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Preface

This book presents the basic tools of modern analysis within the context of
what mlghl: be called the fundamental problem of operator. theory: to cal-
cialate spectra of specific operators on infinite-dimensional spaces, especially
operators on. Hilbert spaces. The: tools are diverse, and they provide the
basis for more refined methods that allow one to approach problems that go
well beyond the computation of spectra; the mathematical foundations of
quantum physics, noncommutative-J¢-theory, and the classification of sim-
ple C*-algebras being three areas of current research activity that require
mastery of the material presented here.

The notion of spectrum of an operator is based on the more abstract
notion of the spectrum of an element of a complex Banach algebra. Af-
ter working-out these fimdamentals we turn to- more concrete problems of
computing spectra of operators of various types. For normal operators, this
amounts to a treatment of the spectral theorem. Integral operators require

the ‘developmént of the Riesz theory of compact operators and the ideal £?
of Hilbert-Schmidt operators. Toeplitz operators require several important
tools; in order to calculate the spectra of Toeplitz operatars with cantinuous
medowwednhkmw the theory of Fredhalm operators and index, the
structure of the Toeplitz C"*-algebra and its connection with the topology of
curves, and: ‘the index theorem for continuous symbols.

I have given these lectures several times in a fifteen-week course at
Berkeley (Mathematics 206), which is normally taken by first- or second-
yeax graduate students with a foundation in ineasure theory and elementary
funétional analysis, It is a pleasure to teach that course because many deep

and important ideas emerge in natwral ways. My lectures have evolved sig-
niﬁqml:]y over the years, but have always focused an the notion of spectrum
andthe Tole.of Banach algebras as the appropriate modern foundation for
such consideratiops. For a serious student of modern analysis, this material
is the essantial beginning.

Berkeley, California William Arveson
July 2001
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CHAPTER 1
Spectral Theory and Banach Algebras

The spectrum of o bounded operator on a Banach spacc is best studied
within the context of Banach algebras, and most of this chapter is devoted
to the theory of Banach algebras. However, one should keep in mind that
it is the spectral theory of operators that we want to understand. Many
examples are discussed in varying detail. While the general theory is elegant
and concise, it depends on its power to simplify and lluminate important
examples such as those that gave it life in the first place.

1.1. Origins of Spectral Theory

The idea of the spectrum of an operator grew out of attempts to understand
concrete problems of lincar algebra involving the solution of linear equations
and their infinite-dimensional generalizations.

The fundamental prablem of inear algebra over the complex numbers is
the solution of systems of linear equations. One is given

(a) an n x n matrix (a;;) of complex numbers,
(b) an n-tuple g = (91, 93.....9n) of complex numbers,

and one nttempts 1o solve the system of linear equations
apfi + - +amfa =0,

(1.1}
antfi +  F Confn = Un

for f = (fy,....fa) € C". More precisely, one wants to determine if the
system (1.1) has solutions and to find all solutions when Lhey exist.
Elementary courses ou linear algebra cmphasize that the left side of (1.1)
deflnes a linear operator f — Af on the n-dimensional vector spuce €. The
existence of solutions of (1.1) for any chuice of g is equivaleat to surjectivity
of A; uniqueness of solutions is equivalout to injectivity of A. Thus e
system of equations (1.1) is uniquely salvable for all choices of g If nud only
if the linear operator A is invertible. This Lies the ideo of invertibility to the
problem of solving (1.1), and in this finite-dimensionsl cuse there s o suuply
criterign: The opesatar A is invortible preciscly when tho deteqniuant of

the watrix {ay,) is nonevro.

Huwover clogant it way appear, this criterion is of lmited practical value,
since the detesminmuis of large matrices can be prohibitively hard tu com-
pute. o infiuite dhinansions the difficulty lics docpor than that, because fur
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L.1. ORIGINS OF SPECTRAL THEORY 3

htains:a:class of problems about integral eqnations. Rather than attempt
0

. hrdaﬂnition of that terim, let us: simply look at a few examples in
a.,guﬂﬂl'ﬂl 1t formal way, though it wouldl ‘not be very hard to.make the

