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Chapter 0: Introduction
• What is Analysis?

• What about Analysis?

• Why do Analysis?

Background of mathematics

• Number Systems

N = the set of natural numbers
Z = the set of integers
Q = the set of rational numbers
R = the set of real numbers
C = the set of complex numbers

• Elementary algebra → Advanced algebra → · · ·
• Euclidean geometry → Analytic geometry → · · ·
• Calculus

∗ What is the limit?
∗ What is the continuity?
∗ What is the differential?
∗ What is the integral?
∗ When is f integrable on [a, b]?
∗ What is the fundamental theorem of calculus?

1
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Development of Analysis.

I. The First Wing

• I. Newton (1642-1727):

∗ The method of fluxions (1666)

∗ The sine and cosine series (1669)

• G. W. Leibniz (1646-1716)

∗ The transmutation theorem (1673)

∗ Leibniz series (1674)

• The Bernoullis

∗ Jakob (1654-1705) and his figurate series (1689)

∗ Johann (1667-1748) and the function xx (1697)

• L. Euler (1707-1783)

∗ The interpolation of f(n) = n! (1729)

∗ The resolution of Jakob’s challenge (1748)

∗ Differential 0
0 and d sin x = cos xdx (1755)

∗ The integral
∫ 1

0
sin(ln x)

lnx dx (1768)
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II. The Classical Wing

• J. D’Alembert (1717-1783):

∗ From “limits” to differentials

∗ D’Alembert’s criterion for series

∗ General solution of wave equation (1747)

• J. Lagrange (1736-1813):

∗ From power series to differentials (1797)

∗ Applications of inequalities

• J. Fourier (1768-1830):

∗ Concept of functions

∗ Trigonometric series (1807)

• A. Cauchy (1789-1857):

∗ Limits, continuity, derivatives

∗ The intermediate value theorem

∗ The mean value theorem, integrals

∗ The fundamental theorem of calculus

∗ Cauchy’s criterion for series

• P. J. L. Dirichlet (1805-1859):

∗ Dirichlet function (1829),

∗ Trigonometric series

∗ Analytic number theory

• G. F. B. Riemann (1826-1866):

∗ Riemann integral (1854)

∗ Riemann function

∗ Riemann rearrangement theorem (for series)
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• K. Weierstrass (1815-1897):

∗ “ε− δ” for limits

∗ Uniform continuity of functions (E. Heine)

∗ Uniform convergence of series (1841, 1894)

∗ Weierstrass approximation theorem

∗ Weierstrass M-test for series

∗ Weierstrass function (P. Bois-Reymond, 1875)

• G. Darboux (1842-1917):

∗ Simplification of Riemann integral

∗ The Darboux theorem

Remark:

(i) How discontinuous can an integrable function be?

(ii) How discontinuous can a derivative be?

(iii) How, if at all, can we correct the deficiencies of the
Riemann integral?

(iv) Recall sufficient conditions of the fundamental the-
orem of calculus∫ b

a

F ′(x) dx = F (b)− F (a)

∗ F ′ is continuous on [a, b] (Cauchy)

∗ F ′ is integrable on [a, b] (Darboux)
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III. The Modern Wing

• G. Cantor (1845-1918):

∗ Completeness of the real numbers (1874)

∗ Continuum Hypothesis

• R. Baire (1874-1932):

∗ Nowhere-dense sets (due to H. Hankel)

∗ The Baire category theorem (1899)

∗ The Baire functions (1899)

• H. Lebesgue (1875-1941):

∗ Measure of sets

∗ Measurable functions

∗ The Lebesgue integrals (1902)

The main results are

Theorem 1. A bounded function on [a, b] is Riemann
integrable if and only if it is continuous almost every-
where.

Theorem 2. If F is differential on [a, b] with bounded
derivative, then F ′ is Lebesgue integrable and

(L)

∫ b

a

F ′(x) dx = F (b)− F (a).
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Henri Lebesgue

Henri Lebesgue (June 28, 1875-
July 26, 1941) was a French mathematician most famous for
his theory of integration, which was a generalization of the
seventeenth century concept of integration summing the
area between an axis and the curve of a function defined
for that axis. His theory was published originally in his
dissertation at the University of Nancy during 1902.

The Lebesgue Integral

• Riemann integral: partition the domain of the function
f and obtain the Riemann sum

∑n
j=1 f(ξj)|Ij|.

• Lebesgue integral: partition the range of the function
f and obtain the Lebesgue sum

∑n
j=1 ηj|Ej|.
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• limits of functions → continuous functions → Riemann
integrals

• measures of sets → measurable functions → Lebesgue
integrals
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Outline of Real Analysis.

• Sets
• Measures of sets
• Measurable functions
• Lebesgue integrals

References.
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System of natural numbers (N)

• What are natural numbers?

• What are operations of addition “+” and mul-
tiplication “×”?

−−−−−−−−−−−−−−−−−−−−−−−−
We start with the following two fundamental concepts

? the zero number “0”

? the increment operation “++”

and define

1 := 0 + +,

2 := (0 + +) + +,

3 := ((0 + +) + +) + +,

· · · · · ·
n := (· · · ((0 + +) + +) + + · · · ) + +.

Axiom I. 0 is a natural number.

Axiom II. The increment of a natural number is a nat-
ural number as well.

Axiom III. 0 is not the increment of any natural number.

Axiom IV. Different natural numbers must have differ-
ent increments.

Axiom V. (Principle of induction) Let p(n) be any
property pertaining to natural numbers n. Suppose that
p(0) is true, and suppose that whenever p(n) is true, p(n+
+) is also true. Then p(n) is true for every natural number
n.

Proposition. 2 is a natural number.
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Proof. By definition, 2 = 1++ = (0++)++. By Axiom I,
0 is a natural number; so is 2 by using Axiom II twice. �

Proposition. 3 is not equal to 0.

Proof. By definition, 3 = 2 + +. Since we have proved 2
is a natural number (by Axiom I and Axiom II). Thus,
the increment of the natural number 2 is not equal to 0
(Axiom III), i.e., 3 6= 0. �

Proposition. 3 is not equal to 2.

Proof. First, we can show that all the signs 0, 1, 2, and 3
are natural numbers by using Axioms I and II.

Secondly, by definition, 3 = 2 + + and 2 = 1 + +. Thus,
by Axiom IV, it suffices to show that 2 6= 1. Also, by
definition we have 2 = 1 + + and 1 = 0 + +, and hence, it
suffices to show that 1 6= 0 by Axiom IV again.

Finally, note that 1 is the increment of the natural num-
ber 0. Thus, 1 6= 0 due to Axiom III. �

Remark. Note how all of Axioms I, II, III and IV
had to be used in above proofs. What about Axiom V?
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Addition “+” of natural numbers

In order to define the operations of addition and multi-
plication, we need the following concepts

? the set X and x ∈ X, in particular, write

N := {0, 1, 2, 3, · · · },

? the function f : N → N,
and the following result.

Proposition. (Recursive definition) Suppose that for
every n ∈ N, there is a function fn : N → N. Let c be a
natural number. Then for every n ∈ N, there is a unique
an ∈ N such that a0 = c and an++ = fn(an).

Proof. Define a0 := c and

an++ := fn(an), n ∈ N.(0.1)

First, note that 0 6= n++ for all n ∈ N (by using Axiom
III). Thus, none of the definitions an++ := fn(an), given
in the procedure (0.1), will redefine the value of a0. This
implies that the value of a0 is uniquely determined.

Suppose inductively that the value of an is uniquely de-
termined. Then by the definition of function, the value of
fn(an) is uniquely determined as well. In addition, note
that m + + 6= n + + for m 6= n (Axiom IV). This im-
plies that none of the other definitions am++ := fm(am)
will redefine the value of an++, that is, the value of an++
be defined only once. Thus, the value of an++ is uniquely
determined.

So, by the principle of induction (Axiom V), the value
of an is uniquely determined for every n ∈ N. �

By using the recursive definition, we can give the defini-
tion of addition “+” as follows.



CHEN CHUANG: LECTURES ON REAL ANALYSIS 12

Definition. (Addition) Let m,n ∈ N. Define 0 +m :=
m. Suppose that n + m is well defined, we then define
(n+ +) +m := (n+m) + +.

Remark. By the last proposition (recursive definition),
we observe that, for every n ∈ N, the sum n+m is uniquely
determined. Indeed, note that f given by

f(n) := n+ +, n ∈ N
is a function from N to N (WHY). By using the signs in
the last proposition (fn = f, an = n+m for all n ∈ N), our
recursive definition is given by a0 := m and

an++ := (n+m) + + = f(n+m) = fn(an).

Thus, all the values for a0, a1, a2, · · · are uniquely deter-
mined. That is, the addition of natural numbers is
well defined.

Example. Let n ∈ N. Then

1 + n = n+ +,

2 + n = (n+ +) + +,

3 + n = ((n+ +) + +) + +.

Proposition. Let m,n ∈ N. Then n+m ∈ N.

Proof. Fix m and apply induction to n. Note that 0 ∈ N
(Axiom I) and 0 +m = m ∈ N. Suppose inductively that
k +m ∈ N for some k ∈ N. Then

(k + +) +m = (k +m) + + ∈ N

by Axiom II. Thus, n+m ∈ N for all n ∈ N due to Axiom
V. �

Lemma 1. Let m ∈ N. Then m+ 0 = m.
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Proof. Clearly, 0+0 = 0. Suppose inductively that k+0 =
k. Then by the definition of addition,

(k + +) + 0 = (k + 0) + + = k + +.

Thus, m+0 = m for allm ∈ N by the principle of induction.
�

Lemma 2. Let m,n ∈ N. Then

n+ (m+ +) = (n+m) + +.

Proof. Fix m and apply the principle of induction on n.
Indeed, it is clear that (by the first step of definition of
addition)

0 + (m+ +) = m+ + = (0 +m) + +.

Suppose inductively that k + (m + +) = (k + m) + +.
Then

(k + +) + (m+ +)

=(k + (m+ +)) + +

=((k +m) + +) + +

=((k + +) +m) + +.

Thus, we obtain the desired conclusion by the principle of
induction. �

Corollary. Let m ∈ N. Then m+ + = m+ 1 = 1 +m.

Proof. The first equality is a direct consequence of Lemmas
2 and 1. Indeed,

m+ 1 = m+ (0 + +) = (m+ 0) + + = m+ +.

�

Further on, by using the principle of induction, we can
show that the natural numbers obey so-called commutative,
associative and cancellation laws.
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Proposition. (Commutative law) Let a, b ∈ N. Then

a+ b = b+ a.

Proof. Fix a and apply induction on b. Clearly,

a+ 0 = 0 = 0 + a.

Suppose inductively that a+ k = k + a. Then

a+ (k + +) =(a+ k) + +

=(k + a) + + = (k + +) + a.

Thus, we obtain the desired conclusion by the principle of
induction. �

Proposition. (Associative law) Let a, b, c ∈ N. Then

(a+ b) + c = a+ (b+ c).

Proof. Fix b, c and apply induction on a. Clearly,

(0 + b) + c = b+ c = 0 + (b+ c).

Suppose inductively that (k + b) + c = k + (b+ c). Then

((k + +) + b) + c =((k + b) + +) + c

=((k + b) + c) + +

=(k + (b+ c)) + + = (k + +) + (b+ c).

Thus, we obtain the desired conclusion by the principle of
induction. �

Proposition. (Cancellation law) Let a, b, c ∈ N. If
a+ b = a+ c then b = c.
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Proof. Fix b, c and apply induction on a. Clearly, 0 + b =
0 + c implies that b = c.

Suppose inductively that whenever k+ b = k+ c we have
b = c. Let (k + +) + b = (k + +) + c. Then

(k + b) + + =(k + +) + b

=(k + +) + c = (k + c) + +,

so that k + b = k + c (by Axiom IV), and hence, the
inductive hypothesis implies that b = c.

Thus, we obtain the desired conclusion by the principle
of induction. �

We finally introduce the concept of positive natural num-
ber which will be used to construct so-called order of nat-
ural numbers in the next subsection.

Definition. A natural number n is said to be positive
if n is not equal to 0.

Proposition. Let m,n ∈ N. If m is positive, then m+n
is positive as well.

Proof. Let m be positive. We apply principle of induction
on n. It is clear that m+ 0 = m is positive.

Suppose inductively that m+ k is positive. Then, by the
associative law of addition, we have

m+ (k + 1) = (m+ k) + 1 = (m+ k) + +.

This implies that m+(k+1) 6= 0 (WHY). Thus, m+(k+1)
is positive by the definition of positivity of natural numbers.

Finally, by the principle of induction, we obtain the de-
sired conclusion. �

Corollary. Let a, b ∈ N. If a + b = 0, then a = 0 and
b = 0.
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Order of natural numbers

≥, =, ≤, >, <

Definition. (Order of natural numbers) Let m,n ∈
N. We say that n is greater than or equal to m (write
n ≥ m or m ≤ n) if n = m + a for some a ∈ N, and we
say n is strictly greater than m (write n > m or m < n) if
n ≥ m and n 6= m.

Proposition. (Basic properties of order) Let a, b, c ∈
N. The following statements hold.

(i) a ≥ a.

(ii) If a ≥ b and b ≥ c, then a ≥ c.

(iii) If a ≥ b and b ≥ a, then a = b.

(iv) a ≥ b if and only if a+ c ≥ b+ c for all/some c ∈ N.

(v) a < b if and only if there is a positive d ∈ N such that
b = a+ d, or equivalently, a+ + ≤ b.

Proposition. (Trichotomy of order) Let a, b ∈ N.
Then exactly one of the following statements is true:

a > b, a = b, a < b.

Proof. Step I. It can not be more than one of the statements
holding at the same time (by the method of contradic-
tion).

Step II. There holds at least one of the statements (by
the method of induction with b fixed).

Indeed, for a = 0, it is clear that a = b if b = 0. If b 6= 0,
from the equality b = a + b we observe that b > a. Thus,
there holds at least one of above three statements.
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For n = k, suppose inductively that there holds at least
one of the statements:

k > b, k = b, k < b.

Then, for n = k + 1, we have

(i) if k > b, then k + 1 > k > b;

(ii) if k = b, then k + 1 > k = b;

(iii) if k < b, then k+ 1 ≤ b (WHY), so that k+ 1 = b or
k + 1 < b.
Thus, there holds at least one of the statements:

k + 1 > b, k + 1 = b, k + 1 < b.

Finally, by the principle of induction, we obtain the de-
sired conclusion. �



CHEN CHUANG: LECTURES ON REAL ANALYSIS 18

Multiplication “×” of natural numbers

Definition. (Multiplication) Let m,n ∈ N. Define
0 ×m := 0. Suppose that n ×m is well defined, we then
define (n+ +)×m := (n×m) +m.

Remark. Observe that the multiplication of natural
numbers is well defined. Indeed, by letting an = n × m
and fn = f (the signs in the proposition of recursive defi-
nition) with f : N → N defined by

f(n) := n+m, n ∈ N,

our multiplication is given by a0 := 0 and

an++ := (n×m) +m = f(an), n ∈ N,

Note that f is a function since the addition of natural num-
bers is well defined. Thus, the multiplication of natural
numbers is also well defined by the proposition of recursive
definition.

Example. Let n ∈ N. Then

1× n = n,

2× n = n+ n,

3× n = n+ n+ n.

This implies that, just as addition is iterated incrementa-
tion, multiplication is incremented addition.

Proposition. Let m,n ∈ N. Then n×m ∈ N.

Proof. Fix m and apply induction (Axiom V) on n.

First, by the definition 0×m = m ∈ N.

Second, suppose that k ×m ∈ N. Note that

(k + +)×m = (k ×m) +m (Definition).
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Since the set of natural numbers N is closed under the oper-
ation of addition, (k×m)+m ∈ N, and hence, (k++)×m ∈
N. Thus, n×m ∈ N for every n ∈ N by Axiom V.

Finally, the arbitrary of m implies that n×m ∈ N for all
m,n ∈ N. �

Proposition. (Commutative law) Letm,n ∈ N. Then

n×m = m× n.

Proof. Step I. Prove that m× 0 = 0 for every m ∈ N.

Step II. Prove that

n× (m+ +) = (n×m) + n, m, n ∈ N.

Step III. Prove the desired conclusion. �

Remark. We write a × b := ab for short and use con-
vention that multiplication takes precedence over addition,
for example, ab+ c = (a× b) + c.

Proposition. Let a, b ∈ N. The following statements
hold.

(i) If a, b are positive, then ab is also positive.

(ii) ab = 0 if and only if a = 0 or b = 0.

(iii) ab 6= 0 if and only if a 6= 0 and b 6= 0.

Proof. (i) Let a, b be positive. Since a 6= 0, there is a nat-
ural number a′ such that a′ + + = a (Definition). By the
definition of multiplication, we have

a× b = (a′ + +)× b = (a′ × b) + b,

and the last term is positive due to the positivity of b. This
proves the positivity of ab.
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(ii) (⇒) Let ab = 0. Assume a 6= 0 and b 6= 0. It follows
from (i) that ab 6= 0 which contradicts ab = 0. Thus, we
have a = 0 or b = 0.

(⇐) It is easy to verify that 0 ×m = m × 0 = 0, which
has been given in the proof of the last proposition.

Finally, it is clear that (ii) ⇔ (iii). �

Proposition. (Distributive law) Let a, b, c ∈ N. Then

a(b+ c) = ab+ ac,

(b+ c)a = ba+ ca.

Proof. Fix b, c and apply induction on a. It is clear that

0(b+ c) = 0 = 0b+ 0c.

Suppose inductively that k(b + c) = kb + kc. Then by the
definition of multiplication, we have

(k + +)(b+ c) =k(b+ c) + (b+ c)

=(kb+ b) + (kc+ c) = (k + +)b+ (k + +)c.

Thus, we obtain the desired conclusion by the principle of
induction. �

Proposition. (Associative law) Let a, b, c ∈ N. Then

(a× b)× c = a× (b× c).

Proposition. (Multiplication preserves order) Let
a, b ∈ N and a < b. If c ∈ N is positive, then ac < bc.

Proof. Fix a < b and apply induction on c. It is clear that

a1 = a < b = b1.
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Suppose inductively that ak < bk. Then, by the basics of
addition of natural numbers, we have

a(k + +) =ak + a

<bk + b = b(k + +).

Thus, we obtain the desired conclusion by the principle of
induction. �

Corollary. (Cancellation law) Let a, b, c ∈ N such
that ac = bc. If c is positive, then a = b.

Remark. Let a, b, c ∈ N. By analogous argument, we
can show that

(i) ac < bc with c negative implies that a > b,

(ii) ac = bc with c negative implies that a = b.

Proposition. (Euclidean algorithm) Let n ∈ N and
let q ∈ N be positive. Then there exist two natural numbers
m, r such that 0 ≤ r < q and n = mq + r.

Proof. Fix q and apply induction on n. Clearly,

0 = 0× 0 + 0,

where m = r = 0 ∈ N.

Suppose inductively that there are mk, rk ∈ N with 0 ≤
rk < q such that k = mkq + rk. Note that 1 ≤ rk + 1 ≤ q.

(i) If rk + 1 = q, then

k + 1 =mkq + rk + 1

=(mk + 1)q + 0 = mq + r,

with m = mk + 1 and r = 0.

(ii) If rk + 1 < q, then

k + 1 = mkq + (rk + 1) = mq + r,

with m = mk and r = rk + 1.
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Therefore, by the principle of induction, we obtain the
desired conclusion. �

Remark. Euclidean algorithm marks the beginning of
number theory.

Finally, we define exponentiation for natural number ex-
ponents. Just like addition was recursive increment and
multiplication was recursive addition, exponentiation is re-
cursive multiplication.

Definition. (Exponentiation) Let m ∈ N. To raise
m to the power 0, we define m0 := 1. Now suppose that
recursively that mn has been defined for some n ∈ N, then
we define mn++ := mn ×m.

Example. Let m ∈ N. Then

m1 = 1×m,

m2 = m×m,

m3 = m×m×m.

So far, we have constructed the system of natural num-
bers (N,+,×). Recall the expansion of system of numbers

N → Z → Q → · · · .
Problem. Could you give appropriate definition of sys-
tems of integers and rational numbers:

(Z,+,−,×), (Q,+,−,×,÷)?

Problem. What about the system of real numbers?
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Mathematical logic

In order to extend the system of natural numbers to that
of integers, we need some basics of mathematical logic:

I. Mathematical statement.

II. Logical connectives.

III. Equality (=).

IV. The structure of proofs.

I. Mathematical statement is a judgement concern-
ing various mathematical objects (numbers, functions, etc.)
and relations between them (addition, multiplications, etc.),
which obeys the following basic axiom of mathematical
logic: a statement is either true or false, but not
both.

II. One can make a compound statement from more
primitive statements by using logical connectives such
as and, or, not, if-then (⇒), if-and-only-if (⇔), and so
forth.

III. Equality (denoted by “=”) is a relation linking two
objects x, y of the same type (e.g., two natural numbers)
which obeys the following four axioms of equality:

• (Reflexive axiom) x = x.

• (Symmetry axiom) If x = y, then y = x.

• (Transitive axiom) If x = y and y = z, then x = z.

• (Substitution axiom) If x = y, then f(x) = f(y) for
all operations or functions f . Similarly, for any property
P (x) depending on x, if x = y, then P (x) and P (y) are
equivalent statements.
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IV. Prove the proposition “A⇒ B”.

Proof 1. Suppose that A is true. Since A is true, C is true.
Since C is true, D is true. Since D is true, B is true. This
completes the proof. �

Proof 2. To show B, it suffices to show D. Since C implies
D, we just need to show C. But C follows from A. Thus,
A implies B. �

Proof 3. To show that B ⇒ A (WHY). �

Proof 4. To show that B implies something which is known
to be false. That is, assume B is false and show that this
implies some statement simultaneously true and not true.
This contradicts the axiom on statements. �
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The system of integers (Z)

Definition. (Integers) Let a, b ∈ N. An integer is an
expression of the form a ` b. We say that two integers
a ` b and c ` d are equal if a + d = c + b. The set of all
integers is denoted by Z.

Definition. (Addition) The sum of two integers,
(a ` b) + (c ` d) is defined by

(a ` b) + (c ` d) := (a+ c) ` (b+ d),

Definition. (Multiplication) The product of two
integers, (a ` b)× (c ` d) is defined by

(a ` b)× (c ` d) := (ac+ bd) ` (ad+ bc),

Remark. The concepts of equality, addition and multi-
plication of integers are all well defined. Indeed, it suffices
to verify the reflexivity, symmetry, transitivity and substi-
tution axioms:

(i) (Reflexivity) a ` b = a ` b.

(ii) (Symmetry) a ` b = c ` d⇒ c ` d = a ` b.

(iii) (Transitivity) a ` b = c ` d and c ` d = e ` f
implies that a ` b = e ` f .

(iv) (Substitution) a ` b = a′ ` b′ implies that

(a ` b) + (c ` d) = (a′ ` b′) + (c ` d),

(c ` d) + (a ` b) = (c ` d) + (a′ ` b′),

and

(a ` b)× (c ` d) = (a′ ` b′)× (c ` d),

(c ` d)× (a ` b) = (c ` d)× (a′ ` b′).

Remark. The integers n ` 0 behave in the same way as
the natural numbers n, so that we may identify the natural
numbers with integers by setting n ≡ n ` 0. Indeed, this
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gives an isomorphism between the natural numbers n and
the integers of the form n ` 0, that is,

(i) n ` 0 = m ` 0 if and only if n = m,

(ii) (n ` 0) + (m ` 0) = (n+m) ` 0,

(ii) (n ` 0)× (m ` 0) = (n×m) ` 0.

Definition. (Negative integers) Let a ` b be an in-
teger. We define the negation −(a ` b) to be the integer
(b ` a).

Remark. For natural number n = n ` 0, we have −n =
0 ` n. Note that n = 0 ⇔ −n = 0.

Proposition. Let m,n ∈ N. Then

(−n)m = n(−m) = −(nm).

Lemma. (Trichotomy of integers) Let x ∈ Z. Then
exactly one of the following three statements is true:

(i) x is zero,

(ii) x is equal to a positive natural number,

(iii) x is the negation of a positive natural number.

Proof. Let x = a ` b with a, b ∈ N. By the trichotomy of
natural numbers, exactly one of the following statements
holds: a = b, a > b, a < b.

(i) If a = b, then x = 0 ` 0 = 0 by the definition of
integers.

(ii) If a > b, then there is a positive b′ ∈ N such that
a = b+ b′. Thus, x = b′ ` 0 = b′.

(iii) If a < b, then there is a positive a′ ∈ N such that
b = a+ a′. Thus, x = 0 ` a′ = −a′.

�
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Proposition. (Laws of algebra for integers) Let
x, y, z ∈ Z. Then we have

x+ y =y + x,

(x+ y) + z =x+ (y + z),

x+ 0 =0 + x = x,

x+ (−x) =(−x) + x = 0,

xy =yx,

(xy)z =x(yz),

x1 =1x = x,

x(y + z) =xy + xz,

(y + z)x =yx+ zx.

Definition. (Substraction) Let x, y ∈ Z. The differ-
ence x− y is defined by

x− y := x+ (−y).

Proposition. Let x, y ∈ N. Then x− y = x ` y.

Remark. Observe that every integer is the difference of
two natural numbers.

Proposition. Let a ∈ Z. Then a+ (−a) = 0.

Proposition. Let a ∈ Z. Then a = 0 ⇔ −a = 0.

Proposition. Let a, b ∈ Z. Then a = b⇔ a− b = 0.

Proposition. Let a, b ∈ Z. If ab = 0, then either a = 0
or b = 0.

Proposition. Let a, b, c ∈ Z. Then ab− ac = a(b− c).

Proposition. Let a, b, c ∈ Z. If ac = bc and if c 6= 0,
then a = b.
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Order of integers

Definition. (Order of integers) Let a, b ∈ Z. We say
that a is greater than or equal to b (write a ≥ b or b ≤ a) if
a = b + n for some n ∈ N, and we say a is strictly greater
than b (write a > b or b < a) if a ≥ b and a 6= b.

Proposition. (Basic properties of order) Let a, b, c ∈
Z. The following statements hold.

(i) a > b if and only if a− b is a positive natural number.

(ii) If a > b, then a+ c > b+ c.

(iii) If a > b and c is positive, then ac > bc.

(iv) If a > b, then −a < −b.
(v) If a > b and b > c, then a > c.

(vi) Exactly one of the following three statements is true:

a > b, a = b, a < b.

Remark. Notice that the principle of induction is not
valid for integers. Can you give an example to explain it?

Example. Fix a, b ∈ N and consider the statement P (n):
a > b implies that a(1 + n) > b(1 + n) for all n ∈ X.

(i) X = N.

(ii) X = Z.
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The system of rational numbers (Q)

Definition. (Rational numbers) Let a, b ∈ Z and
b 6= 0. A rational number is an expression of the form
a//b. We say that two rational numbers a//b and c//d are
equal if ad = cb. The set of all rational numbers is denoted
by Q.

Definition. (Addition) The sum of two rational
numbers, (a//b) + (c//d) is defined by

(a//b) + (c//d) := (ad+ cb)//(bd).

Definition. (Multiplication) The product of two
rational numbers, (a//b)× (c//d) is defined by

(a//b)× (c//d) := (ac)//(bd).

