ |n–1

dξ +
1

ρn–1

∫

Rn
|∇u(ξ)|dξ

< ∞,

by recalling that
∫
Bρ(x)

1
|x–ξ |n–1 dξ = wn–1ρ.

For x ∈ Rn and R > 0, apply Theorem 4.11.4 with' = BR(x), to obtain

u(x) =
1

Rnbn

∫

BR(x)
u(ξ)dξ

–
1

nRnbn

∫

BR(x)

Rn – |ξ – x|n

|ξ – x|
(ξ – x)·∇u(ξ)2n–1(x, ξ)dξ

=
1

Rnbn

∫

BR(x)
u(ξ)dξ –

1
nbn

∫

BR(x)

(ξ – x)·∇u(ξ)
|ξ – x|n

dξ

+
1

nRnbn

∫

BR(x)
(ξ – x)·∇u(ξ)dξ ,

becauseA(x, ξ) = 1
nRnbn

[
Rn–|x–ξ |n
|ξ–x|

]
(ξ – x) in this case. Now, letR → ∞ to conclude

that

u(x) = –
1
nbn

∫

Rn

(ξ – x)·∇u(ξ)
|ξ – x|n

dξ =
1
nbn

∫

Rn

(x – ξ)·∇u(ξ)
|x – ξ |n

dξ ,

on noting that
∣∣∣∣

1
Rnbn

∫

BR(x)
u(ξ)dξ

∣∣∣∣ ≤ 1
Rnbn

∫

Rn
|u(ξ)|dξ → 0

and
∣∣∣∣

1
nRnbn

∫

BR(x)
(ξ – x)·∇u(ξ)dξ

∣∣∣∣ ≤ 1
nRn–1bn

∫

Rn
|∇u(ξ)| → 0

as R → ∞; while
∫
BR(x)

(ξ–x)·∇u(ξ)
|ξ–x|n dξ →

∫
Rn

(ξ–x)·∇u(ξ)
|ξ–x|n dξ as R → ∞ due to the

fact that (x–ξ)·∇u(ξ)
|x–ξ |n is integrable onRn as a function of ξ . !
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Exercise 4.11.5 Suppose that u ∈ C1(') and Cr(x) ⊂ '. Show that

u(x) =
1

rnbn

{∫

Br(0)
u(x + ξ)dξ –

1
n

∫

Sn–1

∫ r

0
(rn – ρn)

∂u
∂ρ

(x + ρs)dρdσ (s)
}
.

Example 4.11.2 Let u be a C1 function on the ball BR(x) inRn such that ∇u is integ-
rable on BR(x).We establish here the following estimate for themean of the Lipschitz
quotient of u at x:

1
λn(BR(x))

∫

BR(x)

|u(ξ) – u(x)|
|ξ – x|

dξ ≤ M(∇u, x), (4.38)

whereM(∇u, x) = sup0<r≤R
1

λn(Br(x))

∫
Br(x) |∇u|dλn.

As in the first step of the proof of Theorem 4.11.4, we have

∫

BR(x)

|u(ξ) – u(x)|
|ξ – x|

dξ ≤
∫

BR(x)

(∫ 1

0
|∇u(x + t(ξ – x))|dt

)
dξ

=
∫ 1

0

(∫

BR(x)
|∇u(x + t(ξ – x))|dξ

)
dt

=
∫ 1

0

(∫

BRt(x)
|∇u(z)|

1
tn
dz

)

dt

= λn(BR(x))
∫ 1

0

1
λn(BRt(x))

∫

BRt(x)
|∇u(z)|dzdt

≤ λn(BR(x))M(∇u, x),

from which (4.38) follows.



5 Basic Principles of Linear
Analysis

Mathematical objects studied in linear analysis are linear transformations between
vector spaces endowed with proper concepts of limit. Linear analysis, there-

fore, provides suitable language and framework for modeling linear phenomena, and,
moreover, often suggests feasible methods for solving the corresponding problems. This
is most clearly seen in the case of linear algebra when the vector spaces concerned are
finite-dimensional.

This chapter is devoted to the most basic principles of linear analysis. Emphasis will
be placed on the case when vector spaces are normed vector spaces, although weaker
concepts of limit other than in terms of norm will occasionally be considered in view of
subsequent applications.

The first basic principles are those arising from the Baire category theorem, and those
from separation of sets by hyperplanes. These principles will be presented first, because
they are fundamental in many constructs of linear analysis.

In the latter part of the chapter, considerable weight is laid on geometric aspects of lin-
ear analysis, with the introduction of Hilbert spaces. The main ingredients are the Riesz
representation of continuous linear functionals on Hilbert spaces and Fourier expansion
of elements of a Hilbert space with respect to an orthonormal basis.

Recall that vector spaces considered in our discourse are either over the complex field
C or over the real fieldR; when specification is desirable, they are called complex vector
spaces or real vector spaces, according to whether they are over the complex or the real
field. As usual, the smallest vector subspace containing a subset S of a vector space is
called the vector space spanned by S and is denoted by ⟨S⟩.

5.1 The Baire category theorem

The Baire category theorem reveals a deep property of complete metric spaces; it is not
usually applied directly, but through its consequences, such as the principle of uniform
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boundedness and the open mapping theorem. We shall present in this section the Baire
category theorem and the principle of uniform boundedness; while the open mapping
theorem and some of its consequences will be treated in Section 5.2.

LetM be ametric space. A subset S ofM is said to benowhere dense inM if the closure
S̄ of S contains no nonempty open balls ofM. A subset A ofM is said to be of the first
category if A is a countable union of nowhere dense subsets ofM. Otherwise A is said to
be of the second category.

Theorem 5.1.1 (Baire category theorem) A complete metric space M is of the second
category.

Proof It is required to show that ifM is a union
⋃∞

n=1 Sn of closed sets, then one of the Sn
contains a nonempty open ball. Suppose the contrary, then each Scn has a nonempty
intersection with every open ball. Thus ifB0 is an open ball with radius 1, Sc1 ∩ B0 con-
tains an open ball B1 = Br1 (x1) as well as the closed ball C1 = Cr1 (x1) with r1 < 1

2 .
Then Sc2 ∩ B1 contains an open ball B2 = Br2 (x2) and the closed ball C2 = Cr2 (x2)
with r2 < 1

22 . Proceed in this way; a sequence of open balls {Bk}, Bk = Brk(xk), is
obtained such that the closed ball Ck+1 := Crk+1 (xk+1) ⊂ Sck+1 ∩ Bk and 0 < rk < 2–k,
k = 1, 2, . . . . Since {Ck} is decreasing, {xk, xk+1, . . .} ⊂ Ck, the sequence {xk} is a
Cauchy sequence, hence xk → x inM. But for each k, x ∈ Ck ⊂ Bk–1, or x ∈ ⋂∞

k=1 Bk,
hence, x ∈ ⋂∞

k=1 S
c
k = (

⋃∞
k=1 Sk)c = ∅, which is absurd. !

Theorem 5.1.2 (Principle of uniform boundedness) Let {fα} be a family of continuous
nonnegative functions defined on a Banach space X with the following properties:

(1) fα(x + y) ≤ fα(x) + fα(y) for x, y in X and for each α;
(2) fα(λx) = |λ|fα(x), for λ ∈ C orR (depending on whether X is a complex or a real

space), x ∈ X and for each α; and
(3) supα fα(x) < ∞ for each x ∈ X.

Then there is N > 0, such that

sup
α

fα(x) ≤ N∥x∥

for all x ∈ X.

Proof For each n ∈ N, let

Sn = {x ∈ X : fα(x) ≤ n ∀α} =
⋂
α

{x ∈ X : fα(x) ≤ n}.

Each Sn is closed and from (3), X =
⋃

n Sn. By Theorem 5.1.1, for some n0, Sn0
contains a ball B = Cr(x0), or

sup
α;x∈B

fα(x) ≤ n0.
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Now, there isN > 0 such that

fα(x) ≤ N

for all α if ∥x∥ = 1. To see this, for x ∈ X with ∥x∥ = 1 and any α,

fα(x) =
1
r
fα(rx) ≤ 1

r
{fα(rx + x0) + fα(–x0)}

≤ 1
r

{
n0 + sup

α

fα(–x0)
}
=: N.

Now, for any x ̸= 0 and any α,

fα(x) = ∥x∥fα
(

x
∥x∥

)
≤ N∥x∥. !

Actually, the principle of uniform boundedness is usually referred to the following
special case of Theorem 5.1.2.

Theorem 5.1.3 Let {Tα} ⊂ L(X, Y), where X is a Banach space and Y a n.v.s. Then
supα ∥Tα∥ < ∞ if and only if supα ∥Tαx∥ < +∞ for each x ∈ X.

Proof That supα ∥Tα∥ < ∞ implies that supα ∥Tαx∥ < ∞ for all x ∈ X is obvi-
ous; to show the other direction of implication, let fα(x) = ∥Tαx∥ and apply
Theorem 5.1.2. !

Theorem 5.1.4 (Banach–Steinhaus) Let {Tn} ⊂ L(X, Y), where X is a Banach space and
Y a n.v.s. Suppose that Tx = limn→∞ Tnx exists for each x ∈ X. Then T ∈ L(X, Y) and
∥T∥ ≤ lim infn→∞ ∥Tn∥ ≤ supn ∥Tn∥ < ∞.

Proof T is obviously a linear operator fromX into Y . Since limn→∞ Tnx exists, it follows
that supn ∥Tnx∥ < ∞ and hence supn ∥Tn∥ < ∞, by Theorem 5.1.3. Now,

∥T∥ = sup
∥x∥=1

∥Tx∥ = sup
∥x∥=1

∥∥∥ lim
n→∞

Tnx
∥∥∥

= sup
∥x∥=1

(
lim
n→∞

∥Tnx∥
)

≤ sup
∥x∥=1

(
lim inf
n→∞

∥Tn∥ · ∥x∥
)

= lim inf
n→∞

∥Tn∥ ≤ sup
n

∥Tn∥ < ∞. !

Exercise 5.1.1 Let {Tn} ⊂ L(X, Y), where both X and Y are Banach spaces. A neces-
sary and sufficient condition for limn→∞ Tnx to exist for each x ∈ X is:

{
(1) limn→∞ Tnx exists for x in a dense subset of X;
(2) {∥Tn∥} is bounded.
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Theorem 5.1.5 (C.Neumann) Suppose that T is a bounded linear operator from aBanach
space X into itself with ∥T∥ < 1. Then (1 – T)–1 exists, (1 – T)–1 ∈ L(X), and (1 –
T)–1x = limn→∞

∑n
k=0 Tkx =

∑∞
k=0 Tkx.

Proof For each x ∈ X, let xn =
∑n

k=0 Tkx. Since for n > m,

∥xn – xm∥ =
∥∥∥∥

n∑
k=m+1

Tkx
∥∥∥∥ ≤

( n∑
k=m+1

∥T∥k
)

∥x∥,

{xn} is a Cauchy sequence in X. Let Sx = limn→∞ xn = limn→∞(
∑n

k=0 Tkx). By
Theorem 5.1.4, S is a bounded linear operator. Now,

(1 – T)Sx = (1 – T)
(

lim
n→ ∞

n∑
k=0

Tkx
)
= lim

n→ ∞

(
(1 – T)

n∑
k=0

Tkx
)

= lim
n→ ∞

(x – Tn+1x) = x,

because ∥Tn+1x∥ ≤ ∥T∥n+1∥x∥ → 0, implying that Tn+1x → 0; similarly,
S(1 – T)x = x for x ∈ X. Hence S = (1 – T)–1. !

Exercise 5.1.2 Suppose that T ∈ L(X), T ̸= 0, where X is a Banach space. Show that
for λ ∈ C with |λ| < ∥T∥–1 the operator I – λT is bijective. Expand (I – λT)–1 in
terms of λ and T and their powers.

We now apply the Baire category theorem to show the existence of continuous
functions on the finite closed interval [a, b] which are nowhere differentiable on [a, b].

Fix a finite closed interval [a, b] and let I = [a, c], where b < c < ∞.

Lemma 5.1.1 Suppose that f ∈ C(I) and let ε > 0 and L > 0 be given. Then there is a
continuous and piece-wise linear function g on I such thatmaxx∈I |g(x) – f (x)| ≤ ε, and
the absolute value of the slope of each line segment of the graph of g is greater than L.

Proof Let δ > 0 be chosen so that |f (x) – f (y)| < ε
4 if |x – y| < δ. Consider a partition

a = x0 < x1 < · · · < xk–1 < xk = c of I, with |xj – xj–1| < δ for j = 1, . . . , k, and let
P0 = (x0, f (x0)), P1 = (x1, f (x1) + 3

4ε), . . . , Pj = (xj, f (xj) + (–1)j–1 34ε), . . . , Pk =
(xk, f (xk)). Let g be the piece-wise linear function whose graph consists of
the line segments [P0, P1], [P1, P2], . . . , [Pk–1, Pk]. Then g is continuous and
maxx∈I |g(x) – f (x)| ≤ ε. If we choose δ small enough, then the absolute value of the
slope of each [Pj–1, Pj], j = 1, . . . , k, is greater than L. !

Theorem 5.1.6 There is a continuous function on [a, b] which is nowhere differentiable on
[a, b].

Proof Let I = [a, c], b < c < ∞. It is sufficient to show that there is f ∈ C(I) such that
f is not differentiable at every point of [a, b]; actually, should f be differentiable from
the left at b, the function f + g is differentiable nowhere on [a, b] if g is a continu-
ous function on [a, b] which is differentiable on [a, b), but not differentiable from
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the left at b. As usual, we endow C(I) with sup-norm, then C(I) is a complete met-
ric space. Consider the set S of functions f in C(I) such that for some ξ ∈ [a, b], the
set
{
f (ξ+h)–f (ξ)

h : 0 < h ≤ c – b
}
is bounded. Clearly, S contains all functions in C(I)

which are differentiable somewhere on [a, b]. For n ∈ N, let

Sn =

{

f ∈ S : sup
0<h≤c–b

∣∣∣∣
f (ξ + h) – f (ξ)

h

∣∣∣∣ ≤ n for some ξ ∈ [a, b]

}

.

Observe that S =
⋃

n Sn. We claim first that each Sn is closed. Let {fk} be a sequence
in Sn which converges to f in C(I). To claim that Sn is closed is to show that f ∈ Sn.
For each k, there is ξk ∈ [a, b] such that

sup
0<h≤c–b

∣∣∣∣
fk(ξk + h) – fk(ξk)

h

∣∣∣∣ ≤ n.

Since [a, b] is compact, {ξk} has a subsequence which converges to ξ ∈ [a, b]. If
necessary, replace {fk} by a subsequence of itself; we may assume that {ξk} converges
to ξ . For 0 < h ≤ c – b and ε > 0, there isN = N(h, ε) ∈ N such that k > N implies
supx∈I |fk(x) – f (x)| < εh

4 . Since f is uniformly continuous on I and ξk → ξ , there
is N1 > N such that |f (ξk) – f (ξ)| < εh

4 and |f (ξ + h) – f (ξk + h)| < εh
4 whenever

k > N1. Thus, for k > N1, we have
∣∣∣∣
f (ξ + h) – f (ξ)

h

∣∣∣∣ ≤ 1
h
{|fk(ξk + h) – fk(ξk)| + |f (ξk) – f (ξ)| + |fk(ξk) – f (ξk)|

+ |f (ξk + h) – fk(ξk + h)| + |f (ξ + h) – f (ξk + h)|}

<

∣∣∣∣
fk(ξk + h) – fk(ξk)

h

∣∣∣∣ + ε ≤ n + ε;

hence, sup0<h≤c–b
∣∣ f (ξ+h)–f (ξ)

h

∣∣ ≤ n + ε for ε > 0, consequently,

sup
0<h≤c–b

∣∣∣∣
f (ξ + h) – f (ξ)

h

∣∣∣∣ ≤ n

and f ∈ Sn. This shows that Sn is closed for n ∈ N.
Next we claim that each Sn is nowhere dense inC(I). For this, it is sufficient to show

that C(I)\Sn is dense in C(I). Consider f ∈ C(I) and ε > 0; we claim that there is
g ∈ C(I)\Sn such that supx∈I |g(x) – f (x)| ≤ ε. Let g be the continuous and piece-
wise linear function in Lemma 5.1.1 corresponding to ε and L = n, then, g ∈ C(I)\Sn
and supx∈I |g(x) – f (x)| ≤ ε. Hence, C(I)\Sn is dense in C(I), and therefore Sn is
nowhere dense in C(I). Since S =

⋃
n Sn and each Sn is closed and nowhere dense in

C(I), S is of the first category. By Theorem 5.1.1, C(I) is of the second category and
therefore there is f ∈ C(I)\S. Since S contains all functions which are somewhere
differentiable on [a, b], f is nowhere differentiable on [a, b]. !
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An interesting application of Theorem 5.1.3 is considered in Exercise 5.9.1, to show
the existence of a continuous periodic function whose Fourier series diverges at a point.

5.2 The open mapping theorem

Theorem 5.2.1 (Banach openmapping theorem) Suppose that T is a bounded linearmap
from a Banach space X onto a Banach space Y. Then T maps open sets into open sets.

Proof Since T(G + x0) = TG + Tx0, it suffices to prove that ifG is a neighborhood of 0
in X, then TG contains an open ball centered at 0 in Y .

Step 1. A weaker claim will be shown first. Here is the claim: Let BX be an open
ball in X centered at 0, then there is an open ball BY in Y centered at 0 such that
BY ⊂ TBX . For the proof, the open ball inX centered at xwith radius rwill be denoted
by BXr (x); the connotation of BYr (y) as an open ball in Y is similarly defined. Let BX =
BXr (0) and U = BXr

2
(0). Then, X =

⋃∞
n=1(nU), and Y = TX =

⋃∞
n=1 nTU. The Baire

category theorem implies that there is n0 such that n0TU = n0TU contains an open
ball inY and henceTU contains an open ball, sayBYσ (ŷ). Since ŷ ∈ TU, there is x0 ∈U
such that y0 = Tx0 ∈ BYσ

2
(ŷ), and therefore BYσ

2
(y0) ⊂ BYσ (ŷ) ⊂ TU. Now put BY =

BYσ
2
(0), then,

BY = BYσ
2
(y0) – y0 ⊂ TU – Tx0 ⊂ TU – Tx0 ⊂ T(U + U) ⊂ TBX ,

as is claimed.
Step 2. Let G be any open set containing 0 in X and let BXr (0) ⊂ G. Put BX0 =

BXr
2
(0). By Step 1, there is a ball BY0 = BYσ (0) in Y such that BY0 ⊂ TBX0 . It will be

shown thatTBXr (0) ⊃ BY0 . For this purpose, letBXi = BXεi(0), εi =
r

2i+1 , i = 1, 2, . . . . By
Step 1, there is a sequence BYi = BYηi(0) of balls in Y such that ηi → 0 and BYi ⊂ TBXi .
For y ∈ BY0 , there is x0 ∈ BX0 such that ∥y – Tx0∥ < η1; then there is x1 ∈ BX1 such
that ∥y – Tx0 – Tx1∥ < η2. Proceeding in this way, we find a sequence {xi} such that
xi ∈ BXi and

∥∥∥∥y –
n∑
i=0

Txi
∥∥∥∥ =

∥∥∥∥y – T
( n∑

i=0
xi
)∥∥∥∥ < ηn,

n = 1, 2, . . . . Now, ∥∑m+l
i=m xi∥ ≤ ∑m+l

i=m εi → 0 uniformly in l as m → ∞, which
implies that {

∑n
i=0 xi} is a Cauchy sequence. Set x = limn→∞

∑n
i=0 xi, then

Tx = lim
n→∞

T
( n∑

i=0
xi
)
= lim

n→∞

n∑
i=0

Txj = y.

But ∥x∥ ≤ ∑∞
i=0 ∥xi∥ <

∑∞
i=0

r
2i+1 = r, i.e. x ∈ BXr (0), hence y ∈ TBXr (0). !
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Corollary 5.2.1 If T is an injective continuous linear map from a Banach space onto a
Banach space, then T–1 is a bounded linear map.

Exercise 5.2.1 As a complement to Theorem 5.2.1, show that if l is a nonzero linear
functional on a n.v.s. not necessarily continuous, then lmaps open sets into open sets.

Exercise 5.2.2 Let X be a n.v.s. and F a closed vector subspace of X. For x ∈ X, let
[x] = x + F.

(i) Show that [x] = [y] if and only if y ∈ [x].
(ii) Define [x] + [y] = [x + y], λ[x] = [λx] (λ scalar). Show that both operations

are well defined and X/F := {[x] : x ∈ X} becomes a vector space under these
operations.

(iii) For [x] ∈ X/F, define ∥[x]∥ = infy∈[x] ∥y∥. Show that ∥[x]∥ is well defined and
that it defines a norm on X/F.

(iv) Define τ : X .→ X/F by τ(x) = [x]. Show that τ is a linear openmapping from
X onto X/F. The map τ is called the canonical map from X onto X/F.

5.3 The closed graph theorem

For n.v.s.’s X and Y over the same field, a n.v.s. X ⊕ Y , called the direct sum of X and
Y , is constructed as follows. Let X ⊕ Y = {[x, y] : x ∈ X, y ∈ Y}, on which vector space
operations are defined by

[x1, y1] + [x2, y2] = [x1 + x2, y1 + y2]; α[x, y] = [αx,αy],

and a norm is defined by

∥[x, y]∥ = {∥x∥2 + ∥y∥2} 1
2 .

This norm is so chosen, that when X and Y are inner product spaces (to be introduced
later in Section 5.6), so is X ⊕ Y .

ThatX ⊕ Y is a n.v.s. is a direct consequence of its definition. Observe that when both
X and Y are Banach spaces, so is X ⊕ Y .

Henceforth, by a linear operator T from a vector space X into a vector space Y , we
shall mean that the domain ofT, denotedD(T), is a vector subspace ofX, not necessarily
the whole spaceX. Now, if bothX and Y are n.v.s.’s over the same field, and ifT is a linear
operator from X into Y , T is called a closed operator if its graphG(T) := {[x,Tx] : x ∈
D(T)} is closed inX ⊕ Y ; i.e. if {xn} ⊂ D(T) with limn→∞ xn = x and limn→∞ Txn = y,
then x ∈ D(T) andTx = y. IfT is a linear operator fromX intoY and the closure ofG(T)
in X ⊕ Y is the graph of a linear operator, then T is called closable.
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Example 5.3.1 Let X = Y = C[0, 1], D(T) = {f ∈ X : f ′ ∈ X} and Tf = f ′ for f ∈
D(T). Then T is not bounded on D(T), but T is a closed operator. That T is not
bounded onD(T) follows from

∥Tfn∥ = n∥fn–1∥, n = 1, 2, . . . ,

where fn(t) = tn, t ∈ [0, 1]. That T is closed is left as an exercise.

Exercise 5.3.1 Show that the linear operator T in Example 5.3.1 is closed.

Remark For a linear operator, its domain of definition has to be specified. For example,
the differential operatorT in Example 5.3.1 has to be considered as a different operator if
its domain of definition D(T) is changed to D(T) = {f ∈ X : f ′′ ∈ X}. Note that when
defined on the new domain of definition, T is not closed, but closable.

Proposition 5.3.1 If X and Y are n.v.s.’s, then a linear operator from X into Y is closable if
and only if

{xn} ⊂ D(T), lim
n→∞

xn = 0, and lim
n→∞

Txn = y, then y = 0. (5.1)

Proof That (5.1) is necessary for T to be closable is obvious. To show that (5.1) is
sufficient for T to be closable, let [x, y] ∈ G(T), i.e. there is [xn,Txn] ∈ G(T) such
that [xn,Txn] → [x, y]. Define Sx = y. Because of (5.1), one verifies easily that S is
well defined i.e. if [xn,Txn] → [x, y] and [x′

n,Tx′
n] → [x, y′], then y′ = y. Clearly, S is

linear andG(S) = G(T). !
Example 5.3.2 Let ) be an open set in Rn, Cα ∈ Ck()) for α = (α1, . . . ,αn),

with |α| = α1 + · · · + αn ≤ k. Define D(A) = {f ∈ L2()) ∩ Ck()) : Af ∈ L2())},
whereA =

∑
|α|≤k Cα∂α . ThenA is a closable linear operator fromL2()) intoL2()).

If {fj} ⊂ D(A), fj → 0 in L2()), and Afj → g in L2()), then for any ϕ ∈ C∞
c ()),

∫

)

g(x)ϕ(x)dx = lim
j→ ∞

∫

)

(Afj)ϕdλn

= lim
j→ ∞

∫

)

(
∑
|α|≤k

Cα(x)∂α fj(x)

)

ϕ(x)dx

= lim
j→ ∞

∫

)

∑
|α|≤k

(–1)|α|∂α(Cα(x)ϕ(x))fj(x)dx

= lim
j→ ∞

∫

)

[A′ϕ](x)fj(x)dx = 0,

which implies that g = 0. By Proposition 5.3.1,A is closable. Note that in the sequence
of equalities above, the Fubini theorem and integration by parts have been used.

Exercise 5.3.2 Show that if T is a 1-1 closed operator, then T–1 is also closed.
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Theorem 5.3.1 (Closed graph theorem) A closed operator T with D(T) = X, a Banach
space, and range in a Banach space Y, is bounded.

Proof G(T) is a closed subspace of X ⊕ Y , and is therefore a Banach space. The linear
operatorU : G(T) .→ X defined by

U[x,Tx] = x, x ∈ X

is clearly one-to-one and continuous. Since U(G(T)) = X, by Corollary 5.2.1, U–1

is a continuous linear map from X onto G(T), thus T = VU–1 is continuous, where
V[x,Tx] = Tx is a continuous linear map fromG(T) to Y . !
The following exercise is a comment on Theorem 5.3.1.

Exercise 5.3.3 Let X be the space of all sequences (ak)k∈N of real numbers such that
ak ̸= 0 only for finitely many k’s. X is a vector space under the usual way of defining
addition andmultiplication by scalars. For (ak) inX, let ∥(ak)∥ = maxk |ak|; thenX is
a n.v.s. Define T : X → X by T(ak) = (kak). Show that X is a closed operator on X,
but is not bounded.

5.4 Separation principles

Consider a real vector space X; a subset E of X is said to be convex if αx + βy ∈ E
whenever x and y are in E and α, β are nonnegative numbers with α + β = 1. E is called a
convex cone if it is convex and γE ⊂ E for all γ > 0. For a set S ⊂ X, there is a smallest
convex set containing S. The smallest convex set containing S is called the convex hull
of S and is usually denoted by Conv S, while the smallest convex cone containing S will
be denoted by Con S. For x ̸= y in X, Conv{x, y} is usually denoted by [x, y] and is called
the line segment with endpoints x and y, while, for x ̸= 0 in X, Con{x} is called the half
line through x. In Rk, the convex set .k–1 := {x = (x1, . . . , xk) : xj ≥ 0, j = 1, . . . , k,∑k

j=1 xj = 1} is called the standard (k – 1)-simplex. Elements inX of the form
∑k

j=1 αjxj
(k varies from element to element), where x1, . . . , xk are in X and α = (α1, . . . ,αk) ∈
.k–1, are called convex combinations of x1, . . . , xk; if x1, . . . , xk are in S ⊂ X, they are
called convex combinations of elements in S.

For convenience, the fact that a real-valued function f assumes values ≥ α on a set
A will be expressed by f (A) ≥ α; the meaning of each of the expressions f (A) > α,
f (A)≤ α, and f (A)< α is parallelly given.

Exercise 5.4.1 Let S ⊂ X. Prove the following statements:

(i) Conv S is the set of all convex combinations of elements in S.
(ii) Con S = {

∑k
j=1 γjxj : k ∈ N, x1, . . . , xk ∈ S, γj > 0, j = 1, . . . , k}.

(iii) S is a convex cone if and only if S + S ⊂ S and γ S ⊂ S for all γ > 0.
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A set E ⊂ X is said to be linearly open if for any x ∈ E and y ∈ X, x + ty ∈ E if |t| is
small enough. Clearly, open sets in a n.v.s.X are linearly open. Note that if a linearly open
convex cone contains the origin 0, then E = X.

Exercise 5.4.2 Show that a convex set E ⊂ Rn is linearly open if and only if E is open.

Exercise 5.4.3 Suppose that E is a convex cone in X, and S a convex set in X.

(i) Show that if E ∩ S = ∅, then E ∩ (Con S) = ∅.
(ii) If S is also a convex cone, then E + S and E – S are convex cones and they are

linearly open if one of E and S is linearly open.

Theorem 5.4.1 If E is a nonempty linearly open convex cone not containing 0, then there is
a hyperplane H such that E ∩ H = ∅.

Proof Denote by F the family of all vector subspaces F of X such that F ∩ E = ∅. F is
not empty, because {0} ∈ F . OrderF by set-inclusion i.e. F1 ≤ F2 if F1 ⊂ F2 for F1
and F2 inF . If T is a chain inF , then

⋃
F∈T F is inF and is an upper bound of T . By

Zorn’s lemma (cf. Section 3.12),F has a maximal elementH.
Let D = H + E; by Exercise 5.4.3, D is a linearly open convex cone. We claim

that X = D ∪ H ∪ (–D) is a disjoint union. It is obvious that D ∩ H = ∅, and hence
(–D) ∩ H = ∅. If h ∈ D ∩ (–D), then both h and –h are in D and consequently
h + (–h) = 0 is in D, contradicting the fact that D ∩ H = ∅. Thus D ∪ H ∪ (–D) is
a disjoint union. It remains to show that X = D ∪ H ∪ (–D). Let x ∈ X, but x /∈ H.
Then H + ⟨x⟩ meets E, because H is a maximal element of F . Then there is h ∈ H
and λ ∈ R, λ ̸= 0 such that h + λx ∈ E; as a consequence λx ∈ H + E = D, and then
x ∈ D or (–D) depending on λ > 0 or λ < 0. This shows that X = D ∪ H ∪ (–D).

It will be shown presently that H is a hyperplane. This amounts to showing that
if x ∈ X, but x /∈ H, then H + ⟨x⟩ = X. Fix such an x and let y ∈ X, y /∈ H. One
has to show that y ∈ H + ⟨x⟩ to conclude the proof. For this purpose, one may
assume that x ∈ D and y ∈ (–D). Since [x, y] is connected (see Theorem 1.9.1) and
X =D ∪ H ∪ (–D),

[x, y] ∩ {D ∪ (–D)} ! [x, y] = [x, y] ∩ {D ∪ H ∪ (–D)},

therefore there is h ∈ H ∩ [x, y]. Since h ∈ [x, y] there are α ≥ 0, β ≥ 0 with α +
β = 1, such that h = αx + βy. Now h ∈ H implies that h /∈ D, which forces β to be
> 0 and hence y = 1

β
h – α

β
x ∈ H + ⟨x⟩. The proof of the theorem is complete. !

Abasic principle on separation of sets by linear functional is the following consequence
of Theorem 5.4.1.

Corollary 5.4.1 Suppose that E is a nonempty linearly open convex cone in X, and C is a
nonempty convex set in X such that C ∩ E = ∅, then there is ℓ ∈ X′ such that ℓ(C) ≥ 0
and ℓ(E) < 0.

Proof Put D = E – ConC. D is a linearly open convex cone and 0 /∈ D, because E and
ConC are disjoint, by Exercise 5.4.3. By Theorem 5.4.1, there is a hyperplane H in
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X such that H ∩ D = ∅. Choose ℓ ∈ X′ with ker ℓ = H and ℓ(D) < 0. Now, for x ∈
ConC, y ∈ E, and γ > 0

{
ℓ(y) < γ ℓ(x);
γ ℓ(y) < ℓ(x).

Let γ ↘ 0; it follows that ℓ(y) ≤ 0 for y ∈ E and ℓ(x) ≥ 0 for x ∈ ConC. In
particular, ℓ(C) ≥ 0.

It remains to show that ℓ(y) < 0 for y ∈ E. Choose x0 ∈ X with ℓ(x0) > 0, then
y + tx0 ∈ E if |t| is small enough, because E is linearly open. Since y + tx0 ∈ E, ℓ(y +
tx0) ≤ 0, and hence ℓ(y) ≤ –tℓ(x0) < 0 if t > 0 is small, as is to be shown. !
Note that in the proof of Corollary 5.4.1 we have used the well-known fact in linear

algebra that a vector subspace of X is a hyperplane in X if and only if it is the kernel of a
nonzero linear functional on X.

A real-valued function ϕ defined on a convex set S in X is called a convex function if
ϕ(αx + βy) ≤ αϕ(x) + βϕ(y) for any x, y in S and any convex pair (α,β). Ifϕ is convex,
then ϕ(

∑k
j=1 αjxj) ≤ ∑k

j=1 αjϕ(xj) for any convex combination
∑k

j=1 αjxj of elements
of S, as is easily seen by induction on k.

Consider now a convex function ϕ defined on an open interval I ofR. For a < b < c
in I, from b = c–b

c–a a +
b–a
c–a c it follows thatϕ(b) ≤ c–b

c–aϕ(a) +
b–a
c–aϕ(c) = ϕ(a) – b–a

c–a {ϕ(c) –
ϕ(a)}, or

ϕ(b) – ϕ(a)
b – a

≤ ϕ(c) – ϕ(a)
c – a

;

similarly,

ϕ(c) – ϕ(a)
c – a

≤ ϕ(c) – ϕ(b)
c – b

.

From the sequence of inequalities,

ϕ(b) – ϕ(a)
b – a

≤ ϕ(c) – ϕ(a)
c – a

≤ ϕ(c) – ϕ(b)
c – b

,

one infers that if x ̸= y are in I, the quotient ϕ(y)–ϕ(x)
y–x is bounded for y near x and

is an increasing function of y. Thus, both ϕ′
–(x) := limy→x–

ϕ(y)–ϕ(x)
y–x and ϕ′

+(x) =

limy→x+
ϕ(y)–ϕ(x)

y–x exist and are finite; furthermore, ϕ′
–(x) ≤ ϕ′

+(x) and ϕ′
+(x) ≤ ϕ′

–(y) if

x < y are in I. The last inequality follows fromϕ′
+(x) ≤ ϕ(z)–ϕ(x)

z–x ≤ ϕ(y)–ϕ(z)
y–z for z strictly

between x and y, by letting z → y. Since the left and right derivatives of ϕ exist and are
finite at each point of I,ϕ is continuous on I. Now, for x < y in I, the inequalitiesϕ′

–(x) ≤
ϕ′
+(x) ≤ ϕ′

–(y) ≤ ϕ′
+(y) imply that both ϕ′

– and ϕ′
+ are monotone increasing functions
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on I. Next, for x < y < z in I, one verifies that ϕ′
+(x) ≤ ϕ′

+(y) ≤ ϕ(z)–ϕ(y)
z–y , from which

ϕ′
+(x) ≤ ϕ′

+(x+) ≤ ϕ(z)–ϕ(x)
z–x follows when y → x (note that ϕ is continuous); then

one concludes that ϕ′
+(x) = ϕ′

+(x+), by letting z → x. Thus ϕ′
+ is a right-continuous

function; similarly, one can verify that ϕ′
– is a left-continuous function. The following

proposition has been proved.

Proposition 5.4.1 Suppose that ϕ is a convex function defined on an open interval I inR.
The following statements hold:

(i) The left derivative ϕ′
–(x) and the right derivative ϕ′

+(x) exist and are finite at each
point x of I; and for x < y in I, ϕ′

–(x) ≤ ϕ′
+(x) ≤ ϕ′

–(y).
(ii) Both ϕ′

– and ϕ′
+ are monotone increasing.

(iii) ϕ′
– is left-continuous and ϕ′

+ is right-continuous.
(iv) For x ∈ I and m ∈ [ϕ′

–(x),ϕ′
+(x)], ϕ(y) ≥ ϕ(x) + m(y – x) for all y ∈ I.

Exercise 5.4.4 Show that if ϕ is a convex function on a vector space X, then, for any
t ∈ R, the set {ϕ ≤ t} is convex and the set {ϕ < t} is convex and linearly open.

A real-valued function q on a real vector spaceX is called a sublinear functional onX if

(1) q(x + y) ≤ q(x) + q(y), x, y in X;
(2) q(λx) = λq(x), x ∈ X, λ > 0.

Note that a sublinear functional is necessarily convex.

Exercise 5.4.5 Suppose that q is a sublinear functional on X, and put Q = {q < 0}.
Show that Q is a linearly open convex cone. Also show that q(0) = 0 and –q(–x) ≤
q(x) for x ∈ X.

Exercise 5.4.6 Suppose that q is the sublinear functional on Rn defined by q(x) =
max1≤j≤n xj if x = (x1, . . . , xn). Show that a linear functional onRn satisfies l ≤ q if
and only if there is α ∈ .n–1 such that l(x) =

∑n
j=1 αjxj.

Lemma 5.4.1 Suppose that q is a sublinear functional on X with Q = {q < 0} ̸= ∅. Let
τ be a map from a set T into X. Then there is ℓ ∈ X′, ℓ ̸= 0, with ℓ ≤ q such that
ℓ(τ(T)) ≥ 0 if and only if q(Con τ(T)) ≥ 0.

Proof Suppose q(Con τ(T)) ≥ 0. Then (Con τ(T)) ∩ Q = ∅. By Corollary 5.4.1,
there is ℓ̂ ∈ X′, ℓ̂ ̸= 0, such that ℓ̂(Con τ(T)) ≥ 0 and ℓ̂(Q) < 0. It will be shown
presently that there is σ > 0 such that σ ℓ̂ ≤ q.

Define a map f from X intoR2 by

f (x) = (q(x), –ℓ̂(x)), x ∈ X,

and let C be the convex hull of f (X); then C∩ ◦
R–

2 = ∅, where ◦
R–

2 = {(r1, r2) ∈
R2 : r1 < 0, r2 < 0}. Actually, if v ∈ C, there are x1, . . . , xk in X and
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α=(α1, . . . ,αk)∈ .k–1 such that v=(
∑k

j=1 αjq(xj), –ℓ̂(
∑k

j=1 αjxj)); if
∑k

j=1 αjq
(xj)<0, then q(

∑k
j=1 αjxj) ≤ ∑k

j=1 αjq(xj) < 0, implying that
∑k

j=1 αjxj ∈ Q and

hence –ℓ̂(
∑k

j=1 αjxj) > 0; thus v /∈ ◦
R–

2. By Corollary 5.4.1, there is (α1,α2) in R2

with α2
1 + α2

2 > 0 such that
{

α1r1 + α2r2 < 0 for (r1, r2) ∈ ◦
R–

2;
α1q(x) – α2ℓ̂(x) ≥ 0 for x ∈ X.

(5.2)

The first inequality in (5.2) shows that α1 ≥ 0, α2 ≥ 0, while the second inequality
shows that α1 > 0 and α2 > 0, in thatQ ̸= ∅. Then, σ ℓ̂(x) ≤ q(x) for x ∈ X by tak-
ing σ = α–1

1 α2. Then ℓ := σ ℓ̂ satisfies ℓ ≤ q, ℓ ̸= 0, and ℓ(x) ≥ 0 for x ∈ τ(T). The
other direction of the Lemma is obvious. !

Remark

(i) Since q is sublinear, the condition q(Con τ(T)) ≥ 0 in Lemma 5.4.1 is equiva-
lent to q(Conv τ(T)) ≥ 0;

(ii) sinceQ ̸= ∅, ℓ ̸= 0 is a consequence of ℓ ≤ q;
(iii) when Q = ∅, Lemma 5.4.1 also holds if we do not require that ℓ ̸= 0, because

in this case q(Con τ(T)) ≥ 0 always holds and ℓ is simply taken to be
the zero functional.