l’allowlng diseussion sompletely tigorous. Here are some early examples of

iitogral eqnatwns

rxaMpie. 1.152 Tlis example is due to-Niels. Henrile Abel (ca.1823),
whose nafie is. attachied to abelian groups,.dbelian findtions, abelian von
Namm.a.lgebras, and! the like. Abel Gonsidered: the:fallowing.problem.
Fix a number o ingthe.open unit interval and -lét: gbe a suitably. smooth
fuitction:ot the, Anterval*(0, 1) satisfying.g(a) =0 Abel was léd-to seek a

fimotion.f for which

=1
). = y)df[w)dv - g(x)

on the:interval & < z < 1, andihe wrote down: the following “solution”:

surrm v g=®)
) =— Mo =L

EXAMPLE 1.1.3: Given'a function:g'e L2(IR), find & function: [ such: that

(1:2) fw e f{y)dy=g(z)}, =zeR

D3

‘The “solution” of this problem is-the following:
f ,-:=_: Y SRR - T S Y
) 2 f e Vo(x)dz.

Insfact._ ‘onehas to:be: cmful!'ahant thermeaningiof I;hese two integrals. But
m.ﬁn a]ggmpr:iate sanse’ the solution- f mhniquelj,q rrdined; ¢ beIong to
-L«(H),ad.ﬁ‘ﬂthe Fourier I;ra.nsfn::m apezatar defined:by. t:ha lefb gide. of { (1.2) is
f%mmtlble ogerator on L2 Indeed,iit is'a scalabmtﬂtlpla! of an.invertible
isomietry whose inverse is: e.x]ybttedh above: This is the essential statement

of the: Pln.mherel thearem [15]

Exmma 1.1.4. nily:of examples goes: back to Vita, Volterra {ca
1900) Givena conMuguB com_glax -valued: function: L(:r:, ). defined an:the
trinngle 0 < y <z < 1 and given g:€ €0, 1); find-a function f such: that

[k Kz, )f(w)dy=9(z), 0Lzl

'ﬂhjn s e[;amcg.gggl a Volterra eguationiofithaifirst-kind. A Volterra equation
of:the:secand kind. Invnlvea o givenicoinplex parameter A as well as a function
9'€ C[0,1), and asks whether or not-the equation.

1.4) '/: k() fw)dy - M=) =glz), 0<Lz<1

“an bhe aolved*.?nr f.

(1.3)




’ alf“‘!f
oo and consider the Operator A defined on 2
fAI)n = a'nrln n= 11'21 ’ e fﬂ
‘1) Show thay A s & bounded
j P=avm B ou £ such tha

Obesator: for dlagyna) o, NCC 4y fn (1.4)
thiin el L L PI
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| 2. THE SPECTRUM OF AN OPERATOR "

e following exercises relate to.Volterra operatorsa on the Banach
ace C[0, 1] of continuous complex-valued functions f on the unit

interval, with sup norm
171l = sup |f{=)l.
0<x<])

Exercise (3) implies that Valterra operators are bounded, and the
result of Exercise {5) implies that they are in fact compact opera-

tars.

(3) Let k{z,y) be a Volterra kernel s in Example (1:L.), and let f &
C[0,1). Show that the function g defined' on the unit interval by
equation: (1.3} is continuous, and that the linear map K : f = g
defines a bounded-operator on C[0, 1}.

(4) For the kernel k(z,y) = 1{for 0 < y < r £ 1 consider the corre-
sponding Volterra operator V : C[0, 1] — C[0, 1), naniely

Vi) = ]0 fdy,  [ecp).

Given a function g € C|[0,1}, show that the equation. V.f = g has a
solution f € C[0,1] iff g is continuously differeatiable and g{0) = 0.

(8) Let k{z,y), 0 < x,y < 1, be a continuous function defined on
r.hfz unit squere, and consider the bounded operator K defined on
C|0, 1] by

2
K f(z) = ]0 kz) ) dy,  0<z<L.

Let B, = {f € C{0,1] : ||£]] € 1} be the closed unit ball ia C(0, 1.

Show that K 18 5 compuct operator in the sensu that the norm

closure of the image K B, of By under K Is & compact subset of

C[0,1). Hint: Show that there is a positive constant M such that

E’ ei'wry gly € KB, and every z,y € [0, 1] we have |g(z) — a{y)] <
]z — yl.