Definition. (Negation) The negation of a rational
number, −(a//b) is defined by

−(a//b) := (−a)//b.

Remark. Observe that rational numbers a//1 behave in
the same way as integers a:

(i) a//1 = b//1 if and only if a = b,

(ii) (a//1) + (b//1) = (a+ b)//1,

(iii) (a//1)× (b//1) = (a× b)//1,

(iv) −(a//1) = (−a)//1.
Thus, in the sequel, we will identify a with a//1 for every
integer a, that is, a ≡ a//1.

Proposition. Let x = a//b ∈ Q. Then x = 0 ⇔ a = 0.

Proof. Since 0 ∈ Z, we have 0 = 0//1. By the definition of
equality of rational number,

0//1 = a//b⇔ 0b = a1 ⇔ a = 0.
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This proves that desired conclusion. �

Definition. (Reciprocal) Let x = a//b is a non-zero
rational number. The reciprocal of x ( denoted by x−1) is
defined by

x−1 := b//a.

By using the negation and reciprocal, we can define the
substraction and division of two rational numbers, respec-
tively.

Definition. (Substraction) Let x, y ∈ Q. The differ-
ence x− y is defined by

x− y := x+ (−y).

Definition. (Division) Let x, y ∈ Q and y 6= 0. The
quotient x/y is defined by

x/y := x× y−1.

Remark. Observe that a/b = a//b for all a, b ∈ Z with
b 6= 0. Indeed, let a, b ∈ Z and b 6= 0. Then

a/b = a× b−1 = (a//1)× (1//b) = (a1)//(1b) = a//b.

Thus, in the sequel, we also use the more customary a/b
instead of a//b.
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Proposition. (Laws of algebra for rational num-
bers) Let x, y, z ∈ Q. Then we have

x+ y =y + x,

(x+ y) + z =x+ (y + z),

x+ 0 =0 + x = x,

x+ (−x) =(−x) + x = 0,

xy =yx,

(xy)z =x(yz),

x1 =1x = x,

x(y + z) =xy + xz,

(y + z)x =yx+ zx.

If further x 6= 0, then

xx−1 = x−1x = 1.

Definition. A rational number x is said to be positive
if x = a/b for some positive integers a and b, and x is said
to be negative if x = −y for some positive rational number
y.

Lemma. Let x, y ∈ Q. Then

(i) x+ (−x) = 0.

(ii) x = y ⇔ −x = −y;
(iii) x is positive if and only if −x is negative.

Proof. (ii) The necessary is obvious. Let −x = −y. By
taking x = a//b and y = c//d, we have

(−a)//b = −(a//b) = −(c//d) = (−c)//d.
Thus, (−a)d = (−c)b, which implies that ad = cb. This
proves a//b = c//d.

(iii) is a direct consequence of the statement (ii). �
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Proposition. (Trichotomy of rational numbers)
Let x ∈ Q. Then exactly one of the following three state-
ments is true:

(i) x is equal to 0,

(ii) x is a positive rational number,

(iii) x is a negative rational number.

Proof. Let x = a//b, where a, b ∈ Z and b 6= 0. By the
trichotomy of integers, we have a is zero, or positive natural
number, or negative natural number; and have b is positive
natural number or negative natural number. Clearly, it can
not be more than one of the three statements holding at
the same time.

(i) If a = 0, then x = 0 (no matter b > 0 or b < 0);

(ii) If a and b are both positive, then x is positive by the
definition of positivity of rational number, directly.

(iii) If a is positive and b is negative, then

a//b = a//(−(−b)) = −(a//(−b)).

Thus, x = a//b is negative. So is the case that a is negative
and b is positive.

(iv) If a and b are both negative, then

a//b = (−a)//(−b).

Thus, x = a//b is positive. �

Definition. (Order of rational numbers) Let x, y ∈
Q. We say that x > y if x−y is a positive rational number,
and x < y if x−y is a negative rational number. In addition,
we write x ≥ y if either x > y or x = y, and x ≤ y if either
x < y or x = y.
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Remark. Let x ∈ Q. Since x − 0 = 0, it is clear that
x > 0 if and only if x is positive. Also, x < 0 if and only if
x is negative.

Proposition. (Basic properties of order) Let x, y, z ∈
Q. The following statements hold.

(i) Exactly one of the following three statements is true:

x > y, x = y, x < y.

(ii) x > y if and only if y < x.

(iii) If x > y and y > z, then x > z.

(iv) If x > y, then x+ z > y + z.

(v) If x > y and z is positive, then xz > yz.

(vi) If x > y and z is negative, then xz < yz.

So far, we have constructed the system (Q,+,−,×,÷,≤)
which has been proved to be an ordered field. Finally, we
introduce two particularly useful ones: “absolute value”
and “distance” which will be used to construct the system
of so-called “real numbers”.
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Absolute value and distance of rational numbers

Definition. (Absolute value) Let x ∈ Q. The abso-
lute value of x (denoted by |x|) is defined as follows:

(i) If x is zero, then |x| := 0.

(ii) If x is positive, then |x| := x.

(iii) If x is negative, then |x| := −x.
Remark. It is clear that ±x ≤ |x| for every x ∈ Q.

Definition. (Distance) Let x, y ∈ Q. The quantity
|x − y| is called the distance between x and y. We also
write d(x, y) := |x− y| for convenience.

Proposition. (Basic properties of absolute value)
Let x, y, z ∈ Q. The following statements hold.

(i) (Non-degeneracy) 0 ≤ |x|. Also, |x| = 0 if and only
if x = 0.

(ii) (Triangle inequality) |x+ y| ≤ |x|+ |y|.
(iii) −y ≤ x ≤ y if and only if |x| ≤ y.

(iv) |xy| = |x||y|. In particular, | − x| = |x|.

Proposition. (Basic properties of distance) Let
x, y, z ∈ Q. The following statements hold.

(i) (Non-degeneracy) 0 ≤ d(x, y). Also, d(x, y) = 0 if
and only if x = y.

(ii) (Symmetry) d(x, y) = d(y, x).

(iii) (Triangle inequality) d(x, z) ≤ d(x, y) + d(y, z).

Finally, it is necessary to point out that

Proposition. Let x ∈ Q. Then there is a unique n ∈ Z
such that n ≤ x < n+ 1.
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Proof. (Existence) Without loss of generality, we can take
x = a//b with a, b ∈ Z and b > 0 (WHY).

(i) If a ≥ 0, then, by the Euclidean algorithm, there are
two numbers n, r ∈ N with 0 ≤ r < b such that a = nb+ r,
so that 0 ≤ a− nb < b, or, equivalently,

nb ≤ a < (n+ 1)b.

This implies that n ≤ x < n+ 1 (WHY).

(ii) If a < 0, then −x > 0. Thus, we can complete the
proof of existence by using the step (i) (HOW).

(Uniqueness) Suppose that m,n ∈ Z satisfying

m ≤ x < m+ 1, n ≤ x < n+ 1.

Then

m ≤ x < n+ 1, n ≤ x < m+ 1,

and hence, −1 < m− n < 1. Thus, m− n = 0. �

Proposition. Let x, y ∈ Q with x < y. Then there is a
z ∈ Q such that x < z < y.

Proof. Write z := (x+ y)/2. Note that x < y implies that

x/2 < y/2. (WHY)

Thus,

z = (x/2) + (y/2) < (y/2) + (y/2) = y,

and

x = (x/2) + (x/2) < (y/2) + (x/2) = z.

�
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The set of real numbers (R)

Definition. (Sequence) Let m ∈ Z. A sequence
{an}∞n=m of rational numbers is any function from the set
X := {n ∈ Z : n ≥ m} to Q. More informally, {an}∞n=m is
a collection of rational numbers

am, am+1, am+2, · · · .
In addition, if an = c ∈ Q for all n ∈ X, we write

{c}∞n=m := {an}∞n=m

for short.

Definition. (Cauchy sequence of rational num-
bers) A sequence {an}∞n=1 of rational numbers is said to
be a Cauchy sequence if for every rational number ε > 0,
there is a natural number N such that

|am − an| < ε

for all m,n ≥ N .

Definition. (Equality of Cauchy sequences) Let
{an}∞n=1 and {bn}∞n=1 be two Cauchy sequences. We say
that {an}∞n=1 is equal to {bn}∞n=1 (denoted by {an}∞n=1 =
{bn}∞n=1) if for every rational number ε > 0, there is a nat-
ural number N such that

|an − bn| < ε

for all n ≥ N .

Lemma. (Subsequence of Cauchy sequences) Ev-
ery of subsequence {ank

}∞k=1 of a Cauchy sequence {an}∞n=1
is also a Cauchy sequence. In addition, {ank

}∞k=1 is equal
to {ak}∞k=1 itself.

Lemma. (Boundedness of Cauchy sequences) A
Cauchy sequence is bounded, that is to say, there exists a
rational number M such that |an| ≤M for all n ∈ N.
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Lemma. (Closedness for addition and multiplica-
tion of Cauchy sequences) Let {an}∞n=1 and {bn}∞n=1 be
two Cauchy sequences. Then {an + bn}∞n=1 and {anbn}∞n=1
are Cauchy sequences as well.

Lemma. Let {an}∞n=1, {a′n}∞n=1, {bn}∞n=1 and {b′n}∞n=1 be
four Cauchy sequences. If

{an}∞n=1 = {a′n}∞n=1, {bn}∞n=1 = {b′n}∞n=1,

then {an+bn}∞n=1 = {a′n+b′n}∞n=1 and {anbn}∞n=1 = {a′nb′n}∞n=1.

Definition. (Real numbers) We call a Cauchy se-
quence a real number, and define two equivalent Cauchy
sequences as the same real numbers. The set of all real
numbers is denoted by R.

Definition. (Addition of real numbers) Let a :=
{an}∞n=1 and b := {bn}∞n=1 be two Cauchy sequences. The
sum of a and b (denoted by a+ b) is defined by

a+ b := {an + bn}∞n=1.

Definition. (Multiplication of real numbers) Let
a := {an}∞n=1 and b := {bn}∞n=1 be two Cauchy sequences.
The product of a and b (denoted by a× b or ab) is defined
by

ab := {anbn}∞n=1.

Definition. (Negation of real numbers) The nega-
tion of a real number a := {an}∞n=1 (denoted by −a) is
defined by

−a := {−1}∞n=1 × {an}∞n=1 = {−an}∞n=1.

Remark. All definitions above are well defined. Indeed,
it suffices to verify the four axioms of equality.
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Remark. Analogous to that natural numbers are iden-
tified with integers (n ≡ n ` 0) and integers with rational
numbers (a ≡ a//1), for every r ∈ Q, we identify r with
the real number {r}∞n=1, i.e.,

r ≡ {r}∞n=1 = {r, r, · · · }.

Remark. For every real number a = {an}∞n=1, we can
find another Cauchy sequence {a′n}∞n=1 with a′n 6= 0 (n ∈ N)
such that a = {a′n}∞n=1 (WHY).

Indeed, if a = 0 = {0}∞n=1, then a = {1/n}∞n=1; if a 6= 0,
refer to the proof of the next proposition.

Problem. Could you give an appropriate definition of
the reciprocal of real numbers?
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The non-zero real number and its reciprocal

Example. Denote the real number zero by 0 := {0}∞n=1.
Then

0 = {1/n}∞n=1 = {1/(2n)}∞n=1.

Proof. To show the first equality, by definition of real num-
ber, it suffices to show that the two Cauchy sequences
{0}∞n=1 and {1/n}∞n=1 are equivalent. To this end, let ε
be a positive rational number and take N ∈ N such that
N > 1/ε. Then∣∣∣∣1n − 0

∣∣∣∣ =
1

n
< ε, n ≥ N.

By analogous argument, we can prove the second equality.
�

Proposition. Let a = {an}∞n=1 be a non-zero real num-
ber. Then there is a Cauchy sequence {bn}∞n=1 satisfying
the following conditions:

(i) |bn| ≥ c (n ∈ N) for some positive rational number c.

(ii) a = {bn}∞n=1.

Proof. Note that a = 0 if and only if for every rational
number ε > 0, there is a natural number N such that

|an| < ε, n ≥ N. (WHY)

Thus, a 6= 0 if and only if there is a rational number ε0 > 0
such that for every k ∈ N there is a natural number nk ≥ k
satisfying |ank

| ≥ ε0.

I. Write bk := ank
with k = 1, 2, · · · . It is clear that

|bk| ≥ ε0 := c for all k ∈ N.



CHEN CHUANG: LECTURES ON REAL ANALYSIS 40

II. We show that {bn}∞n=1 is a Cauchy sequence. Indeed,
since {an}∞n=1 is a Cauchy sequence, for every rational num-
ber ε > 0, there is an N ∈ N such that

|am − an| < ε, m, n ≥ N.

Then for all k1, k2 ≥ N , nk1
≥ k1 ≥ N and nk2

≥ k2 ≥ N ,
and hence,

|bk1
− bk2

| = |ank1
− ank2

| < ε, k1, k2 ≥ N.

III. We show that {bn}∞n=1 is equal to {an}∞n=1. Indeed,
for all k ≥ N with N given in step II, we have nk ≥ k ≥ N ,
so that

|ak − bk| = |ak − ank
| < ε.

This implies that {an}∞n=1 and {bn}∞n=1 are equivalent Cauchy
sequences. �

Definition. (Non-degenerate Cauchy sequence) A
Cauchy sequence {an}∞n=1 is called non-degenerate if there
is a rational number c > 0 such that |an| ≥ c for all n ∈ N.

Remark. The last proposition shows that every non-zero
real number can be expressed by a non-degenerate Cauchy
sequence.

Definition. (Reciprocal of non-zero real numbers)
Let a := {an}∞n=1 be a non-zero real number with {an}∞n=1,
a non-degenerate Cauchy sequence. Then the reciprocal
of a (denoted by a−1) is defined by

a−1 := {a−1
n }∞n=1.
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The system of real numbers (R,+,−,×,÷)

By using the negation of real numbers, we can construct
the operation of substraction for real numbers.

Definition. (Substraction of real numbers) Let a, b ∈
R. The substraction a− b is defined by

a− b := a+ (−b).

Analogously, we can also construct the operation of divi-
sion for real numbers by using the reciprocal of real num-
bers.

Definition. (Quotient of real numbers) Let a, b ∈ R
and b 6= 0. The quotient a/b is defined by

a/b := a× b−1.

Remark. We also use our customary a ÷ b instead of
a/b.

So far, we have constructed the system of real number
(R,+,−,×,÷). Further on, we can show that the system
(R,+,−,×,÷) is indeed a so-called field.

Theorem. Let a, b, c ∈ R. Then we have

a+ b =b+ a,

(a+ b) + c =a+ (b+ c),

a+ 0 =0 + a = a,

a+ (−a) =(−a) + a = 0,

ab =ba,

(ab)c =a(bc),

a1 =1a = a,

aa−1 =a−1a = 1 (a 6= 0),

a(b+ c) =ab+ ac,

(b+ c)a =ba+ ca.
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Absolute value, order and distance

Definition.(Positive real numbers) A real number a
is said to be positive if a = {an}∞n=1, a Cauchy sequence,
with an ≥ c (n ∈ N) for some rational number c > 0; and
a is said to be negative if a = −b for some positive real
number b.

Analogous to that of rational numbers, we have the fol-
lowing trichotomy of real numbers.

Theorem.(Trichotomy of real numbers) Let a ∈ R.
Exactly one of the following three statements is true:

(i) a is zero.

(ii) a is positive.

(iii) a is negative.

Proof. Let a = {an}∞n=1, a Cauchy sequence of rational
numbers an. If

(1) for every rational number r > 0, there exists an N ∈
N such that

|an − 0| < r

for all n ≥ N , then a = 0 due to the equivalence of Cauchy
sequences {an}∞n=1 and {0}∞n=1. Otherwise,

(2) there exists a rational number c > 0 such that, for
every k ∈ N, there is an ank

satisfying

|ank
| ≥ c.

Note that {ank
}∞k=1 is also a Cauchy sequence. Thus, there

is a K ∈ N such that either

ank
≥ c

for all k ≥ K or

ank
≤ −c
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for all k ≥ K (WHY). The former implies that a > 0 and
the latter implies that a < 0.

Clearly, we can not have more than one of above state-
ments (i), (ii) and (iii) holding at the same time. This
completes the proof. �

Proposition. Let a ∈ R. The following statements are
equivalent.

(i) a > 0.

(ii) There is a rational number c > 0 and a Cauchy se-
quence {an} = a such that an ≥ c for all n ∈ N.

(iii) There is a rational number c > 0 and a Cauchy
sequence {an} = a such that an ≥ c (n ≥ N) for some
N ∈ N.

(iv) There is a rational number d > 0 such that, for
every Cauchy sequence {an} = a, there exists an N ′ ∈ N
satisfying an ≥ d for all n ≥ N .

Proof. The equivalence of (i) and (ii) is a direct consequence
of the definition of positivity of real numbers. Others can
be proved easily. �

Proposition.(Basic properties of real numbers) Let
a, b ∈ R. The following statements hold.

(i) a is negative if and only if −a is positive.

(ii) If a and b are both positive, then so are a+ b and ab.

(iii) If a and b are both negative, then so is a + b while
ab is positive.

Definition.(Absolute value) Let a ∈ R. The absolute
value of a (denoted by |a|) is defined as follows:
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(i) |a| := 0 if a is zero,

(ii) |a| := a if a is positive,

(iii) |a| := −a if a is negative.

Definition.(Distance of real numbers) Let a, b ∈ R.
The distance d(a, b) is defined by

d(a, b) := |a− b|.

Definition.(Order of real numbers) Let a, b ∈ R. We
say that a is greater than b ( denoted by a > b) if a− b is
positive, and say that a is less than b ( denoted by a < b)
if a− b is negative. In addition, we define a ≥ b if a > b or
a = b, and a ≤ b if a < b or a = b.

Proposition. Let a, b ∈ R. The following statements
are equivalent.

(i) a > b.

(ii) There exist a rational number c > 0 and two Cauchy
sequences {an} = a and {bn} = b such that

an − bn ≥ c, n ∈ N.

(iii) There exist a rational number c > 0 and two Cauchy
sequences {an} = a and {bn} = b such that

an − bn ≥ c (n ≥ N)

for some N ∈ N.

(iv) There exists a rational number d > 0 such that, for
every pair of Cauchy sequences {a′n} = a and {b′n} = b,
there is an N ′ ∈ N satisfying

an − bn ≥ d, n ≥ N ′.

Proof. The equivalence of (i) and (ii) is a direct consequence
of the definition of positivity of real numbers. Clearly, (ii)
implies (iii).
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(iii) ⇒ (iv) Suppose that the statement (iii) holds. Let
{a′n} = a and {b′n} = b. By the definition of equivalence of
Cauchy sequences, there is a natural number N ′ ≥ N such
that |a′n − an| < c/4 and |b′n − bn| < c/4, for all n ≥ N ′.
Thus,

a′n − b′n =a′n − an + an − bn + bn − b′n

≥− c/4 + c− c/4 = c/2 := d > 0, n ≥ N ′.

(iv) ⇒ (ii) Write an := a′n and bn := b′n for all n ≥ N , and
write an := d+1 and bn := 1 for all n = 1, 2, · · · , N−1. �

Theorem.(Basic properties of order) Let a, b, c ∈ R.
The following statements hold.

(i) Exactly one of the following three statements is true:

a > b, a = b, a < b.

(ii) a > b if and only if a < b.

(iii) If a > b and b > c, then a > c.

(iv) If a > b, then a+ c > b+ c.

(v) If a > b and c is positive, then ac > bc.

Corollary. Let a, b ∈ R be positive. The following state-
ments hold.

(i) a−1 is also positive.

(ii) If a > b, then a−1 < b−1.

Proposition. (Basic properties of absolute value)
Let a, b, c ∈ R. The following statements hold.

(i) (Non-degeneracy) 0 ≤ |a|. Also, |a| = 0 if and only
if a = 0.

(ii) (Triangle inequality) |a+ b| ≤ |a|+ |b|.
(iii) −b ≤ a ≤ b if and only if |a| ≤ b.
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(iv) |ab| = |a||b|. In particular, | − a| = |a|.

Proposition. (Basic properties of distance) Let
a, b, c ∈ R. The following statements hold.

(i) (Non-degeneracy) 0 ≤ d(a, b). Also, d(a, b) = 0 if
and only if a = b.

(ii) (Symmetry) d(a, b) = d(b, a).

(iii) (Triangle inequality) d(a, c) ≤ d(a, b) + d(b, c).

Remark. Let r ∈ Q. It is clear that {r}∞n=1 is a Cauchy
sequence. In the sequel, we will identify the real number
{r}∞n=1 with the rational number r itself, i,e,, r ≡ {r}∞n=1.

Archimedean property

Proposition. Let a = {an}∞n=1 be a Cauchy sequence of
non-negative rational numbers. Then a is a non-negative
real number.

Corollary. Let a = {an}∞n=1, b = {bn}∞n=1 be two Cauchy
sequences. If an ≥ bn for all n ∈ N, then a ≥ b.

Proposition. Let a ∈ R be positive. Then there are two
numbers q ∈ Q, N ∈ Z such that

0 < q ≤ a ≤ N.

Corollary.(Archimedean property) Let a, ε ∈ R be
positive. Then there is an integer M > 0 such that a < Mε.

Proof. It suffices to show a/ε < M for some integer M > 0
(WHY). Since a/ε is positive, the existence of such M is a
direct consequence of the last proposition. �

Proposition. Let a, b ∈ R with a < b. Then there is a
q ∈ Q such that a < q < b.
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Proof. Since b > a, we can take two Cauchy sequences
{an} = a and {bn} = b such that

bn − an ≥ c (n ∈ N)

for some rational number c > 0. Also, by the definition of
Cauchy sequences, for the rational number c/4 > 0, there
is an N ∈ N such that

|an − aN | < c/4, |bn − bN | < c/4,

for all n ≥ N . Let q := bN − c/2 ∈ Q. Then, for all n ≥ N ,

bn − q = bn − bN + c/2 > −c/4 + c/2 = c/4 > 0

and

q − an =bN − aN − c/2 + aN − an > c− c/2− c/4 > 0.

Therefore, a < q < b. �
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Theory of limits on R

Definition.(Limit) Let {an} ⊂ R and let a ∈ R. We
say that the sequence {an} converges to a (denoted by
limn→∞ an = a) if for every real number ε > 0, there exists
an N ∈ N such that

|an − a| < ε

for all n ≥ N . Also, we say that {an} is convergent if
{an} converges to some a ∈ R.

Remark. Let {an} ⊂ R and let a ∈ R. Then limn→∞ an =
a if and only if one of the following statements holds.

(i) For every real number ε > 0, there is an N ∈ N such
that |an − a| < ε for all n ≥ N.

(ii) For every real number ε > 0, there is an N ∈ N such
that |an − a| ≤ ε for all n ≥ N.

(iii) For every rational number r > 0, there is an N ∈ N
such that |an − a| < r for all n ≥ N.

(iv) For every rational number r > 0, there is an N ∈ N
such that |an − a| ≤ r for all n ≥ N.

(v) For every natural number k > 0, there is an N ∈ N
such that |an − a| < 1/k for all n ≥ N.

(vi) For every natural number k > 0, there is an N ∈ N
such that |an − a| ≤ 1/k for all n ≥ N.

(vii) For every real number ε = {εk}∞k=1 > 0, there is an
N ∈ N such that |ak

n − ak| < εk (k ∈ N) for all n ≥ N.

(viii) For every real number ε = {εk}∞k=1 > 0, there are
N,K ∈ N such that |ak

n − ak| < εk (k ≥ K) for all n ≥ N.

(ix) For every rational number r > 0, there are N,K ∈ N
such that |ak

n − ak| < r (k ≥ K) for all n ≥ N.

(x) For every natural number m > 0, there are N,K ∈ N
such that |ak

n − ak| < 1/m (k ≥ K) for all n ≥ N.
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Theorem.(Cauchy convergence principle) Let {an}
be a sequence of real numbers an. The following statements
are equivalent.

(i) The sequence {an} is convergent.

(ii) For every real number ε > 0, there exists an N ∈ N
such that

|am − an| < ε

for all m,n ≥ N .

Theorem.(Weierstrass monotone convergence cri-
teria) Let {an} be a sequence of real numbers an.

(i) If {an} is bounded above and

a1 ≤ a2 ≤ · · · ≤ an ≤ · · · ,

then {an} is convergent.

(ii) If {an} is bounded below and

a1 ≥ a2 ≥ · · · ≥ an ≥ · · · ,

then {an} is convergent.

Theorem.(Cantor criterion of nested intervals) Let
{In} be a sequence of closed intervals In = [an, bn]. If

I1 ⊃ I2 ⊃ · · · ⊃ In ⊃ · · · ,

and limn→∞(bn − an) = 0, then there exists a unique real
number a ∈

⋂∞
n=1 In such that a = limn→∞ an = limn→∞ bn.

Theorem.(Existence of supremum and infimum)
Let A ⊂ R be non-empty and bounded. Then there exist
unique supremum of A and unique infimum of A.
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Theorem.(Bolzano-Weierstrass) Let {an} be a se-
quence of real numbers an. Then there exists a conver-
gent subsequence of {an} whenever the sequence {an} is
bounded.

Theorem.(Heine-Borel) Let F be a family of open in-
tervals, and let F be a bounded and closed set satisfying

F ⊂
⋃

O∈F

O.

Then there are finitely many intervals, O1, O2, · · · , Om ∈ F ,
such that

F ⊂
m⋃

n=1

On.

Summary (Systems of numbers).

• N is constructed by using so-called “natural” axioms.

• Z is constructed by using N and n ≡ n ` 0 (n ∈ N).

• Q is constructed by using Z and a ≡ a//1 (a ∈ Z).

• R is constructed by using Q and r ≡ {r}∞n=1 (r ∈ Q).

• R is complete.

• C is constructed by using R and a ≡ (a, 0) (a ∈ R).

• C is complete.

• Theory of series
∑∞

n=1 an, where {an} ⊂ R.

• Base-p expansions.
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Chapter 1: Theory of sets

§1. Basics of sets

Operations of sets

• Union A ∪B := {x : x ∈ A or x ∈ B}
∪α∈ΛAα = {x : x ∈ Aα for some α ∈ Λ}

• Intersection A ∩B := {x : x ∈ A and x ∈ B}
∩α∈ΛAα = {x : x ∈ Aα for all α ∈ Λ}

• Difference A\B := {x : x ∈ A and x 6∈ B}
• Complement Ac := X \ A
• Symmetric difference A4B := (A\B)∪(B\A)

Properties.

