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1. PREFACE \%

1. Preface

These notes are the outgrowth of a graduate course on Lie groups I taught
at the University of Virginia in 1994. In trying to find a text for the course I
discovered that books on Lie groups either presuppose a knowledge of differentiable
manifolds or provide a mini-course on them at the beginning. Since my students
did not have the necessary background on manifolds, I faced a dilemma: either use
manifold techniques that my students were not tamiliar with, or else spend much
of the course teaching those techniques instead of teaching Lie theory. To resolve
this dilemma I chose to write my own notes using the notion of a matrix Lie group.
A matrix Lie group is simply a closed subgroup of GL(n;C). Although these are
often called simply “matrix groups,” my terminology emphasizes that every matrix
oroup s a Lie group.

T'his approach to the subject allows me to get started quickly on Lie group the-
ory proper, with a minimum of prerequisites. Since most of the interesting examples
of Lie groups are matrix Lie groups, there is not too much loss ot generality. Fur-
thermore, the proois of the main results are ultimately similar to standard proofs
in the general setting, but with less preparation.

Of course, there is a price to be paid and certain constructions (e.g. covering
groups) that are easy in the Lie group setting are problematic in the matrix group
setting. (Indeed the universal cover of a matrix Lie group need not be a matrix
Lie group.) On the other hand, the matrix approach suffices for a first course.
Anyone planning to do research in Lie group theory certainly needs to learn the
manifold approach, but even for such a person it might be helpful to start with a
more concrete approach. And for those in other fields who simply want to learn
the basics of Lie group theory, this approach allows them to do so quickly.

These notes also use an atypical approach to the theory of semisimple Lie
algebras, namely one that starts with a detailed calculation of the representations
of sl(3;C). My own experience was that the theory of Cartan subalgebras, roots,
Weyl group, etc., was pretty ditficult to absorb all at once. I have tried, then, to
motivate these constructions by showing how they are used in the representation
theory of the simplest representative Lie algebra. (I also work out the case of
sl(2; C), but this case does not adequately illustrate the general theory.)

In the interests of making the notes accessible to as wide an audience as possible,
I have included a very brief introduction to abstract groups, given in Chapter 1.
In fact, not much of abstract group theory is needed, so the quick treatment I give
should be sufficient for those who have not seen this material betore.

I am grateful to many who have made corrections, large and small, to the notes,
including especially Tom Goebeler, Ruth Gornet, and Erdinch Tatar.
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CHAPTER 1

(Groups

1. Definition of a Group, and Basic Properties

DEFINITION 1.1. A group is a set G, together with a map of G X G nto G
(denoted gy x gs ) with the following properties:
Fairst, associativity: for all g1, go € G,

(1.1) g1 * (g2 * g3) = (g1 * g2) * g3.

Second, there exists an element e in GG such that for all g € G,

(1.2) gxe—exqg—=g.
and such that for all g € GG, there exists h € G with
(1.3) gxh=hxg=e.

If gxh = hxg for all g,h € G, then the group is said to be commutative (or
abelian).

The element e is (as we shall see momentarily) unique, and is called the iden-
tity element of the group, or simply the identity. Part of the definition of a

oroup i1s that multiplying a group element g by the identity on either the right or
the left must give back g.

The map of G X G into (G is called the product operation for the group. Part
of the definition of a group G is that the product operation map G X G into G, 1.e.,
that the product of two elements of G be again an element of G. This property is
referred to as closure.

(Given a group element g, a group element A such that gxh = h*xg = e is called
an inverse of g. We shall see momentarily that each group element has a unique
Inverse.

(Given a set and an operation, there are four things that must be checked to show
that this is a group: closure, associativity, existence ot an identity, and existence of
INVETSES.

PROPOSITION 1.2 (Uniqueness of the Identity). Let G be a group, and lete, f €
(G be such that for all g € G

exg=g*xe=g(
frg=9gxf=g.
Then e = f.

PROOF. Since e is an identity, we have

ex f = f.

1



2 1. GROUPS

On the other hand, since f is an identity, we have

ex f =e.
Thuse=ex f = f. [

PROPOSITION 1.3 (Uniqueness of Inverses). Let G be a group, e the (unique)
identity of G, and g, h, k arbitrary elements of G. Suppose that

gxh=hxg=ce
gxk=kxg=e.
Then h = k.
PROOF. We know that g x h = g x k (= e). Multiplying on the left by h gives
hx(gxh)=~hx(gx*xk).
By associativity, this gives

(h*xg)xh=(hxg)x*k,

and so

exh—=exk

h = k.

T'his 1s what we wanted to prove.

PROPOSITION 1.4. Let G be a group, e the identity element of G, and g an

arbitrary element of G. Suppose h € G satisfies either hxqg =¢e or gxh = e. Then
h is the (unique) inverse of g.

PROOF. To show that h is the inverse of g, we must show both that hxg = e

and g x h = e. Suppose we know, say, that hx g = e. Then our goal is to show that
this implies that g x h = e.

Since h * g = e,

gx(h*xg)=g*xe=g.
By associativity, we have
(g*h)*xg=g.