It follows from the preceding remarks that Lemma 5.4.1 can be generalized to the
following theorem.

Theorem 5.4.2 Suppose that q is a sublinear functional on a real vector space X and τ a
map from a set T into X. Then there is ℓ ∈ X′ with ℓ ≤ q such that ℓ(τ(T)) ≥ 0 if and
only if q(Con τ(T)) ≥ 0.

An immediate consequence of Theorem 5.4.2 is the following historically interesting
result of Banach.

Corollary 5.4.2 (Banach) If q is a sublinear functional on X, then there is ℓ ∈ X′ such that
ℓ ≤ q on X.

Proof In Theorem 4.5.2, take τ(t) to be the zero element of X for each t ∈ T. !
If, for a real vector space X and a sublinear functional q on X, we let X′(q) be the set

of all those ℓ ∈ X′ such that ℓ ≤ q, then X′(q) is obviously convex, and is nonempty, by
Corollary 5.4.2.

From Theorem 5.4.2, there follow two important consequences.

Theorem 5.4.3 (Hahn–Banach) Let q be a sublinear functional on a real vector space X
and suppose that Y is a vector subspace of X and ℓ ∈ Y ′(q). Then there is ℓ̂ ∈ X′(q) such
that ℓ(y) = ℓ̂(y) for y ∈ Y.
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Proof Define a sublinear functional q̂ on X ⊕ Y by

q̂(x, y) = q(x) + ℓ(y), x ∈ X, y ∈ Y ,

and a map τ̂ from Y into X ⊕ Y by

τ̂(y) = (y, –y), y ∈ Y .

Since τ̂ is linear, Conv τ̂(Y) = τ̂(Y). Now let v ∈ Conv τ̂(Y) = τ̂(Y). Then,
v = (y, –y) for some y ∈ Y and q̂(v) = q(y) + ℓ(–y) ≥ 0; this means that
q̂(Conv τ̂(Y)) ≥ 0. By Theorem 5.4.2, there is (ℓ̂, ℓY) ∈ (X ⊕ Y)′ with (ℓ̂, ℓY) ≤ q̂
such that (ℓ̂, ℓY)(y, –y) ≥ 0 for all y∈Y, where ℓ̂ ∈ X′ and ℓY ∈ Y ′. But (ℓ̂, ℓY) ≤ q̂
if and only if ℓ̂ ≤ q on X and ℓY ≤ ℓ on Y . Now, ℓY ≤ ℓ implies that ℓY = ℓ and
(ℓ̂, ℓY)(y, –y) = ℓ̂(y) – ℓY(y) = ℓ̂(y) – ℓ(y) ≥ 0 for y ∈ Y forces ℓ̂(y) = ℓ(y) for
y ∈ Y . !

Theorem 5.4.4 (Mazur–Orlicz) Let q be a sublinear functional on a real vector space X
and τ a map from a set T into X. Suppose that θ is a map from T intoR. Then there is
ℓ ∈ X′(q) such that θ(t) ≤ ℓ(τ(t)) for all t ∈ T if and only if for every positive integer n,

n∑
j=1

αjθ(tj) ≤ q
( n∑

j=1
αjτ(tj)

)
(5.3)

for all t1, . . . , tn in T and α = (α1, . . . ,αn) ∈ .n–1.

Proof Consider X̂ = X ⊕ R. Define q̂ : X̂ .→ R by

q̂(x, λ) = q(x) + λ, x ∈ X, λ ∈ R,

then q̂ is a sublinear functional on X̂. Let now

τ̂(t) = (τ(t), –θ(t)), t ∈ T.

Suppose that (5.3) holds, then for n ∈ N, t1, . . . , tn in T and α = (α1, . . . ,αn) ∈
.n–1,

q̂
( n∑

j=1
αjτ(tj), –

n∑
j=1

αjθ(tj)
)
= q̂
( n∑

j=1
αjτ̂(tj)

)

= q
( n∑

j=1
αjτ(tj)

)
–

n∑
j=1

αjθ(tj) ≥ 0,

or q̂(Conv τ̂(T)) ≥ 0. By Theorem 5.4.2, there is ℓ̂ ∈ X̂′ with ℓ̂ ≤ q̂ on X̂ such that
ℓ̂(τ̂(T)) ≥ 0. But ℓ̂ = (ℓ,α), ℓ ∈ X′, α ∈ R, and ℓ̂(x, λ) = ℓ(x) + αλ for x ∈ X and
λ ∈ R. Observe then that ℓ̂ ≤ q̂ on X̂ means that ℓ ≤ q on X and α = 1; hence,
ℓ̂(τ̂(t)) ≥ 0 for t ∈ T implies that θ(t) ≤ ℓ(τ(t)) for t ∈ T. On the other hand,
if there is ℓ ∈ X′ with ℓ ≤ q and ℓ(τ(t)) ≥ θ(t) for t ∈ T, then (5.3) obviously
holds. !
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Corollary 5.4.3 Let X, q, and τ be as in Theorem 5.4.4, then

max
ℓ∈X′(q)

inf ℓ(τ(T)) = inf q(Conv τ(T)).

Proof Observe firstly that inf ℓ(τ(T)) ≤ inf q(Conv τ(T)) holds for any ℓ ∈ X′(q),
hence supℓ∈X′(q) inf ℓ(τ(T)) ≤ inf q(Conv τ(T)), and it remains to show that
there is ℓ ∈ X′(q) such that inf ℓ(τ(T)) = inf q(Conv τ(T)). In the case where
inf q(Conv τ(T)) = –∞, just take any ℓ ∈ X′(q) (recall thatX′(q) ̸= ∅, by Corollary
5.4.2). If inf q(Conv τ(T)) = β > –∞, let a function θ on T be defined by θ(t) = β

for all t ∈ T. Then (5.3) holds trivially and we may apply Theorem 5.4.4 to find
ℓ ∈ X′(q) such that β ≤ ℓ(τ(t)) for all t ∈ T, i.e.

inf ℓ(τ(T)) ≥ β = inf q(Conv τ(T)).

But, as we observed at the beginning of the proof, inf ℓ(τ(T)) ≤ inf q(Conv τ(T)),
therefore inf ℓ(τ(T)) = inf q(Conv τ(T)) and the proof is complete. !

Exercise 5.4.7 Show that if C is a convex set in a real n.v.s. X, such that infx∈C ∥x∥ =
σ > 0, then there is l ∈ X∗ with ∥l∥ = 1 such that l(x) ≥ σ for all x ∈ C. (Hint: apply
Corollary 5.4.3.)

The conclusion of Corollary 5.4.3 is a general form of J. von Neumann’s minimax
theorem in game theory, as illustrated in Exercise 5.4.8.

Exercise 5.4.8 (von Neumann minimax theorem) Suppose that (aij), 1 ≤ i ≤ m, 1 ≤
j ≤ n, is a givenm × n-matrix with real entries. For each j = 1, . . . , n, define a function
fj on.m–1 by

fj(α) =
m∑
i=1

aijαi, α = (α1, . . . ,αn) ∈ .m–1,

and define a quadratic form A on.m–1 × .n–1 by

A(α,β) =
n∑
j=1

βjfj(α) =
m∑
i=1

n∑
j=1

aijαiβj.

Now consider the sublinear functional q on Rn, defined by q(x) = max1≤j≤n xj for
x = (x1, . . . , xn) ∈ Rn, and let the map τ from .m–1 to Rn be defined by τ(α) =
(f1(α), . . . , fn(α)). Use Corollary 5.4.3 and the assertion of Exercise 5.4.6 to show
the following minimax equality of von Neumann:

min
α∈.m–1

max
β∈.n–1

A(α,β) = max
β∈.n–1

min
α∈.m–1

A(α,β).

Exercise 5.4.9 Let q be a sublinear functional on a real vector space X and put Q =
{x ∈ X : q(x) < 0}. Suppose that S is a convex cone in X such that Q ∩ S = ∅, and
define q̂ on X by q̂(x) = infy∈S q(x + y).
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(i) Show that q̂ is a sublinear functional on X and q̂ ≤ q.
(ii) Show that if ℓ ∈ X′(q̂), then ℓ(x) ≥ 0 for x ∈ S.

Exercise 5.4.10 Show that Theorem 5.4.2 is a consequence of Corollary 5.4.2. (Hint:
apply Corollary 5.4.2 with q replaced by q̂, as defined in Exercise 5.4.9, with
S = Con(τ(T)).)

Exercise 5.4.11 Show that Theorem 5.4.2, Theorem 5.4.3, and Theorem 5.4.4 are
equivalent to each other. (Hint: Corollary 5.4.2 is a special case of the Hahn–Banach
theorem.)

Exercise 5.4.12 Let Q be a proper linearly open convex cone in a real vector space X.
Fix x0 ∈ Q .

(i) Show that the family L = {ℓ ∈ X′ : ℓ < 0 on Q and ℓ(x0) = –1} is nonempty
and that for x ∈ X, supℓ∈L ℓ(x) is finite. (Hint: for x ∈ X there is σ > 0 such
that x0 + σx ∈ Q , from which assert that ℓ(x) ≤ 1

σ
for ℓ ∈ L.)

(ii) Put q(x) = supℓ∈L ℓ(x) for x ∈ X. Show that q is a sublinear functional onX and
thatQ = {x ∈ X : q(x) < 0}.

In this final part of the section our discussion is restricted to real normed vector spaces;
and our concern is the separation of convex sets by closed affine hyperplane. By an affine
hyperplane we mean a translation of a hyperplane in a vector space, i.e. an affine hyper-
plane in a vector space X is a set of the form x + H, where x ∈ X and H is a hyperplane
in X. We recall from elementary linear algebra that a vector subspace of a vector space
X is a hyperplane if and only if it is the kernel of a nonzero linear functional on X.
Note that if ℓ1, ℓ2 are nonzero linear functionals on X, then ker ℓ1 = ker ℓ2 if and only
if ℓ1 = αℓ2 for some nonzero scalar α. Thus an affine hyperplane in X is a set of the form
{x ∈ X : ℓ(x) = α} for some ℓ ∈ X′ (ℓ ̸= 0) and some scalar α. If X is a normed vector
space, then, since the closure of a vector subspace of X is a vector subspace of X, every
hyperplane in X is either closed or dense in X. Observe that a hyperplane H = ker ℓ,
ℓ ∈ X′, in a normed vector space X is closed if and only if ℓ ∈ X∗, and hence a closed
affine hyperplane in X is of the form {x ∈ X : ℓ(x) = α} for some ℓ ∈ X∗ (ℓ ̸= 0) and
some scalar α.

We fix now a real n.v.s. X. Nonempty sets A and B in X are said to be separated strictly
by a closed affine hyperplane if there are ℓ ∈ X∗ andα ∈ R such that ℓ(x) < α for x ∈ A
and ℓ(y) > α for y ∈ B; while they are separated strictly in the strong sense if there are
ℓ ∈ X∗,α ∈ R, and ε > 0 such that ℓ(x) ≤ α – ε for x ∈ A and ℓ(y) ≥ α + ε for y ∈ B.
Note that ℓ ∈ X∗ in the above definition is necessarily nonzero, and {x ∈ X : ℓ(x) = α}
is the closed affine hyperplane in question. A closed set of the form {x ∈ X : ℓ(x) ≤ α},
where ℓ ∈ X∗ and α ∈ R, is called a closed half-space in X.

Lemma 5.4.2 Let G be a nonempty open convex set in X not containing 0. Then there is
ℓ ∈ X∗ such that ℓ(x) < 0 for x ∈ G.

Proof Put E =
⋃

λ>0 λG. Clearly E is a nonempty open convex cone not contain-
ing 0, and we infer from Corollary 5.4.1 by taking C = {0} that there is ℓ ∈ X′ such
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that ℓ(x) < 0 for x ∈ E (and hence for x ∈ G). Since G is disjoint with the hyper-
plane H := ker ℓ, H cannot be dense in X and therefore is closed. Consequently
ℓ ∈ X∗. !

Theorem 5.4.5 Any two nonempty disjoint open convex sets A and B in X can be separated
strictly by a closed affine hyperplane.

Proof Let G = A – B. G is a nonempty open convex set in X not containing 0; we infer
then from Lemma 5.4.2 that there is ℓ ∈ X∗ such that ℓ(x – y) < 0 for x ∈ A and
y ∈ B, and hence ℓ(A) is bounded above and ℓ(B) is bounded below. Observe that
ℓ(A) and ℓ(B) are open intervals. Let a = sup ℓ(A) and b = inf ℓ(B); then a ≤ b.
Choose α ∈ [a, b], then f (x) < α for x ∈ A and ℓ(y) > α for y ∈ B. Thus A and B
are separated strictly by the closed affine hyperplane {x ∈ X : ℓ(x) = α}. !

Theorem 5.4.6 Suppose that A and B are disjoint closed convex sets in X, one of which is
compact. Then there is a closed affine hyperplane which separates A and B strictly in the
strong sense.

Proof We may assume that B is compact and let G = X\A. Then G is an open set
containing B. For x ∈ B, choose rx > 0 such that x + Brx(0) ⊂ G. The family {x +
B 1

2 rx
(0)}x∈B is an open covering of B, hence there are x1, . . . , xk in B such that

B ⊂ ⋃k
j=1{xj + B 1

2 rxj
(0)}. Let r = min1≤j≤k

1
2 rxj > 0, then B + Br(0) ⊂ G. Therefore

{B + Br(0)} ∩ A = ∅, and consequently
{
B + B 1

2 r
(0)
}

∩
{
A + B 1

2 r
(0)
}
= ∅.

We infer then from Theorem 5.4.5 that there are ℓ ∈ X∗ and α ∈ R, such that

ℓ(x + z) < α, x ∈ A, z ∈ B 1
2 r
(0);

ℓ(y + z) > α, y ∈ B, z ∈ B 1
2 r
(0).

Now put ε = sup{|ℓ(z)| : z ∈ B 1
2 r
(0)}. Then, by choosing sequences {z′

k} and {z
′′
k}

inB 1
2 r
(0) such that ℓ(z′

k) → ε and ℓ(z′′
k ) → –ε, we conclude from ℓ(x) < α – ℓ(z′

k)
for x ∈ A by letting k → ∞ that ℓ(x) ≤ α – ε; and conclude from ℓ(y) ≥ α – ℓ(z′′

k )
for y ∈ B by letting k → ∞ that ℓ(y) ≥ α + ε. !

Exercise 5.4.13 Show that a set K in a real n.v.s. X is closed convex if and only if K is
the intersection of a family of closed half-spaces in X.

Remark Since a complex vector space is also a real vector space, sublinear functionals
are also defined on complex vector spaces. This fact is often used without being noted
explicitly.
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5.5 Complex form of Hahn–Banach theorem

Let X be a vector space. A semi-norm on X is a sublinear functional q on X such that
q(αx) = |α|q(x) for x ∈ X and for scalar α (cf. Remark at the end of Section 5.4). Note
that a semi-norm is nonnegative, because if q(x) < 0 for some x, then 0 = q(0) = q(x +
(–x)) ≤ q(x) + q(–x) = 2q(x) < 0, which is absurd.

Theorem 5.5.1 Let X be a vector space and q a semi-norm on X. Suppose that ℓ is a linear
functional on a vector subspace Y of X such that |ℓ| ≤ q on Y, then there is ℓ̂ ∈ X′ with
|ℓ̂| ≤ q on X such that ℓ̂(y) = ℓ(y) for y ∈ Y.

Proof If X is a real vector space, then the theorem is a consequence of Theorem 5.4.3,
as is easily verified. So we assume that X is a complex vector space. Write

ℓ(y) = ℓ1(y) + iℓ2(y), y ∈ Y ,

where ℓ1(y) = Re ℓ(y) and ℓ2(y) = Im ℓ(g). Then ℓ1 and ℓ2 are real linear functionals
on Y . Since iℓ(y) = ℓ(iy), it follows that ℓ2(y) = –ℓ1(iy), i.e.

ℓ(y) = ℓ1(y) – iℓ1(iy), y ∈ Y .

Obviously, |ℓ1| ≤ q on Y . Hence there is a real linear functional ℓ̂1 on X extending ℓ1
such that |ℓ̂1(x)| ≤ q(x) for x ∈ X.

Define ℓ̂ on X by

ℓ̂(x) = ℓ̂1(x) – iℓ̂1(ix), x ∈ X.

One can see that ℓ̂ is a linear functional on X and ℓ̂ extends ℓ. It remains only to show
that |ℓ̂(x)| ≤ q(x) for x ∈ X. For any x ∈ X, there is β ∈ C with |β| = 1 such that
|ℓ̂(x)| = βℓ̂(x), then,

|ℓ̂(x)| = βℓ̂(x) = ℓ̂(βx) = ℓ̂1(βx) – iℓ̂1(iβx)

= ℓ̂1(βx) ≤ q(βx) = |β|q(x) = q(x). !

Some relevant consequences of Theorem 5.5.1 are now considered.

Corollary 5.5.1 Let X be a normed vector space, then for any x0 ∈ X, there is ℓ ∈ X∗, with
∥ℓ∥ = 1 such that ℓ(x0) = ∥x0∥.

Proof Suppose first that x0 ̸= 0, and let Y = ⟨{x0}⟩ be the vector subspace ofX spanned
by {x0}. Define a linear functional ℓ1 on Y by

ℓ1(αx0) = α∥x0∥,
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then |ℓ1(αx0)| = ∥αx0∥, implying ∥ℓ1∥Y∗ = 1. By Theorem 5.5.1 with q being the
norm on X, there is ℓ ∈ X′ extending ℓ1 such that |ℓ(x)| ≤ ∥x∥. Then, ℓ(x0) =
ℓ1(x0) = ∥x0∥ and ∥ℓ∥ = 1.

Now if x0 = 0, simply take ℓ to be any ℓ ∈ X′ with ∥ℓ∥ = 1 (note that the first part
of the proof shows that there is ℓ ∈ X′ with ∥ℓ∥ = 1). !

Corollary 5.5.2 Let X be any normed vector space. Then for any x and y in X, x ̸= y, there
is ℓ ∈ X∗ such that ℓ(x) ̸= ℓ(y). i.e. X∗ separates points of X.

Proof Let x0 = x – y. By Corollary 5.5.1, there is ℓ ∈ X∗ with ∥ℓ∥ = 1 such that ℓ(x0) =
∥x0∥ = ∥x – y∥. But,

|ℓ(x) – ℓ(y)| = |ℓ(x – y)| = |ℓ(x0)| = ∥x0∥ > 0. !

Exercise 5.5.1 Show that if x0 ∈ X and x0 ̸= 0, then there is ℓ ∈ X∗ with ∥ℓ∥ = ∥x0∥
and ℓ(x0) = ∥x0∥2.

Exercise 5.5.2 Let X = L1[0, 1] and Y = C[0, 1]. Choose x0 ∈ (0, 1) and let ℓ(f ) =
f (x0) for f ∈ Y . Is it possible to extend ℓ to a bounded linear functional on X?

For a normed vector space X, define a function ⟨·, ·⟩ on X × X∗ by

⟨x, x∗⟩ = x∗(x), (x, x∗) ∈ X × X∗,

⟨·, ·⟩ is called the natural pairing between X and X∗.
For x ∈ X, let j(x) ∈ X∗∗ := (X∗)∗ be defined by

⟨x∗, j(x)⟩ = ⟨x, x∗⟩, x∗ ∈ X∗.

The mapping j is a linear map from X into X∗∗, and since X∗ separates points of X, it is
one-to-one; furthermore it is an isometry in the sense that ∥j(x)∥ = ∥x∥ for all x ∈ X.

Theorem 5.5.2 The mapping j is a linear isometry from X into X∗∗.

Proof It is left only to show that ∥j(x)∥ = ∥x∥, where ∥j(x)∥ is the norm of j(x) in X∗∗.
From

∥j(x)∥ = sup
x∗∈X∗
∥x∗∥=1

|⟨x∗, j(x)⟩| = sup
x∗∈X∗
∥x∗∥=1

|⟨x, x∗⟩|

≤ sup
x∗∈X∗
∥x∗∥=1

∥x∥∥x∗∥ = ∥x∥,

it follows that ∥j(x)∥ ≤ ∥x∥. On the other hand, by Corollary 5.5.1, there
is x∗ ∈ X∗ with ∥x∗∥ = 1 such that ⟨x, x∗⟩ = ∥x∥, hence ∥j(x)∥ ≥ ∥x∥. Thus,
∥j(x)∥ = ∥x∥. !
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Because of Theorem 5.5.2 we shall considerX as embedded inX∗∗ as a normed vector
subspace through themapping j. IfX = X∗∗, thenX is called a reflexive space. A reflexive
normed vector space is necessarily a Banach space. In general, the closure ofX inX∗∗ is a
Banach space, which is called the completion of X. Note that if x is in the completion of
a n.v.s. X, then there is a Cauchy sequence {xn} in X ⊂ X∗∗ such that xn → x in X∗∗.

Example 5.5.1 Let X = L∞[–1, 1] and Y = C[–1, 1], and let δ ∈ Y∗ be defined by
δ(f ) = f (0) for f ∈ Y . Since δ is a bounded linear functional with norm 1 on Y , it can
be extended to be a bounded linear functional onX with the same normby theHahn–
Banach theorem; we also denote the extended functional by δ, i.e., δ ∈ L∞[–1, 1]∗.
It will be shown in Chapter 6 that L1[–1, 1]∗ = L∞[–1, 1], in the sense that for ℓ ∈
L1[–1, 1]∗ there is h ∈ L∞[–1, 1] such that ℓ(f ) =

∫
[–1,1] fhdλ for all f ∈ L1[–1, 1].

We know from this fact that δ ∈ L1[–1, 1]∗∗. But there is no h ∈ L1[–1, 1] such
that δ(f ) =

∫
[–1,1] fhdλ = f (0) for f ∈ C[–1, 1]; this means that δ /∈ L1[–1, 1], i.e.,

L1[–1, 1] ! L1[–1, 1]∗∗.

Exercise 5.5.3 Suppose that Y is a vector subspace of a n.v.s. X such that Y ̸= X, and
let Y⊥ = {x∗ ∈ X∗ : ⟨y, x∗⟩ = 0 for all y ∈ Y}.

(i) For x ∈ X\Y , show that there is x∗ ∈ Y⊥ such that ∥x∗∥ = 1 and ⟨x, x∗⟩ =
infy∈Y ∥x – y∥. (Hint: define l ∈ (⟨{x}⟩ + Y)∗ by l(αx + y) = α infy∈Y ∥x – y∥
for scalar α and y ∈ Y , then extend l to be defined on X by the Hahn–Banach
theorem.)

(ii) For x ∈ X, show that

inf
y∈Y

∥x – y∥ = max
x∗∈Y⊥
∥x∗∥≤1

|⟨x, x∗⟩| = max
x∗∈Y⊥
∥x∗∥=1

|⟨x, x∗⟩|.

Exercise 5.5.4 Let F be a closed vector subspace in a real n.v.s. X and let τ be the
canonical map from X onto X/F.

(i) Suppose now that C is an open convex set with C ∩ F = ∅. Show that τ(C) is an
open convex set in X/F, not containing [0].

(ii) Suppose that Y is a vector subspace of X and C an open convex set in X, such
that C ∩ Y = ∅; show that there is a closed hyperplane H such that H ⊃ Y and
H ∩ C = ∅. (Hint: use Theorem 5.4.1 in X/Y and note that a hyperplane in a
n.v.s. X is either closed or dense in X.)

5.6 Hilbert space

Let E be a vector space. For definiteness, it will be assumed that E is a complex space
throughout this section. The case of E being a real vector space can be treated similarly.
E is called an inner product space if there is a map (·, ·) : E × E → C satisfying the

following conditions:

(i) (x, x) ≥ 0 ∀x ∈ E, and (x, x) = 0 if and only if x = 0;
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(ii) (·, x) is linear on E for each x ∈ E; and
(iii) (x, y) = (y, x) for all x, y in E (for z ∈ C, z̄ is the conjugate of z).

The map (·, ·) is called an inner product on E. We always consider a vector subspace
F of an inner product space E as an inner product space, with the inner product inherited
from that on E, i.e. the inner product on F is the restriction to F × F of that on E. Note
that when E is a real vector space, condition (iii) is replaced by (x, y) = (y, x). If E is an
inner product space, put ∥x∥ = (x, x)1/2 for x ∈ E.

Theorem 5.6.1 If E is an inner product space, then for x, y in E, the following hold:

(a) ∥x – y∥2 + ∥x + y∥2 = 2(∥x∥2 + ∥y∥2) (Parallelogram identity);
(b) |(x, y)| ≤ ∥x∥ · ∥y∥ (Schwarz inequality); and
(c) ∥x + y∥ ≤ ∥x∥ + ∥y∥ (Triangle inequality).

Proof For x and y in E,

∥x – y∥2 = (x – y, x – y) = ∥x∥2 – 2 Re(x, y) + ∥y∥2; (5.4)

∥x + y∥2 = (x + y, x + y) = ∥x∥2 + 2 Re(x, y) + ∥y∥2. (5.5)

(a) follows by adding (5.4) and (5.5).
To show (b), it is sufficient to show that |(x, y)| ≤ 1 whenever ∥x∥ = ∥y∥ = 1.

Now if ∥x∥ = ∥y∥ = 1, | Re(x, y)| ≤ 1 follows from (5.4) or (5.5) according to
whether Re(x, y) ≥ 0 or R(x, y) < 0, because the far left sides of (5.4) and (5.5) are
both greater than or equal to zero. If θ ∈ C with |θ | = 1 is chosen so that (x, θy) =
|(x, y)|, then

|(x, y)| = (x, θy) = Re(x, θy) ≤ 1,

this concludes (b). Finally,

∥x + y∥2 = (x + y, x + y) = ∥x∥2 + 2 Re(x, y) + ∥y∥2
≤ ∥x∥2 + 2∥x∥ · ∥y∥ + ∥y∥2 = (∥x∥ + ∥y∥)2,

and thus,

∥x + y∥ ≤ ∥x∥ + ∥y∥. !

FromTheorem5.6.1 (c),E is a normed vector space if the norm ∥x∥ of x inE is defined
by ∥x∥ = (x, x)1/2. For an inner product space, the norm so defined is called the norm
associated with its inner product. Unless stated otherwise, for an inner product space
the norm associated with its inner product is always chosen as its norm.

An inner product space E is called aHilbert space if it is complete when considered as
a normed vector space. Obviously, a closed vector subspace of aHilbert space is aHilbert
space.
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The most important class of Hilbert spaces is the class of all L2(),1,µ) with inner
product (f , g), defined by

∫
)
f ḡdµ for f , g in L2(),1,µ). The norm associated with this

inner product is the L2-norm. The spaceCn with inner product (z,w) =
∑n

k=1 zkw̄k for
z = (z1, . . . , zn) and w = (w1, . . . ,wn) is a particular case; the norm associated with this
inner product is the norm introduced for Cn in Section 1.4, hence Cn with this inner
product is called the n-dimensional unitary space. Correspondingly, the Euclidean norm
of Rn is associated with the inner product (x, y) =

∑n
k=1 xkyk for x = (x1, . . . , xn) and

y = (y1, . . . , yn).
Suppose that E is a finite-dimensional vector space of dimension n and let b1, . . . , bn

form a basis of E. For x =
∑n

j=1 xjbj, y =
∑n

j=1 yjbj in E, where the xj’s and yj’s are scalars,
define (x, y) =

∑n
j=1 xjȳj. E is clearly a Hilbert space with inner product so defined. Then

it follows from Proposition 1.7.2 that every finite-dimensional inner product space is a
Hilbert space.

An example of infinite-dimensional Hilbert space is the real space ℓ2(Z) considered
in Section 1.6 whose norm is associated with the inner product (x, y) =

∑
k∈Z xkyk for

x = (xk) and y = (yk). We shall also use ℓ2(Z) to denote the complex Hilbert space of all
those complex sequences (zk)k∈Z such that

∑
k∈Z |zk|2 < ∞, and with inner product

(z,w) :=
∑

k∈Z zkw̄k for z = (zk) and w = (wk). Whether ℓ2(Z) is a complex or real
space will either be stated explicitly or occasioned by context.

As inner product on an inner product space is a generalization of the scalar product for
vectors in three-dimensional Euclidean space in which two nonzero vectors are perpen-
dicular to each other if and only if their scalar product is zero. Therefore, two elements
x and y in an inner product space E are said to be orthogonal if (x, y) = 0, and, for a
nonempty subset A of E, call the set A⊥ := {x ∈ E : (x, y) = 0 ∀y ∈ A}, the orthogonal
complement of A in E. Obviously, A⊥ is a closed vector subspace of E.

Exercise 5.6.1 LetM be a vector subspace of an inner product space E; show thatM ∩
M⊥ = {0}. Also show that if an element x of E can be expressed as the sum x = y + z
of an element y inM and an element z inM⊥, then such an expression is unique.

Theorem 5.6.2 (Orthogonal projection theorem) Suppose that E is a Hilbert space and
M a closed vector subspace of E. Then for any x ∈ E, there is a unique element y ∈ M such
that

∥x – y∥ = min
z∈M

∥x – z∥. (5.6)

Furthermore, y is characterized by

x – y ∈ M⊥. (5.7)

Proof Let α = infz∈M ∥x – z∥. There is a sequence {yn} inM such that

α2 ≤ ∥x – yn∥2 ≤ α2 +
1
n
, n = 1, 2, . . . .
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By parallelogram identity,

∥(yn – x) – (ym – x)∥2 + ∥(yn – x) + (ym – x)∥2

= 2(∥yn – x∥2 + ∥ym – x∥2) ≤ 4α2 +
2
n
+

2
m
,

or

∥yn – ym∥2 ≤ 4α2 +
2
n
+

2
m

– 4
∥∥∥
yn + ym

2
– x
∥∥∥
2
≤ 2

(
1
n
+

1
m

)
,

fromwhich it follows that {yn} is a Cauchy sequence inM. SinceM is complete, there
is y ∈ M such that limn→∞ ∥yn – y∥ = 0. Then,

∥x – y∥2 = lim
n→∞

∥x – yn∥2 = α2,

i.e.

∥x – y∥ = α = inf
z∈M

∥x – z∥ = min
z∈M

∥x – z∥.

We have shown that there is y ∈ M such that

∥x – y∥ = min
z∈M

∥x – z∥.

Now let y be any element of M which satisfies (5.6); then for z ∈ M and t ∈ R, we
have

∥x – y – tz∥2 = ∥x – y∥2 – 2 Re(x – y, z)t + t2∥z∥2,

or

0 ≤ ∥x – y – tz∥2 – ∥x – y∥2 ≤ –2 Re(x – y, z)t + t2∥z∥2.

Then for t > 0,

0 ≤ –2 Re(x – y, z) + t∥z∥2,

and hence,

Re(x – y, z) ≤ 0,

by letting t ↘ 0; while for t < 0,

0 ≥ –2 Re(x – y, z) + t∥z∥2
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holds, and by letting t ↗ 0, we have

Re(x – y, z) ≥ 0.

Hence,

Re(x – y, z) = 0. (5.8)

If we replace z in (5.8) by iz, then Im(x – y, z) = 0. Thus (x – y, z) = 0, i.e. y satisfies
(5.7). Suppose now that (5.6) holds for y = y′ and y′′ inM, then (x – y′, y′ – y′′) = 0 =
(x – y′′, y′ – y′′) = 0 by (5.7), and consequently,

(y′ – y′′, y′ – y′′) = (x – y′′ + y′ – x, y′ – y′′) = 0,

which implies that ∥y′ – y′′∥ = 0 or y′ = y′′. Hence, there is unique y ∈ M that
satisfies (5.6).

Finally, suppose y ∈ M satisfies (5.7), then for z ∈ M,

∥x – z∥2 = ∥(x – y) + (y – z)∥2 = ∥x – y∥2 + 2 Re(x – y, y – z) + ∥y – z∥2
= ∥x – y∥2 + ∥y – z∥2 ≥ ∥x – y∥2,

or y satisfies (5.6). !
The map that associates each x ∈ X with the unique element y in M which satisfies

(5.6) (or (5.7)) is called the orthogonal projection from X onto M. This map will be
denoted by PM .

Corollary 5.6.1 Suppose that M is a closed vector subspace of a Hilbert space E; then every
x ∈ E can be expressed uniquely as x = y + z, where y ∈ M and z ∈ M⊥. In other words,
E = M ⊕ M⊥.

Proof For x ∈ E, let y = PMx. Then x – y ∈ M⊥, by (5.7), hence x = y + (x – y) ≡
y + z, where y ∈ M and z ∈ M⊥. The uniqueness of such an expression follows from
Exercise 5.6.1. !

Exercise 5.6.2 LetM be a closed vector subspace of a Hilbert space E.

(i) Show that PM is linear and that the following properties hold:
(a) PMx = x if and only if x ∈ M; (b) P2M = PM; and (c) ∥PMx∥ ≤ ∥x∥ for all

x ∈ E.
(ii) Show that 1 – PM = PM⊥ .
(iii) Show that ∥x∥2 = ∥PMx∥2 + ∥PM⊥x∥2 for x ∈ E (Pythagoras relation).

Theorem 5.6.3 (Riesz representation theorem) If E is a Hilbert space, and x∗ ∈ E∗, then
there is a unique y0 ∈ E such that

⟨x, x∗⟩ = (x, y0), x ∈ E.
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Furthermore,

∥x∗∥ = ∥y0∥,

and the map x∗ → y0 is conjugate linear (an operator T from a vector space into a vector
space is conjugate linear if T(αx + βy) = ᾱTx + β̄Ty for all x, y in D(T) and all scalars
α and β).

Proof If x∗ = 0, take y0 = 0. Suppose now that x∗ ̸= 0 and let M = ker x∗ := {x∈ E :
⟨x, x∗⟩ = 0}. M is clearly a closed vector subspace of E. Since x∗ ̸= 0, there is x0 ∈
M⊥ such that ⟨x0, x∗⟩ = 1. Now let x ∈ E and put λ = ⟨x, x∗⟩. By Corollary 5.6.1,
x = y + z, where y ∈ M and z ∈ M⊥, hence, λ = ⟨x, x∗⟩ = ⟨z, x∗⟩ = ⟨λx0, x∗⟩, or ⟨z –
λx0, x∗⟩ = 0, which means that z – λx0 ∈ M. But z – λx0 is also inM⊥, consequently
z = λx0, by Exercise 5.6.1. Now, from x = y + λx0 we have (x, x0) = (y + λx0, x0) =
λ∥x0∥2 = ⟨x, x∗⟩∥x0∥2. If we take y0 = x0

∥x0∥2 , then (x, y0) = ⟨x, x∗⟩ for x∈ E. Suppose
that y′0 ∈ E also satisfies ⟨x, x∗⟩ = (x, y′0) for all x ∈ E, then (y′0 – y0, x) = 0 for all x
in E; in particular, (y′0 – y0, y′0 – y0) = 0 or ∥y′0 – y0∥ = 0, implying y′0 = y0. Hence,
there is unique y0 ∈ E satisfying ⟨x, x∗⟩ = (x, y0) for all x in E. From ⟨x, x∗⟩ =
(x, y0) it follows readily that ∥x∗∥ ≤ ∥y0∥; but ∥y0∥2 = (y0, y0) = |⟨y0, x∗⟩| ≤ ∥y0∥ ·
∥x∗∥, hence, ∥y0∥ ≤ ∥x∗∥. Thus ∥y0∥ = ∥x∗∥. That x∗ → y0 is conjugate linear is
obvious. !

Exercise 5.6.3

(i) Denote byR themap x∗ .→ y0 in Theorem 5.6.3. Show that E∗ is a Hilbert space
with inner product (·, ·)∗, defined by (x∗, y∗)∗ = (Ry∗,Rx∗) for x∗, y∗ in E∗.

(ii) Show that Hilbert spaces are reflexive.

Example 5.6.1 Define on C[0, 1] an inner product by

(f , g) =
∫ 1

0
f (t)g(t)dt, f , g ∈ C[0, 1].

We claim that C[0, 1] is not complete with the norm associated with this inner
product. We denote this inner product space by Ĉ[0, 1] in this example. Let f
be the indicator function of [ 12 , 1] on [0, 1] and for each integer n > 2, let fn
be a continuous function such that 0 ≤ fn ≤ 1 and coincides with f on [0, 12 –1
n ] ∪ [ 12 , 1]. Then fn → f in L2[0, 1], i.e., ∥fn – f∥2 → 0. Let g be any function
in Ĉ[0, 1], then ∥fn – g∥2 ≥ ∥f – g∥2 – ∥fn – f∥2 and hence lim infn→∞ ∥fn – g∥2 ≥
∥f – g∥2 > 0. Thus {fn}, which is a Cauchy sequence in Ĉ[0, 1], does not converge in
Ĉ[0, 1].

The Riesz representation theorem for linear functionals on Hilbert spaces might lead
to far reaching results, even when the spaces concerned are finite dimensional. We illus-
trate this fact by proving an interesting result of A.P. Calderón and A. Zygmund about
Friederich mollifiers. Recall that from a real-valued C∞ function ϕ onRn with compact
support in the unit closed ball C1(0) and with

∫
ϕdλn = 1, one can construct a family
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{Jε}ε>0 of operators on Lloc(Rn) in the following way (cf. Section 4.9). For ε > 0, let
ϕε(x) = ε–n( x

ε
) for x ∈ Rn, then suppϕε ⊂ Cε(0) and

∫
ϕεdλn = 1. If f ∈ Lloc(Rn),

define a function Jεf by

Jεf (x) =
∫

Rn
f (y)ϕε(x – y)dλn(y), x ∈ Rn.

The family {Jε}ε>0 depends on ϕ and is called a Friederich mollifier.

Theorem 5.6.4 (Calderón–Zygmund) For each k ∈ N, there is a Friederichs mollifier
{Jε}ε>0 such that Jεp = p for every polynomial p of degree≤ k defined onRn.

Proof Let E be the space of all real polynomials p of degree≤ k onRn. E is a real vector
space of finite dimension. Choose a nonnegative and nonzero C∞ function η onRn

with supp η ⊂ C1(0) and define an inner product (·, ·) on E by (p, q) =
∫
Rn pqηdλn

for p, q in E. Since dim E < ∞, E is a Hilbert space. Let l be a linear functional on E
defined by

l(p) = p(0), p ∈ E.

Since dim E < ∞, every linear functional on E is bounded. By Theorem 5.6.3, there
is q0 ∈ E such that

p(0) = (p, q0) =
∫

Rn
pq0ηdλn.

If we choose p to be the constant polynomial 1 in the above equality, we have∫
Rn q0ηdλn = 1. Let ϕ = q0η and {Jε}ε>0 the corresponding Friederich mollifier.
Now for p ∈ E and x ∈ Rn,

Jεp(x) =
∫

Rn
p(y)ϕε(x – y)dλn(y) = ε–n

∫

Rn
p(y)ϕ

(x – y
ε

)
dλn(y)

=
∫

Rn
p(x – εy)ϕ(y)dλn(y) = p̂x(0) = p(x),

where p̂x(y) = p(x – εy). !
Another remarkable application of the Riesz representation theoremwill be presented

in Section 5.7.

5.7 Lebesgue–Nikodym theorem

Weconsider in this section an interesting application of theRiesz representation theorem
to measure theory.