(1) A ∪ A = A, A ∩ A = A
(2) A4A = ∅, A4X = Ac, A4B = (A∪B) \ (A∩B)
(3) A ∪ ∅ = A, A ∩ ∅ = ∅, A \ ∅ = A,A4 ∅ = A
(4) A ∪B = B ∪ A, A ∩B = B ∩ A,A4B = B 4 A
(5) A ∪ (B ∪ C) = (A ∪B) ∪ C

A ∩ (B ∩ C) = (A ∩B) ∩ C
A4 (B 4 C) = (A4B)4 C

(6) A ∩ (B ∪ C) = (A ∩B) ∪ (A ∩ C)
A ∪ (B ∩ C) = (A ∪B) ∩ (A ∪ C)

(7) A ∩ (B \ C) = (A ∩B) \ (A ∩ C)
(8) (A\B)\C = A\(B∪C), A\(B\C) = (A\B)∪(A∩C)
(9) A ∪B = (A∆B) ∪ (A ∩B) = A ∪ (B \ A)

(10) A \ (B ∪ C) = (A \B) ∩ (A \ C)
(11) A \ (B ∩ C) = (A \B) ∪ (A \ C)

Proposition. (de Morgan) Let S be a set and let {Aα :
α ∈ Λ} be a family of sets. Then

S \
⋃
α∈Λ

Aα =
⋂
α∈Λ

(S \ Aα), S \
⋂
α∈Λ

Aα =
⋃
α∈Λ

(S \ Aα).
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Rings and algebras

A ring, R, over a set X, is a class of subsets of X such
that A ∪ B,A \ B ∈ R for all A,B ∈ R. An algebra F
over X is a ring over X with X ∈ F ; an algebra is also
called a field.

Remarks. Let R be a ring over a set X.

(i) It is clear that ∅ ∈ R. In particular, R = {∅} when-
ever X = ∅.

(ii) R is closed under the operation intersection.

Proposition. Let R be a class of subsets of a set X.
Then R is a ring over X if and only if R is closed under
operations of finitely many unions and differences.

Proposition. Let F be a class of subsets of a set X.
The following statements are equivalent.

(i) F is an algebra over X.

(ii) F is closed under operations of union, difference and
complement.

(iii) F is closed under operations of finitely many unions,
differences and complements.

Examples.

(1) Let P(X) := {A : A ⊂ X}, then P(X) is the largest
ring/algebra over X. {∅} and {∅, X} are the smallest ring
and algebra over X, respectively.

(2) Let X = {1, 2}. Then

R1 =
{
∅, {1}

}
and R2 =

{
∅, {2}

}
are both rings on X.
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(3) Let F be the class of all finitely many unions of semi-
closed “intervals” of the form (a, b], then F is a ring over
R.

Note thatR1∪R2 is not a ring withR1,R2 given in above
Example (2). However, R1 ∩ R2 is a ring. In general, we
have the following

Proposition. Let M be a family of rings over X. Then

R :=
⋂
R′∈M

R′

is a ring over X as well.

Proposition. Let M be a family of algebras over X.
Then

F :=
⋂
F ′∈M

F ′

is an algebra over X as well.

Proposition. Let A ∈ P(X). Then there exists the
smallest ring (or algebra) R (or F) over X such that A ∈
R (or A ⊂ F), that is to say, for every ring R′ (or every
algebra F ′) over X satisfying A ∈ R′ (or A ∈ F ′) we have
R ⊂ R′ (or F ⊂ F ′).

Proof. Indeed, R = {∅, A} and F = {∅, A,Ac, X}. �

Theorem. Let A ⊂ P(X). Then there exists the small-
est ring (or algebra) R (or F) over X such that A ⊂ R (or
A ⊂ F), that is to say, for every ring R′ (or every algebra
F ′) over X satisfying A ⊂ R′ (or A ⊂ F ′) we have R ⊂ R′

(or F ⊂ F ′).

Proof. Note that the set F defined by

F :=
⋂ {

F ′ : A ⊂ F ′ ⊂ P(X) and F ′ is an algebra
}
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is an algebra over X. Clearly, F is the smallest algebra
containing A as an element. Also,

R :=
⋂ {

R′ : A ⊂ R′ ⊂ P(X) and R′ is a ring
}

is the ring desired. �

Remark. R (or F) given in above theorem is called the
ring ( or algebra) generated by A, and we denote it by
R(A) (or F (A)). In particular, R(∅) = {∅} and

R(X) = F (∅) = {∅, X}.
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Limits of sets

Monotonic sequences of sets.

(1) {An} is increasing: An ⊂ An+1 for all n.

(2) {An} is decreasing: An ⊃ An+1 for all n.

(3) {An} is monotone if it is either increasing or de-
creasing.

Remark. Let {An} be decreasing. Then

A1 = (A1\A2)∪(A2\A3)∪· · ·∪(An\An+1)∪· · ·∪
( ∞⋂

n=1

An

)
;

moreover, all terms are pairwise disjoint.

Limits of sets.

(1) limit superior:

lim
n→∞

An := lim sup
n→∞

An :=
∞⋂

k=1

∞⋃
n=k

An

(2) limit inferior:

lim
n→∞

An := lim inf
n→∞

An :=
∞⋃

k=1

∞⋂
n=k

An

(3) limit: We say that the sequence {An} of sets An is
convergent if

lim sup
n→∞

An = lim inf
n→∞

An,

and define the limit of {An} by

lim
n→∞

An := lim sup
n→∞

An = lim inf
n→∞

An.
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Properties.

(1) lim
n→∞

An = {x : x ∈ An for infinitely many n}.

(2) lim
n→∞

An = {x : x ∈ An for all but finitely many n}.

(3)
∞⋂

n=1

An ⊂ lim
n→∞

An ⊂ lim
n→∞

An ⊂
∞⋃

n=1

An.

Proposition.

(1) If {An} is increasing, then

lim
n→∞

An =
∞⋃

n=1

An.

(2) If {An} is decreasing, then

lim
n→∞

An =
∞⋂

n=1

An.

Examples. Let n ∈ N+.

(1) Let An = [n,∞). Then limn→∞An = ∅.

(2) Let An = (− 1
n ,

1
n). Then limn→∞An = {0}.

(3) Let An = (−1 + 1
n , 1−

1
n), n ≥ 2. Then

lim
n→∞

An = (−1, 1).

(4) Let A2n = [0, 2− 1
2n+1 ], A2n+1 = [0, 1 + 1

2n ]. Then

lim
n→∞

An = [0, 2), lim
n→∞

An = [0, 1].
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(5) Let fn, f : R → R. Then{
t : fn(t) → f(t)

}
=

∞⋂
k=1

∞⋃
m=1

∞⋂
n=m

{
t : |fn(t)− f(t)| < 1

k

}
,

{
t : fn(t) 6→ f(t)

}
=

∞⋃
k=1

∞⋂
m=1

∞⋃
n=m

{
t : |fn(t)− f(t)| ≥ 1

k

}
.
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Functions and sets.

Let f : E → R (or C). Write

E[f ≥ c] :={x ∈ E : f(x) ≥ c},
E[f ≤ c] :={x ∈ E : f(x) ≤ c},
E[f < c] :={x ∈ E : f(x) < c},
E[f > c] :={x ∈ E : f(x) > c},
E[f = c] :={x ∈ E : f(x) = c}.

It is clear that

(1) E[f ≥ c] ∪ E[f < c] = E.
(2) E[f ≥ c] ∩ E[f < c] = ∅.
(3) E[f > c] ∩ E[f ≤ d] = E[c < f ≤ d].
(4) E[f ≤ c] =

⋂∞
n=1E[f < c+ 1

n ].

Proposition. Let fn → f as n → ∞ (i.e., pointwise).
Then

E[f ≤ c] =
∞⋂

k=1

∞⋃
N=1

∞⋂
n≥N

E[fn ≤ c+ 1/k],

=
∞⋂

k=1

lim
n→∞

E[fn ≤ c+ 1/k].

If further f1 ≤ f2 ≤ · · · ≤ fn ≤ fn+1 ≤ · · · , then

E[f ≤ c] =
∞⋂

n=1

E[fn ≤ c] = lim
n→∞

E[fn ≤ c].

Proof. It suffices to prove the first equality. Let

x ∈
∞⋂

k=1

∞⋃
N=1

∞⋂
n≥N

E[fn ≤ c+ 1/k].
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Then, for every k ∈ N, there is an N ∈ N such that

x ∈ E[fn ≤ c+ 1/k]

for all n ≥ N , i.e.,

fn(x) ≤ c+ 1/k, n ≥ N.

By letting n → ∞ in both sides of above inequality, we
obtain

f(x) ≤ c+ 1/k, k ∈ N.

Again, letting k →∞ yields f(x) ≤ c. Thus, x ∈ E[f ≤ c].

Conversely, let x ∈ E[f ≤ c]. Then

a := lim
n→∞

fn(x) = f(x) ≤ c.

Thus, for every k ∈ N, there is an N ∈ N such that

|fn(x)− a| ≤ 1/k, n ≥ N,

and hence,

fn(x)− c ≤ fn(x)− a ≤ 1/k, n ≥ N.

This implies that

x ∈
∞⋂

k=1

∞⋃
N=1

∞⋂
n≥N

E[fn ≤ c+ 1/k].

�
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Characteristic functions of sets.

Let X be a nonempty set and let A ⊂ X. We call the
function χA (defined on X)

χA(x) :=

{
1, x ∈ A;

0, x 6∈ A,
the characteristic function of A.

We list some basic properties as follows, which can be
proved directly by the definition of characteristic functions
and the de Morgan law of sets.

(1) χA ≡ 1 ⇔ A = X; χA ≡ 0 ⇔ A = ∅.
(2) χA ≤ χB ⇔ A ⊂ B; χA = χB ⇔ A = B.

(3) Let U :=
⋃

α∈ΛAα and M :=
⋂

α∈ΛAα. Then

χU(x) = max
α∈Λ

χAα
(x),

χM(x) = min
α∈Λ

χAα
(x).

(4) Let {An} ⊂ X. Then, for every x ∈ X,

χlimn→∞An
(x) = lim

n→∞
χAn

(x),

χlimn→∞An
(x) = lim

n→∞
χAn

(x).

(5) Let {An} ⊂ X. Then {An} converges if and only if
{χAn

(x)} converges for every x ∈ X. Moreover,

χlimn→∞An
(x) = lim

n→∞
χAn

(x), x ∈ X.

Proof. (2) Suppose that χA ≤ χB, i.e.,

χA(x) ≤ χB(x), x ∈ X.
Let x ∈ A. Then χB(x) ≥ χA(x) = 1, so that χB(x) = 1.
This implies that x ∈ B. Thus, A ⊂ B.

Conversely, suppose that A ⊂ B.
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(i) If x ∈ A, then x ∈ B, so that χA(x) = χB(x) = 1.

(ii) If x 6∈ A, then χA(x) = 0 ≤ χB(x).
In a word, we have χA ≤ χB.

Analogously, (3) and (4) can be proved by the de Morgan
law of sets. (5) is a direct consequence of (4). �
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§2. Mappings and Cardinalities of
sets

Mappings.

Some notations.

Let A,B be nonempty sets. A mapping ϕ from A to
B is a rule that assigns to each element x ∈ A a unique
element ϕ(x) ∈ B. We call ϕ(x) the image of x under the
mapping ϕ.

To indicate that ϕ is a mapping from A to B, we often
write ϕ : A → B. The set A is called the domain of ϕ
(denoted by D(ϕ)). The set ϕ(A) := {ϕ(x) : x ∈ A} is
called the range of ϕ (also, denoted by R(ϕ)). Clearly,
ϕ(A) ⊂ B.

For y ∈ B fixed, the set {x ∈ A : ϕ(x) = y} is called
the inverse image of y under the mapping ϕ (denoted by
ϕ−1(y)). In addition, for E ⊂ B fixed, the set {x ∈ A :
ϕ(x) ∈ E} is called the inverse image of E under the
mapping ϕ (denoted by ϕ−1(E)).

The mapping ϕ : A→ B is said to be

(1) one-to-one (or injective) if ϕ(x1) = ϕ(x2) implies
that x1 = x2.

(2) onto (or surjective) if ϕ(A) = B.
(3) 1-1 correspondence (or bijective) if ϕ is one-to-

one and onto.

Remark. Clearly, an injective ϕ is bijective from D(ϕ)
to R(ϕ).

Extensions of mappings. Let ϕ : D(ϕ) → B and
ψ : D(ψ) → B. If D(ϕ) ⊂ D(ψ) and ψ(x) = ϕ(x) for all
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x ∈ D(ϕ), then we call ψ is an extension of ϕ to D(ψ)
(denoted by ϕ ⊂ ψ). If this is the case, we call ϕ the
restriction of ψ on D(ϕ) (denoted by ϕ = ψ|D(ϕ)).

Compositions of mappings. Let ϕ1 : A → B and
ϕ2 : B → C. The composition of ϕ2 with ϕ1, denoted by
ϕ2 ◦ ϕ1, is the mapping ϕ2 ◦ ϕ1 : A→ C defined by

(ϕ2 ◦ ϕ1)(x) = ϕ2(ϕ1(x)), x ∈ A.

Inverse of a mapping. Let ϕ : A → B be injective.
For y ∈ R(ϕ), let ϕ−1(y) be the unique x ∈ A such that
ϕ(x) = y. The mapping ϕ−1 : R(ϕ) → A so defined is
called the inverse of the mapping ϕ. In this sense, an
injective is also said to be an invertible mapping.

Identity mapping. Let A be a nonempty set. The
identity mapping on A is the mapping ϕ : A→ A defined
by

ϕ(x) = x, x ∈ A.

Equivalence of sets

Definition. Two non-empty sets are said to be equiva-
lent if there is a 1-1 correspondence from one to the other.
We write A ∼ B if sets A and B are equivalent. In addition,
we define ∅ ∼ ∅.

Remark. Let A,B and C be three sets. It is clear that

(i) A ∼ A (reflexive)

(ii) A ∼ B implies that B ∼ A (symmetric)

(iii) A ∼ B and B ∼ C implies that A ∼ C (transitive)

Remark. Let ϕ : A→ B be injective. Then A ∼ R(ϕ).
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Examples. Let a, b ∈ R. Then

[0, 1] ∼ [a, b] ∼ [a, b) ∼ (a, b] ∼ (a, b).

Theorem (F. Bernstein, 1898). Let A and B be two
sets. If A is equivalent to a subset of B while B is equivalent
to a subset of A, then A and B are equivalent.

Outline of the proof. Suppose that A ∼ B1 ⊂ B and
B ∼ A1 ⊂ A.

Step I. Since the relation ∼ has translation, it suffices
to show A ∼ A1.

Step II. Consider the following disjoint decompositions

A = C1 ∪ C2 ∪ · · · ∪ Cn ∪ · · · ,
A1 = C ′

1 ∪ C ′
2 ∪ · · · ∪ C ′

n ∪ · · · .

If Cn ∼ C ′
n for every n ∈ N, then A ∼ A1.

Step III. Construct such decompositions.

Proof. Suppose that A ∼ B1 ⊂ B and B ∼ A1 ⊂ A via
1-1 correspondences ϕ1 and ϕ2, respectively. Write A0 :=
A,ϕ := ϕ2 ◦ϕ1 and denote An+2 := ϕ(An) for n ∈ N. Then
we obtain a decreasing series of sets

A ⊃ A1 ⊃ A2 ⊃ · · · ⊃ An ⊃ · · · .

Also,

A ∼ A2 ∼ A4 ∼ · · · ; A1 ∼ A3 ∼ A5 ∼ · · ·

due to the same mapping ϕ. Notice that

A = (A \ A1) ∪ (A1 \ A2) ∪ (A2 \ A3) ∪ (A3 \ A4) ∪ · · · ∪D,
A1 = (A1 \ A2) ∪ (A2 \ A3) ∪ (A3 \ A4) ∪ (A4 \ A5) ∪ · · · ∪D,
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where D = A1 ∩ A2 ∩ A3 ∩ · · · ; and notice that

A \ A1 ∼ A2 \ A3

A2 \ A3 ∼ A4 \ A5

· · ·
A2n \ A2n+1 ∼ A2n+2 \ A2n+3

· · ·
by virtue of the same mapping ϕ. This implies that A ∼ A1,
so that A ∼ B due to A1 ∼ B. �

Corollary. Let C ⊂ B ⊂ A. If C ∼ A then B ∼ A.

Cardinalities of sets.

Definition. Let A and B are two sets. We define the
expressions

A ≤ B (or B ≥ A) and A = B

to mean that A is equivalent to a subset of B and A is

equivalent to B, respectively. In addition, we call A the
cardinality of A.

Definition. We also write

A < B (or B > A)

to mean that A ≤ B but A 6= B.

Bernstein theorem. Let A and B be two sets. If A ≤ B

and B ≤ A then A = B.

Remark. By Bernstein theorem and Zermelo Ax-
iom of Choice (introduced in the next section), for two
sets A and B, exactly one of the following three statements
holds:

A < B, A = B, A > B.
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Examples.

1. {a1, · · · , an} ∼ {1, · · · , n}.
2. {0, 2, 4, · · · , 2n, · · · } ∼ {0, 1, 2, · · · , n, · · · }.
3. N ∼ Z.

4. [0, 1] ∼ [a, b], where a, b ∈ R and a < b.

Finite and infinite sets:

Definition. A setA is called a finite set ifA ∼ {1, · · · , n}
for some n ∈ N. A set is called an infinite set if it is not
finite.

Theorem. A set is infinite if and only if it is equivalent
to some of its proper subsets, or equivalently, a set is finite
if and only if it is not equivalent to any of its proper subsets.

Proof. Let A be an infinite set. We can take

{a1, a2, · · · , an, · · · } ⊂ A.

Now consider the proper subset A\{a1} and define a map-
ping ϕ : A→ A \ {a1} by

(i) ϕ(x) := x for x ∈ A \ {a1, a2, · · · , an, · · · },
(ii) ϕ(ak) := ak+1 for k = 1, 2, · · · .

Clearly, ϕ is a bijective. Thus, A ∼ A \ {a1}.
Conversely, let B be a proper subset of A such that B ∼

A. It is clear that B 6= ∅ (WHY). Assume that A is finite.
Then, by definition of finite sets, there exists an N ∈ N
such that {1, 2, · · · , N} ∼ A. Thus, there is a bijective
ϕ1 : {1, 2, · · · , N} → A, and hence,

A = {ϕ1(1), ϕ1(2), · · · , ϕ1(N)}.
Note that

B = {ϕ(n1), ϕ(n2), · · · , ϕ(nk)}, 1 ≤ k < N.
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Thus, any mapping from A to B is not an injective (other-
wise, k = N). This contracts to that A ∼ B. Thus, A is
infinite. �

Countable sets.

Definition. A set A is said to be countable if A ∼ N.

Remark. For convenience, we write N = ℵ0. Thus,

A = ℵ0 for every countable set A.

Properties.

1. Every infinite set has a countable subset.

2. Any subset of a countable set is finite or countable.

3. If A is countable and B is finite or countable, then
A ∪B is countable.

4. If An is countable for every n ∈ N, then
⋃∞

n=1An is
also countable.

5. If A is an infinite set and B is finite or countable, then
A ∪B ∼ A.

Proof. 1. Let A be an infinite set. Clearly, we can take
a1 ∈ A. Since A \ {a1} is also infinite (WHY), we can take
a2 ∈ A\{a1}. Note that, if we take a1, a2, · · · , ak ∈ A, then
we can also take ak+1 ∈ (A \ {a1, a2, · · · , ak}) due to the
infinity of A. Thus, by induction, we obtain a countable
subset {a1, a2, · · · , an, · · · } of A.

2. Let A be a countable set, and let B ⊂ A. It suffices to
show that B is countable whenever B is not finite. Suppose
that B is not finite. Note that

ℵ0 ≤ B ≤ A = ℵ0,

where the first inequality follows from 1, immediately. This

implies that B = ℵ0 by Bernstein theorem.
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3. Let A be countable, and let B be finite or countable.
Write

A = {a1, a2, · · · , an, · · · }.

(i) If B is finite, then B = {b1, b2, · · · , bn}, so that the
mapping ϕ defined by

ϕ(bk) := ak, k = 1, 2, · · · , n;

ϕ(am) := am+n, m ∈ N,
is a bijective from A ∪B to A. Thus, A ∼ B.

(ii) If B is countable, then B = {b1, b2, · · · , bn, · · · }. Note
that the mapping ϕ defined by

ϕ(an) := a2n,

ϕ(bn) := a2n−1, n ∈ N,
is a bijective from A ∪ B to A. That is to say, A ∪ B is
arrayed as

b1, a1, b2, a2, · · · , bn, an, · · · .

Thus, A ∪B is also countable.

4. Let An be countable for every n ∈ N. Suppose that
An = {a1

n, a
2
n, · · · , am

n , · · · }. Then
⋃∞

n=1An can be arrayed
as

a1
1, a

2
1, a

3
1, · · · , am

1 , · · ·
a1

2, a
2
2, a

3
2, · · · , am

2 , · · ·
a1

3, a
2
3, a

3
3, · · · , am

3 , · · ·
· · · · · · · · · · · · · · · · · ·
a1

n, a
2
n, a

3
n, · · · , am

n , · · ·
· · · · · · · · · · · · · · · · · ·

Thus,
⋃∞

n=1An is countable as well.

Finally, the statement 5 can be proved by arguments
analogous to that given in the last theorem. �
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Examples of countable sets.

1. N, Z, Q.

2. {(x, y) ∈ R2 : x, y ∈ Q}.

Uncountable sets.

Definition. An infinite set A is called uncountable if
A 6∼ N.

Remark. Clearly, A > ℵ0 for every uncountable set A.

Example. (Cantor, 1874) [0, 1] > ℵ0.

Proof. It is clear that [0, 1] is infinite. Assume that [0, 1] =
ℵ0. Then we can array it as

[0, 1] = {a1, a2, · · · , an, · · · }.

Trisect the interval [0, 1] and take one, [b1, b
′
1], of the

three subintervals such that a1 6∈ [b1, b
′
1]; Trisect the in-

terval [b1, b
′
1] and take one, [b2, b

′
2], of the three subintervals

such that a2 6∈ [b2, b
′
2]; · · · ; Trisect the interval [bk, b

′
k] and

take one, [bk+1, b
′
k+1], of the three subintervals such that

ak+1 6∈ [bk+1, b
′
k+1]. Thus, we obtain a decreasing sequence

{[bn, b′n]} with an 6∈ [bn, b
′
n] for every n ∈ N, and hence

{a1, a2, · · · , an, · · · } ∩
( ∞⋂

n=1

[bn, b
′
n]

)
6= ∅.

On the other hand, by the completeness of real numbers,
there is a real number a ∈ [0, 1] such that

∞⋂
n=1

[bn, b
′
n] = {a}.

Thus, a 6= an for all n ∈ N, so that

[0, 1] 6= {a1, a2, · · · , an, · · · }.



CHEN CHUANG: LECTURES ON REAL ANALYSIS 70

This yields a contradiction. Thus, [0, 1] > ℵ0. �

Cardinality of the continuum. A set A is said to
have the cardinality of the continuum if A ∼ [0, 1]. And we

denote it by ¯̄A = ℵ.

Example. Let a, b ∈ R and a < b. Then

[a, b] = [a, b) = (a, b] = (a, b) = R = ℵ.

Proposition. Let An = ℵ for every n ∈ N. Then

∞⋃
n=1

An = ℵ.

Proof. It is clear that

∞⋃
n=1

An ≥ A1 = ℵ.

On the other hand, write

A′1 := A1, A
′
2 := A2 \ A1, · · · , A′n := An \

⋃
k<n

Ak, · · · .

Then {A′n} is a disjoint decomposition of
⋃∞

n=1An. Note
that we can map A′1 to [1, 2) via a bijective and A′k to
[k, k+1) via an injective for every k ≥ 2. Thus, there is an
injective from

⋃∞
n=1A

′
n to [1,∞), and hence,

∞⋃
n=1

An =
∞⋃

n=1

A′n ≤ [1,∞) = ℵ.

�
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Examples.

1. R = ℵ.

2. R−Q = ℵ.

3. Rn = R∞ = ℵ.

4. Qn = ℵ0, Q∞ = ℵ.

5. {{an} : an = 0 or 1} = ℵ.

Theorem. (Cantor, 1891) Let A be a set. Then

A < P(A).

Proof. Suppose to the contrary that there is a bijection φ
from A to P(A). Note that φ(x) ∈ P(A). We can define

B = {x ∈ A : x 6∈ φ(x)},
then B ⊂ A, i.e., B ∈ P(A). Since φ is surjective, there is
some x0 ∈ A such that φ(x0) = B. However, either x0 ∈ B
or x0 6∈ B will give contradiction. �

Remark. Note that, if A = n, then P(A) = 2n. Thus,

we write P(A) := 2A for short.

Problem. By Cantor theorem, N < 2N, i.e., ℵ0 < 2ℵ0.
Also, we have proved that ℵ0 < ℵ. What about the cardi-
nalities 2ℵ0 and ℵ?
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Proposition. ℵ0 < P(N) = ℵ.

Proof. It suffices to show P(N) = ℵ. We decompose the
proof into the following three steps.

(i) For the class

B := {B ⊂ N : B is finite},

we have B = ℵ0. Indeed, note that

B =
⋃
n∈N

Bn,

where Bn denotes the class of subsets B with B = n. By
the method of induction, it is easy to see that the class Bn

is countable for every n ∈ N, so that B is countable.

(ii) For the class

C := {C ⊂ N : C is infinite},

we have C = ℵ. Indeed, for every x ∈ C and define the
binary decimal ϕ(x) as

ϕ(x) := 0.a1a2 · · · an · · · ,

where an = 1 if n ∈ C, and an = 0 if n 6∈ C. Then ϕ is a
bijective from C to the set of all binary infinite decimals

in (0, 1], and hence, C = ℵ.

(iii) B ∪ C = ℵ. Indeed,

B ∪ C = (C \ B) ∪ B.

Since B is countable, there is an injective from B to [0, 1).

Also, since C \ B = ℵ (WHY), there is a bijective from C\B
to [1, 2). Thus, there is an injective from (C\B)∪B to [0, 2).
So we have

ℵ = C ≤ B ∪ C ≤ [0, 2) = ℵ.
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�

Remark. It is clear that

1 < 2 < · · · < n < n+ 1 < · · · < ℵ0 < 2ℵ0 < 22ℵ0
< · · · .

Therefore, the set with maximal cardinality does not
exist.

Example. R[a, b] > C[a, b] = ℵ.

Proof. Let {r1, · · · , rn, · · · } = [a, b]∩Q, then there is a one-
to-one mapping between f ∈ C[a, b] to R∞ by

f 7→ {f(r1), f(r2), · · · , f(rn), · · · } ∈ R∞.

Therefore C[a, b] ≤ R∞ = ℵ. On the other hand, any
of constant functions belongs to C[a, b]. Notice that the
set, K, of all constant functions has cardinality ℵ, so that
R∞ is equivalent to K, a subset of C[a, b]. This implies

that R∞ ≤ C[a, b]. Therefore, C[a, b] = ℵ by Bernstein’s
theorem.

On the other hand, for everyA ∈ P([0, 1]), define ϕ(A) :=
χA. Then ϕ is an injective from P([0, 1]) to R[a, b], so that

2ℵ = P([0, 1]) ≤ R[a, b].

Also, for every f ∈ R[a, b], define

φ(f) := {(x, f(x)) : x ∈ [0, 1]} ⊂ [0, 1]× R.
Then φ is an injective from R[a, b] to P([0, 1]×R), so that

R[a, b] ≤ P([0, 1]× R) = 2ℵ,

where the equality follows from the fact that [0, 1]× R = ℵ
(WHY). �
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§3. Equivalence relations, orderings
and axiom of choice

Equivalence relations. Let A be a nonempty set. A
relation, ∼, on A is said to be an equivalence relation if
for all x, y, z ∈ A,

• x ∼ x (reflexive)
• x ∼ y implies that y ∼ x (symmetric)
• x ∼ y and y ∼ z implies that x ∼ z (transitive)

Equivalence classes. Let A be a nonempty set and ∼ an
equivalence relation on A. For each x ∈ A, define Ex :=
{y ∈ A : y ∼ x}. And let B := {Ex : x ∈ A}. Each
member of B is called an equivalence class of A under
∼.