Now, by the definition of a group, g has an inverse. Let k be that inverse. (Of
course, in the end, we will conclude that k = h, but we cannot assume that now.)
Multiplying on the right by £ and using associativity again gives

((gxh)xg)xk=gxk=c¢
(gxh)*(g*k)=¢e

(gxh)xe=c¢e
g*xh =e.
A similar argument shows that if g x h = e, then h x g = e. [

Note that in order to show that h x g = e implies g x h = e, we used the fact
that ¢ has an inverse, since it is an element of a group. In more general contexts

(that is, in some system which is not a group), one may have h x g = e but not
g * h = e. (See Exercise 11.)
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NOTATION 1.5. For any group element g, its unique tnverse will be denoted

g .

PROPOSITION 1.6 (Properties of Inverses). Let G be a group, e its identity, and
g, h arbitrary elements of G. Then

v —1
(97') =9
(gh)" =h"tg™!
e~ = e.
PROOF. Exercise. B

2. Some Examples of Groups

From now on, we will denote the product of two group elements ¢g; and g¢-
simply by ¢1¢g2, instead of the more cumbersome ¢ * go. Moreover, since we have
associativity, we will write simply g1¢g293 in place of (g192)gs or g1(g293).

2.1. The trivial group. The set with one element, e, 1s a group, with the
oroup operation being defined as ee = e. This group is commutative.

Associativity is automatic, since both sides of (1.1) must be equal to e. Of
course, e itselt is the identity, and is its own inverse. Commutativity is also auto-
matic.

2.2. The integers. The set Z of integers forms a group with the product
operation being addition. This group i1s commutative.

First, we check closure, namely, that addition maps Z X Z into Z, 1.e., that the
sum of two integers is an integer. Since this is obvious, it remains only to check
associativity, identity, and inverses. Addition 1s associative; zero is the additive
identity (i.e., 0 +n = n + 0 = n, for all n € Z); each integer n has an additive
inverse, namely, —n. Since addition is commutative, Z i1s a commutative group.

2.3. The reals and R". The set R of real numbers also forms a group under
the operation of addition. This group is commutative. Similarly, the n-dimensional
FEuclidean space R™ torms a group under the operation of vector addition. This
oroup 1s also commutative.

The verification is the same as for the integers.

2.4. Non-zero real numbers under multiplication. The set of non-zero
real numbers forms a group with respect to the operation of multiplication. This
group 1s commutative.

Again we check closure: the product of two non-zero real numbers is a non-zero
real number. Multiplication 1s associative; one 1s the multiplicative identity; each
non-zero real number x has a multiplicative inverse, namely, % Since multiplication
of real numbers is commutative, this is a commutative group.

T'his group 1s denoted RR™.

2.5. Non-zero complex numbers under multiplication. The set of non-
zero complex numbers forms a group with respect to the operation of complex
multiplication. This group 1s commutative.

This group in denoted C*.
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2.6. Complex numbers of absolute value one under multiplication.
The set of complex numbers with absolute value one (i.e., of the form e*) forms a
oroup under complex multiplication. 1his group 1s commutative.

This group is the unit circle, denoted S*.

2.7. Invertible matrices. For each positive integer n, the set of all n X n
invertible matrices with real entries forms a group with respect to the operation of
matrix multiplication. This group in non-commutative, for n > 2.

We check closure: the product of two invertible matrices is invertible, since
(AB)_1 — B~1A~1. Matrix multiplication is associative; the identity matrix (with
ones down the diagonal, and zeros elsewhere) is the identity element; by definition,
an invertible matrix has an inverse. Simple examples show that the group is non-
commutative, except in the trivial case n = 1. (See Exercise 8.)

This group is called the general linear group (over the reals), and is denoted

GL(n; R).

2.8. Symmetric group (permutation group). The set of one-to-one, onto
maps of the set {1,2,---n} to itself forms a group under the operation of compo-
sition. This group is non-commutative for n > 3.

We check closure: the composition of two one-to-one, onto maps is again one-
to-one and onto. Composition of functions is associative; the identity map (which
sends 1 to 1, 2 to 2, etc.) is the identity element; a one-to-one, onto map has an
inverse. simple examples show that the group is non-commutative, as long as n is
at least 3. (See Exercise 10.)

This group is called the symmetric group, and is denoted 5,,. A one-to-one,
onto map of {1,2,---n} is a permutation, and so .5, is also called the permutation
group. The group §5,, has n! elements.

2.9. Integers mod n. The set {0,1,---n — 1} forms a group under the oper-
ation of addition mod n. This group is commutative.

Explicitly, the group operation is the following. Consider a,b € {0,1---n — 1}.
Ifa+b<n,thena+bmodn=a+0b,ita+b>n,thena+bmodn=a+b—n.
(Since a and b are less than n, a+b—n is less than n; thus we have closure.) To show
associativity, note that both (a+b mod n)+c mod n and a+ (b+c mod n) mod n
are equal to a + b + ¢, minus some multiple of n, and hence differ by a multiple ot
n. But since both are in the set {0,1,---n — 1}, the only possible multiple on n
1s zero. Zero 1s still the identity for addition mod n. The inverse of an element
a € {0,1,---n—1}is n —a. (Exercise: check that n —a is in {0,1,---n — 1}, and
that a + (n —a) mod n = 0.) The group is commutative because ordinary addition
1S comimutative.