Let (),1) be ameasurable space, and suppose thatµ and ν are finite measures on1.
The following theorem asserts that ν can be decomposed in a certain way relative toµ.
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Theorem 5.7.1 (Lebesgue–Nikodym theorem) Let (),1) be a measurable space, and
µ, ν finite measures on 1. Then there is a unique h ∈ L1(),1,µ) and a µ-null set N,
such that

ν(A) =
∫

A
hdµ + ν(A ∩ N), A ∈ 1. (5.9)

Proof Let ρ = µ + ν; then ρ is a finite measure on 1. Consider the real Hilbert space
L2(),1, ρ) and consider the linear functional ℓ on L2(),1, ρ), defined by

ℓ(f ) =
∫

fdν.

Since

|ℓ(f )| ≤
(∫

|f |2dν
)1/2 (∫

1dν
)1/2

≤ ν())1/2
[∫

|f |2dρ
]1/2

= ν())1/2∥f∥L2(ρ),

ℓ is a bounded linear functional on L2(),1, ρ). By the Riesz representation theorem
there is unique g ∈ L2(),1, ρ), such that

∫
fdν =

∫
fgdρ =

∫
fgdµ +

∫
fgdν

for all f ∈ L2(),1, ρ), or
∫

f (1 – g)dν =
∫

fgdµ (5.10)

for all f ∈ L2(),1, ρ).
We claim first that there is aµ-null setN such that 0 ≤ g(x) < 1 for x ∈ )\N. Let

A1 = {x ∈ ) : g(x) < 0} and A2 = {x ∈ ) : g(x) ≥ 1}. If we let f = IA1 in (5.10),
then 0 ≤ ν(A1) ≤

∫
A1
(1 – g)dν =

∫
A1
gdµ, from which it follows that µ(A1) = 0.

Next choose f = IA2 in (5.10); we have 0 ≥
∫
A2
(1 – g)dν =

∫
A2
gdµ ≥ µ(A2). This

implies that µ(A2) = 0. Put N = A1 ∪ A2, then µ(N) = 0 and 0 ≤ g(x) < 1 for
x ∈ )\N.

We show next that (5.10) holds for every nonnegativemeasurable function f which
vanishes on N. Suppose that f is such a function; for each positive integer n, let
fn = f ∧ n, i.e. fn(x) = f (x) if f (x) ≤ n, otherwise fn(x) = n. Since 1 – g > 0 and g ≥ 0
on )\N, 0 ≤ fn(1 – g) ↗ f (1 – g), and 0 ≤ fng ↗ fg, then from the monotone
convergence theorem and the fact that (5.10) holds for each fn, it follows that

∫
f (1 – g)dν = lim

n→∞

∫
fn(1 – g)dν = lim

n→∞

∫
fngdµ =

∫
fgdµ.
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This shows that (5.10) holds for every such function. For A ∈ 1, let B = A ∩
()\N); then (5.10) holds for the function f := IB(1 – g)–1 and we have

∫
IBdν =∫

IB g
1–g dµ =

∫
A I)\N · g

1–g dµ, or

ν(A ∩ ()\N)) =
∫

A
hdµ

if we put h = I)\N
g
1–g . Note that h ≥ 0, and, since

∫
)
hdµ = ν()\N) < ∞,

h∈ L1(),1,µ). Now,

ν(A) = ν(A ∩ ()\N)) + ν(A ∩ N) =
∫

A
hdµ + ν(A ∩ N),

hence (5.9) holds. Now suppose that there is h′ ∈ L1(),1,µ) and µ-null set N′,
such that

ν(A) =
∫

A
h′dµ + ν(A ∩ N′), A ∈ 1;

if we put N̂ = N ∪ N′, then
∫
A∩N̂c hdµ =

∫
A∩N̂c h′dµ for all A ∈ 1, and consequently

h = h′ µ-a.e. on)\N̂; but N̂ being aµ-null set implies that h = h′ µ-a.e. on). Thus
h is unique. !

Exercise 5.7.1 Show that Theorem 5.7.1 holds if bothµ and ν are σ -finite. But in this
case hmay not beµ-integrable; however it isµ-integrable if ν is finite.

Measure ν is said to be µ-absolutely continuous on 1, if A ∈ 1 and µ(A) = 0
results in ν(A) = 0; while ν is µ-singular on 1, if there is a µ-null set N such that
ν(A) = (A∩N) for all A ∈ 1. Note that if we use µ∗ and ν∗ to denote the outer meas-
ures on), constructed respectively fromµ and ν on1 byMethod I, then the definitions
given here for µ-absolute continuity and µ-singularity for ν as measure on 1 are the
same asµ∗-absolute continuity andµ∗-singularity for ν∗, introduced in Section 4.6.

Corollary 5.7.1 (Radon–Nikodym) If µ and ν are σ -finite measures on 1 and ν is µ-
absolutely continuous, then there is a unique nonnegative measurable function h on) such
that

ν(A) =
∫

A
hdµ, A ∈ 1.

Proof We know that Theorem 5.7.1 also holds true if µ and ν are σ -finite (cf. Exercise
5.7.1). We may then apply (5.9). Sinceµ(A ∩ N) = 0 implies that ν(A ∩ N) = 0 for
all A ∈ 1 by theµ-absolute continuity of ν, the corollary follows. !

Remark The function h in Corollary 5.7.1 is called the Radon–Nikodym derivative
of ν w.r.t. µ, and the conclusion of the corollary is usually referred to as the Radon–
Nikodym theorem and is expressed by dν = hdµ or h = dν

dµ .
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5.8 Orthonormal families and separability

Hilbert spaces considered in this section are assumed to be of infinite dimension. The
finite-dimensional case can be treated similarly, but in a simpler fashion.

A family {eα}α∈I of elements in aHilbert spaceE is said to beorthonormal if (eα , eβ) =

δαβ :=

{
0 if α ̸= β

1 if α = β
. It is clear that an orthonormal family is linearly independent.

Consider first a finite orthonormal family {ej}nj=1 and let En = ⟨{e1, . . . , en}⟩. Then En
is a closed vector subspace of E, by Corollary 1.7.1.

Lemma 5.8.1 Let Pn denote the orthogonal projection from E onto En; then Pnx =∑n
j=1(x, ej)ej for x ∈ E.

Proof It is clear that Pnx =
∑n

j=1(Pnx, ej)ej. For each j = 1, . . . , n, we have (x –
Pnx, ej) = 0, by (5.7), hence (Pnx, ej) = (x, ej). !

Exercise 5.8.1 Suppose that {eα}α∈I is an orthonormal family in a Hilbert space E.
Show that for any x ∈ E, {|(x, eα)|2}α∈I is summable and

∑
α∈I |(x, eα)|2 ≤ ∥x∥2.

Now let {ek}∞
k=1 be an orthonormal family in E. For each n ∈ N, put En =

⟨{e1, . . . , en}⟩ and let E∞ be the closure of ⟨{ek}∞
k=1⟩, i.e. E∞ is the smallest closed vector

subspace containing {ek}∞
k=1.

Theorem 5.8.1 For x ∈ E∞, we have

(i) x =
∑∞

k=1(x, ek)ek, i.e. limn→∞ ∥x –∑n
k=1(x, ek)ek∥ = 0.

(ii) ∥x∥2 =∑∞
k=1 |(x, ek)|2.

Proof

(i): Given that ε > 0, there is y ∈ ⟨{ek}∞
k=1⟩ such that ∥x – y∥2 < ε. Now, y =∑m

k=1 αkek, αk ∈ C, k = 1, . . . ,m, hence, y ∈ Em ⊂ En for n ≥ m. Thus if
n≥m, we have

∥x – Pnx∥2 ≤ ∥x – y∥2 < ε,

or, by Lemma 5.8.1,

∥∥∥∥x –
n∑
k=1

(x, ek)ek
∥∥∥∥
2

< ε

if n ≥ m. This proves (i).
(ii): From (i),

∥x∥2 = lim
n→∞

∥∥∥∥
n∑
k=1

(x, ek)ek
∥∥∥∥
2

.
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But,

∥∥∥∥
n∑
k=1

(x, ek)ek
∥∥∥∥
2

=

(
n∑
j=1
(x, ej)ej,

n∑
k=1

(x, ek)ek

)

=
n∑

j,k=1
(x, ej)(x, ek)(ej, ek) =

n∑
k=1

|(x, ek)|2,

hence ∥x∥2 =∑∞
k=1 |(x, ek)|2. !

Corollary 5.8.1 (Bessel inequality) For x ∈ E,
∑∞

k=1 |(x, ek)|2 ≤ ∥x∥2, and the equality
holds if and only if x ∈ E∞.

Proof Let P be the orthogonal projection from E onto E∞, then ∥x∥2 = ∥Px∥2 +
∥x – Px∥2, by Exercise 5.6.1. Hence ∥Px∥2 ≤ ∥x∥2. But by Theorem 5.8.1,

∥Px∥2 =
∞∑
k=1

|(Px, ek)|2 =
∞∑
k=1

|(x, ek)|2,

because (x – Px, ek) = 0 for each k by (5.7). Hence,

∥x∥2 = ∥x – Px∥2 +
∞∑
k=1

|(x, ek)|2,

from which it follows that
∑∞

k=1 |(x, ek)|2 ≤ ∥x∥2, and that equality holds if and only
if x = Px or x ∈ E∞. !

Exercise 5.8.2

(i) Show that for x, y in E∞ we have

(x, y) =
∞∑
k=1

(x, ek)(y, ek).

(ii) Show that E = E∞ if and only if ∥x∥2 =∑∞
k=1 |(x, ek)|2 for all x ∈ E.

(iii) Show that E = E∞ if and only if

x =
∞∑
k=1

(x, ek)ek

for all x ∈ E.

Theorem 5.8.2 (Riesz–Fischer) Let {ek}k∈N be an orthonormal family in E and {αk}k∈N
a sequence of scalars, then there is x ∈ E such that x =

∑∞
k=1 αkek if and only if∑

k |αk|2 < ∞.
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Proof Suppose that
∑∞

k=1 |αk|2 < ∞. For each n ∈ N let xn =
∑n

k=1 αkek. We claim
that {xn} is a Cauchy sequence in E. Actually, for n > m inN,

∥xn – xm∥2 =
( n∑

k=m+1
αkek,

n∑
j=m+1

αjej
)
=

n∑
k,j=m+1

αkēj(ek, ej)

=
n∑

k=m+1
|αk|2 → 0

as n > m → ∞, so {xn} is a Cauchy sequence, and there is x ∈ E such that x =
limn→∞ xn, or x = limn→∞

∑n
k=1 αkek =

∑∞
k=1 αkek.

Next, suppose that x =
∑∞

k=1 αkek. This means that x = limn→∞
∑n

k=1 αkek; but
each

∑n
k=1 αkek is in En, and hence x ∈ E∞. Now for each j ∈ N,

(x, ej) = lim
n→∞

( n∑
k=1

αkek, ej
)
= αj;

consequently,

∞∑
j=1

|αj|2 =
∞∑
j=1

|(x, ej)|2 = ∥x∥2 < ∞,

by Theorem 5.8.1 (ii). !
An orthonormal family {ek}∞

k=1 is called an orthonormal basis for E if

x =
∞∑
k=1

(x, ek)ek

for all x ∈ E.

Theorem 5.8.3 Let {ek}∞
k=1 be an orthonormal family in a Hilbert space E and define E∞

as before.

(i) {ek}∞
k=1 is an orthonormal basis for E if and only if E = E∞.

(ii) {ek}∞
k=1 is an orthonormal basis for E if and only if for x ∈ E, x = 0 whenever

(x, ek) = 0 for all k.

Proof It is clear that (i) follows from Theorem 5.8.1 (i), and the fact that if {ek}∞
k=1 is

an orthonormal basis, then E = E∞. For the proof of (ii), in view of (i) one need only
observe that for x ∈ E, (x – Px, ek) = 0 for all k, whereP is the orthonormal projection
from E onto E∞. !

Exercise 5.8.3 Show that an orthonormal family {ek}k∈N in E is an orthonormal basis
for E if and only if ∥x∥2 =∑∞

k=1 |(x, ek)|2 for all x ∈ E.
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Example 5.8.1 (Hermite polynomials andHermite functions) For nonnegative integer
n and x ∈ R, let

Hn(x) = (–1)nex
2 dn

dxn
e–x

2
;

then Hn(x) is a polynomial in x of degree n with the coefficient of xn being 2n.
The polynomials Hn(x) are calledHermite polynomials and the functions ψn(x) =
e– x2

2 Hn(x) are calledHermite functions. We have, for nonnegative integersm and n,
∫ ∞

–∞
ψn(x)ψm(x)dx =

∫ ∞

–∞
e–x

2
Hn(x)Hm(x)dx

=
∫ ∞

–∞
Hm(x)(–1)n

dn

dxn
e–x

2
dx,

from which we conclude by repeated integration by parts that
∫ ∞

–∞
ψn(x)ψm(x)dx =

∫ ∞

–∞
e–x

2 dn

dxn
Hm(x)dx

=

{
0 ifm < n;
2nn!

√
π ifm = n.

Thus {ψ0,ψ1,ψ2, . . .} is an orthogonal family in L2(R). If we define the normalized
Hermite functions En by

En(x) = (2nn!
√

π)–
1
2 ψn(x),

then {E0, E1, E2, . . .} is an orthonormal family in L2(R). Observe that
En(x) = e– x2

2 hn(x), where hn(x) = (2nn!
√

π)– 1
2Hn(x); the polynomials h0(x),

h1(x), h2(x), . . . are called normalized Hermite polynomials. Observe that since
hn(x) is a polynomial of degree n, each monomial xn is a linear combination of
h0(x), . . . , hn(x). Let us now put w(x) = e–x2 and denote by L2w(R) the space
L2(R,L,µ), where µ(A) =

∫
A wdλ =

∫
A e

–x2dx for A ∈ L. The space L2w(R) is
called the weighted L2 space on R with weight w. Then, Hermite polynomials
form an orthogonal family in L2w(R) and normalized Hermite polynomials form an
orthonormal family in L2w(R). We shall see in Chapter 7 that {E0, E1, E2, . . .} is an
orthonormal basis for L2(R), or equivalently, {h0, h1, h2, . . .} is an orthonormal basis
for L2w(R) (cf. Corollary 7.1.1).

A procedure, theGram–Schmidt process, for orthonormalizing a given countable lin-
early independent family {uk} in E is now introduced. Let e1 = u1

∥u1∥ . Suppose now that
e1, . . . , en have been defined so that they form anorthonormal family and ⟨{e1, . . . , en}⟩ =
⟨{u1, . . . , un}⟩; put En = ⟨{e1, . . . , en}⟩ and let zn be the image of un+1 in En under the
orthogonal projection from E onto En. Since un+1 is not in ⟨{u1, . . . , un}⟩, it is not
in En and hence un+1 – zn ̸= 0. Define en+1 = un+1–zn

∥un+1–zn∥ , then ∥en+1∥ = 1 and en+1 ∈ E⊥
n .
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Thus e1, . . . , en+1 form an orthonormal family; it is readily seen that ⟨{u1, . . . , un+1}⟩
= ⟨{e1, . . . , en+1}⟩. We have therefore defined, by induction, an orthonormal family {ek}
from {uk} such that ⟨{e1, . . . , en}⟩ = ⟨{u1, . . . , un}⟩ for all n ∈ N.

Theorem 5.8.4 AHilbert space E has an orthonormal basis if and only if E is separable.

Proof If E has an orthonormal basis {ek}, then the countable set
⋃∞

n=1{
∑n

j=1 αjej :
αj ∈ γ , j = 1, . . . , n} is dense in E; hence E is separable. We have denoted by γ the
countable set of rational complex numbers.

If now E is separable, say {xn}∞
n=1 is dense in E. We may assume that x1 ̸= 0. By

an obvious selection procedure, we can select a linearly independent subsequence
{xnk} of {xn} such that ⟨{xnk}⟩ = ⟨{xn}⟩. Put xnk = yk. Let {ek} be the orthonormal
family obtained from {yk} by the Gram–Schimdt procedure, then {ek} is an orthonor-
mal family such that ⟨{ek}⟩ = ⟨{yk}⟩ = ⟨{xk}⟩. Consequently the closure of ⟨{ek}⟩ isE.
Then {ek}∞

k=1 is an orthonormal basis of E. !

5.9 The space L2[–π ,π ]

Historically, the most well-known orthonormal family is { 1√
2π e

ikt}k∈Z in L2[–π ,π]. It
was introduced by J. Fourier in his study of heat conduction by means of expansion of
functions as trigonometric series, and is usually referred to as the Fourier basis. Here
L2[–π ,π] stands for L2([–π ,π],L|[–π ,π], λ).

For f ∈ L1[–π ,π], the function f̂ defined onZ by

f̂ (k) =
1√
2π

∫ π

–π
f (t)e–iktdt

is called the Fourier transform of f , and f̂ (k)’s, k ∈ Z, are called Fourier coeffi-
cients of f . If we put ek(t) = 1√

2π e
ikt , then for f ∈ L2[–π ,π], f̂ (k) = (f , ek), k ∈ Z,

where
∫ π

–π f (t)g(t)dt ≡ (f , g) is the inner product for L2-spaces. It is easily verified that
(ek, ej) = δkj, hence {ek} is indeed an orthonormal family in L2[–π ,π].

We shall show in this section that {ek}k∈Z is an orthonormal basis for L2[–π ,π].
Let f ∈ L1[–π ,π] and n be a nonnegative integer; define the Fourier n-th partial sum

Sn(f , t) of f by

Sn(f , t) =
n∑

k=–n
f̂ (k)ek(t) =

n∑
k=–n

(∫ π

–π
f (s)

e–iks√
2π

ds
)

1√
2π

eikt

=
1
2π

n∑
k=–n

∫ π

–π
f (s)eik(t–s)ds.

We derive firstly an integral representation for Sn(f , t). Define

Dn(t) :=
1
2π

[
1 + 2

n∑
k=1

cos kt
]
,
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then,

sin
1
2
tDn(t) =

1
2π

[
sin

1
2
t + 2

n∑
k=1

sin
1
2
t cos kt

]

=
1
2π

[
sin

1
2
t +

n∑
k=1

{
sin
(
k +

1
2

)
t – sin

(
k –

1
2

)
t
}]

=
1
2π

sin
(
n +

1
2

)
t,

hence if t is not an even multiple of π , we have

Dn(t) =
1
2π

sin(n + 1
2 )t

sin 1
2 t

.

Now,

Sn(f , t) =
1
2π

∫ π

–π
f (s)

n∑
k=–n

eik(t–s)ds

=
1
2π

∫ π

–π
f (s)

{
1 + 2

n∑
k=1

cos k(t – s)
}
ds;

thus,

Sn(f , t) =
∫ π

–π
f (s)Dn(t – s)ds. (5.11)

The functionsDn, n = 0, 1, 2, . . . are calledDirichlet kernels.
It is a common practice to extend a function on (a, b] to be a periodic function on

R with period (b – a); we follow this practice by regarding f as defined on (–π ,π] and
extend it periodically toRwith period 2π ; then,

Sn(f , t) =
∫ π

–π
f (s)Dn(t – s)ds =

∫ π–t

–π–t
f (t + s)Dn(–s)ds

=
∫ π–t

–π–t
f (t + s)Dn(s)ds =

∫ π

–π
f (t + s)Dn(s)ds,

where the last equality follows from the fact that the function s .→ f (t + s)Dn(s) is of
period 2π (cf. Exercise 4.3.3). Thus (5.11) can be put in the form

Sn(f , t) =
∫ π

–π
f (t + s)Dn(s)ds. (5.11)′

Exercise 5.9.1 Let X = {f ∈ C[–π ,π] : f (–π) = f (π)}; X is a Banach space with
sup-norm. For n = 0, 1, 2, . . . define ℓn(f ) = Sn(f , 0) for f ∈ X.
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(i) Show that ℓn ∈ X∗, n = 0, 1, 2, . . . and

∥ℓn∥ =
∫ π

–π
|Dn(t)|dt;

(ii) Show that limn→∞ ∥ℓn∥ = ∞;
(iii) Show that there is f ∈ X such that

lim sup
n→∞

|Sn(f , 0)| = ∞.

(Hint: cf. Theorem 5.1.3.)

In general, Sn(f , t) is not well behaved as n → ∞, so it is expedient to consider the
Cesàro mean of the sequence: for n = 0, 1, 2, . . . ; let

σn(f , t) =
1

n + 1

n∑
k=0

Sk(f , t).

Using (5.11) we have

σn(f , t) =
1

n + 1

∫ π

–π
f (s)

n∑
k=0

Dk(t – s)ds =
∫ π

–π
f (s)Fn(t – s)ds, (5.12)

where Fn(t) = 1
n+1
∑n

k=0 Dk(t). Since

sin2
1
2
tFn(t) =

1
2π(n + 1)

n∑
k=0

sin(k +
1
2
)t sin

1
2
t

=
1

2π(n + 1)
1
2

n∑
k=0

{cos kt – cos(k + 1)t}

=
1

2π(n + 1)
· 1
2
{1 – cos(n + 1)t}

=
1

2π(n + 1)
sin2

n + 1
2

t,

we have

Fn(t) =
1

2π(n + 1)

(
sin n+1

2 t
sin 1

2 t

)2

if t is not an even multiple of π . Fn(t), n = 0, 1, 2, . . . , are called the Féjer kernels.
Take f = 1 in (5.11) and (5.12), we have

∫ π

–π
Dn(t – s)ds =

∫ π

–π
Fn(t – s)ds = 1, t ∈ [–π ,π]. (5.13)

Theorem 5.9.1 (Féjer) Suppose that f is continuous on [–π ,π] and f (–π) = f (π). Then
σn(f , t) → f (t) uniformly for t ∈ [–π ,π] when n → ∞.
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Proof From (5.13),

|σn(f , t) – f (t)| =
∣∣∣∣

∫ π

–π
{f (s) – f (t)}Fn(t – s)ds

∣∣∣∣

≤
∫ π

–π
|f (s) – f (t)|Fn(t – s)ds.

Since f is continuous on [–π ,π] and f (–π) = f (π), for any given ε > 0, there is
δ > 0, such thatwhen either |s – t| < δ or |s – t| > 2π – δ, we have |f (s) – f (t)| ≤ ε

2 .
It is obvious from the form of the function Fn(s – t) that there is N ∈ N such that
when n ≥ N,

sup
δ≤|t–s|≤2π–δ

Fn(t – s) ≤ ε

8πM
, (5.14)

whereM = supt∈[–π ,π] |f (t)|. For n ≥ N, by (5.14) and the choice of δ,

|σn(f , t) – f (t)| ≤
∫

|t–s|<δ

or |t–s|>2π–δ

|f (s) – f (t)|Fn(t – s)ds

+
∫

δ≤|t–s|≤2π–δ
|f (s) – f (t)|Fn(t – s)ds

≤ ε

2

∫ π

–π
Fn(t – s)ds + 2M · ε

8πM
· 2π = ε;

this shows thatσn(f , t) → f (t) uniformly for t ∈ [–π ,π]when n → ∞, because our
choice ofN is independent of t. !
Since each σn(f , t) is a linear combination of { 1√

2π ek}|k|≤n, it follows from the Féjer
theorem that ⟨{ 1√

2π ek}k∈Z⟩ is dense in the space of all continuous functions f on [–π ,π]
with f (–π) = f (π) w.r.t. the L2-norm in L2[–π ,π]. But the latter space contains
Cc(–π ,π) which is dense in L2[–π ,π]. As a consequence, the closure of ⟨{ 1√

2π ek}k∈Z⟩
in L2[–π ,π] is L2[–π ,π]. Thus we have established the following theorem.

Theorem 5.9.2 { 1√
2π ek}k∈Z , where ek(t) = eikt is an orthonormal basis for L2[–π ,π].

Because eikt = cos kt + i sin kt, it follows from direct computation that

Sn(f , x) =
1
2
1
π

∫ π

–π
f (t)dt

+
1
π

n∑
k=1

{∫ π

–π
f (t) cos ktdt cos kx +

∫ π

–π
f (t) sin ktdt sin kx

}
.



The space L2[–π ,π] | 215

Hence, if we put

an =
1
π

∫ π

–π
f (t) cos ntdt, n = 0, 1, 2, . . . ;

bn =
1
π

∫ π

–π
f (t) sin ntdt, n = 1, 2, 3, . . . ,

(5.15)

then,

Sn(f , x) =
1
2
a0 +

n∑
k=1

{ak cos kx + bk sin kx}. (5.16)

This is the traditional form of Fourier partial sums; the numbers a0, a1, b1, a2, b2, . . .
defined by (5.15) are called the Fourier trigonometric coefficients of the function f and
are expressed symbolically by

f (x) ∼ 1
2
a0 +

∞∑
n=1

{an cos nx + bn sin nx};

the series 1
2a0 +

∑∞
n=1{an cos nx + bn sin nx} is usually referred to as the Fourier trigo-

nometric series of f . Whether or not f (x) = 1
2a0 +

∑∞
n=1{an cos nx + bn sin nx} for x ∈

[–π ,π] is a well-known problem in analysis, which leads to discovery of many tools in
real analysis, including the introduction of Lebesgue measure and Lebesgue integration.
Since { 1√

2π ek}k∈Z is an orthonormal basis for L2[a, b] if b – a = 2π , our discussion so far
also holds on any interval of length 2π ; in particular, Fourier trigonometric coefficients
for integrable functions on such an interval are defined similarly.

Exercise 5.9.2 Consider L2[0, 2π].

(i) Show that { 1√
2π ,

1√
π
cos x, 1√

π
sin x, 1√

π
cos 2x, 1√

π
sin 2x, . . .} is an orthonor-

mal basis for L2[0, 2π].
(ii) For f , g in L2[0, 2π], suppose that

f (x) ∼ 1
2
a0 +

∞∑
n=1

{an cos nx + bn sin nx},

g(x) ∼ 1
2
c0 +

∞∑
n=1

{cn cos nx + dn sin nx}.

Show that

1
π

∫ 2π

0
f ḡdλ =

1
2
a0c̄0 +

∞∑
n=1

{anc̄n + bnd̄n}.

(iii) Suppose that f ∈ L2[0, 2π] and an = bn = 0 for n ≥ k for some k. Show that
f (x) = 1

2a0 +
∑k–1

n=1{an cos nx + bn sin nx} for a.e. x ∈ [0, 2π].
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(iv) Suppose that f is AC on [0, 2π] with f ′ ∈ L2[0, 2π] and satisfies f (0) = f (2π).
Show that

1
π

∫ 2π

0
|f ′|2dλ =

∞∑
n=1

n2(|an|2 + |bn|2),

where an and bn are as defined in (ii).
(v) Let f be as in (iv). Show that

∑∞
n=1(|an| + |bn|) < ∞ and infer that the Fourier

trigonometric series of f converges uniformly to f on [0, 2π].

To give a flavor of orthonormal basis in infinite-dimensional spaces, we now prove a
classical isoperimetric inequality, following A. Hurwicz.

Theorem 5.9.3 (Isoperimetric inequality) For any piece-wise C1 simple closed plane curve
with given length L, the following inequality holds:

A ≤ L2

4π
,

where A is the area of the region enclosed by the curve; and equality holds when and only
when the curve is a circle.

Proof Let C be such a curve and choose a parametric representation, x = x(s), y = y(s),
0 ≤ s ≤ L, with arc length as the parameter so that, when s goes from 0 to L, the curve
C is traced counter clockwise. Choose the new parameter t = 2π s/L and let

x(t) ∼ 1
2
a0 +

∞∑
n=1

{an cos nt + bn sin nt},

y(t) ∼ 1
2
c0 +

∞∑
n=1

{cn cos nt + dn sin nt};

then, using the results in Exercise 5.9.2, we have

dx
dt

∼
∞∑
n=1

{nbn cos nt – nan sin nt},

dy
dt

∼
∞∑
n=1

{ndn cos nt – ncn sin nt};

and

1
π

∫ 2π

0

{(
dx
dt

)2

+
(
dy
dt

)2
}

dt =
∞∑
n=1

n2(a2n + b2n + c2n + d2n),

1
π

∫ 2π

0
x
dy
dt
dt =

∞∑
n=1

n(andn – bncn).
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Since ( dxdt )
2 + ( dydt )

2 = ( L
2π )

2{( dxds )
2 + ( dyds )

2} = ( L
2π )

2 and A =
∫ 2π
0 x dy

dt dt, we have

L2

4π
– A =

π

2

∞∑
n=1

{n2(a2n + b2n + c2n + d2n) – 2n(andn – bncn)}

=
π

2

∞∑
n=1

{(nan – dn)2 + (nbn + cn)2 + (n2 – 1)(c2n + d2n)} ≥ 0.

Hence A ≤ L2
4π . Now,

∑∞
n=1{(nan – dn)2 + (nbn + cn)2 + (n2 – 1)(c2n + d2n)} = 0 if

and only if a1 = d1, b1 = –c1, and an = bn = cn = dn = 0 for n ≥ 2; it follows that
L2
4π = A if and only if

x =
1
2
a0 + a1 cos t + b1 sin t, y =

1
2
c0 – b1 cos t + a1 sin t,

or C is a circle. !
Theorem 5.9.4 (Weierstrass approximation theorem) Any continuous function on a finite

closed interval [a, b] can be approximated uniformly by polynomials in the interval.

Proof We may assume without loss of generality that [a, b] = [–π ,π]. Since any
continuous function f on [–π ,π] can be expressed as

f (x) = f (–π) +
{f (π) – f (–π)}

2π
(x + π) + g(x),

where g(–π) = g(π) = 0, it is sufficient to prove the theorem for continuous func-
tions f on [–π ,π] satisfying f (–π) = f (π). For such a function f , σn(f , x) → f (x)
uniformly for x ∈ [–π ,π], byTheorem5.9.1.Now,σn(f , x) is a finite linear combina-
tion of trigonometric functions cos x, sin x, cos 2x, sin 2x, . . . ; hence, eachσn(f , x) can
be approximated uniformly by polynomials on [–π ,π] by Taylor’s theorem. Thus,
given ε > 0, there is n0 such that supx∈[–π ,π] |f (x) – σn0 (f , x)| ≤ ε

2 ; then let p(x) be a
Taylor polynomial ofσn0 (f , x) such that supx∈[–π ,π] |σn0 (f , x) – p(x)| ≤ ε

2 ; therefore,
supx∈[–π ,π] |f (x) – p(x)| ≤ ε. !

Exercise 5.9.3 Let fn(x) = xn, n = 0, 1, 2, . . . . Show that the Gram–Schmidt pro-
cess applied to the family {f0, f1, f2, . . .} in L2[a, b] yields an orthonormal basis for
L2[a, b] (–∞ < a < b < ∞). When a = –1, b = 1, denote the orthonormal basis so
obtained by {π0,π1,π2, . . .}. Show thatπn is a polynomial of degree n, n = 0, 1, 2, . . .
and find π0, π1, and π2.

Exercise 5.9.4 For n = 0, 1, 2, . . . , let Pn be the polynomial defined by Pn(x) =
1

2nn!
dn(x2–1)n

dxn ; P0, P1, P2, . . . are called Legendre polynomials. Show that
{P0, P1, P2, . . .} is an orthogonal family in L2[–1, 1] and

∫ 1
–1 x

kPn(x)dx = 0 for n ≥ 1
and 0 ≤ k < n.
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Exercise 5.9.5 Let {π0,π1,π2, . . .} and {P0, P1, P2, . . .} be as in Exercises 5.9.3 and
5.9.4. Show that for n = 0, 1, 2, . . . , there is a positive constant αn such that πn =
αnPn.

We digress now from the main theme of this section to discuss briefly the pointwise
convergence of Fourier trigonometric series. For this we first prove the Riemann–
Lebesgue lemma.

Lemma 5.9.1 (Riemann–Lebesgue) If f is an integrable function on a finite interval [a, b],
then

lim
l→∞

∫ b

a
f (t) sin ltdt = 0.

Proof If J is an interval with endpoints c < d in [a, b], then
∫
J sin ltdt = –1

l {cos ld –
cos lc} → 0 as l → ∞; consequently, the lemma holds if f is a step function. In gen-
eral, given ε > 0, there is a step function g on [a, b] such that

∫ b
a |f (t) – g(t)|dt < ε

2 ,
and therefore,

∣∣∣∣

∫ b

a
f (t) sin ltdt

∣∣∣∣ ≤
∣∣∣∣

∫ b

a
{f (t) – g(t)} sin ltdt

∣∣∣∣ +
∣∣∣∣

∫ b

a
g(t) sin ltdt

∣∣∣∣

<
ε

2
+
∣∣∣∣

∫ b

a
g(t) sin ltdt

∣∣∣∣ < ε,

if l is sufficiently large, because the lemma holds for the step function g. !
Theorem 5.9.5 (Dini test) Suppose that f is an integrable function on (–π ,π) and is

extended toR periodically. Let t0 ∈ [–π ,π], then,

lim
n→∞

Sn(f , t0) = f (t0)

if s .→ 1
s {f (t0 + s) – f (t0)} is integrable in a neighborhood of 0.

Proof If s .→ 1
s {f (t0 + s) – f (t0)} is integrable in a neighborhood of 0, then the function

g defined by

g(s) =
1
2π

f (t0 + s) – f (t0)
sin 1

2 s
=

1
2π

s
sin 1

2 s
f (t0 + s) – f (t0)

s
, s ∈ [–π ,π],

is integrable on [–π ,π]. Now, from (5.11)′ we have,

Sn(f , t0) – f (t0) =
∫ π

–π
{f (t0 + s) – f (t0)}Dn(s)ds

=
∫ π

–π
g(s) sin

(
n +

1
2

)
sds → 0

as n → ∞, by the Riemann–Lebesgue lemma. !
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Exercise 5.9.6 Let f be an even function on [–π ,π] defined on [0,π] by f (s) = 1 – s
π
.

Show that the Fourier trigonometric series of f converges uniformly to f on [–π ,π].
In particular, verify that

∑∞
k=0

1
(2k+1)2 = π2

8 .

Exercise 5.9.7 Suppose that f is a periodic function of period 2π onR and is integrable
on [–π ,π]. Show that if f = 0 on a neighborhood of t0, then Sn(f , t) → 0 uniformly
on a neighborhood of t0.

Exercise 5.9.8 Suppose that f is integrable on [–π ,π] and f (t0+), f (t0–) exist at t0 ∈
[–π ,π]. Show that

lim
n→∞

Sn(f , t0) =
1
2
{f (t0–) + f (t0+)}

if
∫ 0
–ε

∣∣∣ f (t0+s)–f (t0–)s

∣∣∣ ds < ∞, and
∫ ε

0

∣∣∣ f (t0+s)–f (t0+)s

∣∣∣ ds < ∞ for some ε > 0. (Hint:
∫ 0
–π Dn(s)ds =

∫ π

0 Dn(s)ds = 1
2 .)

Exercise 5.9.9 Let f be a periodic function with period π onR, and f (s) = s for 0 ≤
s < π . Find the Fourier trigonometric series for f and evaluate

∑∞
n=1 an, where

an =
1
π

∫ π

–π
f (s) cos nsds, n = 0, 1, 2, . . . .

Lemma 5.9.2 There is c > 0 s.t. |
∫ η

δ
Dn(s)ds| ≤ c for all n ∈ N and 0 ≤ δ < η ≤ π .

Proof Let n ∈ N and 0 ≤ δ < η ≤ π . It will be clear from the following argument that
we may assume δ < 2

2n+1 < η; then,

0 ≤ sin(n + 1
2 )s

sin 1
2 s

=
1
2 s

sin 1
2 s

· sin(n +
1
2 )s

1
2 s

< 1 · (2n + 1)

for 0 < s < 2
2n+1 , and hence,

∫ 2
2n+1

δ

sin(n + 1
2 )s

sin 1
2 s

< (2n + 1) · 2
2n + 1

= 2.

Thus,

∣∣∣∣

∫ η

δ

Dn(s)ds
∣∣∣∣ ≤ 1

2π

{

2 +

∣∣∣∣∣

∫ η

2
2n+1

sin(n + 1
2 )s

sin 1
2 s

ds

∣∣∣∣∣

}

.
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But by the second mean-value theorem (actually, Lemma 4.5.2), there is 2
2n+1 ≤

η′ ≤ η such that

∣∣∣∣∣

∫ η

2
2n+1

sin(n + 1
2 )s

sin 1
2 s

ds

∣∣∣∣∣ =

∣∣∣∣∣
1

sin( 1
2n+1 )

∫ η′

2
2n+1

sin
(
n +

1
2

)
sds

∣∣∣∣∣

=
1

sin( 1
2n+1 )

∣∣∣∣∣
1

n + 1
2

{
cos 1 – cos

(
n +

1
2

)
η′
}∣∣∣∣∣

≤ 1
(2n + 1) sin( 1

2n+1 )

=

{

(2n + 1)

[
1

2n + 1
–

1
3!

(
1

2n + 1

)3

+ · · ·
]}–1

≤
{

1 –
1
3!

(
1

2n + 1

)2
}–1

=
54
53

,

and consequently,

∣∣∣∣

∫ n

δ

Dn(s)ds
∣∣∣∣ ≤ 1

2π

(
2 +

54
53

)
.

Thus we may take it that c = 1
2π

(
2 + 54

53

)
. !

Theorem 5.9.6 (Dirichlet–Jordan) Let f be a BV function on [–π ,π]; then 1
2a0 +∑∞

n=1{an cos nt + bn sin nt} = limn→∞ Sn(f , t) = 1
2 {f (t–) + f (t+)}.

Proof Since f is the difference of two monotone increasing functions, we may assume
without loss of generality that f is monotone increasing, and consider f as defined
on (–π ,π] and then extend f to R as a periodic function with period 2π . Now
fix t ∈ [–π ,π]. Given that ε > 0, there is δ > 0 such that f (t + s) – f (t+) < ε

2c for
0 < s ≤ δ, where c is the constant in Lemma 5.9.2. We choose δ small enough so
that f (t + s) is monotone increasing in s on [0, δ], if f (t + 0) is understood to be
f (t+). Then,

∫ δ

0 {f (t + s) – f (t+)}Dn(s)ds = {f (t + δ) – f (t+)}
∫ δ

δ′ Dn(s)ds for some
δ′ ∈ [0, δ] by the second-mean value theorem, and hence

∣∣∣∣

∫ δ

0
{f (t + s) – f (t+)}Dn(s)ds

∣∣∣∣ <
ε

2c
· c = ε

2
.
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Now,

∣∣∣∣

∫ π

0
f (t + s)Dn(s)ds –

1
2
f (t+)

∣∣∣∣ =
∣∣∣∣

∫ π

0
{f (t + s) – f (t+)}Dn(s)ds

}

≤
∣∣∣∣

∫ δ

0
{f (t + s) – f (t+)}Dn(s)ds

∣∣∣∣ +
∣∣∣∣

∫ π

δ

{f (t + s) – f (t+)}Dn(s)ds
∣∣∣∣

<
ε

2
+

∣∣∣∣∣
1
2π

∫ π

δ

f (t + s) – f (t+)
sin 1

2 s
· sin

(
n +

1
2

)
sds

∣∣∣∣∣ < ε

if n is sufficiently large, by the Riemann–Lebesgue lemma, because the func-
tion s .→ f (t+s)–f (t+)

sin 1
2 s

is integrable on [δ,π]. Thus limn→∞
∫ π

0 f (t + s)Dn(s)ds =
1
2 f (t+). Similarly, limn→∞

∫ 0
–π f (t + s)Dn(s)ds = 1

2 f (t–). Consequently, limn→∞∫ π

–π f (t+s)Dn(s)ds = limn→∞ Sn(f , t) = 1
2 {f (t–) + f (t+)}. !

