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Preface

For more than one hundred years, the development of graph theory was inspired
and guided mainly by the Four-Colour Conjecture. The resolution of the conjecture
by K. Appel and W. Haken in 1976, the year in which our first book Graph Theory
with Applications appeared, marked a turning point in its history. Since then, the
subject has experienced explosive growth, due in large measure to its role as an
essential structure underpinning modern applied mathematics. Computer science
and combinatorial optimization, in particular, draw upon and contribute to the
development of the theory of graphs. Moreover, in a world where communication
is of prime importance, the versatility of graphs makes them indispensable tools
in the design and analysis of communication networks.

Building on the foundations laid by Claude Berge, Paul Erdos, Bill Tutte, and
others, a new generation of graph-theorists has enriched and transformed the sub-
ject by developing powerful new techniques, many borrowed from other areas of
mathematics. These have led, in particular, to the resolution of several longstand-
ing conjectures, including Berge’s Strong Perfect Graph Conjecture and Kneser’s
Conjecture, both on colourings, and Gallai’s Conjecture on cycle coverings.

One of the dramatic developments over the past thirty years has been the
creation of the theory of graph minors by G. N. Robertson and P. D. Seymour. In
a long series of deep papers, they have revolutionized graph theory by introducing
an original and incisive way of viewing graphical structure. Developed to attack
a celebrated conjecture of K. Wagner, their theory gives increased prominence to
embeddings of graphs in surfaces. It has led also to polynomial-time algorithms
for solving a variety of hitherto intractable problems, such as that of finding a
collection of pairwise-disjoint paths between prescribed pairs of vertices.

A technique which has met with spectacular success is the probabilistic method.
Introduced in the 1940s by Erdés, in association with fellow Hungarians A. Rényi
and P. Turén, this powerful yet versatile tool is being employed with ever-increasing
frequency and sophistication to establish the existence or nonexistence of graphs,
and other combinatorial structures, with specified properties.
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As remarked above, the growth of graph theory has been due in large measure
to its essential role in the applied sciences. In particular, the quest for efficient
algorithms has fuelled much research into the structure of graphs. The importance
of spanning trees of various special types, such as breadth-first and depth-first
trees, has become evident, and tree decompositions of graphs are a central ingre-
dient in the theory of graph minors. Algorithmic graph theory borrows tools from
a number of disciplines, including geometry and probability theory. The discovery
by S. Cook in the early 1970s of the existence of the extensive class of seemingly
intractable N'P-complete problems has led to the search for efficient approxima-
tion algorithms, the goal being to obtain a good approximation to the true value.
Here again, probabilistic methods prove to be indispensable.

The links between graph theory and other branches of mathematics are becom-
ing increasingly strong, an indication of the growing maturity of the subject. We
have already noted certain connections with topology, geometry, and probability.
Algebraic, analytic, and number-theoretic tools are also being employed to consid-
erable effect. Conversely, graph-theoretical methods are being applied more and
more in other areas of mathematics. A notable example is Szemerédi’s regularity
lemma. Developed to solve a conjecture of Erdds and Turan, it has become an
essential tool in additive number theory, as well as in extremal conbinatorics. An
extensive account of this interplay can be found in the two-volume Handbook of
Combinatorics.

It should be evident from the above remarks that graph theory is a flour-
ishing discipline. It contains a body of beautiful and powerful theorems of wide
applicability. The remarkable growth of the subject is reflected in the wealth of
books and monographs now available. In addition to the Handbook of Combina-
torics, much of which is devoted to graph theory, and the three-volume treatise on
combinatorial optimization by Schrijver (2003), destined to become a classic, one
can find monographs on colouring by Jensen and Toft (1995), on flows by Zhang
(1997), on matching by Lovdsz and Plummer (1986), on extremal graph theory by
Bollobds (1978), on random graphs by Bollobds (2001) and Janson et al. (2000),
on probabilistic methods by Alon and Spencer (2000) and Molloy and Reed (1998),
on topological graph theory by Mohar and Thomassen (2001), on algebraic graph
theory by Biggs (1993), and on digraphs by Bang-Jensen and Gutin (2001), as
well as a good choice of textbooks. Another sign is the significant number of new
journals dedicated to graph theory.

The present project began with the intention of simply making minor revisions
to our earlier book. However, we soon came to the realization that the changing
face of the subject called for a total reorganization and enhancement of its con-
tents. As with Graph Theory with Applications, our primary aim here is to present
a coherent introduction to the subject, suitable as a textbook for advanced under-
graduate and beginning graduate students in mathematics and computer science.
For pedagogical reasons, we have concentrated on topics which can be covered
satisfactorily in a course. The most conspicuous omission is the theory of graph
minors, which we only touch upon, it being too complex to be accorded an adequate
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treatment. We have maintained as far as possible the terminology and notation of
our earlier book, which are now generally accepted.

Particular care has been taken to provide a systematic treatment of the theory
of graphs without sacrificing its intuitive and aesthetic appeal. Commonly used
proof techniques are described and illustrated. Many of these are to be found in
insets, whereas others, such as search trees, network flows, the regularity lemma
and the local lemma, are the topics of entire sections or chapters. The exercises,
of varying levels of difficulty, have been designed so as to help the reader master
these techniques and to reinforce his or her grasp of the material. Those exercises
which are needed for an understanding of the text are indicated by a star. The
more challenging exercises are separated from the easier ones by a dividing line.

A second objective of the book is to serve as an introduction to research in
graph theory. To this end, sections on more advanced topics are included, and a
number of interesting and challenging open problems are highlighted and discussed
in some detail. These and many more are listed in an appendix.

Despite this more advanced material, the book has been organized in such a way
that an introductory course on graph theory may be based on the first few sections
of selected chapters. Like number theory, graph theory is conceptually simple, yet
gives rise to challenging unsolved problems. Like geometry, it is visually pleasing.
These two aspects, along with its diverse applications, make graph theory an ideal
subject for inclusion in mathematical curricula.

We have sought to convey the aesthetic appeal of graph theory by illustrating
the text with many interesting graphs — a full list can be found in the index.
The cover design, taken from Chapter 10, depicts simultaneous embeddings on the
projective plane of Kg and its dual, the Petersen graph.

A Web page for the book is available at
http://blogs.springer.com/bondyandmurty

The reader will find there hints to selected exercises, background to open problems,
other supplementary material, and an inevitable list of errata. For instructors
wishing to use the book as the basis for a course, suggestions are provided as to
an appropriate selection of topics, depending on the intended audience.

We are indebted to many friends and colleagues for their interest in and
help with this project. Tommy Jensen deserves a special word of thanks. He
read through the entire manuscript, provided numerous unfailingly pertinent com-
ments, simplified and clarified several proofs, corrected many technical errors and
linguistic infelicities, and made valuable suggestions. Others who went through
and commented on parts of the book include Noga Alon, Roland Assous, Xavier
Buchwalder, Genghua Fan, Frédéric Havet, Bill Jackson, Stephen Locke, Zsolt
Tuza, and two anonymous readers. We were most fortunate to benefit in this way
from their excellent knowledge and taste.

Colleagues who offered advice or supplied exercises, problems, and other help-
ful material include Michael Albertson, Marcelo de Carvalho, Joseph Cheriyan,
Roger Entringer, Herbert Fleischner, Richard Gibbs, Luis Goddyn, Alexander
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Kelmans, Henry Kierstead, Laszlé Lovéasz, Claudio Lucchesi, George Purdy, Di-
eter Rautenbach, Bruce Reed, Bruce Richmond, Neil Robertson, Alexander Schri-
jver, Paul Seymour, Miklés Simonovits, Balazs Szegedy, Robin Thomas, Stéphan
Thomassé, Carsten Thomassen, and Jacques Verstraéte. We thank them all warmly
for their various contributions. We are grateful also to Martin Crossley for allowing
us to use (in Figure 10.24) drawings of the Mdbius band and the torus taken from
his book Crossley (2005).

Facilities and support were kindly provided by Maurice Pouzet at Université
Lyon 1 and Jean Fonlupt at Université Paris 6. The glossary was prepared using
software designed by Nicola Talbot of the University of East Anglia. Her promptly-
offered advice is much appreciated. Finally, we benefitted from a fruitful relation-
ship with Karen Borthwick at Springer, and from the technical help provided by
her colleagues Brian Bishop and Frank Ganz.

We are dedicating this book to the memory of our friends Claude Berge, Paul
Erdés, and Bill Tutte. It owes its existence to their achievements, their guiding
hands, and their personal kindness.

J.A. Bondy and U.S.R. Murty

September 2007
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1.1 Graphs and Their Representation

DEFINITIONS AND EXAMPLES

Many real-world situations can conveniently be described by means of a diagram
consisting of a set of points together with lines joining certain pairs of these points.
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For example, the points could represent people, with lines joining pairs of friends; or
the points might be communication centres, with lines representing communication
links. Notice that in such diagrams one is mainly interested in whether two given
points are joined by a line; the manner in which they are joined is immaterial. A
mathematical abstraction of situations of this type gives rise to the concept of a
graph.

A graph G is an ordered pair (V(G), E(G)) consisting of a set V(G) of vertices
and a set E(G), disjoint from V(G), of edges, together with an incidence function
1 that associates with each edge of G an unordered pair of (not necessarily
distinct) vertices of G. If e is an edge and w and v are vertices such that g(e) =
{u,v}, then e is said to join u and v, and the vertices u and v are called the ends
of e. We denote the numbers of vertices and edges in G by v(G) and e(G); these
two basic parameters are called the order and size of G, respectively.

Two examples of graphs should serve to clarify the definition. For notational
simplicity, we write uv for the unordered pair {u,v}.

Ezxzample 1.
G = (V(G),E(G))

where
V(G) = {u7v7w’x5 y}
E(G) = {avbv C7d7eafagvh}

and ¥ is defined by

vala) =uv Ygb) =uu Yg(c) =vw Yg(d) =wx
Yale) =vr Ya(f) =wz Yalg) =ur Pa(h)=1zy

Ezample 2.
H=(V(H),E(H))
where

V(H) = {00701,712,”3»”4705}
E(H) = {617627637643651667677687693610}

and ¢y is defined by

Yr(er) = vive Yr(e2) = vavs Yr(es) = v3va Yr(es) = vavs Yr(es) = vsv1
Y (es) = vov1 Yu(er) = vova Yu(es) = vovz Yu(e9) = vova Yu(e10) = vovs

DRAWINGS OF GRAPHS

Graphs are so named because they can be represented graphically, and it is this
graphical representation which helps us understand many of their properties. Each
vertex is indicated by a point, and each edge by a line joining the points represent-
ing its ends. Diagrams of G and H are shown in Figure 1.1. (For clarity, vertices
are represented by small circles.)
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V4 €3 U3

H

Fig. 1.1. Diagrams of the graphs G and H

There is no single correct way to draw a graph; the relative positions of points
representing vertices and the shapes of lines representing edges usually have no
significance. In Figure 1.1, the edges of G are depicted by curves, and those of
H by straight-line segments. A diagram of a graph merely depicts the incidence
relation holding between its vertices and edges. However, we often draw a diagram
of a graph and refer to it as the graph itself; in the same spirit, we call its points
‘vertices’ and its lines ‘edges’.

Most of the definitions and concepts in graph theory are suggested by this
graphical representation. The ends of an edge are said to be incident with the
edge, and vice versa. Two vertices which are incident with a common edge are
adjacent, as are two edges which are incident with a common vertex, and two
distinct adjacent vertices are neighbours. The set of neighbours of a vertex v in a
graph G is denoted by N¢g(v).

An edge with identical ends is called a loop, and an edge with distinct ends a
link. Two or more links with the same pair of ends are said to be parallel edges. In
the graph G of Figure 1.1, the edge b is a loop, and all other edges are links; the
edges d and f are parallel edges.

Throughout the book, the letter G denotes a graph. Moreover, when there is
no scope for ambiguity, we omit the letter G from graph-theoretic symbols and
write, for example, V and E instead of V(G) and E(G). In such instances, we
denote the numbers of vertices and edges of G by n and m, respectively.

A graph is finite if both its vertex set and edge set are finite. In this book, we
mainly study finite graphs, and the term ‘graph’ always means ‘finite graph’. The
graph with no vertices (and hence no edges) is the null graph. Any graph with just
one vertex is referred to as trivial. All other graphs are nontrivial. We admit the
null graph solely for mathematical convenience. Thus, unless otherwise specified,
all graphs under discussion should be taken to be nonnull.

A graph is simple if it has no loops or parallel edges. The graph H in Example 2
is simple, whereas the graph G in Example 1 is not. Much of graph theory is
concerned with the study of simple graphs.
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A set V, together with a set E of two-element subsets of V', defines a simple
graph (V, E), where the ends of an edge wv are precisely the vertices u and v.
Indeed, in any simple graph we may dispense with the incidence function ¢ by
renaming each edge as the unordered pair of its ends. In a diagram of such a
graph, the labels of the edges may then be omitted.

SPECIAL FAMILIES OF GRAPHS

Certain types of graphs play prominent roles in graph theory. A complete graph
is a simple graph in which any two vertices are adjacent, an empty graph one in
which no two vertices are adjacent (that is, one whose edge set is empty). A graph
is bipartite if its vertex set can be partitioned into two subsets X and Y so that
every edge has one end in X and one end in Y such a partition (X,Y) is called
a bipartition of the graph, and X and Y its parts. We denote a bipartite graph
G with bipartition (X,Y) by G[X,Y]. If G[X,Y] is simple and every vertex in X
is joined to every vertex in Y, then G is called a complete bipartite graph. A star
is a complete bipartite graph G[X,Y] with |X| =1 or [Y| = 1. Figure 1.2 shows
diagrams of a complete graph, a complete bipartite graph, and a star.

V1 Y1

Vs V2 Ys Y2

V4 U3 Y1 Y2 Y3 Y4 Y3

(a) (b) (c)

Fig. 1.2. (a) A complete graph, (b) a complete bipartite graph, and (c) a star

A path is a simple graph whose vertices can be arranged in a linear sequence in
such a way that two vertices are adjacent if they are consecutive in the sequence,
and are nonadjacent otherwise. Likewise, a cycle on three or more vertices is a
simple graph whose vertices can be arranged in a cyclic sequence in such a way
that two vertices are adjacent if they are consecutive in the sequence, and are
nonadjacent otherwise; a cycle on one vertex consists of a single vertex with a
loop, and a cycle on two vertices consists of two vertices joined by a pair of parallel
edges. The length of a path or a cycle is the number of its edges. A path or cycle
of length k is called a k-path or k-cycle, respectively; the path or cycle is odd or
even according to the parity of k. A 3-cycle is often called a triangle, a 4-cycle
a quadrilateral, a 5-cycle a pentagon, a 6-cycle a hexagon, and so on. Figure 1.3
depicts a 3-path and a 5-cycle.
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U1
us Ul

Ug U2 V4 U3

(a) (0)

Fig. 1.3. (a) A path of length three, and (b) a cycle of length five

A graph is connected if, for every partition of its vertex set into two nonempty
sets X and Y, there is an edge with one end in X and one end in Y’; otherwise the
graph is disconnected. In other words, a graph is disconnected if its vertex set can
be partitioned into two nonempty subsets X and Y so that no edge has one end
in X and one end in Y. (It is instructive to compare this definition with that of
a bipartite graph.) Examples of connected and disconnected graphs are displayed
in Figure 1.4.

Fig. 1.4. (a) A connected graph, and (b) a disconnected graph

As observed earlier, examples of graphs abound in the real world. Graphs also
arise naturally in the study of other mathematical structures such as polyhedra,
lattices, and groups. These graphs are generally defined by means of an adjacency
rule, prescribing which unordered pairs of vertices are edges and which are not. A
number of such examples are given in the exercises at the end of this section and
in Section 1.3.

For the sake of clarity, we observe certain conventions in representing graphs by
diagrams: we do not allow an edge to intersect itself, nor let an edge pass through
a vertex that is not an end of the edge; clearly, this is always possible. However,
two edges may intersect at a point that does not correspond to a vertex, as in the
drawings of the first two graphs in Figure 1.2. A graph which can be drawn in the
plane in such a way that edges meet only at points corresponding to their common
ends is called a planar graph, and such a drawing is called a planar embedding
of the graph. For instance, the graphs G and H of Examples 1 and 2 are both



6 1 Graphs

planar, even though there are crossing edges in the particular drawing of G shown
in Figure 1.1. The first two graphs in Figure 1.2, on the other hand, are not planar,
as proved later.

Although not all graphs are planar, every graph can be drawn on some surface
so that its edges intersect only at their ends. Such a drawing is called an embedding
of the graph on the surface. Figure 1.21 provides an example of an embedding of a
graph on the torus. Embeddings of graphs on surfaces are discussed in Chapter 3
and, more thoroughly, in Chapter 10.

INCIDENCE AND ADJACENCY MATRICES

Although drawings are a convenient means of specifying graphs, they are clearly
not suitable for storing graphs in computers, or for applying mathematical methods
to study their properties. For these purposes, we consider two matrices associated
with a graph, its incidence matrix and its adjacency matrix.

Let G be a graph, with vertex set V' and edge set E. The incidence matrix of
G is the n x m matrix Mg := (mye), where m,, is the number of times (0, 1, or 2)
that vertex v and edge e are incident. Clearly, the incidence matrix is just another
way of specifying the graph.

The adjacency matriz of G is the n X n matrix Ag := (ayy), where a,, is the
number of edges joining vertices u and v, each loop counting as two edges. Incidence
and adjacency matrices of the graph G of Figure 1.1 are shown in Figure 1.5.

‘abcdefgh UV wWITY
(12000010 w(21010
v(10101000 vi10110
wl00110100 wl01020
z/00011111 z(11201
y00000001 y|00010
M A

Fig. 1.5. Incidence and adjacency matrices of a graph

Because most graphs have many more edges than vertices, the adjacency matrix
of a graph is generally much smaller than its incidence matrix and thus requires
less storage space. When dealing with simple graphs, an even more compact rep-
resentation is possible. For each vertex v, the neighbours of v are listed in some
order. A list (N(v) : v € V) of these lists is called an adjacency list of the graph.
Simple graphs are usually stored in computers as adjacency lists.

When G is a bipartite graph, as there are no edges joining pairs of vertices
belonging to the same part of its bipartition, a matrix of smaller size than the
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adjacency matrix may be used to record the numbers of edges joining pairs of
vertices. Suppose that G[X,Y] is a bipartite graph, where X := {x1,22,...,2,}
and Y := {y1,y2, ..., ys}. We define the bipartite adjacency matriz of G to be the
r x s matrix Bg = (b;;), where b;; is the number of edges joining z; and y;.

VERTEX DEGREES

The degree of a vertex v in a graph G, denoted by dg(v), is the number of edges of
G incident with v, each loop counting as two edges. In particular, if G is a simple
graph, dg(v) is the number of neighbours of v in G. A vertex of degree zero is called
an isolated vertex. We denote by 6(G) and A(G) the minimum and maximum
degrees of the vertices of G, and by d(G) their average degree, £ 37 _\, d(v). The
following theorem establishes a fundamental identity relating the degrees of the
vertices of a graph and the number of its edges.

Theorem 1.1 For any graph G,

> dw) =2m (1.1)

veV

Proof Consider the incidence matrix M of G. The sum of the entries in the row
corresponding to vertex v is precisely d(v). Therefore ) . d(v) is just the sum
of all the entries in M. But this sum is also 2m, because each of the m column
sums of M is 2, each edge having two ends. O

Corollary 1.2 In any graph, the number of vertices of odd degree is even.
Proof Cousider equation (1.1) modulo 2. We have

d(v) = 1 (mod 2) if d(v) is odd,
=70 (mod 2) if d(v) is even.

Thus, modulo 2, the left-hand side is congruent to the number of vertices of odd
degree, and the right-hand side is zero. The number of vertices of odd degree is
therefore congruent to zero modulo 2. O

A graph G is k-regular if d(v) = k for all v € V; a regular graph is one that
is k-regular for some k. For instance, the complete graph on n vertices is (n — 1)-
regular, and the complete bipartite graph with &k vertices in each part is k-regular.
For £ = 0,1 and 2, k-regular graphs have very simple structures and are easily
characterized (Exercise 1.1.5). By contrast, 3-regular graphs can be remarkably
complex. These graphs, also referred to as cubic graphs, play a prominent role in
graph theory. We present a number of interesting examples of such graphs in the
next section.
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PROOF TECHNIQUE: COUNTING IN TwO WAYS

In proving Theorem 1.1, we used a common proof technique in combinatorics,
known as counting in two ways. It consists of considering a suitable matrix
and computing the sum of its entries in two different ways: firstly as the sum
of its row sums, and secondly as the sum of its column sums. Equating these
two quantities results in an identity. In the case of Theorem 1.1, the matrix
we considered was the incidence matrix of GG. In order to prove the identity of
Exercise 1.1.9a, the appropriate matrix to consider is the bipartite adjacency
matrix of the bipartite graph G[X,Y]. In both these cases, the choice of the
appropriate matrix is fairly obvious. However, in some cases, making the right
choice requires ingenuity.

Note that an upper bound on the sum of the column sums of a matrix is
clearly also an upper bound on the sum of its row sums (and vice versa).
The method of counting in two ways may therefore be adapted to establish
inequalities. The proof of the following proposition illustrates this idea.

Proposition 1.3 Let G[X,Y] be a bipartite graph without isolated vertices
such that d(z) > d(y) for allzy € E, wherex € X andy € Y. Then | X| < |Y|,
with equality if and only if d(z) = d(y) for all xzy € E.

Proof The first assertion follows if we can find a matrix with | X| rows and
|Y'| columns in which each row sum is one and each column sum is at most
one. Such a matrix can be obtained from the bipartite adjacency matrix B
of G[X,Y] by dividing the row corresponding to vertex x by d(x), for each
x € X. (This is possible since d(z) # 0.) Because the sum of the entries of B
in the row corresponding to x is d(z), all row sums of the resulting matrix B
are equal to one. On the other hand, the sum of the entries in the column of
B corresponding to vertex y is Y 1/d(x), the sum being taken over all edges
ay incident to y, and this sum is at most one because 1/d(x) < 1/d(y) for
each edge xy, by hypothesis, and because there are d(y) edges incident to y.

The above argument may be expressed more concisely as follows.

EDIDIE T EDID I - ED DI ED DI

z€X yey rzeX zyEE rzeX zyEE yeY zcX
zyeE yey yey zyelr

Furthermore, if | X| = |Y|, the middle inequality must be an equality, imply-
ing that d(z) = d(y) for all zy € E. O

An application of this proof technique to a problem in set theory about geo-
metric configurations is described in Exercise 1.3.15.
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Exercises

1.1.1 Let G be a simple graph. Show that m < (3), and determine when equality
holds.

1.1.2 Let G[X,Y] be a simple bipartite graph, where |X| =r and |Y| = s.

a) Show that m < rs.
b) Deduce that m < n?/4.
¢) Describe the simple bipartite graphs G for which equality holds in (b).

*1.1.3 Show that:

a) every path is bipartite,
b) a cycle is bipartite if and only if its length is even.

1.1.4 Show that, for any graph G, 6(G) < d(G) < A(G).
1.1.5 For k = 0,1, 2, characterize the k-regular graphs.

1.1.6

a) Show that, in any group of two or more people, there are always two who have
exactly the same number of friends within the group.

b) Describe a group of five people, any two of whom have exactly one friend in
common. Can you find a group of four people with this same property?

1.1.7 n-CUBE
The n-cube @Q,, (n > 1) is the graph whose vertex set is the set of all n-tuples of Os
and 1s, where two n-tuples are adjacent if they differ in precisely one coordinate.

a) Draw Q1, Q2, @3, and Q4.
b) Determine v(Q,,) and e(Q,).
¢) Show that @,, is bipartite for all n > 1.

1.1.8 The boolean lattice BL,, (n > 1) is the graph whose vertex set is the set
of all subsets of {1,2,...,n}, where two subsets X and Y are adjacent if their
symmetric difference has precisely one element.

a) Draw BLl, BL27 BLg, and BL4
b) Determine v(BL,) and e(BL,).
¢) Show that BL,, is bipartite for all n > 1.

*1.1.9 Let G[X,Y] be a bipartite graph.

a) Show that ) v d(v) =3 .y d(v).
b) Deduce that if G is k-regular, with & > 1, then |X| = |Y].
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%*1.1.10 k-PARTITE GRAPH

A k-partite graph is one whose vertex set can be partitioned into k subsets, or
parts, in such a way that no edge has both ends in the same part. (Equivalently,
one may think of the vertices as being colourable by k colours so that no edge joins
two vertices of the same colour.) Let G be a simple k-partite graph with parts of

. 1 k
sizes ai,az, ..., ar. Show that m < 537" a;(n — a;).

%1.1.11 TURAN GRAPH

A k-partite graph is complete if any two vertices in different parts are adjacent. A
simple complete k-partite graph on n vertices whose parts are of equal or almost
equal sizes (that is, [n/k| or [n/k]) is called a Turdn graph and denoted T, .

a) Show that T} ,, has more edges than any other simple complete k-partite graph
on n vertices.
b) Determine e(Tk,,,).

1.1.12

a) Show that if G is simple and m > (”51), then G is connected.

b) For n > 1, find a disconnected simple graph G with m = (";1)

1.1.13

a) Show that if G is simple and § > 1(n — 2), then G is connected.
b) For n even, find a disconnected %(n — 2)-regular simple graph.

1.1.14 For a simple graph G, show that the diagonal entries of both A? and MM*
(where M" denotes the transpose of M) are the degrees of the vertices of G.

1.1.15 Show that the rank over GF'(2) of the incidence matrix of a graph G is at
most n — 1, with equality if and only if G is connected.

1.1.16 DEGREE SEQUENCE

If G has vertices vy,vs,...,v,, the sequence (d(vy),d(va),...,d(vy,)) is called a
degree sequence of G. Let d := (dy,ds,...,d,) be a nonincreasing sequence of
nonnegative integers, that is, dy > do > -+ > d,, > 0. Show that:

a) there is a graph with degree sequence d if and only if " | d; is even,
b) there is a loopless graph with degree sequence d if and only if Y | d; is even
and d1 S 2?22 dl

1.1.17 COMPLEMENT OF A GRAPH -
Let G be a simple graph. The complement G of G is the simple graph whose vertex
set is V' and whose edges are the pairs of nonadjacent vertices of G.

a) Express the degree sequence of G in terms of the degree sequence of G.
b) Show that if G is disconnected, then G is connected. Is the converse true?

u
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1.1.18 GRAPHIC SEQUENCE
A sequence d = (dy,da,...,dy,) is graphic if there is a simple graph with degree
sequence d. Show that:

a) the sequences (7,6,5,4,3,3,2) and (6,6,5,4,3,3,1) are not graphic,
b) if d = (d1,da,...,d,) is graphic and dy > dy > -+ > d,,, then >, d; is even

and
n

k
> odi<k(k—1)+ Y min{k,d;}, 1<k<n
i=1 i=k+1

(Erdéds and Gallai (1960) showed that these necessary conditions for a sequence
to be graphic are also sufficient.)

1.1.19 Let d = (dy,ds,...,d,) be a nonincreasing sequence of nonnegative inte-
gers. Set d' := (d2 — 1,d3 — 1,...,dg;+1 — 1,dg, 42, ..., dp).

a) Show that d is graphic if and only if d’ is graphic.

b) Using (a), describe an algorithm which accepts as input a nonincreasing se-
quence d of nonnegative integers, and returns either a simple graph with degree
sequence d, if such a graph exists, or else a proof that d is not graphic.

(V. HAVEL AND S.L. HAKIMI)

1.1.20 Let S be a set of n points in the plane, the distance between any two
of which is at least one. Show that there are at most 3n pairs of points of S at
distance exactly one.

1.1.21 EIGENVALUES OF A GRAPH

Recall that the eigenvalues of a square matrix A are the roots of its characteristic
polynomial det(A — zI). An eigenvalue of a graph is an eigenvalue of its adjacency
matrix. Likewise, the characteristic polynomial of a graph is the characteristic
polynomial of its adjacency matrix. Show that:

a) every eigenvalue of a graph is real,
b) every rational eigenvalue of a graph is integral.

1.1.22

a) Let G be a k-regular graph. Show that:
i) MM" = A + kI, where I is the n x n identity matrix,
ii) k is an eigenvalue of G, with corresponding eigenvector 1, the n-vector in
which each entry is 1.
b) Let G be a complete graph of order n. Denote by J the n x n matrix all of
whose entries are 1. Show that:
HA=J-1,
i) det (J— (1+ M) =(1+A—n)(1+ "L
¢) Derive from (b) the eigenvalues of a complete graph and their multiplicities,
and determine the corresponding eigenspaces.
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1.1.23 Let G be a simple graph.

a) Show that G has adjacency matrix J — I — A.
b) Suppose now that G is k-regular.

i) Deduce from Exercise 1.1.22 that n — k — 1 is an eigenvalue of G, with
corresponding eigenvector 1.

ii) Show that if X\ is an eigenvalue of G different from k, then —1 — X is
an eigenvalue of G, with the same multiplicity. (Recall that eigenvectors
corresponding to distinct eigenvalues of a real symmetric matrix are or-
thogonal.)

1.1.24 Show that:

a) no eigenvalue of a graph G has absolute value greater than A,

b) if G is a connected graph and A is an eigenvalue of G, then G is regular,

¢) if G is a connected graph and —A is an eigenvalue of G, then G is both regular
and bipartite.

1.1.25 STRONGLY REGULAR GRAPH
A simple graph G which is neither empty nor complete is said to be strongly reqular
with parameters (v, k, A, p) if:

> (@) =v,

> G is k-regular,

> any two adjacent vertices of G have A\ common neighbours,

> any two nonadjacent vertices of G have i common neighbours.

Let G be a strongly regular graph with parameters (v, k, A, pt). Show that:

a) G is strongly regular,
b)k(k—A—1)=(v—k—1)pu,
) A2 =kI+ XA +u(J-1-A).

1.2 Isomorphisms and Automorphisms

ISOMORPHISMS

Two graphs G and H are identical, written G = H, if V(G) = V(H), E(G) =
E(H), and ¢ = ¥p. If two graphs are identical, they can clearly be represented by
identical diagrams. However, it is also possible for graphs that are not identical to
have essentially the same diagram. For example, the graphs G and H in Figure 1.6
can be represented by diagrams which look exactly the same, as the second drawing
of H shows; the sole difference lies in the labels of their vertices and edges. Although
the graphs G and H are not identical, they do have identical structures, and are
said to be isomorphic.

In general, two graphs G and H are isomorphic, written G = H, if there are
bijections 0 : V(G) — V(H) and ¢ : E(G) — E(H) such that ¢g(e) = uv if and
only if Yy (o(e)) = O(u)f(v); such a pair of mappings is called an isomorphism
between G and H.
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Fig. 1.6. Isomorphic graphs

In order to show that two graphs are isomorphic, one must indicate an isomor-
phism between them. The pair of mappings (0, ¢) defined by

0 .— (abcd) = (61626364€5€6>
. wzyw ' I3 fa J1 fe [5 f2
is an isomorphism between the graphs G and H in Figure 1.6.

In the case of simple graphs, the definition of isomorphism can be stated more
concisely, because if (6, ¢) is an isomorphism between simple graphs G and H, the
mapping ¢ is completely determined by 6; indeed, ¢(e) = 0(u)f(v) for any edge
e = uv of G. Thus one may define an isomorphism between two simple graphs G
and H as a bijection 6 : V(G) — V(H) which preserves adjacency (that is, the
vertices u and v are adjacent in G if and only if their images 6(u) and 0(v) are
adjacent in H).

Consider, for example, the graphs G and H in Figure 1.7.

a b
1 2 3
f c
4 5 6 e d
G H

Fig. 1.7. Isomorphic simple graphs
The mapping
0 — 123456
T bdfcea

is an isomorphism between G and H, as is



14 1 Graphs

g (123456
T acedfb

Isomorphic graphs clearly have the same numbers of vertices and edges. On
the other hand, equality of these parameters does not guarantee isomorphism. For
instance, the two graphs shown in Figure 1.8 both have eight vertices and twelve
edges, but they are not isomorphic. To see this, observe that the graph G has four
mutually nonadjacent vertices, vy, vs, vg, and vg. If there were an isomorphism 6
between G and H, the vertices 0(v), 6(v3), 0(vg), and 6(vs) of H would likewise
be mutually nonadjacent. But it can readily be checked that no four vertices of H
are mutually nonadjacent. We deduce that G and H are not isomorphic.

U8 U3

v7 V4

Ve Vs
H

Fig. 1.8. Nonisomorphic graphs

It is clear from the foregoing discussion that if two graphs are isomorphic, then
they are either identical or differ merely in the names of their vertices and edges,
and thus have the same structure. Because it is primarily in structural properties
that we are interested, we often omit labels when drawing graphs; formally, we may
define an unlabelled graph as a representative of an equivalence class of isomorphic
graphs. We assign labels to vertices and edges in a graph mainly for the purpose
of referring to them (in proofs, for instance).