This group is referred to as “Z mod n,” and is denoted Z,.

3. Subgroups, the Center, and Direct Products

DEFINITION 1.7. A subgroup of a group GG 1s a subset H of G with the follow-
ing properties:

1. The identity 1s an element of H.
2. Ifhe H, then h~' € H.
3. Ifhl,hg - H, then h1ho € H .
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T'he conditions on H guarantee that H 1s a group, with the same product
operation as G (but restricted to H). Closure is assured by (3), associativity follows
from associativity in G, and the existence of an identity and of inverses is assured

by (1) and (2).

3.1. Examples. Every group G has at least two subgroups: G itself, and the
one-element subgroup {e}. (If GG itself is the trivial group, then these two subgroups
coincide.) These are called the trivial subgroups of G.

The set of even integers is a subgroup of Z: zero is even, the negative of an
even integer is even, and the sum of two even integers is even.

The set H of nxn real matrices with determinant one is a subgroup of GL(n; R).
The set H is a subset of GL(n;R) because any matrix with determinant one is invert-
ible. The identity matrix has determinant one, so 1 is satisfied. The determinant of
the inverse is the reciprocal of the determinant, so 2 is satisfied; and the determi-
nant of a product is the product of the determinants, so 3 is satisfied. This group
is called the special linear group (over the reals), and is denoted SL(n;R).

Additional examples, as well as some non-examples, are given in Exercise 2.

DEFINITION 1.8. The center of a group G is the set of all g € G such that
gh = hg for all h € G.

It 1s not hard to see that the center of any group G is a subgroup G.

DEFINITION 1.9. Let G and H be groups, and consider the Cartesian product
of G and H, i.e., the set of ordered pairs (g, h) with g € G,h € H. Define a product

operation on this set as follows:

(917 hl)(QQa hQ) — (g1927 hth)'

This operation makes the Cartesitan product of G and H into a group, called the
direct product of G and H and denoted G x H.

It 1s a simple matter to check that this operation truly makes G x H into a

group. For example, the identity element of G x H is the pair (eq,e2), where eq is
the identity for G, and e is the identity for H.

4. Homomorphisms and Isomorphisms

DEFINITION 1.10. Let G and H be groups. A map ¢ : G — H 1s called a

homomorphism if ¢(g192) = o(g1)0d(g2) for all g1,90 € G. If in addition, ¢ 1is
one-to-one and onto, then ¢ s called an 1somorphism. An isomorphism of a
group with itself is called an automorphism.

PROPOSITION 1.11. Let G and H be groups, e1 the identity element of G, and
es the identity element of H. If ¢ : G — H is a homomorphism, then ¢(e1) = es,

and (g~ 1) = &(g)~ ! for all g € G.

PROOF. Let g be any element of G. Then ¢(g) = ¢(ge1) = ¢(g)d(e1). Mul-
tiplying on the left by ¢(g)~! gives es = ¢(e1). Now consider ¢(¢g~!). Since

d(e1) = ea, we have ea = d(e1) = d(g9™ ') = d(g)d(g~1). In light of Prop. 1.4, we
conclude that ¢(g—1) is the inverse of ¢(g). [

DEFINITION 1.12. Let G and H be groups, ¢ : G — H a homomorphism, and
eo the identity element of H. The kernel of ¢ is the set of all g € G for which

»(g) = e2.
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PROPOSITION 1.13. Let G and H be groups, and ¢ : G — H a homomorphism.
Then the kernel of ¢ is a subgroup of G.

PROOF. Lasy. [

4.1. Examples. Given any two groups G and H, we have the trivial homo-
morphism from G to H: ¢(g) = e for all g € G. The kernel of this homomorphism
is all of G.

In any group G, the identity map (id(g) = g) is an automorphism of GG, whose
kernel is just {e}.

Let G = H = 7, and define ¢(n) = 2n. This is a homomorphism of Z to itself,
but not an automorphism. The kernel of this homomorphism is just {0}.

The determinant is a homomorphism of GL(n,R) to R*. The kernel of this map
is SL (n, R).

Additional examples are given in Exercises 12 and 7.

If there exists an isomorphism from G to H, then G and H are said to be
isomorphic, and this relationship is denoted G = H. (See Exercise 4.) Two groups
which are isomorphic should be thought of as being (for all practical purposes) the
same group.

5. Exercises

Recall the definitions of the groups GL(n;R), S,,, R*, and Z,, from Sect. 2, and
the definition of the group SL(n;R) from Sect. 3.

1. Show that the center of any group G is a subgroup G.
2. In (a)-(f), you are given a group G and a subset H of G. In each case,
determine whether H is a subgroup of G.
(a) G =7, H = {odd integers}
(b) G = Z, H = {multiples of 3}
(c) G =GL(n;R), H=1{A € GL(n;R) |det A is an integer }
(d) G =SL(n;R), H=1{A € SL(n;R) |all the entries of A are integers }
Hint: recall Kramer’s rule for finding the inverse of a matrix.
(e) G = GL(n;R), H ={A € GL(n;R) |all of the entries of A are rational }
(f) G =79, H=10,2,4,6,8}

. Verify the properties of inverses in Prop. 1.6.