5.10 Weak convergence

The concept of limit for sequences in a metric space is defined in Section 1.4 in terms
of the metric of the space. When normed vector spaces are concerned, there is a weaker
form of concept of limit for sequences, towards the introduction of which we now turn.

Suppose that X is a n.v.s. and {xk} a sequence in X. If x ∈ X satisfies ⟨x, x∗⟩ =
limk→∞⟨xk, x∗⟩ for every x∗ ∈ X∗, x is called a weak limit of the sequence {xk}; since
X∗ separates points of X, if x is a weak limit of {xk}, it is the only weak limit of {xk}, and
hence is the weak limit of {xk} and is denoted by w-limk→∞ xk. We often write xk ⇀ x
to indicate that x = w-limk→∞ xk. To distinguish between weak limit and limit defined
in terms of the norm of X, the latter is called the limit in norm and we employ notation
x = limk→∞ xk or xk → x to mean that x is the limit of {xk} in norm. If the weak (norm)
limit of a sequence exists, the sequence is said to be weakly convergent (convergent
in norm) or is said to converge weakly (in norm). Clearly, in a Hilbert space E,
x =w - limk→∞ xk if and only if (x, y) = limx→∞(xk, y) for all y ∈ E, and xk → x implies
that xk ⇀ x.

Proposition 5.10.1 A weakly convergent sequence in a n.v.s. X is bounded.

Proof Let {xk} be a weakly convergent sequence in X. For k ∈ N, let lk be
the bounded linear functional on X∗, defined by lk(x∗) = ⟨xk, x∗⟩ for x∗ ∈ X∗.
Note that X∗ is a Banach space and by Theorem 5.5.2, ∥lk∥ = ∥xk∥ for k∈N.
Let x = w-limk→∞ xk, then since limk→∞ |lk(x∗)| = |⟨x, x∗⟩|, supk |lk(x∗)| < ∞
for each x∗ ∈ X∗. By the principle of uniform boundedness (Theorem 5.1.3),
supk ∥lk∥ = supk ∥xk∥ < ∞. !

Remark Proposition 5.10.1 is actually contained in Theorem 5.1.4.
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Exercise 5.10.1 Show that a bounded sequence {xk} converges to xweakly in a n.v.s.X
if and only if there is S ⊂ X∗ such that ⟨S⟩ is dense inX∗ and ⟨x, x∗⟩ = limk→∞⟨xk, x∗⟩
for x∗ ∈ S.

Exercise 5.10.2 Show that a sequence {xn} in a finite-dimensional n.v.s. X converges
weakly if and only if it converges in norm.

Theorem 5.10.1 Every bounded sequence {xk} in aHilbert space E has a subsequence which
converges weakly in E.

Proof Let F be the closure of ⟨{xk}⟩ in E, then F is a Hilbert space with inner product
inherited fromE. Put supk ∥xk∥ = M < ∞.We showfirst that {xk} has a subsequence
which converges weakly in F.

Since {(xk, x1)}k is a bounded sequence in C, there is a subsequence {x(1)k } of
{xk} such that limk→∞(x(1)k , x1) exists. Suppose now that sequences {x(1)k }, . . . , {x(n)k }
have been chosen so that each of them except the first is a subsequence of the preced-
ing one and limk→∞(x(n)k , xj) exists for j = 1, . . . , n. Since {(x(n)k , xn+1)} is bounded,
there is a subsequence {x(n+1)k } of {x(n)k } such that limk→∞(x(n+1)k , xn+1) exists. Clearly,
limk→∞(x(n+1)k , xj) exists for j = 1, . . . , n, because {x(n+1)k } is a subsequence of {x(n)k }.
We have therefore obtained a sequence {x(1)k }, {x(2)k }, . . . , {x(n)k }, . . . of subsequences
of {xk} such that {x(n+1)k } is a subsequence of {x(n)k } for each n ∈ N and where
limk→∞(x(n)k , xj) exists for j = 1, . . . , n. Now, {x(k)k } is a subsequence of {xk} and
limk→∞(x(k)k , xj) exists for each j ∈ N. For convenience, put yk = x(k)k for k ∈ N,
then limk→∞(yk, z) exists for z ∈ ⟨{xk}⟩. Let l(z) = limk→∞(yk, z), then l is a linear
functional on ⟨{xk}⟩; obviously, |l(z)| ≤ M∥z∥ for z ∈ ⟨{xk}⟩, hence l is bounded
on ⟨{xk}⟩, and can be extended uniquely to be a bounded linear functional on F,
still denoted by l. By the Riesz representation theorem, there is unique x ∈ F such
that l(u) = (u, x) for u ∈ F; in particular, for z ∈ ⟨{xk}⟩, (z, x) = limk→∞(yk, z) i.e.
(x, z) = limk→∞(yk, z). Since ⟨{xk}⟩ is dense in F, yk ⇀ x in F, by Exercise 5.10.1.

We claim now that yk ⇀ x inE. Let u ∈ E, then u = z + v, where z ∈ F and v ∈ F⊥,
by Corollary 5.6.1. Thus,

(x, u) = (x, z + v) = (x, z) = lim
k→∞

(yk, z) = lim
k→∞

(yk, z + v) = lim
k→∞

(yk, u),

and hence yk ⇀ x in E. !
Exercise 5.10.3 Suppose that {ek} is an orthonormal sequence in a Hilbert space E.

Show that ek ⇀ 0, but 0 is not a limit of {ek} in norm. (Hint: for x ∈ E,∑∞
k=1 |(x, ek)|2 ≤ ∥x∥2.)

Exercise 5.10.4 (Cf. Example 2.7.2) Show that if 1 < p < ∞, then fn ⇀ f in lp()) if
and only if supn ∥fn∥p < ∞ and fn(ω) → f (ω) for allω ∈ ).
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Exercise 5.10.5 Suppose that X is a reflexive Banach space and {xn} is a bounded
sequence in X. Assume that X∗ is separable and let {x∗

1 , x∗
2 , . . .} be a countable dense

set in X∗. Show that {xn} has a subsequence which converges weakly by the following
steps.

(i) Show that {xn} has a subsequence {yn} such that limn→∞⟨yn, x∗
k⟩ exists and is

finite for all k ∈ N.
(ii) Show that limn→∞⟨yn, x∗⟩ exists and is finite for all x∗ ∈ X∗.
(iii) Put l(x∗) = limn→∞⟨yn, x∗⟩. Show that l ∈ X∗∗, and there is x ∈ X such that

l(x∗) = ⟨x, x∗⟩ for all x∗ ∈ X∗.

Theorem 5.10.2 (Banach–Saks) If {xk} is a bounded sequence in a Hilbert space E, then it
has a subsequence {yk} such that limn→∞ 1

n
∑n

k=1 yk in norm exists.

Proof There is a subsequence {zk} of {xk} and x ∈ E such that zk ⇀ x, by Theorem
5.10.1. Let ẑk = zk – x, then ẑk ⇀ 0. Choose inductively a subsequence {ŷk} of {ẑk}
so that

|(ŷ1, ŷn+1)| ≤ 1
n
, . . . , |(ŷn, ŷn+1)| ≤ 1

n

for all n ∈ N. Then,

∥∥∥∥n
–1

n∑
k=1

ŷk
∥∥∥∥
2

= n–2
n∑
i=1

n∑
j=1
(ŷi, ŷj)

= n–2
{ n∑

i=1
(ŷi, ŷi) + 2

∑
1≤i<j≤n

Re(ŷi, ŷj)
}

≤ n–2
{
nC + 2

n∑
j=2

j–1∑
i=1

|(ŷi, ŷj)|
}

≤ n–2{nC + 2(n – 1)} < n–1{C + 2},

whereC = supn{∥ŷn∥2} ≤ supn(∥xn∥ + ∥x∥)2 < ∞. Thus limn→∞ n–1
∑n

k=1 ŷk = 0.
We complete the proof by letting yk = ŷk + x. !
Theorems 5.10.1 and 5.10.2 have already shown the relevance of weak convergence, in

that in terms of weak convergence, bounded sets in a Hilbert space reveal a certain com-
pactness property.We shall now apply Theorem 5.10.1 to prove amean ergodic theorem
of F. Riesz which shows that bounded linear operators from a Hilbert space into itself of
a certain kind have eigenvalue 1 whose eigenspace can be explicitly described.

In the following, we fix a bounded linear operator T from a Hilbert space E into itself,
having the property that ∥Tn∥ ≤ α < ∞ for all n ∈ N for some α > 0. Let T1 = T and
Tn = 1

n{T + T2 + · · · + Tn} for n ≥ 2, and for x ∈ E, put xn = Tnx for n ∈ N.

Lemma 5.10.1 If x ∈ (1 – T)E, then limn→∞ ∥xn∥ = 0.
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Proof If x ∈ (1 – T)E, i.e. x = y – Ty for some y in E, then

xn = (y – Ty)n =
1
n
{T(y – Ty) + · · · + Tn(y – Ty)} =

1
n
{Ty – Tn+1y},

and hence, ∥xn∥ ≤ 2α
n ∥y∥, from which ∥xn∥ → 0 follows. Now suppose that x ∈

(1 – T)E. Given ε > 0, there is z ∈ (1 – T)E such that ∥x – z∥ < ε
2α . It is clear that

∥(x – z)n∥ ≤ α∥x – z∥ < ε
2 . Since ∥zn∥ → 0, by the first part of the proof, there

is n0 ∈ N such that ∥zn∥ < ε
2 whenever n ≥ n0, hence, ∥xn∥ = ∥zn + (x – z)n∥ ≤

∥zn∥ + ∥(x – z)n∥ < ∥zn∥ + ε
2 < ε whenever n ≥ n0. Thus ∥xn∥ → 0. !

Lemma 5.10.2 If x∞ is the weak limit of a subsequence of {xn}, then x∞ is a fixed point
of T, i.e. Tx∞ = x∞.

Proof Let {xnk} be a subsequence of {xn} such that w-limk→∞ xnk = x∞. Since
TTnx – Tnx = TnTx – Tnx = Tn(Tx – x) = (Tx – x)n, ∥TTnx – Tnx∥ → 0, by
Lemma 5.10.1 and hence TTnkx ⇀ x∞. But, since for each y ∈ E, (Tz, y) = (z, ŷ)
for some ŷ ∈ E and for all z ∈ E by the Riesz representation theorem, we have
(TTnkx, y) = (xnk , ŷ) → (x∞, ŷ) = (Tx∞, y) and consequently, TTnkx ⇀ Tx∞. We
infer from this last fact and the fact that TTnkx ⇀ x∞, that Tx∞ = x∞. !
To prepare for the statement of the mean ergodic theorem of Riesz, we shall say that a

sequence {Tn} ⊂ L(X, Y) converges strongly to T ∈ L(X, Y) if limn→∞ Tnx = Tx for
all x ∈ X, whereX and Y are n.v.s.’s over the same scalar fieldC orR. To distinguish this
mode of convergence, if limn→∞ ∥Tn – T∥ = 0, we say that Tn converges in operator
norm to T.

Theorem 5.10.3 (Mean ergodic theorem of Riesz) Tn converges strongly in L(E) to a
linear operator T∞ with the property that TT∞ = T∞.

Proof For x ∈ E, ∥xn∥ = ∥ 1
n{Tx + · · · + Tnx}∥ ≤ α∥x∥, hence {xn} is a bounded

sequence in E. {xn} has a subsequence {xnk} which converges weakly to x∞ in E. We
know from Lemma 5.10.2 that Tx∞ = x∞, and hence (x∞)n = x∞. We claim that
limn→∞ xn = x∞, i.e. xn converges strongly to x∞. Now, xn = (x∞ + {x – x∞})n =
(x∞)n + (x – x∞)n = x∞ + (x – x∞)n, thus ∥xn – x∞∥ = ∥(x – x∞)n∥; to verify the
claim it is sufficient to show that x – x∞ ∈ (1 – T)E, by Lemma 5.10.1. To see this, let
Y be the orthogonal complement of (1 – T)E in E and observe that x – xkn = 1

nk {(x –
Tx) + · · · + (x – Tnkx)} is in (1 – T)E, because (x – Tmx) = (1 – T)(1 + T + · · · +
Tm–1)x ∈ (1 – T)E for each m ∈ N; then for y ∈ Y , we have (x – xnk , y) = 0, which
implies that

(x – x∞, y) = lim
k→∞

(x – xnk , y) = 0,

i.e. x – x∞ ∈ Y⊥ = (1 – T)E. Thus we have shown that ∥xn – x∞∥ → 0. This last
fact shows in particular that all weakly convergent subsequences of {xn} converge
weakly to the same element x∞. Let x∞ = T∞x, then T∞ is a linear operator from E
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into E and is the strong limit of {Tn}, i.e. T∞x = limn→∞ Tnx. That T∞ is a bounded
linear operator follows from the Banach–Steinhaus theorem (Theorem 5.1.4). From
Lemma 5.10.2, Tx∞ = x∞ and consequently, TT∞x = T∞x, or TT∞ = T∞. !

Corollary 5.10.1 TT∞ = T∞ = T∞T = T2
∞.

Proof FromTT∞ = T∞, it follows thatTnT∞ = T∞ andTnT∞ = T∞ for all n ∈ N; by
letting n → ∞ in the last equality, we obtainT2

∞ = T∞. To see thatT∞T = T∞, note
first that TnT – Tn = 1

n (T
n+1 – T) and hence ∥TnTx – Tnx∥ ≤ 2α

n ∥x∥ for all x ∈ E;
thus T∞T = T∞ follows. !

Exercise 5.10.6 Show that 1 is an eigenvalue of T and T∞E is the eigenspace of T
belonging to the eigenvalue 1.

The well-known ergodic theorem of J. von Neumann is a consequence of Theorem
5.10.3, as we shall now show.

Let (),1, p) be a probability space. A bijective map T : ) → ) is called a flow on
(),1, p) if T is measurable and measure preserving.

Theorem 5.10.4 (von Neumann mean ergodic theorem) Suppose that T is a flow on a
probability space (),1, p). Define a linear operator T̂ from L2(),1, p) to itself by

(T̂f )(ω) = f ◦ T(ω), ω ∈ ), f ∈ L2(),1, p);

and let T̂n = 1
n{T̂ + · · · + T̂n}. Then for f ∈ L2(),1, p), T̂nf → f ∗ in L2(),1, p).

Furthermore, T̂f ∗ = f ∗ i.e. f ∗(Tω) = f ∗(ω) for a.e.ω ∈ ).

Proof Since T is a flow on (),1, p), ∥T̂f∥ = ∥f∥ for all f ∈ L2(),1, p). Hence
∥T̂∥ = 1 and ∥T̂n∥ ≤ ∥T̂∥n = 1 for all n ∈ N. The theorem follows from
Theorem 5.10.3. !
AflowT on (),1, p) is called an ergodic flow if for each f ∈ L2(),1, p), the element

f ∗ in the conclusion of Theorem 5.10.4 is constant a.e. on).

Corollary 5.10.2 Suppose that T is an ergodic flow on (),1, p) and T̂, T̂n, n ∈ N, are
defined as in Theorem 5.10.4. Then for f ∈ L2(),1, p), T̂nf →

∫
)
fdp in L2(),1, p).

Proof For f ∈ L2(),1, p), let f ∗ be as in Theorem 5.10.4. Since T̂nf → f ∗ in
L2(),1, p), T̂nf → f ∗ in L1(),1, p) and, a fortiori, limn→∞

∫
)
T̂nfdp =

∫
)
f ∗dp;

but
∫
)
T̂fdp =

∫
)
T̂2fdp = · · · =

∫
)
T̂nfdp = · · · =

∫
)
fdp, from the fact that T is

measure preserving, hence
∫
)
f ∗dp =

∫
)
fdp. Now that f ∗ = constant a.e. implies

f ∗ =
∫
)
fdp a.e. !



6 Lp Spaces

Lp spaces are the most interesting examples of Banach spaces and play a salient role in
modern analysis. In this chapter basic features ofLp spaces are studied; in particular, their
dual spaces are identified. Special attention is directed towardsLp(!)where! is an open
set inRn, for example, convolution andmaximal function operators in Lp, are treated. An
important class of function spaces, which is related to Lp spaces and was first introduced
by S.L. Sobolev in his study of equations of mathematical physics, is briefly introduced in
the last section of the chapter. Further study of this class of spaces is taken up inChapter 7
by applying the method of Fourier integrals.

Some useful inequalities for functions in Lp spaces are collected in the first section for
later reference. The second section on signed and complex measures is primarily prelim-
inary in nature for this chapter, but it also has its ownmerit of interest, as is shown by the
Riesz representation theorem in the concluding part of the section.

6.1 Some inequalities

Some inequalities which appear frequently in studies related to Lp spaces are collected
here for later reference.

6.1.1 Markov inequality

Let f ∈ Lp(!,",µ), 1 ≤ p < ∞, then

µ({| f | ≥ λ}) ≤ λ–p∥ f∥pp, (6.1)

for all λ > 0.
The inequality (6.1), called theMarkov inequality, follows readily from the sequence

of inequalities,

λpµ({| f | ≥ λ) ≤
∫

{| f |≥λ}
| f |pdµ ≤ ∥ f∥pp.

Real Analysis. Fon-Che Liu. © Fon-Che Liu 2016. Published 2016 by Oxford University Press.
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Remark Since limλ→∞ µ{| f | ≥ λ} = 0 by (6.1), it follows from Exercise 2.5.9 (iii)
that limλ→∞

∫
{| f |≥λ} | f |

pdµ = 0, and hence

lim
λ→∞

λpµ({| f | ≥ λ}) = 0. (6.2)

6.1.2 Chebyshev inequality

Let f ∈ L2(!,", P), where (!,", P) is a probability space, then the following
Chebyshev inequality is a special case of (6.1):

P({| f – E( f )| ≥ λ) ≤ λ–2 Var( f ), (6.3)

where E( f ) =
∫
!
fdP and Var( f ) =

∫
!
| f – E( f )|2dP.

Remark A measurable function f on a probability space is called a random variable. If∫
!
fdP exists, it is called the expectation of the random variable f and is denoted by E( f );

if E( f ) is finite,
∫
!
| f – E( f )|2dP is called the variance of f and is denoted by Var( f ).

The significance of Chebyshev inequality in probability theory will become clear when
the concept of independence is introduced in Chapter 7.

6.1.3 Jensen inequality

Suppose that ϕ is a convex function defined on R, and f is an integrable function on a
probability space (!,", P), then

ϕ(E( f )) ≤ E(ϕ ◦ f ). (6.4)

This inequality is referred to as the Jensen inequality. For the verification of (6.4), let us
put x = E( f ) and choosem ∈ [ϕ′

–(x),ϕ′
+(x)]. By Proposition 5.4.1 (iv),

ϕ(x) + m(y – x) ≤ ϕ(y)

for all y ∈ R, and hence,

ϕ(x) + m( f (ω) – x) ≤ ϕ( f (ω)) (6.5)

for allω ∈ !. It follows from (6.5) that

{ϕ ◦ f }– ≤ |ϕ(x)| + |m|| f | + |mx|,

and therefore {ϕ ◦ f }– is integrable; consequently,
∫
!

ϕ ◦ fdP exists. We can then integ-
rate both sides of (6.5) over! to obtain

ϕ(x) + m(E( f ) – x) ≤ E(ϕ ◦ f ),

which reduces to (6.4), because x = E( f ). Thus the Jensen inequality is verified.
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Remark If (!,",µ) is a finite measure space and f is integrable on (!,",µ), then
the Jensen inequality leads to

ϕ

(
1

µ(!)

∫

!

fdµ
)

≤ 1
µ(!)

∫

!

ϕ ◦ fdµ. (6.6)

In particular,
∣∣ 1
µ(!)

∫
!
fdµ

∣∣p ≤ 1
µ(!)

∫
| f |pdµ for 1 ≤ p < ∞.

6.1.4 Extended Hölder inequality

Suppose that f1, . . . , fn, n ≥ 3, are measurable functions on a measure space (!,",µ)
and let p1 ≥ 1, p2 ≥ 1, . . . , pn ≥ 1 be extended real numbers such that

∑n
i=1 p–1i = 1,

then the following extendedHölder inequality holds:
∫

!

∣∣∣∣
n∏
i=1

fi
∣∣∣∣ dµ ≤

n∏
i=1

∥ fi∥pi . (6.7)

To see that (6.7) holds, it is sufficient to consider the casewhere n = 3; then (6.7) follows
inductively. So consider the case where n = 3 and let p–1 = 1

p1 +
1
p2 . Since p and p3 are

conjugate exponents, by the Hölder inequality, we have
∫

!

| f1f2f3|dµ ≤ ∥ f1f2∥p · ∥ f3∥p3 . (6.8)

Then put p′ = p1
p , q

′ = p2
p and apply the Hölder inequality, to obtain

∥ f1f2∥pp =
∫

!

| f1|p| f2|pdµ ≤
(∫

!

| f1|pp
′
dµ
)1/p′ (∫

!

| f2|pq
′
dµ
)1/q′

= ∥ f1∥pp1∥ f2∥pp2 ,

or ∥ f1f2∥p ≤ ∥ f1∥p1 · ∥ f2∥p2 . This last inequality and (6.8) imply that (6.7) holds when
n = 3.

Exercise 6.1.1 Suppose that ! is a measurable subset of Rn with λn(!) > 0, and f
is a measurable function on !. Show that f ∈ Lp(!), 1 ≤ p < ∞, if and only if for
every ε > 0, there is a closed set F ⊂ ! and a bounded continuous function g in
Lp(Rn), such that λn(!\F) < ε, f = g on F, and ∥ f – g∥p < ε. (Hint: cf. (6.2) and
Theorem 4.1.3.)

Exercise 6.1.2 Suppose that {fn}n∈N is an orthonormal system in L2(!,",µ). Show
that for any ε > 0,

lim
n→∞

µ

({∣∣∑n
k=1 fk

∣∣

n
≥ ε

})

= 0.
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Exercise 6.1.3 Suppose that {fn} is a sequence in Lp(!,",µ), 1 ≤ p < ∞, which
converges in Lp(!,",µ) to f . Show that {fn} has a subsequence which converges
a.e. to f . (Hint: there are positive integers n1 < n2 < · · · < nk < · · · such that
µ({| fnk – f | ≥ 1

k }) ≤ 1
k2 for each k ∈ N.)

Exercise 6.1.4 Suppose that
∑∞

n=1 αn = 1, where αn ≥ 0 for each n. Show that if {βn}
is a sequence of real numbers such that

∑∞
n=1 αn|βn| < ∞, then

∣∣∣∣
∞∑
n=1

αnβn

∣∣∣∣
p

≤
∞∑
n=1

αn|βn|p

for 1 ≤ p < ∞.

6.2 Signed and complex measures

So far the integration is taken with respect to a measure on a measurable space (!,"),
where ameasure is understood to be a nonnegative σ -additive set function defined on".
But there naturally appear set functions which may take negative values, such as electric
charges, and integration with respect to such set functions is a useful construct, such as
the potential of the electric charge distribution. Our purpose in this section is firstly to
generalize the concept of measure to cover situations when negative values might be
assumed, and then to consider complex measures. In order to do this, we extend the
concept of sum for systems of real numbers in Section 1.1 to systems which may contain
∞ or –∞. This can be done naturally as follows. Let {cα}α∈I be a system of extended real
numbers; by considering {cα}α∈I as a function on I, we say that the sumof {cα} exists if its
integral with respect to the counting measure on I exists. This integral is called the sum
of {cα} and is denoted by

∑
α∈I cα , or

∑
α cα if I is clearly implied (cf. Examples 2.3.1 and

2.3.3). Note that {cα} is summable if and only if
∑

α cα exists and is finite.
Let (!,") be a measurable space; a set function σ : " → R = R ∪ {–∞,∞} is

called a signedmeasure on (!,") if

(i) σ (∅) = 0;
(ii) if {An} ⊂ " is a disjoint sequence, then the sum

∑
n σ (An) exists and

σ

(⋃
n
An

)
=
∑
n

σ (An). (6.9)

We remark first that if σ (
⋃ ∞

n=1 An) is finite, then
∑

n σ (An) on The right-
hand side of (6.9) can be written as

∑∞
n=1 σ (An) which necessarily converges

absolutely, because
⋃ ∞

n=1 An does not depend on the order of A1,A2, . . . .
Secondly, we call attention to the fact that condition (ii) in the above definition
forces σ to satisfy condition (iii);

(iii) The signed measure σ does not take both∞ and –∞ as its value.
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In fact, if σ (A) = –∞, σ (B) = ∞ for A, B in", then,

σ (A ∪ B) = σ (A ∩ B) + σ (A ∩ Bc) + σ (B ∩ Ac)

does notmake sense, because –∞ and∞ both appear on the right-hand side in
all possible situations, as can easily be seen.

For definiteness, we shall assume that in the sequel, condition (iii)′ holds;
(iii)′ σ (A) > –∞ for all A ∈ ".

Under this assumption, if {An} is a disjoint sequence in " with
σ (
⋃

n An) =∞, then
∑∞

n=1 σ (An) diverges to∞.

Measures on " are certainly signed measures; to distinguish them from general
signed measures, we shall sometimes refer to them as positive measures. Accordingly,
if σ (A) ≤ 0 for all A ∈ ", σ is called a negative measure.

Example 6.2.1 Let (!,",µ) be a measure space.

(i) Suppose that A1, . . . ,Ak are disjoint sets from " with µ(Aj) < ∞, j = 1, . . . , k
and let α1, . . . ,αk be real numbers. Define σ on" by

σ (A) =
k∑
j=1

αjµ(A ∩ Aj), A ∈ ".

The set function σ is obviously a signed measure.
(ii) Suppose that f is a measurable function with

∫
!
f –dµ < ∞, then

σ (A) =
∫

A
fdµ, A ∈ ",

is a signed measure.

Remark Signed measure σ , defined in Example 6.2.1 (ii), is usually referred to as the
indefinite integral of f ; but when ! is a metric space and B(!) ⊂ ", the indefin-
ite integral of f is sometimes restricted to B(!). This should not cause any confusion,
because the definite meaning of an indefinite integral will be clear from the context (cf.
Example 3.8.1).

Example 6.2.2 Consider the measurable space (R,B) where B is the σ -algebra
of all Borel sets in R. Suppose that we order the set of all rational numbers by
γ1, γ2, . . . , γn, . . . , and define σ onB by

σ (B) =
∑
γn∈B

(–1)n
1
n2
, B ∈ B.

Then σ is a signed measure which assumes only finite values.
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Exercise 6.2.1 Verify the following statements. Let σ be a signed measure on (!,").
If {En} ⊂ " and En ↗, then

σ
(
lim
n→∞

En
)
= σ

(⋃
n
En
)
= lim

n→∞
σ (En);

if, on the other hand, En ↘ and σ (En) < ∞ for some n, then

σ
(
lim
n→∞

En
)
= σ

(⋂
n
En
)
= lim

n→∞
σ (En).

Exercise 6.2.2 Show that if |σ (E)| < ∞, then |σ (F)| < ∞ for F ⊂ E.

We currently show that any signedmeasure is the difference of two positive measures,
one of which is a finite measure.

In the following discussion, a fixed signed measure σ on a measurable space (!,") is
considered.

A set E ∈ " is said to be positive (negative) if σ (A ∩ E) ≥ 0 (≤ 0) for all A ∈ ".
Obviously, any measurable subset of a positive (negative) set is positive (negative). The
empty set ∅ is both positive and negative. Certainly, if A1,A2, . . . ,An, . . . are positive
(negative), then so is

⋃
n An.

The family of all positive sets will be denoted byPσ , and that of all negative sets byNσ .

Lemma 6.2.1 Let β = infE∈Nσ
σ (E); then –∞ < β ≤ 0 and there is B ∈ Nσ such that

σ (B) = β .

Proof There is a sequence {Bn} inNσ such that

β = lim
n→∞

σ (Bn).

Take B =
⋃

n Bn, then B ∈ Nσ , and for each k,

σ (B) = σ (Bk) + σ (B\Bk) ≤ σ (Bk),

hence σ (B) ≤ limk→∞ σ (Bk) = β . But σ (B) ≥ β , so σ (B) = β . Since σ (B) >

–∞, we have –∞ < β ≤ 0. !
Theorem 6.2.1 (Hahn decomposition theorem) There are disjoint sets A and B in" such

that

(i) A ∪ B = !;
(ii) A ∈ Pσ and B ∈ Nσ .

Proof Let β and B be as in Lemma 6.2.1, and take A = !\B. It remains to show that
A ∈ Pσ . Suppose the contrary. Then there is a measurable set E0 ⊂ A such that
σ (E0) < 0. Naturally E0 is not negative, because otherwise B ∪ E0 would be negat-
ive and σ (B ∪ E0) = σ (B) + σ (E0) < β , contrary to the choice of β . Let k1 be the
smallest positive integer such that E0 contains a measurable set E1 with σ (E1) ≥ 1

k1 .
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Now, since σ (E0\E1) = σ (E0) – σ (E1) ≤ σ (E0) – 1
k1 < 0, we can repeat the above

argument with E0 replaced by E0\E1. So, let k2 be the smallest positive integer such
that E0\E1 contains a measurable set E2 with σ (E2) ≥ 1

k2 . Continue in this fashion;
we obtain a sequence of mutually disjoint measurable sets E1, E2, . . . , En, . . . in E0
and a sequence k1, k2, . . . , kn, . . . of positive integers such that for each n ≥ 2, kn is
the smallest positive integer such that E0\(E1 ∪ · · · ∪ En–1) contains a measurable
set En with σ (En) ≥ 1

kn . Since
⋃ ∞

n=1 En ⊂ E0 and |σ (E0)| < ∞, |σ (
⋃ ∞

n=1 En)| < ∞
(see Exercise 6.2.2), and hence,

∞∑
n=1

1
kn

≤
∞∑
n=1

σ (En) = σ

(∞⋃
n=1

En
)
.

Thus
∑∞

n=1
1
kn is a convergent series, and as a consequence,

lim
n→∞

1
kn

= 0. (6.10)

Let F0 = E0\
⋃ ∞

n=1 En, then σ (F0) = σ (E0) –
∑∞

n=1 σ (En) ≤ σ (E0) < 0. Consider
a measurable set F ⊂ F0; we claim that σ (F) ≤ 0. If σ (F) > 0, then σ (F) > 1

n0
for some positive integer n0; but (6.10) implies that n0 < kn for sufficiently large n,
thus contradicting the choice of kn for such n’s, because F ⊂ E0\

⋃ n–1
k=1 Ek for all n.

Thus,σ (F) ≤ 0 and consequently F0 is a negative set. But then F0 ∪ B is negative and
σ (F0 ∪ B) < β , contrary to the choice of β . The contradiction proves the theorem.

!
The pair (A,B) in the statement of Theorem 6.2.1 is called aHahn decomposition of

! relative to the signedmeasure σ , or simply a σ -decomposition of!. In general, Hahn
decomposition is not unique.

Exercise 6.2.3 Let σ be the signed measure of Example 6.2.2. Find two Hahn decom-
positions ofR relative to σ .

Lemma 6.2.2 shows a close relation between any two Hahn decompositions of !

relative to a signed measure σ .

Lemma 6.2.2 Let (A1,B1) and (A2,B2) beHahn decompositions of! relative to the signed
measure σ ; then for any E ∈ " the following relations hold:

σ (E ∩ A1) = σ (E ∩ A2); σ (E ∩ B1) = σ (E ∩ B2).

Proof Since A1\A2 is positive, σ (E ∩ (A1\A2)) ≥ 0; on the other hand E ∩
(A1\A2) ⊂ B2 implies that σ (E ∩ (A1\A2)) ≤ 0. Hence σ (E ∩ (A1\A2)) = 0; sim-
ilarly, σ (E ∩ (A2\A1)) = 0. Now,

σ (E ∩ A1) = σ (E ∩ A1) + σ (E ∩ (A2\A1))
= σ (E ∩ (A1 ∪ A2)) = σ (E ∩ A2) + σ (E ∩ (A1\A2))
= σ (E ∩ A2).
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Similarly, σ (E ∩ B1) = σ (E ∩ B2). !
For a Hahn decomposition (A,B) of! relative to σ , define for E ∈ ",

σ +(E) = σ (E ∩ A); σ –(E) = –σ (E ∩ B); and |σ |(E) = σ +(E) + σ –(E).

Obviously,σ +,σ –, and |σ | are positivemeasures on" and are independent of the chosen
Hahn decomposition (A,B), by Lemma 6.2.2. The measure |σ | is called the total vari-
ational measure of σ , while σ + and σ – are called respectively the positive variational
measure and the negative variational measure of σ . Observe that |σ (E)| ≤ |σ |(E) for
E ∈ ". Theorem 6.2.2 speaks for itself.

Theorem 6.2.2 The measure σ – is a finite positive measure and σ = σ + – σ –.
Furthermore, if σ is finite or σ -finite then so are σ + and |σ |.

The decomposition σ = σ + – σ – is called the Jordan decomposition of σ .
Integrals and indefinite integrals of functionsw.r.t. a signedmeasureσ are only defined

for functions f in L1(!,", |σ |) by

∫

!

fdσ :=
∫

!

fdσ + –
∫

!

fdσ –;
∫

E
fdσ :=

∫

E
fdσ + –

∫

E
fdσ –, E ∈ ".

In the above definitions, f could be a complex-valued function.

Exercise 6.2.4 Show that for E ∈ ":

(i) σ +(E) = maxB∈" σ (B ∩ E);
(ii) σ –(E) = –minB∈" σ (B ∩ E); and
(iii) |σ |(E) = sup{

∑∞
n=1 |σ (En)|}, where the supremum is taken over all decompos-

itions of E into countable disjoint measurable sets E1, E2, . . . .

Exercise 6.2.5 If σ is a finite signed measure, then

|σ |(E) = sup
∣∣∣∣

∫

E
fdσ
∣∣∣∣ ,

where the supremum is taken over all measurable functions f with | f | ≤ 1.

Exercise 6.2.6 Letσ be the signedmeasure in Example 6.2.1 (ii). Show that forE ∈ ",
we have

σ +(E) =
∫

E
f +dµ; σ –(E) =

∫

E
f –dµ; and |σ |(E) =

∫

E
| f |dµ.

Also find a Hahn decomposition of! relative to σ .
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Exercise 6.2.7 Let σ be a signed measure and σ = σ1 – σ2, where σ1 and σ2 are posit-
ive measures with σ2 a finite measure. Show that there is a positive finite measure µ

on" such that σ1 = σ + + µ and σ2 = σ – + µ. (Hint: use Exercise 6.2.4)

Remark The conclusion of Exercise 6.2.7 means that the Jordan decomposition of a
signedmeasure σ is theminimal decomposition of σ into the difference of two positive
measures. For the corresponding fact concerning decomposition of functions of bounded
variation into the difference of two monotone increasing functions, see the paragraph
following Theorem 4.4.1.

Now letµ be a positive measure on (!,"). A signed measure σ on" is said to beµ-
absolutely continuous if σ (A) = 0 whenever A ∈ " and µ(A) = 0. It is easily verified
that σ isµ-absolutely continuous if and only if σ +, σ – areµ-absolutely continuous; thus,
σ isµ-absolutely continuous if and only if |σ | isµ-absolutely continuous.

Theorem 6.2.3 If σ is a finite signed measure, then σ isµ-absolutely continuous if and only
if for any given ε > 0 there is δ > 0 such that if A ∈ " withµ(A) < δ, then |σ |(A)< ε.

Proof Sufficiency is obvious.
Necessity: Suppose the contrary. Then for some ε > 0 and for any n ∈ N, there

isAn ∈ " such thatµ(An) < 2–n and |σ |(An) ≥ ε. LetA = lim supn→∞ An, then for
each n,

µ(A) = µ

(
lim
n→∞

⋃
k≥n

Ak

)
≤ µ

( ⋃
k≥n

Ak

)
<
∑
k≥n

2–k;

letting n → ∞, we then haveµ(A) = 0. But,

|σ |(A) = lim
n→∞

|σ |
( ⋃

k≥n
Ak

)
≥ lim sup

n→∞
|σ |(An) ≥ ε,

which contradicts the fact that |σ | isµ-absolutely continuous. !
Theorem 6.2.4 (Radon–Nikodym) If (!,",µ) is a σ -finite measure space and σ is

a σ -finite µ-absolutely continuous signed measure on (!,"), then there is a unique
measurable function f such that

∫
!
f –dµ < ∞, and

σ (A) =
∫

A
fdµ, A ∈ ".

Proof We know that σ + is σ -finite and σ – is finite on". By Exercise 5.7.1, there is f2 ∈
L1(!,",µ) such that f2 ≥ 0, and

σ –(A) =
∫

A
f2dµ, A ∈ ";



Signed and complex measures | 235

and there is a measurable function f1 with f1 ≥ 0 such that

σ +(A) =
∫

A
f1dµ, A ∈ ".

Let f = f1 – f2, then

σ (A) =
∫

A
fdµ, A ∈ ".

One can verify (cf. Exercise 6.2.6) that f – = f2 a.e., hence
∫
!
f –dµ < ∞. That f is

unique is left as an exercise. !
Exercise 6.2.8 Show that the function f in Theorem 6.2.4 is unique.

Now complex measures are introduced. Fix a measurable space (!,"); a set func-
tion σ : " → C is called a complex measure if (i) σ (∅) = 0; and (ii) σ (

⋃
n An) =∑∞

n=1 σ (An) for every disjoint sequence {An} in". Observe that in (ii) the convergence
of
∑∞

n=1 σ (An) does not depend on how the sequence {An} is ordered, hence for any dis-
joint sequence {An} ⊂ ",

∑∞
n=1 |σ (An)| < ∞. We take a hint from Exercise 6.2.4 (iii)

to define the total variational measure |σ | of a complex measure by

|σ |(E) = sup
{∞∑
n=1

|σ (En)|
}

for E ∈ ", where the supremum is taken over all decompositions of E into countable
disjoint measurable sets E1, E2, . . . . When σ is a signed or complex measure on B(X),
whereX is a metric space, it is called aRadon (Riesz)measure if |σ |∗ is a Radon (Riesz)
measure on X. Recall that |σ |∗ is the measure on X constructed from |σ | by Method I.

Exercise 6.2.9 Show that the family of all complex Riesz measures on B(X) is a
complex vector space.

For A ∈ ", let us put σr(A) = Re σ (A) and σi(A) = Im σ (A); then σr and σi are
finite signed measures on ". If f is a complex-valued |σ |-integrable function on !, the
σ -integral of f is defined by

∫

X
fdσ :=

∫

X
fdσr + i

∫

X
fdσi.

Suppose now that µ is a positive measure on ". A complex measure σ on " is µ-
absolutely continuous, if A ∈ " and µ(A) = 0 implies σ (A) = 0. Obviously, σ is µ-
absolutely continuous if and only if both σr and σi areµ-absolutely continuous.

Exercise 6.2.10 A complex measure σ on " is µ-absolutely continuous if and only if
for any ε > 0, there is δ > 0 such that if A ∈ " withµ(A) < δ, then |σ (A)| < ε.
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By applying Theorem 6.2.4 to σr and σi we obtain Theorem 6.2.5:

Theorem 6.2.5 If (!,",µ) is a σ -finite measure space and σ is aµ-absolutely continuous
complex measure on", then there is a uniqueµ-integrable function f on! such that

σ (A) =
∫

A
fdµ, A ∈ ".

Henceforth, both Theorem 6.2.4 and Theorem 6.2.5 are to be referred to as the
Radon–Nikodym theorem. We note in passing that the family of complex measures on
" includes all finite signed measures on".