Up to isomorphism, there is just one complete graph on n vertices, denoted K.
Similarly, given two positive integers m and n, there is a unique complete bipartite
graph with parts of sizes m and n (again, up to isomorphism), denoted K, .
In this notation, the graphs in Figure 1.2 are K5, K33, and K 5, respectively.
Likewise, for any positive integer n, there is a unique path on n vertices and a
unique cycle on n vertices. These graphs are denoted P,, and C),, respectively. The
graphs depicted in Figure 1.3 are P, and Cs.

TESTING FOR ISOMORPHISM

Given two graphs on n vertices, it is certainly possible in principle to determine
whether they are isomorphic. For instance, if G and H are simple, one could just
consider each of the n! bijections between V(G) and V(H) in turn, and check
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whether it is an isomorphism between the two graphs. If the graphs happen to be
isomorphic, an isomorphism might (with luck) be found quickly. On the other hand,
if they are not isomorphic, one would need to check all n! bijections to discover
this fact. Unfortunately, even for moderately small values of n (such as n = 100),
the number n! is unmanageably large (indeed, larger than the number of particles
in the universel), so this ‘brute force’ approach is not feasible. Of course, if the
graphs are not regular, the number of bijections to be checked will be smaller, as an
isomorphism must map each vertex to a vertex of the same degree (Exercise 1.2.1a).
Nonetheless, except in particular cases, this restriction does not serve to reduce
their number sufficiently. Indeed, no efficient generally applicable procedure for
testing isomorphism is known. However, by employing powerful group-theoretic
methods, Luks (1982) devised an efficient isomorphism-testing algorithm for cubic
graphs and, more generally, for graphs of bounded maximum degree.

There is another important matter related to algorithmic questions such as
graph isomorphism. Suppose that two simple graphs G and H are isomorphic.
It might not be easy to find an isomorphism between them, but once such an
isomorphism 6 has been found, it is a simple matter to verify that 6 is indeed an
isomorphism: one need merely check that, for each of the (g) pairs uv of vertices
of G, uwv € E(G) if and only if (u)f(v) € E(H). On the other hand, if G and H
happen not to be isomorphic, how can one verify this fact, short of checking all
possible bijections between V(G) and V(H)? In certain cases, one might be able to
show that G and H are not isomorphic by isolating some structural property of G
that is not shared by H, as we did for the graphs G and H of Figure 1.8. However, in
general, verifying that two nonisomorphic graphs are indeed not isomorphic seems
to be just as hard as determining in the first place whether they are isomorphic or
not.

AUTOMORPHISMS

An automorphism of a graph is an isomorphism of the graph to itself. In the case
of a simple graph, an automorphism is just a permutation « of its vertex set which
preserves adjacency: if uv is an edge then so is a(u)a(v).

The automorphisms of a graph reflect its symmetries. For example, if u and
v are two vertices of a simple graph, and if there is an automorphism « which
maps u to v, then u and v are alike in the graph, and are referred to as similar
vertices. Graphs in which all vertices are similar, such as the complete graph
K,,, the complete bipartite graph K, , and the n-cube @,, are called vertez-
transitive. Graphs in which no two vertices are similar are called asymmetric;
these are the graphs which have only the identity permutation as automorphism
(see Exercise 1.2.14).

Particular drawings of a graph may often be used to display its symmetries.
As an example, consider the three drawings shown in Figure 1.9 of the Petersen
graph, a graph which turns out to have many special properties. (We leave it as
an exercise (1.2.5) that they are indeed drawings of one and the same graph.) The
first drawing shows that the five vertices of the outer pentagon are similar (under
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rotational symmetry), as are the five vertices of the inner pentagon. The third
drawing exhibits six similar vertices (under reflective or rotational symmetry),
namely the vertices of the outer hexagon. Combining these two observations, we
conclude that all ten vertices of the Petersen graph are similar, and thus that the
graph is vertex-transitive.

Fig. 1.9. Three drawings of the Petersen graph

We denote the set of all automorphisms of a graph G by Aut(G), and their
number by aut(G). It can be verified that Aut(G) is a group under the operation
of composition (Exercise 1.2.9). This group is called the automorphism group of
G. The automorphism group of K, is the symmetric group S,,, consisting of all
permutations of its vertex set. In general, for any simple graph G on n vertices,
Aut(@Q) is a subgroup of S,,. For instance, the automorphism group of C,, is D,
the dihedral group on n elements (Exercise 1.2.10).

LABELLED GRAPHS

As we have seen, the edge set E of a simple graph G = (V, E) is usually considered
to be a subset of (‘2/), the set of all 2-subsets of V'; edge labels may then be omitted
in drawings of such graphs. A simple graph whose vertices are labelled, but whose

n

edges are not, is referred to as a labelled simple graph. If |V | = n, there are 2(3)

distinct subsets of (‘2/), 50 2(2) 1abelled simple graphs with vertex set V. We denote
by G, the set of labelled simple graphs with vertex set V := {vy,va,...,v,}. The
set G3 is shown in Figure 1.10.

A priori, there are n! ways of assigning the labels vy, v, ..., v, to the vertices
of an unlabelled simple graph on n vertices. But two of these will yield the same
labelled graph if there is an automorphism of the graph mapping one labelling to
the other. For example, all six labellings of K3 result in the same element of Gs,
whereas the six labellings of P yield three distinct labelled graphs, as shown in
Figure 1.10. The number of distinct labellings of a given unlabelled simple graph

G on n vertices is, in fact, n!/aut(G) (Exercise 1.2.15). Consequently,

|
™ 9(%)
XG: aut(G)



1.2 Isomorphisms and Automorphisms 17

U1 U1 V1 V1
o \ o /

(] o o o———oO o
U3 U2 U3 U2 U3 V2 U3 U2
U1 U1 U1 U1
VU3 V2 V3 V2 V3 V2 U3 V2

Fig. 1.10. The eight labelled graphs on three vertices

where the sum is over all unlabelled simple graphs on n vertices. In particular, the
number of unlabelled simple graphs on n vertices is at least

(3)
2 "

For small values of n, this bound is not particularly good. For example, there
are four unlabelled simple graphs on three vertices, but the bound (1.2) is just
two. Likewise, the number of unlabelled simple graphs on four vertices is eleven
(Exercise 1.2.6), whereas the bound given by (1.2) is three. Nonetheless, when n
is large, this bound turns out to be a good approximation to the actual number
of unlabelled simple graphs on n vertices because the vast majority of graphs are
asymmetric (see Exercise 1.2.15d).

Exercises

1.2.1

a) Show that any isomorphism between two graphs maps each vertex to a vertex
of the same degree.

b) Deduce that isomorphic graphs necessarily have the same (nonincreasing) de-
gree sequence.

1.2.2 Show that the graphs in Figure 1.11 are not isomorphic (even though they
have the same degree sequence).

1.2.3 Let G be a connected graph. Show that every graph which is isomorphic to
G is connected.

1.2.4 Determine:

a) the number of isomorphisms between the graphs G and H of Figure 1.7,
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Fig. 1.11. Nonisomorphic graphs

b) the number of automorphisms of each of these graphs.
*1.2.5 Show that the three graphs in Figure 1.9 are isomorphic.

1.2.6 Draw:

a) all the labelled simple graphs on four vertices,
b) all the unlabelled simple graphs on four vertices,
¢) all the unlabelled simple cubic graphs on eight or fewer vertices.

1.2.7 Show that the n-cube @Q,, and the boolean lattice BL,, (defined in Exer-
cises 1.1.7 and 1.1.8) are isomorphic.

1.2.8 Show that two simple graphs G and H are isomorphic if and only if there
exists a permutation matrix P such that Ay = PAgP".

1.2.9 Show that Aut(G) is a group under the operation of composition.

1.2.10

a) Show that, for n > 2, Aut(P,) = 52 and Aut(C),) = D,,, the dihedral group on
n elements (where 2 denotes isomorphism of groups; see, for example, Herstein
(1996)).

b) Determine the automorphism group of the complete bipartite graph K, .

1.2.11 Show that, for any simple graph G, Aut(G) = Aut(G).

1.2.12 Consider the subgroup I" of S5 with elements (1)(2)(3), (123), and (132).

a) Show that there is no simple graph whose automorphism group is I

b) Find a simple graph whose automorphism group is isomorphic to I.
(Frucht (1938) showed that every abstract group is isomorphic to the auto-
morphism group of some simple graph.)

1.2.13 ORBITS OF A GRAPH

a) Show that similarity is an equivalence relation on the vertex set of a graph.
b) The equivalence classes with respect to similarity are called the orbits of the
graph. Determine the orbits of the graphs in Figure 1.12.
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(a) (0) (c)
Fig. 1.12. Determine the orbits of these graphs (Exercise 1.2.13)

1.2.14

a) Show that there is no asymmetric simple graph on five or fewer vertices.
b) For each n > 6, find an asymmetric simple graph on n vertices.

22

1.2.15 Let G and H be isomorphic members of G,, let § be an isomorphism
between G and H, and let o be an automorphism of G.

a) Show that f« is an isomorphism between G and H.

b) Deduce that the set of all isomorphisms between G and H is the coset Aut(G)
of Aut(Q).

¢) Deduce that the number of labelled graphs isomorphic to G is equal to
n!/aut(QG).

d) Erdés and Rényi (1963) have shown that almost all simple graphs are asym-
metric (that is, the proportion of simple graphs on n vertices that are asym-
metric tends to one as n tends to infinity). Using this fact, deduce from (c)
that the number of unlabelled graphs on n vertices is asymptotically equal to

2(3)/71! (G. POLYA)

1.2.16 SELF-COMPLEMENTARY GRAPH
A simple graph is self-complementary if it is isomorphic to its complement. Show
that:

a) each of the graphs Py and C5 (shown in Figure 1.3) is self-complementary,
b) every self-complementary graph is connected,

¢) if G is self-complementary, then n = 0,1 (mod 4),

d) every self-complementary graph on 4k + 1 vertices has a vertex of degree 2k.

1.2.17 EDGE-TRANSITIVE GRAPH
A simple graph is edge-transitive if, for any two edges uv and wxy, there is an
automorphism « such that a(u)a(v) = xy.

a) Find a graph which is vertex-transitive but not edge-transitive.
b) Show that any graph without isolated vertices which is edge-transitive but not
vertex-transitive is bipartite. (E. DAUBER)
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1.2.18 THE FOLKMAN GRAPH

a) Show that the graph shown in Figure 1.13a is edge-transitive but not vertex-
transitive.

(a) (b)
Fig. 1.13. Construction of the Folkman graph

b) The Folkman graph, depicted in Figure 1.13b, is the 4-regular graph obtained
from the graph of Figure 1.13a by replacing each vertex v of degree eight by
two vertices of degree four, both of which have the same four neighbours as v.
Show that the Folkman graph is edge-transitive but not vertex-transitive.

(J. FOLKMAN)

1.2.19 GENERALIZED PETERSEN GRAPH

Let & and n be positive integers, with n > 2k. The generalized Petersen graph
Py, is the simple graph with vertices x1,22,...,Zn,¥1,Y2,...,Yn, and edges
Ti%ig1, Yillitk, Ti¥i, 1 < i < n, indices being taken modulo n. (Note that P35
is the Petersen graph.)

a) Draw the graphs P, 7 and Ps g.
b) Which of these two graphs are vertex-transitive, and which are edge-transitive?

1.2.20 Show that if G is simple and the eigenvalues of A are distinct, then every
automorphism of G is of order one or two. (A. MOWSHOWITZ)

1.3 Graphs Arising from Other Structures
As remarked earlier, interesting graphs can often be constructed from geometric

and algebraic objects. Such constructions are often quite straightforward, but in
some instances they rely on experience and insight.



1.3 Graphs Arising from Other Structures 21
POLYHEDRAL GRAPHS

A polyhedral graph is the 1-skeleton of a polyhedron, that is, the graph whose
vertices and edges are just the vertices and edges of the polyhedron, with the
same incidence relation. In particular, the five platonic solids (the tetrahedron,
the cube, the octahedron, the dodecahedron, and the icosahedron) give rise to the
five platonic graphs shown in Figure 1.14. For classical polyhedra such as these,
we give the graph the same name as the polyhedron from which it is derived.

(d) (e)

Fig. 1.14. The five platonic graphs: (a) the tetrahedron, (b) the octahedron, (c) the
cube, (d) the dodecahedron, (e) the icosahedron

SET SYSTEMS AND HYPERGRAPHS

A set system is an ordered pair (V,F), where V is a set of elements and F is
a family of subsets of V. Note that when F consists of pairs of elements of V,
the set system (V,F) is a loopless graph. Thus set systems can be thought of as
generalizations of graphs, and are usually referred to as hypergraphs, particularly
when one seeks to extend properties of graphs to set systems (see Berge (1973)).
The elements of V' are then called the vertices of the hypergraph, and the elements
of F its edges or hyperedges. A hypergraph is k-uniform if each edge is a k-set (a set
of k elements). As we show below, set systems give rise to graphs in two principal
ways: incidence graphs and intersection graphs.

Many interesting examples of hypergraphs are provided by geometric config-
urations. A geomeltric configuration (P, L) consists of a finite set P of elements
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called points, and a finite family £ of subsets of P called lines, with the property
that at most one line contains any given pair of points. Two classical examples
of geometric configurations are the Fano plane and the Desargues configuration.
These two configurations are shown in Figure 1.15. In both cases, each line consists
of three points. These configurations thus give rise to 3-uniform hypergraphs; the
Fano hypergraph has seven vertices and seven edges, the Desargues hypergraph ten
vertices and ten edges.

C3
1
2 ‘\ 3 a2
ok :
‘ NN
¢ . » d ¢ 1 a
4 5 7 b1

(a) (b)

Fig. 1.15. (a) The Fano plane, and (b) the Desargues configuration

The Fano plane is the simplest of an important family of geometric configu-
rations, the projective planes (see Exercise 1.3.13). The Desargues configuration
arises from a well-known theorem in projective geometry. Other examples of in-
teresting geometric configurations are described in Coxeter (1950) and Godsil and
Royle (2001).

INCIDENCE GRAPHS

A natural graph associated with a set system H = (V,F) is the bipartite graph
G[V,F], where v € V and F € F are adjacent if v € F. This bipartite graph G is
called the incidence graph of the set system H, and the bipartite adjacency matrix
of G the incidence matriz of H; these are simply alternative ways of representing a
set system. Incidence graphs of geometric configurations often give rise to interest-
ing bipartite graphs; in this context, the incidence graph is sometimes called the
Levi graph of the configuration. The incidence graph of the Fano plane is shown
in Figure 1.16. This graph is known as the Heawood graph.

INTERSECTION GRAPHS

With each set system (V) F) one may associate its intersection graph. This is the
graph whose vertex set is F, two sets in F being adjacent if their intersection is
nonempty. For instance, when V is the vertex set of a simple graph G and F := E,
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Fig. 1.16. The incidence graph of the Fano plane: the Heawood graph

the edge set of G, the intersection graph of (V,F) has as vertices the edges of G,
two edges being adjacent if they have an end in common. For historical reasons,
this graph is known as the line graph of G and denoted L(G). Figure 1.17 depicts
a graph and its line graph.

1 12
2 24 23
4 3 a4
G L(G)

Fig. 1.17. A graph and its line graph

It can be shown that the intersection graph of the Desargues configuration is
isomorphic to the line graph of K5, which in turn is isomorphic to the complement
of the Petersen graph (Exercise 1.3.2). As for the Fano plane, its intersection graph
is isomorphic to K7, because any two of its seven lines have a point in common.

The definition of the line graph L(G) may be extended to all loopless graphs
G as being the graph with vertex set E in which two vertices are joined by just as
many edges as their number of common ends in G.

When V = R and F is a set of closed intervals of R, the intersection graph of
(V,F) is called an interval graph. Examples of practical situations which give rise
to interval graphs can be found in the book by Berge (1973). Berge even wrote a
detective story whose resolution relies on the theory of interval graphs; see Berge
(1995).

It should be evident from the above examples that graphs are implicit in a
wide variety of structures. Many such graphs are not only interesting in their own
right but also serve to provide insight into the structures from which they arise.
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Exercises

1.3.1

a) Show that the graph in Figure 1.18 is isomorphic to the Heawood graph (Fig-
ure 1.16).

Fig. 1.18. Another drawing of the Heawood graph

b) Deduce that the Heawood graph is vertex-transitive.

1.3.2 Show that the following three graphs are isomorphic:

> the intersection graph of the Desargues configuration,
> the line graph of K,
> the complement of the Petersen graph.

1.3.3 Show that the line graph of K3 3 is self-complementary.
1.3.4 Show that neither of the graphs displayed in Figure 1.19 is a line graph.

1.3.5 Let H := (V,F) be a hypergraph. The number of edges incident with a
vertex v of H is its degree, denoted d(v). A degree sequence of H is a vector
d:= (d(v) : v € V). Let M be the incidence matrix of H and d the corresponding
degree sequence of H. Show that the sum of the columns of M is equal to d.

1.8.6 Let H := (V,F) be a hypergraph. For v € V, let F,, denote the set of edges
of H incident to v. The dual of H is the hypergraph H* whose vertex set is F and
whose edges are the sets F,, v € V.

Fig. 1.19. Two graphs that are not line graphs



1.3 Graphs Arising from Other Structures 25

a) How are the incidence graphs of H and H* related?
b) Show that the dual of H* is isomorphic to H.
¢) A hypergraph is self-dual if it is isomorphic to its dual. Show that the Fano

and Desargues hypergraphs are self-dual.

1.3.7 HELLY PROPERTY
A family of sets has the Helly Property if the members of each pairwise intersecting

subfamily have an element in common.
a) Show that the family of closed intervals on the real line has the Helly Property.
(E. HELLY)
b) Deduce that the graph in Figure 1.20 is not an interval graph.

Fig. 1.20. A graph that is not an interval graph

1.3.8 KNESER GRAPH
Let m and n be positive integers, where n > 2m. The Kneser graph KG,, ; is

the graph whose vertices are the m-subsets of an n-set .S, two such subsets being
adjacent if and only if their intersection is empty. Show that:

a) KGl,n =Ky, n >3,
b) KGs,, is isomorphic to the complement of L(K,), n > 5.

1.3.9 Let G be a simple graph with incidence matrix M.

a) Show that the adjacency matrix of its line graph L(G) is M'M — 2I, where T
is the m x m identity matrix.
b) Using the fact that M'M is positive-semidefinite, deduce that:
i) each eigenvalue of L(G) is at least —2,
ii) if the rank of M is less than m, then —2 is an eigenvalue of L(G) .

%

1.3.10

a) Consider the following two matrices B and C, where « is an indeterminate, M
is an arbitrary n X m matrix, and I is an identity matrix of the appropriate
dimension. }

B;:[ I M} . {xI—M

M 21 0 I
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By equating the determinants of BC and CB, derive the identity
det(zI — M'M) = 2™ " det(zI — MM")

b) Let G be a simple k-regular graph with & > 2. By appealing to Exercise 1.3.9
and using the above identity, establish the following relationship between the
characteristic polynomials of L(G) and G.

det(Ap gy — 2I) = (=1)™ "(z + 2)™ " det(Ag — (z + 2 — k)I)

¢) Deduce that:
i) to each eigenvalue A # —k of G, there corresponds an eigenvalue A+ k — 2
of L(G), with the same multiplicity,
ii) —2 is an eigenvalue of L(G) with multiplicity m — n + r, where r is the
multiplicity of the eigenvalue —k of G. (If —k is not an eigenvalue of G
then r = 0.) (H. SACHS)

1.3.11
a) Using Exercises 1.1.22 and 1.3.10, show that the eigenvalues of L(K5) are

6,1,1,1,1,-2,-2, -2, -2, —-2)
b) Applying Exercise 1.1.23, deduce that the Petersen graph has eigenvalues
(3> ]-7 ]-7 ]-a 1; 17 727 727 727 72)

1.3.12 SPERNER’S LEMMA

Let T be a triangle in the plane. A subdivision of T" into triangles is simplicial if
any two of the triangles which intersect have either a vertex or an edge in common.
Consider an arbitrary simplicial subdivision of T" into triangles. Assign the colours
red, blue, and green to the vertices of these triangles in such a way that each
colour is missing from one side of T but appears on the other two sides. (Thus, in
particular, the vertices of T' are assigned the colours red, blue, and green in some
order.)

a) Show that the number of triangles in the subdivision whose vertices receive all
three colours is odd. (E. SPERNER)
b) Deduce that there is always at least one such triangle.

(Sperner’s Lemma, generalized to n-dimensional simplices, is the key ingredient in
a proof of Brouwer’s Fixed Point Theorem: every continuous mapping of a closed
n-disc to itself has a fized point; see Bondy and Murty (1976).)

1.3.13 FINITE PROJECTIVE PLANE
A finite projective plane is a geometric configuration (P, £) in which:

i) any two points lie on exactly one line,
ii) any two lines meet in exactly one point,
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iii) there are four points no three of which lie on a line.

(Condition (iii) serves only to exclude two trivial configurations — the pencil, in
which all points are collinear, and the mear-pencil, in which all but one of the
points are collinear.)

a) Let (P, L) be a finite projective plane. Show that there is an integer n > 2
such that |P| = |£]| = n? +n + 1, each point lies on n + 1 lines, and each line
contains n + 1 points (the instance n = 2 being the Fano plane). This integer
n is called the order of the projective plane.

b) How many vertices has the incidence graph of a finite projective plane of order
n, and what are their degrees?

1.3.14 Consider the nonzero vectors in F?, where F = GF(q) and ¢ is a prime
power. Define two of these vectors to be equivalent if one is a multiple of the
other. One can form a finite projective plane (P, £) of order ¢ by taking as points
and lines the (¢ —1)/(q — 1) = ¢*> + g + 1 equivalence classes defined by this
equivalence relation and defining a point (a, b, ¢) and line (z,y, z) to be incident if
ax + by + cz =0 (in GF(g)). This plane is denoted PG> 4.

a) Show that PGq 5 is isomorphic to the Fano plane.
b) Construct PGy 3.

1.3.15 THE DE BRUIJN-ERDOS THEOREM

a) Let G[X,Y] be a bipartite graph, each vertex of which is joined to at least
one, but not all, vertices in the other part. Suppose that d(z) > d(y) for all
xy ¢ E. Show that |Y| > | X|, with equality if and only if d(x) = d(y) for all
2y ¢ E withx € X andy €Y.

b) Deduce the following theorem.

Let (P, L) be a geometric configuration in which any two points lie on exactly

one line and not all points lie on a single line. Then |£| > |P|. Furthermore, if

|£| = |P|, then (P, L) is either a finite projective plane or a near-pencil.
(N.G. DE BRUIJN AND P. ERDOS)

1.3.16 Show that:

a) the line graphs L(K,), n > 4, and L(K,, ), n > 2, are strongly regular,

b) the Shrikhande graph, displayed in Figure 1.21 (where vertices with the same
label are to be identified), is strongly regular, with the same parameters as
those of L(K4 4), but is not isomorphic to L(K44).

1.3.17

a) Show that:
i) Aut(L(K,)) 2 Aut(K,) for n =2 and n = 4,
ii) Aut(L(K,,)) = Aut(K,) for n =3 and n > 5.
b) Appealing to Exercises 1.2.11 and 1.3.2, deduce that the automorphism group
of the Petersen graph is isomorphic to the symmetric group Ss.
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00 10 20 30 00
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03 03

02 02

01 01
e O

00 10 20 30 00

Fig. 1.21. An embedding of the Shrikhande graph on the torus

1.3.18 CAYLEY GRAPH

Let I' be a group, and let S be a set of elements of I" not including the identity
element. Suppose, furthermore, that the inverse of every element of S also belongs
to S. The Cayley graph of I" with respect to S is the graph CG(I',S) with vertex
set I' in which two vertices # and y are adjacent if and only if 2y~! € S. (Note
that, because S is closed under taking inverses, if 2y~ € S, then yz~! € S.)

a) Show that the n-cube is a Cayley graph.
b) Let G be a Cayley graph CG(I,S) and let  be an element of I'.
i) Show that the mapping «, defined by the rule that a,(y) := xy is an
automorphism of G.
ii) Deduce that every Cayley graph is vertex-transitive.
¢) By considering the Petersen graph, show that not every vertex-transitive graph
is a Cayley graph.

1.3.19 CIRCULANT
A circulant is a Cayley graph CG(Z,,, S), where Z,, is the additive group of integers
modulo n. Let p be a prime, and let ¢ and j be two nonzero elements of Z,.

a) Show that CG(Z,, {i,—i}) = CG(Z,,{j,—j}).
b) Determine when CG(Z,, {1, —1,i, —i}) = CG(Zp, {1, -1, 4, —j}).

1.3.20 PALEY GRAPH

Let ¢ be a prime power, ¢ = 1 (mod 4). The Paley graph PG, is the graph whose
vertex set is the set of elements of the field GF'(q), two vertices being adjacent if
their difference is a nonzero square in GF(q).

a) Draw PGs;, PGy, and PGys.

b) Show that these three graphs are self-complementary.

¢) Let a be a nonsquare in GF(q). By considering the mapping 6 : GF(q) —
GF(q) defined by 6(z) := ax, show that PG, is self-complementary for all g.
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1.4 Constructing Graphs from Other Graphs

We have already seen a couple of ways in which we may associate with each graph
another graph: the complement (in the case of simple graphs) and the line graph.
If we start with two graphs G and H rather than just one, a new graph may be
defined in several ways. For notational simplicity, we assume that G and H are
simple, so that each edge is an unordered pair of vertices; the concepts described
here can be extended without difficulty to the general context.

UNION AND INTERSECTION

Two graphs are disjoint if they have no vertex in common, and edge-disjoint if
they have no edge in common. The most basic ways of combining graphs are by
union and intersection. The wunion of simple graphs G and H is the graph G U H
with vertex set V(G)UV(H) and edge set E(G)U E(H). If G and H are disjoint,
we refer to their union as a disjoint union, and generally denote it by G + H.
These operations are associative and commutative, and may be extended to an
arbitrary number of graphs. It can be seen that a graph is disconnected if and
only if it is a disjoint union of two (nonnull) graphs. More generally, every graph
G may be expressed uniquely (up to order) as a disjoint union of connected graphs
(Exercise 1.4.1). These graphs are called the connected components, or simply the
components, of G. The number of components of G is denoted ¢(G). (The null
graph has the anomalous property of being the only graph without components.)

The intersection G N H of G and H is defined analogously. (Note that when
G and H are disjoint, their intersection is the null graph.) Figure 1.22 illustrates
these concepts. The graph G U H shown in Figure 1.22 has just one component,
whereas the graph G N H has two components.

1 2 1 2 1 2 1 2
o——o0
o}
4 3 3 5 4 3 5 3
G H GUH GNH

Fig. 1.22. The union and intersection of two graphs

CARTESIAN PrRODUCT

There are also several ways of forming from two graphs a new graph whose vertex
set is the cartesian product of their vertex sets. These constructions are conse-
quently referred to as ‘products’. We now describe one of them.
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The cartesian product of simple graphs G and H is the graph G O H whose
vertex set is V/(G) x V(H) and whose edge set is the set of all pairs (u1,vy)(uz, v2)
such that either ujus € E(G) and v; = vg, or vivg € E(H) and u; = ug. Thus,
for each edge ujus of G and each edge vyvs of H, there are four edges in G O H,
namely (ug,v1)(ug,v1), (u1,vs)(ug,ve), (u1,v1)(ur,ve), and (ug,vr)(ue,ve) (see
Figure 1.23a); the notation used for the cartesian product reflects this fact. More
generally, the cartesian product P, 00 P, of two paths is the (m x n)-grid. An
example is shown in Figure 1.23b.

lf (u1,v2) (uz,v2)
v (ug,vr) (u2,v1)
(a) (b)

Fig. 1.23. (a) The cartesian product K, O Kp, and (b) the (5 x 4)-grid

For n > 3, the cartesian product C,, O K5 is a polyhedral graph, the n-prism;
the 3-prism, 4-prism, and 5-prism are commonly called the triangular prism, the
cube, and the pentagonal prism (see Figure 1.24). The cartesian product is arguably
the most basic of graph products. There exist a number of others, each arising
naturally in various contexts. We encounter several of these in later chapters.

Fig. 1.24. The triangular and pentagonal prisms
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Exercises

1.4.1 Show that every graph may be expressed uniquely (up to order) as a disjoint
union of connected graphs.

1.4.2 Show that the rank over GF(2) of the incidence matrix of a graph G is n—c.
1.4.3 Show that the cartesian product is both associative and commutative.
1.4.4 Find an embedding of the cartesian product C,, JC), on the torus.

1.4.5

a) Show that the cartesian product of two vertex-transitive graphs is vertex-
transitive.

b) Give an example to show that the cartesian product of two edge-transitive
graphs need not be edge-transitive.

1.4.6

a) Let G be a self-complementary graph and let P be a path of length three
disjoint from G. Form a new graph H from G U P by joining the first and third
vertices of P to each vertex of G. Show that H is self-complementary.

b) Deduce (by appealing to Exercise 1.2.16) that there exists a self-complementary
graph on n vertices if and only if n = 0,1 (mod 4).

1.5 Directed Graphs

Although many problems lend themselves to graph-theoretic formulation, the con-
cept of a graph is sometimes not quite adequate. When dealing with problems
of traffic flow, for example, it is necessary to know which roads in the network
are one-way, and in which direction traffic is permitted. Clearly, a graph of the
network is not of much use in such a situation. What we need is a graph in which
each link has an assigned orientation, namely a directed graph.

Formally, a directed graph D is an ordered pair (V (D), A(D)) consisting of a set
V := V(D) of vertices and a set A := A(D), disjoint from V' (D), of arcs, together
with an incidence function ¢ p that associates with each arc of D an ordered pair
of (not necessarily distinct) vertices of D. If a is an arc and ¥p(a) = (u,v), then
a is said to join u to v; we also say that u dominates v. The vertex u is the
tail of a, and the vertex v its head; they are the two ends of a. Occasionally, the
orientation of an arc is irrelevant to the discussion. In such instances, we refer to
the arc as an edge of the directed graph. The number of arcs in D is denoted by
a(D). The vertices which dominate a vertex v are its in-neighbours, those which
are dominated by the vertex its outneighbours. These sets are denoted by N, (v)
and N} (v), respectively.
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For convenience, we abbreviate the term ‘directed graph’ to digraph. A strict
digraph is one with no loops or parallel arcs (arcs with the same head and the
same tail).

With any digraph D, we can associate a graph G on the same vertex set
simply by replacing each arc by an edge with the same ends. This graph is the
underlying graph of D, denoted G(D). Conversely, any graph G can be regarded as
a digraph, by replacing each of its edges by two oppositely oriented arcs with the
same ends; this digraph is the associated digraph of G, denoted D(G). One may
also obtain a digraph from a graph G by replacing each edge by just one of the two
possible arcs with the same ends. Such a digraph is called an orientation of G. We
occasionally use the symbol G to specify an orientation of G (even though a graph
generally has many orientations). An orientation of a simple graph is referred to
as an oriented graph. One particularly interesting instance is an orientation of a
complete graph. Such an oriented graph is called a tournament, because it can be
viewed as representing the results of a round-robin tournament, one in which each
team plays every other team (and there are no ties).

Digraphs, like graphs, have a simple pictorial representation. A digraph is rep-
resented by a diagram of its underlying graph together with arrows on its edges,
each arrow pointing towards the head of the corresponding arc. The four unlabelled
tournaments on four vertices are shown in Figure 1.25 (see Exercise 1.5.3a).

V/\\W/\W/\/\

Fig. 1.25. The four unlabelled tournaments on four vertices

Every concept that is valid for graphs automatically applies to digraphs too.
For example, the degree of a vertex v in a digraph D is simply the degree of v in
G(D), the underlying graph of D.! Likewise, a digraph is said to be connected if
its underlying graph is connected.? But there are concepts in which orientations
play an essential role. For instance, the indegree d,(v) of a vertex v in D is the
number of arcs with head v, and the outdegree df,(v) of v is the number of arcs
with tail v. The minimum indegree and outdegree of D are denoted by d~ (D)
and 07 (D), respectively; likewise, the maximum indegree and outdegree of D are

Y In such cases, we employ the same notation as for graphs (with G replaced by D).
Thus the degree of v in D is denoted by dp(v). These instances of identical notation
are recorded only once in the glossaries, namely for graphs.

2 The index includes only those definitions for digraphs which differ substantively from
their analogues for graphs. Thus the term ‘connected digraph’ does not appear there,
only ‘connected graph’.
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denoted A~ (D) and At (D), respectively. A digraph is k-diregular if each indegree
and each outdegree is equal to k. A vertex of indegree zero is called a source, one
of outdegree zero a sink. A directed path or directed cycle is an orientation of a
path or cycle in which each vertex dominates its successor in the sequence. There
is also a notion of connectedness in digraphs which takes directions into account,
as we shall see in Chapter 2.

Two special digraphs are shown in Figure 1.26. The first of these is a 2-diregular
digraph, the second a 3-diregular digraph (see Bondy (1978)); we adopt here the
convention of representing two oppositely oriented arcs by an edge. These digraphs
can both be constructed from the Fano plane (Exercise 1.5.9). They also possess
other unusual properties, to be described in Chapter 2.