1.2. Tha Spectrum of an Operator

Throughout this section, E will deaote a complex Banach space. By an
operulor on £ we mean 8 bounded lioear transformation T : E — £} B(E)
will denote the space of all aperaturs on E. B{E) is iwelf a cowplex Banach
space with respect 1o the operator nonp. We may cumpost bwo operston
A, B € B(E) to obtain ap operator product A8 € B(£E), and this delfines
an associative multiplication sntisfying both distributive laws A{8 + C') =

AB + AC and (A 4 B)C = AD + BC. We write 1 for the idontity operator.

THEOREM 1.2.1. For cuery A € B(E). the follounng ure equivalent
(1) For every y € £ there s a unigue * € £ auch that Ax = .
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2* There s an operator I3 € B(E) such that AB = BA =1

Proof. We prove the nontrivial implication (1) = (2_)._ The bipothesis
1 umplies that A is invertible as a linear transformation on the vector Space

E. and we mav consider its inverse 8 : E — E. Aga-subset of E® E, the
gaph of B is related to the graph of A a8 follows:

F{B)={{x,Br}:z € E} = {{Ap,¥) : y € E}.

The space on the right is closed in E® £ because A is-continnous. Hence the
graph of B is closed. and the closed graph theorem implies B € B{E). QO

(1) 4 is said to be invertible if there is an operator-B € B E) such-that
AB=BA=1.

i2) The spectrum &{A) of A is the set of all complex numbers A for
which 4 - Al is not invertible.

(3) The resolvent set p(A) of A is the complement p(A) = C\ o(A).

In Examples (1.1.2)-{1.1.4) of the prévious section, we were p;esqu_d
with an operator, and various assertions were made about its spectrum. For
example, in order to determine whether ‘a given -operator A4 is invertible,
oue has exactly the problem of determining whether or not‘0.€ 5(A4). The
speetrum is the most important invariant attached to an opeiator.

REMARK 1.2.3. Remarks on operalor specirn. We bave défined. the spec-
trum of an operator T € .B(E), but it i8 often useful 4o-have more precise
inforruation about various points of ¢(T'). For example, suppose there is a

nonzero vector x € £ for which Tz = Az for some complex humber A. .In
this case, A is called an eigen

g value (with associated eigenvector z). Obvi-
ausly, T — A1 is oot invertible, so that A €.¢(T). The set of dll eigenvalues of
T 15 a subset of o(T') called the point spectrum of T' (and is written.ap{T)).
When E is finite dimensignal o(T) = 0,(T), butthat is nat so-in general.
Iid;.ﬁa' wany of the natural operators of analysis have ﬁo-'pcint apecrruin
a .

DU . + occurs when T' — A ig one-to-one but pot
vite. T‘f'ﬁ can happen in two ways: Either the rangeof T— ) is.not closed in
E, or it is closed but not all of £. Termisg | ko clnssi
such behavior (eompression

- speclrum, residual speeirum), but we wilk -got
“m‘ttmucaiﬂsbeue;mlmkm_a pecirum), but E

good example. Consider the Volte
operator V ucting on €[0,1) ns follows: v P e Tolterm

Viz) = f )t
This upetur is o

ol yovertible; in fact, we will see later that it xee ;
exactly {0}. On the obher hand, one may easily.check LV I e I

i 56ction 1 imblics £ 1 that V is one-to-gie.
and the closure of jig rang Ton | Mmplics that |
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Exercises.
(1} Gtve explicit examples of bounded.operators 4, B on £#(N) such

that A = 1 and BA is the projéction onto a closed: infinite-
ditaensional stbspace of infinite codimension.
(2) Let A and B be the dperators definéd-on #2(N) by
Alz1i22,...) = 0y 21, 22,... ),
*B(miimﬂl R ) = (Iif'w:.hx‘h ¢ }r

for 3 = {%j Z2,...) € E(N). Show that ||A]| = || Bl = 1, and
compute both BA and AB. Deduce that A.is injective but not
surjective; B is surjective but not injective, and. that #(45) #
o(BA).

(3) Let. B:be o Banadh:space and let A.and I be bounded operators
on E. Show that 1 — AB is invertible if and only if'1 — BA is
invertible. Hint: TFhink about haw to relate the forma! Neumann
series for (1 — AB)™!,

(1—-AB)"! =1+ AB + (AB)? + (AB)* +...,
to that for (1 — B.A)~! and: turm your ldea inta a rigorous proof.