4. Let G and H be groups. Suppose there exists an isomorphism ¢ from G to
H. Show that there exists an isomorphism tfrom H to G.

5. Show that the set of positive real numbers is a subgroup of R*. Show that
this group i1s 1somorphic to the group K.

6. Show that the set of automorphisms of any group G is itself a group, under
the operation of composition. This group i1s the automorphism group of
G, Aut(G).

7. Given any group (G, and any element g in G, define ¢, : G — G by ¢,(h) =
ghg—'. Show that ¢, is an automorphism of G. Show that the map g — ¢,
is a homomorphism of G into Aut(G), and that the kernel of this map is the
center of G.

Note: An automorphism which can be expressed as ¢, for some g € G
1s called an inner automorphism; any automorphism of G which is not
equal to any ¢, 1s called an outer automorphism.

Qo
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11.

12.

13.
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(G1ve an example of two 2 X 2 invertible real matrices which do not commute.
(This shows that GL(2,R) is not commutative.)

. Show that in any group G, the center of GG is a subgroup.
. An element o of the permutation group S,, can be written in two-row form,

( 1 9 ... n)
0‘:
oy 09 =--- Op

where o; denotes (7). Thus

(1 2 3
=\ 2 3 1

1s the element of S3 which sends 1 to 2, 2 to 3, and 3 to 1. When multiplying
(i.e., composing) two permutations, one performs the one on the right first,
and then the one on the left. (This is the usual convention for composing

functions.)
1 2 3 |
2 1 3 1 3

Compute
1 2 3 1 2 3
1 3 2 2 1 3

Conclude that S5 1s not commutative.

Consider the set N={0,1,2,---} of natural numbers, and the set F of all
functions of N to itself. Composition of tunctions defines a map ot F x F
into JF, which is associative. The identity (i¢d(n) = n) has the property that
wdo f = fowd = f, for all f in F. However, since we do not restrict to
functions which are one-to-one and onto, not every element of 7 has an
inverse. lhus F 1s not a group.

Give an example of two functions f,g in F such that f o g = id, but
go f # 1d. (Compare with Prop. 1.4.)

Consider the groups Z and Z,,. For each a in Z, define a mod n to be the
unique element b of {0,1,---n — 1} such that a can be written as a = kn+ 0,
with £ an integer. Show that the map a — ¢ mod n is a homomorphism of
2, Into L, .

Let G be a group, and H a subgroup of G. H is called a normal subgroup
of G if given any g € G, and h € H, ghg™ ' is in H.

Show that any subgroup of a commutative group is normal. Show that
in any group G, the trivial subgroups GG and {e} are normal. Show that the
center of any group is a normal subgroup. Show that if ¢ is a homomorphism
from G to H, then the kernel of ¢ is a normal subgroup of G.

Show that SL(n;R) is a normal subgroup of GL(n;R).

Note: a group G with no normal subgroups other than G and {e} is
called simple.

Do Qo

and




1. GROUPS



CHAPTER 2

Matrix Lie Groups

1. Definition of a Matrix Lie Group

Recall that the general linear group over the reals, denoted GL(n;R), is the
oroup of all n X n invertible matrices with real entries. We may similarly define
GL(n;C) to be the group of all n X n invertible matrices with complex entries. Of
course, GL(n;R) is contained in GL(n;C).

DEFINITION 2.1. Let A,, be a sequence of complex matrices. We say that A,

converges to a matrix A if each entry of A,, converges to the corresponding entry
of A, t.e., if (An)ij converges to A;; for all 1 <1i,5 < n.
DEFINITION 2.2. A matrix Lie group is any subgroup H of GL(n; C) with the

following property: if A, s any sequence of matrices in H, and A, converges to
some matrix A, then either A € H, or A 1s not invertible.

The condition on H amounts to saying that H is a closed subset of GL(n;C).
(This is not the same as saying that H is closed in the space of all matrices.) Thus
Definition 2.2 is equivalent to saying that a matrix Lie group is a closed subgroup
of GL(n;C).

The condition that H be a closed subgroup, as opposed to merely a subgroup,
should be regarded as a technicality, in that most of the interesting subgroups of
GL(n; C) have this property. (Almost all of the matrix Lie groups H we will consider
have the stronger property that if A, i1s any sequence of matrices in H, and A,
converges to some matrix A, then A € H.)

There i1s a topological structure on the set of n X n complex matrices which
ogoes with the above notion of convergence. This topological structure is defined by

identifying the space of n X n matrices with C™" in the obvious way and using the
2
usual topological structure on C" .

1.1. Counterexamples. An example of a subgroup of GL(n; C) which is not
closed (and hence is not a matrix Lie group) is the set of all n X n invertible
matrices all of whose entries are real and rational. This is in fact a subgroup of
GL(n;C), but not a closed subgroup. That is, one can (easily) have a sequence
of invertible matrices with rational entries converging to an invertible matrix with
some irrational entries. (In fact, every real invertible matrix is the limit of some
sequence of invertible matrices with rational entries.)