Properties. Let A be a nonempty set and ∼ an equiv-
alence relation on A. Then

• for each x, y ∈ A, either Ex ∩ Ey = ∅ or Ex = Ey;
• A =

⋃
x∈AEx;

• ∼ partitions A into disjoint equivalence classes,
that is, A is a disjoint union of the equivalence classes
under ∼.

Ordering relations.

Definition. (Partial ordering) Let A be a set. A bi-
nary relation defined between certain pairs (x, y) of ele-
ments of A, expressed by x ≺ y, is called a partial order-
ing on A if for all x, y, z ∈ A,

(i) (reflexivity) x ≺ x,

(ii) (antisymmetry) x ≺ y and y ≺ x implies that x =
y,
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(iii) (transitivity) x ≺ y and y ≺ z implies that x ≺ z.

In addition, a set endowed with a partial ordering is called
a partially ordered set.

Definition. (Total ordering) A partial ordering ≺ is
called a total ordering if additionally,

(iv) for every pair (x, y) in A, either x ≺ y or y ≺ x.

A set endowed with a total ordering is called a totally
ordered set.

Examples.

(1) (P(A),⊂) is a partially ordered set.
(2) (R,≤) is a totally ordered set.
(3) Let G be a group. Let S be the set of subgroups with

the relation that H ≺ H ′ if H is a subgroup of H ′.
Then (S,≺) is a partially ordered set. Given two
subgroups, H,H ′ of G, we do not necessarily have
H ≺ H ′ or H ′ ≺ H.

Induced orderings. Let (A,≺) be a partially ordered
set, and B a subset of A. We can define a partial ordering
on B by defining that x ≺ y for x, y ∈ B to hold if and only
if x ≺ y in A. We shall say that it is the partial ordering
on B induced by the ordering on A.

Upper bounds and maximal elements. Let (A,≺)
be a partially ordered set, and B a subset of A. An upper
bound of B (in A) is an element x ∈ A such that y ≺ x for
all y ∈ B. By a maximal element m of A one means an
element of A such that if x ∈ A and m ≺ x, then m = x.
In addition, we call s ∈ A is a minimal element of A if
s ≺ x for all comparable x ∈ A.
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Zermelo’s axiom of choice.

Axiom of choice. Suppose that C is a collection of
nonempty sets. Then there exists a mapping ϕ : C →⋃

A∈C A such that ϕ(A) ∈ A for each A ∈ C.

Remarks. (1) An equivalent statement of the Zermelo’s
axiom of choice is: suppose that C is a collection of nonempty
sets, then there exists a set B such that B ⊂

⋃
A∈C A and

A ∩B has only one element for each A ∈ C.

(2) Roughly speaking, the axiom of choice asserts that
given a collection of nonempty sets, it is possible to select
an element from each set in the collection.

(3) Although most mathematicians use the axiom of choice
without hesitation, some employ it only when they cannot
obtain a proof without it and others consider it unaccept-
able. In real analysis and functional analysis, we will accept
the axiom of choice and apply it freely.

Zorn’s lemma. (Principle of transfinite induction)
Let A be a nonempty partially ordered set with the prop-
erty that every totally ordered subset of A has an upper
bound in X. Then A contains at least one maximal ele-
ment.

Well ordering principle. Every set X has at least one
well-ordering.

Trichotomy of cardinality. Let A and B be two sets.
Then exactly one of the following three statements holds:

A < B, A = B, A > B.

Continuum hypothesis. For every infinite cardinality
m, there is no cardinality n such that m < n < 2m.

Theorem. The following five results are equivalent.
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(1) Axiom of choice.

(2) Zorn’s lemma.

(3) Well ordering principle.

(4) Trichotomy of cardinality.

(5) Continuum hypothesis.
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Hilbert’s 23 problems - 1900.

1. Continuum hypothesis (G. Cantor, 1878):

• The contributions of K. Gödel (1940) and P. Cohen
(1963) showed that the hypothesis can neither be disproved
nor be proved using the axioms of Zermelo-Fraenkel set
theory, the standard foundation of modern mathematics,
provided ZF set theory is consistent. However, there is no
consensus on whether this is a solution to the problem.

• Recent work of W. H. Woodin (2010,2011) has raised
“hope” that there is an imminent solution.

• Is the Continuum Hypothesis a definite mathematical
problem? – S. Feferman (2011)

2. The compatibility of the arithmetical axioms.

3. The equality of the volumes of two tetrahedra of equal
bases and equal altitudes.

4. Problem of the straight line as the shortest distance
between two points.

5. Lie’s concept of a continuous group of transformations
without the assumption of the differentiability of the func-
tions defining the group.

6. Mathematical treatment of the axioms of physics.

7. Irrationality and transcendence of certain numbers.

8. Problems of prime numbers.

9. Proof of the most general law of reciprocity in any num-
ber field.

10. Determination of the solvability of a Diophantine equa-
tion.

11. Quadratic forms with any algebraic numerical coeffi-
cients.
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12. Extension of Kroneckers theorem on abelian fields to
any algebraic realm or rationality.

13. Impossibility of the solution of the general equation of
the 7th degree by means of functions of only two arguments.

14. Proof of the finiteness of certain complete systems of
functions.

15. Rigorous foundation of Schuberts enumerative calculus.

16. Problem of the topology of algebraic curves and sur-
faces.

17. Expression of definite forms by squares.

18. Building up of space from congruent polyhedra.

19. Are the solutions of regular problems in the calculus of
variations always necessarily analytic?

20. The general problem of boundary values.

21. Proof of the existence of linear differential equations
having a prescribed monodromic group.

22. Uniformization of analytic relations by means of auto-
morphic functions.

23. Further development of the methods of the calculus of
variations.
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§5. Point sets on the line

Intervals.

• (a, b) := {x : a < x < b}, −∞ ≤ a < b ≤ ∞
• [a, b) := {x : a ≤ x < b}, −∞ < a < b ≤ ∞
• (a, b] := {x : a < x ≤ b}, −∞ ≤ a < b <∞
• [a, b] := {x : a ≤ x ≤ b}, −∞ < a ≤ b <∞

In particular, [a, a] = {a}.

Bounded sets.

Definition. Let A be a nonempty subset of R. A real
number c is called an upper bound (or lower bound)
of A if x ≤ c (or c ≤ x) for all x ∈ A. If a subset of R
has an upper bound (or lower bound), then we say that it
is bounded above (or bounded below). A set is called
bounded if it is bounded both above and below.

Definition. A real number u is called a least upper
bound or supremum of A if it is an upper bound of A
and smaller than or equal to any other upper bound of A.
We write u by

supA, sup
x∈A

x, or sup{x : x ∈ A}.

Definition. A real number l is called a greatest lower
bound or infimum of A if it is a lower bound of A and
greater than or equal to any other lower bound of A. We
write l by

inf A, inf
x∈A

x, or inf{x : x ∈ A}.

Remark. We define supA := +∞ if A is not bounded
above, and define inf A := −∞ if A is not bounded below;
In addition, (whenever needed) we may define

sup ∅ := −∞, inf ∅ := +∞.
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Open sets.

Definition. A subset O ⊂ R is said to be an open set if
for each x ∈ O, there is an r > 0 such that (x−r, x+r) ⊂ O.

Remark. The open interval (x − r, x + r), denoted by
N(x, r), is also called an r-neighborhood of x. Thus, A
subset O ⊂ R is open if and only if for each point x ∈ O,
there is an rx-neighborhood N(x, rx) ⊂ O.

Properties.

• ∅ and R are open sets.
• If A and B are open sets, then so is A∩B. (closed
for finite intersection)
• If {Oα}α∈Λ is a collection of open sets, then

⋃
α∈ΛOα

is open. (closed for arbitrary union)

Theorem. (constructions of open sets) Each open
set O is countable union of disjoint open intervals. The
representation is unique in the sense that if C and D are two
pairwise disjoint collections of open intervals whose union
is O, then C = D.

Proof. Let O be an open set. For x ∈ O fixed, define

Ax :={y : y < x and (y, x) ⊂ O},
Bx :={z : z > x and (x, z) ⊂ O}.

The sets Ax and Bx are nonempty because O is open. Let
ax := inf Ax and bx := supBx. Then ax < x < bx and
ax, bx 6∈ O.

Set Ix := (ax, bx) and note that x ∈ Ix. We claim that
Ix ⊂ O. Indeed, let u ∈ Ix; then ax < u < bx. Thus, we can
choose y ∈ Ax and z ∈ Bx such that y < u < z. If u ≤ x,
then u ∈ (y, x] ⊂ O and, if u > x, then u ∈ (x, z) ⊂ O.
Hence, Ix ⊂ O, so that

⋃
x∈O Ix ⊂ O. On the other hand,

as x ∈ Ix,
⋃

x∈O Ix ⊃ O. Thus, by write C := {Ix : x ∈ O},
we have O =

⋃
A∈C A.
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Next we prove that C is countable. Indeed, it is easy to
show that either Ix∩Iy = ∅ or Ix = Iy. Let A ∈ C. Because
A is an open interval, we can, by the density of the rational
numbers, select a rational number rA ∈ A. Then define
ϕ : C → Q by ϕ(A) = rA. Note that ϕ is one-to-one
because C is pairwise disjoint. Thus, C is equivalent to a
subset of Q and, consequently, is countable.

Finally, we prove the uniqueness of the representation.
Let D be a pairwise disjoint collection of open intervals
whose union is O. For each interval (a, b) ∈ D, we claim
that a, b 6∈ O. Indeed, suppose to the contrary that a ∈ O.
Then there is another open interval (c, d) ∈ D such that
a ∈ (c, d), so that (a, b) ∩ (c, d) 6= ∅. But this is impossible
because D is a pairwise disjoint collection of open intervals.
Thus, a 6∈ O and, similarly, b 6∈ O. Therefore, for each
x ∈ O, there is a unique open interval I ′x ∈ D such that
x ∈ I ′x. Further on, we can show that I ′x = Ix. This proves
that C = D. �

Limit points.

Definition. Let A ⊂ R. A real number x0 is called a
limit point of A if

(N(x0, ε) \ {x0}) ∩ A 6= ∅
for each ε > 0. The set of all limit points of A is denoted
by A′.

Proposition. Let A ⊂ R and x0 ∈ R. The following
statements are equivalent.

(1) x0 is a limit point of A.

(2) There exists a sequence {xn} ⊂ A, with xn 6= x0 for
n = 1, 2, · · · , such that xn → x0 as n→∞.

(3) For each ε > 0, the set A ∩N(x0, ε) is infinite set.
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Isolated points.

Definition. Let A ⊂ R. A point x0 ∈ A is called an
isolated point if there is an r-neighborhood N(x0, r) such
that

(N(x0, r) \ {x0}) ∩ A = ∅.
In addition, a set A ⊂ R is called an isolated set if each
point of A is isolated.

Proposition. (i) A set A is isolated set if and only if
A ∩ A′ = ∅.

(ii) A point x is not isolated if and only if x is a limit
point.

Examples. (1) A set with no limit point: {1, 2, 3, · · · , n}.
(2) A set not containing its limit points:

E =

{
1,

1

2
,
1

3
, · · · , 1

n
, · · ·

}
.

Clearly, E ′ = {0}.
(3) A set containing some of its limit points:

E = Q ∩ [0, 1].

Clearly, E ′ = [0, 1].

(4) A set containing all its limit points: E = [0, 1] = E ′.

Closed sets.

Definition. A subset F ⊂ R is said to be a closed set
if F ′ ⊂ F , that is, if F contains all its limit points.

Proposition. Let F ⊂ R. The following statements are
equivalent.

(1) F is closed.

(2) F c = R \ F is open.
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(3) For each sequence {xn} ⊂ F with limn→∞ xn = x ∈ R,
then x ∈ F .

Properties.

• ∅ and R are closed sets.
• If A and B are closed sets, then so is A∪B. (closed
for finite union)
• If {Fα}α∈Λ is a collection of closed sets, then

⋂
α∈Λ Fα

is closed. (closed for arbitrary intersection)

Remark. If a subset of R is both open and closed, then
it is either ∅ or R.

Closures of sets.

Definition. The closure of a subset F ⊂ R, denoted
by F , is defined by F := F ∪ F ′.

Properties.

• The closure of a set A ⊂ R is closed.
• Let A ⊂ R. A point x ∈ A if and only if A ∩
N(x, ε) 6= ∅ for each ε > 0.
• A subset A ⊂ R is closed if and only if A = A.

Dense sets.

Definition. Let X ⊂ R. A subset A ⊂ X is said to be
dense in X if A = X.

Proposition. Let A ⊂ X. The following statements are
equivalent.

(i) A is dense in X.

(ii) Every point of X is a limit point of A.

(iii) N(x, r) ∩ A 6= ∅ for all x ∈ X and r > 0.

Perfect sets.
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Definition. A subset A ⊂ R is said to be perfect set if
A = A′, that is, each point of A is the limit point.

Remark. Clearly, a subset A ⊂ R is a perfect set if and
only if it is a closed set with no isolated point.

Examples. ∅,R, [a, b](a < b).

Nowhere dense sets.

Definition. A subset A ⊂ R is called nowhere dense
if A does not contain any open interval.

The Cantor set.

Base-p expansions. Let p be an integer greater than 1.
Then for each x ∈ [0, 1], there is a sequence {an} of integers
such that 0 ≤ an ≤ p− 1 for all n and

x =
∞∑

n=1

an

pn
=
a1

p
+
a2

p2 +
a3

p3 + · · · .(0.2)

The sequence {an} is unique unless x 6= 1 and is of the
form q

pm for some q,m ∈ N, in which case there are exactly
two such sequences, one having only finitely many nonzero
terms and the other having only finitely many terms differ-
ent from p− 1.

Also, we use the notation

x = 0.a1a2a3 · · · (p)

as a shorthand for the expansion (0.2).

Examples.

• For each integer p ≥ 2, we have

0 = 0.000 · · · (p)

and
1 = 0.(p− 1)(p− 1)(p− 1) · · · (p)
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• The number 1/2 has, respectively, the binary (p=2),
ternary (p=3) and decimal (p=10) expansions given by

1/2 =0.1000 · · · (2)

=0.1111 · · · (3)

=0.5000 · · · (10).

Notice that 1/2 = 1
21 with m = 1 and q = 1, and 1/2 = 5

101

with m = 1 and q = 5. 1/2 also has a second binary
expansion and decimal expansion:

1/2 =0.0111 · · · (2)

=0.4999 · · · (10).

However, the ternary expansion of 1/2 is unique.

The Cantor set.

In mathematics, the Cantor set, introduced by German
mathematician Georg Cantor in 1883 (but discovered in
1875 by Henry John Stephen Smith), is a set of points
lying on a single line segment that has a number of re-
markable and deep properties. Through consideration of
it, Cantor and others helped lay the foundations of modern
general topology. Although Cantor himself defined the set
in a general, abstract way, the most common modern con-
struction is the Cantor ternary set, built by removing the
middle thirds of a line segment. Cantor himself only men-
tioned the ternary construction in passing, as an example
of a more general idea, that of a perfect set that is nowhere
dense.

==Construction of the ternary set==

The Cantor ternary set is created by repeatedly deleting
the open middle thirds of a set of line segments. One starts
by deleting the open middle third (1

3 ,
2
3) from the interval

[0, 1], leaving two line segments: [0, 1
3 ] ∪ [23 , 1]. Next, the
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open middle third of each of these remaining segments is
deleted, leaving four line segments: [0, 1

9 ] ∪ [29 ,
1
3 ] ∪ [23 ,

7
9 ] ∪

[79 , 1]. This process is continued ad infinitum, where the
”n”th set is

Cn−1

3
∪

(
2

3
+
Cn−1

3

)
.

The Cantor ternary set contains all points in the interval
[0, 1] that are not deleted at any step in this infinite process.

The first three steps of this process are illustrated below.

== Composition ==

Since the Cantor set is defined as the set of points not ex-
cluded, the proportion (i.e., Lebesgue measure) of the unit
interval remaining can be found by total length removed.
This total is the geometric progression

∞∑
n=0

2n

3n+1 =
1

3
+

2

9
+

4

27
+

8

81
+ · · · = 1

3

(
1

1− 2
3

)
= 1.

So that the proportion left is 1− 1 = 0.

This calculation shows that the Cantor set cannot con-
tain any interval of non-zero length. In fact, it may seem
surprising that there should be anything left – after all, the
sum of the lengths of the removed intervals is equal to the
length of the original interval. However, a closer look at the
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process reveals that there must be something left, since re-
moving the “middle third” of each interval involved remov-
ing open sets (sets that do not include their endpoints). So
removing the line segment (1

3 ,
2
3) from the original interval

[0, 1] leaves behind the points 1
3 and 2

3 . Subsequent steps do
not remove these (or other) endpoints, since the intervals
removed are always internal to the intervals remaining. So
the Cantor set is not empty, and in fact contains an infinite
number of points.

It may appear that “only” the endpoints are left, but that
is not the case either. The number 1/4, for example is in
the bottom third, so it is not removed at the first step, and
is in the top third of the bottom third, and is in the bottom
third of “that”, and in the “top” third of “that”, and so on
ad infinitum; alternating between top and bottom thirds.
Since it is never in one of the middle thirds, it is never
removed, and yet it is also not one of the endpoints of any
middle third. The number 3/10 is also in the Cantor set
and is not an endpoint.

In the sense of cardinality, “most” members of the Cantor
set are not endpoints of deleted intervals.

=== Cardinality ===

It can be shown that there are as many points left behind
in this process as there were that were removed, and that
therefore, the Cantor set is uncountable. To see this, we
show that there is a function f from the Cantor set G to
the closed interval [0, 1] that is surjective (i.e. f maps from
G onto [0, 1]) so that the cardinality of G is no less than
that of [0, 1]. Since G is a subset of [0, 1], its cardinality
is also no greater, so the two cardinalities must in fact be
equal.
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To construct this function, consider the points in the [0, 1]
interval in terms of base 3 (or ternary numeral system)
notation. As showed above,

1/3 =0.1000 · · · (3),

2/3 =0.2000 · · · (3)

=0.1222 · · · (3).

Thus, the middle third (to be removed) contains the num-
bers with ternary numerals of the form

0.1a2a3a4 · · · (3),

where ak ∈ {0, 1, 2} and not all the aks are 0 and not all are
2. So the numbers remaining after the first step consists of

• Numbers of the form 0.0a2a3a4 · · · (3), (points in
the interval [0, 1/3))

• 1/3 = 0.1000 · · · (3) = 0.0222 · · · (3),

• 2/3 = 0.1222 · · · (3) = 0.2000 · · · (3),

• Numbers of the form 0.2a2a3a4 · · · (3), (points in
the interval (2/3, 1])
where ak ∈ {0, 1, 2} for k = 2, 3, · · · . All the points re-
mained can be restated as those numbers with a ternary
numeral

0.0a2a3a4 · · · (3)

or
0.2a2a3a4 · · · (3)

with ak ∈ {0, 1, 2} for k = 2, 3, · · · .
The second step removes numbers of the form

0.01a3a4 · · · (3)

and
0.21a3a4 · · · (3),

and (with appropriate care for the endpoints) it can be
concluded that the remaining numbers are those with a



CHEN CHUANG: LECTURES ON REAL ANALYSIS 90

ternary numeral whose first ”two” digits are not 1, that is,
the numbers of the forms

0.00a3a4a5 · · · (3), 0.02a3a4a5 · · · (3)

or

0.20a3a4a5 · · · (3), 0.22a3a4a5 · · · (3),

where ak ∈ {0, 1, 2} for k = 3, 4, · · · .
Continuing in this way, for a number not to be excluded

at step “n”, it must have a ternary representation whose
“n”th digit is not 1. For a number to be in the Cantor set,
it must not be excluded at any step, it must have a numeral
consisting entirely of 0s and 2s. Thus, we obtain

Property. The Cantor set G consists of all numbers in
[0, 1] that have a ternary expansion without the digit 1.

The Cantor function Let x ∈ G. By the property
above, x has a (unique) ternary expansion without the digit
1, say,

x = 0.(2c1)(2c2)(2c3) · · · (3),

where ck ∈ {0, 1} for each k ∈ N. We define the Cantor
function f : G→ [0, 1] by

f(x) := 0.c1c2c3 · · · (3).

Property. The Cantor function is a surjective from G

to [0, 1], that is, the range of f is [0, 1]. Hence, G = ℵ.

Proof. Let y ∈ [0, 1]. Rewrite it by the binary notation

y = 0.d1d2d3 · · · (2),

where dk ∈ {0, 1} for each k ∈ N. Let

x = 0.(2d1)(2d2)(2d3) · · · (3).

Then x ∈ G and f(x) = y. That is, each point in [0, 1]
has an inverse image under f . This proves R(f) = [0, 1].
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Thus, G ≥ [0, 1]. Clearly, G ≤ [0, 1] because G ⊂ [0, 1].

Therefore, G = [0, 1] = ℵ. �

Remark. The set of endpoints of the removed intervals
is countable, so there must be uncountably many numbers
in the Cantor set which are not interval endpoints. As
noted above, one example of such a number is 1/4, which
can be written as

0.02020202020 · · · (3)

in ternary notation.

The Cantor set contains as many points as the interval
from which it is taken, yet itself contains no interval. (Ac-
tually, the irrational numbers have the same property, but
the Cantor set has the additional property of being closed,
so it is not even dense in any interval, unlike the irrational
numbers, which are dense everywhere.)

Properties.

• G is nowhere dense.

• G is perfect.

• G = ℵ.

Remark. As we have just seen, the complement in [0, 1]
of the Cantor set, is disjoint union of open intervals, the
sum of whose lengths is 1. But the length of [0, 1] is also
1. Thus, from the point of view of length, the Cantor set
appears to be “small”. On the other hand, G is uncount-
able, so that from a cardinality point of view, the Cantor
set is “large”. These, among other properties of the Can-
tor set, make it useful for illustrating many subtle concepts
(for example, the “measure” so called).

Borel sets.
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• Gδ set: the intersection of countable open subsets of
R.

• Fσ set: the union of countable closed subsets of R.

• Borel σ-algebra on R, denoted by B(R): the σ-
algebra generated by the collection of all open sets on R.
Each element of B(R) is called a Borel set.

Finally, we point out that the complement of a Gδ set is
an Fσ set, and the complement of an Fσ set is a Gδ set. In
addition, Gδ sets and Fσ sets are necessarily Borel sets.
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Examples of continuity.

(i) A function defined on [0, 1] which is continuous nowhere:

D(x) =

{
1, x ∈ [0, 1] ∩Q;

0, x ∈ [0, 1] \Q.

(ii) A function defined on [0, 1] which is continuous only
on one point:

f(x) =

{
x, x ∈ [0, 1] ∩Q;

−x, x ∈ [0, 1] \Q.

(iii) A function defined on R which is continuous only on
finite points x1, x2, · · · , xn ∈ R:

f(x) =

{
(x− x1)(x− x2) · · · (x− xn), x ∈ Q;

0, x ∈ R \Q.

(iv) A function defined on R which is continuous only on
Z (countable set):

f(x) =

{
sin πx, x ∈ Q;

0, x ∈ R \Q.

(v) A function defined on [0, 1] which is continuous only
on an uncountable set (with Lebesgue measure > 0):

R(x) =

{
1
q , x = p

q (p, q ∈ Z, (p, q) = 1);

0, x ∈ {0, 1} ∪ ([0, 1] \Q).

(vi) A function defined on [0, 1] which is continuous only
on [0, 1] \G:

f(x) =

{
1, x ∈ G;

0, x ∈ [0, 1] \G.
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End of Chapter I

• Could you give two concrete sequences of sets which
are not convergent?

• Could you give at least three distinct proofs for the
statement

ℵ0 < ℵ?

• Let a ∈ R and let A := {A ⊂ R : a ∈ A}. A =?

• Let An := A × A × · · · × A and A∞ := A × A × · · · .
Recall that

A = An = A∞

whenever A = ℵ. What about the conclusion if A = ℵ0?

• In the classical formula

lim
n→∞

2n = ∞,

it is clear that the first infinity is exactly ℵ0. What about
the last infinity?

• Could you give two concrete relations in mathematics
which do not satisfy the transitivity?

• Recall that there is a function f ∈ R[0, 1] such that f
is continuous on [0, 1] \Q while discontinuous on [0, 1]∩Q,
for example, the Riemann function. Could you construct
another concrete function sharing this interesting property.

• Could you construct two concrete functions f, g ∈ R[0, 1]
such that the discontinuities of f are just the continuities
of g?

• Could you construct two discontinuous functions f, g ∈
R[0, 1] such that the discontinuities of f are just the conti-
nuities of g?

• Could you construct a concrete function g ∈ R[0, 1]
such that g is discontinuous on [0, 1] \ Q while continuous
on [0, 1] ∩Q?
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Chapter 2: Theory of measures

§1. Lebesgue measure

Lengths of intervals: l(I)

Definition. (Lengths of bounded intervals) Let a, b ∈
R with a < b, and let I be a bounded interval, i.e., I =
(a, b), or [a, b), or (a, b], or [a, b]. The length l(I) of I is
defined by

l(I) := b− a.

In particular, we define l({a}) := 0 as well as l(∅) := 0.

Definition. (Lengths of unbounded intervals) Let
a, b ∈ R, and let I be an unbounded interval, i.e., I =
(a,+∞), or [a,+∞), or (−∞, b], or (−∞, b), or (−∞,+∞).
The length l(I) of I is defined by

l(I) := +∞.

Definition. (Lengths of finitely many unions of in-
tervals) Let I1, I2, · · · , In be disjoint intervals. The length
of I =

⋃n
k=1 Ik is defined by

l(I) :=
n∑

k=1

l(Ik).

Properties of lengths.

(i) (Nonnegativity) l(I) ≥ 0 for each interval I.

(ii) (Monotonicity) l(I1) ≤ l(I2) for intervals I1 ⊂ I2.

(iii) (Translation invariance) l(I) = l(x+ I) for every
real number x and interval I, where x+I := {x+y : y ∈ I}.
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(iv) (Finite subadditivity) Let I1, I2, · · · , In be inter-
vals. Then

l

( n⋃
k=1

Ik

)
≤

n∑
k=1

l(Ik).

(v) (Continuity) Let {In} be a sequence of intervals.

(a) If I1 ⊂ I2 ⊂ · · · , then

l
(

lim
n→∞

In
)

= lim
n→∞

l(In).

(b) If I1 ⊃ I2 ⊃ · · · and l(I1) < +∞, then

l
(

lim
n→∞

In
)

= lim
n→∞

l(In).

Proof. The statements (i), (ii) and (iii) are direct conse-
quences of the definition of length.