(4) Use the result of the preceding exercise to show-that for any two
bounded .operators 4, B acting on a Banach space, ¢{A48) and
a(BA) agree except perhaps for-0: e{48) \ {0} = o(BA) \ {0].

1.3. ‘Baiiach Algébras: Examples

We have pointed out that spectral theory is useful: when the underlying field
of sedlars is the complex numbers, and in the sequel this will always-be the
case,

QPEWTIUN_ 1.3:1 (Complex algebra). By an algpbra.over C we mean
a qoﬁplex vector-space A together with 'a binary operation representing
mldhnplica_.t_:iQii-:q, ¥ € A ay € A satisfying
(1) Bilinearity: For a, 8 € C and z, ¥,z € A we have
(a-z+08-y)z=a-zz+ 8 y2z,
a-y+3-z)=a-zp+ G- zz.
(2) Associativity: z(yz) = (zy)=.

A complex algebra moy or may not have a mulliplicative identity. As a
rather extreme:exampleiof one thak does npt, let A be any coinplex vector
space and defips myltiplication inid by zy =0 .forall =, y. When un algebru
dees have antdentity thep it Is uniquely determined; and we denote it by
1. The-identity is alsp. called the unit, and.an algebra with unit is called 4
unital algebra. A commutative algebra is oie in which Ty = yz lor every
£y Y-
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Devinetion 1.3.2 (Narmed algebras, Banach algebras), A nOMmed g,

pebra is o pair Al - || consisting of an algebra A together wit}; 5 nerm
-1l 4 — [0,00) which is related to the multiplication as {follows:

lxzd] < 2l - Bull, z,y€ A

A Banach algebra is o normed algebra that is a (complete) Banach Shace
relative to ity given norm.

REMARK 1.3.3, We recall a useful criterion for completeness: A Dormed
linenr epace E is o Banach space Iff every absolutely convergent series con-
verges. More explicitly, £ is camplete: iff Jor every sequence of elements
I, € E satisfying 3, l|2a]] < o0, there is an element y € B such that

lim fly ~ (zy + - + )}l = 0;
1 —4$00
see Exercise {1) below.

The fallowing examples of Banach algebras illustrate the diversity of the
coneept.

EXAMPLE 1.34. Let E-be any Banach space and let A be the algebra
B(E) of all bounded operators on E, z - y.dq;_l_qti.ng' the’ operator prod,ucF,
This is n unital Banach algebra in which the identity satisfies Nijl = 1. It is
complete because E {5 complete.

ExaupLe 1.35. C(X). Let X be a compact Hausdnrﬁ' space and
wonsider the unital algebra C(X) of all complex vilued continuous func-

Hous defined on X, the multiplication and additiap being defined pointwise,
I9'7) = fiz)g(z), (f +¢) (x} = f(z)}+g(x). Ralative to'the sup narm, (X))
YazsAiws: 3 unmutative Banach algebra with unit.

Y.rauvie 1.38. The disk algebrg. Let B = {z € € : {z] < 1} be

the: 7 wawsd unit disk in the complex plane and let A 'denote the mhﬂm.'qf
7701} ermmieping, of all complex functions [ whose restrictions to the interior
Pi gl e} 3 e annlytic, A is obviously a unital §Qb§159§§§"0f C(le To
@ tat 1 m towd {and Lherefore a cp'tnhmhgﬁve Banach algebra miﬁm
UG tedu s that f [, in nny sequence in A that converges to f in, the norm
MM, Gwen ralriction of § g the interior of D .is :fhﬁ_'%.gﬁt@~ limit

I Crread t eda i thes festriction Jn and hence is analytic there.

Faa mantiple in the sismplost nontrivial example-of a function. algebra.
W Rt adapinn 1y aubalgebras of CLY ) that exhibjt nontrivial aspects
& APl ity [hary unileswent splritad dMlqﬁhlent d.unng t:tbe lﬂﬁﬂﬁﬂ-ﬂd
O bt Teave g Inllen st of favor, 3t velap

, duc partly to the develapment of
ARty s by Ga Ly tieury of wvera) complex variables, ’
Vrﬁﬂmrl-"- l 37 f‘ (?J Comlder thc B . l :
, % \da), . anach space £14{Z) of -
uédmn Mayhirntam 3, l:uml'!l(tx :mmlzem r = (ib'n) '#iganorml ) ° al doub]y
s &1

o]l = ):: \zn).