Another example of a group of matrices which is not a matrix Lie group is the
following subgroup of GL(2,C). Let a be an irrational real number, and let

et ()
H_{< 0 ita )|t@ Q{}

9




10 2. MATRIX LIE GROUPS

Clearly, H is a subgroup of GL(2,C). Because a is irrational, the matrix —1 is not
in H, since to make e equal to —1, we must take ¢ to be an odd integer multiple
of 7, in which case ta cannot be an odd integer multiple of 7. On the other hand,
by taking t = (2n + 1)7 for a suitably chosen integer n, we can make ta arbitrarily
close to an odd integer multiple of 7. (It is left to the reader to verify this.) Hence
we can find a sequence of matrices in 4 which converges to —1, and so H is not a
matrix Lie group. See Exercise 1.

2. Examples of Matrix Lie Groups

Mastering the subject of Lie groups involves not only learning the general the-
ory, but also tamiliarizing oneself with examples. In this section, we introduce some
of the most important examples of (matrix) Lie groups.

2.1. The general linear groups GL(n;R) and GL(n;C). The general linear
groups (over R or C) are themselves matrix Lie groups. Of course, GL(n;C) is a
subgroup of itself. Furthermore, if A,, is a sequence of matrices in GL(n;C) and A,
converges to A, then by the definition of GL(n;C), either A is in GL(n;C), or A is
not mvertible.

Moreover, GL(n;R) is a subgroup of GL(n;C), and if A,, € GL(n;R), and A,
converges to A, then the entries of A are real. Thus either A is not invertible, or

A € GL(n;R).

2.2. The special linear groups SL(n;R) and SL(n;C). The special linear
group (over R or C) is the group of n X n invertible matrices (with real or complex
entries) having determinant one. Both of these are subgroups of GL(n;C), as noted
in Chapter 1. Furthermore, it A,, is a sequence of matrices with determinant one,
and A,, converges to A, then A also has determinant one, because the determinant
is a continuous function. Thus SL(n;R) and SL(n;C) are matrix Lie groups.

2.3. The orthogonal and special orthogonal groups, O(n) and SO(n).
An n X n real matrix A is said to be orthogonal it the column vectors that make
up A are orthonormal, that is, if

> AijAig = 6
1—=1

Equivalently, A is orthogonal if it preserves the inner product, namely, if (z,y) =
(Az, Ay) for all vectors z,y in R™. ( Angled brackets denote the usual inner product
on R", (z,y) = ) . x;y;.) Still another equivalent definition is that A is orthogonal
if AA =1, ie., if A" = A7'. (A" is the transpose of A, (A'),. = Aj;.) See
bExercise 2.

Since det A"" = det A, we see that if A is orthogonal, then det(A*A) =

(det A)2 — det I = 1. Hence det A = +1, for all orthogonal matrices A.
This formula tells us, in particular, that every orthogonal matrix must be in-
vertible. But if A is an orthogonal matrix, then

(A7 e, A7 y) = (A (A7 '2) ,A (A '2)) = (z,y)

Thus the inverse of an orthogonal matrix is orthogonal. Furthermore, the product
of two orthogonal matrices is orthogonal, since if A and B both preserve inner
products, then so does AB. Thus the set of orthogonal matrices forms a group.
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The set of all n x n real orthogonal matrices is the orthogonal group O(n),
and is a subgroup of GL(n;C). The limit of a sequence of orthogonal matrices is
orthogonal, because the relation A" A = I is preserved under limits. Thus O(n) is
a matrix Lie group.

The set of n X n orthogonal matrices with determinant one is the special or-
thogonal group SO(n). Clearly this is a subgroup of O(n), and hence of GL(n; C).
Moreover, both orthogonality and the property of having determinant one are pre-
served under limits, and so SO(n) is a matrix Lie group. Since elements of O(n)
already have determinant 1, SO(n) is “half” of O(n).

Geometrically, elements of O(n) are either rotations, or combinations of rota-
tions and reflections. The elements of SO(n) are just the rotations.

See also Exercise 6.

2.4. The unitary and special unitary groups, U(n) and SU(n). Annxn
complex matrix A is said to be unitary it the column vectors of A are orthonormal,
that is, if

> AijAig =60
1=1

Equivalently, A is unitary if it preserves the inner product, namely, if (z,y) =
(Azx, Ay) for all vectors =,y in C". (Angled brackets here denote the inner product
on C*, (z,y) = ) .7;y;. We will adopt the convention of putting the complex
conjugate on the left.) Still another equivalent definition is that A is unitary if

A*A =1, ie., if A* = A1, (A* is the adjoint of A, (A%);; = Aji.) See Exercise 3.

Since det A* = det A, we see that if A is unitary, then det (A*A) = |det A|” =

det I = 1. Hence |det A| = 1, for all unitary matrices A.

T'his 1n particular shows that every unitary matrix i1s invertible. The same
argument as for the orthogonal group shows that the set of unitary matrices forms
a group.