(a) (b)

Fig. 1.26. (a) the Koh-Tindell digraph, and (b) a directed analogue of the Petersen
graph

Further examples of interesting digraphs can be derived from other mathemat-
ical structures, such as groups. For example, there is a natural directed analogue
of a Cayley graph. If I' is a group, and S a subset of I" not including the iden-
tity element, the Cayley digraph of I with respect to S is the digraph, denoted
CD(I,S), whose vertex set is I and in which vertex x dominates vertex y if and
only if xy~! € S. A directed circulant is a Cayley digraph CD(Z,, S), where Z,
is the group of integers modulo n. The Koh—Tindell digraph of Figure 1.26a is a
directed circulant based on Zr.

With each digraph D, one may associate another digraph, T), obtained by
reversing each arc of D. The digraph D is called the converse of D. Because the
converse of the converse is just the original digraph, the converse of a digraph can
be thought of as its ‘directional dual’. This point of view gives rise to a simple yet
useful principle.

PRINCIPLE OF DIRECTIONAL DUALITY

Any statement about a digraph has an accompanying ‘dual’ statement, obtained by
applying the statement to the converse of the digraph and reinterpreting it in terms
of the original digraph.



34 1 Graphs

For instance, the sum of the indegrees of the vertices of a digraph is equal to
the total number of arcs (Exercise 1.5.2). Applying the Principle of Directional
Duality, we immediately deduce that the sum of the outdegrees is also equal to
the number of arcs.

Apart from the practical aspect mentioned earlier, assigning suitable orienta-
tions to the edges of a graph is a convenient way of exploring properties of the
graph, as we shall see in Chapter 6.

Exercises

1.5.1 How many orientations are there of a labelled graph G?7

*1.5.2 Let D be a digraph.

a) Show that ) .\ d~(v) = m.
b) Using the Principle of Directional Duality, deduce that y ., d*(v) = m.

1.5.3 Two digraphs D and D’ are isomorphic, written D = D', if there are bijec-
tions 6 : V(D) — V(D’) and ¢ : A(D) — A(D’) such that ¥p(a) = (u,v) if and
only if ¥/ (é(a)) = (6(u), 8(v)). Such a pair of mappings is called an isomorphism
between D and D’.

a) Show that the four tournaments in Figure 1.25 are pairwise nonisomorphic,
and that these are the only ones on four vertices, up to isomorphism.
b) How many tournaments are there on five vertices, up to isomorphism?

1.5.4

a) Define the notions of vertex-transitivity and arc-transitivity for digraphs.
b) Show that:
i) every vertex-transitive digraph is diregular,
ii) the Koh-Tindell digraph (Figure 1.26a) is vertex-transitive but not arc-
transitive.

1.5.5 A digraph is self-converse if it is isomorphic to its converse. Show that both
digraphs in Figure 1.26 are self-converse.

1.5.6 INCIDENCE MATRIX OF A DIGRAPH

Let D be a digraph with vertex set V and arc set A. The incidence matriz of
D (with respect to given orderings of its vertices and arcs) is the n X m matrix
Mp = (myq), where

1 if arc a is a link and vertex v is the tail of a
Meyq = & —1 if arc a is a link and vertex v is the head of a
0 otherwise

Let M be the incidence matrix of a connected digraph D. Show that the rank of
Misn—1.
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*1.5.7 ToTALLY UNIMODULAR MATRIX
A matrix is totally unimodular if each of its square submatrices has determinant
equal to 0, +1, or —1. Let M be the incidence matrix of a digraph.

a) Show that M is totally unimodular. (H. POINCARE)
b) Deduce that the matrix equation Mx = b has a solution in integers provided
that it is consistent and the vector b is integral.

0

1.5.8 BALANCED DIGRAPH
A digraph D is balanced if |d*(v) —d~(v)| < 1, for all v € V. Show that every
graph has a balanced orientation.

1.5.9 Describe how the two digraphs in Figure 1.26 can be constructed from the
Fano plane.

1.5.10 PALEY TOURNAMENT

Let ¢ be a prime power, ¢ = 3 (mod 4). The Paley tournament PT, is the tourna-
ment whose vertex set is the set of elements of the field GF(q), vertex ¢ dominating
vertex j if and only if j — ¢ is a nonzero square in GF(q).

a) Draw PTs, PT7, and PTy;.
b) Show that these three digraphs are self-converse.

1.5.11 STOCKMEYER TOURNAMENT

For a nonzero integer k, let pow (k) denote the greatest integer p such that 27
divides k, and set odd (k) := k/2P. (For example, pow (12) = 2 and odd (12) = 3,
whereas pow (—1) = 0 and odd (—1) = —1.) The Stockmeyer tournament ST,
where n > 1, is the tournament whose vertex set is {1,2,3,...,2"} in which
vertex ¢ dominates vertex j if odd (j — i) = 1 (mod 4).

a) Draw ST, and STs.
b) Show that ST;, is both self-converse and asymmetric (that is, has no nontrivial
automorphisms). (P.K. STOCKMEYER)

1.5.12 ARC-TRANSITIVE GRAPH

An undirected graph G is arc-transitive if its associated digraph D(G) is arc-
transitive. (Equivalently, G is arc-transitive if, given any two ordered pairs (z,y)
and (u,v) of adjacent vertices, there exists an automorphism of G which maps

(z,y) to (u,v).)

a) Show that any graph which is arc-transitive is both vertex-transitive and edge-
transitive.

b) Let G be a k-regular graph which is both vertex-transitive and edge-transitive,
but not arc-transitive. Show that k is even. (An example of such a graph with
k = 4 may be found in Godsil and Royle (2001).)
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1.5.13 ADJACENCY MATRIX OF A DIGRAPH

The adjacency matriz of a digraph D is the n X n matrix Ap = (ayy), where ay, is
the number of arcs in D with tail v and head v. Let A be the adjacency matrix of
a tournament on n vertices. Show that rank A =n —1if n is odd and rank A = n
if n is even.

1.6 Infinite Graphs

As already mentioned, the graphs studied in this book are assumed to be finite.
There is, however, an extensive theory of graphs defined on infinite sets of ver-
tices and/or edges. Such graphs are known as infinite graphs. An infinite graph
is countable if both its vertex and edge sets are countable. Figure 1.27 depicts
three well-known countable graphs, the square lattice, the triangular lattice, and
the hexagonal lattice.

VAVAVAVAY
VAVAVAVAVAN
INONONONIN,
\VAVAVAVAVAV

\VAVAVAVAV/
VAVAVAV

Fig. 1.27. The square, triangular and hexagonal lattices

Most notions that are valid for finite graphs are either directly applicable to
infinite graphs or else require some simple modification. Whereas the definition of
the degree of a vertex is essentially the same as for finite graphs (with ‘number’
replaced by ‘cardinality’), there are two types of infinite path, one having an initial
but no terminal vertex (called a one-way infinite path), and one having neither
initial nor terminal vertices (called a two-way infinite path); the square lattice is
the cartesian product of two two-way infinite paths. However, certain concepts for
finite graphs have no natural ‘infinite’ analogue, the cycle for instance (although,
in some circumstances, a two-way infinite path may be regarded as an infinite
cycle).

While the focus of this book is on finite graphs, we include occasional remarks
and exercises on infinite graphs, mainly to illustrate the differences between finite
and infinite graphs. Readers interested in pursuing the topic are referred to the
survey article by Thomassen (1983a) or the book by Diestel (2005), which includes
a chapter on infinite graphs.
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Exercises

1.6.1 LocALLy FINITE GRAPH
An infinite graph is locally finite if every vertex is of finite degree. Give an example
of a locally finite graph in which no two vertices have the same degree.

1.6.2 For each positive integer d, describe a simple infinite planar graph with
minimum degree d. (We shall see, in Chapter 10, that every simple finite planar
graph has a vertex of degree at most five.)

0
1.6.3 Give an example of a self-complementary infinite graph.

1.6.4 UNIT DISTANCE GRAPH

The unit distance graph on a subset V of R? is the graph with vertex set V in
which two vertices (x1,y1) and (x9,y2) are adjacent if their euclidean distance is
equal to 1, that is, if (x7 — 22)? + (y1 — y2)? = 1. When V = Q2, this graph is
called the rational unit distance graph, and when V = R2, the real unit distance
graph. (Note that these are both infinite graphs.)

a) Let V be a finite subset of the vertex set of the infinite 2-dimensional integer
lattice (see Figure 1.27), and let d be an odd positive integer. Denote by G the
graph with vertex set V' in which two vertices (z1,y1) and (z2, y2) are adjacent
if their euclidean distance is equal to d. Show that G is bipartite.

b) Deduce that the rational unit distance graph is bipartite.

¢) Show, on the other hand, that the real unit distance graph is not bipartite.

1.7 Related Reading

HisTory OF GRAPH THEORY

An attractive account of the history of graph theory up to 1936, complete with
annotated extracts from pivotal papers, can be found in Biggs et al. (1986). The
first book on graph theory was published by Konig (1936). It led to the develop-
ment of a strong school of graph theorists in Hungary which included P. Erdés and
T. Gallai. Also in the thirties, H. Whitney published a series of influential articles
(see Whitney (1992)).

As with every branch of mathematics, graph theory is best learnt by doing.
The book Combinatorial Problems and Ezxercises by Lovész (1993) is highly rec-
ommended as a source of stimulating problems and proof techniques. A general
guide to solving problems in mathematics is the very readable classic How to Solve
It by Pélya (2004). The delightful Proofs from the Book by Aigner and Ziegler
(2004) is a compilation of beautiful proofs in mathematics, many of which treat
combinatorial questions.
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2.1 Subgraphs and Supergraphs

EDGE AND VERTEX DELETION

Given a graph G, there are two natural ways of deriving smaller graphs from G.
If e is an edge of G, we may obtain a graph on m — 1 edges by deleting e from
G but leaving the vertices and the remaining edges intact. The resulting graph is
denoted by G\ e. Similarly, if v is a vertex of G, we may obtain a graph on n — 1
vertices by deleting from G the vertex v together with all the edges incident with
v. The resulting graph is denoted by G — v. These operations of edge deletion and
vertexr deletion are illustrated in Figure 2.1.

SN @
4

G G\e G—v

Fig. 2.1. Edge-deleted and vertex-deleted subgraphs of the Petersen graph

The graphs G\ e and G — v defined above are examples of subgraphs of G. We
call G \ e an edge-deleted subgraph, and G — v a vertez-deleted subgraph. More
generally, a graph F' is called a subgraph of a graph G if V(F) C V(QG), E(F) C
E(G), and 9 is the restriction of ¢¢ to E(F'). We then say that G contains F' or
that F' is contained in G, and write G O F or F' C (G, respectively. Any subgraph
F of G can be obtained by repeated applications of the basic operations of edge
and vertex deletion; for instance, by first deleting the edges of G not in F' and
then deleting the vertices of G not in F. Note that the null graph is a subgraph
of every graph.

We remark in passing that in the special case where G is vertex-transitive, all
vertex-deleted subgraphs of GG are isomorphic. In this case, the notation G — v is
used to denote any vertex-deleted subgraph. Likewise, we write G \ e to denote
any edge-deleted subgraph of an edge-transitive graph G.

A copy of a graph F' in a graph G is a subgraph of G which is isomorphic
to F. Such a subgraph is also referred to as an F-subgraph of G; for instance, a
K3-subgraph is a triangle in the graph. An embedding of a graph F in a graph G
is an isomorphism between F' and a subgraph of G. For each copy of F' in G, there
are aut(F') embeddings of F in G.

A supergraph of a graph G is a graph H which contains G as a subgraph, that
is, H O G. Note that any graph is both a subgraph and a supergraph of itself.
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All other subgraphs F' and supergraphs H are referred to as proper; we then write
F C G or H D G, respectively.

The above definitions apply also to digraphs, with the obvious modifications.

In many applications of graph theory, one is interested in determining if a
given graph has a subgraph or supergraph with prescribed properties. The theo-
rem below provides a sufficient condition for a graph to contain a cycle. In later
chapters, we study conditions under which a graph contains a long path or cycle, or
a complete subgraph of given order. Although supergraphs with prescribed prop-
erties are encountered less often, they do arise naturally in the context of certain
applications. One such is discussed in Chapter 16 (see also Exercises 2.2.17 and
2.2.24).

Theorem 2.1 Let G be a graph in which all vertices have degree at least two. Then
G contains a cycle.

Proof If G has a loop, it contains a cycle of length one, and if G has parallel
edges, it contains a cycle of length two. So we may assume that G is simple.

Let P := vyv1 ...vx_1v; be a longest path in G. Because the degree of vy, is
at least two, it has a neighbour v different from vg_;. If v is not on P, the path
Vo1 - . . V100 contradicts the choice of P as a longest path. Therefore, v = v;,
for some i, 0 < i < k — 2, and v;v;41 ... v,v; is a cycle in G. O

MAXIMALITY AND MINIMALITY

The proof of Theorem 2.1 proceeded by first selecting a longest path in the graph,
and then finding a cycle based on this path. Of course, from a purely mathematical
point of view, this is a perfectly sound approach. The graph, being finite, must
certainly have a longest path. However, if we wished to actually find a cycle in our
graph by tracing through the steps of the proof, we would first have to find such a
path, and this turns out to be a very hard task in general (in a sense to be made
precise in Chapter 8). Fortunately, the very same proof remains valid if ‘longest
path’ is replaced by ‘maximal path’, a maximal path being one that cannot be
extended to a longer path from either end. Moreover, a maximal path is easily
found: one simply starts at any vertex and grows a path until it can no longer
be extended either way. For reasons such as this, the concepts of maximality and
minimality (of subgraphs) turn out to be rather important.

Let F be a family of subgraphs of a graph G. A member F' of F is mazimal
in F if no member of F properly contains F’; likewise, F' is minimal in F if no
member of F is properly contained in F. When F consists of the set of all paths
of G, we simply refer to a maximal member of F as a mazimal path of G. We use
similar terminology for describing maximal and minimal members of other special
families of subgraphs. For instance, when F is the set of all connected subgraphs
of G, the maximal members of F are simply its components (Exercise 2.1.1).
Similarly, because an odd cycle is not bipartite, but each of its proper subgraphs
is bipartite (Exercise 1.1.3), the odd cycles of a graph are its minimal nonbipartite
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subgraphs (see Figure 2.2b). Indeed, as we shall see, the odd cycles are the only
minimal nonbipartite subgraphs.

(a) (b) (c)

Fig. 2.2. (a) A maximal path, (b) a minimal nonbipartite subgraph, and (c) a maximal
bipartite subgraph

The notions of maximality and minimality should not be confused with those
of maximum and minimum cardinality. Every cycle in a graph is a maximal cycle,
because no cycle is contained in another; by the same token, every cycle is a
minimal cycle. On the other hand, by a maximum cycle of a graph we mean one
of maximum length, that is, a longest cycle, and by a minimum cycle we mean
one of minimum length. In a graph G which has at least one cycle, the length of a
longest cycle is called its circumference and the length of a shortest cycle its girth.

AcycLic GRAPHS AND DIGRAPHS

A graph is acyclic if does not contain a cycle. It follows from Theorem 2.1 that an
acyclic graph must have a vertex of degree less than two. In fact, every nontrivial
acyclic graph has at least two vertices of degree less than two (Exercise 2.1.2).

Analogously, a digraph is acyclic if it has no directed cycle. One particularly
interesting class of acyclic digraphs are those associated with partially ordered sets.
A partially ordered set, or for short poset, is an ordered pair P = (X, <), where
X is a set and < is a partial order on X, that is, an irreflexive, antisymmetric,
and transitive binary relation. Two elements u and v of X are comparable if either
u < vorv < u,and incomparable otherwise. A set of pairwise comparable elements
in P is a chain, a set of pairwise incomparable elements an antichain.

One can form a digraph D := D(P) from a poset P = (X, <) by taking
X as the set of vertices, (u,v) being an arc of D if and only if u < v. This
digraph is acyclic and transitive, where transitive here means that (u,w) is an arc
whenever both (u,v) and (v, w) are arcs. (It should be emphasized that, despite its
name, this notion of transitivity in digraphs has no connection whatsoever with the
group-theoretic notions of vertex-transitivity and edge-transitivity defined earlier.)
Conversely, to every strict acyclic transitive digraph D there corresponds a poset
P on the vertex set of D. An acyclic tournament is frequently referred to as a
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transitive tournament. It can be seen that chains in P correspond to transitive
subtournaments of D.

PROOF TECHNIQUE: THE PIGEONHOLE PRINCIPLE

If n + 1 letters are distributed among n pigeonholes, at least two of them will
end up in the same pigeonhole. This is known as the Pigeonhole Principle,
and is a special case of a simple statement concerning multisets (sets with
repetitions allowed) of real numbers.

Let S = (aj,az,...,a,) be a multiset of real numbers and let a denote their
average. Clearly, the minimum of the a; is no larger than a, and the maximum
of the a; is at least as large as a. Thus, if all the elements of S are integers,
we may assert that there is an element that is no larger than |a|, and also
one that is at least as large as [a]. The Pigeonhole Principle merely amounts
to saying that if n integers sum to n 4+ 1 or more, one of them is at least
[(n+1)/n] =2.

Exercise 1.1.6a is a simple example of a statement that can be proved by
applying this principle. As a second application, we establish a sufficient con-
dition for the existence of a quadrilateral in a graph, due to Reiman (1958).
Theorem 2.2 Any simple graph G with ) .\, (d(zv)) > (%) contains a quadri-
lateral.

Proof Denote by ps the number of paths of length two in G, and by pa(v)
the number of such paths whose central vertex is v. Clearly, p2(v) = (d(;)).
As each path of length two has a unique central vertex, py = > oy p2(v) =

Y vev (d(;)). On the other hand, each such path also has a unique pair of ends.

Therefore the set of all paths of length two can be partitioned into (%) subsets

according to their ends. The hypothesis } ., (d(;)) > (g) now implies, by
virtue of the Pigeonhole Principle, that one of these subsets contains two or
more paths; that is, there exist two paths of length two with the same pair of

ends. The union of these paths is a quadrilateral. O

Exercises

*2.1.1 Show that the maximal connected subgraphs of a graph are its components.

*x2.1.2

a) Show that every nontrivial acyclic graph has at least two vertices of degree
less than two.

b) Deduce that every nontrivial connected acyclic graph has at least two vertices
of degree one. When does equality hold?
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2.1.3

a) Show that if m > n, then G contains a cycle.
b) For each positive integer n, find an acyclic graph with n vertices and n — 1
edges.

2.14

a) Show that every simple graph G contains a path of length 4.
b) For each k > 0, find a simple graph G with 6 = k which contains no path of
length greater than k.

2.1.5

a) Show that every simple graph G with § > 2 contains a cycle of length at least
0+1.

b) For each k > 2, find a simple graph G with § = k which contains no cycle of
length greater than &k + 1.

2.1.6 Show that every simple graph has a vertex z and a family of L%d(x)J cycles
any two of which meet only in the vertex x.

2.1.7

a) Show that the Petersen graph has girth five and circumference nine.
b) How many cycles are there of length & in this graph, for 5 < k < 9?

2.1.8

a) Show that a k-regular graph of girth four has at least 2k vertices.
b) For k > 2, determine all k-regular graphs of girth four on exactly 2k vertices.

2.1.9

a) Show that a k-regular graph of girth five has at least k? + 1 vertices.
b) Determine all k-regular graphs of girth five on exactly k% + 1 vertices, k = 2, 3.

2.1.10 Show that the incidence graph of a finite projective plane has girth six.

*2.1.11 A topological sort of a digraph D is an linear ordering of its vertices such
that, for every arc a of D, the tail of a precedes its head in the ordering.

a) Show that every acyclic digraph has at least one source and at least one sink.
b) Deduce that a digraph admits a topological sort if and only if it is acyclic.

2.1.12 Show that every strict acyclic digraph contains an arc whose reversal results
in an acyclic digraph.

2.1.13 Let D be a strict digraph. Setting k := max {d~, 0"}, show that:

a) D contains a directed path of length at least k,
b) if £ > 0, then D contains a directed cycle of length at least k + 1.
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2.1.14

a) Let G be a graph all of whose vertex-deleted subgraphs are isomorphic. Show
that G is vertex-transitive.

b) Let G be a graph all of whose edge-deleted subgraphs are isomorphic. Is G
necessarily edge-transitive?

2.1.15 Using Theorem 2.2 and the Cauchy-Schwarz Inequality', show that a sim-
ple graph G contains a quadrilateral if m > in(v/4n — 3 +1). (I. REIMAN)

22
2.1.16

a) Show that if m > n + 4, then G contains two edge-disjoint cycles. (L. POSA)
b) For each integer n > 5, find a graph with n vertices and n + 3 edges which
does not contain two edge-disjoint cycles.

2.1.17 TRIANGLE-FREE GRAPH
A triangle-free graph is one which contains no triangles. Let G be a simple triangle-
free graph.

a) Show that d(z) + d(y) < n for all zy € E.
b) Deduce that Y-, o\, d(v)? < mn.
¢) Applying the Cauchy—Schwarz Inequality!, deduce that m < n?/4.
(W. MANTEL)
d) For each positive integer n, find a simple triangle-free graph G with m =

1n2/4].
2.1.18

a) Let G be a triangle-free graph with 6 > 2n/5. Show that G is bipartite.
b) For n = 0 (mod 5), find a nonbipartite triangle-free graph with 6 = 2n/5.
(B. ANDRASFAIL, P. ERDGOS, AND V.T. SOs)

2.1.19 Let G be a simple graph with v(G) = kp and 6(G) > kq. Show that G has
a subgraph F with v(F) = p and 6(F) > gq. (C.ST.J.A. NASH-WILLIAMS)

2.1.20 Show that the Kneser graph KG,, , has no odd cycle of length less than
n/(n —2m).

*2.1.21 Let K, be a complete graph whose edges are coloured red or blue. Call
a subgraph of this graph monochromatic if all of its edges have the same colour,
and bichromatic if edges of both colours are present.

a) Let v be a vertex of K,,. Show that the number of bichromatic 2-paths in K,
whose central vertex is v is at most (n — 1)2/4. When does equality hold?

2 .
1 Z" af " bf > (E?zl aibi) for real numbers a;, b;, 1 < i < n.

i=1 i=1
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b) Deduce that the total number of bichromatic 2-paths in K, is at most n(n —
1)%/4.

¢) Observing that each bichromatic triangle contains exactly two bichromatic 2-
paths, deduce that the number of monochromatic triangles in K, is at least
n(n —1)(n —5)/24. When does equality hold? (A.W. GOODMAN)

d) How many monochromatic triangles must there be, at least, when n = 5 and
when n = 67

2.1.22 Let T be a tournament on n vertices, and let v be a vertex of T

a) Show that the number of directed 2-paths in T' whose central vertex is v is at
most (n — 1)?/4. When does equality hold?

b) Deduce that the total number of directed 2-paths in T is at most n(n — 1)2/4.

¢) Observing that each transitive triangle contains exactly one directed 2-path
and that each directed triangle contains exactly three directed 2-paths, deduce
that the number of directed triangles in T is at most %(";rl) When does
equality hold?

%2.1.23 Let P = (X, <) be a poset. Show that the maximum number of elements
in a chain of P is equal to the minimum number of antichains into which X can
be partitioned. (L. MIRSKY)

2.1.24 GEOMETRIC GRAPH

A geometric graph is a graph embedded in the plane in such a way that each edge
is a line segment. Let G be a geometric graph in which any two edges intersect
(possibly at an end).

a) Show that G has at most n edges.
b) For each n > 3, find an example of such a graph G with n edges.
(H. Hopr AND E. PANNWITZ)

2.2 Spanning and Induced Subgraphs

SPANNING SUBGRAPHS

A spanning subgraph of a graph G is a subgraph obtained by edge deletions only,
in other words, a subgraph whose vertex set is the entire vertex set of G. If S is
the set of deleted edges, this subgraph of G is denoted G \ S. Observe that every
simple graph is a spanning subgraph of a complete graph.

Spanning supergraphs are defined analogously. The inverse operation to edge
deletion is edge addition. Adding a set S of edges to a graph G yields a spanning
supergraph of G, denoted G + S. By starting with a disjoint union of two graphs
G and H and adding edges joining every vertex of G to every vertex of H, one
obtains the join of G and H, denoted GV H. The join C,, V K; of a cycle C), and a
single vertex is referred to as a wheel with n spokes and denoted W,,. (The graph
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(a) (b)

Fig. 2.3. (a) A graph and (b) its underlying simple graph

H of Figure 1.1 is the wheel W5.) One may also add a set X of vertices to a graph,
resulting in a supergraph of G denoted G + X.

Certain types of spanning subgraph occur frequently in applications of graph
theory and, for historical reasons, have acquired special names. For example, span-
ning paths and cycles are called Hamilton paths and Hamilton cycles, respectively,
and spanning k-regular subgraphs are referred to as k-factors. Rédei’s Theorem
(Theorem 2.3, see inset) tells us that every tournament has a directed Hamilton
path. Not every tournament (on three or more vertices) has a directed Hamilton
cycle, however; for instance, the transitive tournament has no directed cycles at
all. Nonetheless, Camion (1959) proved that every tournament in which any ver-
tex can be reached from any other vertex by means of a directed path does indeed
have a directed Hamilton cycle (Exercise 3.4.12a).

By deleting from a graph G all loops and, for every pair of adjacent vertices, all
but one link joining them, we obtain a simple spanning subgraph called the under-
lying stmple graph of G. Up to isomorphism, each graph has a unique underlying
simple graph. Figure 2.3 shows a graph and its underlying simple graph.

Given spanning subgraphs F; = (V,E;) and Fy, = (V, E3) of a graph G =
(V, E), we may form the spanning subgraph of G whose edge set is the symmetric
difference F1 A Es of Ey and FEs. This graph is called the symmetric difference of
Fy and Fy, and denoted F} A Fy. Figure 2.4 shows the symmetric difference of two
spanning subgraphs of a graph on five vertices.

Fy Fy i A Fs

Fig. 2.4. The symmetric difference of two graphs



48

2 Subgraphs

PROOF TECHNIQUE: INDUCTION

One of the most widely used proof techniques in mathematics is the Principle

of Mathematical Induction. Suppose that, for each nonnegative integer i, we

have a mathematical statement .S;. One may prove that all assertions in the

sequence (Sg, S1,...) are true by:

> directly verifying Sy (the basis of the induction),

> for each integer n > 1, deducing that S,, is true (the inductive step) from
the assumption that S, is true (the inductive hypothesis).

The justification for this technique is provided by the principle that each
nonempty subset of N has a minimal element: if not all .S; were true, the set
{i € N: S, is false} would be a nonempty subset of N, and would therefore
have a minimal element n. Thus S,,_; would be true and S,, false.

We shall come across many examples of inductive proofs throughout the book.
Here, as a simple illustration of the technique, we prove a basic theorem on
tournaments due to Rédei (1934).

Theorem 2.3 REDEI'S THEOREM
Every tournament has a directed Hamilton path.

Proof Clearly, the trivial tournament (on one vertex) has a directed Hamil-
ton path. Assume that, for some integer n > 2, every tournament on n — 1
vertices has a directed Hamilton path. Let T be a tournament on n vertices and
let v € V(T). The digraph 7" := T'—v is a tournament on n—1 vertices. By the
inductive hypothesis, 7’ has a directed Hamilton path P’ := (v1,va,...,vp_1).
If (v,v1) is an arc of T, the path (v,vy,va,...,v,—1) is a directed Hamilton
path of T'. Similarly, if (v,—1,v) is an arc of T, the path (vi,ve,...,vp_1,v)
is a directed Hamilton path of T'. Because T is a tournament, v is adjacent to
each vertex of P’, so we may assume that both (v, v) and (v,v,_1) are arcs
of T. It follows that there exists an integer i, 1 < i < m — 1, such that both
(vi,v) and (v,v;41) are arcs of T. But now P := (v1,..., 05,0, V11, ., Vp_1)
is a directed Hamilton path of T'. O

Inductive proofs may be presented in a variety of ways. The above proof, for
example, may be recast as a ‘longest path’ proof. We take P to be a longest
directed path in the tournament 7. Assuming that P is not a directed Hamil-
ton path, we then obtain a contradiction by showing that 7" has a directed
path longer than P (Exercise 2.2.4).

Graph-theoretical statements generally assert that all graphs belonging to
some well-defined class possess a certain property. Any ‘proof’ that fails to
cover all cases is false. This is a common mistake in attempts to prove state-
ments of this sort by induction. Another common error is neglecting to verify
the basis of the induction. For an example of how not to use induction, see
Exercise 2.2.19.
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PROOF TECHNIQUE: CONTRADICTION

A common approach to proving graph-theoretical statements is to proceed by
assuming that the stated assertion is false and analyse the consequences of
that assumption so as to arrive at a contradiction. As a simple illustration
of this method, we present an interesting and very useful result due to Erdos
(1965).

Theorem 2.4 Fvery loopless graph G contains a spanning bipartite subgraph
F such that dp(v) > 2dg(v) for allv e V.

Proof Let G be a loopless graph. Certainly, G’ has spanning bipartite sub-
graphs, one such being the empty spanning subgraph. Let F' := F[X,Y] be a
spanning bipartite subgraph of G with the greatest possible number of edges.
We claim that F' satisfies the required property. Suppose not. Then there is
some vertex v for which

dr(v) < %dG(v) (2.1)

Without loss of generality, we may suppose that v € X. Consider the spanning
bipartite subgraph F’ whose edge set consists of all edges of G with one end
in X \ {v} and the other in Y U {v}. The edge set of F’ is the same as that
of F' except for the edges of G incident to v; those which were in F' are not
in F’, and those which were not in F' are in F’. We thus have:

e(F') = e(F) = dp(v) + (dg(v) — dp(v)) = e(F) + (de(v) — 2dp(v) > e(F)

the inequality following from (2.1). But this contradicts the choice of F. It
follows that F' does indeed have the required property. O

The method of contradiction is merely a convenient way of presenting the
idea underlying the above proof. Implicit in the proof is an algorithm which
finds, in any graph, a spanning bipartite subgraph with the stated property:
one starts with any spanning bipartite subgraph and simply moves vertices
between parts so as to achieve the desired objective (see also Exercises 2.2.2
and 2.2.18).

INDUCED SUBGRAPHS

A subgraph obtained by vertex deletions only is called an induced subgraph. If X is
the set of vertices deleted, the resulting subgraph is denoted by G — X . Frequently,
it is the set Y := V' \ X of vertices which remain that is the focus of interest. In
such cases, the subgraph is denoted by G[Y] and referred to as the subgraph of G
induced by Y. Thus G[Y] is the subgraph of G whose vertex set is Y and whose
edge set consists of all edges of G which have both ends in Y.

The following theorem, due to Erdds (1964/1965), tells us that every graph has
a induced subgraph whose minimum degree is relatively large.
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Theorem 2.5 Every graph with average degree at least 2k, where k is a positive
integer, has an induced subgraph with minimum degree at least k + 1.

Proof Let G be a graph with average degree d(G) > 2k, and let F' be an induced
subgraph of G with the largest possible average degree and, subject to this, the
smallest number of vertices. We show that §(F) > k + 1. This is clearly true if
v(F) = 1, since then §(F) = d(F) > d(G), by the choice of F. We may therefore
assume that v(F) > 1.

Suppose, by way of contradiction, that dr(v) < k for some vertex v of F.
Consider the vertex-deleted subgraph F’ := F —wv. Note that F” is also an induced
subgraph of G. Moreover

_2e(F) _ 2(e(F) k) _ 2e(F) — d(G) _ 2e(F) — d(F)

d(F/)_v(F’) - uw(F)-1 T w(F)—-1 T w(F)-1

= d(F)

Because v(F”") < v(F), this contradicts the choice of F'. Therefore 6(F) > k+1. O

The bound on the minimum degree given in Theorem 2.5 is sharp (Exer-
cise 3.1.6).

Subgraphs may also be induced by sets of edges. If S is a set of edges, the
edge-induced subgraph G[S] is the subgraph of G whose edge set is S and whose
vertex set consists of all ends of edges of S. Any edge-induced subgraph G[S] can
be obtained by first deleting the edges in F \ S and then deleting all resulting
isolated vertices; indeed, an edge-induced subgraph is simply a subgraph without
isolated vertices.

WEIGHTED GRAPHS AND SUBGRAPHS

When graphs are used to model practical problems, one often needs to take into
account additional factors, such as costs associated with edges. In a communica-
tions network, for example, relevant factors might be the cost of transmitting data
along a link, or of constructing a new link between communication centres. Such
situations are modelled by weighted graphs.

With each edge e of G, let there be associated a real number w(e), called its
weight. Then G, together with these weights on its edges, is called a weighted
graph, and denoted (G, w). One can regard a weighting w : E — R as a vector
whose coordinates are indexed by the edge set E of G; the set of all such vectors
is denoted by R¥ or, when the weights are rational numbers, by QF.

If F is a subgraph of a weighted graph, the weight w(F) of F is the sum
of the weights on its edges, ZeeE(F) w(e). Many optimization problems amount
to finding, in a weighted graph, a subgraph of a certain type with minimum or
maximum weight. Perhaps the best known problem of this kind is the following
one.