As an application of the notion of signed (complex) measure, we present in the final
part of this section the Riesz representation theorem for linear functions on C0(X); the
space of all continuous functions vanishing at infinity on the locally compact metric
space X. A function f on X is said to be vanishing at infinity if for any ε > 0 there is
a compact set K such that | f (x)| < ε for x ∈ Kc. The space C0(X) is a real or complex
vector space, depending onwhether the functions in question are real or complex-valued.
Equipped with the norm defined by

∥ f∥ = sup
x∈X

| f (x)|

for f ∈ C0(X),C0(X) is a normed vector space; clearly, ∥ f∥ = maxx∈X | f (x)|. The norm
so defined on C0(X) is usually referred to as the uniform norm; and unless otherwise
specified, C0(X) is equipped with this norm. For definiteness, we assume that functions
in C0(X) are real-valued and hence C0(X) is a real vector space.

Exercise 6.2.11

(i) Show that C0(X) is a Banach space.
(ii) Show that if f ∈ C0(X), then both f + and f – are in C0(X).

If ℓ is a positive linear functional onC0(X), it is, a fortiori, positive onCc(X); themeas-
ureµ constructed in Section 3.10 for ℓ considered as restricted to Cc(X) is also referred
to as themeasure for ℓ. As we know in Section 3.10,µ is the unique Riesz measure on X
such that

ℓ( f ) =
∫

X
fdµ

for all f ∈ Cc(X).

Lemma 6.2.3 Suppose that ℓ is a bounded positive linear functional on C0(X) andµ is the
measure for ℓ; then ℓ( f ) =

∫
X fdµ for f ∈ C0(X) and ∥ℓ∥ = µ(X).

Proof Since ℓ is bounded,µ is a finite measure (cf. Exercise 3.10.1).
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For f ∈ C0(X) and ε > 0, there is a compact set K in X such that | f (x)| < ε for
x ∈ Kc. By Corollary 1.10.1, there is g ∈ Uc(X) satisfying g = 1 onK. Put h = fg, then
h ∈ Cc(X), and

ℓ( f ) = ℓ( f – h) + ℓ(h) = ℓ( f – h) +
∫

X
hdµ

= ℓ( f – h) +
∫

X
fdµ +

∫

X
(h – f )dµ;

hence,
∣∣∣∣ℓ( f ) –

∫

X
fdµ

∣∣∣∣ ≤ ∥ℓ∥ε + εµ(X),

because ∥ f – h∥ = ∥ f (1 – g)∥ ≤ supx∈Kc | f (x)| ≤ ε. By letting ε ↘ 0, we obtain

ℓ( f ) =
∫

X
fdµ.

Now, if f ∈ C0(X) with ∥ f∥ = 1, then

|ℓ( f )| =
∣∣∣∣

∫

X
fdµ

∣∣∣∣ ≤
∫

X
| f |dµ ≤ µ(X),

and consequently ∥ℓ∥ ≤ µ(X). On the other hand, for a compact set K in X, there is
a function f ∈ Uc(X) such that f = 1 on K (again by Corollary 1.10.1); then,

µ(K) ≤
∫

X
fdµ = ℓ( f ) ≤ ∥ℓ∥,

fromwhichµ(X) ≤ ∥ℓ∥ follows by the inner regularity ofµ. Thus ∥ℓ∥ = µ(X). !
Suppose now that ℓ ∈ C0(X)∗; we shall decompose ℓ as a difference of two bounded

positive linear functionals on C0(X) as follows.
Denote by C0(X)+ the family {f ∈ C0(X) : f ≥ 0} and define a functional ℓ+ on

C0(X)+ by

ℓ+( f ) = sup{ℓ(g) : g ∈ C0(X)+ and g ≤ f }

for f ∈ C0(X)+; since ℓ+( f ) ≥ ℓ(0) = 0 and

ℓ(g) ≤ ∥ℓ∥ · ∥g∥ ≤ ∥ℓ∥ · ∥ f∥ < ∞

for g ∈ C0(X)+ satisfying g ≤ f , ℓ+ is nonnegative and ℓ+( f ) ≤ ∥ℓ∥ · ∥ f∥ < ∞. Note
that ℓ+ is positively homogeneous on C0(X)+ in the sense that for f ∈ C0(X)+ and
nonnegative number α, ℓ+(αf ) = αℓ+( f ).
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Lemma 6.2.4 The functional ℓ+ is additive, i.e. if f and g are in C0(X)+, then ℓ+( f + g) =
ℓ+( f ) + ℓ+(g).

Proof Let u, v in C0(X)+ be such that u ≤ f and v ≤ g, then 0 ≤ u + v ≤ f + g, and
hence,

ℓ+( f + g) ≥ ℓ(u + v) = ℓ(u) + ℓ(v),

from which it follows that

ℓ+( f + g) ≥ ℓ+( f ) + ℓ+(g).

On the other hand, if u ∈ C0(X)+ with u ≤ f + g, by putting u1 = u ∧ f and u2 = u –
u1, one verifies easily that

u = u1 + u2, u1 ≤ f , and u2 ≤ g;

and thus,

ℓ(u) = ℓ(u1) + ℓ(u2) ≤ ℓ+( f ) + ℓ+(g),

implying that ℓ+( f + g) ≤ ℓ+( f ) + ℓ+(g). !
Now, extend ℓ+ to C0(X) by defining

ℓ+( f ) = ℓ+( f +) – ℓ+( f –)

for f ∈ C0(X). For f ∈ C0(X), note that both f + and f – are inC0(X)+ (cf. Exercise 6.2.11
(ii)) and observe that if f = g – h, with g and h being in C0(X)+, then g = f + + u and
h = f – + u for some u ∈ C0(X)+, and hence,

ℓ+( f ) = ℓ+(g) – ℓ+(h).

Therefore if f and g are in C0(X), we have

ℓ+( f + g) = ℓ+( f + + g+) – ℓ+( f – + g–)
= ℓ+( f +) + ℓ+(g+) – ℓ+( f –) – ℓ+(g–)
= ℓ+( f ) + ℓ+(g),

i.e. ℓ+ is additive on C0(X). Obviously,

ℓ+(αf ) = αℓ+( f ),

for f ∈ C0(X) and α ∈ R. Thus ℓ+ is a positive linear functional on C0(X). Since

|ℓ+( f )| ≤ ℓ+( f +) + ℓ+( f –) ≤ ∥ℓ∥(∥ f +∥ + ∥ f –∥) ≤ 2∥ℓ∥ · ∥ f∥,

ℓ+ is a bounded positive linear functional on C0(X).
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If we let ℓ– = ℓ+ – ℓ, then ℓ– ∈ C0(X)∗ and ℓ = ℓ+ – ℓ–. Since for f ∈ C0(X)+ we have
ℓ–( f ) = ℓ+( f ) – ℓ( f ) ≥ 0, ℓ– is a bounded positive linear functional on C0(X). Thus,
every ℓ ∈ C0(X)∗ can be decomposed as the difference ℓ+ – ℓ– of two bounded positive
linear functionals onC0(X). Letµ+ andµ– be respectively themeasure for ℓ+ and ℓ–, and
forB ∈ B(X) putµ(B) = µ+(B) – µ–(B), thenµ is a finite signedmeasure onB(X) and

ℓ( f ) =
∫

X
fdµ, f ∈ C0(X). (6.11)

Denote as before the total variational measure of µ on B(X) by |µ|, and let |µ|∗ be the
measure on X constructed from |µ| by Method I. We know from Corollary 3.4.1 that
|µ|∗ is the unique Borel regular measure extending |µ|, and, since |µ|∗ is finite, it is a
Radon measure. We shall see presently that |µ|∗ is a Riesz measure. For this purpose,
set for the moment ν = µ+ + µ–, then ν is a Riesz measure on X and |µ|∗ ≤ ν. Given
that B ∈ B(X) and ε > 0, by outer regularity of ν and Proposition 3.10.1 there are K ∈
K and G ∈ G with K ⊂ B ⊂ G such that ν(G\K) < ε and, a fortiori, |µ|∗(G\K) < ε;
consequently, |µ|∗(G) – ε < |µ|∗(B) < |µ|∗(K) + ε, which in turn implies that

|µ|∗(B) = sup{|µ|∗(K) : K ∈ K,K ⊂ B} (6.12)

and

|µ|∗(B) = inf{|µ|∗(G) : G ∈ G,B ⊂ G}.

Now for any S ⊂ X, there is B ∈ B(X) such that B ⊃ S and |µ|∗(S) = |µ|∗(B) =
inf{|µ|∗(G) : G ∈ G,B ⊂ G} ≥ inf{|µ|∗(G) : G ∈ G, S ⊂ G} ≥ |µ|∗(S); thus,

|µ|∗(S) = inf{|µ|∗(G) : G ∈ G, S ⊂ G},

i.e. |µ|∗ is outer regular. Note that (6.12) implies in particular that |µ|∗ is inner regular;
hence |µ|∗ is a Riesz measure on X andµ is a Riesz measure on B(X). This last fact and
(6.11) prove the following Lemma 6.2.5.

Lemma 6.2.5 For ℓ ∈ C0(X)∗ there is a finite Riesz measureµ onB(X) such that (6.11)
holds.

Lemma 6.2.6 Suppose thatµ is a finite Riesz measure on B(X). Define a linear functional
ℓ on C0(X) by

ℓ( f ) =
∫

X
fdµ, f ∈ C0(X).

Then, ℓ ∈ C0(X)∗ and ∥ℓ∥ = |µ|(X).
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Proof For f ∈ C0(X),

|ℓ( f )| =
∣∣∣∣

∫

X
fdµ+ –

∫

X
fdµ–

∣∣∣∣ ≤
∫

X
| f |dµ+ +

∫

X
| f |dµ–

=
∫

X
| f |d|µ| ≤ ∥ f∥|µ|(X),

hence, ℓ ∈ C0(X)∗ and ∥ℓ∥ ≤ |µ|(X).
Let (A,B) be a Hahn decomposition of X w.r.t. µ. Since |µ|∗ is a finite Riesz

measure on X, by Proposition 3.10.1, there are K1 and K2 in K with K1 ⊂ A and
K2 ⊂ B such that |µ|∗(X\(K1 ∪ K2)) < ε. Take a continuous function g on X such
that –1 ≤ g ≤ 1, g = 1 on K1 and g = –1 on K2 according to Corollary 1.8.1, and a
function h ∈ Uc(X) such that h = 1 onK1 ∪ K2 according to Corollary 1.10.1, and let
f = gh; then, f ∈ Cc(X), –1 ≤ f ≤ 1, f = 1 on K1, and f = –1 on K2. Now,

ℓ( f ) =
∫

X
fdµ = µ(K1) – µ(K2) +

∫

X\(K1∪K2)
fdµ

= |µ|(K1) + |µ|(K2) +
∫

X\(K1∪K2)
fdµ

≥ |µ|(K1 ∪ K2) –
∫

X\(K1∪K2)
| f |d|µ|

≥ |µ|(X) – 2|µ|(X\(K1 ∪ K2))
≥ |µ|(X) – 2ε,

from which, since ∥ f∥ = 1, it follows that ∥ℓ∥ ≥ |µ|(X) – 2ε and hence ∥ℓ∥ ≥
|µ|(X). Thus, ℓ ∈ C0(X)∗ and ∥ℓ∥ = |µ|(X), because we already know that ∥ℓ∥ ≤
|µ|(X). !

Theorem 6.2.6 (Riesz representation theorem) For ℓ ∈ C0(X)∗ there is a unique finite
Riesz measureµ onB(X) such that

ℓ( f ) =
∫

X
fdµ (6.13)

for f ∈ C0( f ).

Proof The existence of Riesz measure µ on B(X) such that (6.13) holds follows from
Lemma 6.2.5. Suppose that µ1 and µ2 are Riesz measures on B(X) such that (6.13)
holds, withµ replaced by eitherµ1 orµ2. Thenµ1 – µ2 is a Riesz measure onB(X)
(cf. Exercise 6.2.9) such that

∫

X
fd(µ1 – µ2) = 0
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for all f ∈ C0(X); it follows then from Lemma 6.2.6 that |µ1 – µ2|(X) = 0, i.e.
|µ1 – µ2| is a zero measure on B(X). But, for B ∈ B(X), 0 = |µ1 – µ2|(B) ≥
|µ1(B) – µ2(B)| implies that µ1(B) = µ2(B). Thus the uniqueness of µ is
proved. !

Example 6.2.3 Let ℓ be a bounded linear functional on the real space C[0, 1]. Then
there is a BV function g on [a, b] such that g is right-continuous except at 0, and

ℓ( f ) =
∫ 1

0
fdg, f ∈ C[0, 1].

Actually, let µ be the unique Riesz measure on B([0, 1]) such that
∫ 1
0 fdµ = ℓ( f )

for f ∈ C[0, 1], and let g(0) = 0 and g(t) = µ([0, t]), t ∈ [0, 1]; then g is right-
continuous except at 0. Consider any partition 0 = t0 < t1 < · · · < tn = 1; we have∑n

k=1 |g(tk) – g(tk–1)| =
∑n

k=1 |µ((tk–1, tk])| + |µ({0})| ≤ |µ|([0, 1]). Therefore g
is a BV function. Clearly, ℓ( f ) =

∫ 1
0 fdg for f ∈ C[0, 1].

In the above discussion we assume that C0(X) is formed from real-valued functions;
a brief account will now be given of the case when C0(X) consists of complex-valued
functions. Recall that a complex-valued function f can be expressed as Re f + i Im f ,
where Re f and Im f are respectively the real and imaginary parts of f . Suppose that
ℓ ∈ C0(X)∗, then

ℓ( f ) = ℓr( f ) + iℓi( f ),

where ℓr( f ) = Re{ℓ( f )} and ℓi( f ) = Im{ℓ( f )}; ℓr and ℓi are bounded linear functionals
on C0(X) considered as a real vector space; in particular, they are bounded linear func-
tionals on the real vector space of all real-valued functions in C0(X). By Theorem 6.2.6
there is a unique pair (µr ,µi) of finite Riesz signed measures onB(X) such that

ℓ( f ) =
∫

X
fdµr + i

∫

X
fdµi

for real-valued functions f in C0(X). Let us put µ(B) = µr(B) + iµi(B) for B ∈ B(X);
thenµ is a complex Riesz measure onB(X), and for f ∈ C0(X) we have

ℓ( f ) = ℓ(Re f + i Im f ) = ℓ(Re f ) + iℓ(Im f )
= ℓr(Re f ) + iℓi(Re f ) + i{ℓr(Im f ) + iℓi(Im f )}

=
∫

X
Re fdµr + i

∫

X
Re fdµi + i

∫

X
Im fdµr –

∫

X
Im fdµi

=
∫

X
Re fdµ + i

∫

X
Im fdµ =

∫

X
fdµ.

We leave it as an exercise to show the uniqueness of the Riesz measure µ on B(X) such
that ℓ( f ) =

∫
X fdµ for f ∈ C0(X), as well as the fact that ∥ℓ∥ = |µ|(X).Hence, Theorem

6.2.6 also holds when the functions in C0(X) are complex-valued.
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Exercise 6.2.12 When C0(X) consists of complex-valued functions and ℓ ∈ C0(X)∗,
show that there is a unique Riesz measure on X such that

ℓ( f ) =
∫

X
fdµ, f ∈ C0(X).

Furthermore, show that for such a measure, ∥ℓ∥ = |µ|(X).

6.3 Linear functionals on Lp

Let p and q be conjugate exponents i.e. p, q ≥ 1 and p–1 + q–1 = 1. We shall consider a
fixed measure space (!,",µ) throughout this section, therefore measurability of sets
or functions is in reference to this measure space and the measure of a set Ameansµ(A)
withA ∈ ". The spaceLp(!,",µ)will be simply denoted byLp for p ≥ 1, andLp-norm
of f will be denoted by ∥ f∥p.

Our purpose in this section is to identify (Lp)∗ with Lq in a sense to be specified later
whenµ is σ -finite and p < ∞.

For g ∈ Lq, define a linear functional ℓg on Lp by

ℓg( f ) =
∫

fgdµ, f ∈ Lp.

It follows from the Hölder inequality that ℓg is a bounded linear functional on Lp and its
norm ∥ℓg∥ ≤ ∥g∥q.

We shall actually show that ∥ℓg∥ = ∥g∥q if q < ∞; and that this equality holds for all
q ≥ 1 if (!,",µ) is σ -finite. This means that we may consider Lq as isometrically and
isomorphically embedded in (Lp)∗ in either case, because themap g 2→ lg is a linear map
from Lq into (Lp)∗.

Lemma 6.3.1 If q < ∞ and g ∈ Lq, then ∥g∥q = ∥ℓg∥.
Proof Wemay assume that g ̸= 0 on a set of positive measure, and let

f =
|g|q–1sgn g

∥g∥q–1q
,

where sgn g(x) = 0 if g(x) = 0, and = g(x)/|g(x)| if g(x) ̸= 0. One sees easily that
sgn g is a measurable function and f ∈ Lp with ∥ f∥p = 1. Now,

∥ℓg∥ ≥
∣∣∣∣

∫
fgdµ

∣∣∣∣ = ∥g∥–(q–1)q

∫
|g|qdµ = ∥g∥q,

This, together with ∥ℓg∥ ≤ ∥g∥q, shows that ∥ℓg∥ = ∥g∥q. !
Corollary 6.3.1 If (!,",µ) is σ -finite and g ∈ Lq, then ∥ℓg∥ = ∥g∥q.
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Proof We need only to prove that ∥ℓg∥ ≥ ∥g∥∞ for g ∈ L∞. For this purpose we may
assume that ∥g∥∞ > 0 and for a given 0 < ε < ∥g∥∞, let A = {|g| ≥ ∥g∥∞ – ε}.
From the definition of ∥g∥∞, µ(A) > 0. Since µ is σ -finite, there is an increasing
sequence {!n} ⊂ " such that µ(!n) < ∞ for each n and limn→∞ !n = !. Then,
µ(A) = limn→∞ µ(A ∩ !n) implies that µ(A ∩ !n) > 0 if n is large enough, say
n ≥ n0; let B = A ∩ !n0 , then 0 < µ(B) < ∞. Choose f = 1

µ(B) IBsgn g, then f ∈ L1
and ∥ f∥1 = 1. Now,

∥ℓg∥ ≥
∣∣∣∣

∫
fgdµ

∣∣∣∣ =
1

µ(B)

∫

B
|g|dµ ≥ ∥g∥∞ – ε,

from which we infer that ∥ℓg∥ ≥ ∥g∥∞ by letting ε ↘ 0. !
For the statement of the next lemma (6.3.2), given a measurable function g which is

finite a.e. on!, we denote by Sp(g) the family of all those functions f such that ∥ f∥p = 1
and fg is integrable.

Exercise 6.3.1 Suppose that (!,",µ) is σ -finite and g is a measurable function which
is finite a.e. on!. Show that Sp(g) is nonempty.

Lemma 6.3.2 Suppose that (!,",µ) is a σ -finite measure space and g is measurable and
finite almost everywhere. Then,

∥g∥q = sup
{∣∣∣∣

∫
fgdµ

∣∣∣∣ : f ∈ Sp(g)
}
.

Proof From the Hölder inequality, ∥g∥q ≥ sup{|
∫
fgdµ| : f ∈ Sp(g)}, it remains to

show the converse inequality. For this purpose we may assume that g ̸= 0 on a set
of positive measure.

Let the sequence {!n} ⊂ " be as in the proof of Corollary 6.3.1.

Step 1. Suppose that q < ∞. For each n ∈ N, let An = {x ∈ ! : |g(x)| ≤ n} ∩ !n.
{An} is an increasing sequence in " such that µ(!\⋃ n An) = 0. If we let
gn = gIAn , then gn is bounded and ̸= 0 on a set of positive measure when n is
sufficiently large, say n ≥ n0. Define, for n ≥ n0,

fn =
|gn|q–1sgn gn

∥gn∥q–1q
.

One can verify easily that ∥ fn∥p = 1. Since fng = ∥gn∥1–qq |gn|q, fng is integrable
and therefore {fn}n≥n0 ⊂ Sp(g). Now for n ≥ n0, using fng = ∥gn∥1–qq |gn|q, we
have

∥gn∥qq =
∫

|gn|qdµ

= ∥gn∥q–1q

∫
fngdµ ≤ ∥gn∥q–1q sup

{∣∣∣∣

∫
fgdµ

∣∣∣∣ : f ∈ Sp(g)
}
,
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from which it follows that ∥gn∥q ≤ sup
{∣∣∫ fgdµ

∣∣ : f ∈ Sp(g)
}
. But

µ(!\⋃ n An) = 0 implies that |gn| increases to |g| a.e. on !, hence,
on letting n → ∞, we obtain ∥g∥q ≤ sup{|

∫
fgdµ| : f ∈ Sp(g)}. Thus,

∥g∥q = sup{|
∫
fgdµ| : f ∈ Sp(g)} if q < ∞.

Step 2. Suppose that q = ∞, i.e. p = 1. Put

γ = sup
{∣∣∣∣

∫
fgdµ

∣∣∣∣ : f ∈ S1(g)
}
.

We may assume that γ < ∞.

Given that ε > 0, let A = {x ∈ ! : |g(x)| ≥ γ + ε}. We claim that µ(A) = 0;
otherwise, let Bn = A ∩ !n ∩ {|g| ≤ n}, then 0 < µ(Bn) < ∞ if n ≥ n0 for some
n0 ∈ N. Put B = Bn0 and let f = µ(B)–1IBsgn g. Then, ∥ f∥1 = 1 and

∫
fgdµ =

µ(B)–1
∫
B |g|dµ ≤ n0, thus f ∈ S1(g); but

∫
fgdµ = µ(B)–1

∫
B |g|dµ ≥ γ + ε,

which contradicts the definition of γ . Hence, µ(A) = 0 and consequently ∥g∥∞ ≤
γ + ε. Let ε ↘ 0; we have ∥g∥∞ ≤ γ . !
It is worthwhile noting that the proof of Lemma 6.3.2 actually shows that ∥g∥q =

sup{Re
∫
!
fgdµ : f ∈ Sp(g)}, and that if g ≥ 0, ∥g∥q = sup{

∫
!
fgdµ : f ∈ Sp(g) and

f ≥ 0}.
The following integral version of the Minkowski inequality follows from Lemma

6.3.2 with this note.

Corollary 6.3.2 Suppose that (!1,"1,µ1) and (!2,"2,µ2) are σ -finite complete meas-
ure spaces and f ≥ 0 is "1 ⊗ "2-measurable on !1 × !2. Then for 1 ≤ p < ∞, the
following inequality holds:

{∫

!1

(∫

!2

f (x, y)dµ2(y)
)p

dµ1(x)
} 1

p

≤
∫

!2

(∫

!1

f (x, y)pdµ1(x)
) 1

p

dµ2(y). (6.14)

Proof Put F(x) =
∫
!2

f (x, y)dµ2(y), x ∈ !1. F is measurable using the Fubini theorem.

Step 1. Suppose that F(x) < ∞ for µ1-a.e. x. Let h ≥ 0 be in Sq(F) ⊂
Lq(!1,"1,µ1), then

∫

!1

hFdµ1 =
∫

!1

(∫

!2

f (x, y)dµ2(y)
)
h(x)dµ1(x)

=
∫

!2

(∫

!1

f (x, y)h(x)dµ1(x)
)
dµ2(y)

≤ ∥h∥q
∫

!2

(∫

!1

f (x, y)pdµ1(x)
)1/p

dµ2(y)

=
∫

!2

(∫

!1

f (x, y)pdµ1(x)
)1/p

dµ2(y).
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By Lemma 6.3.2, with p replaced by q, together with the note that follows
it, we conclude that ∥F∥p ≤

∫
!2

(∫
!1

f (x, y)pdµ(x)
)1/pdµ2(y), i.e. (6.14)

holds.
Step 2. Now suppose that A = {F = ∞} has positive measure. Since µ1 is σ -

finite, there is a measurable set A0 ⊂ A such that 0 < µ1(A0) < ∞. Let
h =µ1(A0)–

1
q IA0 or IA0 according to whether q < ∞ or q = ∞, then proceed

as in Step 1; we have

∞ =
∫

!1

hFdµ1 ≤
∫

!2

(∫

!1

f (x, y)pdµ1(x)
)1/p

dµ2(y).

Consequently (6.14) holds, because right-hand side of (6.14) is∞. !
Nowwe come to the main theorem of this section.

Theorem 6.3.1 If (!,",µ) is σ -finite and 1 ≤ p < ∞, then Lq = (Lp)∗, through
the map

g 2→ ℓg , g ∈ Lq.

Proof We already know that Lq ⊂ (Lp)∗ through the map g 2→ ℓg , by Corollary 6.3.1;
it remains to show that for ℓ ∈ (Lp)∗, there is a unique g ∈ Lq such that ℓ = ℓg .

Step 1. Suppose thatµ(!) < ∞.
For A ∈ ", let ν(A) = ℓ(IA). Since ℓ is linear, ν is an additive set function

on". Now suppose that {An}∞
n=1 ⊂ " is disjoint, then

ν

(⋃
n
An

)
= ν

( N⋃
n=1

An

)
+ ν

( ∞⋃
n=N+1

An

)
,

hence, by putting BN =
⋃ ∞

n=N+1 An, we have
∣∣∣∣ν
(⋃

n
An

)
–

N∑
n=1

ν(An)
∣∣∣∣ ≤ |ν(BN)|

≤ ∥ℓ∥∥IBN∥p
= ∥ℓ∥[µ(BN)]1/p → 0

as N → ∞, because BN ↓ φ and µ(!) < ∞; consequently, ν(
⋃

n An) =∑∞
n=1 ν(An). Thus ν is a complex measure on ". Since ν is µ-absolutely

continuous, from the Radon–Nikodym theorem, there is g ∈ L1 such that
ν(A) =

∫
A gdµ, or

ℓ( f ) =
∫

fgdµ (6.15)

for simple functions f .
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Suppose now that f ∈ Sp(g). Choose a sequence {fn} of simple functions
such that fn → f pointwise and | fn| ≤ | f |. Then, | fng| ≤ | fg|, by LDCT and
(6.15),

∣∣∣∣

∫
fgdµ

∣∣∣∣ = lim
n→∞

∣∣∣∣

∫
fngdµ

∣∣∣∣ = lim
n→∞

|ℓ( fn)| ≤ ∥ℓ∥.

It then follows from Lemma 6.3.2 that g ∈ Lq and ∥g∥q ≤ ∥ℓ∥.
Now let f ∈ Lp and choose a sequence {ϕn} of simple functions such that

ϕn → f pointwise and |ϕn| ≤ | f |, then ϕn → f in Lp and by (6.15),

∫
fgdµ = lim

n→∞

∫
ϕngdµ = lim

n→∞
ℓ(ϕn) = ℓ( f ),

this means that ℓ = ℓg and ∥ℓ∥ = ∥ℓg∥ = ∥g∥q.
Step 2. Suppose that (!,",µ) is σ -finite.

Let {!n} ⊂ " be as in the proof of Corollary 6.3.1. By Step 1, for each n,
there is gn ∈ Lq with {gn ̸= 0} ⊂ !n such that

ℓ( f ) =
∫

fgndµ (6.16)

for f ∈ Lp with {f ̸= 0} ⊂ !n. Define g on! by g(x) = g1(x) if x ∈ !1, and
g(x) = gn(x) if x ∈ !n\!n–1 for n ≥ 2. Then, since gn(x) = gn–1(x) for a.e. x
in!n–1 when n ≥ 2, g(x) = gn(x) for a.e. x ∈ !n.

Now let f ∈ Sp(g), then | fgn| ≤ | fg| and fgn → fg a.e., hence by (6.16),

∣∣∣∣

∫
fgdµ

∣∣∣∣ = lim
n→∞

∣∣∣∣

∫
fgndµ

∣∣∣∣ = lim
n→∞

|ℓ( fI!n)| ≤ ∥ℓ∥.

From Lemma 6.3.2, g ∈ Lq and hence for f ∈ Lp,

∫
fgdµ = lim

n→∞

∫
fI!n gndµ = lim

n→∞
ℓ( fI!n) = ℓ( f ),

where the last equality comes from the obvious fact that fI!n → f inLp. Then
ℓ = ℓg , and ∥ℓ∥ = ∥g∥q. That g is uniquely determined is obvious.

!
Exercise 6.3.2 shows that Theorem 6.3.1 may not hold true when p = ∞.

Exercise 6.3.2 Consider L∞[0, 1] and let x0 ∈ [0, 1]. Show that there is ℓ ∈
L∞[0, 1]∗ with ∥ℓ∥ = 1 such that ℓ( f ) = f (x0) for f ∈ C[0, 1]. For this ℓ show that
there is no g ∈ L1[0, 1] such that ℓ( f ) =

∫
[0,1] fgdλ for all f ∈ L∞[0, 1].
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Exercise 6.3.3 Suppose that (!,",µ) is σ -finite and 1 < p < ∞. Show that Lp is
reflexive.

Exercise 6.3.4 Let D be a measurable set in Rn with positive measure. Show that
every bounded sequence in Lp(D), 1 < p < ∞, has a subsequence which converges
weakly. (Hint: cf. Exercise 5.10.5.)

6.4 Modular distribution function
and Hardy–Littlewood maximal function

Suppose that f is a finite a.e. measurable function on a measure space (!,",µ). Define
a function λf : (0,∞) → [0,∞] by

λf (α) = µ({| f | > α}). (6.17)

Then the function λf enjoys the following properties:

(1) λf is monotone decreasing and right continuous.
(2) If | f | ≤ |g|, then λf ≤ λg .
(3) If | fn| ↗ | f |, then λfn ↗ λf .
(4) If f = g + h, then λf (α + β) ≤ λg(α) + λh(β) for α,β > 0.

Properties (1)–(3) follow directly from the definition, while (4) is a consequence of
the fact that {| f | > α + β} ⊂ {|g| > α} ∪ {|h| > β}.

The function λf is usually called the distribution function of f ; but the distribution
function of a measurable function is defined differently in Section 4.3, in agreement with
the distribution function of a random variable in probability theory; we shall instead call
λf themodular distribution function of f .

If λf (α) < ∞ ∀α > 0, then λf generates a negative Radon measure ν on (0,∞)
such that

ν((a, b]) = λf (b) – λf (a), 0 < a < b < ∞;

actually, ν is the negative of the Radon measure generated by the monotone increas-
ing function –λf . We shall call ν the Lebesque–Stieltjes measure generated by λf . If ϕ
is a Borel function on (0,∞) such that

∫∞
0 ϕdν =

∫
(0,∞) ϕdν exists, then

∫∞
0 ϕdν will

be denoted by
∫∞
0 ϕdλf or

∫∞
0 ϕ(α)dλf (α) in this section, and called the Lebesque–

Stieltjes integral of ϕ w.r.t. λf .

Lemma 6.4.1 Suppose that λf (α) < ∞ for all α > 0 and let ϕ be a nonnegative Borel
function on (0,∞), then

∫

!

ϕ ◦ | f |dµ = –
∫ ∞

0
ϕ(α)dλf (α). (6.18)
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Proof We have

ν((a, b]) = λf (b) – λf (a) = –µ({a < | f | ≤ b}) = –µ(| f |–1(a, b]),

from which it follows that

ν(B) = –µ(| f |–1B)

for Borel set B in ( 1k , k] (by the (π -λ) theorem), and therefore for Borel set B in
(0,∞). This means that (6.18) holds if ϕ is the indicator function of Borel set B in
(0,∞), and consequently, if ϕ is a nonnegative simple Borel function on (0,∞). For
a general nonnegative Borel function on (0,∞), (6.18) follows then by approxim-
ating ϕ pointwise by an increasing sequence of nonnegative simple Borel functions
on (0,∞). !

Exercise 6.4.1 Give the detail of the first part of the proof of Lemma 6.4.1 where the
(π -λ) theorem is applied.

A measurable function f on (!,",µ) is called a weak Lp function; 0 < p < ∞, if
there is 0 ≤ A < ∞ depending only on f and p such that

µ({| f | > α}) ≤ Ap

αp , α > 0. (6.19)

One sees readily that f is a weak Lp function if and only if supα>0 αpµ{| f | > α} < ∞.

Exercise 6.4.2 Show that if | f |p, 0 < p < ∞, is integrable, then f is a weakLp function.

Theorem 6.4.1 Suppose that f is a weak Lp function, 1 ≤ p < ∞, then we have

∫

!

| f |pdµ = –
∫ ∞

0
αpdλf (α) = p

∫ ∞

0
αp–1λf (α)dα. (6.20)

Proof Since f is a weak Lp function, 1 ≤ p < ∞, λf (α) < ∞ for all α > 0, hence the
first equality in (6.20) follows from Lemma 6.4.1 by taking φ(α) = αp. It remains to
show that

∫

!

| f |pdµ = p
∫ ∞

0
αp–1λf (α)dα.

We observe first that the set

E := {(x,α) : x ∈ !, 0 < α < | f (x)|}
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is in " ⊗ B (cf. Exercise 4.8.3). Since IE is " ⊗ B-measurable, from Tonelli’s
theorem we have

∫

!×(0,∞)
pIE(x,α)αp–1d(µ × λ)(x,α)

=
∫

!

(∫ | f (x)|

0
pαp–1dλ(α)

)

dµ(x)

=
∫

!

| f (x)|pdµ(x);

but we also have
∫

!×(0,∞)
pIE(x,α)αp–1d(µ × λ)(x,α)

= p
∫ ∞

0
αp–1

(∫

{| f |>α}
dµ

)

dλ(α)

= p
∫ ∞

0
αp–1λf (α)dα.

Hence
∫
!
| f |pdµ = p

∫∞
0 αp–1λf (α)dα. !

The Hardy–Littlewood maximal function will now be introduced. Let f be a locally
integrable function onRn; theHardy–Littlewood maximal function of f , denotedMf ,
is defined in terms of | f | as follows:

Mf (x) = sup
r>0

1
λn(Br(x))

∫

Br(x)
| f (y)|dy, (6.21)

whereMf (x) could be infinite for some x ∈ Rn. Since, for each r > 0, the function

x 2→ 1
λn(Br(x))

∫

Br(x)
| f (y)|dy

is continuous, {Mf > α} is open for α ∈ R. Hence Mf is a Borel function and is
therefore measurable. We shall from now on simply callMf themaximal function of f .

Theorem 6.4.2 For f ∈ L1(Rn), Mf is a weak L1 function. Actually there is A > 0,
depending only on n, such that

λn({Mf > α}) ≤ A∥ f∥1α–1 (6.22)

for f ∈ L1(Rn) and α > 0.
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Proof For α > 0, put Eα = {Mf > α}. For x ∈ Eα , there is a ball B(x) centered at x
such that

∫

B(x)
| f (y)|dy > αλn(B(x)). (6.23)

Since λn(B(x)) < α–1∥ f∥1 by (6.23), C := {B(x) : x ∈ Eα} is an admissible collec-
tion of balls. By Theorem 4.6.1, there is a disjoint sequence {Bk} of balls from C such
that

⋃
C ⊂ ⋃

k B̂k, where B̂k is concentric with Bk and has a radius five times that
of Bk. Then from (6.23),

λn(Eα) ≤ λn (
⋃

C) ≤ ∑
k

λn(̂Bk) = 5n
∑
k

λn(Bk)

< 5nα–1∑
k

∫

Bk
| f (y)|dy = 5nα–1

∫
⋃

Bk
| f (y)|dy

≤ 5n∥ f∥1α–1,

from which we complete the proof by taking A = 5n. !
Exercise 6.4.3 For f ∈ Lp(Rn), 1 ≤ p < ∞, show that Mf is a weak Lp function.

(Hint: use Jensen’s inequality to show thatMf (x) ≤ {M| f |p(x)}1/p for x ∈ Rn.)

We note at this point that althoughMf is a weak L1 function, it can never be integrable
except for the extreme case f = 0 a.e. To see this, suppose that f ̸= 0 on a set of positive
measure; then

∫
BR(0) | f |dλ

n = c > 0 for some R > 0 and hence if |x| ≥ R, B := B2|x|(x)
contains BR(0), from which

Mf (x) ≥ 1
λn(B)

∫

B
| f (y)|dy ≥ 2–n|x|–nb–1n c = c0|x|–n

follows, where bn is the measure of the unit ball inRn; thus by integrating Mf overRn

using polar coordinates (cf. Theorem4.11.1), we conclude that
∫
Mfdλn = ∞. However,

as the following theorem shows, Mf ∈ Lp if f ∈ Lp and the map f 2→ Mf is a bounded
map from Lp into Lp when p > 1.

Theorem 6.4.3 If 1 < p ≤ ∞, there is Ap > 0 such that for f ∈ Lp(Rn) we have

∥Mf∥p ≤ Ap∥ f∥p.

Proof When p = ∞, this is obvious with A∞ = 1. Consider now 1 < p < ∞. For a
fixed α > 0, define f1 by

f1(x) =

{
f (x) if | f (x)| ≥ α

2 ;
0 otherwise,
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then, f1 ∈ L1(Rn) (see Exercise 6.4.4) and | f (x)| ≤ | f1(x)| + α
2 ; henceMf ≤ Mf1 +

α
2 , which implies {Mf > α} ⊂ {Mf1 > α

2 } and consequently byTheorem6.4.2 (note
that A can be taken to be 5n),

λMf (α) ≤ 2 · 5n
α

∥ f1∥1 =
2 · 5n

α

∫

{| f |≥ α
2 }
| f (x)|dx.

Now by (6.20),

∥Mf∥pp = p
∫ ∞

0
αp–1λMf (α)dα

≤ p
∫ ∞

0
αp–1

(
2 · 5n

α

∫

{| f |≥ α
2 }
| f (x)|dx

)

dα

= 2 · 5n · p
∫

Rn
| f (x)|

∫ 2| f (x)|

0
αp–2dαdx

=
2 · 5n · p
p – 1

∫

Rn
2p–1| f (x)|pdx

= 2p · 5n p
p – 1

∥ f∥pp = Ap
p∥ f∥pp,

where Ap = 2
( 5np
p–1

)1/p. !

Exercise 6.4.4 Show that the function f1 defined at the beginning of the proof of
Theorem 6.4.3 is integrable.

As an application of maximal function, a direct proof of Theorem 4.6.4 will now be
given using Theorem 6.4.2 together with the Markov inequality (6.1). An application of
Theorem 6.4.3 to the study of Sobolev space is presented in Section 6.6. Actually, we
shall prove that if f is a locally integrable function on an open set! ⊂ Rn, then

lim
r→0

1
λn(Br(x))

∫

Br(x)
| f (y) – f (x)|dy = 0 (6.24)

for a.e. x ∈ !, and leave the proof for the general statement as an exercise. Because of
the local nature of (6.24), we may assume that f is an integrable function on Rn. Put
θ( f , x) = lim supr→0

1
λn(Br(x))

∫
Br(x) | f (y) – f (x)|dy; our aim is to show that θ( f , x) = 0

for a.e. x in Rn, or, equivalently, to show that λn({θ( f , ·) > α}) = 0 for every α > 0.
Now, given that ε > 0, there is a continuous function g onRn such that ∥ f – g∥1 < ε

(cf. Exercise 6.1.1), then,

θ( f , x) = θ( f – g + g, x) ≤ θ( f – g, x) + θ(g, x) = θ( f – g, x),
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because θ(g, x) = 0; but θ( f – g, x) ≤ M( f – g)(x) + | f (x) – g(x)| and consequently,

{θ( f , ·) > α} ⊂ {θ( f – g, ·) > α} ⊂
{
M( f – g) >

α

2

}
∪
{
| f – g| >

α

2

}
.