The set of all n X n unitary matrices is the unitary group U(n), and is a
subgroup of GL(n;C). The limit of unitary matrices is unitary, so U(n) is a matrix
Lie group. The set of unitary matrices with determinant one is the special unitary
group SU(n). It is easy to check that SU(n) is a matrix Lie group. Note that a
unitary matrix can have determinant e for any 6, and so SU(n) is a smaller subset
of U(n) than SO(n) is of O(n). (Specifically, SO(n) has the same dimension as
O(n), whereas SU(n) has dimension one less than that of U(n).)

See also Exercise 8.

2.5. The complex orthogonal groups, O(n;C) and SO(n;C). Consider
the bilinear form ( ) on C" defined by (z,y) = > x;y;. This form is not an inner
product, because of the lack of a complex conjugate in the definition. The set of all
n X n complex matrices A which preserve this form, (i.e., such that (Ax, Ay) = (x, y)
for all x,y € C") is the complex orthogonal group O(n;C), and is a subgroup
of GL(n;C). (The proof is the same as for O(n).) An n X n complex matrix A is
in O(n;C) if and only if A" A = I. It is easy to show that O(n;C) is a matrix Lie
group, and that det A = +1, for all A in O(n;C). Note that O(n;C) is not the
same as the unitary group U(n). The group SO(n;C) is defined to be the set of all

A in O(n;C) with det A = 1. Then SO(n;C) is also a matrix Lie group.
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2.6. The generalized orthogonal and Lorentz groups. Let n and k be
positive integers, and consider R"*%. Define a symmetric bilinear form [] ., on

R R by the formula

N+

(21) [.CI’}, y]n,]@ = T1Y1 + T TplYn — Ln+1Yn+1 " — Yntkdnitk

The set of (n+ k) X (n+ k) real matrices A which preserve this form (i.e., such that
Az, Ay|, 1. = |x,y],, for all z,y € R"TF) is the generalized orthogonal group
O(n; k), and it is a subgroup of GL(n + k; R) (Ex. 4). Since O(n; k) and O(k;n) are
essentially the same group, we restrict our attention to the case n > k. It is not
hard to check that O(n; k) is a matrix Lie group.

If Aisan (n+ k) x (n + k) real matrix, let A denote the i*" column vector
of A, that is

A — .
An k.1

Then A is in O(n; k) if and only if the following conditions are satisfied:

A AG) - 0 i %]
(2.2) /W)A@n% = 1 1 <i<n
AW AW = -1 n4+1<i<n+k

Let g denote the (n + k) X (n 4+ k) diagonal matrix with ones in the first n
diagonal entries, and minus ones in the last k diagonal entries. Then A is in O(n; k)
if and only if A""gA = g (Ex. 4) Taking the determinant of this equation gives
(det A)* det g = det g, or (det A)? = 1. Thus for any A in O(n; k), det A = +1.

The group SO(n; k) is defined to be the set of matrices in O(n; k) with det A = 1.
This is a subgroup of GL(n + k;R), and is a matrix Lie group.

Of particular interest in physics is the Lorentz group O(3;1). (Sometimes
the phrase Lorentz group is used more generally to refer to the group O(n;1) for
any n > 1.) See also Exercise 7.

2.7. The symplectic groups Sp(n;R), Sp(n;C), and Sp(n). The special
and general linear groups, the orthogonal and unitary groups, and the symplectic
groups (which will be defined momentarily) make up the classical groups. Of the
classical groups, the symplectic groups have the most contusing definition, partly
because there are three sets of them (Sp(n;R), Sp(n;C), and Sp(n)), and partly
because they involve skew-symmetric bilinear forms rather than the more familiar
symmetric bilinear forms. To further confuse matters, the notation for referring to
these groups is not consistent from author to author.

Consider the skew-symmetric bilinear form B on R*" defined as follows:

(2.3) Blz,y| = inyn—l—i — IntiYi
i=1

The set of all 2n x 2n matrices A which preserve B (i.e., such that B [Az, Ay| =
Blx,y| for all z,y € R*") is the real symplectic group Sp(n;R), and it is a
subgroup of GL(2n;R). It is not difficult to check that this is a matrix Lie group
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(Exercise 5). This group arises naturally in the study of classical mechanics. If J

1S the 2n X 2n matrix
0 I
=5 0)

then B |x,y| = (z, Jy), and it is possible to check that a 2n x 2n real matrix A is in
Sp(n;R) if and only if A" JA = J. (See Exercise 5.) Taking the determinant of this

identity gives (det A)” det .J = det .J, or (det A)” = 1. This shows that det A = +1,
for all A € Sp(n;R). In fact, det A = 1 for all A € Sp(n;R), although this is not
obvious.

One can define a bilinear form on C” by the same formula (2.3). (This form is
bilinear, not Hermitian, and involves no complex conjugates.) The set of 2n x 2n
complex matrices which preserve this form is the complex symplectic group
Sp(n;C). A 2n x 2n complex matrix A is in Sp(n;C) if and only if A*"JA = J.
(Note: this condition involves A", not A*.) This relation shows that det A = +1,

for all A € Sp(n;C). In fact det A =1, for all A € Sp(n;C).
Finally, we have the compact symplectic group Sp(n) defined as

Sp(n) =Sp(n;C)NU(2n).