A travelling salesman wishes to visit a number of towns and then return to his
starting point. Given the travelling times between towns, how should he plan his
itinerary so that he visits each town exactly once and minimizes his total travelling
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time? This is known as the Travelling Salesman Problem. In graph-theoretic terms,
it can be phrased as follows.

Problem 2.6 THE TRAVELLING SALESMAN PROBLEM (TSP)
GIVEN: a weighted complete graph (G, w),
FIND: a minimum-weight Hamilton cycle of G.

Note that it suffices to consider the TSP for complete graphs because nonad-
jacent vertices can be joined by edges whose weights are prohibitively high. We
discuss this problem, and others of a similar flavour, in Chapters 6 and 8, as well
as in later chapters.

Exercises

2.2.1 Let G be a graph on n vertices and m edges and ¢ components.

a) How many spanning subgraphs has G?
b) How many edges need to be added to G to obtain a connected spanning su-
pergraph?

*x2.2.2

a) Deduce from Theorem 2.4 that every loopless graph G contains a spanning
bipartite subgraph F with e(F) > 1e(G).

b) Describe an algorithm for finding such a subgraph by first arranging the ver-
tices in a linear order and then assigning them, one by one, to either X or Y,

using a simple rule.

2.2.3 Determine the number of 1-factors in each of the following graphs: (a) the
Petersen graph, (b) the pentagonal prism, (¢) Kap, (d) Ky p.

2.2.4 Give a proof of Theorem 2.3 by means of a longest path argument.
(D. KONIG AND P. VERESS)

2.2.5

a) Show that every Hamilton cycle of the k-prism uses either exactly two consec-
utive edges linking the two k-cycles or else all of them.
b) How many Hamilton cycles are there in the pentagonal prism?

2.2.6 Show that there is a Hamilton path between two vertices in the Petersen
graph if and only if these vertices are nonadjacent.

2.2.7
Which grids have Hamilton paths, and which have Hamilton cycles?

2.2.8 Give an example to show that the following simple procedure, known as the
Greedy Heuristic, is not guaranteed to solve the Travelling Salesman Problem.
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> Select an arbitrary vertex v.

> Starting with the trivial path v, grow a Hamilton path one edge at a time,
choosing at each iteration an edge of minimum weight between the terminal
vertex of the current path and a vertex not on this path.

> Form a Hamilton cycle by adding the edge joining the two ends of the Hamilton
path.

2.2.9 Let G be a graph on n vertices and m edges.

a) How many induced subgraphs has G?
b) How many edge-induced subgraphs has G?

2.2.10 Show that every shortest cycle in a simple graph is an induced subgraph.

*2.2.11 Show that if G is simple and connected, but not complete, then G contains
an induced path of length two.

*2.2.12 Let P and @ be distinct paths in a graph G with the same initial and
terminal vertices. Show that P U @ contains a cycle by considering the subgraph
G[E(P) A E(Q)] and appealing to Theorem 2.1.

2.2.13

a) Show that any two longest paths in a connected graph have a vertex in com-
mon.

b) Deduce that if P is a longest path in a connected graph G, then no path in
G — V(P) is as long as P.

2.2.14 Give a constructive proof of Theorem 2.5.

2.2.15

a) Show that an induced subgraph of a line graph is itself a line graph.

b) Deduce that no line graph can contain either of the graphs in Figure 1.19 as
an induced subgraph.

¢) Show that these two graphs are minimal with respect to the above property.
Can you find other such graphs? (There are nine in all.)

2.2.16

a) Show that an induced subgraph of an interval graph is itself an interval graph.

b) Deduce that no interval graph can contain the graph in Figure 1.20 as an
induced subgraph.

¢) Show that this graph is minimal with respect to the above property.

2.2.17 Let G be a bipartite graph of maximum degree k.

a) Show that there is a k-regular bipartite graph H which contains G as an
induced subgraph.

b) Show, moreover, that if G is simple, then there exists such a graph H which
is simple.
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U
2.2.18 Let G be a simple connected graph.

a) Show that there is an ordering vy, ve, ..., v, of V such that at least %(n —1)
vertices v; are adjacent to an odd number of vertices v; with 7 < j.

b) By starting with such an ordering and adopting the approach outlined in Exer-
cise 2.2.2b, deduce that GG has a bipartite subgraph with at least %m—i— i(n— 1)
edges. (C. EDWARDS; P. ERDOS)

2.2.19 Read the ‘Theorem’ and ‘Proof’ given below, and then answer the questions
which follow.

‘Theorem’. Let G be a simple graph with § > n/2, where n > 3. Then G has a
Hamilton cycle.

‘Proof’. By induction on n. The ‘Theorem’ is true for n = 3, because G = Kj
in this case. Suppose that it holds for n = k, where k > 3. Let G’ be a simple
graph on k vertices in which § > k/2, and let C’ be a Hamilton cycle of G’. Form
a graph G on k + 1 vertices in which ¢ > (k + 1)/2 by adding a new vertex v and
joining v to at least (k + 1)/2 vertices of G’. Note that v must be adjacent to two
consecutive vertices, u and w, of C’. Replacing the edge uw of C” by the path uvw,
we obtain a Hamilton cycle C' of G. Thus the ‘Theorem’ is true for n = k + 1. By
the Principle of Mathematical Induction, it is true for all n > 3. O

a) Is the ‘Proof’ correct?

b) If you claim that the ‘Proof’ is incorrect, give reasons to support your claim.

¢) Can you find any graphs for which the ‘Theorem’ fails? Does the existence
or nonexistence of such graphs have any relationship to the correctness or
incorrectness of the ‘Proof’? (D.R. WooDALL)

2.2.20

a) Let D be an oriented graph with minimum outdegree k, where k& > 1.

i) Show that D has a vertex z whose indegree and outdegree are both at
least k.

ii) Let D’ be the digraph obtained from D by deleting N~ (z) U {z} and
adding an arc (u,v) from each vertex u of the set N~ (x) of in-neighbours
of N~ (z) to each vertex v of N*(z), if there was no such arc in D. Show
that D’ is a strict digraph with minimum outdegree k.

b) Deduce, by induction on n, that every strict digraph D with minimum outde-
gree k, where k > 1, contains a directed cycle of length at most 2n/k.
(V. CHVATAL AND E. SZEMEREDI)

2.2.21 The complement D of a strict digraph D is its complement in D(K,,). Let
D = (V, A) be a strict digraph and let P be a directed Hamilton path of D. Form
a bipartite graph B[F, S,], where F is the family of spanning subgraphs of D each
component of which is a directed path and S, is the set of permutations of V,
a subgraph F' € F being adjacent in B to a permutation o € S, if and only if
o(F)Co(D)nP.



54 2 Subgraphs

a) Which vertices F' € F are of odd degree in B?
b) Describe a bijection between the vertices o € S, of odd degree in B and the
directed Hamilton paths of D.

¢) Deduce that h(D) = h(D) (mod 2), where h(D) denotes the number of directed
Hamilton paths in D.

2.2.22 Let D be a tournament, and let (z,y) be an arc of D. Set D™ := D\ (x,y)
and D" := D + (y,x).

a) Describe a bijection between the directed Hamilton paths of D~ and those of
D+.

b) Deduce from Exercise 2.2.21 that h(D™) = h(DT) (mod 2).

¢) Consider the tournament D’ obtained from D on reversing the arc (z,y). Show
that h(D') = h(D*) — h(D) + h(D™).

d) Deduce that h(D’) = h(D) (mod 2).

e) Conclude that every tournament has an odd number of directed Hamilton
paths. (L. REDEI)

2.2.23

a) Let S be a set of n points in the plane, the distance between any two of which
is at most one. Show that there are at most n pairs of points of S at distance
exactly one. (P. ERDOS)

b) For each n > 3, describe such a set S for which the number of pairs of points
at distance exactly one is n.

2.2.24 Let G be a simple graph on n vertices and m edges, with minimum degree
6 and maximum degree A.

a) Show that there is a simple A-regular graph H which contains G as an induced
subgraph.
b) Let H be such a graph, with v(H) = n 4 r. Show that:
i)yr>A-9,
ii) rA = nA (mod 2),
i) rA>nA—-2m>rA—r(r—1).
(Erdés and Kelly (1967) showed that if r is the smallest positive integer which
satisfies the above three conditions, then there does indeed exist a simple A-regular
graph H on n + r vertices which contains G as an induced subgraph.)

2.2.25 Let GG be a simple graph on n vertices, where n > 4, and let k be an integer,
2 < k < n — 2. Suppose that all induced subgraphs of G on k vertices have the
same number of edges. Show that G is either empty or complete.

2.3 Modifying Graphs

We have already discussed some simple ways of modifying a graph, namely deleting
or adding vertices or edges. Here, we describe several other local operations on
graphs. Although they do not give rise to subgraphs or supergraphs, it is natural
and convenient to introduce them here.
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VERTEX IDENTIFICATION AND EDGE CONTRACTION

To identify nonadjacent vertices x and y of a graph G is to replace these vertices
by a single vertex incident to all the edges which were incident in G to either z or
y. We denote the resulting graph by G /{z,y} (see Figure 2.5a). To contract an
edge e of a graph G is to delete the edge and then (if the edge is a link) identify
its ends. The resulting graph is denoted by G /e (see Figure 2.5b).

XA K -A

G/{z,y}
(a) (b)

Fig. 2.5. (a) Identifying two vertices, and (b) contracting an edge

VERTEX SPLITTING AND EDGE SUBDIVISION

The inverse operation to edge contraction is vertex splitting. To split a vertex v is
to replace v by two adjacent vertices, v’ and v”, and to replace each edge incident
to v by an edge incident to either v or v” (but not both, unless it is a loop at
v), the other end of the edge remaining unchanged (see Figure 2.6a). Note that a
vertex of positive degree can be split in several ways, so the resulting graph is not
unique in general.

(a) (0)

Fig. 2.6. (a) Splitting a vertex, and (b) subdividing an edge

A special case of vertex splitting occurs when exactly one link, or exactly one
end of a loop, is assigned to either v’ or v”. The resulting graph can then be viewed
as having been obtained by subdividing an edge of the original graph, where to
subdivide an edge e is to delete e, add a new vertex x, and join x to the ends of
e (when e is a link, this amounts to replacing e by a path of length two, as in
Figure 2.6b).
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Exercises

2.3.1

a) Show that ¢(G /e) = ¢(G) for any edge e of a graph G.
b) Let G be an acyclic graph, and let e € E.

i) Show that G /e is acyclic.

ii) Deduce that m =n — c.

2.4 Decompositions and Coverings

DECOMPOSITIONS

A decomposition of a graph G is a family F of edge-disjoint subgraphs of G such
that
UrerB(F) = E(G) (2.2)

If the family F consists entirely of paths or entirely of cycles, we call F a path
decomposition or cycle decomposition of G.

Every loopless graph has a trivial path decomposition, into paths of length one.
On the other hand, not every graph has a cycle decomposition. Observe that if a
graph has a cycle decomposition C, the degree of each vertex is twice the number
of cycles of C to which it belongs, so is even. A graph in which each vertex has even
degree is called an even graph. Thus, a graph which admits a cycle decomposition is
necessarily even. Conversely, as was shown by Veblen (1912/13), every even graph
admits a cycle decomposition.

Theorem 2.7 VEBLEN’S THEOREM
A graph admits a cycle decomposition if and only if it is even.

Proof We have already shown that the condition of evenness is necessary. We
establish the converse by induction on e(G).

Suppose that G is even. If G is empty, then E(G) is decomposed by the empty
family of cycles. If not, consider the subgraph F' of G induced by its vertices of
positive degree. Because G is even, F' also is even, so every vertex of F' has degree
two or more. By Theorem 2.1, F' contains a cycle C. The subgraph G’ := G\ E(C)
is even, and has fewer edges than G. By induction, G’ has a cycle decomposition
C'. Therefore G has the cycle decomposition C :=C' U {C'}. O

There is a corresponding version of Veblen’s Theorem for digraphs (see Exer-
cise 2.4.2).
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PROOF TECHNIQUE: LINEAR INDEPENDENCE

Algebraic techniques can occasionally be used to solve problems where combi-
natorial methods fail. Arguments involving the ranks of appropriately chosen
matrices are particularly effective. Here, we illustrate this technique by giving
a simple proof, due to Tverberg (1982), of a theorem of Graham and Pollak
(1971) on decompositions of complete graphs into complete bipartite graphs.
There are many ways in which a complete graph can be decomposed into
complete bipartite graphs. For example, K, may be decomposed into six copies
of K>, into three copies of K », into the stars K 1, K7 2, and K; 3, or into K> »
and two copies of K5. What Graham and Pollak showed is that, no matter
how K, is decomposed into complete bipartite graphs, there must be at least
n — 1 of them in the decomposition. Observe that this bound can always be
achieved, for instance by decomposing K, into the stars Ky, 1 <k <n—1.
Theorem 2.8 Let F := {Fy, Fs,..., Fy} be a decomposition of K, into com-
plete bipartite graphs. Then k > n — 1.

Proof Let V := V(K,) and let F; have bipartition (X;,Y;), 1 < i < k.
Consider the following system of k + 1 homogeneous linear equations in the
variables x,, v € V:

>z, =0, d wy=0, 1<i<k
veV veX;

Suppose that k& < n—1. Then this system, consisting of fewer than n equations
in n variables, has a solution x, = ¢,, v € V, with ¢, # 0 for at least one

v € V. Thus
Zc,,annd chzO, 1<i<k
veV veX;

Because F is a decomposition of K,

chcwi<zcv>(zcw>

vweE =1 \veX; weyY;
Therefore
2 k
1= (To) ~xaney(Ta)(Te) -
veV veV =1 \veX; weY; veV
a contradiction. We conclude that £ > n — 1. Il

Further proofs based on linear independence arguments are outlined in Exer-
cises 2.4.9 and 14.2.15.
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COVERINGS

We now define the related concept of a covering. A covering or cover of a graph
G is a family F of subgraphs of G, not necessarily edge-disjoint, satisfying (2.2).
A covering is uniform if it covers each edge of G the same number of times; when
this number is k, the covering is called a k-cover. A 1-cover is thus simply a
decomposition. A 2-cover is usually called a double cover. If the family F consists
entirely of paths or entirely of cycles, the covering is referred to as a path covering
or cycle covering. Every graph which admits a cycle covering also admits a uniform
cycle covering (Exercise 3.5.7).

The notions of decomposition and covering crop up frequently in the study of
graphs. In Section 3.5, we discuss a famous unsolved problem concerning cycle
coverings, the Cycle Double Cover Conjecture. The concept of covering is also
useful in the study of another celebrated unsolved problem, the Reconstruction
Conjecture (see Section 2.7, in particular Exercise 2.7.11).

Exercises

2.4.1 Let e be an edge of an even graph GG. Show that G /e is even.

*2.4.2 EVEN DIRECTED GRAPH

A digraph D is even if d~ (v) = dT (v) for each vertex v € V. Prove the following di-
rected version of Veblen’s Theorem (2.7): A directed graph admits a decomposition
into directed cycles if and only if it is even.

2.4.3 Find a decomposition of K3 into three copies of the circulant CG(Z;3, {1, —1,
5,—5}).

u
2.4.4

a) Show that K,, can be decomposed into copies of K, only if n — 1 is divisible
by p — 1 and n(n — 1) is divisible by p(p — 1). For which integers n do these
two conditions hold when p is a prime?

b) For k a prime power, describe a decomposition of K211 into copies of Ky 1,
based on a finite projective plane of order k.

2.4.5 Let n be a positive integer.

a) Describe a decomposition of Ks,,+1 into Hamilton cycles.
b) Deduce that K, admits a decomposition into Hamilton paths.

%*2.4.6 Consider the graph obtained from the Petersen graph by replacing each of
the five edges in a 1-factor by two parallel edges, as shown in Figure 2.7. Show
that every cycle decomposition of this 4-regular graph includes a 2-cycle.
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Fig. 2.7. The Petersen graph with a doubled 1-factor

2.4.7 Let G be a connected graph with an even number of edges.

a) Show that G can be oriented so that the outdegree of each vertex is even.
b) Deduce that G admits a decomposition into paths of length two.

2.4.8 Show that every loopless digraph admits a decomposition into two acyclic
digraphs.

2.4.9 Give an alternative proof of the de Bruijn—Erdds Theorem (see Exer-
cise 1.3.15b) by proceeding as follows. Let M be the incidence matrix of a ge-
ometric configuration (P, L) which has at least two lines and in which any two
points lie on exactly one line.

a) Show that the columns of M span R™, where n := |P)|.
b) Deduce that M has rank n.
¢) Conclude that |£] > |P|.

2.5 Edge Cuts and Bonds

Epce Cuts

Let X and Y be sets of vertices (not necessarily disjoint) of a graph G = (V, E).
We denote by E[X,Y] the set of edges of G with one end in X and the other end
in Y, and by e(X,Y) their number. If Y = X, we simply write F(X) and e(X) for
E[X, X] and e(X, X), respectively. When Y = V'\ X, the set E[X,Y] is called the
edge cut of G associated with X, or the coboundary of X, and is denoted by 9(X);
note that 9(X) = d(Y) in this case, and that (V) = ). In this notation, a graph
G = (V, E) is bipartite if 9(X) = F for some subset X of V, and is connected if
9(X) # () for every nonempty proper subset X of V. The edge cuts of a graph are
illustrated in Figure 2.8.

An edge cut 9(v) associated with a single vertex v is a trivial edge cut; this is
simply the set of all links incident with v. If there are no loops incident with v, it
follows that |0(v)| = d(v). Accordingly, in the case of loopless graphs, we refer to
|0(X)| as the degree of X and denote it by d(X).



2 Subgraphs

L L L
PSR

A(u,v, ) (u,v,y) (u, v, ,y)

Fig. 2.8. The edge cuts of a graph

The following theorem is a natural generalization of Theorem 1.1, the latter
theorem being simply the case where X = V. Its proof is based on the technique
of counting in two ways, and is left as an exercise (2.5.1a).

Theorem 2.9 For any graph G and any subset X of V,

X)[= > d(v)—2e(X) 0

veX

Veblen’s Theorem (2.7) characterizes even graphs in terms of cycles. Even
graphs may also be characterized in terms of edge cuts, as follows.

Theorem 2.10 A graph G is even if and only if |0(X)] is even for every subset
X of V.

Proof Suppose that |0(X)] is even for every subset X of V. Then, in particular,
|0(v)] is even for every vertex v. But, as noted above, d(v) is just the set of all
links incident with v. Because loops contribute two to the degree, it follows that
all degrees are even. Conversely, if G is even, then Theorem 2.9 implies that all
edge cuts are of even cardinality. O

The operation of symmetric difference of spanning subgraphs was introduced
in Section 2.1. The following propositions show how edge cuts behave with respect
to symmetric difference.

Proposition 2.11 Let G be a graph, and let X and Y be subsets of V.. Then

AX)AIY)=d(X AY)
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Proof Consider the Venn diagram, shown in Figure 2.9, of the partition of V'
(XNnYy, X\Y, Y\X, XnY)

determined by the partitions (X, X) and (Y,Y), where X := V\ X and YV :=
V\ Y. The edges of 9(X), (Y), and O(X AY) between these four subsets of V'
are indicated schematically in Figure 2.10. It can be seen that 0(X) A 9(Y) =
X AY). O

X|XnY | X\Y

|
|
)
<

Y\ X

Fig. 2.9. Partition of V determined by the partitions (X, X) and (Y,Y)

Corollary 2.12 The symmetric difference of two edge cuts is an edge cut. O

We leave the proof of the second proposition to the reader (Exercise 2.5.1b).

Proposition 2.13 Let Fy and Fs be spanning subgraphs of a graph G, and let X
be a subset of V. Then

Or amy(X) = 0r, (X) A Op, (X) O
Y Y Y Y Y Y
X x| x|, |
| oA - |
x| | | x x| |
(X) a(Y) IXAY)

Fig. 2.10. The symmetric difference of two cuts
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Bonbps

A bond of a graph is a minimal nonempty edge cut, that is, a nonempty edge cut
none of whose nonempty proper subsets is an edge cut. The bonds of the graph
whose edge cuts are depicted in Figure 2.8 are shown in Figure 2.11.

The following two theorems illuminate the relationship between edge cuts and
bonds. The first can be deduced from Proposition 2.11 (Exercise 2.5.1c). The
second provides a convenient way to check when an edge cut is in fact a bond.

Theorem 2.14 A set of edges of a graph is an edge cut if and only if it is a disjoint
union of bonds. O

Theorem 2.15 In a connected graph G, a nonempty edge cut (X) is a bond if
and only if both G[X] and G[V \ X] are connected.

Proof Suppose, first, that 9(X) is a bond, and let ¥ be a nonempty proper
subset of X. Because G is connected, both 9(Y) and (X \ Y') are nonempty. It
follows that E[Y, X \ Y] is nonempty, for otherwise 9(Y") would be a nonempty
proper subset of 9(X), contradicting the supposition that 9(X) is a bond. We
conclude that G[X] is connected. Likewise, G[V \ X] is connected.

Conversely, suppose that 9(X) is not a bond. Then there is a nonempty proper
subset Y of V such that X NY # 0 and 9(Y) C 9(X). But this implies (see
Figure 2.10) that E[X NY, X \ Y] = E[Y \ X, X NY] = (. Thus G[X] is not
connected if X \'Y # (. On the other hand, if X \Y =0, then ) C Y\ X C V\ X,
and G[V \ X] is not connected. O

CuTts IN DIRECTED GRAPHS

If X and Y are sets of vertices (not necessarily disjoint) of a digraph D = (V, A),
we denote the set of arcs of D whose tails lie in X and whose heads lie in Y
by A(X,Y), and their number by a(X,Y’). This set of arcs is denoted by A(X)
when Y = X, and their number by a(X). When ¥ = V' \ X, the set A(X,Y) is
called the outcut of D associated with X, and denoted by 07 (X). Analogously,
the set A(Y, X) is called the incut of D associated with X, and denoted by 0~ (X).
Observe that 97(X) = 9~ (V \ X). Note, also, that 9(X) = 0T (X)U 9o (X). In

x$y x@g@y m$y < y
O(u) A(u,v) )

A(u, v, x) O(u, v,y

Fig. 2.11. The bonds of a graph
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the case of loopless digraphs, we refer to |07 (X)| and |0~ (X)| as the outdegree
and indegree of X, and denote these quantities by d*(X) and d~ (X)), respectively.

A digraph D is called strongly connected or strong if 07 (X) # () for every
nonempty proper subset X of V' (and thus 9~ (X) # ) for every nonempty proper
subset X of V, to0o).

Exercises

*x2.5.1

a) Prove Theorem 2.9.
b) Prove Proposition 2.13.
¢) Deduce Theorem 2.14 from Proposition 2.11.

*2.5.2 Let D be a digraph, and let X be a subset of V.

a) Show that |07 (X)| =", oy dT(v) — a(X).

b) Suppose that D is even. Using the Principle of Directional Duality, deduce
that [07(X)| = |07 (X)].

¢) Deduce from (b) that every connected even digraph is strongly connected.

2.5.3 Let G be a graph, and let X and Y be subsets of V. Show that J(X UY) A
I(XNY)=9(XAY).

*2.5.4 Let G be a loopless graph, and let X and Y be subsets of V.
a) Show that:
AX)+dY)=dXUY)+dXNY)+2(X\Y, Y\ X)
b) Deduce the following submodular inequality for degrees of sets of vertices.
AX)+dY)>dXUY)+dXNY)
¢) State and prove a directed analogue of this submodular inequality.

*2.5.5 An odd graph is one in which each vertex is of odd degree. Show that a
graph G is odd if and only if |0(X)| = | X| (mod 2) for every subset X of V.

*2.5.6 Show that each arc of a strong digraph is contained in a directed cycle.

2.5.7 DIRECTED BOND
A directed bond of a digraph is a bond 9(X) such that 9~ (X) = 0 (in other words,
9(X) is the outeut 97 (X)).

a) Show that an arc of a digraph is contained either in a directed cycle, or in a
directed bond, but not both. (G.J. MINTY)
b) Deduce that:

i) a digraph is acyclic if and only if every bond is a directed bond,
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ii) a digraph is strong if and only if no bond is a directed bond.

*2.5.8 FEEDBACK ARC SET

A feedback arc set of a digraph D is a set S of arcs such that D\ S is acyclic. Let S
be a minimal feedback arc set of a digraph D. Show that there is a linear ordering
of the vertices of D such that the arcs of S are precisely those arcs whose heads
precede their tails in the ordering.

0

2.5.9 Let (D, w) be a weighted oriented graph. For v € V, set wt(v) := > {w(a) :
a € 0% (v)}. Suppose that wt(v) > 1 for all v € V' \ {y}, where y € V. Show that
D contains a directed path of weight at least one, by proceeding as follows.

a) Consider an arc (z,y) € 9~ (y) of maximum weight. Contract this arc to a
vertex 3/, delete all arcs with tail ¢/, and replace each pair {a,a’} of multiple
arcs (with head y') by a single arc of weight w(a)+w(a’), all other arcs keeping
their original weights. Denote the resulting weighted digraph by (D', w’). Show
that if D’ contains a directed path of weight at least one, then so does D.

b) Deduce, by induction on V', that D contains a directed path of weight at least
one. (B. BoLLOBAS AND A.D. ScoTT)

2.6 Even Subgraphs

By an even subgraph of a graph G we understand a spanning even subgraph of
G, or frequently just the edge set of such a subgraph. Observe that the first two
subgraphs in Figure 2.4 are both even, as is their symmetric difference. Indeed, it
is an easy consequence of Proposition 2.13 that the symmetric difference of even
subgraphs is always even.

Corollary 2.16 The symmetric difference of two even subgraphs is an even sub-
graph.

Proof Let F; and Fs be even subgraphs of a graph G, and let X be a subset of
V. By Proposition 2.13,

O aF,(X) = 0r, (X) A O, (X)

By Theorem 2.10, 0, (X) and Op, (X) are both of even cardinality, so their sym-
metric difference is too. Appealing again to Theorem 2.10, we deduce that Fy A Fy
is even. ]

As we show in Chapters 4 and 21, the even subgraphs of a graph play an impor-
tant structural role. When discussing even subgraphs (and only in this context),
by a cycle we mean the edge set of a cycle. By the same token, we use the term
disjoint cycles to mean edge-disjoint cycles. With this convention, the cycles of a
graph are its minimal nonempty even subgraphs, and Theorem 2.7 may be restated
as follows.
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Theorem 2.17 A set of edges of a graph is an even subgraph if and only if it is a
disjoint union of cycles. |

THE CYCLE AND BOND SPACES
Even subgraphs and edge cuts are related in the following manner.

Proposition 2.18 In any graph, every even subgraph meets every edge cut in an
even number of edges.

Proof We first show that every cycle meets every edge cut in an even number of
edges. Let C be a cycle and 9(X) an edge cut. Each vertex of C' is either in X or in
V\ X. As C is traversed, the number of times it crosses from X to V'\ X must be
the same as the number of times it crosses from V' \ X to X. Thus |E(C) N 9I(X)|
is even.

By Theorem 2.17, every even subgraph is a disjoint union of cycles. It follows
that every even subgraph meets every edge cut in an even number of edges. (]

We denote the set of all subsets of the edge set E of a graph G by &£(G).
This set forms a vector space of dimension m over GF(2) under the operation of
symmetric difference. We call £(G) the edge space of G. With each subset X of E,
we may associate its incidence vector fx, where fx(e) =1ife € X and fx(e) =0
if e ¢ X. The function which maps X to fx for all X C E is an isomorphism from
€ to (GF(2))F (Exercise 2.6.2).

By Corollary 2.16, the set of all even subgraphs of a graph G forms a subspace
C(G) of the edge space of G. We call this subspace the cycle space of G, because it
is generated by the cycles of G. Likewise, by Corollary 2.12, the set of all edge cuts
of G forms a subspace B(G) of £(G), called the bond space (Exercise 2.6.4a,b).
Proposition 2.18 implies that these two subspaces are orthogonal. They are, in
fact, orthogonal complements (Exercise 2.6.4c).

In Chapter 20, we extend the above concepts to arbitrary fields, in particular
to the field of real numbers.

Exercises

2.6.1 Show that:

a) a graph G is even if and only if E is an even subgraph of G,
b) a graph G is bipartite if and only if E is an edge cut of G.

*2.6.2 Show that the edge space £(G) is a vector space over GF(2) with respect
to the operation of symmetric difference, and that it is isomorphic to (GF(2))F.

2.6.3
a) Draw all the elements of the cycle and bond spaces of the wheel Wy.
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b) How many elements are there in each of these two vector spaces?

*2.6.4 Show that:

a) the cycles of a graph generate its cycle space,

b) the bonds of a graph generate its bond space,

¢) the bond space of a graph G is the row space of its incidence matrix M over
GF(2), and the cycle space of G is its orthogonal complement.

2.6.5 How many elements are there in the cycle and bond spaces of a graph G?

0

2.6.6 Show that every graph G has an edge cut [X,Y] such that G[X] and G[Y]
are even.

2.7 Graph Reconstruction

Two graphs G and H on the same vertex set V are called hypomorphic if, for
all v € V| their vertex-deleted subgraphs G — v and H — v are isomorphic. Does
this imply that G and H are themselves isomorphic? Not necessarily: the graphs
2K, and K5, though not isomorphic, are clearly hypomorphic. However, these two
graphs are the only known nonisomorphic pair of hypomorphic simple graphs, and
it was conjectured in 1941 by Kelly (1942) (see also Ulam (1960)) that there are
no other such pairs. This conjecture was reformulated by Harary (1964) in the
more intuitive language of reconstruction. A reconstruction of a graph G is any

o]

[ ]

Fig. 2.12. The deck of a graph on six vertices

graph that is hypomorphic to G. We say that a graph G is reconstructible if every
reconstruction of G is isomorphic to GG, in other words, if G' can be ‘reconstructed’
up to isomorphism from its vertex-deleted subgraphs. Informally, one may think
of the (unlabelled) vertex-deleted subgraphs as being presented on cards, one per
card. The problem of reconstructing a graph is then that of determining the graph
from its deck of cards. The reader is invited to reconstruct the graph whose deck
of six cards is shown in Figure 2.12.
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THE RECONSTRUCTION CONJECTURE

Conjecture 2.19 FEvery simple graph on at least three wvertices is recon-
structible.

The Reconstruction Conjecture has been verified by computer for all graphs on up
to ten vertices by McKay (1977). In discussing it, we implicitly assume that our
graphs have at least three vertices.

One approach to the Reconstruction Conjecture is to show that it holds for
various classes of graphs. A class of graphs is reconstructible if every member
of the class is reconstructible. For instance, regular graphs are easily shown to
be reconstructible (Exercise 2.7.5). One can also prove that disconnected graphs
are reconstructible (Exercise 2.7.11). Another approach is to prove that specific
parameters are reconstructible. We call a graphical parameter reconstructible if
the parameter takes the same value on all reconstructions of G. A fundamental
result of this type was obtained by Kelly (1957). For graphs F' and G, we adopt
the notation of Lauri and Scapellato (2003) and use (g) to denote the number
of copies of F' in G. For instance, if F' = K, then (g) = ¢e(G), if F = G, then
(%) =1, and if v(F) > v(G), then (¢) = 0.

Lemma 2.20 KEgLLY’S LEMMA
For any two graphs F and G such that v(F) < v(G), the parameter (G

F) 1S recon-
structible.

Proof Each copy of F' in G occurs in exactly v(G) — v(F) of the vertex-deleted
subgraphs G — v (namely, whenever the vertex v is not present in the copy).

Therefore o ) o
#) == = (e

veV

Since the right-hand side of this identity is reconstructible, so too is the left-hand
side. ]

Corollary 2.21 For any two graphs F' and G such that v(F) < v(G), the num-
ber of subgraphs of G that are isomorphic to F and include a given vertex v is
reconstructible.

Proof This number is (g) — (G;”), which is reconstructible by Kelly’s Lemma.
|

Corollary 2.22 The size and the degree sequence are reconstructible parameters.
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Proof Take F' = K5 in Kelly’s Lemma and Corollary 2.21, respectively. ]

An edge analogue of the Reconstruction Conjecture was proposed by Harary
(1964). A graph is edge-reconstructible if it can be reconstructed up to isomorphism
from its edge-deleted subgraphs.

THE EDGE RECONSTRUCTION CONJECTURE

Conjecture 2.23 Fvery simple graph on at least four edges 1is edge-
reconstructible.

Note that the bound on the number of edges is needed on account of certain
small counterexamples (see Exercise 2.7.2). The notions of edge reconstructibility
of classes of graphs and of graph parameters are defined in an analogous manner
to those of reconstructibility, and there is an edge version of Kelly’s Lemma, whose
proof we leave as an exercise (Exercise 2.7.13a).