(iv) It suffices to prove the conclusion for that I1, · · · , In
are all bounded open intervals. Clearly, the case n = 1 is
trivial. Suppose inductively that the conclusion holds for
n = k. Then, for n = k + 1,

(a) if I1, · · · , Ik, Ik+1 are pairwise disjoint, then

l

( k+1⋃
i=1

Ii

)
=

k+1∑
i=1

l(Ii)

by the definition of length of finitely many unions of inter-
vals;

(b) otherwise, there are two intervals, In1
and In2

such
that In1

∩In2
6= ∅. By writing I as the construction interval

of In1
∪ In2

, we have l(I) ≤ l(In1
) + l(In2

), so that

l

( k+1⋃
i=1

Ii

)
=I ∪

( ⋃
i6=n1,n2

Ii

)

≤l(I) +
∑

i6=n1,n2

l(Ii) ≤
k+1∑
i=1

l(Ii).
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Thus, we obtain the desired conclusion by the principle of
induction.

(v) It sufficient to prove the conclusion for closed inter-
vals. Let In = [an, bn] for n ∈ N.

(a) Suppose that

· · · ≤ a2 ≤ a1 < b1 ≤ b2 ≤ · · · .

Clearly, limn→∞ In = (a, b) with

−∞ ≤ a := lim
n→∞

an, b := lim
n→∞

bn ≤ +∞,

and

lim
n→∞

l(In) = lim
n→∞

bn − lim
n→∞

an = l
(

lim
n→∞

In
)
.

(b) Suppose that

a1 ≤ · · · ≤ an ≤ an+1 ≤ · · · ≤ bn+1 ≤ bn ≤ · · · ≤ b1.

Notice that I1 is bounded, so that {an} and {bn} are con-
vergent by the monotone convergence criteria. Denote a :=
limn→∞ an and b := limn→∞ bn. Then

lim
n→∞

l(In) = lim
n→∞

bn − lim
n→∞

an = l
(

lim
n→∞

In
)
.

�

Finally, we give a general monotonicity of the length of
intervals.

Theorem. (General monotonicity) Let I1, · · · , In be
pairwise disjoint intervals, and also, let J1, · · · , Jm be pair-
wise disjoint intervals. Then( n⋃

k=1

Ik

)
⊂

m⋃
k=1

Jk ⇒ l

( n⋃
k=1

Ik

)
≤ l

( m⋃
k=1

Jk

)
.
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Proof. It suffices to consider that all intervals above are
open intervals. Further on, suppose that

( ⋃n
k=1 Ik

)
⊂

⋃m
k=1 Jk.

Clearly, for each Is ∈ {I1, · · · , In}, there is a Jk ∈ {J1, · · · , Jm}
such that Is ⊂ Jk. Fix k ∈ {1, · · ·m} and write

Ek := {I ∈ {I1, · · · , In} : I ⊂ Jk}.

Then l(∪I∈Ek
I) ≤ l(Jk) (WHY) and

n⋃
k=1

Ik =
m⋃

k=1

( ⋃
I∈Ek

I

)
.

Therefore, from the finite additivity it follows that

l

( n⋃
k=1

Ik

)
=

n∑
k=1

l(Ik) =
m∑

k=1

( ∑
I∈Ek

l(I)

)

=
m∑

k=1

l

( ⋃
I∈Ek

I

)
≤

m∑
k=1

l(Jk) = l

( m⋃
k=1

Jk

)
.

�

By the decomposition of open sets, we have the following

Corollary. Let I1, · · · , In and J1, · · · , Jm be general in-
tervals (not necessary to be pairwise disjoint). Then( n⋃

k=1

Ik

)
⊂

m⋃
k=1

Jk ⇒ l

( n⋃
k=1

Ik

)
≤ l

( m⋃
k=1

Jk

)
.

Problem. Under the same condition of above corollary,
can we have the inequality

∑n
k=1 l(Ik) ≤

∑m
k=1 l(Jk)?

Corollary. Let I1, · · · , In be pairwise disjoint intervals,
and let J1, · · · , Jm be general intervals (not necessary to be
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pairwise disjoint). Then( n⋃
k=1

Ik

)
⊂

m⋃
k=1

Jk ⇒
n∑

k=1

l(Ik) ≤
m∑

k=1

l(Jk).
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Measures of open sets: m(O)

By the decomposition of open subsets of R, an open sub-
set O ⊂ R is the countable union of pairwise disjoint open
intervals Ii = (ai, bi) (construction intervals so called),
i.e., O =

⋃∞
i=1(ai, bi), so we can define a “length” of O via

the length of open interval.

Definition. Let O ⊂ R be open. We define its measure
m(O) by

m(O) :=
∞∑
i=1

l(Ii) =
∞∑
i=1

(bi − ai),

with (ai, bi), i = 1, 2, · · · , the construction intervals of O.

Remark. Since every open interval I is an open set, by
the definition of measure of open sets, we have

m(I) =m(I ∪ ∅ ∪ ∅ ∪ · · · )
=l(I) + 0 + 0 + · · · = l(I).

Thus, m (as a function with domain {O ⊂ R : O is open})
is an extension of the length function l (with domain {I ⊂
R : I is open interval}).

Properties.

(i) (Nonnegativity) m(O) ≥ 0 for each open set O ⊂ R.

(ii) (Monotonicity) Let O1 and O2 be two open subsets
of R. If O1 ⊂ O2, then m(O1) ≤ m(O2).

(iii) (Translation invariance) m(O) = m(x + O) for
every real number x and open set O ⊂ R, where x + O :=
{x+ y : y ∈ O}.
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(iv) (Countable additivity) Let {On} be a sequence of
pairwise disjoint open subsets of R. Then

m

( ∞⋃
n=1

On

)
=

∞∑
n=1

m(On).

(v) (Countable subadditivity for open intervals)
For a sequence {In} of open intervals,

m

( ∞⋃
n=1

In

)
≤

∞∑
n=1

l(In).

(vi) (Countable subadditivity for open subsets) Let
{On} be a sequence of open subsets of R. Then

m

( ∞⋃
n=1

On

)
≤

∞∑
n=1

m(On).

In particular, we have the following finite subadditivity
for open subsets:

m

( n⋃
k=1

On

)
≤

n∑
k=1

m(On).

Proof. The statements (i) and (iii) are direct consequences
of the definition of measure of open sets.

(ii) Suppose that O1 ⊂ O2. Let I1, I2, · · · and J1, J2, · · ·
be the construction intervals of O1 and O2, respectively.
Note that, for each In, there is a Jk such that In ⊂ Jk.
If there is a Jn with l(Jn) = +∞, then the conclusion is
trivial. So we suppose further that all the construction
intervals of O2 are bounded.

Let m ∈ N+ and ε > 0. Write Iε
n := [an + ε

2m , bn−
ε

2m ] for
In := (an, bn). Since

⋃m
k=1 I

ε
k is a closed set, by Heine-Borel
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theorem there are Jn1
, Jn2

, · · · , Jnp
such that

m⋃
k=1

Iε
k ⊂

p⋃
k=1

Jnk
.

Thus, from the general monotonicity of the length of inter-
vals it follows that

−ε+
m∑

k=1

l(Ik) =
n∑

k=1

l(Iε
k) = l

( m⋃
k=1

Iε
k

)

≤l
( p⋃

k=1

Jnk

)
=

p∑
k=1

l(Jnk
) ≤ m(O2).

By letting ε → 0 in both end sides of above formula, we
obtain

m∑
k=1

l(Ik) ≤ m(O2), m = 1, 2, · · · .

Again, by letting m→∞ in both sides, we have

m(O1) =
∞∑

k=1

l(Ik) ≤ m(O2).

(iv) By the decomposition of the open subset of R, each
On is the countable union of pairwise disjoint open intervals
of R. Suppose that

On =
∞⋃

m=1

Inm, n = 1, 2, · · · .

Since the union of countable many sets is also countable,
we can rewrite

∞⋃
n=1

On =
∞⋃

k=1

Ik,
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where Ik ∈ {Inm : n,m = 1, 2, · · · }. Clearly, Ii ∩ Ij = ∅ for
i 6= j. Thus, by the definition of measure of open set, we
have

m

( ∞⋃
n=1

On

)
= m

( ∞⋃
k=1

Ik

)

=
∞∑

n=1

∞∑
m=1

l(Inm) =
∞∑

n=1

m(On)

The statement (v) can be proved by analogous argument
given in the proof of (ii). Indeed, the case

∑∞
k=1 l(Ik) = +∞

is trivial. Let
∑∞

k=1 l(Ik) < +∞ and let {Jj} be a sequence
of construction intervals of the open set

⋃∞
k=1 Ik. For each

n ∈ N , noticing
⋃n

j=1 Jj ⊂
⋃∞

k=1 Ik, we have

n∑
j=1

l(Jj) ≤
∞∑

k=1

l(Ik).

(Indeed, write J ε
j = [aj + ε

2n , bj −
ε

2n ] for Jj = (aj, bj) (j =
1, 2, · · · , n). Then

⋃n
k=1 J

ε
k is a closed set, so that by Heine-

Borel theorem there are Ik1
, Ik2

, · · · , Ikm
such that

n⋃
k=1

J ε
k ⊂

m⋃
i=1

Iki

Thus,

−ε+
n∑

k=1

(bk − ak) =
n∑

k=1

l(J ε
k) ≤

m∑
i=1

l(Iki
) ≤

∞∑
k=1

l(Ik),

and by letting ε → 0 we obtain the inequality desired).
Therefore, by letting n→∞ in both sides we obtain

m

( ∞⋃
n=1

In

)
= m

( ∞⋃
k=1

Jk

)
=

∞∑
j=1

l(Jj) ≤
∞∑

k=1

l(Ik).
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(vi) is a direct consequence of (v). Indeed, let In1, In2, · · ·
be the construction intervals for each n ∈ N. Notice that
the countable union of countable sets is also countable. It
follows from (v) that

m

( ∞⋃
n=1

On

)
=m

( ∞⋃
n,k=1

Ink

)
≤

∞∑
n,k=1

l(Ink)

=
∞∑

n=1

∞∑
k=1

l(Ink) =
∞∑

n=1

m(On).

�

Remark. Countable additivity (associated with the
limit operation) is essential to the construction of measures.
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Lebesgue outer measures: m∗(A)

Definition. Let A ⊂ R. The Lebesgue outer mea-
sure, m∗(A), of A is defined by

m∗(A) := inf

{ ∑
n

l(In) : In open intervals,
⋃
n

In ⊃ A

}
,

where {In} is either a finite or an infinite sequence.

Remark. For convenience, we call
⋃

n In an L-cover of A
if A ⊂

⋃
n In with In, open intervals. The set of all L-covers

of A is denoted by LA. Thus,

m∗(A) = inf

{ ∑
n

l(In) :
⋃
n

In ∈ LA

}
.

Remark. The outer measure m∗ is an extended real-
valued function with domain P(R), i.e.,

m∗ : P(R) → [0,∞].

Example. m∗(∅) = m∗({x}) = 0. Indeed, for every
ε > 0, Iε := (−ε/2, ε/2) ∈ L∅. Thus,

m∗(∅) ≤ l(Iε) = ε.

Applying ε → 0 in both sides yields m∗(∅) = 0. By analo-
gous argument, we can show that

m∗({x1, x2, · · · , xn}) = 0

for arbitrary finite set {x1, x2, · · · , xn}.
Example. Let x1, x2, · · · ∈ R. Then

m∗({x1, x2, x3, · · · }) = 0.

Indeed, let ε > 0 and consider

Ln :=

(
xn −

ε

2n+1 , xn +
ε

2n+1

)
, n ∈ N+.
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Clearly, L :=
⋃

n∈N+ Ln is an L-cover of

X := {x1, x2, x3, · · · }.

Thus, by the definition of m∗, we have

m∗(X) ≤
∞∑

n=1

l(Ln) =
∞∑

n=1

ε

2n
= ε.

Finally, by letting ε→ 0 we obtain m∗(X) = 0.

Basic properties of m∗.

(i) (Nonnegativity) m∗(A) ≥ 0 for all A ⊂ R.

(ii) (Monotonicity) A ⊂ B ⇒ m∗(A) ≤ m∗(B).

(iii) (Translation invariance) m∗(x + A) = m∗(A) for
A ⊂ R and x ∈ R, where x+ A := {x+ y : y ∈ A}.

(iv) (Countable subadditivity) For a sequence {An}
of subsets of R,

m∗
( ∞⋃

n=1

An

)
≤

∞∑
n=1

m∗(An).

In particular,

m∗(A ∪B) ≤ m∗(A) +m∗(B), A,B ⊂ R.

(v) m∗(I) = m∗(I) = l(I) for every interval I.

(vi) m∗(O) = m(O) for each open subset O ⊂ R.

Remark. From (v) and (vi), we can observe that m∗ (as
a function with domain P(R)) is an extension of m (as a
function defined on O, the class of open subsets of R) as
well as l (as a function defined on I, the class of intervals
of R), that is to say,

m∗|O = m, m∗|I = l.
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Proof. (i) is trivial. In addition, since m(L) = m(x + L),
the statement (iii) is a direct consequence of the fact that
L ∈ LA if and only if x+ L ∈ Lx+A.

(ii) Let A ⊂ B. Then every L-cover of B is also an
L-cover of A. Thus, by the monotonicity of inf, we have

m∗(A) = inf
L∈LA

m(L) ≤ inf
L∈LB

m(L) = m∗(B).

(iv) Let ε > 0. By the definition of m∗ (as an infimum),
for each An there is an L-cover

⋃∞
k=1 Ink of An such that

m∗(An) ≤
∞∑

k=1

l(Ink) ≤ m∗(An) +
ε

2n
.

Notice that
⋃∞

n=1

( ⋃∞
k=1 Ink

)
is also an L-cover of

⋃∞
n=1An.

Then the definition of m∗ implies that

m∗
( ∞⋃

n=1

An

)
≤

∞∑
n=1

∞∑
k=1

l(Ink)

≤
∞∑

n=1

(
m∗(An) +

ε

2n

)
=

∞∑
n=1

m∗(An) + ε.

By letting ε→ 0 we obtain the result desired, immediately.

(v) It sufficient to prove

l(I) ≥ m∗(I) ≥ m∗(I) ≥ l(I)

for bounded open interval I = (a, b). First, for ε > 0 small
enough, we have [a, b] ⊂ (a−ε, b+ε). Then by the definition
of m∗, we have

m∗([a, b]) ≤ l([a− ε, b+ ε]) = b− a+ 2ε.

By letting ε→ 0 we obtain

m∗([a, b]) ≤ b− a = l(a, b).
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The second inequality desired is a direct consequence of
the monotonicity of m∗.

Finally, let {In} be a sequence of open intervals and⋃∞
n=1 In ⊃ I. By the monotonicity and countable subaddi-

tivity of the length of interval, we have

l(I) ≤ l

( ∞⋃
n=1

In

)
≤

∞∑
n=1

l(In).

Taking the infimum with respect to such sequences {In}
yields

l(I) ≤ inf

{ ∞∑
n=1

l(In) : In open intervals , I ⊂
∞⋃

n=1

In

}
= m∗(l).

This completes the proof of (v).

(vi) Let {In} be the construction intervals of O. Clearly,⋃
n In is an L-cover of O. Notice that {In} is pairwise dis-

joint, we then have

m(O) =
∞∑

n=1

l(In) ≥ m∗(O).

Conversely, let
⋃∞

k=1 Jk be an L-cover of O. From the
monotonicity and countable additivity of m (for open sets),
it follows that

m(O) ≤ m

( ∞⋃
k=1

Jk

)
≤

∞∑
k=1

m(Jk) =
∞∑

k=1

l(Jk).

By taking the infimum with respect to such L-covers of O
we obtain

m(O) ≤ m∗(O).

�
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Remark. It is necessary to point out that m∗|O, i.e,
m, has the countable additivity, while m∗ itself (defined
on P(R)) does not satisfy the countable additivity, even if
the finite additivity, see Theorem 3.10 given in “A Course
of Real Analysis”, J. N. McDonald and N. A. Weiss, Page
117.

Theorem. Let A ⊂ R. Then

m∗(A) = inf{m(O) : O is open and O ⊃ A}.

Proof. Write

a := inf{m(O) : O is open and O ⊃ A}.
Notice that m∗(O) = m(O) for each open set O, and hence,
by the monotonicity of m∗ we have m∗(A) ≤ m(O) for
A ⊂ O. By taking infimum over such open sets O we
obtain

m∗(A) ≤ a.

Conversely, let
⋃

n Jn be an L-cover of A. It is clear that⋃
n Jn is an open set containing A, so that∑

n

l(Jn) =
∑

n

m(Jn) ≥ m

( ⋃
n

Jn

)
≥ a.

By taking infimum over all L-covers of A, we obtain

m∗(A) ≥ a.

�
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Lebesgue measure: m(E)

Example. Let I be an interval. Then

m∗(F ) = m∗(F ∩ I) +m∗(F ∩ Ic)

for every subset F ⊂ R.

Proof. Let F ⊂ R. It suffices to show

m∗(F ) ≥ m∗(F ∩ I) +m∗(F ∩ Ic). (WHY)

To this end, we take an L-cover
⋃∞

n=1 In of F . Then In∩I
and In∩Ic are intervals or union of intervals (not necessarily
to be open) and In = (In∩ I)∪ (In∩ Ic) for all n ∈ N+. By
the finite additivity of the length of interval, we have

l(In) = l(In ∩ I) + l(In ∩ Ic), n ∈ N+.

Notice that

F ∩ I ⊂
∞⋃

n=1

(In ∩ I), F ∩ Ic ⊂
∞⋃

n=1

(In ∩ Ic).

By the monotonicity and countable subadditivity of outer
measures, we have

m∗(F ∩ I) +m∗(F ∩ Ic)

≤m∗
( ∞⋃

n=1

(In ∩ I)
)

+m∗
( ∞⋃

n=1

(In ∩ Ic)

)

≤
∞∑

n=1

m∗(In ∩ I) +
∞∑

n=1

m∗(In ∩ Ic)

=
∞∑

n=1

l(In ∩ I) +
∞∑

n=1

l(In ∩ Ic) =
∞∑

n=1

l(In).

By taking infimum over all L-covers of F , we obtain the
desired inequality, immediately. �
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This example motivates us to define the Lebesgue mea-
surable sets as follows.

Definition. (Lebesgue measures) A subset E ⊂ R is
said to be a Lebesgue measurable set if, for each subset
F ⊂ R,

m∗(E ∩ F ) +m∗(Ec ∩ F ) = m∗(F ).(0.3)

The outer measure of a Lebesgue measurable set E is called
the Lebesgue measure of E, and we write it by m(E).

Remark. The equality (0.3) is called the Carathéodory
criterion. Thus, a Lebesgue measurable set is such a set
that the Carathéodory criterion is satisfied.

Remark. Let M be the class of all Lebesgue measurable
sets. It is clear that m is an extended real-valued function
from M to [0,+∞], i.e.,

m : M→ [0,+∞].

In addition, m = m∗|M.

Proposition.Let E ⊂ R. The following statements are
equivalent.

(i) E is Lebesgue measurable.

(ii) For every subsets F ⊂ R with m∗(F ) < +∞, there
holds

m∗(E ∩ F ) +m∗(Ec ∩ F ) ≤ m∗(F ).

Examples. (i) ∅,R ∈M.

(ii) If E ∈M then Ec ∈M.

(iii) I ∈M for every interval I.

Problem. Whether O ∈ M for general open subset
O ⊂ R?
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Proposition. (Properties of Lebesgue measurable sets)

(i) M is closed under the operations of union and inter-
section.

(i’) M is closed under the operations of finitely many
unions and intersections.

(ii) M is closed under the operations of countably many
unions and intersections.

(iii) M is closed under the operation of limit.

Remark. The statement (i) implies thatM is an algebra
over R. Further on, the statement (ii) implies that M is
indeed a so called “σ-algebra” over R.

Proof. (i) Since A1 ∩ A2 = (Ac
1 ∪ Ac

2)
c, it suffices to show

thatM is closed under the operation of union. To this end,
let A1, A2 ∈M. Then for each F ⊂ R, we have

m∗(F ∩ (A1 ∪ A2)) +m∗(F ∩ (A1 ∪ A2)
c)

=m∗
(

(F ∩ A1) ∪ (F ∩ A2)

)
+m∗(F ∩ Ac

1 ∩ Ac
2)

=m∗
(

(F ∩ A1) ∪ ((F ∩ A2) ∩ A1) ∪ ((F ∩ A2) ∩ Ac
1)

)
+m∗(F ∩ Ac

1 ∩ Ac
2)

=m∗
(

(F ∩ A1) ∪ ((F ∩ A2) ∩ Ac
1)

)
+m∗(F ∩ Ac

1 ∩ Ac
2)

≤m∗(F ∩ A1) +m∗((F ∩ Ac
1) ∩ A2) +m∗((F ∩ Ac

1) ∩ Ac
2)

=m∗(F ∩ A1) +m∗(F ∩ Ac
1) = m∗(F ).

This implies that A1 ∪ A2 ∈M.

(ii) It suffices to show that M is closed under the oper-
ation of countably many unions. Let {An}∞n=1 ⊂ M and
write A :=

⋃∞
n=1An. In order to show A ∈M, we consider
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a disjoint decomposition

A =
∞⋃

n=1

Bn

with B1 := A1, B2 := A2 \ A1, B3 := A3 \ (A1 ∪ A2), · · · .
Let F ⊂ R. For every m ∈ N+, it follows from (i’) that⋃m
n=1Bn ∈M, and hence,

m∗(F ) ≥m∗
(( m⋃

n=1

Bn

)
∩ F

)
+m∗(Ac ∩ F )

=m∗
( m⋃

n=1

(Bn ∩ F )

)
+m∗(Ac ∩ F )

=
m∑

n=1

m∗(Bn ∩ F ) +m∗(Ac ∩ F ).

Applying m→∞ yields

m∗(F ) ≥
∞∑

n=1

m∗(Bn ∩ F ) +m∗(Ac ∩ F )

≥m∗
( ∞⋃

n=1

(Bn ∩ F )

)
+m∗(Ac ∩ F )

=m∗(A ∩ F ) +m∗(Ac ∩ F ).

This implies that A ∈M.

The statement (iii) is a direct consequence of (ii). Indeed,
let {An} ⊂ M and limn→∞An = A. From (ii) it follows
that

⋃
n≥k An := Bk ∈ M for every k ∈ N+. Thus, by (ii)

again, we have

A = lim
n→∞

An =
⋂
k≥1

Bk ∈M.

�
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Problem. What about the Lebesgue measurability of
the union A ∪B for A,B 6∈ M?

Proposition. (Properties of Lebesgue measure)

All the properties of Lebesgue outer measure hold for
Lebesgue measure. Furthermore, the following statements
hold.

(i) (Subtractivity) Let A1, A2 ∈ M and A1 ⊃ A2 with
m(A2) <∞. Then

m(A1 \ A2) = m(A1)−m(A2).

(ii) (Finite additivity) Let A1, · · · , An ∈M be pairwise
disjoint. Then

m

( n⋃
k=1

Ak

)
=

n∑
k=1

m(Ak).

(iii) (Countable additivity) Let A1, A2, · · · ∈ M be
pairwise disjoint, then

m

( ∞⋃
n=1

An

)
=

∞∑
n=1

m(An).

(iv) (Continuity) Let {An} ⊂ M. Then

m( lim
n→∞

An) = lim
n→∞

m(An)

whenever

(a) A1 ⊂ A2 ⊂ · · · , or

(b) A1 ⊃ A2 ⊃ · · · and m(A1) <∞.

Proof. (i) It suffices to show that

m(A ∪B) = m(A) +m(B)(0.4)
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for disjoint A,B ∈ M (WHY). Indeed, let A,B ∈ M be
disjoint. Since A ∈M and Ac ∩B = B, we have

m(A ∪B) =m(A ∩ (A ∪B)) +m(Ac ∩ (A ∪B))

=m(A) +m(Ac ∩B) = m(A) +m(B).

The statement (ii) is also a direct consequence of (0.4)
(WHY).

(iii) It suffices to show that

m

( ∞⋃
n=1

An

)
≥

∞∑
n=1

m(An). (WHY)

Clearly, from the finite additivity and monotonicity of m,
it follows that

n∑
k=1

m(Ak) = m

( n⋃
k=1

Ak

)
≤ m

( ∞⋃
k=1

Ak

)
, n ∈ N+.

By letting n → ∞ in both sides, we obtain the desired
inequality, immediately.

(iv) (a) The conclusion is trivial if there is an n ∈ N+

such that m(An) = ∞. Suppose that m(An) < ∞ for all
n ∈ N+. Write

B1 := A1, B2 := A2 \ A1, B3 := A3 \ A2, · · · .

Then B1, B2, · · · , are pairwise disjoint, and

lim
n→∞

An =
∞⋃

n=1

An =
∞⋃

n=1

Bn,

and hence,

m
(

lim
n→∞

An

)
=

∞∑
n=1

m(Bn) = m(B1)

+
∞∑

n=2

(
m(An)−m(An−1)

)
= lim

n→∞
m(An)
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by the definition of convergence of series.

(b) From the equality

A1 = (A1 \ A2) ∪ (A2 \ A3) ∪ · · · ∪
( ∞⋂

n=1

An

)
and the subtractivity of Lebesgue measure, it follows that

m(A1) =m(A1 \ A2) +m(A2 \ A3) + · · ·+m

( ∞⋂
n=1

An

)

=m(A1)− lim
n→∞

m(An) +m

( ∞⋂
n=1

An

)
.

Note that m(A1) <∞, so we have

lim
n→∞

m(An) = m

( ∞⋂
n=1

An

)
= m

(
lim
n→∞

An

)
.

�

Further on, we have the following general properties of
Lebesgue measure.

Proposition. Let {An} ⊂ M. The following statements
hold.

(v) m(limn→∞An) ≤ limn→∞m(An).

(vi) If
∑∞

n=1m(An) < ∞, then m
(
limn→∞An

)
= 0 and,

in particular, m
(
limn→∞An

)
= 0 whenever {An} is con-

vergent.

Proof. (v) From the monotonicity of m, it follows that

m

( ∞⋂
i=k

Ai

)
≤ m(An), n ≥ k.
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This implies that

m

( ∞⋂
i=k

Ai

)
≤ inf

n≥k
m(An).

By letting k →∞ in both sides, we obtain that

m
(

lim
n→∞

An

)
= lim

k→∞
m

( ∞⋂
i=k

Ai

)
≤ lim

k→∞
inf
n≥k

m(An) = lim
n→∞

m(An).

(vi) Let
∑∞

n=1m(An) <∞. From (iv) (b) and the count-
able subadditivity it follows that

m
(

lim
n→∞

An

)
=m

( ∞⋂
k=1

∞⋃
n=k

An

)

= lim
k→∞

m

( ∞⋃
n=k

An

)
≤ lim

k→∞

∞∑
n=k

m(An) = 0.

�

Examples. Please give two divergent sequences {An}
and {Bn} such that

m
(

lim
n→∞

An

)
= lim

n→∞
m(An)

and

m
(

lim
n→∞

Bn

)
< lim

n→∞
m(Bn),

respectively.
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(i) Consider {An}∞n=1 given by A2n :=
[
0, 1 − 1

n

]
and

A2n+1 :=
[
0, 1

n

]
. It is clear that

lim
n→∞

An = [0, 1), lim
n→∞

An = {0}.

Thus, {An} is divergent and

m
(

lim
n→∞

An

)
= 0 = lim

n→∞
m(An).