See also Exercise 9. For more information and a prootf of the fact that det A = 1,

for all A € Sp(n;C), see Miller, Sect. 9.4. What we call Sp (n; C) Miller calls Sp(n),
and what we call Sp(n), Miller calls USp(n).

2.8. The Heisenberg group H. The set of all 3 X 3 real matrices A of the
form

1 a b
(2.4) A=1 0 1 c
1

where a, b, and c are arbitrary real numbers, is the Heisenberg group. It is easy
to check that the product of two matrices of the form (2.4) is again of that form, and
clearly the identity matrix is of the form (2.4). Furthermore, direct computation

shows that if A is as in (2.4), then

1 —a ac—0>
Al = 0 1 —c
0 O 1

Thus H is a subgroup of GL(3;R). Clearly the limit of matrices of the form (2.4)
1s again of that torm, and so H is a matrix Lie group.

It 1s not evident at the moment why this group should be called the Heisenberg
oroup. We shall see later that the Lie algebra of H gives a realization of the
Heisenberg commutation relations of quantum mechanics. (See especially Chapter

5, Exercise 10.)
See also Exercise 10.

2.9. The groups R*, C*, S!, R, and R". Several important groups which
are not naturally groups of matrices can (and will in these notes) be thought of as
such.

The group R* of non-zero real numbers under multiplication is isomorphic to
GL(1,R). Thus we will regard R* as a matrix Lie group. Similarly, the group C*
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of non-zero complex numbers under multiplication is isomorphic to GL(1;C), and
the group S! of complex numbers with absolute value one is isomorphic to U(1).

The group R under addition is isomorphic to GL(1; R)™ (1 x 1 real matrices with
positive determinant) via the map x — [e®|. The group R"™ (with vector addition)
1s isomorphic to the group of diagonal real matrices with positive diagonal entries,
via the map

(3719"' 75877,) —

0 etn

2.10. The Euclidean and Poincaré groups. The Euclidean group E(n)
1s by definition the group of all one-to-one, onto, distance-preserving maps of R"
to itself, that is, maps f : R® — R" such that d(f(x), f(y)) = d(x,y) for all
xr,y € R". Here d is the usual distance on R"”, d(z,y) = | — y|. Note that we
don’t assume anything about the structure of f besides the above properties. In
particular, f need not be linear. The orthogonal group O(n) is a subgroup of E(n),
and is the group of all linear distance-preserving maps of R™ to itselt. The set of
translations of R™ (i.e., the set of maps of the form T .(y) = x+vy) is also a subgroup

of E(n).

PROPOSITION 2.3. Every element T' of E(n) can be written uniquely as an or-
thogonal linear transformation followed by a translation, that is, in the form

I'="1,R

with x € R™, and R € O(n).

We will not prove this here. The key step 1s to prove that every one-to-one,
onto, distance-preserving map of R" to itself which fixes the origin must be linear.

Following Miller, we will write an element 7' = T, R of E(n) as a pair {x, R}.
Note that for y € R",

{z,R}ly=Ry+=x
and that
171, R H{xe, Raty = Ri(Roy + x2) + 1 = R1Roy + (21 + Ri12)
Thus the product operation for E(n) is the following:
(2.5) {x1, Ri}{x2, Ro} = {x1 + R1x2, R1 R2}
The inverse of an element of E(n) is given by
{,R}7' ={—-R ', R}

Now, as already noted, E(n) is not a subgroup of GL(n;R), since translations
are not linear maps. However, E(n) is isomorphic to a subgroup of GL(n + 1;R),
via the map which associates to {x, R} € E(n) the following matrix

L1

(2.6) at

Ln
O --- 0 1

T'his map 1s clearly one-to-one, and 1t 1s a simple computation to show that it 1s a
homomorphism. Thus E(n) is isomorphic to the group of all matrices of the form
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(2.6) (with R € O(n)). The limit of things of the form (2.6) is again of that form,
and so we have expressed the Euclidean group E(n) as a matrix Lie group.

We similarly define the Poincaré group P(n;1) to be the group of all transfor-
mations of R*™! of the form

I'=1,A

with € R*™! A € O(n;1). This is the group of affine transformations of R™**1
which preserve the Lorentz “distance” dr(z,y) = (v1 —y1)* + -+ (T — Yn)* —
(Tt1 — Yns1)>. (An affine transformation is one of the form x — Ax + b, where
A is a linear transformation and b is constant.) The group product is the obvious
analog of the product (2.5) for the Euclidean group.

The Poincaré group P(n;1) is isomorphic to the group of (n + 2) X (n + 2)
matrices of the form

(2.7) A
Ln41
0 ... 0 1

with A € O(n;1). The set of matrices of the form (2.7) is a matrix Lie group.

3. Compactness

DEFINITION 2.4. A matrix Lie group G 1s said to be compact if the following
two conditions are satisfied:

1. If A,, s any sequence of matrices in G, and A, converges to a matrix A,

then A 1s in G.