H-ﬁ-.m
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o 4 pM(Z) 18 defimed by couvolution:
Multiplication-in A = ¢HZ) oy
(Zoepdn= Y Tkln-k TUE A
k=60
This is- another: mmple of a corimutative unital' Banach algebra, one that
ar diﬂ'eranthom any of the previous exdinples. It is cilled the Wiener

th
. ifter Norberb Wiener), and-plays an;important role in:many: ques-

bra
ﬁf:g mv(ulwng Founer sefies and-harmoni¢ afialysis. It is discussed in more

detail ifi 'Section 1. 10.

ExAMPLE 1:3.8.. LY(R). Consider the Banach space L'(R) of all inte-
grable functions: on-the: real line, where as usual we identify functions that
agree almost everywhere The multiplication here is-defined: by convolution:

Freglm)y=| [f(tlg(z—-1t)dt, [ig€ L'(R}),

-0
and -for this example; it is- somewhat more; delicate to check that all the
axionis for 8 commutative Banach-dlgebra: are satisfied. For example, by
Fubini's theorein we have

[ 1otste - i) @z = [ 15@late - bldede =111 - Bl

and from: the latter, one readily deduces that || f = g|| < [[fIl - [|#]l-
Notice that this Ba.nﬂ.ch algebra has no. unit. However, it has a nor-

malized approximate unit in: the sense that there is a sequence of functions
en € L1{R) satisfying |le,|| = 1 for alk n with the property

Jm fley » f = f]] = lim Ifven~fll=0, feL'(R).

One. obtams such a sequence by taking £, to be any nonnegative function
supported in the interval [—1/n, 1/n) that has integral 1 (see the exercises
at the end of the section).

deehen 8 book [18] is an excellent reference for harmonic analysis on R
an

EXAMPLE 1,3.8. An extremely nonunital one. Banach algebras may not
have even approximate units.in general. More gencrally, o Banach algebra A

need not be the closed linear span of the set A% = (xy : z,y € A} of all of its
products. As an extreme.example of this. misbehavior, let A be any Banach

space and make it inio o Banach algebra using the triviel multiplication
Ty =0,z,4 € A

EXAMPLE 1.3.10. Matriz algebras. The algebra M, = Mqy{C) of all

complex n x 1 matrices is.a unitel algebra, and there are many norms that
ma,kﬂ it Into & finite:dimensional Banach algebra. For examiple. with respect

to the norm

(@}l = Z Jag;],

ig=l
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M, becames a Boanach algebra in which the identity has norm n, Qe
Bannch algebra norms on Af,, arise as in Exarnple 1.3.4, F;y realizing M, g
B{E) whero £ is an n-dimensional Banach space. For these norins on M,
the identity has norm 1.

EXAMPLE 1.3.11. Noacommutative group nlgebras. Let G be a locally
casmpnet group. More precisely, G is o group as well as a topological space,
ondowed with a locally compnet Hansdorfl topology that:is compéatible with
the group operations in that the maps {z,y) € GxG — zy€ Gand z »s !
are continuous.

A simple example is the “az 48" group, the group generated by dilations
and transiations of the real line. This group is isomorphic to the'gyoup of all

2 x 2 matrices of the form '(3 .?n) where 2,;b € R, a > 0, with thie obvious

topology. A related class of examples consists of the groups SL(n,R) of all
invertible # % n matrices of real pumbers having determinant 1.

In arder to define the group algebra of &' we have to say a few words
about Hear measure, Let B .denote the sigma algebra generated by ithe
tapology of G (sets in.B are called Borel sets). A Radon measure is a Borel
measure g ; B — {0, +c0) baving the following two: additional propetties:

(1) {Local finiteness) p{X) is finite for every comipact set X,
(2) (Regularity) For every £ € BB, we have

#(E) = sup{p(i} : K C E, K is compact}.

A discussion of Radon measures can be found in [3). The fundamental
resull of A. Haar asserts essentially the following:

TREOREM 1.3.12. For any tocally compact group G there iz a nonzero
Rudon mcayure g on G that is invariant under left translations in the sense
that yi(z - E) = p(E) for every Borel set E and everyz € G. If v is another

such meagure, then there is a positive constant ¢ sich that V(E) =c- u(E£)
for rvery Borel set E.