(ii) Consider {Bn}∞n=1 given by B2n :=
[
0, 1 − 1

n

]
and

B2n+1 := [−1, 0]. It is clear that

lim
n→∞

An = [−1, 1), lim
n→∞

An = {0}.

Thus, {An} is divergent and

m
(

lim
n→∞

An

)
= 0 < 1 = lim

n→∞
m(An).
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Further properties of Lebesgue measurable sets.

Theorem. Let E ⊂ R. The following statements are
equivalent.

(i) E is Lebesgue measurable.

(ii) For every ε > 0 there exists an open set O ⊃ E such
that m∗(O \ E) < ε.

(iii) For every ε > 0 there exists a closed set F ⊂ E such
that m∗(E \ F ) < ε.

(iv) For every ε > 0 there exist open set O and closed set
F with F ⊂ E ⊂ O such that m(O \ F ) < ε.

Proof. Note that (iv) is a direct consequence of the state-
ments (ii) and (iii), and the statement (iii) follows from (ii)
due to the fact that O \ Ec = E \ Oc. Thus, it suffices to
show the equivalence of (i) and (ii).

(i) ⇒ (ii) Suppose that E is Lebesgue measurable. Recall
that

m(E) = m∗(E) = inf{m(O) : O is open and O ⊃ E}.

Then by the definition of infimum, for each ε > 0, there is
an open set O ⊃ E such that

m(O \ E) +m(E) = m(O) < m(E) + ε.

This yields m(O \ E) < ε whenever m(E) < +∞.

If m(E) = +∞, then we turn to consider

En := E ∩ (−n, n), n ∈ N+.

Clearly, m(En) < +∞ for every n ∈ N+. Thus, from above
discussion there exists an open set On ⊃ En such that

m(On \ En) < ε/2n.
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Write O :=
⋃

n∈N+ On. Then O is open and O ⊃ E. In
addition,

O \ E =

( ∞⋃
n=1

On

)
\

( ∞⋃
m=1

Em

)

=
∞⋃

n=1

( ∞⋂
m=1

(On \ Em)

)
⊂

∞⋃
n=1

(On \ En).

Thus, by the subadditivity of m, we have

m∗(O \ E) = m(O \ E) ≤
∞∑

n=1

m(On \ En) ≤
∞∑

n=1

ε

2n
= ε.

This proves the statement (ii).

(ii) ⇒ (i) Suppose that E satisfies the condition (ii).
Then, for every ε = 1/n with n ∈ N+, there exists an
open set On ⊃ E such that

m∗(On \ E) < ε.

Write O :=
⋂

n∈N+ On. Then O ⊃ E and

m∗(O \ E) ≤ m∗(On \ E) < 1/n

due to the monotonicity of m∗. By letting n → ∞ we
obtain m∗(O\E) = 0, so that O\E is Lebesgue measurable
(WHY). Thus,

E = O \ (O \ E)

is Lebesgue measurable as well (WHY). �

Remark. Let E ⊂ R with m(E) < ∞. From the above
discussion, we observe that for every ε > 0, there is a finite
union F =

⋃n
k=1 Ik of closed intervals such that

m(E 4 F ) < ε.

In the informal formulation of J. E. Littlewood,“every
set is nearly a finite union of intervals”.
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Remark. The outline of Lebesgue integral:

Open (closed) sets Lebesgue measurable sets

↓ ↓
Continuous functions Lebesgue measurable functions

↓ ↓
Riemann integral Lebesgue integral
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§2. Lebesgue measurable functions

Real-valued functions

Definition. Let E ⊂ R. A function f : E → (−∞,+∞)
is called a (finite) real-valued function on E (different
from the concept of bounded function), while a function
f : E → [−∞,+∞] is called an extended real-valued
function on E.

Lebesgue measurable functions (finite real-valued)

Let f be a finite real-valued function on R. Recall that

• f is continuous ⇔ f−1(O) ∈ O for every open set O.

Proof. Necessity. Suppose that f is continuous. Let O ⊂ R
be open. Fix x ∈ f−1(O). Then f(x) ∈ O, and hence, there
exists an ε > 0 small enough such that U(f(x), ε) ⊂ O. On
the other hand, by the continuity of f , there is a δ > 0 such
that f(U(x, δ)) ⊂ U(f(x), ε). Thus,

U(x, δ) ⊂ f−1(f(U(x, δ))) ⊂ f−1(U(f(x), ε)) ⊂ f−1(O).

This implies that f−1(O) is an open set.

Sufficiency. Suppose that f−1(O) ∈ O for every open set
O. Fix x ∈ R and ε > 0. Since x ∈ f−1

(
U(f(x), ε)

)
∈ O,

there is a δ > 0 such that

U(x, δ) ⊂ f−1(U(f(x), ε)
)
,

and hence,

f(U(x, δ)) ⊂ f

(
f−1(U(f(x), ε)

))
= U(f(x), ε).

This implies that f is continuous at x. Thus, f is continu-
ous on R. �
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This motivates us to introduce the following concept of
Lebesgue measurable functions.

Definition. (Lebesgue measurable function) Let f
be a finite real-valued function on E. We call f a Lebesgue
measurable function on E if f−1(O) ∈M for every open
set O ⊂ R.

Remark. If f : E ⊂ R → R is Lebesgue measurable on
E, then E ∈M (WHY).

Remark. Let E ⊂ R. Then E ∈ M if and only if
χE is Lebesgue measurable on R. Indeed, it is a direct
consequence of the following fact:

R[χE ≥ c] =


∅, 1 < c,

E, 0 < c ≤ 1,

R, c ≤ 0.

Characteristics of Lebesgue measurable function.

Theorem. Let f : E ⊂ R → R. The following state-
ments are equivalent.

(i) f is Lebesgue measurable on E.

(ii) f−1(F ) ∈M for every closed set F ⊂ R.

Proof. Since Oc is closed for every open set O, and F c is
open for every closed set F , we obtain the conclusion by the
definition of Lebesgue measurable functions, immediately.

�

Theorem. Let f : E ⊂ R → R, and let E = E1 ∪
E2, where E1, E2 ∈ M and E1 ∩ E2 = ∅. The following
statements are equivalent.

(i) f is Lebesgue measurable on E.

(ii) f |E1
and f |E2

are Lebesgue measurable functions on
E1 and E2, respectively.
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Proof. (i) ⇒ (ii) Suppose that f is Lebesgue measurable on
E. Clearly,

Ei[f < a] = E[f < a] ∩ Ei, i = 1, 2.

This implies that Ei ∈M for i = 1, 2 due to the closedness
of M under the operation of intersection.

(ii) ⇒ (i) Suppose that fi is Lebesgue measurable on Ei

for i = 1, 2. Clearly,

E[f < a] = E1[f < a] ∪ E2[f < a].

This implies that E[f < a] ∈ M due to the closedness of
M under the operation of union. �

Theorem. Let f be a finite real-valued function on R.
The following statements are equivalent.

(i) f is Lebesgue measurable.

(ii) E[f < a] ∈M for each a ∈ R.

(iii) E[f > a] ∈M for each a ∈ R.

(iv) E[f ≤ a] ∈M for each a ∈ R.

(v) E[f ≥ a] ∈M for each a ∈ R.

(vi) E[b < f < a] ∈M for each a, b ∈ R with b < a.

(vii) E[b ≤ f < a] ∈M for each a, b ∈ R with b < a.

(viii) E[b < f ≤ a] ∈M for each a, b ∈ R with b < a.

(ix) E[b ≤ f ≤ a] ∈M for each a, b ∈ R with b < a.

Proof. (i) ⇒ (ii) Trivial.

(ii) ⇒ (i) Suppose that f satisfies the condition (ii). Let
O ∈ O. Write O :=

⋃
n In with In, construction intervals

of O. Since I1, I2, · · · are pairwise disjoint, we have

f−1(O) = f−1
( ⋃

n

In

)
=

⋃
n

f−1(In).
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For interval In = (−∞, a) with some a ∈ R, it is clear
that f−1(In) ∈M.

For interval In = (b,+∞) with some b ∈ R, since

(b,+∞) = R \ (−∞, b] = R \
( ∞⋂

n=1

(−∞, b+ 1/n)

)
,

we have

f−1(In) =f−1
(

R \
( ∞⋂

n=1

(−∞, b+ 1/n)

))

=E \ f−1
( ∞⋂

n=1

(−∞, b+ 1/n)

)

=E \
( ∞⋂

n=1

f−1((−∞, b+ 1/n))

)
∈M.

For interval In = (a, b) with some a, b ∈ R, we also have
f−1(In) ∈M due to the following decomposition

(a, b) =R \
(
(−∞, a] ∪ [b,+∞)

)
=R \

(( ∞⋂
n=1

(−∞, a+ 1/n)
)
∪

( ∞⋂
n=1

(b− 1/n,∞)
))
.

Finally, note that

E[f ≤ a] =
∞⋂

n=1

E[f < a+ 1/n],

E[f > a] =E \ E[f ≤ a],

E[f ≥ a] =
∞⋂

n=1

E[f > a− 1/n],
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and
E[b < f < a] =E[f < a] \ E[f ≥ b],

E[b ≤ f < a] =E[f < a] \ E[f > b],

E[b < f ≤ a] =E[f ≤ a] \ E[f ≥ b],

E[b ≤ f ≤ a] =E[f ≤ a] \ E[f > b].

Then the equivalence of (ii), (iii), (iv), (v), (vi), (vii), (viii)
and (ix) is a direct consequence of the closedness of M
under operations of union, intersection and complement.

�

Algebraic properties of Lebesgue measurable func-
tion.

Theorem. Let f and g be two Lebesgue measurable
functions on E ⊂ R. Then

(i) αf is Lebesgue measurable for each α ∈ R.

(ii) f + g is Lebesgue measurable.

(iii) f 2 is Lebesgue measurable.

(iv) fg is Lebesgue measurable.

(v) f/g is Lebesgue measurable whenever g(x) 6= 0 for
all x ∈ E.

(vi) max{f, g} and min{f, g} are both Lebesgue measur-
able functions.

Proof. (i) The case for α = 0 is trivial. Let α 6= 0. It is
clear that

E[αf < a] = E[f < a/α] ∈M,

and hence, αf is Lebesgue measurable.

(ii) Note that

E[f + g > a] =
⋃
r∈Q

(
E[f > r] ∩ E[r > a− g]

)
.
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This implies that f + g is Lebesgue measurable.

(iii) Note that

E[f 2 < a] = ∅ ∈ M

whenever a ≤ 0. Let a > 0. Then

E[f 2 < a] = E[−a < f < a] ∈M.

This proves that f 2 is Lebesgue measurable.

The statement (iv) is a direct consequence of (iii) due to
the fact that

fg = [(f + g)2 − (f − g)2]/4.

Since 1/g is Lebesgue measurable (WHY), the statement
(v) is a direct consequence of (iv).

(vi) Note that

E[max{f, g} ≥ a] = E[f ≥ a] ∪ E[g ≥ a].

Thus, max{f, g} is Lebesgue measurable. In addition, min{f, g}
is also Lebesgue measurable due to the fact that

min{f, g} = −max{−f,−g}.

�

Limit of sequence of Lebesgue measurable func-
tions.

Theorem. Let {fn} be a sequence of Lebesgue measur-
able function fn on E ⊂ R. The following statements hold.

(i) If supn∈N+ fn is finite, then supn∈N+ fn is Lebesgue
measurable.

(ii) If infn∈N+ fn is finite, then infn∈N+ fn is Lebesgue mea-
surable.
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(iii) If limn→∞ fn is finite, then limn→∞ fn is Lebesgue
measurable.

(iv) If limn→∞ fn is finite, then limn→∞ fn is Lebesgue
measurable.

(v) If {fn} converges pointwise to a finite real-valued
function f , then f is Lebesgue measurable.

Proof. (i) Note that

sup
n∈N+

fn(x) = max
n∈N+

fn(x)

= lim
n→∞

max{f1(x), f2(x), · · · , fn(x)}

= lim
n→∞

Fn(x),

where Fn(x) := max{f1(x), f2(x), · · · , fn(x)}. Since {Fn}
is monotone increasing sequence of Lebesgue measurable
functions, we have

E[max
n∈N+

fn > a] =
∞⋃

n=1

E[Fn > a]

for each a ∈ R (WHY), so that maxn fn is Lebesgue mea-
surable.

The statement (ii) follows from (i) and the fact that

min
n∈N+

fn = − lim
n→∞

max{−f1(x),−f2(x), · · · ,−fn(x)}.

The statement (iii) follows from (i), (ii) and the fact that

lim
n→∞

fn = inf
n∈N+

sup
k≥n

fk.

The statement (iv) follows from (i), (ii) and the fact that

lim
n→∞

fn = sup
n∈N+

inf
k≥n

fk.

Finally, the statement (v) is a direct consequence of (iii)
or (iv). �
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Approximation for Lebesgue measurable functions.

The well-known Weierstrass approximation theorem
(K. Weierstrass, 1885) states that

• Let f : [0, 1] → R be continuous. For each ε > 0,
there is a polynomial p such that |f(x) − p(x)| < ε for all
x ∈ [0, 1], i.e.,

‖f − p‖∞ := sup
0≤x≤1

|f(x)− p(x)| < ε.

Compared with the Weierstrass’ famous example of 1861
on the existence of a continuous nowhere differentiable
function, the Weierstrass approximation theorem shows
that every continuous function can be approximated by a
sequence of polynomials.

What about the Lebesgue measurable function? To end
this, we need the following concept of so-called simple func-
tions.

Definition. (Simple functions) A function f : E ⊂
R → R is said to be a simple function if f is a linear com-
binations of characteristic functions of Lebesgue measur-
able sets, that is to say, there are constants α1, α2, · · · , αN

and Lebesgue measurable sets E1, E2, · · · , EN such that

f =
N∑

n=1

αnχEn
.

Remark. A Lebesgue measurable function f is simple
function if and only if the range of f is a finite set.

Theorem. (Approximated by simple functions) Let
f : E ⊂ R → R. If f is Lebesgue measurable, then there
exists a sequence {fn} of simple functions on E such that
{fn} converges pointwise to f on E.
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Proof. Suppose that f is Lebesgue measurable. For every
n ∈ N+ we write

En,k := E[k/n ≤ f < (k + 1)/n]

with k = −n2,−n2 + 1, · · · , n2 − 1, and denote

fn(x) :=
n2−1∑

k=−n2

k

n
χEn,k

(x), x ∈ E.

It is clear that fn is simple function since all sets En,k are
Lebesgue measurable.

On the other hand, we can show that such sequence {fn}
converges pointwise to f on E. Indeed, let x ∈ E and take
N ∈ N+ such that |f(x)| < N . Fix natural number n ≥ N .
Then there is a unique natural number k ∈ [−n2, n2 − 1]
such that x ∈ En,k, so that

k/n ≤ f(x) < (k + 1)/n.

In addition, by the definition of fn we have fn(x) = k/n.
Thus,

0 ≤ f(x)− fn(x) < 1/n→ 0, n→∞.

This implies that fn(x) → f(x) as n → ∞ for every x ∈
E. �

Further on, if the function f given in the last theorem
is bounded on E. Then there is an N ∈ N+ such that
supx∈E |f(x)| < N , so that for all n ≥ N we have

sup
x∈E

|f(x)− fn(x)| < 1/n→ 0, n→∞.

This implies that fn ⇒ f as n → ∞. Therefore, we have
proved the following result.

Theorem. (Approximated by simple functions) Let
f : E ⊂ R → R be bounded. If f is Lebesgue measurable,
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then there exists a sequence {fn} of simple functions on E
such that {fn} converges uniformly to f on E.

Remark. In the last two approximation theorems, we
can choose the desired sequence {fn} of such simple func-
tions fn, where each fn is a linear combination of char-
acteristic functions of Lebesgue measurable sets with
finite measure. It suffices to show that such sequence
exists for non-negative measurable function f : E → R
(WHY). To this end, we write

Fn :=


f(x), x ∈ E ∩ In and f(x) ≤ n,

n, x ∈ E ∩ In and f(x) > n,

0, x ∈ E \ In.
where In := (−n, n) for n ∈ N+. Then fn → f on E.
Further on, write

El,j :=

{
x ∈ E ∩ In :

l

j
< Fn ≤

l + 1

j

}
, 0 ≤ l < jn,

and denote

Fn,j(x) :=

jn−1∑
l=0

l

j
χEl,j

(x), x ∈ E.

Then m(El,j) ≤ m(In) = 2n < +∞ for each n ∈ N+ and

0 ≤ Fn(x)− Fn,j(x) ≤ 1/j, x ∈ E.

Finally, by denote fn := Fn,n, we obtain the sequence {fn}
desired.

Remark. So far, we have two kinds of convergences of
sequences of functions: pointwise convergence and uni-
form convergence. There are also some kinds of con-
vergence (for instance, convergence almost everywhere
and convergence in measure) of sequence of functions,
which will be discussed in the sequel.
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§3. Convergence almost everywhere

In this section, we will introduce some kinds of conver-
gences of sequences of functions and discuss relations of
them.

Convergences of sequence {fn}
Throughout this section, we suppose that all the func-

tions f, f1, f2, · · · are finite real-valued functions.

1. Uniform convergence (fn ⇒ f on E): for arbitrary
ε > 0, there is a natural number N = N(ε) such that

sup
x∈E

|fn(x)− f(x)| < ε, n ≥ N.

2. Pointwise convergence (fn → f on E): for every
x ∈ E fixed and for arbitrary ε > 0, there is a natural
number N = N(x, ε) such that

|fn(x)− f(x)| < ε, n ≥ N.

3. Convergence almost everywhere (fn
a.e.−−→ f on E)

Definition. We say that fn converges almost every-
where (a.e., for short) to f on E if there is a set E0 ∈M
with m(E0) = 0 such that fn → f on E \ E0.

Remark. fn
a.e.−−→ f on E if and only if there is a set

E0 ∈M, with m(E0) = 0, satisfies that for every x ∈ E\E0
fixed and for arbitrary ε > 0, there is a natural number
N = N(x, ε) such that

|fn(x)− f(x)| < ε, n ≥ N.

Remark. Let fn
a.e.−−→ f on E. If E0∩E = ∅, then fn → f

on E.
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Theorem. Let f1, f2, · · · be Lebesgue measurable on E.
If fn

a.e.−−→ f on E, then there is a Lebesgue measurable
function h on E such that f(x) = h(x) for a.e. x ∈ E.

Proof. Let fn
a.e.−−→ f on E. Then there is a set E0 ∈ M,

with m(E0) = 0, such that fn → f on E \ E0. Since
E \ E0 ∈ M, f |E\E0

is a Lebesgue measurable function on
E \ E0 (WHY). Write

h(x) :=

{
f(x), x ∈ E \ E0,

0, x ∈ E0.

Clearly, h is Lebesgue measurable on E and f(x) = h(x)
for a.e. x ∈ E. �

Corollary. Let f1, f2, · · · be Lebesgue measurable on E.
If fn

a.e.−−→ f on E, then f is Lebesgue measurable on E.

Proof. Note that if f(x) = g(x) for a.e. x ∈ E and g is
Lebesgue measurable on E, then f is Lebesgue measurable
on E as well (WHY). The conclusion is a direct consequence
of the last theorem. �

Relations of various convergences

It is clear that

“fn ⇒ f” ⇒ “fn → f” ⇒ “fn
a.e.−−→ f”,

however, the inversions are not true. Could you give some
counterexamples?

Relation between fn → f and fn ⇒ f

Theorem. Let f1, f2, · · · be Lebesgue measurable func-
tions on E with m(E) < +∞. If fn → f on E, then for
every ε > 0, there is a Lebesgue measurable set Ω ⊂ E such
that m(E \ Ω) < ε and fn ⇒ f on Ω.
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Proof. Let fn → f on E, that is, limn→∞ fn(x) = f(x) for
each x ∈ E. Thus, for each k ∈ N+, there is an N ∈ N+

such that

|fn(x)− f(x)| < 1/k, n ≥ N.

This motivates us to consider the sets

Ek,N := {x ∈ E : |fn(x)− f(x)| < 1/k for all n ≥ N}

with k,N ∈ N+.

For each k ∈ N+ fixed, note that

Ek,1 ⊂ Ek,2 ⊂ · · · ⊂ Ek,N ⊂ Ek,N+1 ⊂ · · · ,

and hence,

lim
N→∞

Ek,N =
∞⋃

N=1

Ek,N = E.

By the continuity of the Lebesgue measure, we have

lim
N→∞

m(Ek,N) = m(E),

so that there is an Nk ∈ N+ such that

m(E \ Ek,Nk
) = m(E)−m(Ek,Nk

) < 1/2k

due to the fact that m(E) < +∞. Take K ∈ N+ such that∑
k≥K

2−k < ε

and write Ω :=
⋂

k≥K Ek,Nk
. Then m(E \ Ω) < ε. Indeed,

m(E \ Ω) =m(E ∩ Ωc) = m

( ⋃
k≥K

(E \ Ek,Nk
)

)
≤

∑
k≥K

m(E \ Ek,Nk
) ≤

∑
k≥K

2−k < ε.
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In addition, it is easy to show that fn ⇒ f on Ω. Indeed,
let ε′ > 0 and take k ≥ K such that 1/k < ε′. Then for
each x ∈ Ek,Nk

, we have

|fn(x)− f(x)| < 1/k < ε, n ≥ Nk.

Thus,

sup
x∈Ω

|fn(x)− f(x)| < ε, n ≥ Nk.

This completes the proof. �

Relation between fn
a.e.−−→ f and fn ⇒ f

D. Egorov (1869 - 1931, Russian) give a condition for
the uniform convergence of a pointwise convergent sequence
of measurable functions as showed in the following

Theorem. (Egorov, 1911) Let f1, f2, · · · be Lebesgue

measurable functions on E with m(E) < +∞. If fn
a.e.−−→ f

on E, then for every ε > 0, there is a closed subset F ⊂ E
such that m(E \ F ) < ε and fn ⇒ f on F .

Proof. Suppose that fn
a.e.−−→ f on E. Then there is a zero-

measure set E0 ∈ M such that fn → f on E \ E0 := Ẽ.
Let ε > 0. Then by the last theorem, there is a Lebesgue
measurable set Ω ⊂ Ẽ with m(Ẽ \ Ω) < ε/2 such that
fn ⇒ f on Ω. Further on, take a closed subset F ⊂ Ω such
that m(Ω \ F ) < ε/2. Then fn ⇒ f on F and

m(E \ F ) =m(Ẽ \ F ) = m
(
(Ẽ \ Ω) ∪ (Ω \ F )

)
≤m(Ẽ \ Ω) +m(Ω \ F ) < ε/2 + ε/2 = ε.

�

Remark. In the informal formulation of J. E. Little-
wood, Egorov theorem states that “every convergent se-
quence is nearly uniformly convergent”.
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§4. Relations between measurable
functions and continuous functions

Step functions

Recall that the characteristic function χE of a set E is
defined by

χE(x) :=

{
1, x ∈ E,
0, x 6∈ E.

For the Riemann integral it is in effect the class of step

functions.

Definition. (Step functions) A function f is called
step function if it is of the form

f =
N∑

n=1

αnχIn
,

where αn are constants and In are (closed) intervals.

Remark. All the step functions are simple functions,
however, there is a simple function not step function, for
example, χQ.

Remark. All the continuous functions, step functions,
simple functions as well as monotonic functions are Lebesgue
measurable functions.

Proposition. (Approximated by continuous func-
tions) Let f : [a, b] → R be a step function. Then there is
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a sequence {fn} of continuous functions on [a, b] such that

fn
a.e.−−→ f on [a, b].

Proof. It is easy by considering piecewise linear functions.
�

Proposition. (Approximated by step functions)
Let f : E → R be a simple function. Then there is a
sequence {fn} of step functions such that fn

a.e.−−→ f on E.

Proof. It suffices to show that for each Lebesgue measur-
able subset A with m(A) < +∞, the function χA can be
approximated a.e. by step functions (WHY). To this end,

let ε > 0 and take finite union
⋃N

n=1 In of disjoint open
intervals such that

m

(
A4

N⋃
n=1

In

)
< ε.

It is clear that

χA(x) =
N∑

n=1

χIn
(x)

except possibly on a set of measure less than ε. Thus, for
special value ε = 1/k, there is a step function fk such that
m(Ek) < 1/2k, where

Ek := {x : f(x) 6= fk(x)}.

Now write

F :=
∞⋂

k=1

∞⋃
n=k+1

En.
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Then for k ∈ N+, we have

m(F ) ≤m
( ∞⋃

n=k+1

En

)
≤

∞∑
n=k+1

m(En)

≤
∞∑

n=k+1

1/2n = 1/2k → 0, k →∞.

This implies that m(F ) = 0.

On the other hand, note that

F c =
∞⋃

k=1

∞⋂
n=k+1

Ec
n,

that is, for each x ∈ F c, there is a K ∈ N+ such that
f(x) = fn(x) for all n ≥ K + 1. Thus, fn(x) → f(x) as

n→∞, and hence, fn
a.e.−−→ f on E. �

By the last proposition, we obtain the following approxi-
mation theorem for Lebesgue measurable functions, imme-
diately.

Theorem. (Approximated by step functions) Let
f : E → R be Lebesgue measurable on E. Then there
exists a sequence {fn} of step functions such that fn

a.e.−−→ f
on E.

Relations between measurable functions and con-
tinuous functions

Recall that for a finite real-valued function f continuous
on open interval I = (a, b), we can take a closed interval
F ⊂ I such that l(I\F ) < ε and f |F is uniformly continuous
on F . For example, take F = [a+ ε/3, b− ε/3].

For Lebesgue measurable functions, we have the follow-
ing result due to Nikolai Lusin (or Luzin) (1883 - 1950,
Russian).
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Theorem. (Lusin, 1912) Let f : E ⊂ R → R with
m(E) < +∞. If f is Lebesgue measurable on E, then
for each ε > 0 there exists a closed subset F ⊂ E with
m(E \ F ) < ε such that f |F is continuous on F .

Proof. Suppose that f is Lebesgue measurable on E. Take
a sequence {fn} of step functions such that fn

a.e.−−→ f on E.
Then for each n ∈ N+, there is a set En such that

m(En) < 1/2n

and that fn is continuous outside En. By Egorov theorem,
there is a set Fε with m(E \ Fε) < ε/3 and fn ⇒ f on Fε.
Now take N ∈ N+ such that

∑
n≥N 1/2n < ε/3 and write

F̃ := Fε \
( ⋃

n≥N

En

)
.

Note that fn is continuous on F̃ for all n ≥ N , so that f
is continuous on F̃ as well (WHY). Finally, take a closed

subset F ⊂ F̃ such that m(F̃ \ F ) < ε/3. Then

m(E \ F ) =m(E \ F̃ ) +m(F̃ \ F )

≤m(E \ Fε) +m

( ⋃
n≥N

En

)
+m(F̃ \ F )

≤m(E \ Fε) +
∑
n≥N

m(En) +m(F̃ \ F )

<ε/3 + ε/3 + ε/3 = ε.

�

Remark. In the informal formulation of J. E. Little-
wood, Lusin theorem states that “every function is nearly
continuous”.

wglaive
高亮
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Summary. Although the notations of Lebesgue measur-
able sets and measurable functions represent new tools, we
should not overlook their relations to the older concepts:
intervals and continuous functions, which are essential
in the theory of Riemann integrals. The following Lit-
tlewood three principles provide a useful intuitive guide in
the initial study of the theory of Lebesgue measurable sets
and measurable functions:

(i) Every measurable set is nearly a finite union of inter-
vals.