2. There exists a constant C such that for all A € G, |A;;| < C for all 1 <
1,7 < n.

This is not the usual topological definition of compactness. However, the set
. 2 .
of all n X n complex matrices can be thought of as C"™ . The above definition says

that GG 1s compact if it 1s a closed, bounded subset ot C™" . It is a standard theorem
from elementary analysis that a subset of C™ is compact (in the usual sense that
every open cover has a finite subcover) if and only if it is closed and bounded.
All of our examples of matrix Lie groups except GL(n;R) and GL(n;C) have
property (1). Thus it is the boundedness condition (2) that is most important.
The property of compactness has very important implications. For exam-

ple, if G i1s compact, then every irreducible unitary representation ot GG is finite-
dimensional.

3.1. Examples of compact groups. The groups O(n) and SO(n) are com-
pact. Property (1) is satisfied because the limit of orthogonal matrices is orthogonal
and the limit of matrices with determinant one has determinant one. Property (2)
1s satisfied because if A is orthogonal, then the column vectors ot A have norm one,
and hence |A;;| < 1, for all 1 < 7,7 < n. A similar argument shows that U(n),
SU(n), and Sp(n) are compact. (This includes the unit circle, ST = U(1).)
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3.2. Examples of non-compact groups. All of the other examples given
of matrix Lie groups are non-compact. GL(n;R) and GL(n;C) violate property (1),
since a limit of invertible matrices may be non-invertible. SL (n;R) and SL (n; C)
violate (2), except in the trivial case n = 1, since

has determinant one, no matter how big n is.

The following groups also violate (2), and hence are non-compact: O(n;C) and
SO(n;C); O(n; k) and SO(n; k) (n > 1, £ > 1); the Heisenberg group H; Sp (n;R)
and Sp(n;C); E(n) and P(n;1); R and R™; R* and C*. It is left to the reader to
provide examples to show that this i1s the case.

4. Connectedness

DEFINITION 2.5. A matrix Lie group G 1is said to be connected if given any

two matrices A and B in G, there exists a continuous path A(t), a <t < b, lying
in G with A(a) = A, and A(b) = B.

This property is what is called path-connected in topology, which is not (in
general) the same as connected. However, it is a fact (not particularly obvious at
the moment) that a matrix Lie group is connected if and only if it is path-connected.
So 1In a slight abuse of terminology we shall continue to reter to the above property
as connectedness. (See Section 7.)

A matrix Lie group GG which is not connected can be decomposed (uniquely)
as a union of several pieces, called components, such that two elements ot the
same component can be joined by a continuous path, but two elements ot different
components cannot.

PROPOSITION 2.6. If G s a matrix Lie group, then the component of G con-
taining the identity is a subgroup of G.

PROOF. Saying that A and B are both in the component containing the identity
means that there exist continuous paths A(t) and B(t) with A(0) = B(0) = I,
A(l) = A, and B(1) = B. But then A(t)B(t) is a continuous path starting at I and
ending at AB. Thus the product of two elements of the identity component is again
in the identity component. Furthermore, A(t)~! is a continuous path starting at I
and ending at A~', and so the inverse of any element of the identity component is
agaln 1n the identity component. Thus the identity component is a subgroup. L[

PROPOSITION 2.7. The group GL(n;C) is connected for all n > 1.

PROOF. Consider first the case n = 1. A 1 X 1 invertible complex matrix A 1is
of the form A = |A| with A € C*, the set of non-zero complex numbers. But given
any two non-zero complex numbers, we can easily find a continuous path which
connects them and does not pass through zero.

For the case n > 1, we use the Jordan canonical form. Every n X n complex
matrix A can be written as

A=CBC™!
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where B is the Jordan canonical form. The only property of B we will need is that
B 1s upper-triangular:
)\1 K
B = .
0 A
If A isinvertible, then all the A\;’s must be non-zero, sincedet A =det B = A1 --- \,,.
Let B(t) be obtained by multiplying the part of B above the diagonal by (1—1%),
for 0 <t <1, and let A(t) = CB(t)C~!. Then A(t) is a continuous path which
starts at A and ends at CDC ™!, where D is the diagonal matrix
Aq 0
D = |
0 A
This path lies in GL(n; C) since det A(t) = Ay --- A\, for all ¢.

But now, as in the case n = 1, we can define \;(f) which connects each \; to 1
in C*, as t goes from 1 to 2. Then we can define

A1 (1) 0
At) =C Cc—
0 An (1)

This is a continuous path which starts at CDC~! when t = 1, and ends at [
(= CIC~!) when t = 2. Since the \;(t)’s are always non-zero, A(t) lies in GL(n; C).

We see, then, that every matrix A in GL(n;C) can be connected to the identity
by a continuous path lying in GL(n;C). Thus if A and B are two matrices in
GL(n;C), they can be connected by connecting each of them to the identity. [

PROPOSITION 2.8. The group SL (n;C) is connected for all n > 1.

PROOF. The proof is almost the same as for GL(n;C), except that we must
be careful to preserve the condition det A = 1. Let A be an arbitrary element of
SL (n; C). The case n = 1 is trivial, so we assume n > 2. We can define A(<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>