Lemma 2.24 KELLY’S LEMMA: EDGE VERSION
For any two graphs F and G such that e(F) < e(G), the parameter (g) is edge
reconstructible. ]

Because edge-deleted subgraphs are much closer to the original graph than are
vertex-deleted subgraphs, it is intuitively clear (but not totally straightforward
to prove) that the Edge Reconstruction Conjecture is no harder than the Recon-
struction Conjecture (Exercise 2.7.14). Indeed, a number of approaches have been
developed which are effective for edge reconstruction, but not for vertex recon-
struction. We describe below one of these approaches, Mobius Inversion.

PROOF TECHNIQUE: MOBIUS INVERSION

We discussed earlier the proof technique of counting in two ways. Here, we
present a more subtle counting technique, that of Mdébius Inversion. This is a
generalization of the Inclusion-Exclusion Formula, a formula which expresses
the cardinality of the union of a family of sets {A; : ¢ € T'} in terms of the
cardinalities of intersections of these sets:

|Uier Al = Y (=DM niex Ay (2.3)
bcxcr

the case of two sets being the formula |[AU B| = |A| + |B| — |AN B].
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MOBIUS INVERSION (CONTINUED)

Theorem 2.25 THE MOBIUS INVERSION FORMULA
Let f: 27 — R be a real-valued function defined on the subsets of a finite set
T. Define the function g : 27 — R by

g(8) = Y f(X) (2.4)
SCXCT
Then, for all S C T,
f8) =Y (—=n*¥lg(x) (2.5)

SCXCT

Remark. Observe that (2.4) is a linear transformation of the vector space
of real-valued functions defined on 27. The Mé&bius Inversion Formula (2.5)
simply specifies the inverse of this transformation.

Proof By the Binomial Theorem,

Y (pXsio Y <§—||§||>(_1)|X|—|S|:(1_1)Y|—|S|

SCXCY [SI<IX|<IY]

which is equal to 0 if S C Y, and to 1 if S =Y. Therefore,

fS) = > J) > (=pE

SCYCT SCXCY
= > YRS p) = Y () o
SCXCT XCYCT SCXCT

We now show how the Mobius Inversion Formula can be applied to the prob-
lem of edge reconstruction. This highly effective approach was introduced by
Lovész (1972¢) and refined successively by Miiller (1977) and Nash-Williams
(1978).

The idea is to count the mappings between two simple graphs G and H on the
same vertex set V' according to the intersection of the image of G with H. Each
such mapping is determined by a permutation ¢ of V', which one extends to
G = (V, E) by setting 0(G) := (V,0(E)), where 0(E) := {o(u)o(v) : uv € E}.
For each spanning subgraph F' of GG, we consider the permutations of G which
map the edges of F' onto edges of H and the remaining edges of G onto edges
of H. We denote their number by |G — H|p, that is:

|G = H|lp:=|{c€S,: o(G)NH =0(F)}|
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MOBIUS INVERSION (CONTINUED)

In particular, if F' = G, then |G — H|p is simply the number of embeddings
of G in H, which we denote for brevity by |G — HJ, and if F is empty,
|G — H|p is the number of embeddings of GG in the complement of H; that
is, |G — H|. These concepts are illustrated in Figure 2.13 for all spanning
subgraphs F' of G when G = K; + K » and H = 2K5. Observe that, for any
subgraph F' of G,

> |G- H|x=|F— H| (2.6)
FCXCG
and that =
|F — H| = aut(F) (F) (2.7)

where aut(F') denotes the number of automorphisms of F, because the sub-
graph F' of G can be mapped onto each copy of F' in H in aut(F) distinct
ways.

Lemma 2.26 NASH-WILLIAMS’ LEMMA
Let G be a graph, F' a spanning subgraph of G, and H an edge reconstruction
of G that is not isomorphic to G. Then

|G — G|r — |G — H|p = (—1)*D=cPaut(G) (2.8)

Proof By (2.6) and (2.7),

S 16— Hlx = aut(F) (g)

FCXCG

We invert this identity by applying the Mobius Inversion Formula (identifying
each spanning subgraph of G with its edge set), to obtain:

6= Hlr= ¥ (0O Oau(x) ()

FCXCG
Therefore,
G H
0= Gl -l = Hlr= 3 U () - (5))
FCXCG
Because H is an edge reconstruction of G, we have ()G() = (g) for every

proper spanning subgraph X of G, by the edge version of Kelly’s Lemma

(2.24). Finally, (g) = 1, whereas (g) =0since e(H) =e(G) and H #* G. O
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@] @] @] @] @] @] (@]
(@] (@] @] Oo0——O

|G — G| 10 6 6 2
H
|G — H|r 8 8 8 0

Fig. 2.13. Counting mappings

MOBIUS INVERSION (CONTINUED)

Theorem 2.27 A graph G is edge reconstructible if there exists a spanning
subgraph F of G such that either of the following two conditions holds.

(i) |G — H|p takes the same value for all edge reconstructions H of G,
(ii) |F — G| < 2¢(@ =) ~laut(QG).

Proof Let H be an edge reconstruction of G. If condition (i) holds, the
left-hand side of (2.8) is zero whereas the right-hand side is nonzero. The
inequality of condition (ii) is equivalent, by (2.6), to the inequality

> 1G = Glx < 29D any(@)
FCXCG

But this implies that |G — G|x < aut(G) for some spanning subgraph X of
G such that e(G) — e(X) is even, and identity (2.8) is again violated (with
F := X). Thus, in both cases, Nash-Williams’ Lemma implies that H is
isomorphic to G. O

Choosing F' as the empty graph in Theorem 2.27 yields two sufficient condi-
tions for the edge reconstructibility of a graph in terms of its edge density,
due to Lovész (1972) and Miiller (1977), respectively (Exercise 2.7.8).

1(n

Corollary 2.28 A graph G is edge reconstructible if either m > 5(2) or
2m=1 > p|

Two other applications of the Mobius Inversion Formula to graph theory
are given in Exercises 2.7.17 and 14.7.12. For further examples, see Whitney
(1932b). Theorem 2.25 was extended by Rota (1964) to the more general
context of partially ordered sets.
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It is natural to formulate corresponding conjectures for digraphs (see Harary
(1964)). Tools such as Kelly’s Lemma apply to digraphs as well, and one might be
led to believe that the story is much the same here as for undirected graphs. Most
surprisingly, this is not so. Several infinite families of nonreconstructible digraphs,
and even nonreconstructible tournaments, were constructed by Stockmeyer (1981)
(see Exercise 2.7.18). One such pair is shown in Figure 2.14. We leave its verification
to the reader (Exercise 2.7.9).

Fig. 2.14. A pair of nonreconstructible tournaments

We remark that there also exist infinite families of nonreconstructible hyper-
graphs (see Exercise 2.7.10 and Kocay (1987)) and nonreconstructible infinite
graphs (see Exercise 4.2.10). Further information on graph reconstruction can be
found in the survey articles by Babai (1995), Bondy (1991), and Ellingham (1988),
and in the book by Lauri and Scapellato (2003).

Exercises

2.7.1 Find two nonisomorphic graphs on six vertices whose decks both include the
first five cards displayed in Figure 2.12. (P.K. STOCKMEYER)

2.7.2 Find a pair of simple graphs on two edges, and also a pair of simple graphs
on three edges, which are not edge reconstructible.

2.7.3 Two dissimilar vertices v and v of a graph G are called pseudosimilar if the
vertex-deleted subgraphs G — u and G — v are isomorphic.

a) Find a pair of pseudosimilar vertices in the graph of Figure 2.15.
b) Construct a tree with a pair of pseudosimilar vertices.
(F. HARARY AND E.M. PALMER)

2.7.4 A class G of graphs is recognizable if, for each graph G € G, every reconstruc-
tion of G also belongs to G. The class G is weakly reconstructible if, for each graph
G € G, every reconstruction of G that belongs to G is isomorphic to G. Show that
a class of graphs is reconstructible if and only if it is both recognizable and weakly
reconstructible.
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NEVANRVAN

Fig. 2.15. A graph containing a pair of pseudosimilar vertices (Exercise 2.7.3)

2.7.5

a) Show that regular graphs are both recognizable and weakly reconstructible.
b) Deduce that this class of graphs is reconstructible.

2.7.6

a) Let G be a connected graph on at least two vertices, and let P be a maximal
path in G, starting at « and ending at y. Show that G — x and G — y are
connected.

b) Deduce that a graph on at least three vertices is connected if and only if at
least two vertex-deleted subgraphs are connected.

¢) Conclude that the class of disconnected graphs is recognizable.

2.7.7 Verify identity (2.6) for the graphs G and H of Figure 2.13, and for all
spanning subgraphs F' of G.

*2.7.8 Deduce Corollary 2.28 from Theorem 2.27.

2.7.9 Show that the two tournaments displayed in Figure 2.14 form a pair of
nonreconstructible tournaments. (P.K. STOCKMEYER)

2.7.10 Consider the hypergraphs G and H with vertex set V :={1,2,3,4,5} and
respective edge sets

F(G) = {123,125,135,234,345} and F(H) := {123,135, 145,234, 235}
Show that (G, H) is a nonreconstructible pair.
%

2.7.11 Let G be a graph, and let F := (Fy, Fs, ..., Fi) be a sequence of graphs
(not necessarily distinct). A covering of G by F is a sequence (G1,Ga,...,Gy) of
subgraphs of G such that G; = F;, 1 <4 < k, and U¥_,G; = G. We denote the
number of coverings of G by F by ¢(F,G). For example, if F := (K3, K1 2), the
coverings of G by F for each graph G such that ¢(F,G) > 0 are as indicated in
Figure 2.16 (where the edge of K5 is shown as a dotted line).

a) Show that, for any graph G and any sequence F := (F, Fy, ..., F}) of graphs
such that v(F;) < v(G), 1 <1i <k, the parameter

> o(F.X) <§>

X

is reconstructible, where the sum extends over all unlabelled graphs X such
that v(X) = v(G). (W.L. Kocay)
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b) Applying Exercise 2.7.11a to all families F := (Fy, Fa,..., Fy) such that
Zle v(F;) = v(G), deduce that the class of disconnected graphs is weakly
reconstructible.

¢) Applying Exercise 2.7.6¢, conclude that this class is reconstructible.
(P.J.KELLY)

2.7.12 Let G and H be two graphs on the same vertex set V, where |V| > 4.
Suppose that G — {z,y} = H — {z,y} for all x,y € V. Show that G = H.

*2.7.13

a) Prove the edge version of Kelly’s Lemma (Lemma 2.24).

b) Using the edge version of Kelly’s Lemma, show that the number of isolated
vertices is edge reconstructible.

¢) Deduce that the Edge Reconstruction Conjecture is valid for all graphs pro-
vided that it is valid for all graphs without isolated vertices.

2.7.14

a) By applying Exercise 2.7.11a, show that the (vertex) deck of any graph without
isolated vertices is edge reconstructible.
b) Deduce from Exercise 2.7.13¢ that the Edge Reconstruction Conjecture is true

if the Reconstruction Conjecture is true. (D.L. GREENWELL)
G Coverings of G by F = (K1, K1,2) o(F,G)
o—0—o0 o= o) O——O0== o) 2
o o) o O------ o O------ oO—0—=0 2
Q
* ) : 3
. o/o\o o
o—o0 SR o |
o—0—-0 o—0—-0

Fig. 2.16. Covering a graph by a sequence of graphs (Exercise 2.7.11)
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2.7.15 Let {A; : i € T} be a family of sets. For S C T, define f(5) := [(Nics4;) \
(Uier\sAs)| and g(S) := | Nies Ai|, where, by convention, N;cpA; = User A;.

a) Show that g(S) = > gcxcr [(X).
b) Deduce from the M6bius Inversion Formula (2.5) that

> DM nex Al =o.

§CXCT
¢) Show that this identity is equivalent to the Inclusion-Exclusion Formula (2.3).

2.7.16 Use the Binomial Theorem to establish the Inclusion-Exclusion Formula
(2.3) directly, without appealing to Mobius Inversion.

2.7.17 Consider the lower-triangular matrix A,, whose rows and columns are in-
dexed by the isomorphism types of the graphs on n vertices, listed in increasing
order of size, and whose (X,Y) entry is (3 ).
a) Compute Az and Ay.
b) For k € Z, show that the (X,Y) entry of (A,,)* is k¢(X)—¢(¥) (if)
(X. BUCHWALDER)

2.7.18 Consider the Stockmeyer tournament ST}, defined in Exercise 1.5.11.

a) Show that each vertex-deleted subgraph of ST, is self-converse.

b) Denote by 0dd(ST,,) and even(ST,) the subtournaments of ST;, induced by its
odd and even vertices, respectively. For n > 1, show that odd(ST,,) = ST,,—1 =
even(ST,).

¢) Deduce, by induction on n, that ST, —k = ST, —(2"—k+1) for all k € V(ST,,).

(W. Kocay)

d) Consider the following two tournaments obtained from ST,, by adding a new
vertex (. In one of these tournaments, 0 dominates the odd vertices and is
dominated by the even vertices; in the other, 0 dominates the even vertices
and is dominated by the odd vertices. Show that these two tournaments on
2" + 1 vertices form a pair of nonreconstructible digraphs.

(P.K. STOCKMEYER)

2.7.19 To switch a vertex of a simple graph is to exchange its sets of neighbours
and non-neighbours. The graph so obtained is called a switching of the graph. The
collection of switchings of a graph G is called the (switching) deck of G. A graph
is switching-reconstructible if every graph with the same deck as G is isomorphic
to G.

a) Find four pairs of graphs on four vertices which are not switching-reconstruct
-ible.
b) Let G be a graph with n odd. Consider the collection G consisting of the n?
graphs in the decks of the graphs which comprise the deck of G.
i) Show that G is the only graph which occurs an odd number of times in G.
ii) Deduce that G is switching-reconstructible.
¢) Let G be a graph with n = 2 (mod 4). Show that G is switching-reconstructible.
(R.P. STANLEY; N. ALON)
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2.8 Related Reading

PAaTH AND CYCLE DECOMPOSITIONS

Veblen’s Theorem (2.7) tells us that every even graph can be decomposed into
cycles, but it says nothing about the number of cycles in the decomposition. One
may ask how many or how few cycles there can be in a cycle decomposition of
a given even graph. These questions are not too hard to answer in special cases,
such as when the graph is complete (see Exercises 2.4.4 and 2.4.5a). Some forty
years ago, G. Hajos conjectured that every simple even graph on n vertices admits a
decomposition into at most (n—1)/2 cycles (see Lovész (1968b)). Surprisingly little
progress has been made on this simply stated problem. An analogous conjecture
on path decompositions was proposed by T. Gallai at about the same time (see
Lovész (1968b)), namely that every simple connected graph on n vertices admits a
decomposition into at most (n+ 1)/2 paths. This bound is sharp if all the degrees
are odd, because in any path decomposition each vertex must be an end of at least
one path. Lovasz (1968b) established the truth of Gallai’s conjecture in this case
(see also Donald (1980)).

LEGITIMATE DECKS

In the Reconstruction Conjecture (2.19), the deck of vertex-deleted subgraphs of
a graph is supplied, the goal being to determine the graph. A natural problem,
arguably even more fundamental, is to characterize such decks. A family G :=
{G1,Ga,...,Gy} of n graphs, each of order n — 1, is called a legitimate deck if
there is at least one graph G with vertex set {vy,va,...,v,} such that G; & G —v;,
1 < i < n. The Legitimate Deck Problem asks for a characterization of legitimate
decks. This problem was raised by Harary (1964). It was shown by Harary et al.
(1982) and Mansfield (1982) that the problem of recognizing whether a deck is
legitimate is as hard (in a sense to be discussed in Chapter 8) as that of deciding
whether two graphs are isomorphic.

The various counting arguments deployed to attack the Reconstruction Con-
jecture provide natural necessary conditions for legitimacy. For instance, the
proof of Kelly’s Lemma (2.20) tells us that if G is the deck of a graph G, then
(g) =>", (C}’;)/(n —v(F)) for every graph F on fewer than n vertices. Because
the left-hand side is an integer, Y1, (%) must be a multiple of n — v(F). It is
not hard to come up with an illegitimate deck which passes this test. Indeed, next
to nothing is known on the Legitimate Deck Problem. A more general problem
would be to characterize, for a fixed integer k, the vectors ((g) :v(F) = k), where
G ranges over all graphs on n vertices. Although trivial for £ = 2, the problem
is unsolved already for £ = 3 and appears to be very hard. Even determining the
minimum number of triangles in a graph on n vertices with a specified number
of edges is a major challenge (see Razborov (2006), where a complex asymptotic
formula, derived by highly nontrivial methods, is given).
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ULTRAHOMOGENEOUS (GRAPHS

A simple graph is said to be k-ultrahomogeneous if any isomorphism between two
of its isomorphic induced subgraphs on k or fewer vertices can be extended to
an automorphism of the entire graph. It follows directly from the definition that
every graph is O-ultrahomogeneous, that 1-ultrahomogeneous graphs are the same
as vertex-transitive graphs, and that complements of k-ultrahomogeneous graphs
are k-ultrahomogeneous.

Cameron (1980) showed that any graph which is 5-ultrahomogeneous is k-
ultrahomogeneous for all k. Thus it is of interest to classify the k-ultrahomogeneous
graphs for 1 < k£ < 5. The 5-ultrahomogeneous graphs were completely described
by Gardiner (1976). They are the self-complementary graphs C5 and L(K33), and
the Turdn graphs T} ,x, for all £ > 1 and r > 1, as well as their complements.
These graphs all have rather simple structures. There is, however, a remarkable
4-ultrahomogeneous graph. It arises from a very special geometric configuration,
discovered by Schléfli (1858), consisting of twenty-seven lines on a cubic surface,
and is known as the Schldfli graph. Here is a description due to Chudnovsky and
Seymour (2005).

The vertex set of the graph is Z3, two distinct vertices (a,b,c) and (a’, ¥, c)
being joined by an edge if @’ = a and either & = bor ¢/ = ¢, orif a’ = a + 1 and
b' # c. This construction results in a 16-regular graph on twenty-seven vertices.
The subgraph induced by the sixteen neighbours of a vertex of the Schlafli graph
is isomorphic to the complement of the Clebsch graph, shown in Figure 12.9. In
turn, the subgraph induced by the neighbour set of a vertex of the complement of
the Clebsch graph is isomorphic to the complement of the Petersen graph. Thus,
one may conclude that the Clebsch graph is 3-ultrahomogeneous and that the
Petersen graph is 2-ultrahomogeneous. By employing the classification theorem
for finite simple groups, Buczak (1980) showed that the the Schlifli graph and its
complement are the only two graphs which are 4-ultrahomogeneous without being
5-ultrahomogeneous.

The notion of ultrahomogeneity may be extended to infinite graphs. The count-
able random graph G described in Exercise 13.2.18 has the property that if F' and
F’ are isomorphic induced subgraphs of G, then any isomorphism between F and
F’ can be extended to an automorphism of G. Further information about ultraho-
mogeneous graphs may be found in Cameron (1983) and Devillers (2002).
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3.1 Walks and Connection

WALKS

In Section 1.1, the notion of connectedness was defined in terms of edge cuts. Here,
we give an alternative definition based on the notion of a walk in a graph.

A walk in a graph G is a sequence W := vgeivy ... vs_1epvp, whose terms are
alternately vertices and edges of G' (not necessarily distinct), such that v;_; and
v; are the ends of e;, 1 < i < ¢. (We regard loops as giving rise to distinct walks
with the same sequence, because they may be traversed in either sense. Thus if e
is a loop incident with a vertex v, we count the walk vev not just once, but twice.)
If vg = x and v, = y, we say that W connects x to y and refer to W as an zy-walk.
The vertices x and y are called the ends of the walk, x being its initial vertex and
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y its terminal vertex; the vertices vy, ...,v¢_1 are its internal vertices. The integer
¢ (the number of edge terms) is the length of W. An x-walk is a walk with initial
vertex x. If v and v are two vertices of a walk W, where u precedes v on W, the
subsequence of W starting with « and ending with v is denoted by uWv and called
the segment of W from u to v. The notation uWv is also used simply to signify a
uv-walk W.

In a simple graph, a walk vpeqvy ...vp_1€pvp is determined, and is commonly
specified, by the sequence vgvy ... v of its vertices. Indeed, even if a graph is not
simple, we frequently refer to a sequence of vertices in which consecutive terms
are adjacent vertices as a ‘walk’. In such cases, it should be understood that the
discussion is valid for any walk with that vertex sequence. This convention is
especially useful in discussing paths, which may be viewed as walks whose vertices
(and edges) are distinct.

A walk in a graph is closed if its initial and terminal vertices are identical, and
is a trail if all its edge terms are distinct. A closed trail of positive length whose
initial and internal vertices are distinct is simply the sequence of vertices and edges
of a cycle. Reciprocally, with any cycle one may associate a closed trail whose terms
are just the vertices and edges of the cycle. Even though this correspondence is
not one-to-one (the trail may start and end at any vertex of the cycle, and traverse
it in either sense), we often specify a cycle by describing an associated closed trail
and refer to that trail as the cycle itself.

CONNECTION

Connectedness of pairs of vertices in a graph G is an equivalence relation on V.
Clearly, each vertex x is connected to itself by the trivial walk W := x; also, if
x is connected to y by a walk W, then y is connected to x by the walk obtained
on reversing the sequence W; finally, for any three vertices, x, y, and z of G,
if xWy and yW'z are walks, the sequence xWyW'z, obtained by concatenating
W and W' at y, is a walk; thus, if z is connected to y and y is connected to z,
then x is connected to z. The equivalence classes determined by this relation of
connectedness are simply the vertex sets of the components of G (Exercise 3.1.3).

If there is an xy-walk in a graph G, then there is also an zy-path (Exer-
cise 3.1.1). The length of a shortest such path is called the distance between x and
y and denoted dg(x,y). If there is no path connecting x and y (that is, if  and y
lie in distinct components of G), we set dg(x,y) := .

We may extend the notion of an xy-path to paths connecting subsets X and
Y of V. An (X,Y)-path is a path which starts at a vertex of X, ends at a vertex
of Y, and whose internal vertices belong to neither X nor Y; if F} and Fy are
subgraphs of a graph G, we write (Fy, Fy)-path instead of (V (Fy), V(Fy))-path. A
useful property of connected graphs is that any two nonempty sets of vertices (or
subgraphs) are connected by such a path (Exercise 3.1.4).
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PROOF TECHNIQUE: EIGENVALUES

We saw in Chapter 2 how certain problems can be solved by making use of
arguments involving linear independence. Another powerful linear algebraic
tool involves the computation of eigenvalues of appropriate matrices. Al-
though this technique is suitable only for certain rather special problems, it
is remarkably effective when applicable. Here is an illustration.

A friendship graph is a simple graph in which any two vertices have exactly
one common neighbour. By using a clever mixture of graph-theoretical and
eigenvalue arguments, Erdds et al. (1966) proved that all friendship graphs
have a very simple structure.

Theorem 3.1 THE FRIENDSHIP THEOREM

Let G be a simple graph in which any two vertices (people) have exactly one
common neighbour (friend). Then G has a vertex of degree n—1 (a politician,
everyone’s friend).

Proof Suppose the theorem false, and let G be a friendship graph with
A < n —1. Let us show first of all that G is regular. Consider two nonad-
jacent vertices x and y, where, without loss of generality, d(z) > d(y). By
assumption, x and y have exactly one common neighbour, z. For each neigh-
bour v of = other than z, denote by f(v) the common neighbour of v and
y. Then f is a one-to-one mapping from N(x) \ {z} to N(y) \ {z}. Because
IN(z)] =d(z) > d(y) = |N(y)|, we conclude that f is a bijection and hence
that d(z) = d(y). Thus any two nonadjacent vertices of G have the same
degree; equivalently, any two adjacent vertices of G have the same degree.

In order to prove that G is regular, it therefore suffices to show that G is con-
nected. But G has no singleton component, because §(G) = n—1—A(G) > 0,
and cannot have two components of order two or more, because G would then
contain a 4-cycle, thus two vertices with two common neighbours. Therefore
G is k-regular for some positive integer k. Moreover, by counting the number

of 2-paths in G in two ways, we have n(g) = (72‘), that is, n = k% — k + 1.

Let A be the adjacency matrix of G. Then (Exercise 3.1.2) A2 = J+ (k— 1)1,
where J is the n x n matrix all of whose entries are 1, and I is the n X n
identity matrix. Because the eigenvalues of J are 0, with multiplicity n — 1,
and n, with multiplicity 1, the eigenvalues of A2 are k — 1, with multiplicity
n—1, and n + k — 1 = k2, with multiplicity 1. The graph G therefore has
eigenvalues ++v/k — 1, with total multiplicity n — 1, and k, with multiplicity 1
(see Exercise 1.1.22a).

Because G is simple, the sum of its eigenvalues, the trace of A, is zero. Thus
tvk —1 = k for some integer t. But this implies that £ = 2 and n = 3,
contradicting the assumption that A <n — 1. O

Further applications of eigenvalues are outlined in Exercises 3.1.11 and 3.1.12.
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The above notions apply equally to digraphs. If W := vgajvy ... vi_1asvp is a
walk in a digraph, an arc a; of W is a forward arc if v;_; is the tail of a; and v;
is its head, and a reverse arc if v; is the tail of a; and v;_; its head. The sets of
forward and reverse arcs of W are denoted by W™ and W, respectively. Walks in
which all arcs are forward arcs, called directed walks, are discussed in Section 3.4.

Connectedness plays an essential role in applications of graph theory. For ex-
ample, the graph representing a communications network needs to be connected
for communication to be possible between all vertices. Connectedness also plays a
basic role in theoretical considerations. For instance, in developing an algorithm
to determine whether a given graph is planar, we may restrict our attention to
connected graphs, because a graph is planar if and only if each of its components
is planar.

Exercises

*3.1.1 If there is an xy-walk in a graph G, show that there is also an xy-path in G.

3.1.2 Let G be a graph with vertex set V and adjacency matrix A = (ay,). Show
that the number of uv-walks of length & in G is the (u,v) entry of A*.

*3.1.3 Show that the equivalence classes determined by the relation of connect-
edness between vertices are precisely the vertex sets of the components of the
graph.

*3.1.4 Show that a graph G is connected if and only if there is an (X,Y)-path in
G for any two nonempty subsets X and Y of V.

3.1.5 Show that, in any graph G, the distance function satisfies the triangle in-
equality: for any three vertices x, y, and z, d(z,y) + d(y, z) > d(z, 2).

3.1.6 POWER OF A GRAPH

The kth power of a simple graph G = (V, E) is the graph G* whose vertex set is
V, two distinct vertices being adjacent in G* if and only if their distance in G is
at most k. The graph G2 is referred to as the square of G, the graph G® as the
cube of G. Consider P¥, the kth power of a path on n vertices, where n > k2 + k.
Show that:

a) d(P¥) > 2k — 1,
b) 6(F) < k for every induced subgraph F of P*.

3.1.7 DIAMETER
The diameter of a graph G is the greatest distance between two vertices of G.

a) Let G be a simple graph of diameter greater than three. Show that G has
diameter less than three.
b) Deduce that every self-complementary graph has diameter at most three.
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c) For k =0,1,2,3, give an example of a self-complementary graph of diameter
k, if there is one.

3.1.8 Show that if G is a simple graph of diameter two with A = n — 2, then
m > 2n — 4.

3.1.9 Show that the incidence graph of a finite projective plane has diameter three.

3.1.10 If the girth of a graph is at least 2k, show that its diameter is at least k.

u
3.1.11

a) Let G; and G5 be edge-disjoint copies of the Petersen graph on the same vertex
set. Show that 2 is an eigenvalue of G; U G5 by proceeding as follows.

i) Observe that 1 is an eigenvector of both G and G5 corresponding to the
eigenvalue 3.

ii) Let S; and Sy denote the eigenspaces of G1 and Ga, respectively, corre-
sponding to the eigenvalue 1. (Since 1 is an eigenvalue of the Petersen
graph with multiplicity five, S; and Sy are 5-dimensional subspaces of
R10)) Using the fact that 1 is orthogonal to both S; and S, show that the
dimension of S; N Sy is at least one.

iii) Noting that Ag,ue, = Ag, +Ag,, show that any nonzero vector in S1NS,
is an eigenvector of G; U G corresponding to the eigenvalue 2.

b) Appealing now to Exercises 1.3.2 and 1.3.11, conclude that Ko cannot be
decomposed into three copies of the Petersen graph. (A.J. SCHWENK)

3.1.12 MOORE GRAPH
A Moore graph of diameter d is a regular graph of diameter d and girth 2d + 1.
Consider a k-regular Moore graph G of diameter two.

a) Show that n = k% + 1.
b) Let A be the adjacency matrix of G' and tr(A) its trace.
i) Show that tr(A) = 0.
ii) Evaluate the matrix A%+ A, determine its eigenvalues and their multiplici-
ties, and deduce the possible eigenvalues of A (but not their multiplicities).
iii) Expressing tr(A) in terms of the eigenvalues of A and their multiplicities,
and noting that these multiplicities are necessarily integers, conclude that
such a graph G can exist only if &k = 2,3,7, or 57.
(A.J. HOFFMAN AND R.R. SINGLETON)
¢) Find such a graph G for k =2 and k = 3.

(A T-regular example, the Hoffman—Singleton graph, discovered by Hoffman
and Singleton (1960), is depicted in Figure 3.1; vertex ¢ of P; is joined to
vertex 7 + jk (mod 5) of Qk. A 57-regular example would have 3250 vertices.
No such graph is known.)
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Fig. 3.1. The Hoffman—Singleton graph

3.1.13 CACE

A k-regular graph of girth g with the least possible number of vertices is called a
(k, g)-cage. A (3, g)-cage is often simply referred to as a g-cage. Let f(k,g) denote
the number of vertices in a (k, g)-cage. Observe that f(2,¢9) = g.

a) For k > 3, show that:
) £ 2r) > (20k— 17— 2)/(k — 2),
ii) f(k,2r4+1) > (k(k—1)"—2)/(k —2).
b) Determine all g-cages, g = 3,4, 5, 6.
¢) Show that the incidence graph of a projective plane of order k — 1 is a (k, 6)-
cage.

(Singleton (1966) showed, conversely, that any (k,6)-cage of order 2(k? — k + 1) is
necessarily the incidence graph of a projective plane of order k — 1.)

3.1.14 THE TUTTE-COXETER GRAPH
A highly symmetric cubic graph, known as the Tutte—Coxeter graph, is shown in
Figure 3.2. Show that:

a) the Tutte-Coxeter graph is isomorphic to the bipartite graph G[X, Y] derived
from Kg in the following manner. The vertices of X are the fifteen edges of Kg
and the vertices of Y are the fifteen 1-factors of Kg, an element e of X being
adjacent to an element F' of Y whenever e is an edge of the 1-factor F.

(H.S.M. COXETER)

b) the Tutte-Coxeter graph is an 8-cage.

(Tutte (1947b) showed that this graph is, in fact, the unique 8-cage.)

3.1.15 t-ARC-TRANSITIVE GRAPH

A walk (vg,v1,...,v:) in a graph such that v;_1 # v;41, for 1 < <t —1, is called
a t-arc. A simple connected graph G is t-arc-transitive if, given any two t-arcs
(v, v1,...,v) and (wo,wy, ..., w;), there is an automorphism of G which maps v;
to w;, for 0 <4 < t. (Thus a l-arc-transitive graph is the same as an arc-transitive
graph, defined in Exercise 1.5.12.) Show that:
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Fig. 3.2. The Tutte-Coxeter graph: the 8-cage

a) K3 3 is 2-arc-transitive,
the Petersen graph is 3-arc-transitive,
the Heawood graph is 4-arc-transitive,

b
c
d) the Tutte-Coxeter graph is 5-arc-transitive.

—

(Tutte (1947b) showed that there are no t-arc-transitive cubic graphs when ¢ > 5.)

3.2 Cut Edges

For any edge e of a graph G, it is easy to see that either ¢(G \ e) = ¢(G) or
c¢(G\ e) = c(G) + 1 (Exercise 3.2.1). If ¢(G \ e) = ¢(G) + 1, the edge e is called a
cut edge of G. Thus a cut edge of a connected graph is one whose deletion results
in a disconnected graph. More generally, the cut edges of a graph correspond to
its bonds of size one (Exercise 3.2.2).

The graph in Figure 3.3 has three cut edges.

Fig. 3.3. The cut edges of a graph
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If e is a cut edge of a graph G, its ends x and y belong to different components
of G\ e, and so are not connected by a path in G\ e; equivalently, e lies in no cycle
of G. Conversely, if e = zy is not a cut edge of G, the vertices = and y belong to
the same component of G \ e, so there is an zy-path P in G\ e, and P + ¢ is a
cycle in G through e. Hence we have the following characterization of cut edges.

Proposition 3.2 An edge e of a graph G is a cut edge if and only if e belongs to
no cycle of G. |

Exercises

x3.2.1 Show that if e € E, then either ¢(G \ ) = ¢(G) or ¢(G \ e) = ¢(G) + 1.

*3.2.2 Show that an edge e is a cut edge of a graph G if and only if {e} is a bond
of G.

3.2.3 Let G be a connected even graph. Show that:

a) G has no cut edge,
b) for any vertex v € V, ¢(G —v) < 1d(v).