(ii) Every measurable function is nearly continuous.

(iii) Every convergent sequence of measurable functions is
nearly uniformly convergent.

In the next chapter, we will travel on the core theory of
real analysis - Lebesgue integrals.
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Chapter 3: Lebesgue integrals

§1. Some simple cases

Lebesgue integrals of bounded Lebesgue measur-
able functions on [a, b].

In this subsection, we always consider the bounded closed
interval E := [a, b] and construct a “new” kind of integrals
for Lebesgue measurable functions on E.

Note that for the function f bounded on E, there are
constants m,M such that

m < f(x) < M, x ∈ E.

With an analogue of the Riemann integral, we can define
the Lebesgue integral of f as follows.

Definition. Let f be a bounded Lebesgue measurable
function on E. For every partition D : m = y0 < y1 <
· · · < yn−1 < yn = M of [m,M), denote

δ(D) := max
1≤k≤n

(yk − yk−1), Ek := E[yk−1 ≤ f < yk].

Further on, take ηk ∈ [yk−1, yk] arbitrary and write

S :=
n∑

k=1

ηkm(Ek).

If the limit

lim
δ(D)→0

S := s

exists and s is independent of the partitionD and the points
ηk, then we call f is Lebesgue integrable on E. In ad-
dition, we call s the Lebesgue integral of f on the set E
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and write

s :=

∫
E

f(x) dx = (L)

∫ b

a

f(x) dx.

Remarks. (i) The Riemann integral of f on [a, b] (if
exists) is denoted by

(R)

∫ b

a

f(x) dx.

(ii) Clearly, the “If part” in the definition above is equiv-
alent to that “there is a constant s satisfies that for any
ε > 0, there is a δ > 0 such that, for any partition D with
δ(D) < δ,

|S(D)− s| =
∣∣∣∣ n∑

k=1

ηkm(Ek)− s

∣∣∣∣ < ε

for all ηk ∈ [yk−1, yk].

(iii) Let f be a bounded Lebesgue measurable function
on E. By the Heine theorem, f is Lebesgue integrable on
E if and only if the limit limn→∞ S(Dn) exists for every
sequence {Dn} of partitions of [m,M) with δ(Dn) → 0 as
n→∞ and is independent of D and ηk.

Uniqueness of the Lebesgue integral

Theorem. Let f be Lebesgue integral on E. Then the
Lebesgue integral

∫
E f(x) dx is independent of the choice

of m and M .

Proof. Write a := infx∈E f(x) and b := supx∈E f(x). It
suffices to consider the case

m < a ≤ f(x) ≤ b < M.

Let D be a partition of [m,M):

m = y0 < y1 < · · · < yn−1 < yn = M.
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Then there are k0 and k1 such that a ∈ [yk0−1, yk0
) and

b ∈ [yk1−1, yk1
), so that

S(D) =
n∑

k=1

ηkm(Ek) =

k1∑
k=k0

ηkm(Ek)

since such sets Ek are all empty sets for k < k0 and k > k1.
Further on, note that

S(D) =

k1∑
k=k0

ηkm(Ek) =

k1−1∑
k=k0

ηkm(Ek) + bm(E ′)

where E ′ := E[f = b]. By taking yk0
= a and yk1

= b, we
obtain a partition D′ of [a, b):

a = yk0
< y1 < · · · < yn−1 < yk1

= b.

and

S(D) = S(D′) + bm(E ′).

Thus, the integral of f is dependent only if the value a and
b, so that independent of m and M . This completes the
proof. �

Examples.

(i) (L)
∫ b

a dx = (R)
∫ b

a dx = b− a.

(ii) The Dirichlet function D is not Riemann integrable
on [0, 1], while Lebesgue integrable on [0, 1] with

(L)

∫ 1

0
D(x) dx = 0.

(iii) Let

f(x) =

{
1, 0 ≤ x ≤ 1

2 ;

2, 1
2 ≤ x ≤ 1.
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Then f is Lebesgue integrable on [0, 1] and

(L)

∫ 1

0
f(x) dx = (R)

∫ 1

0
f(x) dx = 3/2.

Proof. (iii) For each partition

D : 1 = y0 < y1 < · · · < yn−1 < yn = 3

of [1, 3), we have

1 = y0 < y1 < · · · < yk0−1 ≤ 2 < yk0
< · · · < yn

for some k0 ∈ {1, 2, · · · , n}. Notice that

Ek = ∅, k 6= 1, k0,

while E1 = [0, 1/2) and Ek0
= [1/2, 1], so that

S(D) =
n∑

k=1

ηkm(Ek) = η1m(E1) + ηk0
m(Ek0

) =
η1 + ηk0

2
.

Obviously, η1 → 1 and ηk0
→ 2 as δ(D) → 0. Thus,

(L)

∫ 1

0
f(x) dx = lim

δ(D)→0
S(D) = 3/2.

�

Remark. It is necessary to point out that there are
some alternative approaches to define Lebesgue integral,
for instance, by the method of approximation oriented from
simple functions, see Stein “Real Analysis, Chapter 2”.

As showed in precious example (ii), there is a bounded
measurable function which is not Riemann integrable, how-
ever, every bounded measurable function on E is necessar-
ily Lebesgue integrable.

Theorem. Let f be a Lebesgue measurable function on
E. If f is bounded on E, then f is Lebesgue integrable on
E.
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Proof. By definition, we consider the existence of the limit
of sum

S(D) =
n∑

k=1

ηkm(Ek)

for every partition D : m = y0 < y1 < · · · < yn−1 <
yn = M . Noticing that the sum S(D) is dependent on the
partition D as well as points ηk, we turn to consider two
sums S(D), S(D) which are dependent only in the partition
D:

S(D) :=
n∑

k=1

yk−1m(Ek), S(D) :=
n∑

k=1

ykm(Ek).

Note that m(E) <∞ and f is bounded on E, sets

A := {S(D) : D is a partition of [m,M ]},
B := {S(D) : D is a partition of [m,M ]}

are both bounded. Thus,

S := sup
D
S(D) <∞, S := inf

D
S(D) <∞.

Now we complete the proof by the following four steps:

(i) S(D1) ≤ S(D2) and S(D1) ≥ S(D2) for D1 ⊂ D2;

(ii) S(D1) ≤ S(D2) for all partitions D1 and D2;

(iii) S = S := s;

(iv) s is the Lebesgue integral value of f on E. �

The following estimates of the Lebesbue integral are of
importance in the sequel.

Lemma. Let f be a Lebesgue measurable function on
E. If m ≤ f ≤M then

m ·m(E) ≤
∫

E

f(x) dx ≤M ·m(E)
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Proof. Let ε > 0. Clearly, f(E) ⊂ [m,M + ε), and for each
partition D of [m,M + ε): m = y0 < y1 < · · · < yn−1 <
yn = M + ε,

m ·m(E) ≤
n∑

k=1

ηkm(Ek) ≤ (M + ε) ·m(E).

By taking limit δ(D) → 0 we obtain

m ·m(E) ≤
∫

E

f(x) dx ≤ (M + ε) ·m(E),

then we obtain the conclusion by letting ε→ 0. �

We are familiar with the following properties of integrals
in the sense of Riemann.

Theorem. (Finite additivity) Let f be a bounded
Lebesgue measurable function on E. Then∫

E

f(x) dx =
n∑

k=1

∫
Fk

f(x) dx,

where F1, F2, · · · , Fn are Lebesgue measurable subsets of
E, Fi ∩ Fj = ∅ (i 6= j) and E =

⋃n
k=1 Fk.

Proof. It sufficient to prove the conclusion for n = 2. Let
n = 2. Clearly, f is Lebesgue integrable on F1, F2. Let D
be a partition of E: m = y0 < y1 < · · · < yn−1 < yn = M .
Denote

Ek := E(yk−1 ≤ f < yk)

and
Ek1 := F1(yk−1 ≤ f < yk),

Ek2 := F2(yk−1 ≤ f < yk).

Then Ek1 ∩ Ek2 = ∅ and Ek = Ek1 ∪ Ek2. Notice that
n∑

k=1

ηkm(Ek) =
n∑

k=1

ηkm(Ek1) +
n∑

k=1

ηkm(Ek2)
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By letting δ(D) → 0 we obtain∫
E

f(x) dx =

∫
F1

f(x) dx+

∫
F2

f(x) dx.

�

Corollary. Let f be Lebesgue integrable on E and let
E0 ⊂ E. If m(E0) = 0, then f is Lebesgue integrable on
E \ E0 and ∫

E

f(x) dx =

∫
E\E0

f(x) dx.

Proof. This is a direct consequence of the theorem above
once we observe that∫

E0

f(x) dx = 0

by the definition of integrals. �

Remark. This corollary states that the values of f on a
zero-measure subset E1 ⊂ E does not impact the integral
of f on E. From this point of view, we can observe that
the Dirichlet function is integrable on [0, 1], immediately.

Example. (iii’) Let f be a step function on E, i.e.,

f(x) =


c1, a ≤ x ≤ a1;

c2, a1 < x ≤ a2;

· · ·
cn, an−1 < x ≤ b

for some constants c1, c2, · · · , cn. Then f is Lebesgue inte-
grable and by the finite additivity of Lebesgue integral we
have

(L)

∫ b

a

f(x) dx =
n∑

k=1

ck(ak − ak−1) = (R)

∫ b

a

f(x) dx.



CHEN CHUANG: LECTURES ON REAL ANALYSIS 148

Theorem. (Linear property) Let f, g be two bounded
Lebesgue measurable functions on E. Then∫

E

(
af(x) + bg(x)

)
dx = a

∫
E

f(x) dx+ b

∫
E

g(x) dx

for all a, b ∈ R.

Proof. It sufficient to prove that∫
E

af(x) = a

∫
E

f(x) dx

and ∫
E

(
f(x) + g(x)

)
dx =

∫
E

f(x) dx+

∫
E

g(x) dx

The first equality follows from the definition of the Lebesgue
integral, immediately. For the second equality, we take
m,M such that m ≤ f, g, f + g < M and consider each
partition D: m = y0 < y1 < · · · < yn−1 < yn = M . Denote

Eij := E(yi−1 ≤ f < yi, yj−1 ≤ g < yj)

for i, j = 1, · · · , n. Then Eijs are disjoint andE =
⋃n

i,j=1Eij.
Thus, by the Lemma above we have∫

Eij

(f(x) + g(x)) dx ≤ (yi + yj)m(Eij)

=(yi − yi−1 + yj − yj−1 + yi−1 + yj−1)m(Eij)

≤(2δ(D) + yi−1 + yj−1)m(Eij)

=2δ(D)m(Eij) +

∫
Eij

yi−1 dx+

∫
Eij

yj−1 dx

≤2δ(D)m(Eij) +

∫
Eij

f(x) dx+

∫
Eij

g(x) dx

for all i, j = 1, · · · , n. Therefore,∫
E

(f(x) + g(x)) dx ≤ 2δ(D)m(E) +

∫
E

f(x) dx+

∫
E

g(x) dx.
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By letting δ(D) → 0 we obtain∫
E

(f(x) + g(x)) dx ≤
∫

E

f(x) dx+

∫
E

g(x) dx.

The inverse inequality can also be obtained by analogous
argument. Indeed,∫

Eij

f(x) dx+

∫
Eij

g(x) dx ≤ (yi + yj)m(Eij)

=(yi − yi−1 + yj − yj−1)m(Eij) + (yi−1 + yj−1)m(Eij)

≤2δ(D)m(Eij) +

∫
Eij

(yi−1 + yj−1) dx

≤2δ(D)m(Eij) +

∫
Eij

(f(x) + g(x)) dx,

so that the finite additivity gives∫
E

f(x) dx+

∫
E

g(x) dx

=
n∑

i,j=1

( ∫
Eij

f(x) dx+

∫
Eij

g(x) dx

)

≤2δ(D)
n∑

i,j=1

m(Eij) +
n∑

i,j=1

∫
Eij

(f(x) + g(x)) dx

=2δ(D)m(E) +

∫
E

(f(x) + g(x)) dx.

By letting δ(D) → 0 we obtain the inequality desired. �

In the sequel, we give some estimates of the Lebesgue
integrals.

Lemma. Let f be a bounded Lebesgue measurable func-
tion on E and let f ≥ 0 (a.e.). Then∫

E

f(x) dx ≥ 0.
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In particular, if
∫

E f(x) dx = 0 then f = 0 (a.e.).

Proof. Denote

E1 := E(f ≥ 0), E2 := E(f < 0).

It is clear that E = E1 ∪ E2, E1 ∩ E2 = ∅ and m(E2) = 0.
By the finite additivity and the lemma above, we have∫

E

f(x) dx =

∫
E1

f(x) dx+

∫
E2

f(x) =

∫
E1

f(x) dx ≥ 0.

For the second statement, let
∫

E f(x) dx = 0. It sufficient
to prove m(E(f > 0)) = 0. Notice that

E(f > 0) =
∞⋃

n=1

E(f ≥ 1/n),

then it suffices to provem(E(f ≥ 1/n)) = 0 for each n ∈ N .
Indeed, by the finite additivity and the first lemma of this
section, we have

0 =

∫
E

f(x) dx =

∫
E(f≥1/n)

f(x) dx+

∫
E(f<1/n)

f(x) dx

≥
∫

E(f≥1/n)
f(x) dx ≥ m(E(f ≥ 1/n))/n,

so that m(E(f ≥ 1/n)) = 0 for each n ∈ N . �

Remark. For a non-negative bounded function f on E,
the lemma above reads that f = 0 (a.e.) on E if and only
if

∫
E f(x) dx = 0.

Theorem. (Monotonicity) Let f, g be two bounded
Lebesgue measurable functions on E. If f ≤ g (a.e.), then∫

E

f(x) dx ≤
∫

E

g(x) dx.
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In particular, ∫
E

f(x) dx =

∫
E

g(x) dx.

whenever f = g (a.e.).

Proof. It is a direct consequence of the lemma above by
considering h := g − f . �

Corollary. Let f be a bounded Lebesgue measurable
function on E. Then∣∣∣∣ ∫

E

f(x) dx

∣∣∣∣ ≤ ∫
E

|f(x)| dx.

Proof. The conclusion is clear once we observe that

−|f | ≤ f ≤ |f |.
�
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Relations between Lebesgue integral and Riemann
integral.

Theorem. Let f be a function defined on [a, b]. If f is
Riemann integrable then f is Lebesgue integrable; more-
over,

(L)

∫ b

a

f(x) dx = (R)

∫ b

a

f(x) dx.(0.5)

Outline of the proof:

(i) f is bounded;

(ii) f is Lebesgue measurable;

(iii) The equality (0.5) holds.

Proof. (i) We prove it by contradiction. Suppose that f is
unbounded on E. Write

(R)

∫ b

a

f(x) dx := A

and let ε = 1. By the definition of Riemann integral, there
is a δ > 0 such that for any partition D : a = x0 < x1 <
· · · < xn−1 < xn = b with δ(D) := max1≤k≤n(xk−xk−1) < δ
and points ξk ∈ [xk−1, xk], we have∣∣∣∣ n∑

k=1

f(ξk)(xk − xk−1)− A

∣∣∣∣ < 1,

so that ∣∣∣∣ n∑
k=1

f(ξk)(xk − xk−1)

∣∣∣∣ < |A|+ 1,

Notice that f is unbounded on [xk−1, xk] for some k due to
our hypothesis. For ξ1, · · · , ξk−1, ξk+1, · · · , ξn fixed, we can
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choose ξk such that∣∣∣∣ n∑
k=1

f(ξk)(xk − xk−1)

∣∣∣∣ > |A|+ 1.

This deduces a contradiction. Thus, f is necessarily bounded
on E.

(ii) Since f is Riemann integral, we can choose a sequence
{Dk} of partition of E with Dk ⊂ Dk+1 and δ(Dk) → 0 as
k →∞, where

Dk : a = x
(k)
0 < x

(k)
1 < · · · < x

(k)
nk−1 < x(k)

nk
= b.

Denote

m
(k)
j := inf

x
(k)
j−1≤x≤x

(k)
j

f(x), M
(k)
j := sup

x
(k)
j−1≤x≤x

(k)
j

f(x),

and write

ϕk(x) =

{
m

(k)
j , x

(k)
j−1 < x ≤ x

(k)
j ;

f(a) = a, x = a.

and

ψk(x) =

{
M

(k)
j , x

(k)
j−1 < x ≤ x

(k)
j ;

f(a) = a, x = a.

It is clear that ϕk and ψk are all measurable functions and

ϕ1 ≤ · · · ≤ ϕk ≤ · · · ≤ f ≤ · · · ≤ ψk ≤ · · · ≤ ψ1,

so that f := limk→∞ ϕk and f := limk→∞ ψk are both mea-

surable functions and f ≤ f ≤ f . In addition, note that

n∑
j=1

m
(k)
j (x

(k)
j − x

(k)
j−1) = (L)

∫ b

a

ϕk(x) dx ≤ (L)

∫ b

a

f(x) dx

≤(L)

∫ b

a

f(x) dx ≤ (L)

∫ b

a

ψk(x) dx =
n∑

j=1

M
(k)
j (x

(k)
j − x

(k)
j−1),
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and notice that the terms in the end-sides are Darboux
sums, by letting k →∞ we obtain

(L)

∫ b

a

f(x) dx =(L)

∫ b

a

f(x) dx

=(R)

∫ b

a

f(x) dx.

(0.6)

Therefore,

f = f = f (a.e.)(0.7)

which implies that f is a measurable function since (R,L,m)
is a complete measure space.

(iii) By (i) and (ii) we can see that f is Lebesgue inte-
grable. Obviously, (0.5) is a direct consequence of (0.6) and
(0.7). �
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Lebesgue integrals of bounded Lebesgue measur-
able functions on E ⊂ R with m(E) < +∞.

Let E ∈ M with µ(E) < +∞, and let f be a bounded
Lebesgue measurable function on E. Then there are con-
stants m,M such that m ≤ f(x) < M for all x ∈ E. We
can also introduce the Lebesgue integral for such functions
following the procedure given in previous subsection.

Definition. For every partition D : m := y0 < y1 <
· · · < yn−1 < yn := M , denote

δ(D) := max
1≤k≤n

(yk − yk−1), Ek := E(yk−1 ≤ f < yk).

Further on, take ηk ∈ [yk−1, yk] arbitrary and write

S :=
n∑

k=1

ηkm(Ek).

If the limit

lim
δ(D)→0

S := s

exists and the value s is independent of D and ηk, then we
call f is Lebesgue integrable on E. In addition, we call
s the Lebesgue integral of f on E, and write

s :=

∫
E

f(x) dx.

Remark. All the results in last subsection hold for
this kind of integrals. The proofs are left to the reader
as exercises.

Examples. (iv) Let E be a Lebesgue measurable set
with µ(E) < +∞. Then∫

E

dx = m(E).



CHEN CHUANG: LECTURES ON REAL ANALYSIS 156

Proof. Consider the interval [m,M) = [1, 2). For each par-
tition D : 1 = y0 < y1 < · · · < yn = 2, the sum

n∑
k=1

ηkm(Ek) = η1m(E),

where η1 ∈ [1, y1). Clearly, η1 → 1 as δ(D) → 0, so that∫
E

dx = lim
δ(D)→0

n∑
k=1

ηkm(Ek) = m(E).

�

Remark. This example shows that the integral of a con-
stant function f = c on E equals c ·m(E).

(v) Let f be a Lebesgue measurable function on E with
m(E) = 0. Then ∫

E

f(x) dx = 0.
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§2. Integrals of measurable func-
tions on measurable subsets of the
line

In this section, we consider general Lebesgue measurable
subset E ⊂ R (not necessarily m(E) < +∞).

Truncated functions.

Definition. Let f be a non-negative function on E. For
N > 0 arbitrary, we define a truncated function [f ]N of
f by

[f ]N(x) :=

{
f(x), f(x) ≤ N ;

N, f(x) > N,

or equivalently, [f ]N = min{f,N}.

Properties. Let f and g be two non-negative functions
on E. The following statements hold.

(i) fN1
≤ fN2

≤ f for all 0 < N1 ≤ N2 <∞.

(ii) [f + g]N ≤ [f ]N + [g]N ≤ [f + g]2N for all N > 0.

(iii) [af ]N = a[f ]N/a for all a > 0.

Proof. (i) Let 0 < N1 ≤ N2. Notice that

[f ]N2
(x) :=


f(x), f(x) ≤ N1;

f(x), N1 < f(x) ≤ N2;

N2, f(x) > N2.

The conclusion is obvious.

(ii) Let N > 0 and x ∈ E. If f(x), g(x) ≤ N , then

[f + g]N(x) ≤(f + g)(x)

=f(x) + g(x) = [f ]N(x) + [g]N(x);
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otherwise, if f(x) > N (or g(x) > N), then (f+g)(x) > N ,
so that

[f + g]N(x) = N ≤ N + g(x)( or f(x)) ≤ f(x) + g(x).

This proves the first inequality. The second inequality is
obvious due to the facts that [f ]N = min{f,N} and [g]N =
min{g,N}. Indeed,

[f ]N + [g]N ≤ min{f + g, 2N} = [f + g]2N .

�

Remarks. (a) The statement (i) shows that [f ]N is in-
creasing with respect to the index N > 0.

(b) The first inequality in (ii) reads that the truncated
operator [·]N is sublinear, i.e., [f + g]N ≤ [f ]N +[g]N ; while
the second inequality states that [f ]N + [g]N is not too
large, actually, it can be dominated by [f + g]2N .
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Integrals for non-negative functions.

Notice that we can always choose a monotonic increasing
sequence {En} satisfying E =

⋃∞
n=1En and m(En) < ∞

for all n ∈ N. For example, take En = E ∩ [−n, n]. We call
such sequence {En} the finite monotonic cover of the
measure of E.

Remark. The finite monotonic cover of m(E) is not
unique.

Lemma. Let E ⊂ R be a measurable set, f a non-

negative measurable function on E, {E(1)
n } and {E(2)

n } two

finite monotonic covers of the measure of E and let {M (1)
n }

and {M (2)
n } be two sequences of positive numbers with

limn→∞M
(i)
n = ∞ (i = 1, 2). If the limit

s1 := lim
n→∞

∫
E

(1)
n

[f ]
M

(1)
n

(x) dx <∞,

then

lim
n→∞

∫
E

(2)
n

[f ]
M

(2)
n

(x) dx = s1.

Proof. Fix k ∈ N. Then there is nk ∈ N such that M
(2)
k ≤

M
(1)
n for all n ≥ nk, since limn→∞M

(1)
n = ∞. Thus, by the

monotonicity of the integral, we have∫
E

(2)
k

[f ]
M

(2)
k

(x) dx =

∫
E

(2)
k ∩E

(1)
n

[f ]
M

(2)
k

(x) dx

+

∫
E

(2)
k \E(1)

n

[f ]
M

(2)
k

(x) dx

≤
∫

E
(1)
n

[f ]
M

(1)
n

(x) dx

+M
(2)
k ·m(E

(2)
k \ E(1)

n ) → s1
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as n→∞, since limn→∞m(E
(2)
k \ E(1)

n ) = 0. Thus,

s2 := lim
k→∞

∫
E

(2)
k

[f ]
M

(2)
k

(x) dx ≤ s1.

On the other hand, by the symmetry of above program
we have s1 ≤ s2. This completes the proof. �

We are ready to give the definition of integral of f on E
by the approach of approximation, which is an analogue of
that for the improper Riemann integral.

Definition. Let E ⊂ R be a Lebesgue measurable set, f
a non-negative Lebesgue measurable function on E, {En}
a finite monotonic cover of the measure of E, and let {Mn}
be a sequence of positive numbers with limn→∞Mn = ∞.
We call f is Lebesgue integrable on E if the limit

s := lim
n→∞

∫
En

[f ]Mn
(x) dx <∞,

and call s the Lebesgue integral of f on E which is de-
noted by

s =

∫
E

f(x) dx.

Remarks. (i) Obviously, the integral of f on E defined
above is unique, that is, s is independent of choices of {En}
and {Mn}. Thus, a non-negative measurable function f is
integrable on E if and only if

lim
n→∞

∫
En

[f ]n(x) dx <∞

for some (equivalently, for all) finite monotonic cover {En}
of m(E).

(ii) In particular, if m(E) < ∞ and the non-negative
measurable function f is bounded on E, then

∫
E f(x) dx

defined above coincides with that given in the last section.
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Indeed, we can choose En = E for all n ∈ N and N =
supx∈E f(x).

Example. Consider the function f on (0,∞) defined by

f(x) :=

{
x−2, x ≥ 1;

x−1/2, 0 < x < 1.

We have

(L)

∫ ∞

0
f(x) dx = 3.

Proof. Let En = [ 1
n2 , n] and Mn = n for n ∈ N. Then∫

En

[f ]Mn
(x) dx =

∫ 1

n−2

[f ]Mn
(x) dx+

∫ n

1
[f ]Mn

(x) dx

=

∫ 1

n−2

1√
x
dx+

∫ n

1

1

x2 dx

=3− 3/n→ 3, n→∞.

�
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Integrals for general real-valued functions.

Recall that each real-valued function defined on E ⊂ R
has a decomposition

f = f+ − f−,

where

f+(x) :=

{
f(x), f(x) ≥ 0;

0, f(x) < 0,

and

f−(x) :=

{
−f(x), f(x) ≤ 0;

0, f(x) > 0.

Clearly, both f+ and f− are non-negative functions and
|f | = f+ + f−.

Definition. Let E ⊂ R be Lebesgue measurable. A
Lebesgue measurable function f onE is said to be Lebesgue
integrable on E if f+ and f− are both Lebesgue integrable
on E. In this case, the Lebesgue integral of f is defined
by ∫

E

f(x) dx :=

∫
E

f+(x) dx−
∫

E

f−(x) dx.

Lemma. Let f be non-negative and Lebesgue integrable
on E and g Lebesgue measurable on E. If |g| ≤ f , then g
is Lebesgue integrable on E.

Proof. It suffices to show that g+ and g− are both inte-
grable. Let {En} be a finite monotonic cover of the measure
of E. For each n ∈ N, it follows that∫

En

[g±]n(x) dx ≤
∫

En

[f ]n(x) dx ≤
∫

E

f(x) dx.
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Thus,

lim
n→∞

∫
En

[g±]n(x) dx ≤
∫

E

f(x) dx <∞,

which implies that g+ and g− are both integrable. �

Remark. This lemma reads that if a measurable func-
tion g can be dominated by an integrable function, then g
is integrable.

Theorem. (Finite additivity) Let E,E1 and E2 are
all Lebesgue measurable subsets of R, E = E1 ∪ E2, E1 ∩
E2 = ∅, and let f be Lebesgue measurable on E. Then
f is Lebesgue integrable on E if and only if f is Lebesgue
integrable on both E1 and E2. Moreover,∫

E

f(x) dx =

∫
E1

f(x) dx+

∫
E2

f(x) dx.