Sce Hewitt and Ross (18] for the computat; .
mputation of Haar measure for.
cific cxamples such ay the gz + & grou ' “aar mensure for spe

- up.and the groups SL{n, R). A proof of
wﬁ:ﬁ nee of Haar measure can be found in Lobmis ‘[1’“'?] or Heth mad

We will write dr for ¢
+ Jor du(z), where 1 I8 a left Haar mensur loeg
compact grone o Sulz ¢ 8 & ekt tisar measure on a Joeglly
fonction | g - gb:q ﬁuzg r:igebra of G is the apace [ (G) of all integrable
1= [ V@ as,
aud multiplication is defined by convolytion:

[ag(n) = LI (ﬁ}y(t"w] dt, c e .
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. ¢ s about the group algebra L1(G) are similar to the commuta-

fac
gﬁ L(Z) and L'(R)) we have already encountered:

(1) For /,5 € L/(G), J +9 € L}(G) and we have |/ « gll < /1 - g},

(2) L'(G) is o Basach algeha. .

(3) L}(G) is commutative lﬂ' C is a commutative group.

(4) L'(G) has a unit iff G is a discrete group.
Many significant: properties-of groups are reflected in their group algebra, (3)
and (1) being the simplest examples of this-phenomenon. Group aigebras are
.he subjéct of continuing research today, and are of fundamental importance
in many fields of mathematics.

Exercises.
(1) Let E be o normed linear space. Show that E is a Banach space

iff for every seqiienice of elements z,, € X satisfying )__ ||za| < oo,
there is"an element y € X such that

bm [y —(z1+---+zZa)|| = 0.

N—ao

(2) Prove that the convolution algebra L' (R) does not have an identity.
(3) For every n = 1,2,... let ¢, be a nonnegative function in L!(R)
such that ¢, vanishes outside the interval {~1/n,1/n| and

| #n(t)dt=1.

Show that ¢, 99, ... is an approximate identity for the convolution
algebra L'(R) in the sense that

Um ||f s @n — i1 =0

n— oo

for every f € L!(R).
(4) Let f € L'(R). The Fourier transform of f is defined as follows:

f(§) = / e'“f(t)dt, £e€R.
-0
Show that f belongs to the algebra € (R) of all continuous func-
tions on R that vanish at oco.
(5) Show that the Fourier transform is a homomorphismn-of the couvo-
lution algehra L!(R) onto a subalgebra A of Coo(R) which is closed
under complex conjugation and sepunrates paints of R.

1.4. The Regular Representation

Let A be a Banach algebra. Notice first that multiplication is jointly con-
linuous In the sense that for any o, yo € A,

lim oy — zoyoll = 0.
(z.4)=-(z4.10) =y ool
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Irideed, thia is rather obvious fram the estimate

Iy - zowll = li{r = z0)y + zoly — vo}l] < H& — zolllwll + Hzofilly ~ 1.

We now show how more general structures lead to B_anach algebras, aftar
they nre renormed with an equivalent norm. Let .4 be & compiex algebra,
which is also a Banach space relntive to some.given norm, In siich a way
that muitiplication is aeparutely continuous in the sense that for each Tp € A
\liere 1s o constant M (deperiding on xp) such that for every = € A we have

(1.6) lzzoll < M- flzfl and (|lZoz| £ M - fl=}].

LEMMA 1.4.1. Under the condilions {1.6), there is o constant ¢ >0 such
that

lapil < e-flxlllzd, =y € A

Proor. For every # € A define a linear transformation Ly : A — 4
by La(z) = rz. By the second inequality of (1.8), |[Lz|| must be bounded.
Consider the family of nll operators {L : ||lzf] < 1}. This is is a set of
bounded operatars on A which, by the Brst inequality of (1.6), is pointwise
bounded:

sup [[Lz{z}]| < oo, for all z € A.

Fzl<1 -
The Banach-Steinhous theorem implies that this family of operators is uni-
formuly bounded in norm, and the existende of ¢ follows. O

Notice that the jiroof uses the completeness of A in an essential way.
We now show that if A also.contains a uhit e, it can bé renormed with.an

equivalent porm so as to make it into a Banach algebra in which the unit
has the “correct™ narm {lej| = 1.