3.2.4 Let G be a k-regular bipartite graph with & > 2. Show that G has no cut
edge.

3.3 Euler Tours

A trail that traverses every edge of a graph is called an Fuler trail, because Euler
(1736) was the first to investigate the existence of such trails. In the earliest known
paper on graph theory, he showed that it was impossible to cross each of the seven
bridges of Konigsberg once and only once during a walk through the town. A plan
of Konigsberg and the river Pregel is shown in Figure 3.4a. As can be seen, proving
that such a walk is impossible amounts to showing that the graph in Figure 3.4b
has no Euler trail.

A tour of a connected graph G is a closed walk that traverses each edge of G at
least once, and an Fuler tour one that traverses each edge exactly once (in other
words, a closed Euler trail). A graph is eulerian if it admits an Euler tour.

FLEURY’S ALGORITHM

Let G be an eulerian graph, and let W be an Euler tour of G with initial and
terminal vertex u. Each time a vertex v occurs as an internal vertex of W, two
edges incident with v are accounted for. Since an Euler tour traverses each edge
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Fig. 3.4. The bridges of Konigsberg and their graph

exactly once, d(v) is even for all v # u. Similarly, d(u) is even, because W both
starts and ends at u. Thus an eulerian graph is necessarily even.

The above necessary condition for the existence of an Euler tour in a connected
graph also turns out to be sufficient. Moreover, there is a simple algorithm, due to
Fleury (1883), which finds an Euler tour in an arbitrary connected even graph G
(see also Lucas (1894)). Fleury’s Algorithm constructs such a tour of G by tracing
out a trail subject to the condition that, at any stage, a cut edge of the untraced
subgraph F' is taken only if there is no alternative.

Algorithm 3.3 FLEURY’S ALGORITHM

INPUT: a connected even graph G and a specified vertex u of G
OuTtpUT: an Euler tour W of G starting (and ending) at u
1: set W=w, x :=u, F:=G
- while Op(x) # 0 do
choose an edge e := xy € Jp(x), where e is not a cut edge of F unless
there is no alternative
4:  replace uWx by uWezey, x by y, and F by F \ e
5: end while
6: return W

Theorem 3.4 If G is a connected even graph, the walk W returned by Fleury’s
Algorithm is an Euler tour of G.

Proof The sequence W is initially a trail, and remains one throughout the pro-
cedure, because Fleury’s Algorithm always selects an edge of F' (that is, an as yet
unchosen edge) which is incident to the terminal vertex = of W. Moreover, the
algorithm terminates when dr(z) = (), that is, when all the edges incident to the
terminal vertex x of W have already been selected. Because G is even, we deduce
that = = u; in other words, the trail W returned by the algorithm is a closed trail
of G.

Suppose that W is not an Euler tour of G. Denote by X the set of vertices of
positive degree in F' when the algorithm terminates. Then X # ), and F[X] is an
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even subgraph of G. Likewise V' \ X # (), because u € V'\ X. Since G is connected,
0c(X) # 0. On the other hand, dp(X) = (). The last edge of dg(X) selected for
inclusion in W was therefore a cut edge e = zy of F' at the time it was chosen, with
x € X and y € V' \ X (see Figure 3.5). But this violates the rule for choosing the
next edge of the trail W, because the edges in dp(z), which were also candidates
for selection at the time, were not cut edges of F', by Theorem 2.10. (|

Fig. 3.5. Choosing a cut edge in Fleury’s Algorithm

The validity of Fleury’s Algorithm provides the following characterization of
eulerian graphs.

Theorem 3.5 A connected graph is eulerian if and only if it is even. |

Let now = and y be two distinct vertices of a graph G. Suppose that we wish
to find an Euler zy-trail of GG, if one exists. We may do so by adding a new edge e
joining x and y. The graph G has an Euler trail connecting = and y if and only if
G + e has an Euler tour (Exercise 3.3.3). Thus Fleury’s Algorithm may be adapted
easily to find an Euler xy-trail in G, if one exists.

We remark that Fleury’s Algorithm is an efficient algorithm, in a sense to be
made precise in Chapter 8. When an edge is considered for inclusion in the current
trail W, it must be examined to determine whether or not it is a cut edge of the
remaining subgraph F. If it is not, it is appended to W right away. On the other
hand, if it is found to be a cut edge of F', it remains a cut edge of F' until it is
eventually selected for inclusion in W; therefore, each edge needs to be examined
only once. In Chapter 7, we present an efficient algorithm for determining whether
or not an edge is a cut edge of a graph.

A comprehensive treatment of eulerian graphs and related topics can be found
in Fleischner (1990, 1991).

Exercises

3.3.1 Which of the pictures in Figure 3.6 can be drawn without lifting one’s pen
from the paper and without tracing a line more than once?
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Fig. 3.6. Tracing pictures

3.3.2 If possible, give an example of an eulerian graph G with n even and m odd.
Otherwise, explain why there is no such graph.

*3.3.3 Let GG be a graph with two distinct specified vertices x and y, and let G+e
be the graph obtained from G by the addition of a new edge e joining = and y.

a) Show that G has an Euler trail connecting = and y if and only if G + e has an
Euler tour.

b) Deduce that G has an Euler trail connecting = and y if and only if d(z) and
d(y) are odd and d(v) is even for all v € V'\ {z,y}.

3.3.4 Let G be a connected graph, and let X be the set of vertices of G of odd
degree. Suppose that | X| = 2k, where k > 1.

a) Show that there are k edge-disjoint trails @1, Q2, ..., Qr in G such that
E(G)=E(Q1)UE(Q2)U...UE(Q).

b) Deduce that G contains k edge-disjoint paths connecting the vertices of X in
pairs.

%

3.3.5 Let G be a nontrivial eulerian graph, and let v € V. Show that each v-trail
in G can be extended to an Euler tour of G if and only if G — v is acyclic.

(O. ORE)

3.3.6 DOMINATING SUBGRAPH
A subgraph F of a graph G is dominating if every edge of G has at least one end
in F. Let G be a graph with at least three edges. Show that L(G) is hamiltonian
if and only if G has a dominating eulerian subgraph.

(F. HARARY AND C.ST.J.A. NASH-WILLIAMS)

3.3.7 A cycle decomposition of a loopless eulerian graph G induces a family of
pairs of edges of G, namely the consecutive pairs of edges in the cycles comprising
the decomposition. Each edge thus appears in two pairs, and each trivial edge cut
d(v), v € V, is partitioned into pairs. An Euler tour of G likewise induces a family
of pairs of edges with these same two properties. A cycle decomposition and Eu-
ler tour are said to be compatible if, for all vertices v, the resulting partitions of
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0(v) have no pairs in common. Show that every cycle decomposition of a loopless
eulerian graph of minimum degree at least four is compatible with some Euler
tour. (A. Korzic)
(G. Sabidussi has conjectured that, conversely, every Euler tour of a loopless eule-
rian graph of minimum degree at least four is compatible with some cycle decom-
position; see Appendix A.)

3.4 Connection in Digraphs

As we saw earlier, in Section 3.1, the property of connection in graphs may be
expressed not only in terms of edge cuts but also in terms of walks. By the same
token, the property of strong connection, defined in terms of outcuts in Section 2.5,
may be expressed alternatively in terms of directed walks. This is an immediate
consequence of Theorem 3.6 below.

A directed walk in a digraph D is an alternating sequence of vertices and arcs

W = (/007047“17 s 7’[}4,1,@@,7}2)

such that v;_; and v; are the tail and head of a;, respectively, 1 < i < £.! If 2 and
y are the initial and terminal vertices of W, we refer to W as a directed (z,y)-walk.
Directed trails, tours, paths, and cycles in digraphs are defined analogously. As for
undirected graphs, the (u, v)-segment of a directed walk W, where u and v are two
vertices of W, u preceding v, is the subsequence of W starting with v and ending
with v, and is denoted uWwv (the same notation as for undirected graphs).

We say that a vertex y is reachable from a vertex x if there is a directed (z, y)-
path. The property of reachability can be expressed in terms of outcuts, as follows.

Theorem 3.6 Let x and y be two vertices of a digraph D. Then y is reachable
from x in D if and only if O (X) # O for every subset X of V which contains
but not y.

Proof Suppose, first, that y is reachable from x by a directed path P. Consider
any subset X of V' which contains z but not y. Let u be the last vertex of P which
belongs to X and let v be its successor on P. Then (u,v) € 07 (X), so 07 (X) # 0.

Conversely, suppose that y is not reachable from x, and let X be the set of
vertices which are reachable from . Then x € X and y ¢ X. Furthermore, because
no vertex of V' \ X is reachable from z, the outcut 07 (X) is empty. O

In a digraph D, two vertices x and y are strongly connected if there is a directed
(x,y)-walk and also a directed (y, z)-walk (that is, if each of 2 and y is reachable
from the other). Just as connection is an equivalence relation on the vertex set
of a graph, strong connection is an equivalence relation on the vertex set of a
digraph (Exercise 3.4.1). The subdigraphs of D induced by the equivalence classes

! Thus a walk in a graph corresponds to a directed walk in its associated digraph. This
is consistent with our convention regarding the traversal of loops in walks.
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with respect to this relation are called the strong components of D. The strong
components of the digraph shown in Figure 3.7a are indicated in Figure 3.7b. We
leave it to the reader to verify that a digraph is strong if and only if it has exactly
one strong component (Exercise 3.4.2).

AN SN Q

(a) (b)

Fig. 3.7. (a) A digraph and (b) its strong components

A directed Euler trail is a directed trail which traverses each arc of the digraph
exactly once, and a directed Fuler tour is a directed tour with this same property.
A digraph is eulerian if it admits a directed Euler tour. There is a directed version
of Theorem 3.5, whose proof we leave as an exercise (3.4.8).

Theorem 3.7 A connected digraph is eulerian if and only if it is even. ]

Exercises

*3.4.1 Show that strong connection is an equivalence relation on the vertex set of
a digraph.

*3.4.2 Show that a digraph is strong if and only if it has exactly one strong com-
ponent.

*3.4.3 Let C be a strong component of a digraph D, and let P be a directed path
in D connecting two vertices of C'. Show that P is contained in C.

3.4.4 Let D be a digraph with adjacency matrix A = (a,,). Show that the number
of directed (u,v)-walks of length k in D is the (u,v) entry of A",

3.4.5 Show that every tournament is either strong or can be transformed into a
strong tournament by the reorientation of just one arc.

*3.4.6 CONDENSATION OF A DIGRAPH

a) Show that all the arcs linking two strong components of a digraph have their
tails in one strong component (and their heads in the other).



92 3 Connected Graphs

b) The condensation C'(D) of a digraph D is the digraph whose vertices corre-
spond to the strong components of D, two vertices of C'(D) being linked by
an arc if and only if there is an arc in D linking the corresponding strong
components, and with the same orientation. Draw the condensations of:

i) the digraph of Figure 3.7a,
ii) the four tournaments of Figure 1.25.

¢) Show that the condensation of any digraph is acyclic.

d) Deduce that:

i) every digraph has a minimal strong component, namely one that dominates
no other strong component,
ii) the condensation of any tournament is a transitive tournament.

3.4.7 A digraph is unilateral if any two vertices x and y are connected either by a
directed (x,y)-path or by a directed (y, z)-path, or both. Show that a digraph is
unilateral if and only if its condensation has a directed Hamilton path.

*x3.4.8 Prove Theorem 3.7.

3.4.9 DE BRUIIN-GOOD DIGRAPH

The de Bruijn—Good digraph BG,, has as vertex set the set of all binary sequences of
length n, vertex ajas . . . a, being joined to vertex by1bs ... b, if and only if a;41 = b;
for 1 <4 <mn — 1. Show that BG,, is an eulerian digraph of order 2" and directed
diameter n.

3.4.10 DE BRUIIN-GOOD SEQUENCE

A circular sequence s15s...89n of zeros and ones is called a de Bruijn—Good se-
quence of order n if the 2" subsequences $;S;4+1 ... Sitn-1, 1 < i < 2" (where
subscripts are taken modulo 2") are distinct, and so constitute all possible bi-
nary sequences of length n. For example, the sequence 00011101 is a de Bruijn—
Good sequence of order three. Show how to derive such a sequence of any
order n by considering a directed Euler tour in the de Bruijn-Good digraph
BG,,_1. (N.G. pE Bruun; I1.J. Goob)
(An application of de Bruijn-Good sequences can be found in Chapter 10 of Bondy
and Murty (1976).)

*3.4.11

a) Show that a digraph which has a closed directed walk of odd length contains
a directed odd cycle.

b) Deduce that a strong digraph which contains an odd cycle contains a directed
odd cycle.

U
x3.4.12 Show that:

a) every nontrivial strong tournament has a directed Hamilton cycle,
(P. CAMION)
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b) each vertex of a nontrivial strong tournament D is contained in a directed

cycle of every length [, 3 <[ <mn, (J.W. MOON)
¢) each arc of an even tournament D is contained in a directed cycle of every
length [, 3 <[ <n. (B. ALSPACH)

3.5 Cycle Double Covers

In this section, we discuss a beautiful conjecture concerning cycle coverings of
graphs. In order for a graph to admit a cycle covering, each of its edges must
certainly lie in some cycle. On the other hand, once this requirement is fulfilled, the
set of all cycles of the graph clearly constitutes a covering. Thus, by Proposition 3.2,
a graph admits a cycle covering if and only if it has no cut edge. We are interested
here in cycle coverings which cover no edge too many times.

Recall that a decomposition is a covering in which each edge is covered exactly
once. According to Veblen’s Theorem (2.7), the only graphs which admit such
cycle coverings are the even graphs. Thus, if a graph has vertices of odd degree,
some edges will necessarily be covered more than once in a cycle covering. One is
led to ask whether every graph without cut edges admits a cycle covering in which
no edge is covered more than twice.

All the known evidence suggests that this is indeed so. For example, each of
the platonic graphs (shown in Figure 1.14) has such a cycle covering consisting of
its facial cycles, those which bound its regions, or faces, as in Figure 3.8. More
generally, the same is true of all polyhedral graphs, and indeed of all planar graphs
without cut edges, as we show in Chapter 10.

Fig. 3.8. A double covering of the cube by its facial cycles

In the example of Figure 3.8, observe that any five of the six facial cycles
already constitute a cycle covering. Indeed, the covering shown, consisting of all
six facial cycles, covers each edge exactly twice. Such a covering is called a cycle
double cover of the graph. It turns out that cycle coverings and cycle double covers
are closely related.

Proposition 3.8 If a graph has a cycle covering in which each edge is covered at
most twice, then it has a cycle double cover.
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Proof Let C be a cycle covering of a graph G in which each edge is covered at
most twice. The symmetric difference A{E(C')|C € C} of the edge sets of the cycles
in C is then the set of edges of G which are covered just once by C. Moreover, by
Corollary 2.16, this set of edges is an even subgraph C’ of G. By Veblen’s Theorem
(2.7), C’ has a cycle decomposition C’. It is now easily checked that C UC’ is a
cycle double cover of G. O

Motivated by quite different considerations, Szekeres (1973) and Seymour
(1979b) each put forward the conjecture that every graph without cut edges admits
a cycle double cover.

THE CYCLE DOUBLE COVER CONJECTURE

Conjecture 3.9 FEvery graph without cut edges has a cycle double cover.

A graph has a cycle double cover if and only if each of its components has one.
Thus, in order to prove the Cycle Double Cover Conjecture, it is enough to prove
it for nontrivial connected graphs. Indeed, one may restrict one’s attention even
further, to nonseparable graphs. Roughly speaking, these are the connected graphs
which cannot be obtained by piecing together two smaller connected graphs at a
single vertex. (Nonseparable graphs are defined and discussed in Chapter 5.) In
the case of planar graphs, the boundaries of the faces in any planar embedding
are then cycles, as we show in Chapter 10, and these facial cycles constitute a
cycle double cover of the graph. This suggests one natural approach to the Cycle
Double Cover Conjecture: find a suitable embedding of the graph on some surface,
an embedding in which each face is bounded by a cycle; the facial cycles then form
a cycle double cover.

Consider, for example, the toroidal embeddings of the complete graph K7 and
the Petersen graph shown in Figure 3.9. The torus is represented here by a rect-
angle whose opposite sides are identified; identifying one pair of sides yields a
cylinder, and identifying the two open ends of the cylinder results in a torus. In
the embedding of K7, there are fourteen faces, each bounded by a triangle; these
triangles form a cycle double cover of K7. In the embedding of the Petersen graph,
there are five faces; three are bounded by cycles of length five (faces A, B, C), one
by a cycle of length six (face D), and one by a cycle of length nine (face F). These
five cycles constitute a cycle double cover of the Petersen graph.

The above approach to the Cycle Double Cover Conjecture, via surface embed-
dings, is supported by the following conjecture, which asserts that every loopless
nonseparable graph can indeed be embedded in some surface in an appropriate
fashion.
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1 2 3 1
4 4
5 5
1 2 3 1

Fig. 3.9. Toroidal embeddings of (a) the complete graph K7, and (b) the Petersen graph

THE CIRCULAR EMBEDDING CONJECTURE

Conjecture 3.10 Fvery loopless nonseparable graph can be embedded in some
surface in such a way that each face in the embedding is bounded by a cycle.

The origins of Conjecture 3.10 are uncertain. It was mentioned by W.T. Tutte
(unpublished) in the mid-1960s, but was apparently already known at the time to
several other graph-theorists, according to Robertson (2007). We discuss surface
embeddings of graphs in greater detail in Chapter 10, and describe there a stronger
conjecture on embeddings of graphs.

Apart from its intrinsic beauty, due to the simplicity of its statement and the
fact that it applies to essentially all graphs, the Cycle Double Cover Conjecture
is of interest because it is closely related to a number of other basic problems in
graph theory, including the Circular Embedding Conjecture. We encounter several
more in future chapters.

DoUBLE COVERS BY EVEN SUBGRAPHS

There is another attractive formulation of the Cycle Double Cover Conjecture, in
terms of even subgraphs; here, by an even subgraph we mean the edge set of such
a subgraph.

If a graph has a cycle covering, then it has a covering by even subgraphs because
cycles are even subgraphs. Conversely, by virtue of Theorem 2.17, any covering by
even subgraphs can be converted into a cycle covering by simply decomposing
each even subgraph into cycles. It follows that a graph has a cycle double cover if
and only if it has a double cover by even subgraphs. Coverings by even subgraphs
therefore provide an alternative approach to the Cycle Double Cover Conjecture.
If every graph without cut edges had a covering by at most two even subgraphs,
such a covering would yield a cycle covering in which each edge was covered at
most twice, thereby establishing the Cycle Double Cover Conjecture by virtue
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of Proposition 3.8. Unfortunately, this is not the case. Although many graphs
do indeed admit such coverings, many do not. The Petersen graph, for instance,
cannot be covered by two even subgraphs (Exercise 3.5.3a). On the other hand,
it may be shown that every graph without cut edges admits a covering by three
even subgraphs (Theorem 21.21).

Suppose, now, that every graph without cut edges does indeed have a cycle
double cover. It is then natural to ask how few cycles there can be in such a
covering; a covering with few cycles may be thought of as an efficient covering,
in some sense. Let C be a cycle double cover of a graph G. As each edge of G is

covered exactly twice,
Z e(C) =2m

cecC

Because e(C) < n for all C' € C, we deduce that [C| > 2m/n, the average degree
of G. In particular, if G is a complete graph K,,, the number of cycles in a cycle
double cover of G must be at least n — 1. A cycle double cover consisting of no
more than this number of cycles is called a small cycle double cover. Bondy (1990)
conjectures that every simple graph G without cut edges admits such a covering.

Conjecture 3.11 THE SMALL CYCLE DOUBLE COVER CONJECTURE
Every simple graph without cut edges has a small cycle double cover.

Several other strengthenings of the Cycle Double Cover Conjecture have been
proposed. One of these is a conjecture put forward by Jaeger (1988).

Conjecture 3.12 THE ORIENTED CYCLE DOUBLE COVER CONJECTURE
Let G be a graph without cut edges. Then the associated digraph D(G) of G admits
a decomposition into directed cycles of length at least three.

Further information on these and a number of related conjectures can be found
in the book by Zhang (1997).

Exercises

3.5.1 Show that every loopless graph has a double covering by bonds.

3.5.2 Let {C4,C5,C3} be a covering of a graph G by three even subgraphs such
that Cy NCy N C5 = (. Show that {Cy A Cy, Cy; A Cs} is a covering of G by two
even subgraphs.

*3.5.3

a) Show that the Petersen graph has no covering by two even subgraphs.

b) Deduce, using Exercise 3.5.2, that this graph has no double cover by four even
subgraphs.

¢) Find a covering of the Petersen graph by three even subgraphs, and a double
cover by five even subgraphs.
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3.5.4

a) 1) Let {C1,Ca} be a covering of a graph G by two even subgraphs. Show that
{C4,C5,C1 A O3} is a double cover of G by three even subgraphs.
ii) Deduce that a graph has a covering by two even subgraphs if and only if
it has a double cover by three even subgraphs.

b) Let {Cy,C5,C3} be a covering of a graph G by three even subgraphs. Show
that G has a quadruple cover (a covering in which each edge is covered exactly
four times) by seven even subgraphs.

(We show in Theorem 21.25 that every graph without cut edges has a cov-
ering by three even subgraphs, and hence a quadruple cover by seven even
subgraphs.)

3.5.5 Find a small cycle double cover of Kg.

3.5.6 Find a decomposition of D(Kg) into directed cycles of length at least three.

N
3.5.7 Show that every graph without cut edges has a uniform cycle covering.

3.5.8 Let G be a graph, and let C be the set of all cycles of G. For C € C, denote
by fc the incidence vector of C, and set F¢ := {fc : C € C}.

a) Let x € R¥. Show that:
i) the vector x lies in the vector space generated by F¢ if and only if the
following two conditions hold:
> x(e) =0 for every cut edge e,
> x(e) = x(f) for every edge cut {e, f} of cardinality two,
ii) if x is a nonnegative linear combination of vectors in F¢, then for any bond
B of G and any edge e of B:

zle) < > x(f) (3.1)

feB\{e}

(Seymour (1979b) showed that this necessary condition is also sufficient for
a nonnegative vector x to be a nonnegative linear combination of vectors
in Fc.)

iii) if x is a nonnegative integer linear combination of vectors in F¢, then for
any bond B, in addition to (3.1), x must satisfy the condition:

> a(e) =0 (mod 2) (3.2)

ecB

b) With the aid of Exercise 2.4.6, give an example showing that conditions (3.1)
and (3.2) are not sufficient for a nonnegative integer vector x in RY to be a
nonnegative integer linear combination of vectors in Fe.
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(Seymour (1979b) showed, however, that these two conditions are sufficient
when G is a planar graph. Furthermore, he conjectured that they are sufficient
in any graph if each component of x is an even integer. This conjecture clearly
implies the Cycle Double Cover Conjecture. For related work, see Alspach et al.
(1994).)

3.6 Related Reading

CAGES

Cages were introduced in Exercise 3.1.13. There are many interesting examples of
such graphs, the Petersen graph and the Heawood graph being but two. Numerous
others are described in the survey by Wong (1982). Two particularly interesting
infinite families of examples are those constructed from projective geometries by
Benson (1966), namely the (k,8)- and (k, 12)-cages, where k — 1 is a prime power.
For ¢ = 3,5, the Benson cages furnish examples of dense graphs (graphs with many
edges) containing no 2¢-cycles. For £ = 2, examples are provided by polarity graphs
of projective planes (see Exercises 12.2.12, 12.2.13, and 12.2.14.) The question as
to how many edges a graph on n vertices can have without containing a 2¢-cycle
is unsolved for other values of ¢, and in particular for ¢ = 4; see Appendix A.

The study of directed cages, smallest k-diregular digraphs with specified di-
rected girth g, was initiated by Behzad et al. (1970). They conjectured that the
directed circulants on k(g — 1) + 1 vertices in which each vertex dominates the k
vertices succeeding it are directed cages. This conjecture remains open; see Ap-
pendix A.
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4.1 Forests and Trees

Recall that an acyclic graph is one that contains no cycles. A connected acyclic
graph is called a tree. The trees on six vertices are shown in Figure 4.1. According
to these definitions, each component of an acyclic graph is a tree. For this reason,
acyclic graphs are usually called forests.

In order for a graph to be connected, there must be at least one path between
any two of its vertices. The following proposition, an immediate consequence of
Exercise 2.2.12, says that trees are the connected graphs which just meet this
requirement.

Proposition 4.1 In a tree, any two vertices are connected by exactly one path. [

Following Diestel (2005), we denote the unique path connecting vertices x and
y in a tree T by zTy.

By Theorem 2.1, any graph in which all degrees are at least two contains a cycle.
Thus, every tree contains a vertex of degree at most one; moreover, if the tree is
nontrivial, it must contain a vertex of degree exactly one. Such a vertex is called
a leaf of the tree. In fact, the following stronger assertion is true (Exercise 2.1.2).
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TYYY %

Fig. 4.1. The trees on six vertices

Proposition 4.2 Every nontrivial tree has at least two leaves. O

If z is a leaf of a tree T, the subgraph T'—x is a tree with v(T'—z) = v(T")—1 and
e(T — z) = e(T) — 1. Because the trivial tree has no edges, we have, by induction
on the number of vertices, the following relationship between the numbers of edges
and vertices of a tree.

Theorem 4.3 If T is a tree, then e(T) = v(T) — 1. O

ROOTED TREES AND BRANCHINGS

A rooted tree T'(x) is a tree T with a specified vertex x, called the root of T. An
orientation of a rooted tree in which every vertex but the root has indegree one is
called a branching. We refer to a rooted tree or branching with root = as an x-tree
or x-branching, respectively.

There is an evident bijection between z-trees and z-branchings. An z-path thus
give rise to a simple example of a branching, a directed z-path. Another example
of a branching is shown in Figure 4.2.

Observe that the root of this branching is a source. This is always so, because
the sum of the indegrees of a digraph is equal to its number of arcs (Exercise 1.5.2)

Fig. 4.2. A branching



4.1 Forests and Trees 101

which, in the case of a branching B, is v(B) — 1 by Theorem 4.3. Observe, also,
that every vertex of a branching is reachable from its root by a unique directed
path. Conversely, in any digraph, reachability from a vertex may be expressed in
terms of its branchings. We leave the proof of this fact as an exercise (4.1.6).

Theorem 4.4 Let x be a vertex of a digraph D, and let X be the set of vertices
of D which are reachable from x. Then there is an x-branching in D with vertex
set X. 0

PrOOF TECHNIQUE: ORDERING VERTICES

Among the n! linear orderings of the n vertices of a graph, certain ones are
especially interesting because they encode particular structural properties. An
elementary example is an ordering of the vertices according to their degrees,
in decreasing order. More interesting orderings can be obtained by considering
the global structure of the graph, rather than just its local structure, as in
Exercise 2.2.18. We describe a second example here. Others will be encoun-
tered in Chapters 6, 14, and 19, as well as in a number of exercises.

In general, graphs contain copies of many different trees. Indeed, every simple
graph with minimum degree k contains a copy of each rooted tree on k + 1
vertices, rooted at any given vertex of the graph (Exercise 4.1.9). The analo-
gous question for digraphs (with rooted trees replaced by branchings) is much
more difficult. However, in the case of tournaments it can be answered by
considering a rather natural ordering of the vertices of the tournament.

A median order of a digraph D = (V, A) is a linear order vy, va, ..., v, of its
vertex set V' such that |{(vi,v;) : ¢ < j}| (the number of arcs directed from
left to right) is as large as possible. In the case of a tournament, such an
order can be viewed as a ranking of the players which minimizes the number
of upsets (matches won by the lower-ranked player). As we shall see, median
orders of tournaments reveal a number of interesting structural properties.

Let us first note two basic properties of median orders of tournaments (Ex-
ercise 4.1.10). Let T be a towrnament and vy, ve, ..., v, a median order of 7.
Then, for any two indices 7,5 with 1 <i < j < n:

(M1) the interval v;, vit1,...,v; is a median order of the induced subtourna-
ment T[{v;, vit1,...,v;}],

(M2) vertex v; dominates at least half of the vertices v;i1,vit2,...,v;, and
vertex v; is dominated by at least half of the vertices v;, vit1,...,vj-1.

In particular, each vertex v;, 1 < i < n, dominates its successor v;;;. The
sequence (v1,va,...,vy,) is thus a directed Hamilton path, providing an alter-
native proof (see Locke (1995)) of Rédei’s Theorem (2.3): every tournament
has a directed Hamilton path.
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ORDERING VERTICES (CONTINUED)

By exploiting the properties of median orders, Havet and Thomassé (2000)
showed that large tournaments contain all large branchings.

Theorem 4.5 Any tournament on 2k vertices contains a copy of each branch-
ing on k+ 1 vertices.

Proof Let vy, vs,..., v, be a median order of a tournament 7" on 2k vertices,
and let B be a branching on k41 vertices. Consider the intervals vy, vs, ..., v;,
1 <4 < 2k. We show, by induction on k, that there is a copy of B in T whose
vertex set includes at least half the vertices of any such interval.

This is clearly true for £ = 1. Suppose, then, that k£ > 2. Delete a leaf y of B to
obtain a branching B’ on k vertices, and set 7" := T — {vog_1, vax }. By (M1),
V1,02, ...,V 2 is a median order of the tournament 7", so there is a copy
of B’ in T" whose vertex set includes at least half the vertices of any interval
V1,2, ...,0;, 1 <i < 2k—2. Let x be the predecessor of y in B. Suppose that
x is located at vertex v; of T'. In T, by (M2), v; dominates at least half of

the vertices v;41,viq2, ..., Vak, thus at least k — i/2 of these vertices. On the
other hand, B’ includes at least (i — 1)/2 of the vertices vy, vo, ..., v;_1, thus
at most k — (i + 1)/2 of the vertices v; 41,042, ..., v, It follows that, in T,

there is an outneighbour v; of v;, where ¢ + 1 < j < 2k, which is not in B’.
Locating y at v;, and adding the vertex y and arc (z,y) to B, we now have a
copy of B in T It is readily checked that this copy of B satisfies the required
additional property. O

Three further applications of median orders are described in Exer-
cises 4.1.16, 4.1.17, and 4.1.18.

Rooted trees and branchings turn out to be basic tools in the design of efficient
algorithms for solving a variety of problems involving reachability, as we shall show
in Chapter 6.

Exercises

4.1.1

a) Show that every tree with maximum degree k has at least & leaves.
b) Which such trees have exactly k leaves?

4.1.2 Show that the following three statements are equivalent.

a) G is connected and has n — 1 edges.
b) G is a forest and has n — 1 edges.
¢) G is a tree.
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4.1.3 A saturated hydrocarbon is a molecule C), H, in which every carbon atom
(C) has four bonds, every hydrogen atom (H) has one bond, and no sequence of
bonds forms a cycle. Show that, for any positive integer m, the molecule C,, H,
can exist only if n = 2m + 2.

4.1.4 Let G be a graph and F a maximal forest of G. Show that e(F) = v(G) —
c(@).

4.1.5 Prove Theorem 4.3 by induction on the number of edges of G.
*4.1.6 Prove Theorem 4.4.

4.1.7 Show that a sequence (dy,ds, ..., d,) of positive integers is a degree sequence
of a tree if and only if Y | d; = 2(n —1).

4.1.8 CENTRE OF A GRAPH
A centre of a graph G is a vertex u such that max{d(u,v) : v € V'} is as small as
possible.

a) Let T be a tree on at least three vertices, and let T” be the tree obtained from
T by deleting all its leaves. Show that 7" and 7" have the same centres.
b) Deduce that every tree has either exactly one centre or two, adjacent, centres.

4.1.9

a) Show that any simple graph with minimum degree k contains a copy of each
rooted tree on k + 1 vertices, rooted at any given vertex of the graph.

b) Deduce that any simple graph with average degree at least 2(k — 1), where
k — 1 is a positive integer, contains a copy of each tree on k + 1 vertices.

(P. Erd6s and V.T. Sés (see Erdds (1964)) have conjectured that any simple graph
with average degree greater than k—1 contains a copy of each tree on k41 vertices;
see Appendix A.)

4.1.10 Verify the properties (M1) and (M2) of median orders of tournaments.

u
4.1.11 Let G be a simple graph with vertex set V := {1,2,...,n}.

a) Show that the set of transpositions S := {(4, ) : ij € E'} generates all permu-
tations of V' if and only if G is connected.

b) Deduce that S is a minimal set of transpositions that generates all permuta-
tions of V if and only if G is a tree.