Proof. (I) Suppose that f ≥ 0. Let {En} be a finite mono-
tonic cover of the measure of E. Clearly, {En ∩ Ei} is a
finite monotonic cover of the measure of Ei (i = 1, 2). For
each n ∈ N, we have∫

En

[f ]n(x) dx =

∫
En∩E1

[f ]n(x) dx+

∫
En∩E2

[f ]n(x) dx

=

∫
En∩E1

[f ]n|E1
(x) dx+

∫
En∩E2

[f ]n|E2
(x) dx

=

∫
En∩E1

[f |E1
]n(x) dx+

∫
En∩E2

[f |E2
]n(x) dx

≤
∫

E1

f |E1
(x) dx+

∫
E2

f |E2
(x) dx

=

∫
E1

f(x) dx+

∫
E2

f(x) dx.
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Thus, if f is integrable on E1 and E2, then f is integrable
on E.

Conversely, let f be integrable on E. Then∫
En∩Ei

[f |Ei
]n(x) dx ≤

∫
Ei

[f |Ei
]n(x) dx

≤
∫

E

f(x) dx (n ∈ N)

for i = 1, 2. Thus, f |E1
and f |E2

are integrable on E1 and
E2, respectively. That is, f is integrable on E1 and E2.

In addition, taking n→∞ in both sides of∫
En

[f ]n(x) dx =

∫
En∩E1

[f ]n(x) dx+

∫
En∩E2

[f ]n(x) dx

yields the equality desired.

(II) For general function f (not necessarily non-negative),
consider f = f+ − f−. It follows from the step I that∫

E

f(x) dx =

∫
E

f+(x) dx−
∫

E

f−(x) dx

=

∫
E1

f+(x) dx+

∫
E2

f+(x) dx

−
∫

E1

f−(x) dx−
∫

E2

f−(x) dx

=

∫
E1

f(x) dx+

∫
E2

f(x) dx.

�
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Theorem. (Linear property) Let f and g be two
Lebesgue integrable functions on E. Then for all a, b ∈ R,
af + bg is Lebesgue integrable on E and∫

E

(af(x) + bg(x)) dx = a

∫
E

f(x) dx+ b

∫
E

g(x) dx.

Proof. It suffices to prove∫
E

af(x) dx = a

∫
E

f(x) dx(0.8)

and ∫
E

(f(x) + g(x)) dx =

∫
E

f(x) dx+

∫
E

g(x) dx.(0.9)

The following method is standard one followed by the def-
inition of integrals.

Step I. Non-negative case. Suppose that f ≥ 0. We first
show (0.8) holds. The case that a = 0 is trivial. For a > 0,
notice that [af ]N = a[f ]N/a, we then have∫

E

af(x) dx = lim
n→∞

∫
En

[af ]N(x) dx

= lim
n→∞

a

∫
En

[f ]N/a(x) dx = a

∫
E

f(x) dx.

For a < 0, notice that∫
E

(−f)(x) dx =

∫
E

(−f)+(x) dx−
∫

E

(−f)−(x) dx

=

∫
E

f−(x) dx−
∫

E

f+(x) dx = −
∫

E

f(x) dx,

we then have∫
E

af(x) dx =

∫
E

−(−a)f(x) dx

=−
∫

E

(−a)f(x) dx = a

∫
E

f(x) dx.
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This proves (0.8). On the other hand, notice that

[f + g]N ≤ [f ]N + [g]N ≤ [f + g]2N(0.10)

implies that f + g is integrable if and only if f and g are
both integrable. Moreover, (0.9) follows from (0.10), im-
mediately.

Step II. General case. Notice that, in the step I, we have
proved in fact that∫

E

(a1f1 + a2f2 + · · ·+ anfn)(x) dx

=a1

∫
E

f1(x) dx+ a2

∫
E

f2(x) dx+ · · ·+ an

∫
E

fn(x) dx

for all f1, · · · , fn ≥ 0 and a1, · · · , an ∈ R, where n ∈ N
arbitrary. Thus,∫

E

(af + bg)(x) dx

=

∫
E

(af+ − af− + bg+ − bg−)(x) dx

=a

∫
E

f+(x) dx− a

∫
E

f−(x) dx

+b

∫
E

g+(x) dx− b

∫
E

g−(x) dx

=a

∫
E

f(x) dx+ b

∫
E

g(x) dx.

�
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Theorem. Let f and g be two measurable functions on
E. The following statements hold.

(i) If f is integrable on E, then
∫

E f(x) dx = 0 whenever
m(E) = 0.

(ii) If f is integrable on E and E1 ⊂ E with m(E1) = 0,
then f is integrable on E1 and∫

E\E1

f(x) dx =

∫
E

f(x) dx.

(iii) If f = 0 (a.e.) on E, then f is integrable and∫
E

f(x) dx = 0.

(iv) If f is integrable on E and f ≥ 0 (a.e.) on E, then∫
E

f(x) dx ≥ 0.

(v) If f ≥ 0 (a.e.) on E and
∫

E f(x) dx = 0, then f = 0
(a.e.) on E.

(vi) (Monotonicity) If f and g are both integrable and
f ≤ g (a.e.), then∫

E

f(x) dx ≤
∫

E

g(x) dx.

(vii) (Absolute integrability) If f is integrable on E,
then |f | is also integrable on E, moreover,∣∣∣∣ ∫

E

f(x) dx

∣∣∣∣ ≤ ∫
E

|f |(x) dx.

(viii) If f is integrable on E, then f is integrable on each
measurable subset F ⊂ E. Moreover,∣∣∣∣ ∫

F

f(x) dx

∣∣∣∣ ≤ ∫
F

|f |(x) dx ≤
∫

E

|f |(x) dx.
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Proof. We only give a proof of (v), the others are standard
and very easy, so omitted.

(v) Let f ≥ 0 (a.e.) on E and
∫

E f(x) dx = 0. Then

0 =

∫
E

f(x) dx = lim
n→∞

∫
En

[f ]n(x) dx ≥
∫

En

[f ]n(x) dx

=

∫
En(f< 1

n )
[f ]n(x) dx+

∫
En(f≥ 1

n )
[f ]n(x) dx

≥
∫

En(f≥ 1
n )

[f ]n(x) dx ≥
1

n
m

(
En

(
f ≥ 1

n

))
,

so that m(En(f ≥ 1
n)) = 0 for all n ∈ N.

On the other hand, we show

E(f > 0) =
∞⋃

n=1

En

(
f ≥ 1

n

)
.

Clearly, it suffices to prove

E(f > 0) ⊂
∞⋃

n=1

En

(
f ≥ 1

n

)
.

Indeed, let x ∈ E(f > 0). Then f(x) = c > 0. Take n ∈ N
such that c ≥ 1

n . Then

x ∈ E(f ≥ 1

n
) =

∞⋃
m=1

Em

(
f ≥ 1

n

)
,

so that there is m ∈ N such that x ∈ Em(f ≥ 1
n). Denote

N := max{m,n}. Then

x ∈ Em

(
f ≥ 1

n

)
⊂ Em

(
f ≥ 1

N

)
⊂ EN

(
f ≥ 1

N

)
.

This proves the inclusion relation desired.
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Therefore,

m(E(f > 0)) =m

( ∞⋃
n=1

En(f ≥
1

n
)

)

≤
∞∑

n=1

m(En(f ≥
1

n
)) = 0.

�

Remark. From (vi) above, we observe that f is inte-
grable on E if and only if |f | is integrable on E,
however, it is not true for generalized Riemann integrals.
For example, consider the function f on (0,∞) defined by

f(x) :=
sin x

x
, 0 < x <∞.

Then f is generalized Riemann integrable, however, |f |
is not generalized Riemann integrable. In addition, f is
not Lebesgue integrable. Thus, the new integral is an
extension of the proper Riemann integral (or, the
improper Riemann integral of non-negative func-
tions), not the general improper Riemann integral.
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Theorem. (Complete continuity) Let f be integrable
on E. Then for each ε > 0, there is a δ > 0 such that∣∣∣∣ ∫

E′
f(x) dx

∣∣∣∣ < ε

for every measurable subset E ′ ⊂ E with m(E ′) < δ.

Proof. Notice that f integrable if and only if |f | is inte-
grable. By the definition of integrals,

lim
n→∞

∫
En

[|f |]n(x) dx =

∫
E

|f(x)| dx <∞,

where {En} is a finite monotonic cover of m(E). Let ε > 0
arbitrary. Then there is N ∈ N such that∫

E

|f(x)| dx−
∫

EN

[|f |]N(x) dx <
ε

2
.

Take δ = ε
2(N+1) . Then for each E ′ ⊂ E with m(E ′) < δ we

have ∣∣∣∣ ∫
E′
f(x) dx

∣∣∣∣ ≤ ∫
E′
|f |(x) dx

=

∫
E′

(|f |(x)− [|f |]N(x)) dx+

∫
E′

[|f |]N(x) dx

≤
∫

E

(|f |(x)− [|f |]N(x)) dx+N ·m(E ′)

≤
∫

E

|f(x)| dx−
∫

EN

[|f |]N(x) dx+
N

2(N + 1)
ε

<
ε

2
+
ε

2
= ε.

�

Remark. ε↔ approximation ↔ lim.
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Let f be integrable on E and let E1, E2 be two measurable
subsets of E with E = E1 ∪ E2 and E1 ∩ E2 = ∅. By the
monotonicity, f is integrable on E1 and E2. In addition,
we have ∫

E

f(x) dx =

∫
E1

f(x) dx+

∫
E2

f(x) dx.

This is the finite additivity so called. Further on, we
have the following countable additivity.

Theorem. (Countable additivity) Let f be a mea-
surable function on E, and let {En} be a sequence of mea-
surable subsets of E satisfying Ei ∩ Ej = ∅ for i 6= j and
E =

⋃∞
n=1En. Then f is integrable on E if and only if

(i) f is integrable on En for all n ∈ N;

(ii)
∑∞

n=1

∫
En
|f(x)| dx <∞.

Moreover, if f is integrable on E then∫
E

f(x) dx =
∞∑

n=1

∫
En

f(x) dx.(0.11)

Proof. Necessity. Let f be integrable on E. Notice that f
is integrable if and only if |f | is integrable, so that∫

En

|f |(x) dx ≤
∫

E

|f |(x) dx <∞

for all n ∈ N. This yields (i). On the other hand, by the
finite additivity of integrals, we have

m∑
n=1

∫
En

|f |(x) dx =

∫
∪m

n=1En

|f |(x) dx

≤
∫

E

|f |(x) dx <∞



CHEN CHUANG: LECTURES ON REAL ANALYSIS 172

for all m ∈ N. By letting m → ∞ in both sides of the
inequality above we obtain (ii). In fact, we have

∞∑
n=1

∫
En

|f |(x) dx ≤
∫

E

|f |(x) dx.(0.12)

Sufficiency. Let {Fn} be a finite monotonic cover ofm(E).
We will prove that |f | is integrable. By definition, it suffices
to show the limit

lim
n→∞

∫
Fn

[|f |]n(x) dx <∞.

Notice that {F ′
n} with

F ′
n := Fn ∩

( n⋃
k=1

Ek

)
=

n⋃
k=1

(Fn ∩ Ek) (n ∈ N)

is a finite monotonic cover of m(E) as well, then by the
finite additivity of integrals of bounded functions on sets
with finite measures, we have∫

F ′n

[|f |]n(x) dx =
n∑

k=1

∫
Fn∩Ek

[|f |]n(x) dx

≤
n∑

k=1

∫
Ek

|f |(x) dx ≤
∞∑

k=1

∫
Ek

|f |(x) dx.

By letting n→∞ we obtain the inequality desired. In fact,
we have ∫

E

|f |(x) dx ≤
∞∑

n=1

∫
En

|f |(x) dx.(0.13)

In addition, it follows from (0.12) and (0.13) that

∞∑
n=1

∫
En

|f |(x) dx =

∫
E

|f |(x) dx.(0.14)



CHEN CHUANG: LECTURES ON REAL ANALYSIS 173

Finally, we prove the equality (0.11). Indeed, it follows
from the finite additivity property and (0.14) that∣∣∣∣ ∫

E

f(x) dx−
m∑

n=1

∫
En

f(x) dx

∣∣∣∣
=

∣∣∣∣ ∫
E

f(x) dx−
∫

⋃m
n=1 En

f(x) dx

∣∣∣∣ =

∣∣∣∣ ∫
E\

⋃m
n=1 En

f(x) dx

∣∣∣∣
≤

∫
E\

⋃m
n=1 En

|f |(x) dx =

∫
E

|f |(x) dx−
∫

⋃m
n=1 En

|f |(x) dx

=
∞∑

n=m+1

∫
En

|f |(x) dx→ 0, m→∞.

�
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Theorem. (Relation of integrable function and
continuous function) Let f be integrable on E = [a, b].
Then for each ε > 0, there is a function fε continuous on
[a, b] such that

(L)

∫ b

a

|f(x)− fε(x)| dx < ε.

Proof. Let ε > 0 and let {En} be a finite monotonic cover
of m(E). By definition, we have∫

E

∣∣f(x)− [f ]n(x)
∣∣ dx =

∫
E

(f(x)− [f ]n(x)) dx

=

∫
E

f(x) dx−
∫

E

[f ]n(x) dx

≤
∫

E

f(x) dx−
∫

En

[f ]n(x) dx→ 0

as n→∞, so that there is N ∈ N such that∫
E

∣∣f(x)− [f ]N(x)
∣∣ dx < ε

2
.

Take δ = ε
4N . For the function [f ]N , by the Lusin’s theorem,

there are measurable subset Eδ ⊂ E with m(E \ Eδ) < δ
and continuous function g on E with |g| ≤ N such that
[f ]N = g on Eδ. g is just the function fε we desired. Indeed,∫

E

|f(x)− g(x)| dx ≤
∫

E

∣∣f(x)− [f ]N(x)
∣∣ dx

+

∫
E

∣∣[f ]N(x)− g(x)
∣∣ dx

<
ε

2
+

∫
E\Eδ

∣∣[f ]N(x)− g(x)
∣∣ dx

≤ ε
2

+ 2N ·m(E \ Eδ) <
ε

2
+
ε

2
= ε.

�
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§3. Limit theorems

In this section, we introduce three theorems of extreme
importance in the theory of analysis: Lebesgue domi-
nated convergence theorem, Levi lemma and Fatou
lemma.

Let f and g be integrable functions on E ⊂ R. Recall
that the linear property of the integral reads that∫

R
cf(x) dx = c

∫
R
f(x) dx

for c ∈ R and∫
R
(f(x) + g(x)) dx =

∫
R
f(x) dx+

∫
R
g(x) dx.

The first equality shows that the order of operations of
scalar-multiplication and integral can be exchanged and the
second equality implies that the operations of addition and
integral can be exchanged, unconditionally.

However, it is not true for operations of the limit and
integral. See the following

Counterexample. Let fn = χ[n,n+1) for n ∈ N. It is
clear that ∫

R
fn(x) dx = 1, n = 1, 2, · · · .

Moreover, for each x ∈ R fixed, limn→∞ fn(x) = 0. Thus,

1 = lim
n→∞

∫
R
fn(x) dx 6=

∫
R

lim
n→∞

fn(x) dx = 0.

Lebesgue dominated convergence theorem

Question. Under what conditions, the order of opera-
tions lim and

∫
can be exchanged?
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To solve this problem, we need the following “dominant
function” so called.

Dominant function. Let E ⊂ R be a measurable set
and {fn} a sequence of measurable functions on E, and
let F be a non-negative measurable function on E. We
say that {fn} is dominated by F (or F is a dominant
function of {fn}) if |fn| ≤ F (a.e.) for all n ∈ N.

Theorem. (Lebesgue dominated convergence) Let
{fn} be a sequence of measurable functions on E domi-
nated by an integrable function F . If fn converges almost
everywhere to a measurable function f on E, then f is
integrable on E and

lim
n→∞

∫
E

fn(x) dx =

∫
E

f(x) dx.

Remark. The Lebesgue dominated convergence theorem
reads that

lim
n→∞

∫
E

=

∫
E

lim
n→∞

whenever {fn} can be dominated by an integrable func-
tion.

Proof. Notice that |f | ≤ F (a.e.), so f is integrable on E
due to the integrability of F . It suffices to show

lim
n→∞

∫
E

(fn(x)− f(x)) dx = 0.(0.15)

To show (0.15) hold, we need an estimate for the integral∫
E

|fn(x)− f(x)| dx.

Step I. Let m(E) < ∞ and let ε > 0 arbitrary. Since F
is integrable on E, by the complete continuity of integral,
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there is a δ > 0 such that∫
E′
F (x) dx <

ε

4
(0.16)

for each measurable subset E ′ ⊂ E with m(E ′) < δ. On
the other hand, since fn → f (a.e.), by Egoroff’s theorem,
for the δ above, there is a measurable subset Eδ ⊂ E with
m(E \ Eδ) < δ such that fn ⇒ f on Eδ. Thus, for the ε
above, there is N ∈ N such that

sup
x∈Eδ

|fn(x)− f(x)| ≤ ε

2m(E) + 1(0.17)

for all n ≥ N . Therefore, it follows from (0.16) and (0.17)
that ∣∣∣∣ ∫

E

(fn(x)− f(x)) dx

∣∣∣∣ ≤ ∫
E

|fn(x)− f(x)| dx

=

∫
E\Eδ

|fn(x)− f(x)| dx+

∫
Eδ

|fn(x)− f(x)| dx

≤
∫

E\Eδ

2F (x) dx+

∫
Eδ

ε

2m(E) + 1
dx

<
ε

2
+
ε

2
= ε

for all n ≥ N . This proves (0.15).

Step II. For general E (not necessarily m(E) < ∞), it
is a little complicated. Let ε > 0 arbitrary, and let {Ek}
be a finite monotonic cover of m(E). By the definition of
integral,

lim
k→∞

∫
Ek

[F ]k(x) dx =

∫
E

F (x) dx,

so that there is K ∈ N such that∫
E

F (x) dx−
∫

Ek

[F ]k(x) dx <
ε

4
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for all k ≥ K. Thus,

sup
n∈N

∫
E\Ek

|fn(x)− f(x)| dx ≤ 2

∫
E\Ek

F (x) dx

=2

( ∫
E

F (x) dx−
∫

Ek

F (x) dx

)
≤2

( ∫
E

F (x) dx−
∫

Ek

[F ]k(x) dx

)
<
ε

2

(0.18)

for all k ≥ K. Consider the special value k = K. Notice
that m(EK) < ∞. By the step I, for the ε above, there is
N ∈ N such that∫

EK

|fn(x)− f(x)| dx < ε

2
(0.19)

for all n ≥ N . Then it follows from (0.18) and (0.19) that∫
E

|fn(x)− f(x)| dx =

∫
E\EK

|fn(x)− f(x)| dx

+

∫
EK

|fn(x)− f(x)| dx < ε

2
+
ε

2
= ε

for all n ≥ N . This completes the proof. �
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Levi lemma. (Monotonic convergence) Let {fn} be an
increasing sequence of integrable functions on E. If

sup
n∈N

∫
E

fn(x) dx := M <∞,

then fn → f (a.e.) for some function f integrable on E.
Moreover,

lim
n→∞

∫
E

fn(x) dx =

∫
E

f(x) dx.

Proof. Step I. Suppose that fn ≥ 0 for all n ∈ N . Notice
that

f1 ≤ f2 ≤ · · · ≤ fn ≤ · · · ,

by denoting f ∗(x) := limn→∞ fn(x) for x ∈ E, then f ∗ is a
function from E to [0,∞].

We first show that m(E(f ∗ = ∞)) = 0. Let {En} be a
finite monotonic cover of m(E). Notice that

E(f ∗ = ∞) =
∞⋃

n=1

En(f
∗ = ∞) = lim

n→∞
En(f

∗ = ∞),

since {En(f
∗ = ∞)} is an increasing sequence. It suffices

to show m(En(f
∗ = ∞)) = 0 for all n ∈ N. Indeed, for

N > 0 arbitrary, notice that

0 ≤ [f1]N ≤ [f2]N ≤ · · · ≤ [fn]N ≤ · · · → [f ∗]N ,

then by the Lebesgue’s dominated convergence theorem, we
obtain ∫

EN

[f ∗]N(x) dx = lim
n→∞

∫
EN

[fn]N(x) dx

≤ lim
n→∞

∫
E

fn(x) dx ≤M.

(0.20)
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For f ∗(x) > N , [f ∗]N = N , so that E([f ∗]N = N) is mea-
surable, and from (0.20) it follows that

m(En(f
∗ ≥ N)) =m(En([f

∗]N = N))

=
1

N

∫
En([f∗]N=N)

[f ∗]N(x) dx

≤ 1

N

∫
EN

[f ∗]N(x) dx ≤ M

N
, N ≥ n,

which implies that limN→∞m(En(f
∗ ≥ N)) = 0. Thus,

m(En(f
∗ = ∞)) =m

( ∞⋂
N=1

En(f
∗ ≥ N)

)
=m

(
lim

N→∞
En(f

∗ ≥ N)

)
= lim

N→∞
m

(
En(f

∗ ≥ N)

)
= 0.

Next, define a function f by

f(x) :=

{
f ∗(x), f ∗(x) <∞;

0, f ∗(x) = ∞.

Then f = f ∗ (a.e.), so that fn → f (a.e.) as n → ∞.
Further on, it follows from (0.20) that∫

EN

[f ]N(x) dx =

∫
EN

[f ∗]N(x) dx ≤
∫

E

[f ∗]N(x) dx ≤M,

while
∫

EN
[f ]N(x) dx is increasing with respect to the index

N ∈ N, so that the limit

lim
N→∞

∫
EN

[f ]N(x) dx ≤M <∞.

This proves f is integrable on E.
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Finally, notice that f is a dominant function of fn, again
by the Lebesgue’s dominated convergence theorem, we ob-
tain

lim
n→∞

∫
E

fn(x) dx =

∫
E

f(x) dx.

Step II. For general sequence {fn}, consider

gn := fn − f1, n ∈ N.

It is clear that gn is non-negative for all n ∈ N. Then by the
step I, {gn} converges almost everywhere to an integrable
g on E, or equivalently, {fn} converges almost everywhere
to an integrable f on E, and

lim
n→∞

∫
E

gn(x) dx = lim
n→∞

( ∫
E

fn(x) dx−
∫

E

f1(x) dx

)
=

∫
E

lim
n→∞

gn(x) dx =

∫
E

(
lim
n→∞

fn(x)− f1(x)

)
dx.

Therefore, the limit limn→∞
∫

E fn(x) dx exists and

lim
n→∞

∫
E

fn(x) dx =

∫
E

f(x) dx.

This completes the proof. �

By considering the part sum
∑n

k=1 uk := fn, we obtain
the following series version of Levi’s lemma, immediately.

Levi lemma II. Let {un} be a sequence of non-negative
integrable functions on E. If

∑∞
n=1

∫
E un(x) dx < ∞, then∑∞

n=1 un = u (a.e.) for some integrable function u on E,
and ∫

E

u(x) dx =
∞∑

n=1

∫
E

un(x) dx.
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Counterexample. Consider the sequence of functions
fn defined on [0, 1] by

fn(x) :=

{
1
x

∣∣ sin 1
x

∣∣, 1
n ≤ x ≤ n;

0, 0 ≤ x < 1
n .

It is clear that {fn} is increasing and

fn(x) → f(x) =

{
1
x

∣∣ sin 1
x

∣∣, 0 < x ≤ 1;

0, x = 0.

However, f is not integrable on [0, 1]. Observe that

lim
n→∞

(L)

∫ 1

0
fn(x) dx = ∞

in this example. Thus, the condition

“ sup
n∈N

∫
E

fn(x) dx <∞”

in Levi’s lemma is indispensable.

Counterexample II. For n ∈ N, define un : R → R by

un := χ[n,n+1) − χ[n+1,n+2).

It is clear that
∞∑

n=1

∫
R
un(x) dx = 0 <∞

and
∑n

k=1 uk(x) converges in point-wise sense to an inte-
grable function u:

u(x) =

{
1, x ∈ [1, 2);

0, otherwise.

However,∫
R

∞∑
n=1

un(x) dx = 1 6= 0 =
∞∑

n=1

∫
R
un(x) dx.
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Fatou lemma.

Recall that the sequence of functions fn : R → R defined
by f := χ[n,n+1) can not be dominated by an integrable on
R. Further on, we have

lim
n→∞

∫
R
fn(x) dx 6=

∫
R

lim
n→∞

fn(x) dx.

In fact,∫
R

lim
n→∞

fn(x) dx = 0 < 1 = lim
n→∞

∫
R
fn(x) dx.

This example shows that it is possible for some non-negative
sequence {fn} that∫

R
lim
n→∞

fn(x) dx < lim
n→∞

∫
R
fn(x) dx.

However, the inverse inequality can not be happen,
which is stated in detail in the following

Fatou lemma. Let {fn} be a sequence of integrable
functions on E. If fn ≥ h (a.e.) for some function h inte-
grable on E and

lim
n→∞

∫
E

fn(x) dx <∞,

then the function limn→∞ fn is integrable on E and∫
E

lim
n→∞

fn(x) dx ≤ lim
n→∞

∫
E

fn(x) dx.

Proof. For x ∈ E, we write

Fn,m(x) := min{fn(x), fn+1(x), · · · , fn+m(x)}, n,m ∈ N.

Then

lim
n→∞

lim
m→∞

Fn,m(x) := lim
n→∞

inf
m≥n

fm(x) = lim
n→∞

fn(x).



CHEN CHUANG: LECTURES ON REAL ANALYSIS 184

Fix n ∈ N. Notice that Fn,m ≥ h for all m ∈ N and
{Fn,m}∞m=1 is decreasing, so that by Levi’s lemma Fn,m →
Fn (a.e.) as m→∞ for some integrable function Fn and

lim
m→∞

∫
E

Fn,m(x) dx =

∫
E

lim
m→∞

Fn,m(x) dx =

∫
E

Fn(x) dx.

On the other hand, by letting m → ∞ in the following
inequality∫

E

Fn,m(x) dx ≤ min

{ ∫
E

fn(x) dx, · · · ,
∫

E

fn+m(x) dx

}
,

we obtain ∫
E

Fn(x) dx ≤ inf
m≥n

∫
E

fm(x) dx,

so that

sup
n≥1

∫
E

Fn(x) dx ≤ sup
n≥1

inf
m≥n

∫
E

fm(x) dx

= lim
n→∞

∫
E

fn(x) dx <∞.

Notice that {Fn} is increasing, again by the Levi lemma,
Fn → F (a.e.) for some integrable function F and∫

E

lim
n→∞

fn(x) dx =

∫
E

lim
n→∞

Fn(x) dx

= lim
n→∞

∫
E

Fn(x) dx

= sup
n≥1

∫
E

Fn(x) dx ≤ lim
n→∞

∫
E

fn(x) dx.

This completes the proof. �

Remark. Let {fn} be a sequence of non-negative inte-
grable functions on E and fn → f (a.e.) for some integrable
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function f on E. If the limit

lim
n→∞

∫
E

fn(x) dx <∞,

then by the Fatou lemma we observe that∫
E

lim
n→∞

fn(x) dx ≤ lim
n→∞

∫
E

fn(x) dx,(0.21)

as showed in the beginning of this section. Notice that the
non-negativity of {fn} is indispensable in (0.21), see
the following

Counterexample. Consider functions

fn := −χ[n,n+1), n ∈ N.
It is clear that∫

R
lim
n→∞

fn(x) dx = 0 > −1 = lim
n→∞

∫
R
fn(x) dx.