THEOREM 1.4.2. Let A be a complex algelme with unit e that is also a
Banach apace with respect to whick mulliplicotion is separntely conlinugua.
Then the map = € A v Ly € B(A) defines an isomorphism of the algebroic
sructure of A onto a closed subalgebra of B(A) such that

(1} Le=1.
(2) For everyz € A, we have

el =l < WLl < elleliii=l,
ukere ¢ ia a posilive conatent.
In particular, ||zlly = ||L, de

fines an cquivalent norm is 0.
algebra norm for which ey = 1. Tm on A that is e.Banach

PHROOP. The map x +—» L_ ig clear] .
. hom : -
which Le=1. By Lemma 1.{:1, we hnvg * liomomorpiism ‘of algebras for

etrl] = Rzwll < - Yo,
aud henesy Bl < ellx)l. Writing "

bLel 2 WL ste/fleyl = %‘-‘—}{
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inequality of (2).
L)) 2 llzll/llelj, cstablishing the ineq
we see thﬂ:hl! o;l!: mt'L’ norm ||z]1 = |L:| is equivalent .to the norm on A
Siil:::e 4 is complete, it follows that {L::z € A} is ?complete, and
:::»:l'ore closed, mﬁa]gebm of B{A). The remaining assertions follow. O]

The mapz € A~ Lz € B(A) ia called the left regular representation, or
simply the regular representation of A. We e:np.hasme that if A is a nonunital
Bansch algebra, then the regular representation need not be one-to-ane.
Indeed, for the Banach algebras of Example 1.3:9; the regular representation
is the zero map.

Exercises. Let £ and F be normed linear spaces and let B(E, F') denote
the normed vector space of all bounded linear operators from: E to F, with
DO

Al = sup{ljAz| : z € E, |=|| <1}.
We write B(E) for the algebra B(E, E) of all bounded operators on a normed
linear space E. An operator A € B(F) is called compact if the norm-closure
of {Az : ||z]| £ 1}, the image of the unit ball under A, is a compact subset
of E. Since compact subsets of £ must be norm-bounded; it follows that
compact operutors are bounded.

(1) Let £ and F be normed linear spaces with £ # {0}. Show that
B(E, F) is a Banach space iff F' is a Banach space.

(2) The rank of an operator A € B(E) is the dimension of the vector
space AE. Let A € B(£) be an operator with the property that
there is a sequence of finite-rank operators Aj, A3.... such that
A — A,|| = 0 as n = oo. Show that A is a compact operator.

(3) Let ay,a,... be a bounded sequence of complex numbers and let
;‘z beﬂt?a corresponding diagonal operator on the Hilbert space

= £5(N),

Af(n) = anf(n), n=12,..., feé

Show that A is compact iff im0 a, = 0.

Let & be a continuous complex-valued: function defined on the
unit square [0, 1] x [0,1]. A simple argument shows that for every
J € C[0, 1] the function Af defined on [0, 1] by

(1.7) Af(z}) = /01 k(z.y)/(y)dy, 0Lz,

is continuous (you may assume this in the following Lwo exercises).

(4) Show that the aperator A of (1.7} is bounded and its norm satislics
|4l £ llkllco, || - ||loo denoting the sup norm in C([0, 1] x [0, 1]).

(6) Show that for the operator A of (1.7), there is a sequence of finite-
rank oparators 4, n = 1,2,..., such thut |[A— Ax)]| ~» Qus s — 20
and deduce that A Is compact. Hint: Start by looking at the case
k{x.y) = u{x)u(y) with u, v € C|0, 1].
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1.5. The General Linear:Group of A

by thie restilts of the Previgus
. A be o Banach-algebra with-unit 1, which,

::::-unn wr may assume satisfies [[1]] = 1 a&er*mnarming A Epp‘l‘ﬂpriataly
An elcr.nent T € A {5 snid to be invertible if there is afi élément ¥ € A such

thatzp=yz=1.

ReMARK 1.5.1. If z is an element-of A that is both laft and. nghl; in-
vertible in the sense that there are elemerits 1,17 € A with Zih- = oz =1,
then 7 is invertible. Indéed, that is apparent from the string of idenitities

=y 1=y =l =n.