4.1.12 Let S := {x1,22,...,2,} be an n-set, and let A := {A;, As,..., A, } be
a family of n distinct subsets of S. Construct a graph G with vertex set A, two
vertices A; and A; being joined by an edge if their symmetric difference A4; A A;
is a singleton. Label the edge A;A; by this singleton. By studying this labelled
graph, prove that there is an element x,,, € S such that the sets Ay U {x,,}, Ay U
{xm},. ., Ap U{z,;} are distinct. (J.A. BonDY)
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4.1.13 Give an alternative proof of Exercise 4.1.12 by proceeding as follows.
Suppose, by way of contradiction, that there is no such element x,, € .S, so that, for
all i € [1,n], there exist distinct indices j(7) and k(i) such that A U{z;} = Apg)-
Let M be the incidence matrix of the hypergraph (S,.A) (so that m;; = 1
if z; € A; and m;; = 0 otherwise), let ¢; denote the column vector with —1 in
position j(4), 1 in position k(7), and Os elsewhere, let C denote the n x n matrix
whose ith column is ¢;, and let j be the row vector all of whose entries are 1. Show
that MC =T and jC = 0, and derive a contradiction. (J. GREENE)

4.1.14 m identical pizzas are to be shared equally amongst n students.

a) Show how this goal can be achieved by dividing the pizzas into a total of
m + n — d pieces, where d is the greatest common divisor of m and n.

b) By considering a suitable bipartite graph, show that no division into a smaller
number of pieces will achieve the same objective. (H. Bass)

4.1.15 Rooted trees T (x1) and Ta(x2) are isomorphic if there is an isomorphism
from T3 to To mapping x1 to x2. A rooted tree is uniform if the degree of a vertex
depends only on its distance from the root. Prove that every z-tree on n vertices
has exactly n nonisomorphic uniform z-subtrees.

(M.K. GOLDBERCG AND I.A. KLIPKER)

4.1.16 Let vy, vs, ..., v, be a median order of an even tournament 7. Show that
(v1,v2,...,0,,v1) is a directed Hamilton cycle of T'. (S. THOMASSE)

4.1.17 A king in a tournament is a vertex v from which every vertex is reachable
by a directed path of length at most two. Show that every tournament 7" has a
king by proceeding as follows.

Let v1,v9,...,v, be a median order of T.

a) Suppose that v; dominates v;, where ¢ < j. Show that there is an index k with
1 < k < j such that v; dominates v, and v;, dominates v;.
b) Deduce that v; is a king in T'. (F. HAVET AND S. THOMASSE)

4.1.18 A second outneighbour of a vertex v in a digraph is a vertex whose distance
from v is exactly two. Show that every tournament 7" has a vertex with at least
as many second outneighbours as (first) outneighbours, by proceeding as follows.

Let vy, vs,...,v, be a median order of a tournament 7'. Colour the outneigh-
bours of v, red, both v,, and those of its in-neighbours which dominate every red
vertex preceding them in the median order black, and the remaining in-neighbours
of v,, blue. (Note that every vertex of T is thereby coloured, because T is a tour-
nament.)

a) Show that every blue vertex is a second outneighbour of v,,.

b) Consider the intervals of the median order into which it is subdivided by the
black vertices. Using property (M2), show that each such interval includes at
least as many blue vertices as red vertices.
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¢) Deduce that v, has at least as many second outneighbours as outneighbours.
(F. HAVET AND S. THOMASSE)

(P. D. Seymour has conjectured that every oriented graph has a vertex with at
least as many second outneighbours as outneighbours; see Appendix A)

4.1.19

a) Show that the cube of a tree on at least three vertices has a Hamilton cycle.
(M. SEKANINA)
b) Find a tree whose square has no Hamilton cycle.

(Fleischnpr (1974) characterized the graphs whose squares have Hamilton cycles;
see also Riha (1991).)

*4.1.20

a) Let T} and T be subtrees of a tree T. Show that T3 N Ty and 177 U Ty are
subtrees of T if and only if Ty N Ty # (.

b) Let 7 be a family of subtrees of a tree T'. Deduce, by induction on |7, that if
any two members of 7 have a vertex in common, then there is a vertex of T
which belongs to all members of 7. (In other words, show that the family of
subtrees of a tree have the Helly Property (defined in Exercise 1.3.7).)

4.1.21 KONIG’S LEMMA

Show that every locally-finite infinite tree contains a one-way infinite path.
(D. KONIG)

4.2 Spanning Trees

A subtree of a graph is a subgraph which is a tree. If this tree is a spanning
subgraph, it is called a spanning tree of the graph. Figure 4.3 shows a decomposition
of the wheel Wy into two spanning trees.

Fig. 4.3. Two spanning trees of the wheel Wy

If a graph G has a spanning tree T, then G is connected because any two
vertices of G are connected by a path in 7', and hence in G. On the other hand, if
G is a connected graph which is not a tree, and e is an edge of a cycle of G, then
G\ e is a spanning subgraph of G which is also connected because, by Proposition
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3.2, e is not a cut edge of G. By repeating this process of deleting edges in cycles
until every edge which remains is a cut edge, we obtain a spanning tree of G.
Thus we have the following theorem, which provides yet another characterization
of connected graphs.

Theorem 4.6 A graph is connected if and only if it has a spanning tree. |

It is easy to see that every tree is bipartite. We now use Theorem 4.6 to derive
a characterization of bipartite graphs.

Theorem 4.7 A graph is bipartite if and only if it contains no odd cycle.

Proof Clearly, a graph is bipartite if and only if each of its components is bipar-
tite, and contains an odd cycle if and only if one of its components contains an
odd cycle. Thus, it suffices to prove the theorem for connected graphs.

Let G[X,Y] be a connected bipartite graph. Then the vertices of any path in G
belong alternately to X and to Y. Thus, all paths connecting vertices in different
parts are of odd length and all paths connecting vertices in the same part are of
even length. Because, by definition, each edge of G has one end in X and one end
in Y, it follows that every cycle of G is of even length.

Conversely, suppose that GG is a connected graph without odd cycles. By The-
orem 4.6, G has a spanning tree T'. Let x be a vertex of T'. By Proposition 4.1,
any vertex v of T is connected to x by a unique path in T'. Let X denote the set of
vertices v for which this path is of even length, and set Y := V \ X. Then (X,Y)
is a bipartition of 7. We claim that (X,Y") is also a bipartition of G.

To see this, consider an edge e = uv of E(G) \ E(T), and let P := uTv be the
unique wv-path in 7. By hypothesis, the cycle P+ e is even, so P is odd. Therefore
the ends of P, and hence the ends of e, belong to distinct parts. It follows that
(X,Y) is indeed a bipartition of G. O

According to Theorem 4.7, either a graph is bipartite, or it contains an odd
cycle, but not both. An efficient algorithm which finds, in a given graph, either a
bipartition or an odd cycle is presented in Chapter 6.

CAYLEY’S FORMULA

There is a remarkably simple formula for the number of labelled trees on n vertices
(or, equivalently, for the number of spanning trees in the complete graph K,,).
This formula was discovered by Cayley (1889), who was interested in representing
certain hydrocarbons by graphs and, in particular, by trees (see Exercise 4.1.3).
A wide variety of proofs have since been found for Cayley’s Formula (see Moon
(1967)). We present here a particularly elegant one, due to Pitman (1999). It
makes use of the concept of a branching forest, that is, a digraph each of whose
components is a branching.
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Theorem 4.8 CAYLEY’S FORMULA
The number of labelled trees on n vertices is n™ 2.

Proof We show, by counting in two ways, that the number of labelled branchings
on n vertices is n™"~!. Cayley’s Formula then follows directly, because each labelled
tree on n vertices gives rise to n labelled branchings, one for each choice of the
root vertex.

Consider, first, the number of ways in which a labelled branching on n vertices
can be built up, one edge at a time, starting with the empty graph on n vertices. In
order to end up with a branching, the subgraph constructed at each stage must be a
branching forest. Initially, this branching forest has n components, each consisting
of an isolated vertex. At each stage, the number of components decreases by one. If
there are k components, the number of choices for the new edge (u,v) is n(k — 1):
any one of the n vertices may play the role of u, whereas v must be the root of
one of the k — 1 components which do not contain u. The total number of ways of
constructing a branching on n vertices in this way is thus

n—1
H n(n —i) =n""Y(n—1)!

On the other hand, any individual branching on n vertices is constructed exactly
(n — 1)! times by this procedure, once for each of the orders in which its n — 1
edges are selected. It follows that the number of labelled branchings on n vertices
is n" 1L, (|

Another proof of Cayley’s Formula is outlined in Exercise 4.2.11.

We denote the number of spanning trees in an arbitrary graph G by ¢(G).
Cayley’s Formula says that t(K,) = n" 2. There is a simple recursive formula
relating the number of spanning trees of a graph G to the numbers of spanning
trees in the two graphs G'\ e and G / e obtained from G by deleting and contracting
a link e (Exercise 4.2.1).

Proposition 4.9 Let G be a graph and e a link of G. Then

HG) =G\ e) + (G ] e) O

Exercises

*4.2.1 Let G be a connected graph and e a link of G.

a) Describe a one-to-one correspondence between the set of spanning trees of G
that contain e and the set of spanning trees of G/ e.
b) Deduce Proposition 4.9.

4.2.2
a) Let G be a graph with no loops or cut edges. Show that t(G) > e(G).
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b) For which such graphs does equality hold?

4.2.3 Let G be a connected graph and let « be a specified vertex of G. A spanning
a-tree T of G is called a distance tree of G with root z if dp(z,v) = dg(x,v) for
allv e V.

a) Show that G has a distance tree with root x.
b) Deduce that a connected graph of diameter d has a spanning tree of diameter
at most 2d.

*4.2.4 Show that the incidence matrix of a graph is totally unimodular (defined
in Exercise 1.5.7) if and only if the graph is bipartite.

4.2.5 A fan is the join PV K of a path P and a single vertex. Determine the
numbers of spanning trees in:

a) the fan F, on n vertices, n > 2,
b) the wheel W, with n spokes, n > 3.

4.2.6 Let G be an edge-transitive graph.

a) Show that each edge of G lies in exactly (n — 1)¢(G)/m spanning trees of G.
b) Deduce that t(G\ e) = (m —n+ 1)t(G)/m and t(G / e) = (n — 1)t(G)/m.
c¢) Deduce that ¢(K,) is divisible by n, if n > 3, and that ¢(K, ,) is divisible by
2
n*.
d) Without appealing to Cayley’s Formula (Theorem 4.8), determine ¢(K4),
t(Kg)), and t(Kg,g,).

4.2.7

a) Let G be a simple graph on n vertices, and let H be the graph obtained from G
by replacing each edge of G' by k multiple edges. Show that t(H) = k"~ 1t(G).

b) Let G be a graph on n vertices and m edges, and let H be the graph
obtained from G by subdividing each edge of G k — 1 times. Show that
t(H) = k™= H(@G).

*4.2.8 Using Theorem 4.7 and Exercise 3.4.11b, show that a digraph contains a
directed odd cycle if and only if some strong component is not bipartite.

*4.2.9 A branching in a digraph is a spanning branching if it includes all vertices
of the digraph.

a) Show that a digraph D has a spanning z-branching if and only if 7 (X) # 0
for every proper subset X of V' that includes z.

b) Deduce that a digraph is strongly connected if and only if it has a spanning
v-branching for every vertex v.

4.2.10 NONRECONSTRUCTIBLE INFINITE GRAPHS

Let T := T, denote the infinite tree in which each vertex is of countably infinite
degree, and let F' := 2T, denote the forest consisting of two disjoint copies of T.
Show that (7, F) is a nonreconstructible pair.
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~

4.2.11 PRUFER CODE

Let K, be the labelled complete graph with vertex set {1,2,...,n}, where
n > 3. With each spanning tree T of K,, one can associate a unique sequence
(t1,t2,...,tn—2), known as the Prifer code of T, as follows. Let s; denote the first
vertex (in the the ordered set (1,2,...,n)) which is a leaf of T, and let ¢; be the
neighbour of s; in 7. Now let s5 denote the first vertex which is a leaf of T' — s,
and t the neighbour of sy in T'— s1. Repeat this operation until ¢,,_o is defined
and a tree with just two vertices remains. (If n < 2, the Priifer code of T is taken
to be the empty sequence.)

a) List all the spanning trees of K4 and their Priifer codes.

b) Show that every sequence (t1,ta,...,t,_2) of integers from the set {1,2,...,n}
is the Priifer code of a unique spanning tree of K.

¢) Deduce Cayley’s Formula (see Theorem 4.8). (H. PRUFER)

4.2.12

a) For a sequence dy, ds, . .., d, of n positive integers whose sum is equal to 2n—2,
let t(n;dy,ds,...,d,) denote the number of trees on n vertices vy, va,..., v,
such that d(v;) = d;, 1 <i < n. Show that

n—2
t(’I’L;dl,dQ,...,dn): <d1_1 d2_1 o _1>

b) Apply the Multinomial Theorem to deduce Cayley’s Formula.

4.2.13 By counting the number of branchings whose root lies in the m-set of K, »,
show that t(K,, ) =m" Inm 1

4.2.14 Show that the Petersen graph has 2000 spanning trees.

4.2.15 Let T be a tree with vertex set V, and let f : V — V be a mapping with
no fixed point. For v € V, denote by v™ the successor of v on the path vTf(v),
and by Dy the digraph with vertex set V and arc set {(v,v"):v € V}.

a) Show that each component of Dy contains a unique directed 2-cycle.

b) The centroid of T is the set of all vertices v for which the largest component
of T — v has as few vertices as possible. For v € V', let f(v) be a vertex of a
largest component of T'— v, and let (z,y, ) be a directed 2-cycle of Dy. Show
that the centroid of T' is contained in the set {x,y}, and hence consists either
of one vertex or of two adjacent vertices. (C. JORDAN)

¢) An endomorphism of a simple graph G is a mapping f : V — V such that, for
every xy € E, either f(z) = f(y) or f(z)f(y) € E. Let f be an endomorphism
of T, and let (x,y,z) be a directed 2-cycle of Dy.

i) Show that f(z) =y and f(y) = .
ii) Deduce that every endomorphism of a tree T fixes either a vertex or an
edge of T. (L. LovAsz)
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d) Let T be a spanning tree of the n-cube Q,, let f(v) be the antipodal vertex
of vertex v in @, (that is, the unique vertex whose distance from v is n), and
let (x,y,x) be a directed 2-cycle of Dy.

i) Show that dr(f(z), f(y)) > 2n — 1.
ii) Deduce that every spanning tree of @),, has a fundamental cycle of length
at least 2n. (R.L. GRAHAM)

4.2.16 Let G be a connected simple graph and T a spanning tree of GG. Consider
the mapping ¢ : (‘2/) \T — (g) (where T is regarded as a subset of E) defined by
d(zy) :={e, f}, where e and f are the first and last edges of the path aTy.

a) Show that the mapping ¢ is a bijection.
b) Deduce that (%) — |T'| = (lg‘).
c¢) Deduce Theorem 4.3.  (N. GRAHAM, R.C. ENTRINGER, AND L. SZEKELY)

4.3 Fundamental Cycles and Bonds

The spanning trees of a connected graph, its even subgraphs, and its edge cuts
are intimately related. We describe these relationships here. Recall that, in the
context of even subgraphs, when we speak of a cycle we typically mean its edge
set. Likewise, by a spanning tree, we understand in this context the edge set of the
tree. Throughout this section, G denotes a connected graph and 7" a spanning tree
of G.

COTREES

The complement E \ T of a spanning tree T is called a cotree, and is denoted T
Consider, for example, the wheel W, shown in Figure 4.4a, and the spanning tree
T := {1,2,4,5} indicated by solid lines. The cotree T is simply the set of light
edges, namely {3,6,7,8}.

By Proposition 4.1, for every edge e := xy of a cotree T of a graph G, there is a
unique xy-path in T connecting its ends, namely P := xTy. Thus T + e contains a
unique cycle. This cycle is called the fundamental cycle of G with respect to T and
e. For brevity, we denote it by C,, the role of the tree T being implicit. Figure 4.4b
shows the fundamental cycles of Wy with respect to the spanning tree {1,2,4,5},
namely Cs = {1,2,3,4}, Cs = {1,5,6}, Cr = {1,2,5,7}, and Cg = {4,5,8}.

One can draw interesting conclusions about the structure of a graph from the
properties of its fundamental cycles with respect to a spanning tree. For example,
if all the fundamental cycles are even, then every cycle of the graph is even and
hence, by Theorem 4.7, the graph is bipartite. (This is the idea behind the proof
of Theorem 4.7.) The following theorem and its corollaries show why fundamental
cycles are important.

Theorem 4.10 Let T' be a spanning tree of a connected graph G, and let S be
a subset of its cotree T'. Then C := N{C,. : e € S} is an even subgraph of G.
Moreover, CNT =S, and C is the only even subgraph of G with this property.
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% @Y N

T Cs 6 C Cs
(a) (0)

\V]

Fig. 4.4. (a) A spanning tree T of the wheel Wy, and (b) the fundamental cycles with
respect to T'

Proof As each fundamental cycle C, is an even subgraph, it follows from Corol-
lary 2.16 that C' is an even subgraph, too. Furthermore, C N'T = S, because each
edge of S appears in exactly one member of the family {C, : e € S}.

Let C’ be any even subgraph of G such that ¢’ NT = S. Then

(CACYNT=(CNT)A(C'NT)=SAS =0

Therefore the even subgraph C A C' is contained in T. Because the only even
subgraph contained in a tree is the empty even subgraph, we deduce that ¢’ = C.
|

Corollary 4.11 Let T be a spanning tree of a connected graph G. Every even
subgraph of G can be expressed uniquely as a symmetric difference of fundamental
cycles with respect to T.

Proof Let C be an even subgraph of G and let S := C NT. It follows from
Theorem 4.10 that C' = A{C. : e € S} and that this is the only way of expressing
C as a symmetric difference of fundamental cycles with respect to 7. O

The next corollary, which follows from Theorem 4.10 by taking S := T, has
several interesting applications (see, for example, Exercises 4.3.9 and 4.3.10).

Corollary 4.12 FEvery cotree of a connected graph is contained in a unique even
subgraph of the graph. |

We now discuss the relationship between spanning trees and edge cuts. We
show that, for each of the above statements concerning even subgraphs, there is
an analogous statement concerning edge cuts. As before, let G be a connected
graph and let T be a spanning tree of G. Note that, because T' is connected and
spanning, every nonempty edge cut of G contains at least one edge of T'. Thus the
only edge cut contained in the cotree T is the empty edge cut (just as the only
even subgraph contained in 7" is the empty even subgraph).

In order to be able to state the cut-analogue of Theorem 4.10, we need the
notion of a fundamental bond. Let e := zy be an edge of T'. Then T\ e has exactly
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two components, one containing = and the other containing y. Let X denote the
vertex set of the component containing . The bond B, := 9(X) is contained in
T U {e} and includes e. Moreover, it is the only such bond. For, let B be any
bond contained in 7'U {e} and including e. By Corollary 2.12, B A B, is an edge
cut. Moreover, this edge cut is contained in 7. But, as remarked above, the only
such edge cut is the empty edge cut. This shows that B = B.. The bond B,
is called the fundamental bond of G with respect to T and e. For instance, the
fundamental bonds of the wheel Wy with respect to the spanning tree {1,2,4,5}
(indicated in Figure 4.5a) are By = {1,3,6,7}, Bo = {2,3,7}, By = {3,4,8}, and

Bs = {5,6,7,8} (see Figure 4.5b).

T B1 BQ B4 B5
(a) (0)

Fig. 4.5. (a) A spanning tree T of the wheel Wy, and (b) the fundamental bonds with
respect to T'

The proofs of the following theorem and its corollaries are similar to those of
Theorem 4.10 and its corollaries, and are left as an exercise (Exercise 4.3.5).

Theorem 4.13 Let T be a spanning tree of a connected graph G, and let S be a
subset of T. Set B := A{B. : e € S}. Then B is an edge cut of G. Moreover
BNT =S, and B is the only edge cut of G with this property. O

Corollary 4.14 Let T be a spanning tree of a connected graph G. Every edge cut
of G can be expressed uniquely as a symmetric difference of fundamental bonds
with respect to T'. O

Corollary 4.15 FEvery spanning tree of a connected graph is contained in a unique
edge cut of the graph. O

Corollaries 4.11 and 4.14 imply that the fundamental cycles and fundamental
bonds with respect to a spanning tree of a connected graph constitute bases of its
cycle and bond spaces, respectively, as defined in Section 2.6 (Exercise 4.3.6). The
dimension of the cycle space of a graph is referred to as its cyclomatic number.

In this section, we have defined and discussed the properties of fundamental
cycles and bonds with respect to spanning trees in connected graphs. All the above
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theorems are valid for disconnected graphs too, with maximal forests playing the
role of spanning trees.

Exercises

4.3.1 Determine the fundamental cycles and fundamental bonds of W, with re-
spect to the spanning tree shown in Figure 4.3 (using the edge labelling of Fig-
ure 4.4).

4.3.2 TREE EXCHANGE PROPERTY
Let G be a connected graph, let T} and T» be (the edge sets of) two spanning trees
of G, and let e € T} \ T». Show that:

a) there exists f € Ty \ 11 such that (71 \ {e}) U{f} is a spanning tree of G,
b) there exists f € T» \ Ty such that (75 \ {f}) U {e} is a spanning tree of G.

(Each of these two facts is referred to as a Tree Fxchange Property.)

4.3.3 Let G be a connected graph and let .S be a set of edges of G. Show that the
following statements are equivalent.

a) S is a spanning tree of G.
b) S contains no cycle of G, and is maximal with respect to this property.
¢) S meets every bond of GG, and is minimal with respect to this property.

4.3.4 Let G be a connected graph and let S be a set of edges of G. Show that the
following statements are equivalent.

a) S is a cotree of G.
b) S contains no bond of G, and is maximal with respect to this property.
¢) S meets every cycle of GG, and is minimal with respect to this property.

4.3.5

a) Prove Theorem 4.13.
b) Deduce Corollaries 4.14 and 4.15.

4.3.6

a) Let T be a spanning tree of a connected graph G. Show that:
i) the fundamental cycles of G with respect to T' form a basis of its cycle
space,
ii) the fundamental bonds of G with respect to T form a basis of its bond
space.
b) Determine the dimensions of these two spaces.

(The cycle and bond spaces were defined in Section 2.6.)

4.3.7 Let G be a connected graph, and let M be its incidence matrix.
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a) Show that the columns of M corresponding to a subset S of F are linearly
independent over GF'(2) if and only if G[S] is acyclic.

b) Deduce that there is a one-to-one correspondence between the bases of the
column space of M over GF'(2) and the spanning trees of G.

(The above statements are special cases of more general results, to be discussed in
Section 20.2.)

4.3.8 ALGEBRAIC DUALS

An algebraic dual of a graph G is a graph H for which there is a bijection 6 :
E(G) — E(H) mapping each cycle of G to a bond of H and each bond of G to a
cycle of H.

a) Show that:
i) the octahedron and the cube are algebraic duals,
ii) K33 has no algebraic dual.

b) Let G be a connected graph and H an algebraic dual of G, with bijection 6.
i) Show that T is a spanning tree of G if and only if 8(T') is a cotree of H.
ii) Deduce that ¢(G) = t(H).

4.3.9 Show that any graph which contains a Hamilton cycle has a covering by two
even subgraphs.

*4.3.10 Show that any graph which contains two edge-disjoint spanning trees has:

a) an eulerian spanning subgraph,
b) a covering by two even subgraphs.

22

4.4 Related Reading

MATROIDS

One of the characteristic properties of spanning trees of a connected graph is the
Tree Exchange Property noted in Exercise 4.3.2a. Because the spanning trees of
G correspond to bases of the incidence matrix M of G (Exercise 4.3.7), the Tree
Exchange Property may be seen as a special case of the appropriate exchange
property of bases of a vector space. Whitney (1935) observed that many essential
properties of spanning trees, such as the ones described in Section 4.3, and more
generally of bases of a vector space, may be deduced from that exchange property.
Motivated by this observation, he introduced the notion of a matroid.

A matroid is an ordered pair (E, B), consisting of a finite set E of elements
and a nonempty family B of subsets of F, called bases, which satisfy the following
Basis Exchange Property.

If B1,By € B and e € By \ By then there exists f € By \ By such that
(Bi\{e}h)u{fteB
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Let M be a matrix over a field F, let E denote the set of columns of M, and
let B be the family of subsets of E which are bases of the column space of M.
Then (E,B) is a matroid. Matroids which arise in this manner are called linear
matroids. Various linear matroids may be associated with graphs, one example
being the matroid on the edge set of a connected graph in which the bases are
the edge sets of spanning trees. (In the matroidal context, statements concerning
connected graphs extend easily to all graphs, the role of spanning trees being
played by maximal forests when the graph is not connected.)

Much of matroid-theoretic terminology is suggested by the two examples men-
tioned above. For instance, subsets of bases are called independent sets, and mini-
mal dependent sets are called circuits. In the matroid whose bases are the spanning
trees of a connected graph G, the independent sets of the matroid are the forests
of G and its circuits are the cycles of GG. For this reason, this matroid is called the
cycle matroid of G, denoted M (G).

The dual of a matroid M = (F,B) is the matroid M* = (E, B*), where B* :=
{E\ B: B e B}. When M is the linear matroid associated with a matrix M, the
bases of M* are those subsets of E which are bases of the orthogonal complement of
the column space of M. When M is the cycle matroid of a connected graph G, the
bases of M* are the cotrees of GG, and its circuits are the bonds of G. For this reason,
the dual of the cycle matroid of a graph G is called the bond matroid of G, denoted
M*(G). Many manifestations of this cycle-bond duality crop up throughout the
book. The reader is referred to Oxley (1992) for a thorough account of the theory
of matroids.



5

Nonseparable Graphs

Contents
5.1 Cut VertiCes ....uviiiieinineeeeneneeeeneeeenennas 117
5.2 Separations and Blocks .......... ... it 119
NONSEPARABLE GRAPHS . . .ottt et it e e e e 119
BLOCKS .. 120
PROOF TECHNIQUE: SPLITTING OFF EDGES ............... 122
5.3 Ear Decompositions ........... .ot 125
STRONG ORIENTATIONS . .o\ttt ettt e e e e 126
5.4 Directed Ear Decompositions...................... 129
5.5 Related Reading..........ciiiiiiiiiiiiinneennn. 133
EVEN CYCLE DECOMPOSITIONS .+« ot oo te e et e e eeeee et 133
MATROIDS AND NONSEPARABILITY . .\ vvvtteieeee e 133

5.1 Cut Vertices

In Chapter 3, we introduced the notion of a cut edge and discussed various proper-
ties of connected graphs without cut edges. Here, we consider the analogous notion
for vertices. There are, in fact, two closely related notions, that of a cut vertex and
that of a separating vertex.

A cut vertex of a graph G is a vertex v such that ¢(G—v) > ¢(G). In particular, a
cut vertex of a connected graph is a vertex whose deletion results in a disconnected
graph. This notion is illustrated in Figure 5.1, the cut vertices being indicated by
solid dots.

By Exercise 3.1.3, a graph is connected if any two of its vertices are connected by
a path. Connected graphs without cut vertices have a stronger property, described
in the theorem below. Two distinct paths are internally disjoint if they have no
internal vertices in common.

Theorem 5.1 A connected graph on three or more vertices has no cut vertices if
and only if any two distinct vertices are connected by two internally disjoint paths.
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Fig. 5.1. The cut vertices of a graph

Proof Let G be a connected graph, and let v be a vertex of G. If any two vertices
of G are connected by two internally disjoint paths, any two vertices of G — v are
certainly connected by at least one path, so G — v is connected and v is not a cut
vertex of G. This being so for each vertex v, the graph G has no cut vertices.

Conversely, let G be a connected graph on at least three vertices, with no
cut vertices. Consider any two vertices v and v of G. We prove, by induction on
the distance d(u,v) between w and v, that these vertices are connected by two
internally disjoint paths.

Suppose, first, that v and v are adjacent, and let e be an edge joining them.
Because neither u nor v is a cut vertex, e is not a cut edge (Exercise 5.1.2) and
therefore, by Proposition 3.2, lies in a cycle C of G. It follows that u and v are
connected by the internally disjoint paths uev and C'\ e.

Suppose, now, that the theorem holds for any two vertices at distance less than
k, where k > 2, and let d(u,v) = k. Consider a uv-path of length k, and let v be
the immediate predecessor of v on this path. Then d(u,v") = k — 1. According to
the induction hypothesis, u and v’ are connected by two internally disjoint paths,
P’ and Q' (see Figure 5.2).

Because G has no cut vertices, G — v’ is connected and therefore contains a
uv-path R’. The path R’ meets P’ U Q' at u. Let x be the last vertex of R’ at
which R’ meets P’ U Q’; without loss of generality, we may suppose that x lies on
P'. Define P := uP'zR'v and Q := u@Q’v'v. Then P and Q are internally disjoint
uv-paths in G. O

Fig. 5.2. Proof of Theorem 5.1
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Generalizations and variants of Theorem 5.1 are discussed in Chapter 7 and
Chapter 9.

Exercises

5.1.1 Show that every nontrivial graph has at least two vertices that are not cut
vertices.

*5.1.2 Let G be a connected graph on at least three vertices, and let e = uv be a
cut edge of G. Show that either u or v is a cut vertex of G.

5.1.3 Let G be a nontrivial connected graph without cut vertices, and let H be
obtained from G by adding a new vertex and joining it to two vertices of G. Show
that H has no cut vertices.

5.1.4 Let G be a nontrivial connected graph without cut vertices, and let X and
Y be two (not necessarily disjoint) sets of vertices of G, each of cardinality at least
two. Show that there are two disjoint (X,Y')-paths in G.

5.1.5 Show that any two longest cycles in a loopless connected graph without cut
vertices have at least two vertices in common.

%

5.2 Separations and Blocks

Whilst the notion of a cut vertex, as defined in Section 5.1, is the most natural
analogue for vertices of the notion of cut edge, a slightly more general concept is
needed for graphs which may have loops.

A separation of a connected graph is a decomposition of the graph into two
nonempty connected subgraphs which have just one vertex in common. This com-
mon vertex is called a separating vertex of the graph. The separating vertices of
a disconnected graph are defined to be those of its components. A cut vertex is
clearly a separating vertex, but not conversely: a vertex incident with a loop and
at least one other edge is a separating vertex but not necessarily a cut vertex.
However, in a loopless graph, every separating vertex is indeed a cut vertex, so in
this case the two concepts are identical. Whereas the graph shown in Figure 5.1
has four cut vertices, it has five separating vertices, as indicated in Figure 5.3.

NONSEPARABLE GRAPHS

A graph is nonseparable if it is connected and has no separating vertices; otherwise,
it is separable. Up to isomorphism, there are just two nonseparable graphs on one
vertex, namely K7, and K7 with a loop attached. All nonseparable graphs on two
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Fig. 5.3. The separating vertices of a graph

or more vertices are loopless. Multiple edges play no role here: a loopless graph is
nonseparable if and only if its underlying simple graph is nonseparable. Apart from
K, and Ko, the most basic nonseparable graphs are the cycles. Whitney (1932c¢)
showed that nonseparable connected graphs may be characterized in terms of their
cycles, as follows.

Theorem 5.2 A connected graph is nonseparable if and only if any two of its edges
lie on a common cycle.

Proof If G is separable, it may be decomposed into two nonempty connected
subgraphs, GG; and G2, which have just one vertex v in common. Let e; be an edge
of G; incident with v, ¢ = 1,2. If either e; or es is a loop, there is clearly no cycle
including both e; and es. If not, v is a cut vertex of G. Let v; be the other end of
e;, i = 1,2. Then there is no vivs-path in G — v, hence no cycle in G through both
e1 and es.

Conversely, suppose that G is nonseparable. Let e; and e; be two edges of G.
Subdivide e; by a new vertex v;, ¢ = 1,2. The resulting graph H is also nonsepa-
rable (Exercise 5.2.1). By Theorem 5.1, there is a cycle in H through v; and wve,
hence a cycle in GG through e; and es. ([

BLoOCKS

A block of a graph is a subgraph which is nonseparable and is maximal with respect
to this property. A nonseparable graph therefore has just one block, namely the
graph itself. The blocks of a nontrivial tree are the copies of Ky induced by its
edges; and, in general, the blocks of a connected graph fit together in a treelike
structure, as illustrated in Figure 5.4. In order to prove this assertion, we note first
a number of basic facts about blocks.

Proposition 5.3 Let G be a graph. Then:

a) any two blocks of G have at most one vertex in common,
b) the blocks of G form a decomposition of G,
¢) each cycle of G is contained in a block of G.
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Fig. 5.4. (a) The blocks of the graph of Figure 5.3, and (b) its block tree

Proof (a) We establish the claim by contradiction. Suppose that there are dis-
tinct blocks By and By with at least two common vertices. Note that B; and By
are necessarily loopless. Because they are maximal nonseparable subgraphs of G,
neither one contains the other, so B := B; U By properly contains both of them.
Let v € V(B). Then B — v = (By —v) U (Bg — v) is connected, because By — v
and By — v are both connected and have at least one common vertex. Thus B has
no cut vertices, and so, being loopless, is nonseparable. But this contradicts the
maximality of By and Bs.

(b) Each edge of G induces a nonseparable subgraph (on one or two vertices),
hence is contained in a maximal nonseparable subgraph, or block, of G. On the
other hand, no edge lies in two blocks, by (a). The blocks therefore constitute a
decomposition of G.