Hence,

λn({θ( f , ·) > α}) ≤ (A∥ f – g∥1 + ∥ f – g∥1)
2
α

≤ 2(A + 1)
ε

α
;

by letting ε → 0, we have λn({θ( f , ·) > λ}) = 0. Thus, θ( f , x) = 0 for a.e. x inRn and
(6.24) is established.

Exercise 6.4.5 Show that limB→x
1

λn(B)

∫
B | f (y) – f (x)|dy = 0 follows from (6.24).

(Hint: if x ∈ B, then B ⊂ B2r(x), where r is the radius of B.)

6.5 Convolution

The operation of taking convolution was used in Section 4.9 when introducing the
Friederichs mollifier for the purpose of smoothing functions. An account of general fea-
tures of convolution for functions onRn will be given in this section; its connection with
the Fourier integral will be seen in Chapter 7. Referring to Exercises 1.6.6 and 1.6.7, we
note in passing that convolution can be introduced for functions on groups with a meas-
ure invariant under translations w.r.t. the group operation and is often proved to be a
useful operation.

We first state Proposition 4.8.2 as a lemma for later reference.

Lemma 6.5.1 Let f be a measurable function onRn, then F(x, y) := f (x – y), x, y inRn, is
a measurable function onR2n = Rn ⊕ Rn.

Let f and g bemeasurable functions onRn. The convolution of f and g is the function
f ∗ g defined for all those x for which the following integral exists and is finite:

f ∗ g(x) =
∫

f (x – y)g(y)dy.

Exercise 6.5.1

(i) Show that if f ∗ g(x) exists and is finite, then g ∗ f (x) exists and is finite, and
g ∗ f (x) = f ∗ g(x).

(ii) Show that if f ∗ g exists and is finite for a.e. x, then f ∗ g is measurable. (Hint:
apply Lemma 6.5.1 and the Fubini theorem.)

Exercise 6.5.2 Suppose that [a, b] and [c, d] are finite closed intervals of equal length.
Find I[a,b] ∗ I[c,d]; in particular, show that I[– α

2 ,
α
2 ] ∗ I[– α

2 ,
α
2 ](x) = α(1 – |x|

α
)+, α > 0.
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Theorem 6.5.1 (Young inequality) Suppose that f ∈ Lp, p ≥ 1, and g ∈ L1, then f ∗ g
exists and is finite a.e., and

∥f ∗ g∥p ≤ ∥ f∥p∥g∥1.

Proof The case where p = ∞ is obvious. We consider the case where 1 ≤ p < ∞. Let
h(x, y) = f (x – y)g(y); h is measurable by Lemma 6.5.1. Using the integral version of
theMinkowski inequality (Corollary 6.3.2), we have

(∫

Rn

(∫

Rn
| f (x – y)g(y)|dy

)p

dx
) 1

p

≤
∫

Rn

(∫

Rn
| f (x – y)g(y)|pdx

) 1
p

dy

= ∥ f∥p∥g∥1;

then,
(∫

Rn

∣∣∫
Rn f (x – y)g(y)dy

∣∣p dx
) 1

p ≤ ∥ f∥p∥g∥1, and consequently f ∗ g exists
and is finite a.e., and ∥ f ∗ g∥p ≤ ∥ f∥p∥g∥1. !

Example 6.5.1 We give here another proof of Theorem 5.6.1 without recourse to the
integral version of the Minkowski inequality. Since

∫

Rn

(∫

Rn
| f (x – y)|p|g(y)|dy

)
dx =

∫

Rn

(∫

Rn
| f (x – y)|p|g(y)|dx

)
dy

= ∥ f∥pp
∫

Rn
|g(y)|dy = ∥ f∥pp∥g∥1,

therefore,
∫
Rn | f (x – y)|p|g(y)|dy < ∞ for a.e. x, and hence

∫

Rn
| f (x – y)||g(y)|dy ≤

(∫

Rn
| f (x – y)|p|g(y)|dy

) 1
p

· ∥g∥
1
q
1 < ∞ for a.e. x,

which implies that f ∗ g exists and is finite a.e., and

∥ f ∗ g∥pp ≤
∫

Rn

(∫

Rn
| f (x – y)||g(y)|dy

)p

dx

≤ ∥g∥
p
q
1

∫

Rn

(∫

Rn
| f (x – y)|p|g(y)|dy

)
dx

= ∥g∥
p
q
1 ∥ f∥pp∥g∥1 = ∥ f∥pp∥g∥

p
1,

or

∥ f ∗ g∥p ≤ ∥ f∥p∥g∥1.

Lemma 6.5.2 For f ∈ Lp, 1 ≤ p < ∞, and y ∈ Rn, let f y(x) = f (x – y). Then,
limy→0 ∥ f y – f∥p = 0.
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Proof Given ε > 0, there is a continuous function g with compact support such that
∥ f – g∥p < ε

3 , by Proposition 4.6.1. Then,

∥ f y – f∥p = ∥ f y – gy + gy – g + g – f∥p
≤ ∥ f y – gy∥p + ∥g – f∥p + ∥gy – g∥p
<

2
3
ε + ∥gy – g∥p,

but since g is continuous with compact support, ∥gy – g∥p < ε
3 when |y| is small.

Thus, ∥ f y – f∥p < ε when |y| is small. !
We shall denote by C0(Rn) the space of all those continuous functions f onRn with

the property that for any ε > 0, there is R > 0 such that | f (x)| < ε whenever |x| >

R. Functions in C0(Rn) are functions vanishing at infinity, introduced in Section 6.2.
Clearly, Cc(Rn) ⊂ C0(Rn).

Theorem 6.5.2 If p and q are conjugate exponents, f ∈ Lp and g ∈ Lq, then f ∗ g(x) exists
and is finite for all x, and f ∗ g is bounded and uniformly continuous onRn. Furthermore,
∥ f ∗ g∥∞ ≤ ∥ f∥p∥g∥q; and if 1 < p < ∞, then f ∗ g ∈ C0(Rn).

Proof From theHölder inequality, | f ∗ g(x)| ≤ ∥ f∥p∥g∥q for all x, hence f ∗ g(x) exists
and is finite for all x, and ∥ f ∗ g∥∞ ≤ ∥ f∥p∥g∥q.

To show that f ∗ g is uniformly continuous, we may assume that 1 ≤ p < ∞
(otherwise interchange p and q). Now,

| f ∗ g(x – y) – f ∗ g(x)| = |( f y – f ) ∗ g(x)| ≤ ∥ f y – f∥p∥g∥q,

hence f ∗ g is uniformly continuous onRn, by Lemma 6.5.2.
Finally, suppose that 1 < p < ∞ (then 1 < q < ∞).Choose sequences {fk}, {gk}

in Cc(Rn) so that ∥ fk – f∥p → 0 and ∥gk – g∥q → 0 as k → ∞; this is possible by
Proposition 4.6.1. Then, {fk ∗ gk} is a sequence of continuous functions with compact
support, and

sup
x∈Rn

| fk ∗ gk(x) – f ∗ g(x)| = sup
x∈Rn

| fk ∗ (gk – g)(x) + ( fk – f ) ∗ g(x)|

≤ ∥ fk∥p∥gk – g∥q + ∥ fk – f∥p∥g∥q → 0

as k → ∞, because {fk}, being a convergent sequence in Lp, is bounded in Lp.
Now given ε > 0, from what we have just shown choose k0 large enough so

that supx∈Rn | fk0 ∗ gk0 (x) – f ∗ g(x)| < ε, and then choose R > 0 such that fk0 ∗
gk0 (x) = 0 when |x| > R; thus | f ∗ g(x)| < ε, when |x| > R. This shows that f ∗ g ∈
C0(Rn). !

Remark Theorem 6.5.2 is an example showing the smoothing effect of convolution.
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Exercise 6.5.3 Show that for f , g, and h in L1, ( f ∗ g) ∗ h = f ∗ (g ∗ h).

Example 6.5.2 The Friederichmollifier {Jε}ε>0 constructed from amollifying function
ϕ introduced in Section 4.9 can be expressed as

Jεf (x) = f ∗ ϕε(x), x ∈ Rn,

for f ∈ Lloc(Rn). By Proposition 4.9.2 andTheorem 6.5.2, Jεf ∈ C∞(Rn) ∩ C0(Rn)
if f ∈ Lp, 1 < p < ∞.

Exercise 6.5.4 Show that there is no u ∈ L1 such that u ∗ f = f for all f ∈ L1. (Hint: if
there is such a u, then u ∗ ϕε = ϕε for all ε > 0, where ϕ is a mollifying function.)

Example 6.5.3 Suppose that f , g are in L1 and f ∈ C1(Rn) with bounded partial
derivatives. Since f ∈ C1(Rn) with bounded partial derivatives, f is uniformly con-
tinuous; consequently if f ∗ g(x) exists and is finite, then f ∗ g(x′) exists and is finite
if |x′ – x| < δ, where δ > 0 is chosen so that | f (z) – f (z′)| < 1 if |z – z′| < δ. This,
together with the known fact that f ∗ g exists and is finite a.e., shows that f ∗ g exists
and is finite everywhere and is uniformly continuous onRn. Now for any x, y inRn,
| f (x)–f (y)|

|x–y| ≤ M for a fixedM > 0, because partial derivatives of f are bounded.We can
then apply LDCT to infer that

∂

∂xj
f ∗ g(x) =

∂ f
∂xj

∗ g(x), x ∈ Rn, j = 1, . . . , n.

But from Theorem 6.5.2, ∂ f
∂xj ∗ g is bounded and continuous. Hence, f ∗ g ∈ C1(Rn)

and its partial derivatives are bounded.

By the Young inequality (Theorem 6.5.1), L1 is closed under the binary operation
of convolution, which is associative (cf. Exercise 6.5.3) and clearly distributive w.r.t.
the addition of elements in L1. Thus with the introduction of the binary operation ∗
into L1, L1 becomes a commutative algebra; it is an example of the so-called Banach
algebras, in that it is a Banach space which is also an algebra that satisfies the inequal-
ity ∥ f ∗ g∥1 ≤ ∥ f∥1∥g∥1 for f , g in L1. Because of the conclusion of Exercise 6.5.4, there
exists no identity element in L1 w.r.t. the multiplication operation ∗. However, if ϕ is a
mollifying function (cf. Example 6.5.2), limε→0 ϕε ∗ f = f in L1, by Theorem 4.9.2; such
a family {ϕε}ε>0 is called an approximate identity forL1. Just aswe construct the approx-
imate identity {ϕε}ε>0 from amollifying function ϕ, starting from an integrable function
h onRn with

∫
hdλn = 1, we define for each t > 0 a function ht by

ht(x) = t–nh
(x
t

)
, x ∈ Rn,

then,
∫
htdλn = 1. We shall see that {ht}t>0 is an approximate identity for L1.
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Lemma 6.5.3 For ε > 0 and δ > 0, there is t0 > 0 such that
∫

|y|≥δ

|ht(y)|dy < ε,

whenever 0 < t ≤ t0.

Proof Since h ∈ L1, there is R > 0 such that
∫
|y|≥R |h(y)|dy < ε. Then,

∫

|y|≥δ

|ht(y)|dy =
∫

|y|≥ δ
t

|h(y)|dy < ε

if δ
t ≥ R. We choose t0 = δ

R to complete the proof. !
Theorem 6.5.3 {ht}t>0 is an approximate identity for L1, i.e.

lim
t→0

∥ht ∗ f – f∥1 = 0, f ∈ L1.

Proof For f ∈ L1 and ε > 0, there is δ > 0 such that
∫

Rn
| f (x – y) – f (x)|dx <

ε

2∥h∥1
(6.25)

if |y| < δ. Since we may assume that ∥ f∥1 > 0, there is t0 > 0 such that
∫

|y|≥δ

|ht(y)|dy <
ε

4∥ f∥1
(6.26)

whenever 0 < t ≤ t0, by Lemma 6.5.3. Now,
∫

Rn
|ht ∗ f – f |dλn

=
∫

Rn

∣∣∣∣

∫

Rn
{f (x – y) – f (x)}ht(y)dy

∣∣∣∣ dx

≤
∫

Rn
|ht(y)|

∫

Rn
| f (x – y) – f (x)|dxdy

≤
∫

|y|<δ

|ht(y)|
∫

Rn
| f (x – y) – f (x)|dxdy + 2∥ f∥1

∫

|y|≥δ

|ht(y)|dy

<
ε

2∥h∥1

∫

|y|<δ

|ht(y)|dy +
ε

2
≤ ε

if 0 < t ≤ t0 by (6.25) and (6.26). !
Weknow fromTheorem6.5.2 that f ∗ ht is a bounded and uniformly continuous func-

tion for each t > 0 if f ∈ L∞; we shownow, as a supplement toTheorem6.5.3, that f ∗ ht
converges to f uniformly on every compact set ofRn as t → 0 if f ∈ L∞ ∩ C(Rn).
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Theorem 6.5.4 If f is a bounded continuous function on Rn, then limt→0 f ∗ ht = f
uniformly on every compact set K ofRn.

Proof For a compact setK inRn and ε > 0, there is δ > 0 such that | f (x – y) – f (x)| <
ε

2∥h∥1 whenever x ∈ K and |y| < δ. Then by Lemma 6.5.3, there is t0 > 0 such that∫
|y|≥δ

|ht(y)|dy < ε
4∥ f∥∞

if 0 < t ≤ t0. Now for x ∈ K and 0 < t ≤ t0, we have

|ht ∗ f (x) – f (x)| =
∣∣∣∣

∫

Rn
ht(y){f (x – y) – f (x)}dy

∣∣∣∣

≤
∫

Rn
|ht(y)|| f (x – y) – f (x)|dy

=
∫

|y|<δ

|ht(y)|| f (x – y) – f (x)|dy +
∫

|y|≥δ

|ht(y)|| f (x – y) – f (x)|dy

<
ε

2∥h∥1

∫

|y|<δ

|ht(y)|dy + 2∥ f∥∞

∫

|y|≥δ

|ht(y)|dy

<
ε

2
+ 2∥ f∥∞

ε

4∥ f∥∞
= ε,

which means that ht ∗ f (x) → f (x) uniformly for x ∈ K as t → 0. !

Exercise 6.5.5 Let p(x) = 1
π

1
1+x2 and write pt(x) = t

π
1

t2+x2 as p(x, t) for x ∈ R and
t> 0. The function (x, t) 2→ p(x, t) onR × (0,∞) is called the Poisson kernel.

(i) For f ∈ L1(R), let

2(x, t) = pt ∗ f =
∫

R
p(x – y, t)f (y)dy, (x, t) ∈ R × (0,∞).

Show that

∂22

∂x2
(x, t) =

∫

R

∂2p
∂x2

(x – y, t)f (y)dy;

∂22

∂t2
(x, t) =

∫

R

∂2p
∂t2

(x – y, t)f (y)dy.

(Hint: ∂p
∂x (x, t),

∂2p
∂x2 (x, t),

∂p
∂t (x, t),

∂2p
∂t2 (x, t) are bounded onR × (t0,∞) for any

t0 > 0.)
(ii) Let f and2 be as in (i). Show that2 is harmonic onR × (0,∞). Furthermore,

if f is bounded and continuous, show that 2 can be extended continuously to
R × [0,∞) and that2(x, 0) = f (x) for x ∈ R.
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6.6 The Sobolev space W k,p(#)

A brief account of Sobolev spaces, which are fundamental in modern theory of partial
differential equations and calculus of variations, will now be given.

A locally integrable function u defined on an open set ! ⊂ Rn is said to be weakly
differentiable up to order k on !, k being a positive integer, if for any multi-index α =
(α1, . . . ,αn) with |α| = α1 + · · · + αn ≤ k there is a locally integrable function gα on!,
such that

∫

!

u∂αϕdλn = (–1)|α|
∫

!

gαϕdλn, (6.27)

for allϕ ∈ C∞
c (!). Observe that gα is uniquely determined by u in the sense that any two

such functions are equivalent. We therefore denote gα by uα . Note that u0 = u(0,...,0) = u.
Clearly, functions u in Ck(!) are weakly differentiable up to order k on ! with uα =
∂αu. For p ≥ 1, let Wk,p(!) be the equivalence class of all such functions u in Lp(!)
which is weakly differentiable up to order k on ! such that uα ∈ Lp(!) for all α with
|α|≤ k.Wk,p(!) is a vector spacewith the usual definition of addition andmultiplication
by scalar. OnWk,p(!) a norm ∥ · ∥k,p is defined by

∥u∥k,p =
(
∑
|α|≤k

∥uα∥pp
) 1

p

if p < ∞;

=
∑
|α|≤k

∥uα∥∞ if p = ∞.
(6.28)

To see that ∥u∥k,p is actually a norm, we need only verify that triangle inequal-
ity holds when 1 ≤ p < ∞ : ∥u + v∥k,p ≤ (

∑
|α|≤k{∥uα∥p + ∥vα∥p}p)

1
p ≤ (

∑
|α|≤k

∥uα∥pp)
1
p + (

∑
|α|≤k ∥vα∥pp)

1
p = ∥u∥k,p + ∥v∥k,p, where we have used the Minkowski

inequality for lp(S) with S a finite set. Of course, there are equivalent norms forWk,p(!);
for example, we may also define ∥u∥k,p as

∑
|α|≤k ∥uα∥p. We prefer the norm defined

in (6.28), because when p = 2, the norm comes from an inner product on Wk,2(!),
defined by

(u, v)k =
∑
|α|≤k

∫

!

uα v̄αdλn. (6.29)

If u is weakly differentiable to certain order, uα ’s are called generalized partial derivat-
ives of u, and often uα is denoted by ∂αu or ∂ |α|u

∂xα1
1 ···∂xαn

n
; many notations related to smooth

functions are also borrowed to be applied to weakly differentiable functions, for example,
if u is weakly differentiable to first order,∇u is used to denote ( ∂u

∂x1 , . . . ,
∂u
∂xn ) and is called

the generalized gradient of u.
In what follows in this section, p and q are conjugate exponents.
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Theorem 6.6.1 Wk,p(!) is a Banach space.

Proof Let {u(j)} be a Cauchy sequence inWk,p(!). For each α with |α| ≤ k, {u(j)α } is a
Cauchy sequence in Lp(!), hence, limj→∞ ∥u(j)α – gα∥p = 0 for some gα ∈ Lp(!). If
we put u = g0, we shall show that u ∈ Wk,p(!) and limj→∞ ∥u(j) – u∥k,p = 0. For any
given ϕ ∈ C∞

c (!),
∣∣∣∣

∫

!

u∂αϕdλn – (–1)|α|
∫

!

gαϕdλn
∣∣∣∣

=
∣∣∣∣

∫

!

(u – u(j))∂αϕdλn + (–1)|α|
∫

!

(u(j)α – gα)ϕdλn
∣∣∣∣

≤ ∥u – u(j)∥p∥∂αϕ∥q + ∥gα – u(j)α ∥p∥ϕ∥q,

from which by letting j → ∞, we have
∫

!

u∂αϕdλn = (–1)α
∫

!

gαϕdλn,

and hence u is weakly differentiable up to order k with uα = gα . Thus u ∈ Wk,p(!).
That limj→∞ ∥u – u(j)∥k,p = 0 follows from limj→∞ ∥uα – u(j)α ∥p = 0, for each α with
|α| ≤ k. !
Theorem 6.6.1 implies in particular thatWk,2(!) is aHilbert space with inner product

defined by (6.29).

Exercise 6.6.1 A locally integrable function u defined on an open set ! in Rn is in
Wk,p(!), p > 1, if and only if for each multi-index α with |α| ≤ k, there is a constant
Cα > 0 such that

∣∣∣∣

∫

!

u∂αϕdλn
∣∣∣∣ ≤ Cα∥ϕ∥q

for all ϕ ∈ C∞
c (!), where p, q are conjugate exponents.

Exercise 6.6.2 Let {Jε}ε>0 be a Friederichmollifier and suppose that u is weakly differ-
entiable up to order k on an open set ! ⊂ Rn. Show that for any multi-index α with
|α| ≤ k, we have

∂α(Jεu)(x) = Jεuα(x), x ∈ !ε ,

where!ε = {x ∈ ! : dist(x,!c) > ε}.

Exercise 6.6.3 Let u ∈ Wk,p(!), 1 ≤ p < ∞. Show that there is a sequence {vj} ⊂
C∞(Rn) such that for every ε > 0, vj ∈ Wk,p(!ε) when j is large and vj → u in
Wk,p(!ε). Note that vj ∈ Wk,p(!ε) implicitly implies that the restriction of vj to !ε

is also denoted by vj.
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Exercise 6.6.4 Let I be an open interval inR. Show that a locally integrable function
f on I is in W1,1(I) if and only if it is equivalent to a function g which is absolutely
continuous on every finite closed interval in I and g′ ∈ L1(I).

Theorem 6.6.2 Suppose that u ∈ W1,1(Rn), then

u(x) =
1
nbn

∫

Rn

(x – ξ) · ∇u(ξ)
|x – ξ |n

dξ

for a.e. x inRn, where bn = λn(B1(0)) and∇u =
(

∂u
∂x1 , . . . ,

∂u
∂xn

)
.

Proof We know from Exercises 6.1.3 and 6.6.3 that there is a sequence {uj} in
C∞(Rn) ∩ W1,1(Rn) such that limj→∞ ∥uj – u∥1,1 = 0 and uj(x) → u(x) for a.e. x
inRn. Apply Corollary 4.11.1 to each uj; we have

uj(x) =
1
nbn

∫

Rn

(x – ξ) · ∇uj(ξ)
|x – ξ |n

dξ , x ∈ Rn. (6.30)

Fix R > 0. Let! = BR+1(0),D = BR(0), and put

gj(x) =
∫

!

|∇uj(ξ) – ∇u(ξ)|
|x – ξ |n–1

dξ , x ∈ D.

By Theorem 4.11.2, ∥gj∥1 → 0 as j → ∞; hence, {gj} has a subsequence {gj′} such
that gj′(x) → 0 as j′ → ∞ for a.e. x inD, by Exercise 6.1.3. Now,

uj′(x) =
1
nbn

∫

Rn

(x – ξ) · (∇uj′(ξ) – ∇u(ξ))
|x – ξ |n

dξ +
1
nbn

∫

Rn

(x – ξ) · ∇u(ξ)
|x – ξ |n

dξ ;

if we show that
∫
Rn

(x–ξ)·(∇uj′ (ξ)–∇u(ξ))
|x–ξ |n dξ → 0 for a.e. x inD as j′ → ∞, then u(x) =

1
nbn

∫
Rn

(x–ξ)·∇(ξ)
|x–ξ |n dξ for a.e. x inD. But, for x ∈ D, we have

∣∣∣∣

∫

Rn

(x – ξ) · (∇uj′(ξ) – ∇u(ξ))
|x – ξ |n

dξ
∣∣∣∣ ≤

∫

Rn

|∇uj′(ξ) – ∇u(ξ)|
|x – ξ |n–1

dξ

= gj′(x) +
∫

Rn\!

|∇uj′(ξ) – ∇u(ξ)|
|x – ξ |n–1

dξ

≤ gj′(x) +
∫

Rn
|∇uj′(ξ) – ∇u(ξ)|dξ → 0

as j′ → ∞ for those x where gj′(x) → 0. Thus u(x) = 1
nbn

∫
Rn

(x–ξ)·∇u(ξ)
|x–ξ |n dξ for a.e. x

inD. Since R > 0 is arbitrary, the theorem is proved. !
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The closure of C∞
c (!) inWk,p(!) is denoted by

◦
W k,p(!); functions in

◦
W k,p(!) are

said to vanish on ∂# in a generalized sense.

Exercise 6.6.5 Suppose that ! is bounded and let u ∈ ◦
W k,∞(!). Show that u is equi-

valent to a function v ∈ Ck(!)which can be continuously extended to be zero on ∂!,
together with all its partial derivatives up to order k.

Exercise 6.6.6 Show that if u ∈ Wk,p(!), then
∫

!

u∂αvdλn = (–1)|α|
∫

!

uαvdλn

for all v ∈ ◦
W k,q(!) if |α| ≤ k.

Exercise 6.6.7 Let g be inC∞(Rn) satisfying 0 ≤ g ≤ 1, g = 0outsideB2(0), and g = 1
on B1(0). For j ∈ N, let gj be the function defined onRn by

gj(x) = g(j–1x), x ∈ Rn.

(i) Suppose that u ∈ Ck(Rn) ∩ Wk,p(Rn), 1 ≤ p < ∞. Show that limj→∞ ∥gju –
u∥k,p = 0.

(ii) Show that
◦
W k,p(Rn) = Wk,p(Rn) if 1 ≤ p < ∞.

Theorem 6.6.3 (Poincaré) If ! is a bounded open set inRn, then on
◦
W k,p(!) the norm

∥ · ∥k,p is equivalent to the norm | · |k,p, defined for u ∈ ◦
W k,p(!) by

|u|k,p =
(∑
|α|=k

∥uα∥pp
)1/p

, p < ∞;

|u|k,∞ =
∑
|α|=k

∥uα∥∞.

Proof We prove the theorem for k = 1 and p < ∞; the proof for the general case will
be clear from the proof of this particular case.

For u ∈ ◦
W 1,p(!), we are going to show that there is C > 0, independent of u,

such that ∥u∥1,p ≤ C|u|1,p. From the definition of
◦
W 1,p(!), we may assume that

u ∈ C∞
c (!). By letting u = 0 outside !, we may further assume that u ∈ C∞

c (I),
where I is an open oriented cube containing ! and with side-width = l. Express I as
I = I1 × Î1, where I1 = (a, b) ⊂ R and Î1 ⊂ Rn–1; then for x ∈ I, x can be expressed
as (x1, x̂1) with x1 ∈ (a, b) and x̂1 ∈ Î1. Now, u(x) =

∫ x1
a

∂u
∂x1 (t, x̂1)dt implies that

|u(x)|p ≤ (x1 – a)p/q
∫ b
a | ∂u

∂x1 (t, x̂1)|
pdt and hence,



262 | Lp Spaces

∥u∥pp ≤ (b – a)p/q(b – a)
∫

I

∣∣∣∣
∂u
∂x1

(x)
∣∣∣∣
p

dx = (b – a)p
∥∥∥∥

∂u
∂x1

∥∥∥∥
p

p

≤ (b – a)p
n∑
j=1

∥∥∥∥
∂u
∂xj

∥∥∥∥
p

p
,

from which it follows that

∥u∥p1,p ≤ {1 + (b – a)p}|u|p1,p;

therefore ∥u∥1,p ≤ C|u|1,p, where C = {1 + (b – a)p}1/p. Then,

|u|1,p ≤ ∥u∥1,p ≤ C|u|1,p,

implying that ∥ · ∥1,p and | · |1,p are equivalent. !

Remark Since |u|k,p ≤ ∥u∥k,p for u ∈ ◦
W k,p(!), Theorem 6.6.3 is equivalent to the

statement that there is C > 0 such that

∥u∥k,p ≤ C|u|k,p (6.31)

for all u ∈ ◦
W k,p(!). Inequality (6.31) is called the Poincaré inequality; and Theorem

6.6.3 is usually referred to as the Poincaré inequality.

The following lemma is a generalization of Example 4.11.2.

Lemma 6.6.1 Let u ∈ W1,p(Rn), 1 ≤ p < ∞, then,
∫

BR(x)

|u(ξ) – u(x)|
|ξ – x|

dξ ≤ M|∇u|(x)

for x inRn, where M|∇u| is the maximal function of∇u.

Proof Fix a Friederichs mollifier {Jε}ε>0, and let uε = Jεu (cf. Section 4.9), then
limε→0 ∥Jεu – u∥1,p = 0, by Exercise 6.6.2 and Theorem 4.9.2; hence uε → u,
∇uε → ∇u in Lp(Rn). Fix x ∈ Rn and R > 0, in terms of polar coordinates of y – x;
we have
∫

BR(x)
|uε(y) – u(y)|dy =

∫ R

0
ρn–1

∫

Sn–1
|uk(ρ, θ) – u(ρ, θ)|dσ (θ)dρ

=
∫

Sn–1

∫ R

0
ρn–1|uk(ρ, θ) – u(ρ, θ)|dρdσ (θ) → 0

as ε ↘ 0. We infer then from Example 4.8.2 that there is a sequence εk ↘
0 such that

∫ R
0 ρn–1|uεk(ρ, θ) – u(ρ, θ)|dρ → 0 as k → ∞ for σ -a.e. θ ∈ Sn–1.
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Then for any 0 < δ < R,
∫ R
δ
|uεk(ρ, θ) – u(ρ, θ)|dρ → 0 as k → ∞. Similarly,∫ R

δ
|∇uε′

k
(ρ, θ) – ∇u(ρ, θ)|dρ → 0 as k → ∞ for σ -a.e. θ ∈ Sn–1. Since we may

choose ε′
k, a subsequence of εk, we conclude that there is a sequence {uk} in

C∞(Rn) ∩ W1,p(Rn) such that for a.e. y in BR(x)\Bδ(x),

∫ R

δ

|uk(x + t(y – x)) – u(x + t(y – x))|dt → 0

and

∫ R

δ

|∇uk(x + t(y – x)) – ∇u(x + t(y – x))|dt → 0

as k → ∞. Therefore for a.e. y in BR(x)\Bδ(x), u(x + t(y – x)) is AC on [δ,R] and
d
dt u(x + t(y – x)) = ∇u(x + t(y – x)) · (y – x) for a.e. t on [δ,R]. Then, as in Example
4.11.2,

∫

BR(x)\Bδ(x)

|u(ξ) – u(x)|
|ξ – x|

dξ ≤
∫ 1

0

1
tn

∫

BRt(x)\Bδ(t)(x)
|∇u(z)|dz

≤
∫ 1

0

1
tn

∫

BRt(x)
|∇u(z)|dz

≤ λn(BR(x)) · M|∇u|(x).

We conclude the proof by letting δ ↘ 0. !
Theorem 6.6.4 There is a positive constant θ = θ(n, p), 1 < p < ∞ with the property

that if u ∈ W1,p(Rn), then for ε > 0 there is a closed set F ⊂ Rn such that u|F, the
restriction of u to F, is Lipschitz with Lipschitz constant Lip(u|F), satisfying

Lip(u|F)pλn(Rn\F) < θ(n, p)ε.

Proof For x, y inRn, put q(x, y) = |u(y)–u(x)|
|y–x| , then

1
σR

∫

BR(x)
q(x, y)dy ≤ M|∇u|(x), (6.32)

from Lemma 6.6.1, where σR = λn(BR(x)). For x ∈ Rn and λ > 0, let WR(x, λ) =
{y ∈ BR(x) : q(x, y) ≤ λ}; we have from (6.1) and (6.32),

λn(BR(x)\WR(x, λ)) ≤ 1
λ

∫

BR(x)
q(x, y)dy ≤ σR

λ
M|∇u|(x). (6.33)



264 | Lp Spaces

Now put Zδ = {x ∈ Rn : M|∇u|(x) ≤ δ}, and choose k0 > 1 such that

λn(BR(x) ∩ BR(y)) >
2
k0

σR , R = |x – y|. (6.34)

Consider now x, y in Zδ; we have from (6.33),

λn(BR(z)\WR(z, k0δ)) ≤ M|∇u|(z)
k0δ

σR ≤ 1
k0

σR , (6.35)

for z = x or y and R = |x – y|. It follows from (6.34) and (6.35) that WR(x, k0δ) ∩
WR(y, k0δ) ̸= ∅; choose z0 ∈ WR(x, k0δ) ∩ WR(y, k0δ), then

q(x, y) ≤ q(x, z0) + q(y, z0) ≤ 2k0δ. (6.36)

Given that ε > 0, by (6.2) there is δ > 0 such that δpλn({M|∇u| > δ}) < ε.
Choose then a closed set F in Zδ with λn(Rn\F) < 2λn({M|∇u| > δ}). The restric-
tion of u to F is a Lipschitz function with Lipschitz constant ≤ 2k0δ, by (6.36);
therefore ( Lip(u|F)2k0 )pλn(Rn\F) < 2ε. We choose θ = θ(n, p) = 2p+1kp0 to complete
the proof. !

Remark IfM(|u| + |∇u|) is substituted forM|∇u| in Theorem 6.6.4, the closed set F
can be chosen so that ∥u|F∥∞ + Lip(u|F) ≤ 2 Lip(u|F); this observation, together with
the known fact that u|F can be extended to a Lipschitz function v onRn such that ∥v∥∞ +
Lip(v) ≤ A(∥u|F∥∞ + Lip(u|F)), where A is a constant depending only on n (cf. [St,
Chapter VI]), shows that Theorem 6.6.4 can be formulated as follows. A function u ∈
Lp(Rn) is inW1,p(Rn) if and only if for any given ε > 0 there is a Lipschitz function v
onRn, and a closed set F such that u = v on F, λn(Rn\F) < ε, and ∥u – v∥1,p < ε.

Besides, Theorem 6.6.4 also holds when p = 1, because in the last paragraph of the
proof of the theorem, δ can be chosen so that δλn({M|∇u| > δ}) < ε follows from the
improved form of Theorem 6.4.2:

λn({Mf > α}) ≤ 2Aα–1
∫

{| f |> α
2 }
| f |dλn,

of which we refer to [St, P.7].

SinceWk,2(!) is a Hilbert space, it will be denoted byHk(!); accordingly,
◦
W k,2(!)

is denoted by
◦
H k(!). By Exercise 6.6.7 (ii),

◦
H k(Rn) = Hk(Rn); Hk(Rn) is usually

abbreviated to Hk. In Chapter 7, with the help of the Fourier integral, Hs will also be
defined for fractional number s.



7 Fourier Integral
and Sobolev Space Hs

The Fourier integral is a useful construct in analysis which is based on an idea of
J. Fourier for resolving functions into basic harmonics in his treatment of con-

duction of heat. When functions are periodic, say of period 2π , they are resolved as
Fourier series (see Section 5.9). For nonperiodic functions on R, the idea leads to a
Fourier integral. The Fourier integral for L1 functions on Rn can be defined straight
away, and is treated in Section 7.1. Since L2 is a Hilbert space, it is desirable to define
a Fourier integral for L2 functions; but a straightforward definition for L2 functions is
lacking; some variation is therefore necessary for the purpose. We shall get around this
through the Fourier integral for rapidly decreasing functions, introduced in Section 7.2.
Applications to Sobolev spaces Hs and to partial differential equations are provided in
later sections of the chapter. The Fourier integral of probability distributions is intro-
duced in Section 7.5, and is applied to prove the central limit theorem of probability
theory.

A Fourier integral is also called a Fourier transform.
For the convenience of expressing certain functions defined onRn, the function x !→

f (x) will sometimes be expressed by f (x). For example, x !→ xα is simply denoted by xα ,
and if f is a function onRn, the function x !→ xα f (x) is denoted by xα f .

7.1 Fourier integral for L1 functions

For f ∈ L1 := L1(Rn), define the Fourier integral Ff of f by

(Ff )(ξ) =
1

(2π) n
2

∫

Rn
f (x)e–iξ ·xdx, ξ ∈ Rn.

Since |f (x)e–iξ ·x| = |f (x)|,Ff is defined and is finite for every ξ ∈ Rn. One verifies readily
that

Real Analysis. Fon-Che Liu. © Fon-Che Liu 2016. Published 2016 by Oxford University Press.
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(1) ∥Ff∥∞ ≤ 1
(2π)

n
2
∥f∥1;

(2) Ff is uniformly continuous onRn (note that this follows from LDCT).

Exercise 7.1.1 Let f (x) = e–|x|, x ∈ R. Find Ff .

Exercise 7.1.2 Suppose that f1, . . . , fn are in L1(R) and let f (x) =
∏ n

j=1 fj(xj) for
x = (x1, . . . , xn) ∈ Rn. Show that f ∈ L1(Rn) and (Ff )(ξ) =

∏ n
j=1(Ffj)(ξj) for

ξ = (ξ1, . . . , ξn).

Example 7.1.1

(i) For α > 0, consider the function f = I[–α,α] on R; then (Ff )(ξ) = 2 sinαξ√
2πξ

,

ξ ∈R. For n > 1, f = I[–α,α]×···×[–α,α], (Ff )(ξ) = 2n

(2π)
n
2

∏ n
j=1

sinαξj
ξj

.
This follows from Exercise 7.1.2.

(ii) For n = 1, consider the function f (x) = e– x2
2 . We have

(Ff )(ξ) =
1√
2π

∫

R
e–

x2
2 e–iξxdx =

1√
2π

∫

R
e–

x2
2 cos ξxdx,

and

(Ff )′(ξ) =
1√
2π

∫

R
e–

x2
2 (–x sin ξx)dx

=
1√
2π

ξ

∫

R
e–

x2
2 cos ξxdx = ξ(Ff )(ξ).

The first equality follows by LDCT and the second by integration by parts.
Then (Ff )(ξ) = Ce–

ξ2
2 with C being a constant. But (Ff )(0) = 1√

2π

∫
R e– x2

2 dx

= 1 =C. Thus (Ff )(ξ) = e–
ξ2
2 . For n > 1, if f (x) = e–

|x|2
2 , then (Ff )(ξ) = e–

|ξ |2
2 .

Exercise 7.1.3 Consider the function f (x) = e– 1
2 x

2 in Example 7.1.1 (ii). Use a contour
integral to show that

∫

R
e–

1
2 (x+iξ)

2
dx =

∫

R
e–

1
2 x

2
dx =

√
2π

and give a direct verification that

Ff (ξ) = e–
1
2 ξ 2

.

Theorem 7.1.1 If f , g ∈ L1(Rn), (F{f ∗ g})(ξ) = (2π) n
2 (Ff )(ξ)(Fg)(ξ).
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Proof Observe first that f ∗ g ∈ L1(Rn), by the Young inequality (Theorem 6.5.1).
Then,

(F{f ∗ g})(ξ) =
1

(2π) n
2

∫

Rn

(∫

Rn
f (x – y)g(y)dy

)
e–iξ ·xdx

=
1

(2π) n
2

∫

Rn

(∫

Rn
f (x – y)e–iξ ·(x–y)dx

)
g(y)e–iξ ·ydy

=
∫

Rn
(Ff )(ξ)g(y)e–iξ ·ydy = (2π)

n
2 (Ff )(ξ)(Fg)(ξ).

It is to be noted that since f (x – y)g(y)e–iξ ·x is an integrable function of (x, y) inR2n,
it is legitimate to use the Fubini theorem in the above argument. !

Example 7.1.2 Let α > 0. It is readily verified that 1
α
I[– α

2 ,
α
2 ] ∗ I[– α

2 ,
α
2 ](x) =

(
1 – |x|

α

)+

(cf. Exercise 6.5.2), it then follows than
(
F
(
1 –

|x|
α

)+)
(ξ) =

√
2π
α

(2 sin α
2 ξ√

2πξ

)2

=
1
α

· 2(1 – cosαξ)√
2πξ 2

.

For f ∈ L1(Rn), the inverse Fourier integral F̌f of f is defined by

(F̌f )(ξ) =
1

(2π) n
2

∫

Rn
f (x)eiξ ·xdx, ξ ∈ Rn.

For f ∈ L1, Ff and F̌f are often denoted by f̂ and f̌ respectively.

Exercise 7.1.4 Recall that for a ∈ Rn,σ > 0, and a function f onRn, f a(x) = f (x – a),
fσ (x) = σ –nf ( x

σ
) for x ∈ Rn.

(i) Show that f̂ a(ξ) = e–iξ ·af̂ (ξ) for f ∈ L1.
(ii) Show that f̂σ (ξ) = f̂ (σξ).

Exercise 7.1.5 Let f , g be in L1. Show that
∫

Rn
f ĝdλn =

∫

Rn
f̂ gdλn.

Theorem 7.1.2 (Riemann–Lebesgue) If f ∈ L1, then f̂ ∈ C0(Rn).

Proof If f is the function considered in Example 7.1.1 (i), then lim|ξ |→∞ f̂ (ξ) = 0;
hence the theorem holds for indicator functions of cubes, by Exercise 7.1.4 (i); as a
consequence the theorem holds for finite linear combinations of indicator functions
of cubes. But, as Cc(Rn) is dense in L1, one verifies easily that the family of all finite
linear combinations of indicator functions of cubes is dense in L1. Thus for f ∈ L1
and ε > 0, there is a finite linear combination ϕ of indicator functions of cubes such
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that ∥f – ϕ∥1 < ε
2 , then |f̂ (ξ)| ≤ |(f̂–ϕ)(ξ)| + |ϕ̂(ξ)| < ε

2 + |ϕ̂(ξ)|, from which it
follows that |f̂ (ξ)| < ε if |ξ | is large enough, because ϕ̂ ∈ C0(Rn). !

Theorem 7.1.3 For f ∈ L1, f is uniquely determined by f̂ ; in other words, the map f !→ f̂
is injective on L1.

Proof Take h to be the function defined onRn by h(x) = 1
(2π)

n
2
e–

|x|2
2 (note

∫
hdλn = 1),

then {hσ }σ>0 is an approximate identity for L1. Putmσ f = f ∗ hσ . Then, since ĥ(ξ) =
h(ξ), as in Example 7.1.1 (ii), we have

(mσ f )(x) =
∫

Rn
f (y)hσ (x – y)dy =

∫

Rn
f (y)hσ (y – x)dy

= σ –n
∫

Rn
f (y)h

( y – x
σ

)
dy

=
σ –n

(2π) n
2

∫

Rn

(
f (y)

∫

Rn
e–i

y–x
σ

·zh(z)dz
)
dy

=
σ –n

(2π) n
2

∫

Rn

(
f (y)

∫

Rn
e–i(y–x)·

z
σ h(z)dz

)
dy

=
1

(2π) n
2

∫

Rn

(
f (y)

∫

Rn
e–i(y–x)·zh(σ z)dz

)
dy

=
∫

Rn
eix·zf̂ (z)h(σ z)dz;

this means that the function mσ f is uniquely determined by f̂ . But as mσ f → f in L1
as σ → 0, f is uniquely determined by f̂ . !

Theorem 7.1.4 (L1 inversion theorem) If both f and f̂ are in L1, then f = (f̂ )̌ , i.e. f is the
inverse Fourier integral of f̂ .

Proof Let h and {mσ }σ>0 be as in the proof of Theorem 7.1.3. There we have shown
that

(mσ f )(x) =
∫

Rn
eix·ξ f̂ (ξ)h(σξ)dξ ;

since |eix·ξ f̂ (ξ)h(σξ)| ≤ 1
(2π)n/2 |f̂ (ξ)| and limσ→0 eix·ξ f̂ (ξ)h(σξ) = 1

(2π)
n
2
eix·ξ f̂ (ξ),

it follows from LDCT that limσ→0(mσ f )(x) = (f̂ )̌ (x) for each x ∈ Rn. Now,
|(mσ f )(x)| ≤ 1

(2π)
n
2
∥f̂∥1 implies that limσ→0

∫
BR(0) |mσ f – (f̂ )̌ |dλn = 0 for any

R > 0, again by LDCT; this, together with limσ→0
∫
BR(0) |mσ f – f |dλn = 0 (cf.

Theorem 6.5.3), shows that f = (f̂ )̌ a.e. on BR(0) for any R > 0, and consequently
f = (f̂ )̌ a.e. onRn. !
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As an application of the L1 inversion theorem, we establish the fact that the fam-
ily {E0, E1, E2, . . .} of normalized Hermite functions introduced in Example 5.8.1 is
an orthonormal basis for L2(R), or equivalently, that the family {h0, h1, h2, . . .} of
normalized Hermite polynomials is an orthonormal basis for L2w(R) where w(x) = e–x2 .

Corollary 7.1.1 The family {E0, E1, E2, . . .} of normalized Hermite functions is an
orthonormal basis for L2(R).

Proof By Theorem 5.8.3, we need to show that if f ∈ L2(R) is such that

(A)
∫ ∞

–∞
f (x)En(x)dx = 0, n = 0, 1, 2, . . . ,

then f = 0 a.e. Recall from Example 5.8.1 that En(x) = e– x2
2 hn(x), where hn(x) is

a polynomial of degree n and that each monomial xn is a linear combination of
h0(x), . . . , hn(x); hence if f ∈ L2(R) satisfies the condition (A), then it satisfies
the condition

(B)
∫ ∞

–∞
f (x)e–

x2
2 xndx = 0, n = 0, 1, 2, . . . .

Therefore, it suffices to show that if f ∈ L2(R) satisfies the condition (B), then
f = 0 a.e. Now let f ∈ L2(R) satisfy the condition (B). Put g(x) = f (x)e– x2

2 , then
g ∈ L1(R), by the Schwarz inequality and

ĝ(t) =
1√
2π

∫ ∞

–∞
e–itxf (x)e–

x2
2 dx

=
1√
2π

∫ ∞

–∞

(∞∑
n=0

(–itx)n

n!

)
f (x)e–

x2
2 dx;

but forN ∈ N,

∣∣∣∣
N∑
n=0

(–itx)n

n!
f (x)e–

x2
2

∣∣∣∣ ≤ |f (x)|e|tx|e–
x2
2 ,

of which the function on the right-hand side is integrable because

∫ ∞

–∞
|f (x)|e|tx|e–

x2
2 dx ≤ ∥f∥2

{∫ ∞

–∞
e2|tx|e–x

2
dx
} 1

2

< ∞.
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It follows then from LDCT that

ĝ(t) =
1√
2π

∫ ∞

–∞
lim

N→∞

( N∑
n=0

(–itx)n

n!
f (x)e–

x2
2

)
dx

= lim
N→∞

1√
2π

∫ ∞

–∞

( N∑
n=0

(–it)n

n!
xnf (x)e–

x2
2

)
dx

= lim
N→∞

1√
2π

N∑
n=0

(–it)n

n!

∫ ∞

–∞
f (x)e–

x2
2 xndx = 0

by condition (B). Thus, ĝ = 0 andbyTheorem7.1.4, g(t) = (ĝ)̌ (t) = 0 a.e. and hence
f = 0 a.e. !
A remarkable application of the Fourier integral is the Poisson summation formula,

which states that

∞∑
n=–∞

f (2nπ) =
1√
2π

∞∑
n=–∞

f̂ (n)

for integrable functions f satisfying certain condition. Usually, the Poisson summation
formula is established for f ∈ C2(R) such that

|f (x)| + |f ′(x)| + |f ′′(x)| ≤ C(1 + x2)–1, x ∈ R,

for some constant C > 0. We shall prove the formula under weaker conditions. For an
integrable function f onR and n ∈ Z, let

fn(x) = f (x + 2πn), x ∈ R.

We first claim that {fn(x)} = {fn(x)}n∈Z is summable for a.e. x in R. For this pur-
pose it is sufficient to show that {fn(x)} is summable for a.e. x in [–π ,π], because
if {fn(x)} is summable, then {fn(x + 2πm)} = {fn+m(x)} = {fn(x)} for any m ∈ Z, and
hence

∑
n∈Z fn(x + 2πm) =

∑
n∈Z fn(x). Now,

∫ π

–π

∑
n∈Z

|fn(x)|dx =
∑
n∈Z

∫ π

–π
|fn(x)|dx =

∫

R
|f |dλ < ∞

implies that
∑

n∈Z |fn(x)| < ∞ for a.e. x in [–π ,π]. Hence {fn(x)} is summable for a.e.
x inR and if we put [f ](x) =

∑
n∈Z fn(x), if {fn(x)} is summable and [f ](x) = 0 other-

wise, [f ] is defined onR and periodic with period 2π . Furthermore, [f ] is integrable on
[–π ,π]. The function [f ] is called the stacked function of f . If we define for j ∈ N the
function [f ]j onR by

[f ]j(x) =
∑
|n|≤j

fn(x),
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then [f ]j → [f ] a.e. and |[f ]j| ≤ [|f |] a.e. Since [|f |] is integrable on [–π ,π], it follows
fromLDCT that [f ]j → [f ] in L1[–π ,π].We have proved the following lemma (7.1.1).

Lemma 7.1.1 Suppose that f ∈ L1 = L1(R). Then [f ]j → [f ] a.e. as well as in
L1[–π ,π] as j → ∞.

In the immediate following, for f ∈ W1,1(R) we always take a version of f which
is AC on every finite closed interval of R (note that since W1,1(R) =

◦
W 1,1(R),

f (x) =
∫ x
–∞ f ′(x)dx for a.e. x).

Lemma 7.1.2 If f ∈ W1,1(R), then [f ] is an AC function on [–π ,π] and satisfies
[f ](–π) = [f ](π). Furthermore, [f ]′ = [f ′] a.e.

Proof We take a version of f which is AC on every finite closed interval ofR. Then f ′
exists a.e. and is integrable onR; and since

fn(x) = f (x + 2nπ) = f (–π + 2nπ) +
∫ x+2nπ

–π+2nπ
f ′(s)ds

= fn(–π) +
∫ x

–π
f ′n(s)ds (7.1)

for x ∈ [–π ,π], we have

[f ]j(x) = [f ]j(–π) +
∫ x

–π
[f ′]j(s)ds, x ∈ [–π ,π]. (7.2)

As [f ′]j → [f ′] in L1[–π ,π] as j→∞, by Lemma 7.1.1, limj→ ∞
∫ x
–π [f

′]j(s)ds =∫ x
–π [f

′](s)ds for x ∈ [–π ,π]; we conclude that limj→∞[f ]j(–π) exists and is finite
by letting j → ∞ in (7.2) for x such that limj→∞[f ]j(x) = [f ](x). Because |f | ∈
W1,1(R), we also know that limj→∞[|f |]j(–π) exists and is finite, from which fol-
lows that {fn(–π)} is summable and hence [f ](–π) = limj→∞[f ]j(–π). Now for any
finite subset F ofZ and x ∈ [–π ,π],

∑
n∈F

∣∣∣∣

∫ x

–π
f ′n(s)ds

∣∣∣∣ ≤
∫ x

–π

∑
n∈F

|f ′n(s)|ds ≤
∫ x

–π
[|f ′|](s)ds < ∞,

implying that {
∫ x
–π f ′n(s)ds} is summable for each x ∈ [–π ,π]. We then infer from

(7.1) that {fn(x)} is summable and [f ](x) = limj→∞[f ]j(x) for each x ∈ [–π ,π].
Now let j → ∞ in (7.2); we have

[f ](x) = [f ](–π) +
∫ x

–π
[f ′](s)ds, x ∈ [–π ,π];

consequently [f ] is AC on [–π ,π] and [f ]′ = [f ′] a.e. on [–π ,π]. Finally, [f ](–π) =∑
n∈Z fn(–π) =

∑
n∈Z fn+1(–π) =

∑
n∈Z fn(π) = [f ](π). !



272 | Fourier Integral and Sobolev Space Hs

Lemma 7.1.3 If f ∈ W1,1(R), then

∑
k∈Z

f (2πk) = lim
j→∞

1√
2π

∑
|n|≤j

f̂ (n).

Proof Since [f ] is an AC function on [–π ,π], by Lemma 7.1.2, fromTheorem 5.9.6 we
know that

[f ](0) = lim
j→∞

Sj([f ], 0) = lim
j→∞

1√
2π

∑
|k|≤j

[̂f ](k),

where [̂f ](k), k ∈ Z, are the Fourier coefficients of [f ]; but

[̂f ](k) =
1√
2π

∫ π

–π
[f ](x)e–ikxdx =

1√
2π

∫ π

–π

∑
n∈Z

f (x + 2πn)e–ikxdx

=
1√
2π

∑
n∈Z

∫ π

–π
f (x + 2πn)e–ikxdx =

1√
2π

∫

R
f (x)e–ikxdx = f̂ (k),

hence, [f ](0) =
∑

n∈Z f (2πn) = limj→∞ 1√
2π

∑
|k|≤j f̂ (k). !

Theorem 7.1.5 (Poisson summation formula) If f ∈ W2,1(R), then {f̂ (n)} is summable
and

∑
n∈Z

f (2πn) =
1√
2π

∑
n∈Z

f̂ (n). (7.3)

Proof In view of Lemma 7.1.3, it is sufficient to show that {f̂ (n)} is summable.
Since f ∈ W2,1(R), f ′ ∈ W1,1(R). Then [f ′] = [f ]′ is AC and is therefore in

L2[–π ,π]. Now,

[̂f ](k) =
1√
2π

∫ π

–π
[f ](x)e–ikx =

i
k

1√
2π

∫ π

–π
[f ]′(x)e–ikxdx =

i
k
[̂f ]′(k),

if k ̸= 0 (note [f ](–π) = [f ](π)), hence,

∑
k∈Z

∣∣∣[̂f ](k)
∣∣∣ =

∣∣∣[̂f ](0)
∣∣∣ +
∑
k ̸=0

1
|k|

∣∣∣[̂f ]′(k)
∣∣∣

≤
∣∣∣[̂f ](0)

∣∣∣ +
(∑
k ̸=0

1
k2

) 1
2
(∑
k∈Z

∣∣∣[̂f ]′(k)
∣∣∣
2
) 1

2

< ∞,

because
∑

k∈Z |[̂f ]′(k)|2 = ∥[f ]′∥22. Thus {[̂f ](n)} is summable. We have shown
in the proof of Lemma 7.1.3 that f̂ (n) = [̂f ](n) for n ∈ Z, hence {f̂ (n)} is
summable. !
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Example 7.1.3 Let g(x) = 1√
2π e

– x2
2 , and for t > 0 let gt(x) = 1√

2π t e
– x2
2t2 , x ∈ R. The

family {gt} is called theGauss kernel. FromExample 7.1.1 (ii) and Exercise 7.1.4 (ii),
ĝt(ξ) = 1√

2π e
– t2ξ2

2 . Using (7.3), we conclude that

1√
2π t

∑
n∈Z

e–
(2πn)2

2t2 =
1
2π

∑
n∈Z

e–
n2 t2
2 ,

from which on replacing t by 2π
√
t, we have

1√
2π t

∑
n∈Z

e–
n2
2t =

∑
n∈Z

e–2π
2n2t . (7.4)

The relation (7.4) is Jacobi’s identity for the theta function θ ,

θ(t) = t–
1
2 θ

(
1
t

)
, t > 0, (7.5)

where θ(t) =
∑

n∈Z e–πn2t .

Example 7.1.4 Consider the Poisson kernel Pt(x) = 1
π

t
t2+x2 , t > 0, x ∈ R. From the

Cauchy integral formula, if ξ > 0 and y < –t,
∫

R

e–iξxdx
(x – it)(x + it)

–
∫

R

e–iξ(x+iy)dx
(x + iy – it)(x + iy + it)

= 2π i
(
e–ξ t

–2it

)
=

π

t
e–ξ t ,

where e–ξ t
–2it is the value of the function

e–iξz
z–it at z = –it. But,

∫

R

e–iξ(x+iy)dx
(x + iy)2 + t2

= eξy
∫

R

e–iξx

(x + iy)2 + t2
dx → 0

as y → –∞. Hence
∫
R

e–iξx
x2+t2 dx =

π
t e

–ξ t if ξ > 0.
If ξ < 0, take y > t and then let y → ∞; we obtain

∫
R

e–iξx
x2+t2 dx =

π
t e

ξ t by the same
argument. Thus P̂t(ξ) = 1√

2π
t
π

∫
R

e–iξx
x2+t2 dx =

1√
2π e

–|ξ |t . Apply (7.3); we have

∑
n∈Z

Pt(2nπ) =
t
π

∑
n∈Z

1
t2 + (2nπ)2

=
1
2π

∑
n∈Z

e–|n|t =
1
2π

1 + e–t

1 – e–t
, (7.6)

or

∑
n∈Z

1
t2 + n2

=
π

t
1 + e–2π t

1 – e–2π t

on replacing t by 2π t. When t → 0+, (7.6) becomes
∑∞

n=1
1
n2 = π2

6 .

Exercise 7.1.6 Show that
∫
R e–|ξ |teiξxdξ = 2πPt(x) and verify that P̂t(ξ) = 1√

2π e
–|ξ |t .
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7.2 Fourier integral on L2

The Fourier integral for L2 functions will be defined by using properties of the Fourier
integral operator on the space of rapidly decreasing functions.

Denote by S the space of all complex-valued functions f in C∞(Rn) such that for all
multi-indices α and β

Pαβ(f ) := sup
x∈Rn

|xα∂β f (x)| < ∞,

where xα = xα1
1 · · · xαn

n and ∂β f (x) = ∂ |β|f
∂xα1

1 ···∂xαn
n
(x).

S is called the Schwartz space in Rn, and functions in S are usually referred to as
rapidly decreasing functions. For each pair α, β of multi-indices, Pαβ(·) is a semi-norm
on S . Note that (i)D := C∞

c (Rn) ⊂ S; and (ii) the function e–
|x|2
2 is in S .

Define a metric ρ on S by

ρ(f , g) =
∑
α,β

1
e|α|e|β|

· Pαβ(f – g)
1 + Pαβ(f – g)

· 1
n|α|n|β|

. (7.7)

Since { 1
e|α|e|β| · Pαβ (f–g)

1+Pαβ(f–g)
· 1
n|α|n|β| }α,β is summable with sum ≤ ∑

j,k≥0
1
ejek , ρ(f , g) is a

nonnegative finite number.

Exercise 7.2.1 Show that ρ is actually a metric on S .

We observe first the following elementary inequalities:

(1 + |x|)N ≤ 2N(1 + |x|N), N ≥ 0, x ∈ Rn;

|x|N ≤ δ–1
n∑
j=1

|xj|N , N ≥ 0, x ∈ Rn,
(7.8)

where δ = min|x|=1
∑n

j=1 |xj|N . For the first one, we may assume that |x| > 1, then
(1 + |x|)N ≤ (2|x|)N < 2N(1 + |x|N); while the second inequality follows by first con-
sidering the case |x| = 1 and then reducing the general case to this particular case.

Proposition 7.2.1 For f ∈ S , xα∂β f ∈ L1 for any multi-indices α and β .

Proof
∫

Rn
|xα∂β f (x)|dx =

∫

Rn
|xα|(1 + |x|n+1)|∂β f (x)|

1
1 + |x|n+1

dx

≤
∫

Rn
|xα|

(
1 + δ–1

n∑
j=1

|xj|n+1
)
|∂β f (x)|

1
1 + |x|n+1

dx

≤ M
∫

Rn

1
1 + |x|n+1

dx < ∞,

for someM > 0, where δ = min|x|=1
∑n

j=1 |xj|n+1 (cf. (7.8)). !
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Now let f ∈ S , then f ∈ L1 by Proposition 7.2.1, and f̂ is defined. We show the
existence of ∂

∂ξj
f̂ (ξ) as follows. Consider for h ̸= 0 the difference quotient

f̂ (ξ1, . . . , ξj + h, . . . , ξn) – f̂ (ξ)
h

=
1

(2π)n/2

∫
f (x)e–iξ ·x (e–ihxj – 1)

h
dx.

Since | e
–ihxj–1
h | ≤ |xj| and |xj||f | ∈ L1, by Proposition 7.2.1, it follows from LDCT that

∂
∂ξj
f̂ (ξ) exists and

∂

∂ξj
f̂ (ξ) = (–i)x̂jf (ξ).

By Proposition 7.2.1, we can repeat the above argumentwith f replaced by xjf , and obtain
for any multi-index α the following formula:

∂α
ξ f̂ (ξ) = (–i)|α|x̂α f (ξ). (7.9)

Since xα f ∈ L1 and x̂α f is uniformly continuous, Proposition 7.2.2 then follows
from (7.9).

Proposition 7.2.2 If f ∈ S , then f̂ ∈ C∞(Rn).

Using the Fubini theorem and integration by parts, one asserts

∂̂β f (ξ) = (i)|β|ξβ f̂ (ξ) (7.10)

for any multi-index β . Combining (7.9) and (7.10), one obtains

(i)|α+β|ξβ∂α
ξ f̂ (ξ) =

̂
∂

β
x (xα f )(ξ) (7.11)

for any multi-indices α and β .

Theorem 7.2.1 FS ⊂ S , and F is a continuous map with respect to the metric ρ on S
defined by (7.7).

Proof That f ∈ S implies that f̂ ∈ S follows directly from (7.11):

sup
ξ∈Rn

|ξβ∂α
ξ f̂ (ξ)| ≤ ∥ ̂

∂
β
x (xα f )∥∞ ≤ ∥∂β

x (x
α f )∥1 < ∞.

To see that F is continuous, first observe that a sequence {fk} ⊂ S converges to f ∈ S
in the metric ρ defined by (7.7) if and only if limk→∞ Pαβ(fk – f ) = 0 for each pair α,
β of multi-indices. Now from (7.11),

Pβα(f̂k – f̂ ) ≤ ∥ ̂
∂

β
x [xα(fk – f )]∥∞ ≤ ∥∂β

x [x
α(fk – f )]∥1;
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observe that if ρ(fk, f ) → 0, then ∂β
x [xα(fk(x) – f (x))] → 0 uniformly onRn and

|∂β
x [x

α(fk(x) – f (x))]| ≤ |(1 + |x|n+1)∂β
x [x

α(fk(x) – f (x))]|
1

1 + |x|n+1

≤ M
1

1 + |x|n+1
.

LDCT can be applied to obtain limk→∞ ∥∂β
x [xα(fk – f )]∥1 = 0, implying that

limk→∞ Pβα(f̂k – f̂ ) = 0 and consequently ρ(f̂k, f̂ ) → 0. !

Since F̌f = Ff̃ , where f̃ (x) = f (–x), F̌ is also a continuous map from S to S w.r.t. the
metric defined by (7.7).

Taking into account Theorem 7.1.4 and the fact that S ⊂ L1, we conclude that
Theorem 7.2.2 holds.

Theorem 7.2.2 (Fourier inversion theorem) Both F and F̌ are continuous and bijective
from S to S and F̌(Ff ) = f = F(F̌f ) for f ∈ S .

Theorem 7.2.3 (Parseval relations) For f , g in S the following relations hold:

(i)
∫
f̂ gdλn =

∫
f ĝdλn;

(ii)
∫
f ḡdλn =

∫
f̌ ¯̌gdλn.

Proof (i) is the conclusion of Exercise 7.1.5; (ii) follows from (i) by replacing f and g
by f̌ and ḡ respectively. !

Exercise 7.2.2 Let (f , g) =
∫
f ḡdλn be the L2 inner product of f and g in S . Show that

(i) and (ii) in Theorem 7.2.3 are equivalent and are equivalent to any of the following
relations:

(a) (f̂ , g) = (f , ǧ);
(b) (f , g) = (f̂ , ĝ).

We are ready to define the Fourier integral for functions in L2. SinceC∞
c (Rn) is dense

in Lp, 1 ≤ p < ∞, and C∞
c (Rn) ⊂ S , S is dense in L2. For f ∈ L2, there is a sequence

{fk} in S such that limk→∞ ∥fk – f∥2 = 0; a fortiori, {fk} is a Cauchy sequence in L2. By
relation (b) in Exercise 7.2.2, ∥fk – fl∥22 = ∥f̂k – f̂l∥22 for all k, l in N, therefore {f̂k} is a
Cauchy sequence in L2 and converges in L2 to g ∈ L2. We claim that g is independent of
the sequence {fk} inS , which converges to f in L2. Suppose that {gk} is another sequence
in S that converges to f in L2; then limk→∞ ∥fk – gk∥2 = 0, but ∥f̂k – ĝk∥2 = ∥fk – gk∥2
implies that limk→∞ ĝk = limk→∞ f̂k = g in L2. Thus g is uniquely determined by f in the
way we specify; we then denote g by f̂ ′ for the moment. From the definition, one verifies
readily that (f , g) = (f̂ ′, ĝ′) for f , g in L2.

Lemma 7.2.1 If f ∈ L1 ∩ L2, then f̂ = f̂ ′.
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Proof Fix a Friederich mollifier {Jε}ε>0 constructed from a mollifying function ϕ ≥ 0.
For ε > 0, let fε = fIB1/ε(0). Then Jεfε ∈ C∞

c (Rn) ⊂ S . We claim that Jεfε → f in
both L1 and L2. Actually for p = 1 or 2, we have

∥Jεfε – f∥p ≤ ∥Jε(fε – f )∥p + ∥Jεf – f∥p
≤ ∥fε – f∥p + ∥Jεf – f∥p → 0

as ε → 0. From ∥Jεfε – f∥1 → 0, as ε → 0, we infer that Ĵεfε → f̂ uniformly onRn;
while from ∥Jεfε – f∥2 → 0, as ε → 0, we conclude that Ĵεfε → f̂ ′ in L2 and, con-
sequently, there is a sequence of ε tending to zero such that Ĵεfε → f̂ ′ a.e. on Rn.
Hence f̂ = f̂ ′ a.e. !
Because of Lemma 7.2.1, it is natural to call f̂ ′ the Fourier integral of f in L2 and also

denote f̂ ′ by f̂ . Similarly f̌ is also defined for f ∈ L2.We shall also useF and F̌ to denote the
maps f !→ f̂ and f !→ f̌ respectively fromL2 ontoL2.Note that (f , g) = (f̂ , ĝ) = (f̌ , ǧ) for
f , g in L2.

Exercise 7.2.3 Show that bothF and F̌ are linear bijective isometries fromL2 onto itself
and F̌ = F–1.

Exercise 7.2.4 Suppose that f ∈ Wk,2(Rn), k ∈ N. Show that ∂̂α f (ξ) = (i)|α|ξα f̂ (ξ)
for a.e. ξ ∈ Rn if |α| ≤ k. (Hint:Wk,2(Rn) =

◦
Wk,2(Rn).)

7.3 The Sobolev space Hs

For each s ∈ R, an inner product (·, ·)s on S is defined by

(f , g)s =
∫
(1 + |ξ |2)s f̂ (ξ)ĝ(ξ)dξ ;

and the associated norm on S is denoted by | · |s. Thus,

|f |s =
(∫

(1 + |ξ |2)s|f̂ (ξ)|2dξ
) 1

2

.

As usual, (f , g) =
∫
f ḡdλn is the inner product of f and g in L2.

A few basic properties of inner products (·, ·)s are now listed.

(1) (f , g) = (f , g)0.
(2) |(f , g)0| ≤ |f |s|g|–s. This follows directly from

(f , g)0 =
∫
(1 + |ξ |2)s/2 f̂ (ξ)(1 + |ξ |2)–s/2ĝ(ξ)dξ ,

by Schwarz’s inequality.
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(3) |f |s = max g∈S
g ̸=0

|(f ,g)0|
|g|–s . To see this, one observes first from (2) that

|f |s ≥ sup
g∈S
g ̸=0

|(f , g)0|
|g|–s

;

now, since (1 + |ξ |2)s f̂ (ξ) ∈ S , there is h ∈ S such that ĥ(ξ) = (1 + |ξ |2)sf̂ (ξ),
and hence,

|h|2–s =
∫
(1 + |ξ |2)–s(1 + |ξ |2)2s|f̂ (ξ)|2dξ

=
∫
(1 + |ξ |2)s|f̂ (ξ)|2dξ = |f |2s ;

(f , h)0 =
∫
(1 + |ξ |2)s|f̂ (ξ)|2dξ = |f |2s ,

resulting in |(f ,h)0|
|h|–s = |f |s.

(4) |∂α f |s ≤ |f |s+|α|. This is obvious by (7.10).

The Sobolev spaceHs is the completion ofS under the norm | · |s. The Sobolev space
Hs is a Hilbert space for each s ∈ R. Observe that in the case s ≥ 0, if {fk} is a Cauchy
sequence in S in the norm | · |s, then it is a Cauchy sequence in L2, hence it is legitimate
to identify each element ofHs, s ≥ 0, with an element of L2. Those elements of L2 which
belong toHs can be characterized as follows.

Theorem 7.3.1 An element f of L2 is inHs, s ≥ 0, if and only if there is a sequence {fk} ⊂ S
such that ∥fk – f∥2 → 0 as k → ∞ and supk |fk|s < ∞.

Proof If f ∈ Hs, there is {fk} ⊂ S such that |fk – f |s → 0 as k → ∞, a fortiori, ∥fk –
f∥2 → 0 as k → ∞ and supk |fk|s < ∞.

Conversely, suppose that there is a sequence {fk} ⊂ S such that ∥fk – f∥2 → 0
and supk |fk|s < ∞. By the Banach–Saks theorem (Theorem 5.10.2), there is a sub-
sequence {gk} of {fk} and g in Hs such that | 1N

∑N
k=1 gk – g|s → 0 as N → ∞, a for-

tiori,∥ 1
N
∑N

k=1 gk – g∥2 → 0. But∥gk – f∥2 → 0 implies that∥ 1
N
∑N

k=1 gk – f∥2 → 0,
and consequently f = g. Thus f ∈ Hs. !

Exercise 7.3.1 Show that if k is a nonnegative integer, then Wk,2(Rn) = Hk, in the
sense thatWk,2(Rn) = Hk as set and the norms ∥ · ∥k,2 and | · |k are equivalent.

We will now show that in tempo with s becoming larger, elements of Hs become
smoother. This is the content of the Sobolev lemma.

A preliminary lemma is shown first.
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Lemma 7.3.1 Suppose that s ∈ R and k is a nonnegative integer such that s – k > n
2 ; then

there is C > 0 such that

max
x∈Rn

∑
|α|≤k

|∂α f (x)| ≤ C|f |s

for f ∈ S .

Proof Since ∂̂α f (ξ) = (i)|α|ξα f̂ (ξ), ∂̂α f is in S; it follows from Fourier’s Inversion
theorem (Theorem 7.2.2) that

∂α f (x) = (2π)–
n
2

∫
eix·ξ (i)|α|ξα f̂ (ξ)dξ

= (2π)–
n
2 (i)|α|

∫
eix·ξ ξα(1 + |ξ |2)

(s–k)
2 f̂ (ξ)(1 + |ξ |2)

(k–s)
2 dξ ,

and hence, when |α| ≤ k,

|∂α f (x)|2 ≤ (2π)–n
∫

|ξα|2(1 + |ξ |2)s–k|f̂ (ξ)|2dξ ·
∫
(1 + |ξ |2)k–sdξ

≤ C′
∫ |ξ |2|α|

(1 + |ξ |2)k
(1 + |ξ |2)s|f̂ (ξ)|2dξ

≤ C|f |2s ,

where we have used the obvious fact that
∫
(1 + |ξ |2)k–sdξ < ∞. Thus,

max
x∈Rn

∑
|α|≤k

|∂α f (x)| ≤ C|f |s,

with C > 0 depending only on s, k, and n. !
Theorem 7.3.2 (Sobolev lemma) Suppose that s ∈ R and k is a nonnegative integer such

that s – k > n
2 ; then H

s ⊂ Ck(Rn).

Proof Consider f inHs. There is a sequence {fk} ⊂ S such that |fk – f |s → 0 as k→ ∞;
{fk} is therefore aCauchy sequence inHs. FromLemma7.3.1, there isC > 0 such that

max
x∈Rn

∑
|α|≤k

|∂α(fm(x) – fl(x))| ≤ C|fm – fl|s → 0

as m, l→ ∞, which means that {fk} converges uniformly on Rn to a func-
tion g in Ck(Rn). Then,

∫
|x|≤R |fk(x) – g(x)|

2dx→ 0 as k→ ∞ for any R> 0;
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but limk→∞ |fk – f |s = 0 implies that limk→∞ ∥fk – f∥2 = 0, and therefore that∫
|x|≤R |fk(x) – f (x)|

2dx → 0 as k → ∞. Now,

{∫

|x|≤R
|f (x) – g(x)|2dx

} 1
2

≤
{∫

|x|≤R
|f (x) – fk(x)|2dx

} 1
2

+

{∫

|x|≤R
|fk(x) – g(x)|2dx

} 1
2

→ 0

as k → ∞, hence,
∫
|x|≤R |f (x) – g(x)|

2dx = 0 and consequently f = g a.e. on BR(0).
Since R > 0 is arbitrary, f = g a.e. onRn. !

7.4 Weak solutions of the Poisson equation

We illustrate the use of Sobolev space in this section by considering the existence and
regularity of weak solutions of the Poisson equation,

-u = f . (7.12)

A classical solution u of (7.12) on an open domain. ofRn is a function u, defined on
. such that-u(x) = f (x) for a.e. x of.. If f is continuous and u is aC2 classical solution
of (7.12) on., then for any v ∈ C∞

c (.), we have
∫

.

fvdλn =
∫

v-udλn =
∫

u-vdλn.

Therefore, when f is locally integrable on., a locally integrable function u on. is called
aweak solution of (7.12) if

∫

.

fvdλn =
∫

u-vdλn

for all v ∈ C∞
c (.).

Exercise 7.4.1 Show that a C2 function u on . is a classical solution of (7.12) if and
only if it is a weak solution of (7.12).

We shall first prove the following regularity result for weak solutions of (7.12).

Theorem 7.4.1 Suppose that f ∈ C∞(.). Then any locally L2 weak solution of (7.12) is
in C∞(.).

The proof of Theorem 7.4.1 is preceded by some preliminaries relating to Friederich
mollifiers. We fix a Friederich mollifier {Jε}ε>0 with a mollifying function ϕ which is
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nonnegative and satisfies the symmetry property: ϕ(–x) = ϕ(x) for all x in Rn. For
example, we may take ϕ to be the function defined by ϕ(x) = c exp{– 1

1–|x|2 } if |x| < 1
and ϕ(x) = 0 if |x| ≥ 1, where c is a positive constant chosen so that

∫
ϕdλn = 1.

Lemma 7.4.1 Let {Jε} be a Friederich mollifier as previously specified.

(i) ∥Jεf∥p ≤ ∥f∥p for f ∈ Lp, 1 ≤ p < ∞.
(ii) (Jεf , g) = (f , Jεg) for f , g ∈ L2.
(iii) If f ∈ C1(Rn), then ∂

∂xj Jεf (x) = Jε ∂ f
∂xj (x) for all x ∈ Rn and j = 1, . . . , n.

(iv) If f ∈ S , then Jεf ∈ S and |Jεf |s ≤ |f |s.

Proof (i) is known in Section 4.10; (ii) follows directly from the definition of Jε and the
assumption that ϕ(–x) = ϕ(x); while (iii) is a consequence of applying LDCT to the
difference quotient involved in the definition of partial derivatives; it remains to show
(iv). Since Jεf = f ∗ ϕε , Ĵεf = (2π) n

2 f̂ · ϕ̂ε , which implies immediately that Ĵεf ∈ S ,
but by the Fourier inversion theorem, Jεf = (Ĵεf )̌ and hence Jεf ∈ S . Now,

|Jεf |2s =
∫
(1 + |ξ |2)s|Ĵεf (ξ)|2dξ = (2π)n

∫
(1 + |ξ |2)s|f̂ (ξ)|2|ϕ̂ε(ξ)|2dξ

≤ ∥ϕε∥1
∫
(1 + |ξ |2)s|f̂ (ξ)|2dξ = |f |2s .

Hence |Jεf |s ≤ |f |s. !
Lemma 7.4.2 There is a constant C > 0 such that

|v|s ≤ C(|-v|s–2 + |v|s–1)

for all v ∈ S .

Proof For ξ ∈ Rn, we have

(1 + |ξ |2)2 = 1 + 2|ξ |2 + |ξ |4 < |ξ |4 + 2(1 + |ξ |2) < 2{|ξ |4 + (1 + |ξ |2)},

hence,

|v|2s =
∫
(1 + |ξ |2)s|v̂(ξ)|2dξ

< 2
∫
(1 + |ξ |2)s–2{|ξ |4 + (1 + |ξ |2)}|v̂(ξ)|2dξ

= 2
{∫

(1 + |ξ |2)s–2|-̂v(ξ)|2dξ +
∫
(1 + |ξ |2)s–1|v̂(ξ)|2dξ

}

= 2(|-v|2s–2 + |v|2s–1)
≤ 2(|-v|s–2 + |v|s–1)2,
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and consequently,

|v|s ≤
√
2(|-v|s–2 + |v|s–1).

!
Proof of Theorem 7.4.1 For x ∈ ., there is g ∈ C∞

c (.), which takes a constant value
in the neighborhood of x; it is therefore sufficient to prove that gu ∈ C∞(Rn) for each
g ∈ C∞

c (.).
Consider now any g ∈ C∞

c (.). In order to show that gu ∈ C∞(Rn), it is sufficient
to show that gu ∈ Hs for all s ∈ N, by the Sobolev lemma (Theorem 7.3.2); but since
∥Jε(gu) – gu∥2 → 0 as ε → 0, fromTheorem 7.3.1, it is sufficient to show that given
g ∈ C∞

c (.), for each s ∈ N, there is a constant Cs > 0 such that

|Jε(gu)|s ≤ Cs, ε > 0. (7.13)

When s = 0, (7.13) is a consequence of ∥Jε(gu)∥2 ≤ ∥gu∥2 (cf. Lemma 7.4.1 (i)).
Suppose that (7.13) holds for s – 1, we are going to show that (7.13) holds for s. Using
the Fubini theorem and integration by parts, we have for v ∈ S ,

(-(Jε(gu)), v) = (Jε(gu),-v) = (gu,-Jεv) = (u, g(-Jεv))

= (u,-(gJεv)) –
(
u, 2

n∑
j=1

∂g
∂xj

∂Jεv
∂xj

+ Jεv · -g
)

= (f , gJεv) – 2
n∑
j=1

(
Jε
(
u

∂g
∂xj

)
,
∂v
∂xj

)
+ (Jε(u-g), v),

where Lemma 7.4.1 has been applied. Hence,

|(-Jε(gu), v)|

≤
{

|Jε(gf )|s–2|v|2–s + 2
n∑
j=1

∣∣∣∣Jε
(
u

∂g
∂xj

)∣∣∣∣
s–1

·
∣∣∣∣
∂v
∂xj

∣∣∣∣
1–s
+ |Jε(u-g)|s–1|v|1–s

}

≤ |v|2–s

{

|Jε(gf )|s–2 + 2
n∑
j=1

∣∣∣∣Jε
(
u

∂g
∂xj

)∣∣∣∣
s–1
+ |Jε(u-g)|s–1

}

,

where (2) and (4) in Section 7.3 are used. Thus, by (3) in Section 7.3, we conclude
that

|-(Jε(gu))|s–2 ≤ |Jε(gf )|s–2 + 2
n∑
j=1

∣∣∣∣Jε
(
u

∂g
∂xj

)∣∣∣∣
s–1
+ |Jε(u-g)|s–1. (7.14)

Now from Lemma 7.4.2,

|Jε(gu)|s ≤ C(|-Jε(gu)|s–2 + |Jε(gu)|s–1). (7.15)
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Substitute (7.14) into (7.15); we have

|Jε(gu)|s ≤ C′
(

|Jε(gf )|s–2 + 2
n∑
j=1

∣∣∣∣Jε
(
u

∂g
∂xj

)∣∣∣∣
s–1

+ |Jε(u-g)|s–1 + |Jε(gu)|s–1

)

.