(¢) As noted above, a cycle of G is a nonseparable subgraph, so is contained in a
block of G. 0

We may associate with any graph G a bipartite graph B(G) with bipartition
(B, S), where B is the set of blocks of G and S the set of separating vertices of G, a
block B and a separating vertex v being adjacent in B(G) if and only if B contains
v. Each path in G connecting vertices in distinct blocks gives rise to a unique path
in B(G) connecting these same blocks. It follows that if G is connected, so is
B(G). Furthermore, B(G) is acyclic, because a cycle in B(G) would correspond to
a cycle in G passing through two or more blocks, contradicting Proposition 5.3c.
The graph B(G) is therefore a tree, called the block tree of G (see Figure 5.4b).
If G is separable, the blocks of G which correspond to leaves of its block tree are
referred to as its end blocks. An internal vertex of a block of a graph G is a vertex
which is not a separating vertex of G.

By using this tree structure, one can deduce most properties of connected
graphs from the properties of their blocks, just as one can deduce most proper-
ties of graphs from those of their components. In other words, one can usually
reduce the study of all graphs to the study of their blocks. Examples are given in
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Exercises 5.2.5 and 5.2.8b. Another is provided by Proposition 5.3, which implies
that a graph has a cycle double cover if and only if each of its blocks has one.
It therefore suffices to prove the Cycle Double Cover Conjecture for nonseparable
graphs. In fact, it suffices to prove the conjecture for nonseparable cubic graphs.
This reduction is based on the operation of splitting off edges from a vertex (see
inset).

In the next section, we describe how any nonseparable graph other than K
and Ky can be built up in a very simple way by starting with a cycle and adding
paths. We then make use of this structure to deduce several important properties
of nonseparable graphs.

PROOF TECHNIQUE: SPLITTING OFF EDGES

Let v be a vertex of a graph G, and let e; := vv; and ey := vvy be two edges
of G incident to v. The operation of splitting off the edges e; and es from v
consists of deleting e; and e; and then adding a new edge e joining v; and
vy. This operation is illustrated in Figure 5.5b. (Note that if v1 = vg, then
splitting off e; and ey from v amounts to replacing these edges by a loop at
vy = v2.) The following theorem, due to Fleischner (1992), shows that under
certain conditions it can be performed without creating cut edges.

Theorem 5.4 THE SPLITTING LEMMA

Let G be a nonseparable graph and let v be a vertex of G of degree at least
four with at least two distinct neighbours. Then some two nonparallel edges
incident to v can be split off so that the resulting graph is connected and has
no cut edges.

Proof There are two graphs on three vertices and five edges which satisfy
the hypotheses of the theorem, and it may be readily checked that the theorem
holds for these two graphs. We proceed by induction on m. Let f be an edge
of G not incident to v, and set H := G\ f. If v is an internal vertex of some
block B of H, the theorem follows by induction applied to B and v. So we
may assume that v is a cut vertex of H. Because G is nonseparable, the block
tree of H is a path (Exercise 5.2.11), and the edge f links internal vertices of
the two endblocks of H, as illustrated in Figure 5.5a.

Let e; and ey be two edges incident with v and lying in distinct blocks of
H. Consider the graph G’ derived from G by splitting off e; and ey. It may
be checked that G’ is connected and that each edge of G’ lies in a cycle
(Exercise 5.2.9). By Proposition 3.2, G’ has no cut edges. O
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Fig. 5.5. Proof of Theorem 5.4: (a) The block path H and the edge f, (b) the graph G’

SPLITTING OFF EDGES (CONTINUED)

Here is the promised application of the Splitting Lemma to cycle double cov-
ers.

Theorem 5.5 The Cycle Double Conjecture is true if and only if it is true
for all nonseparable cubic graphs.

Proof We have already noted that it suffices to prove the Cycle Double Cover
Conjecture for nonseparable graphs. Consider such a graph G. By Veblen’s
Theorem, we may assume that G has at least one vertex of odd degree. If G has
a vertex v of degree two, with neighbours v and w, let G’ be the nonseparable
graph obtained from G — v on adding a new edge joining v and w. If G has
a vertex v of degree four or more, let G’ be a nonseparable graph obtained
from G by splitting off two edges incident to v. In both cases, it is easy to
see that if G’ has a cycle double cover, then so has G. Applying these two
operations recursively results in a nonseparable cubic graph H, and if H has
a cycle double cover, then so has G. 0

For another application of the Splitting Lemma, see Exercise 5.2.12.
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Exercises

*5.2.1 Let G be a nonseparable graph, and let e be an edge of G. Show that the
graph obtained from G by subdividing e is nonseparable.

*5.2.2 Let G be a graph, and let e be an edge of G. Show that:

a) if G'\ e is nonseparable and e is not a loop of G, then G is nonseparable,
b) if G /e is nonseparable and e is neither a loop nor a cut edge of G, then G is
nonseparable.

5.2.3 Let G be a graph, and let £ denote the binary relation on F defined by

e & f if and only if either e = f or there is a cycle of G containing both e and f.
Show that:

a) the relation < is an equivalence relation on F,
b) the subgraphs of G induced by the equivalence classes under this relation are
its nontrivial blocks.

5.2.4 Show that a connected separable graph has at least two end blocks.

5.2.5 Show that:

a) a graph is even if and only if each of its blocks is even,
b) a graph is bipartite if and only if each of its blocks is bipartite.

5.2.6 We denote a graph G with two distinguished vertices « and y by G(z,y).
Prove the following edge analogue of Theorem 5.1.

Let G(x,y) be a connected graph without cut edges. Then there exist two edge-
disjoint xy-paths in G.

5.2.7

a) Let G(x,y) be a nonseparable graph. Show that all zy-paths in G have the
same parity if and only if G is bipartite.

b) Deduce that each edge of a nonseparable nonbipartite graph lies in an odd
cycle.

*5.2.8

a) Let B be a block of a graph G, and let P be a path in G connecting two
vertices of B. Show that P is contained in B.

b) Deduce that a spanning subgraph T of a connected graph G is a spanning tree
of G if and only if T'N B is a spanning tree of B for every block B of G.

%5.2.9 Consider the graph G’ arising in the proof of Theorem 5.4. Show that:

a) G’ is connected,
b) each edge of G’ lies in a cycle.
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5.2.10 Construct a nonseparable graph each vertex of which has degree at least
four and at least two distinct neighbours, and in which splitting off any two adja-
cent edges results in a separable graph.

*5.2.11 Let G be a nonseparable graph, and let e be an edge of G such that G\ e
is separable. Show that the block tree of G \ e is a path.
(G.A. DiraC; M.D. PLUMMER)

5.2.12

a) By employing the splitting-off operation, show that every even graph has an
odd number of cycle decompositions.
b) Deduce that each edge of an even graph lies in an odd number of cycles.
(S. TompA)

5.3 Ear Decompositions

Apart from K; and K, every nonseparable graph contains a cycle. We describe
here a simple recursive procedure for generating any such graph starting with an
arbitrary cycle of the graph.

Let F' be a subgraph of a graph G. An ear of F' in G is a nontrivial path in G
whose ends lie in F' but whose internal vertices do not.

Proposition 5.6 Let F' be a nontrivial proper subgraph of a monseparable graph
G. Then F has an ear in G.

Proof If F'is a spanning subgraph of G, the set F(G)\ E(F') is nonempty because,
by hypothesis, F' is a proper subgraph of G. Any edge in F(G) \ E(F) is then an
ear of F in G. We may suppose, therefore, that F' is not spanning.

Since G is connected, there is an edge zy of G with x € V(F) and y € V(G) \
V(F). Because G is nonseparable, G — z is connected, so there is a (y, F' — x)-path
Q@ in G — z. The path P := xyQ is an ear of F. O

The proofs of the following proposition is left to the reader (Exercise 5.3.1).

Proposition 5.7 Let F' be a nonseparable proper subgraph of a graph G, and let
P be an ear of F. Then F'U P is nonseparable. ]

A nested sequence of graphs is a sequence (Go, Gy, ..., Gy) of graphs such that
G; C Gir1, 0 <i < k. An ear decomposition of a nonseparable graph G is a nested
sequence (Gg,Gh,...,Gy) of nonseparable subgraphs of G such that:

> Gy is a cycle,
> Giy1 = G; U P;, where P; is an ear of G; in G, 0 <i < k,
> Gk =G.
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Fig. 5.6. An ear decomposition of the Petersen graph

An ear decomposition of the Petersen graph is shown in Figure 5.6, the initial
cycle and the ear added at each stage being indicated by heavy lines.

Using the fact that every nonseparable graph other than K; and Ks has a
cycle, we may deduce the following theorem from Propositions 5.6 and 5.7.

Theorem 5.8 Every nonseparable graph other than K, and K5 has an ear decom-
position. O

This recursive description of nonseparable graphs can be used to establish many
of their properties by induction. We describe below an interesting application of
ear decompositions to a problem of traffic flow. Further applications may be found
in the exercises at the end of this section.

STRONG ORIENTATIONS

A road network in a city is to be converted into a one-way system, in order that
traffic may flow as smoothly as possible. How can this be achieved in a satisfactory
manner? This problem clearly involves finding a suitable orientation of the graph
representing the road network. Consider, first, the graph shown in Figure 5.7a.
No matter how this graph is oriented, the resulting digraph will not be strongly
connected, so traffic will not be able to flow freely through the system, certain
locations not being accessible from certain others. On the other hand, the graph
of Figure 5.7b has the strong orientation shown in Figure 5.7¢ (one, moreover, in
which each vertex is reachable from each other vertex in at most two steps).

Clearly, a necessary condition for a graph to have a strong orientation is that
it be free of cut edges. Robbins (1939) showed that this condition is also sufficient.
The proof makes use of the following easy proposition (Exercise 5.3.9).
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Fig. 5.7. (a) A graph with no strong orientation, and (b) a graph with (c) a strong
orientation

Proposition 5.9 A connected digraph is strongly connected if and only if each of
its blocks is strongly connected. O

Theorem 5.10 Fvery connected graph without cut edges has a strong orientation.

Proof Let G be a connected graph without cut edges. By Proposition 5.9, it
suffices to show that each block B of G has a strong orientation. We may assume
that B # K;. Moreover, because G has no cut edges, B # K5. Thus B contains a
cycle and, by Theorem 5.8, has an ear decomposition (G, G1,...,G}). Consider
the orientation of B obtained by orienting Gy as a directed cycle and each ear
as a directed path. It can be verified easily, by induction on i, that the resulting
orientation of G; is strong for each i, 0 < i < k. In particular, the orientation
assigned to B = Gy is strong. O

Exercises

*5.3.1 Deduce Proposition 5.7 from Theorem 5.2.

*5.3.2 An edge e of a nonseparable graph G is called deletable if G\ e is non-
separable, and contractible if G /e is nonseparable. Show that every edge of a
nonseparable graph is either deletable or contractible.

5.3.3 Show that if G has no even cycles, then each block of G is either an odd
cycle or a copy of Ky or Ks.

5.3.4 Let GG be a nonseparable graph, and let x and y be two vertices of G. Show
that there is a linear ordering vy, v, ..., v, of the vertices of G such that v; = z,

n = ¥, and each vertex v;, 2 < j < n — 1, is joined to some vertex v; with i < j
and some vertex v, with k > j.

5.3.5 Prove the following dual version of Theorem 5.2: A connected graph is non-
separable if and only if any two of ils edges are contained in a common bond.
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5.3.6 Let G be a graph and let £ denote the binary relation on E defined by e L f
if and only if either e = f or there is a bond of G containing both e and f. Show
that:

a) the relation L s an equivalence relation on F,
b) the subgraphs of G induced by the equivalence classes under this relation are
its nontrivial blocks.

5.3.7 Deduce the result of Exercise 5.1.4 from Theorem 5.8.

5.3.8 Let G be a nonseparable graph different from K; and K, and let (G, G,
..., Gy) be an ear decomposition of G.

a) Show that k =m — n.

b) Suppose that G;11 = G; U P;, where P; is an ear of G; in G141, 0 <i < k. Set
Co := G and, for 1 < i < k, let C; be a cycle in G; containing the ear P;_;.
Show that (Cy, Ch,...,Cy) is a basis for C(G), the cycle space of G.

*5.3.9 Prove Proposition 5.9.

0
5.3.10 Let G be a nonseparable nonbipartite graph.

a) Show that the cycle space C(G) of G has a basis consisting of m —n even cycles
and one odd cycle.

b) Deduce that the dimension of the subspace of C(G) generated by the even
cycles of G is m — n. (M.A. HENNING AND C.H.C. LITTLE)

5.3.11 Call a family of subgraphs of a graph linearly independent if the incidence
vectors of their edge sets are linearly independent over GF(2). Let G be a nonsep-
arable graph on at least two vertices.

a) If © and y are two vertices of G, show that there are m — n + 2 linearly
independent xy-paths in G, and that this number is the greatest possible.

b) Let e be an edge of G. Deduce that the cycle space C(G) of G has a basis
consisting entirely of cycles containing the edge e.

¢) Deduce that G has at least (m72"+2) cycles.

d) Which nonseparable graphs G have exactly ("™7J'"?)

cycles?

5.3.12 VINE
A wvine on a path 2Py in a graph G is a sequence (2;Q;y; : 1 < i <r) of internally
disjoint ears of P in G such that:

T=01 <X T2 <Y1 303 <Y 30y < Zxp <Y1 <Y =Y

where < is the precedence relation on P (see Figure 5.8).
Let Py be a path in a nonseparable graph G.

a) Show that there is vine (2;Q;y; : 1 <i <r) on P.
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Fig. 5.8. A vine on a path

b) Set P; := z;Py; and C; := P,UQ;, 1 < i < r. Show that Cj, := A{C; : j <
1<k}isacycleof G,1<j<k<r.
¢) Suppose that r = 2t — 1 is odd.
i) Show that the 2 cycles Cjr, 1 <j <t <k <r, together cover the path P
at least ¢ times and each ear @; min{i, 2t — i} ¢ times.
ii) Deduce that if P has length ¢, then one of these cycles has length at least
(¢/t) +t, and hence length at least 2v/7. (G.A. DIRAC)
iii) Perform a similar computation in the case where r is even.

5.4 Directed Ear Decompositions

There is an analogous theory of ear decompositions for nonseparable strong di-
graphs. Every strong digraph other than K; contains a directed cycle (Exer-
cise 2.5.6). This is the starting point of the ear decomposition which we now
describe.

Let F' be a subdigraph of a digraph D. A directed ear of F' in D is a directed
path in D whose ends lie in F' but whose internal vertices do not.

Proposition 5.11 Let F' be a nontrivial proper nonseparable strong subdigraph of
a nonseparable strong digraph D. Then F has a directed ear in D.

Proof Because D is nonseparable, I has an ear in D, by Proposition 5.6. Among
all such ears, we choose one in which the number of reverse arcs (those directed
towards its initial vertex) is as small as possible. We show that this path zPy is
in fact a directed ear.

Assume the contrary, and let (u,v) be a reverse arc of P (see Figure 5.9a).
Because D is strong, there exist in D a directed (F,u)-path @ and a directed
(v, F)-path R (one of which might be of length zero). The tail of @ and the head
of R must be one and the same vertex, for otherwise the directed walk Quv R would
contain a directed ear of F, contradicting the choice of P and our assumption that
P is not a directed ear. Let this common vertex be z (see Figure 5.9b). We may
suppose that z # z (the case z # y being analogous). Then the zz-walk xPvRz
contains an xz-path that contradicts the choice of P (see Figure 5.9¢). Thus P is
indeed a directed ear of F. |

The proof of the following proposition is similar to the proof of Proposition 5.7,
and is left to the reader (Exercise 5.4.1).
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P

(a)

(©)

Fig. 5.9. Proof of Proposition 5.11: (a) The ear P of F', (b) the directed paths zQu and
vRz, and (c) the zz-walk xPvRz

Proposition 5.12 Let C be a strong subdigraph of a digraph D, and let P be a
directed ear of C' in D. Then C'U P is strong. O

A directed ear decomposition of a nonseparable strong digraph D is a nested
sequence (Dy, D1, ..., D) of nonseparable strong subdigraphs of D such that:

> Dy is a directed cycle,
> D;11 = D; UP;, where P; is a directed ear of D; in D, 0 <1i < k,
> Dp=D.

A directed ear decomposition of a strong digraph D is shown in Figure 5.10,
the initial directed cycle and the directed ear added at each stage being indicated
by heavy lines.

Propositions 5.11 and 5.12 imply the following theorem.

. WAV
AL LA

Fig. 5.10. A directed ear decomposition of a strong digraph




5.4 Directed Ear Decompositions 131

<

\

Fig. 5.11. A coherent feedback arc set of a digraph

Theorem 5.13 FEvery nonseparable strong digraph other than Ky has a directed
ear decomposition. (|

Recall that a feedback arc set of a digraph D is a set S of arcs such that
D\ S is acyclic (see Exercise 2.5.8). Knuth (1974) proved that, when the digraph
D is strongly connected, it has a feedback arc set with an important additional
property.

Consider a minimal feedback arc set S of a digraph D. Because S is minimal,
for any arc a in S the subdigraph (D \ S) + a contains at least one directed cycle.
Each such cycle includes the arc a, but no other arc of S. Let us call the directed
cycles arising in this way the fundamental cycles of D with respect to S. We shall
say that S is coherent if each arc of D belongs to some fundamental cycle. An
example of a coherent feedback arc set is shown in Figure 5.11.

Observe that in order for a digraph to admit a coherent feedback arc set, every
component of the digraph must be strong, because each arc should belong to a
directed cycle. Knuth (1974) showed that, conversely, every strong digraph has a
coherent feedback arc set. The proof makes use of directed ear decompositions.

Theorem 5.14 Every strong digraph admits a coherent feedback arc set.

Proof By induction on the number of arcs. Let D be a strong digraph. If D is
a directed cycle, the statement is obviously true. If not, then by Theorem 5.13
there exists a proper strong subdigraph D’ and a directed ear yPx of D’ such that
D = D' U P. By induction, D" has a coherent feedback arc set, and therefore a
coherent feedback arc set S’ such that D'\ S’ contains a spanning x-branching
(Exercise 5.4.6). The set S := S’ U{a}, where a is an arbitrary arc of P, is clearly
a feedback arc set of D. Because D'\ S’ contains a spanning z-branching, there is
a directed path zQy in D"\ S’. Observe that yPzQy is a fundamental cycle with
respect to S in D. Because S’ is a coherent feedback arc set of D', it now follows
that S is a coherent feedback arc set of D. O

Theorem 5.14 was discovered independently by Bessy and Thomassé (2004),
and in Chapter 19 we shall see an interesting application of this theorem obtained
by them.
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We conclude with another application of Theorem 5.13.

Theorem 5.15 FEvery strong digraph D has a strong spanning subdigraph with at
most 2n — 2 arcs.

Proof We may assume that D has no loops, deleting them if necessary. If D = K7,
the assertion is trivial. If not, we apply Theorem 5.13 to each block B of D.
Consider a directed ear decomposition of B. Delete from B the arcs in directed
ears of length one, thereby obtaining a strong spanning subdigraph F' of B and
a directed ear decomposition (Dg, Dy, ...,Dy) of F in which each ear P; is of
length at least two. Thus k < v(F') —v(Dg) < v(F) — 2. Since e(Dgy) = v(Dy) and
e(P;) =v(P;) — 1,1 <i<k, we have:

k k
e(F) =e(Do) + Y _e(P;) =v(Do) + Y _(v(P) —1) = v(F) + k < 20(F) — 2
i=1 i=1
By Proposition 5.9, the union of the strong subdigraphs F' (one in each block of
D) is a strong spanning subdigraph of D. Because each of the subdigraphs F' has
at most 2v(F') — 2 arcs, this spanning subdigraph of D has at most 2n — 2 arcs. O

Exercises

*5.4.1 Prove Proposition 5.12.

5.4.2 Which strong digraphs D have no strong spanning subdigraphs with fewer
than 2n — 2 arcs?

5.4.3 Let GG be a strong digraph. Show that:

a) G has at least m — n + 1 directed cycles,
b) G contains a spanning tree each of whose fundamental cycles is a directed cycle
if and only if G has exactly m — n + 1 directed cycles.

5.4.4 The cycle space of a digraph is the cycle space of its underlying graph. Show
that the cycle space of a strong digraph has a basis consisting of directed cycles.

5.4.5 By considering the digraph of Figure 5.11, show that a minimal feedback
arc set need not be coherent.

5.4.6 Let D be a strong digraph, and let x be a vertex of D. Suppose that D has a
coherent feedback arc set .S. Choose S so that the set X of vertices of D reachable
from z in D\ S is as large as possible.
a) Suppose that X # V', and set T':= (S \ 01 (X)) U9~ (X). Show that:
i) T is a coherent feedback arc set of D,

ii) the set of vertices of D reachable from x in D\ T properly contains X.
b) Deduce that D \ S contains a spanning z-branching. (D.E. KNUTH)

)
€
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5.5 Related Reading

EVEN CYCLE DECOMPOSITIONS

Veblen’s Theorem (2.7) gives a necessary and sufficient condition for a graph to
admit a cycle decomposition. If one would like all the constituent cycles of the
decomposition to be of even length, not only must the graph be even, but each
block must be of even size (number of edges). However, this requirement is still not
sufficient: K5 meets all these conditions, but admits no decomposition into even
cycles. On the other hand, Seymour (1981a) showed that a nonseparable even graph
of even size does admit an even cycle decomposition if it is planar. Extending the
example of K5, Rizzi (2001) described an infinite class of 4-connected even graphs
of even size which do not have even cycle decompositions, and he conjectured that
every simple 5-connected even graph of even size admits such a decomposition.
(The notion of a k-connected graph is defined in Chapter 9.) For a survey on the
topic, we refer the reader to Jackson (1993a), or to the books by Fleischner (1990,
1991).

MATROIDS AND NONSEPARABILITY

Although there is no matroidal analogue of a connected graph, the notion of non-
separability extends naturally to matroids. Let M be a matroid on a set E. A
partition of E into two nonempty subsets Fq and Fjs is called a separation of M if
every basis of M is the union of a basis of £ and a basis of Fs, where by a basis
of E; we mean a maximal independent subset of E;. A matroid is nonseparable
if it has no separation. Whitney (1935) showed that a matroid is nonseparable if
and only if any two of its elements belong to a common circuit. This result, when
applied to cycle matroids of graphs without isolated vertices, yields Theorem 5.2.
Whitney also showed that a matroid is nonseparable if and only if its dual is non-
separable. In particular, the cycle matroid of a graph is nonseparable if and only
if its bond matroid is nonseparable. Thus, from the point of view of matroids, the
statements in Exercises 5.2.3 and 5.3.6 are formally equivalent.
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6.1 Tree-Search

We have seen that connectedness is a basic property of graphs. But how does one
determine whether a graph is connected? In the case of small graphs, it is a routine
matter to do so by inspection, searching for paths between all pairs of vertices.
However, in large graphs, such an approach could be time-consuming because the
number of paths to examine might be prohibitive. It is therefore desirable to have
a systematic procedure, or algorithm, which is both efficient and applicable to all
graphs. The following property of the trees of a graph provides the basis for such
a procedure. For a subgraph F' of a graph G, we simply write O(F') for 9(V (F)),
and refer to this set as the edge cut associated with F.

Let T be a tree in a graph G. If V(T') = V(G), then T is a spanning tree of G and
we may conclude, by Theorem 4.6, that G is connected. But if V(T') C V(G), two
possibilities arise: either 9(T") = ), in which case G is disconnected, or 9(1T") # 0.
In the latter case, for any edge zy € O(T'), where v € V(T') and y € V(G) \ V(T),
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the subgraph of G obtained by adding the vertex y and the edge xzy to T is again
a tree in G (see Figure 6.1).

Fig. 6.1. Growing a tree in a graph

Using the above idea, one may generate a sequence of rooted trees in G, starting
with the trivial tree consisting of a single root vertex r, and terminating either
with a spanning tree of the graph or with a nonspanning tree whose associated
edge cut is empty. (In practice, this involves scanning the adjacency lists of the
vertices already in the tree, one by one, to determine which vertex and edge to
add to the tree.) We refer to such a procedure as a tree-search and the resulting
tree as a search tree.

If our objective is just to determine whether a graph is connected, any tree-
search will do. In other words, the order in which the adjacency lists are considered
is immaterial. However, tree-searches in which specific criteria are used to deter-
mine this order can provide additional information on the structure of the graph.
For example, a tree-search known as breadth-first search may be used to find the
distances in a graph, and another, depth-first search, to find the cut vertices of a
graph.

The following terminology is useful in describing the properties of search trees.
Recall that an r-tree is a tree with root r. Let T be such a tree. The level of a vertex
v in T' is the length of the path rTv. Each edge of T joins vertices on consecutive
levels, and it is convenient to think of these edges as being oriented from the lower
to the higher level, so as to form a branching. Several other terms customarily used
in the study of rooted trees are borrowed from genealogy. For instance, each vertex
on the path rTv, including the vertex v itself, is called an ancestor of v, and each
vertex of which v is an ancestor is a descendant of v. An ancestor or descendant
of a vertex is proper if it is not the vertex itself. T'wo vertices are related in T if
one is an ancestor of the other. The immediate proper ancestor of a vertex v other
than the root is its predecessor or parent, denoted p(v), and the vertices whose
predecessor is v are its successors or children. Note that the (oriented) edge set of
a rooted tree T := (V(T), E(T)) is determined by its predecessor function p, and

conversely
E(T) = {(p(v),v) : v € V(T) \ {r}}
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where 7 is the root of T. We often find it convenient to describe a rooted tree by
specifying its vertex set and predecessor function.

For the sake of simplicity, we assume throughout this chapter that our graphs
and digraphs are connected. This assumption results in no real loss of generality.
We may suppose that the components have already been found by means of a
tree-search. Each component may then be treated individually. We also assume
that our graphs and digraphs are free of loops, which play an insignificant role
here.

BREADTH-FIRST SEARCH AND SHORTEST PATHS

In most types of tree-search, the criterion for selecting a vertex to be added to the
tree depends on the order in which the vertices already in the tree T were added. A
tree-search in which the adjacency lists of the vertices of T are considered on a first-
come first-served basis, that is, in increasing order of their time of incorporation
into T', is known as breadth-first search. In order to implement this algorithm
efficiently, vertices in the tree are kept in a queue; this is just a list () which is
updated either by adding a new element to one end (the tail of @) or removing
an element from the other end (the head of Q). At any moment, the queue Q
comprises all vertices from which the current tree could potentially be grown.

Initially, at time ¢t = 0, the queue @ is empty. Whenever a new vertex is added
to the tree, it joins Q). At each stage, the adjacency list of the vertex at the head
of ) is scanned for a neighbour to add to the tree. If every neighbour is already in
the tree, this vertex is removed from . The algorithm terminates when @ is once
more empty. It returns not only the tree (given by its predecessor function p), but
also a function ¢ : V' — N, which records the level of each vertex in the tree and,
more importantly, their distances from r in G. It also returns a function t : V' — N
which records the time of incorporation of each vertex into the tree 7. We keep
track of the vertices in T' by colouring them black. The notation G(x) signifies a
graph G with a specified vertex (or root) x. Recall that an x-tree is a tree rooted
at vertex x.

Algorithm 6.1 BREADTH-FIRST SEARCH (BFS)

INPUT: a connected graph G(r)
OuTpPUT: an r-tree T in G with predecessor function p, a level function ¢ such
that ¢(v) = dg(r,v) for allv € V, and a time function ¢
1: seti:=0 and Q := )
increment ¢ by 1
colour r black
set £(r) :=0 and t(r) =1
append r to @
while Q) is nonempty do
consider the head x of Q
if x has an uncoloured neighbour y then
increment ¢ by 1

© PN D o el
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10: colour y black

11: set p(y) ==z, l(y) :==L(x) + 1 and t(y) :=1
12: append y to @

13:  else

14: remove x from Q

15:  end if

16: end while
17: return (p, £, 1)

The spanning tree T returned by BFS is called a breadth-first search tree,
or BFS-tree, of G. An example of a BFS-tree in a connected graph is shown in
Figure 6.2. The labels of the vertices in Figure 6.2a indicate the times at which
they were added to the tree. The distance function ¢ is shown in Figure 6.2b. The
evolution of the queue @ is as follows, the vertices being indicated by their times.

f—-1—-12—-123—-1234—-12345—2345— 23456
— 234567 — 34567 — 345678 — 3456789 — 456789
— 45678910 - 5678910 - 567891011 — 67891011
— 6789101112 - 789101112 - 89101112 - 9101112
— 910111213 - 10111213 - 111213 - 1213 - 13 = 0

Fig. 6.2. A breadth-first search tree in a connected graph: (a) the time function ¢, and
(b) the level function ¢

BFS-trees have two basic properties, the first of which justifies our referring to
¢ as a level function.

Theorem 6.2 Let T' be a BFS-tree of a connected graph G, with root r. Then:

a) for every vertex v of G, {(v) = dr(r,v), the level of v in T,
b) every edge of G joins vertices on the same or consecutive levels of T'; that is,

[0(u) —0(v)| <1, foralluveE
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Proof The proof of (a) is left to the reader (Exercise 6.1.1). To establish (b), it
suffices to prove that if uv € F and £(u) < £(v), then £(u) = ¢(v) — 1.

We first establish, by induction on #(u), that if v and v are any two vertices
such that ¢(u) < £(v), then u joined @ before v. This is evident if £(u) = 0, because
u is then the root of T'. Suppose that the assertion is true whenever ¢(u) < k, and
consider the case ¢(u) = k, where k > 0. Setting x := p(u) and y := p(v), it
follows from line 11 of BFS (Algorithm 6.1) that £(z) = £(u) —1 < £(v) —1 = {(y).
By induction, = joined @ before y. Therefore u, being a neighbour of x, joined @
before v.

Now suppose that uv € E and {(u) < £(v). If u = p(v), then £(u) = £(v) — 1,
again by line 11 of the algorithm. If not, set y := p(v). Because v was added to
T by the edge yv, and not by the edge uwv, the vertex y joined @) before u, hence
U(y) < l(u) by the claim established above. Therefore f(v) — 1 = {(y) < l(u) <
{(v) — 1, which implies that ¢(u) = £(v) — 1. O

The following theorem shows that BFS runs correctly.

Theorem 6.3 Let G be a connected graph. Then the values of the level function £
returned by BFS are the distances in G from the root r:

L(v) =dg(r,v), foralveV

Proof By Theorem 6.2a, {(v) = dp(r,v). Moreover, dr(r,v) > dg(r,v) because
T is a subgraph of G. Thus ¢(v) > dg(r,v). We establish the opposite inequality
by induction on the length of a shortest (r, v)-path.

Let P be a shortest (r,v)-path in G, where v # r, and let u be the predecessor
of v on P. Then rPu is a shortest (r,u)-path, and dg(r,u) = dg(r,v) — 1. By
induction, ¢(u) < dg(r,u), and by Theorem 6.2b, ¢(v) — ¢(u) < 1. Therefore

L(v) <Ll(u)+1<dg(r,u)+1=dg(r,v) O
Alternative proofs of Theorems 6.2 and 6.3 are outlined in Exercise 6.1.2.

DEPTH-FIRST SEARCH

Depth-first search is a tree-search in which the vertex added to the tree T at each
stage is one which is a neighbour of as recent an addition to T as possible. In
other words, we first scan the adjacency list of the most recently added vertex
x for a neighbour not in 7. If there is such a neighbour, we add it to T. If not,
we backtrack to the vertex which was added to T just before x and examine its
neighbours, and so on. The resulting spanning tree is called a depth-first search
tree or DFS-tree.

This algorithm may be implemented efficiently by maintaining the vertices of
T whose adjacency lists have yet to be fully scanned, not in a queue as we did for
breadth-first search, but in a stack. A stack is simply a list, one end of which is
identified as its top; it may be updated either by adding a new element as its top
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or else by removing its top element. In depth-first search, the stack .S is initially
empty. Whenever a new vertex is added to the tree T', it is added to S. At each
stage, the adjacency list of the top vertex is scanned for a neighbour to add to 7T'.
If all of its neighbours are found to be already in 7', this vertex is removed from S.
The algorithm terminates when S is once again empty. As in breadth-first search,
we keep track of the vertices in T" by colouring them black.

Associated with each vertex v of G are two times: the time f(v) when v is
incorporated into T (that is, added to the stack S), and the time I(v) when all the
neighbours of v are found to be already in T, the vertex v is removed from .S, and
the algorithm backtracks to p(v), the predecessor of v in T'. (The time function /(v)
is not to be confused with the level function ¢(v) of BFS.) The time increments by
one with each change in the stack S. In particular, f(r) = 1, l(v) = f(v) + 1 for
every leaf v of T, and I(r) = 2n.

Algorithm 6.4 DEPTH-FIRST SEARCH (DFS)

INPUT: a connected graph G

OUTPUT: a rooted spanning tree of G with predecessor function p, and two

time functions f and [

seti:=0and S:=10

choose any vertex r (as root)

increment i by 1

colour r black

set f(r):=1

add r to S

while S is nonempty do
consider the top vertex x of S
increment i by 1
if x has an uncoloured neighbour y then

11: colour y black

12: set p(y) :==x and f(y) :=1

13: add y to the top of S

14:  else

15: set l(x) =1

16: remove x from S

17 end if

18: end while

19: return (p, f,1