But |Jε(gf )|s–2 ≤ |gf |s–2, by Lemma 7.4.1 (iv), and

2
n∑
j=1

∣∣∣∣Jε
(
u

∂g
∂xj

)∣∣∣∣
s–1

+ |Jε(u-g)|s–1 + |Jε(gu)|s–1 ≤ C′
s,

by the assumption that (7.13) holds for (s – 1). Therefore,

|Jε(gu)|s ≤ Cs = |gf |s–2 + C′
s. !

Regarding the existence of weak solutions of the Poisson equation (7.12), we now

establish the existence and uniqueness of a weak solution of (7.12) in
◦
W

1,2
(.) when. is

bounded and f ∈ L2(.).

Theorem 7.4.2 Suppose that . is bounded and f ∈ L2(.), then there is a unique weak

solution of (7.12) in
◦
W

1,2
(.).

Proof It is only necessary to consider the case that f and solutions to be sought are

real-valued; therefore
◦
W

1,2
(.) is assumed to consist of real-valued functions. By the

Poincaré inequality (Theorem 6.6.3),
◦
W

1,2
(.) can be considered as a Hilbert space

with the inner product

(u, v)′1 =
n∑
j=1

∫

.

∂u
∂xj

∂v
∂xj

dλn

for u, v in
◦
W

1,2
(.). Since |(f , v)| ≤ ∥f∥2∥v∥2 ≤ ∥f∥2∥v∥1,2 ≤ C∥f∥2|v|1,2 for all

v ∈ ◦
W

1,2
(.), by (6.31), the linear functional v !→ –

∫
.
fvdλn is a bounded linear func-

tional on
◦
W

1,2
(.); it then follows from the Riesz representation theorem that there is

u ∈ ◦
W

1,2
(.), such that

–
∫

.

fvdλn = (v, u)′1 =
n∑
j=1

∫

.

∂v
∂xj

∂u
∂xj

dλn

for v ∈ ◦
W

1,2
(.) and therefore for v ∈ C∞

c (.) in particular. But if v ∈ C∞
c (.),

∫

.

∂v
∂xj

∂u
∂xj

dλn = –
∫

.

∂2v
∂x2j

udλn
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for each j = 1, . . . , n; thus we have
∫

.

fvdλn =
∫

.

u-vdλn

for v ∈ C∞
c (.). Hence u is a weak solution of (7.12).

Suppose now that w ∈ ◦
W

1,2
(.) is also a weak solution of (7.12). Then,

∫

.

(u – w)-vdλn = –
n∑
j=1

∫

.

∂(u – w)
∂xj

∂v
∂xj

dλn = 0

for all v ∈ C∞
c (.). We claim now that

n∑
j=1

∫

.

∂(u – w)
∂xj

∂v
∂xj

dλn = 0

for all v ∈ ◦
W

1,2
(.). Let v ∈ ◦

W
1,2
(.); choose a sequence {vk} in C∞

c (.) such that
limk→∞ |v – vk|1,2 = 0; then,

n∑
j=1

∫

.

∂(u – w)
∂xj

∂v
∂xj

dλn

=
n∑
j=1

∫

.

∂(u – w)
∂xj

∂vk
∂xj

dλn +
n∑
j=1

∫

.

∂(u – w)
∂xj

∂(v – vk)
∂xj

dλn

=
n∑
j=1

∫

.

∂(u – w)
∂xj

∂(v – vk)
∂xj

dλn,

and consequently from Schwarz inequality,
∣∣∣∣∣
n∑
j=1

∫

.

∂(u – w)
∂xj

∂v
∂xj

dλn

∣∣∣∣∣ = |(u – w, v – vk)′1| ≤ |u – w|1,2 · |v – vk|1,2 → 0

as k → ∞. Hence,

n∑
j=1

∫

.

∂(u – w)
∂xj

∂v
∂xj

dλn = 0

for v ∈ ◦
W

1,2
(.). Since u – w ∈ ◦

W
1,2
(.), we have

0 =
n∑
j=1

∫

.

[
∂(u – w)

∂xj

]2
dλn = |u – w|21,2,

implying that u = w. Therefore, (7.12) has a unique weak solution in
◦
W

1,2
(.). !
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7.5 Fourier integral of probability distributions

The Fourier integral of probability distributions will be discussed in this section, with
an application to the central limit theorem in probability theory. This is preceded by a
very brief introduction of the necessary basic notions, terminology, and notations in the
probability theory, as formulated by A.N. Kolmogoroff.

Kolmogoroff’s formulation of probability theory is based on measure theory. A meas-
ure space (.,/, P) with P(.) = 1 is called a probability space, of which. is called the
sample space; and sets in the σ -algebra/ are called events (more precisely, measurable
events); and for A ∈ /, P(A) is referred to as the probability of event A. A measur-
able function on the sample space . is called a random variable (often abbreviated as
r.v.). Random variables are usually denoted by capital Roman letters, such as X, Y , Z, . . .
etc. It should be noted that a probability space is usually a construct suggested by first
observations of outcomes of experiments on a randomphenomenon; these outcomes are
referred to as sample points and form the sample space .. Such a construct provides a
solid mathematical framework to discuss questions related to the random phenomenon;
such questions are usually addressed in terms of random variables. Our construction of
theBernoulli sequence space, startingwith Section 1.3 and throughExamples 1.7.1, 2.1.1,
and 3.4.6, illustrates revealingly the point we just made. Henceforth, random variables
are assumed to take finite real value P-almost everywhere and hence for a random vari-
able, we always consider a finite real-valued version (for a probability space, P-almost
everywhere is expressed as P-almost surely and is abbreviated as a.s.). Suppose that X
is a random variable; if

∫
.
XdP exists, it is called the expectation of X and is denoted

by E(X); if E(X) is finite,
∫
.
|X – E(X)|2dP is called the variance of X and is denoted

by Var(X). The σ -algebra σ (X) := {X–1(B) : B ∈ B} is the smallest subσ -algebra of/
relative to which X is measurable; as implied by Exercise 2.5.10 (ii), if E(X) is finite, the
family {

∫
A XdP : A ∈ σX} characterizes the r.v. X, or intuitively, {

∫
A XdP : A ∈ σ (X)}

is the information one obtains by observing the r.v. X. This suggests considering σ (X)
as where the information regarding X resides. Accordingly, the σ -algebra / is where
information on all random variables resides. As we know, in Example 4.3.2, the Bernoulli
sequence space and ([0, 1],B|[0, 1], λ) are measure-theoretically the same space, hence
the choice of probability space is for convenience, and not of primary importance.

The most simple but fundamental notion in probability theory is that of independ-
ence. We shall discuss independence at some length to give a touch of the flavor of a
basic aspect of probabilistic argument; however the notion of conditioning, basic and
fundamental as it is, will not be touched upon here.

In the following, random variables are in reference to a fixed probability space
(.,/, P) and σ -algebras on . are always subσ -algebras of /. A finite family
{/1, . . . ,/k} of σ -algebras on. is said to be independent if for any choice of Aj ∈ /j,
j = 1, . . . , k, P(

⋂ k
j=1 Aj) =

∏ k
j=1 P(Aj) holds. A family {/α} of σ -algebras on . is said

to be independent if all of its finite subfamilies are independent. If {/α} is independ-
ent, then /′

αs are said to be independent. For a family {Aα} of events, the σ -algebra
σ ({Aα}) is abbreviated to σ (A′

αs); in particular, if A ∈ /, σ (A) = {∅,A,Ac,.}. Events
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Aα , α ∈ I, are said to be independent if {σ (Aα)}α∈I is independent. It is readily veri-
fied that events A′

αs are independent if and only if for any finite set of indices α1, . . . ,αk,
P(
⋂ k

l=1 Aαl) =
∏ k

l=1 P(Aαl).
Given a sequence A1,A2, . . . of events, let T = T (A1,A2, . . .) =

⋂ ∞
n=1 σ (An,

An+1, . . .). Events in T are referred to as tail events of the sequence {An}. It is evid-
ent that lim infn→∞ An and lim supn→∞ An are tail events of the sequence {An}. The
following zero-one law of Kolmogoroff is a far-reaching consequence of the notion of
independence.

Theorem 7.5.1 (Kolmogoroff’s zero–one law) If A1,A2,A3, . . . are independent events,
then every tail event of {An} has probability zero or one.

Proof Suppose that A is a tail event of the sequence {An}. For n ≥ 2, letL be the family
of all such B ∈ /, with the property that

P(B1 ∩ · · · ∩ Bn–1 ∩ B) = P(B1) · · · P(Bn–1)P(B),

where for each j = 1, . . . , n – 1, Bj = Aj or .; then L is a λ-system. Next, let P be
the family of all finite intersections of An,An+1, . . . ;P is then a π -system andP ⊂L.
Hence σ (P) ⊂ L by the (π -λ) theorem. But A ∈ σ (An,An+1, . . .) = σ (P) ⊂ L;
this means that A,A1, . . . ,An–1 are independent.

We now claim that P(A ∩ B) = P(A)P(B) for B ∈ σ (A1,A2, . . .). For this pur-
pose, let L′ = {B ∈ / : P(A ∩ B) = P(A)P(B)} and P ′ be the family of all finite
intersections of A1,A2, . . . ; clearly, L′ is a λ-system and P ′ a π -system. The
fact that A,A1, . . . ,An–1 are independent for each n ≥ 2 implies that P ′ ⊂ L′.
Thus, σ (P ′) = σ (A1,A2, . . .) ⊂ L′, by the (π -λ) theorem, which means that
P(A∩B) = P(A)P(B) for B ∈ σ (A1,A2, . . .); but since A ∈ σ (A1,A2, . . .), P(A) =
P(A)2. Hence P(A) = 0 or 1. !

Exercise 7.5.1 Let T =
⋂

n σ (An,An+1, . . .), where A1,A2, . . . are independent
events. Show that if X is a T -measurable random variable, then X = constant a.s.

In accord with notations for certain sets introduced in the second paragraph of
Section 2.2, if T is a map from a set . to a set S, the set T–1A, A ⊂ S, will be denoted
by {T ∈ A}; and if Tα : . → Sα , α ∈ I, then

⋂
α∈I T–1

α Aα , Aα ⊂ Sα , is denoted by
{Tα ∈ Aα ,α ∈ I}; in particular, ifX1, . . . ,Xk are randomvariables, then

⋂ k
j=1{Xj ∈Bj} =

{X1 ∈ B1, . . . ,Xk ∈ Bk}. When a probability measure P is concerned, P({· · · }) will be
abbreviated to P(· · · ).

Given a family {Xα} of r.v.’s, the smallest σ -algebra relative to which every Xα is
measurable is denoted by σ (X′

αs); in particular, σ (X1, . . . ,Xk) is the smallest σ -algebra
relative to which X1, . . . ,Xk are measurable.

Exercise 7.5.2 If X1, . . . ,Xk are r.v.’s, let X = (X1, . . . ,Xk) be the map from . to
Rk defined by X(ω) = (X1(ω), . . . ,Xk(ω)) for ω ∈ .. Show that σ (X1, . . . ,Xk) =
{X–1B : B ∈ Bk}.
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We shall call a map X : . → Rk, k ≥ 2 a random vector if X–1B ∈ / for all
B ∈ Bk; in other words, X is a random vector if X is /|Bk-measurable. Put X =
(X1, . . . ,Xk), where X1, . . . ,Xk are the component functions of X. Since {X–1B : B ∈
Bk} ⊃ ⋃ k

j=1{X–1
j Bj : Bj ∈ B}, we conclude that if X is a random vector, then X1, . . . ,Xk

are r.v.’s; on the other hand, ifX1, . . . ,Xk are r.v.’s, thenX is a random vector, by Exercise
7.5.2. Thus, X = (X1, . . . ,Xk) is a random vector if and only if X1, . . . ,Xk are r.v.’s.

A family {Xα} of r.v.’s is said to be independent if {σ (Xα)} is independent; then we
also say that X′

αs are independent.

Exercise 7.5.3 Suppose that {Xα} is an independent family of r.v.’s and that {gα} is a
family of Borel functions onR. Show that {gα ◦ Xα} is an independent family of r.v.’s.

Lemma 7.5.1 If X1, . . . ,Xn, n ≥ 2, are independent r.v.’s then for integer j, 1 ≤ j < n,
σ (X1, . . . ,Xj) and σ (Xj+1, . . . ,Xn) are independent.

Proof Put X̂ = (X1, . . . ,Xj) and Ŷ = (Xj+1, . . . ,Xn). In view of Exercise 7.5.2, we need
to show that

P(X̂ ∈ B, Ŷ ∈ C) = P(X̂ ∈ B) · P(Ŷ ∈ C) (7.16)

for all B ∈ Bj and C ∈ Bn–j. Consider Bl ∈ B, l = 1, . . . , n; we have

P(X̂ ∈ B1 × · · · × Bj, Ŷ ∈ Bj+1 × · · · × Bn) = P(X1 ∈ B1, . . . ,Xn ∈ Bn)

=
n∏

l=1

P(Xl ∈ Bl) = P(X̂ ∈ B1 × · · · × Bj) · P(Ŷ ∈ Bj+1 × · · · × Bn),

hence, (7.16) holds for B = B1 × · · · × Bj and C = Bj+1 × · · · × Bn. Fix Bj+1, . . . ,Bn
and let N = {B ∈ Bj : P(X̂ ∈ B, Ŷ ∈ Bj+1 × · · · × Bn) = P(X̂ ∈ B)P(Ŷ ∈ Bj+1
× · · · × Bn)}. Evidently, N is a λ-system containing the family P of all sets of the
form B1 × · · · × Bj, where B1, . . . ,Bj are inB. NowP is aπ -system and σ (P) = Bj,
therefore Bj ⊃ N ⊃ σ (P) = Bj. ThusN = Bj. This means that

P(X̂ ∈ B, Ŷ ∈ Bj+1 × · · · × Bn) = P(X̂ ∈ B) · P(Ŷ ∈ Bj+1 × · · · × Bn)

for B ∈ Bj and Bj+1, . . . ,Bn inB. Next fix B ∈ Bj and let

N ′ = {C ∈ Bn–j : P(X̂ ∈ B, Ŷ ∈ C) = P(X̂ ∈ B) · P(Ŷ ∈ C)}.

Argue as in the immediately preceding part of the proof, we infer thatN ′ = Bn–j and
finish the proof. !

Lemma 7.5.2 Suppose that X1, . . . ,Xn, n ≥ 2, are independent r.v.’s, and let 1 ≤ j < n be
an integer. Then g1 ◦ (X1, . . . ,Xj) and g2 ◦ (Xj+1, . . . ,Xn) are independent if g1 and g2
are Borel functions onRj andRn–j respectively.

Proof Let B and C be Borel sets ofR. Since {g1 ◦ (X1, . . . ,Xj) ∈ B} = {(X1, . . . ,Xj) ∈
g–11 B} and {g2 ◦ (Xj+1, . . . ,Xn) ∈ C} = {(Xj+1, . . . ,Xn) ∈ g–12 C}, and since g–11 B
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and g–12 C are in Bj and Bn–j respectively, we know from Exercise 7.5.2 that
{g1 ◦ (X1, . . . ,Xj) ∈ B} and {g2 ◦ (Xj+1, . . . ,Xn) ∈ C} are in σ (X1, . . . ,Xj) and
σ (Xj+1, . . . ,Xn) respectively. It then follows from Lemma 7.5.1 that

P(g1 ◦ (X1, . . . ,Xj) ∈ B, g2 ◦ (Xj+1, . . . ,Xn))

= P(g1 ◦ (X1, . . . ,Xj) ∈ B) · P(g2 ◦ (Xj+1, . . . ,Xn) ∈ C). !

Theorem 7.5.2 If X and Y are independent integrable r.v.’s, then XY is integrable and
E(XY) = E(X) · E(Y).

Proof By Exercise 7.5.3, Xε1 and Xε2 are independent, where each of the symbols ε1
and ε2 is either + or –. We may therefore assume that both X and Y are nonnegative.
Observe then that if S1 and S2 are simple functions measurable w.r.t. σ (X) and σ (Y)
respectively, thenE(S1S2) = E(S1) · E(S2). Now, choose increasing sequences {S(1)n }
and {S(2)n } of simple functions such that each S(1)n is σ (X)-measurable and each S(2)n
is σ (Y)-measurable; and furthermore S(1)n ↗ X and S(2)n ↗ Y pointwise. Using the
monotone convergence theorem, we have

E(X) · E(Y) =
[
lim
n→∞

E(S(1)n )
] [

lim
n→∞

E(S(2)n )
]
= lim

n→∞
[E(S(1)n ) · E(S(2)n )]

= lim
n→∞

E(S(1)n S(2)n ) = E(XY). !

Corollary 7.5.1 If X1, . . . ,Xn, n ≥ 2 are independent integrable r.v.’s, then X1 · · ·Xn is
integrable and E(X1 · · ·Xn) = E(X1) · · · E(Xn).

Proof When n = 2, this is Theorem 7.5.2. Suppose now that n ≥ 3; then X1 · · ·Xn–1
and Xn are independent, by Lemma 7.5.2, and the corollary follows by
induction on n. !

Corollary 7.5.2 If X1, . . . ,Xn are independent and integrable, then

Var

(
n∑
j=1

Xj

)

=
n∑
j=1

Var(Xj).

Proof

Var

(
n∑
j=1

Xj

)

= E

([
n∑
j=1
{Xj – E(Xj)}

]2)

= E

(
n∑
j=1
{Xj – E(Xj)}2 +

∑
j̸=k
{Xj – E(Xj)}{Xk – E(Xk)}

)

=
n∑
j=1

Var(Xj) +
∑
j̸=k

E({Xj – E(Xj)}{Xk – E(Xk)}

=
n∑
j=1

Var(Xj),
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because Xj – E(Xj) and Xk – E(Xk) are independent, by Exercise 7.5.3 if j ̸= k,
and hence E({Xj – E(Xj)}{Xk – E(Xk)}) = E({Xj – E(Xj)}) · E({Xk – E(Xk)}) = 0,
by Theorem 7.5.2. !
A probability measureµ onB is called a probability distribution and the distribution

X#P of a r.v.X is called the probability distribution ofX (recall thatX#P(B) = P(X ∈ B)
for B ∈ B). A family of r.v.’s is said to be identically distributed if random variables
of the family have identical probability distribution. For p > 0, E(|X|p) is called the
p-th absolute moment of the r.v. X; while if m ∈ N, E(Xm) is referred to as the m-th
moment of X.

Example 7.5.1 A r.v. X is said to be normally distributed with meanm and variance σ 2

if for B ∈ B,

X#P(B) = P(X ∈ B) =
1√
2πσ

∫

B
exp

{
–(x – m)2

2σ 2

}
dx,

where as usual we write exp{β} for eβ if the expression for β is complicated. If X is
normally distributed with meanm and variance σ 2, then

E(X) =
1√
2πσ

∫

R
exp

{
–(x – m)2

2σ 2

}
xdx

=
1√
2πσ

∫

R
e–t

2
(
√
2σ t + m)

√
2σdt

=
m√
π

∫

R
e–t

2
dt = m;

Var(X) =
1√
2πσ

∫

R
exp

{
–(x – m)2

2σ 2

}
(x – m)2dx

=
2σ 2
√

π

∫

R
e–t

2
t2dt = σ 2.

Thus X actually hasm as its expectation and σ 2 its variance. The probability distribu-
tionµ, defined by

µ(B) =
1√
2πσ

∫

B
exp

{
–(x – m)2

2σ 2

}
dx, B ∈ B,

is called the normal distribution with mean m and variance σ 2 and is denoted by
N(m, σ 2). The distributionN(0, 1) is called the standard normal distribution.

Example 7.5.2 Consider the Bernoulli sequence space (., σ (Q), P) of Example 3.4.6.
Recall that . = {ω = (ωk) : ωk ∈ {0, 1}, k ∈ N}; Q is the smallest algebra on .

that contains all sets of the form E(ε1, . . . , εn) = {ω = (ωk) : ω1 = ε1, . . . ,ωn = εn},
n ∈ N and εj ∈ {0, 1}, j = 1, . . . , n, and P is the unique probability measure on σ (Q)
such that P(E(ε1, . . . , εn)) = 2–n. If for j ∈ N and ε ∈ {0, 1} let Ejε = {ω = (ωk) :
ωj = ε}, then we know from Exercise 1.3.2 that

P
(
Ej1ε1 ∩ · · · ∩ Ejkεk

)
=

k∏

l=1

P(Ejlεl) = 2–k (7.17)
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if 1 ≤ j1 < · · · < jk is any finite sequence in N. Now for j ∈ N, define a r.v. Xj by
Xj(ω) = ωj, then σ (Xj) = {∅, Ej0, Ej1,.}; and therefore we infer from (7.17) that
{σ (Xj)} is independent and consequently the r.v.’s X1, . . . ,Xj, . . . are independent.
Clearly, the probability distribution of each Xj is the measure µ on B such that
µ({0}) = µ({1}) = 1

2 . Hence the sequence {Xj} is identically distributed; further-
more E(Xj) = 1

2 , Var(Xj) = 1
8 , andm-th moment of Xj is 1

2 form ∈ N.

Return now to the general discussion and consider an independent and identically
distributed sequence {Xj} of r.v.’s. Such a sequence is usually referred to as an i.i.d.
sequence. Suppose that the common probability distribution of X′

j s is µ, then for any
Borel function g onR such that

∫
R gdµ exists, we know from (4.1) that

∫
R gdµ =

∫
.
g ◦

XjdP; in particular, the m-th moment is the same for all X′
j s if it exists for one of them.

ThusE(X2
j ) = E(X2

1) for all j. Assume now thatE(X2
1) < ∞ and let Sn =

∑n
j=1 Xj, n∈N.

Then, E(Sn) = nE(X1) or E( Snn ) = E(X1), and hence from the Chebyshev inequality
(6.3), we have

P
(∣∣∣∣

Sn
n

– E(X1)
∣∣∣∣ ≥ ε

)
≤ ε–2 Var

(
Sn
n

)
=

1
nε2

Var(X1)

for any given ε > 0. This is stated as a theorem.

Theorem 7.5.3 (Weak law of large numbers) Suppose that {Xj} is an i.i.d. sequence of
r.v.’s with finite second moment, then

P
(∣∣∣∣

Sn
n

– E(X1)
∣∣∣∣ ≥ ε

)
≤ 1

nε2
Var(X1) (7.18)

for any given ε > 0, where Sn =
∑n

j=1 Xj.

A sequence {Yj} of r.v.’s is said to converge in probability to a r.v. Y if
limj→∞ P(|Yj – Y | ≥ ε) = 0 for every ε > 0; the notation Yj → Y[P] is used to mean
that {Yj} converges to Y in probability. Apparently, convergence of Yj to Y a.s.
or in Lp-norm as j → ∞ implies that Yj → Y[P], hence convergence in probab-
ility is weaker than convergence a.s. and convergence in Lp-norm. Since Theorem
7.5.3 implies that Sn

n → E(X1)[P], it is usually referred to as the weak law of large
numbers.

Theorem 7.5.4 (Strong law of large numbers) Suppose that {Xj} is an independent
sequence of r.v.’s such that E(Xj) = 0 and E(X4

j ) ≤ C < ∞ for j ∈ N. Let Sn =
∑n

j=1 Xj,
then Sn

n → 0 a.s. as n → ∞.

Proof Observe that (cf. Exercise 7.5.3):

(i) E(XiX3
j ) = E(Xi)E(X3

j ) = 0 if i ̸= j;
(ii) E(XiX2

j Xk) = 0 if i, j, k are different from one another; and



Fourier integral of probability distributions | 291

(iii) E(XiXjXkXl) = 0 if i, j, k, l are different from one another;
and note that

(iv) {E(X2
j )}2 ≤ E(X4

j ) ≤ C for all j by Jensen’s inequality (6.4).

Now since E(S4n) =
∑

i,j,k,l E(XiXjXkXl), we conclude from (i), (ii), and (iii) that

E(S4n) =
n∑
j=1

E(X4
j ) +

(
4
2

) ∑
1≤i<j≤n

E(X2
i X

2
j )

≤ nC + 6
∑

1≤i<j≤n
E(X2

i )E(X
2
j );

but E(X2
i )E(X2

j ) ≤ 1
2 {E(X

2
i )2 + E(X2

j )2} ≤ 1
2 {E(X

4
i ) + E(X4

j )}, by (iv), for each
pair i < j, and consequently

E(S4n) ≤ nC + 6
n(n – 1)

2
C ≤ 3Cn2,

or

E
((

Sn
n

)4)
≤ 3C

n2
.

The last inequality implies that E(
∑∞

n=1(
Sn
n )

4) ≤ 3C
∑∞

n=1
1
n2 < ∞, and hence∑∞

n=1(
Sn
n )

4 < ∞ a.s. Then, limn→∞
Sn
n = 0 a.s. follows. !

Corollary 7.5.3 Let {Xj} be an independent sequence of r.v.’s with bounded fourth moment
such that E(Xj) = E(X1) for all j ∈ N; then limn→∞ 1

n
∑n

j=1 Xj = E(X1) a.s.

Proof Put Yj = Xj – E(Xj); then E(Yj) = 0 for all j and {E(Y4
j )} is bounded. We then

apply Theorem 7.5.4 to conclude the proof. !
Now apply Corollary 7.5.3 to the sequence {Xj} of Example 7.5.2; we have

lim
n→∞

1
n

n∑
j=1

Xj =
1
2

a.s.

i.e. the event {ω ∈ . : limn→∞
Sn(ω)
n = 1

2} occurs with probability one, where Sn =∑n
j=1 Xj; in other words, if we interpret {Xj} as a sequence of tossing of a fair coin, the

relative frequency with which heads appears in the first n tosses approaches 1
2 as n → ∞

almost certainly. This is what we proclaim in the last paragraph of Section 1.3.
As we know in Example 4.3.2, the Bernoulli sequence space (., σ (Q), P) and

([0, 1],B|[0, 1], λ) are measure-theoretically the same space; it is therefore worth-
while considering the counterpart of the sequence {Xj} of Example 7.5.2 in the space
([0, 1],B|[0, 1], λ). For x ∈ [0, 1], let 0.x1 . . . xk . . . be the binary expansion of x with
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the convention that in case where two expansions are possible, the expansion with infin-
itely many 1′s is chosen, and for j ∈ N, define a r.v. Zj by Zj(x) = xj. From the discussion
in Example 3.4.6, one verifies readily from the independence of the sequence {Xj} of
Example 7.5.2 that {Zj} is independent, E(Zj) = E(Z1) = 1

2 , and E(Z
4
j ) =

1
2 . Then,

lim
n→∞

1
n

n∑
j=1

Zj =
1
2

a.s.

i.e.

lim
n→∞

1
n
{number of 1′s in x1, . . . , xn} =

1
2

(7.19)

for almost every x of [0, 1].We call a number x in [0, 1] a normal number if (7.19) holds.
Then (7.19) can be stated as follows.

Theorem 7.5.5 (Borel) Almost all numbers in [0, 1] are normal.

We now come to introduce the Fourier integral for probability distributions. The
Fourier integral ϕ of a probability distributionµ is a function onR, defined by

ϕ(t) =
∫ ∞

–∞
eitxdµ(x), t ∈ R. (7.20)

We call attention to inconsistency in the definition of Fourier integral for functions and
for probability distributions; should consistency of definition be preferred, the func-
tion ϕ, defined by (7.20), would be called the Fourier inverse integral of µ. It is readily
seen that ϕ(0) = 1, |ϕ(t)| ≤ 1, and ϕ is uniformly continuous onR. In probability the-
ory, ϕ is called the characteristic function of µ; and if a r.v. X has µ as its probability
distribution, ϕ is also referred to as the characteristic function of X. Note that if ϕ is the
characteristic function of X, then,

ϕ(t) = E(eitX), t ∈ R.

Exercise 7.5.4 Let ϕ be the characteristic function of the r.v. X, and suppose that
E(|X|) < ∞. Show that ϕ ∈ C1(R) and ϕ′(t) = E(iXeitX).

Exercise 7.5.5 Show that the characteristic function ϕ of N(0, 1) is given by
ϕ(t) = e– t2

2 .

Exercise 7.5.6 Suppose thatϕ is the characteristic function of a probability distribution
µ. Show that for u > 0,

µ

((
–∞,

–2
u

]
∪
[
2
u
,∞

))
≤ 1

u

∫ u

–u
(1 – ϕ(t))dt.

(Hint: 1
u

∫ u
–u(1 – ϕ(t))dt = 2

∫∞
–∞(1 – sin ux

ux )dµ(x) ≥ 2
∫
|x|≥ 2

µ
(1 – 1

|ux| )dµ(x).)
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Theorem 7.5.6 Suppose that X1 and X2 are independent random variables with character-
istic functions ϕ1 and ϕ2 respectively, and let ϕ be the characteristic function of X1 + X2,
then ϕ = ϕ1ϕ2.

Proof Since eitX1 and eitX2 are independent, we have

ϕ(t) = E(eit(X1+X2)) = E(eitX1 · eitX2 )

= E(eitX1 ) · E(eitX2 ) = ϕ1(t)ϕ2(t). !

Theorem 7.5.7 (Inversion formula) Letµ be a probability distribution with characteristic
function ϕ; then for a < b inR,

µ((a, b]) = lim
L→∞

1
2π

∫ L

–L

e–ita – e–itb

it
ϕ(t)dt

ifµ({a}) = µ({b}) = 0.

Proof Put S(L) =
∫ L
0

sin t
t dt, L > 0. Then

∫ L
0

sin θ t
t dt = sgn θS(L|θ |) and

limL→∞ S(L) = π
2 . Now consider the integral

I(L) =
1
2π

∫ L

–L

[
e–ita – e–itb

it

]
ϕ(t)dt

=
1
2π

∫ L

–L

(∫ ∞

–∞

eit(x–a) – eit(x–b)

it
dµ(x)

)

dt.

From the elementary inequality |eiθ – 1| ≤ |θ |, we have
∣∣∣∣∣
eit(x–a) – eit(x–b)

it

∣∣∣∣∣ =
1
|t|

|eit(b–a) – 1| ≤ b – a

for any x ∈ R. We may therefore apply the Fubini theorem to the integral defin-
ing I(L):

I(L) =
1
2π

∫ ∞

–∞

(∫ L

–L

eit(x–a) – eit(x–b)

it
dt

)

dµ(x)

=
∫ ∞

–∞

(∫ L

0

[
sin t(x – a)

π t
–
sin t(x – b)

π t

]
dt
)
dµ(x)

=
∫ ∞

–∞

[
sgn(x – a)

π
S(L|x – a|) –

sgn(x – b)
π

S(L|x – b|)
]
dµ(x).
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Let us denote the integrand of this last integral by θL(a, b; x) and put θab(x) =
limL→∞ θL(a, b; x); then,

θab(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if x < a or x > b;
1
2

if x = a or x = b;

1 if a < x < b.

From the second mean-value theorem, {
∫ α

0
sin t
t dt}α>0 is bounded and therefore

|θL(a, b; x)| ≤ M < ∞ for all L > 0 and x ∈ R. Hence by LDCT, we conclude that

lim
L→∞

I(L) =
∫ ∞

–∞
θab(x)dµ(x)

=
1
2
µ({a}) + µ((a, b)) +

1
2
µ({b}) = µ((a, b]). !

Exercise 7.5.7 Let µ be the probability measure on B concentrated at 0. Find the
characteristic function ofµ and use Theorem 7.5.7 to show that

lim
L→∞

∫ L

0

sin at
t

dt =
∫ ∞

0

sin at
t

dt =
π

2

for all a > 0.

Corollary 7.5.4 If the probability distributions µ and ν have the same characteristic
function, thenµ = ν .

Proof Let 2 = {(a, b] : µ({a}) = µ({b}) = ν({a}) = ν({b}) = 0} ∪ {∅}, and
N = {B ∈ B : µ(B) = ν(B)}. Theorem 7.5.7 implies that N ⊃ 2. But 2 is a
π -system,N is a λ-system, and σ (2) = B, hence it follows from the (π -λ) theorem
thatN = B. !
Corollary 7.5.4 means that the characteristic function of a probability distribution µ

uniquely determinesµ and is therefore named the characteristic function ofµ.
We are ready to state and prove the central limit theorem in probability theory.

Suppose that {Xj} is an i.i.d. sequence of randomvariables such thatE(Xj) = 0, Var(Xj) =
E(X2

j ) = 1, and E(|Xj|3) < ∞. For n ∈ N, put Yn = 1√
n
∑n

j=1 Xj.

Theorem 7.5.8 (Central limit theorem) The characteristic function of Yn converges to the
characteristic function of N(0, 1) uniformly on any given finite interval.

Proof Denote by ϕ the common characteristic function of Xj’s and by µ the common
distribution of Xj’s. Using the fundamental theorem of calculus repeatedly, we have
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eitx = 1 + i
∫ tx

0
eiθdθ = 1 + i

∫ tx

0

(
1 + i

∫ θ

0
eisds

)
dθ

= 1 + itx –
∫ tx

0

(∫ θ

0
eisds

)
dθ

= 1 + itx –
∫ tx

0

(∫ θ

0

(
1 + i

∫ s

0
eiτdτ

)
ds
)
dθ

= 1 + itx –
1
2
t2x2 – i

∫ tx

0

(∫ θ

0

(∫ s

0
eiτdτ

)
ds
)
dθ

= 1 + itx –
1
2
t2x2 + h(tx),

where |h(tx)| ≤ 1
6 |tx|

3; consequently,

ϕ(t) =
∫

R
eitxdµ(x) = 1 –

1
2
t2 +

∫

R
h(tx)dµ(x) = 1 –

1
2
t2 + H(t). (7.21)

Note that
∫
R itxdµ(x) = itE(Xj) = 0 and

∫
R t2x2dµ(x) = t2E(X2

j ) = t2 have been
used in deriving (7.21), and that

|H(t)| ≤ 1
6
E(|Xj|3)|t|3 ≡ C|t|3. (7.22)

Now let I be a finite interval inR; then for some b > 0, |t| ≤ b for t ∈ I, and hence
there is n0 ∈ N, such that

(
1 –

1
2
t2

n

)
≥ 1

2
, t ∈ I (7.23)

if n ≥ n0. Denote now by ϕn the characteristic function of Yn. We know from
Theorem 7.5.6 that

ϕn(t) = E

(

exp

{
it√
n

n∑
j=1

Xj

})

=
[
ϕ

(
t√
n

)]n

=
[
1 –

1
2
t2

n
+ H

(
t√
n

)]n

=
(
1 –

1
2
t2

n

)n
{

1 +
(
1 –

1
2
t2

n

)–1

H
(

t√
n

)}n

=
(
1 –

1
2
t2

n

)n

(1 + G(t, n))n,
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of which for n ≥ n0 and t ∈ I, we have from (7.22) and (7.23),

|G(t, n)| ≤ 2Cb3n–
3
2 .

Observe now from the mean-value theorem in differential calculus that, for α ∈ R
and n ∈ N,

(
1 +

α

n

)n
= exp

{
ln
(
1 +

α

n

)n}

= exp
{
n[ln(n + α) – ln n]

}
= exp

{
nα

n + αn

}
,

where n + αn is between n and n + α, and consequently

lim
n→∞

(
1 +

α

n

)n
= eα

uniformly for |α| ≤ B if B > 0 is fixed. As a consequence,

lim
n→∞

(
1 –

1
2
t2

n

)n

= e–
t2
2

uniformly for t ∈ I; and since |nG(t, n)| ≤ 2Cb3n– 1
2 for n ≥ n0 and t ∈ I, for any

given ε > 0 there is n1 ≥ n0 inN such that if n ≥ n1 and t ∈ I, then,
∣∣∣∣

(
1 +

nG(t, n)
n

)n

– enG(t,n)
∣∣∣∣ <

ε

2
. (7.24)

Wemay choose n1 sufficiently large so that, if n ≥ n1 and t ∈ I, then |nG(t, n)| will be
small enough so that |nG(t, n)| < ε

4 , and

1 – |nG(t, n)| ≤ enG(t,n) ≤ 1 + 2|nG(t, n)|. (7.25)

Finally, using (7.24) and (7.25), we have for n ≥ n1 and t ∈ I,

(1 + G(t, n))n – 1 > enG(t,n) –
ε

2
– 1 ≥ 1 – |nG(t, n)| –

ε

2
– 1 > –ε;

(1 + G(t, n))n – 1 < enG(t,n) +
ε

2
– 1 ≤ 1 + 2|nG(t, n)| +

ε

2
– 1 ≤ ε.

Thus, |(1 + G(t, n))n – 1| < ε if n ≥ n1 and t ∈ I i.e. limn→∞(1 + G(t, n))n = 1 uni-
formly for t ∈ I. Summing up, we have shown that ϕn(t) converges to e–

t2
2 uniformly

for t ∈ I. But e– t2
2 is the characteristic function ofN(0, 1) (cf. Exercise 7.5.5). !

The following exercise illustrates the relevance of the central limit theorem.
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Exercise 7.5.8 Let Yn be as in Theorem 7.5.8 andµn the probability distribution of Yn;
and let ν beN(0, 1). Furthermore, put Fn(x) = µn((–∞, x]) andF(x) = ν((–∞, x])
for x ∈ R.

(i) Given that ε > 0. Show that there is a > 0 such that

ν({|x| ≥ a}) < ε;
µn({|x| ≥ a}) < ε, n = 1, 2, 3, . . . ,

(Hint: cf. Exercise 7.5.6 and central limit theorem.)
(ii) Show that if f is a bounded continuous function onR, then

lim
n→∞

∫

R
fdµn =

∫

R
fdν.

(Hint: use (i) and Theorem 7.5.7.)
(iii) For –∞ < α < β < ∞, define a continuous function fα,β as follows:

fα,β(t) =

⎧
⎪⎨

⎪⎩

1, t ≤ α;
0, t ≥ β;
β–t
β–α , α < t < β .

Now let –∞ < u < x < y < ∞. By applying (ii) for f = fx,y and fu,x in this
order, show that

lim sup
n→∞

Fn(x) ≤ F(y); F(x–) ≤ lim inf
n→∞

Fn(x),

and then conclude that limn→∞ Fn(x) = F(x) for x ∈ R.
(iv) Show that for any finite interval I inR,

lim
n→∞

µn(I) =
1√
2π

∫

I
e–

t2
2 dt.





Postscript

Although the general basic principles of real analysis are few, because of their wide
applicability and their proven relevance over time in the development of mathemat-
ical analysis for its own purpose or for applications, manifold variations and derived
principles have emerged whose scope is seldom matched by those of other subjects in
mathematics. Therefore towrite a book of reasonable size on real analysis which provides
all the variations and derived principles is deemed to be impossible. I have, no matter
how unwillingly, had to choose for discussion only those topics which are necessary for
the understanding of those modern methods in analysis which apply the so-called real
variables techniques.

Some brief treatment ofHousdorffmeasures on Euclidean n-space and amore system-
atic discussion of real variables methods in harmonic analysis would be desirable. To do
this sufficiently well to reveal the merit of these topics would not only increase the size of
the book beyond a reasonable range, but would not really be in the reach of my capabil-
ities. In this regard, I can do no better than to refer the interested reader to the masterful
works [EG] and [St], listed in the bibliography.

Real Analysis. Fon-Che Liu. © Fon-Che Liu 2016. Published 2016 by Oxford University Press.