We will write 4~} (and ‘occasionally GL(A}) for the set of all:{nvert-
{ble elemonts of A: Tt is quita obvious that A i8 & group; this g‘:oup is

sometimes called the general inear: ‘groug-of- t;he unital Banach algebra A.

THEOREM 1.5.2. If T is on element.qf A sdtisfying Izl <1, thenl -z
is invertible, and its inverse is given by the absolutely convergent Neuwmann
series (1—z)~! = 14-z+22+.... Moreover, we have the folloiwing eatimates:

1
(1.8) H2 =) < g
1.5 n-a-aiys 2l
Proor. Since [z"(| € |jzf|" for every n-= 1,2,..., we can define an

clement z € A as the sum of the absulntely convergenj: 5Cries

2= -E.z".

n=0

We have

Istrm.e 1~z 1 invertible and its inverse is z. The inequality (1.8) follows
ram
2l < Z E Z k=" =
$1=1() "__u 1 - “I"
Stnce
l1—2= -ZI“ = —~z2,
we havp

I~ 2l < Y2l 124, thu (1 01 follows from (1.8).

ColwoLLany 1. A

[ &
is ah ‘open met § ~1
wap of 4! (g gl P nAand 7wy 2~

8 a continuous
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—1 3 : invertible element zp and an
seo that A } is open, chooaeanmverl_:_l \ C
pnoor. To e A. We have 7o+ h = zo(1 +z5'h). Soif ||zg Al <1
arbitl‘ﬂ-ﬂ’t hedemﬁ recedine'”'s theorem zo + h is invertible. In particular, if ||A]| <
thn bY 158 P his condition is satisfied, proving that zo + h is invertible
b i i suffciently small. .
Supposing that A has been 50 chasen, we can write

o+ ) — 73t = (@l 425 M) — 2y = (X2 R - 1]z

Thus for ||l < lizg'lI~! we have

lzg &0l - llzq '

-1 _ -1 < : -1 —l_l . -1 <
flzo + 1)~ 2" < I +35") ™ = 1Bl S Pt

L

and the lnst term obviously tends to zero as [|h|| — 0. B

COROLLARY 2. A~! is a topological group in-its relative norm topology;
that is,

(1) (z,y) € A~! x A~ = zy € A~ is continuous, and
(2) z€ A"~ 27! € A~! is continuous.

Exercises. Let A be a Banach algebra with unit-1 satisfying ||1]| = 1.
and let G be the topological group A=!.

(1) Show that for every element € A satisfying ||z|| < L, there is a
continumlm function f : [0,1] — G such that f(0) =1 and f(1) =
(1 ~-2)"".

(2) Show that for every element z € G there is an € > 0 with the
following property: For every element y € G satisfying ||y — =zl < ¢
there is an arc in G connecting y to .

(3) Let Gp be the sct of all finite products of elements of G of the form
1 -z or (1-z)"!, where z € A satisfies ||z]] < 1. Show that Gy
is the connected component of 1:in G. Hint: An open subgroup of
G must also be closed.

(4) Deduce that Gy is o normal subgroup of G and that the quotient
topology'on G/Gq makes it-into n discrete group.

The group T = G/Gp is somsetimes called the abstract index group of
A. It is frequently (but not always) commmutative even when G is not, and
it is closely related to.the K-theoretic group K(A). In fact, A (A) isin o
certain sense an “abelianized” version of [

We have not yet discussed the exponentiol wap £ € A — ¢* € A~! of o
Banach algebra A (sec equation (2.2) below), but we should point out bere
that the connected component of the identity Gy is also characterized as the
sct of oll Anite products of exponentials e*'e*? - - e, £1,22,...,0n € 4,
n=1,2,.... When A is a comsuutative Banach algabra, this iinplies that
Co = {e* : £ € A} Is the range of the exponential map.
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1.6. Spectrum. of ‘an Element-of a Banach :-A.-_lgébra
Throughout this section, A will denate ‘a ‘unital Bariach algebia for which
1ff = 1. One should keep in-mind the }Ppéi‘ﬁt?t%thqq;ettq setting, in which

Given an clement = € A and a complex ‘wotiber A, it is ebiivétiont g
abuse notatlon somiéwhat by writing = — A for = — Al.

DeriNiTioN 1:6.1. For every clement > € A, thespectrum of z is defiged
as the set |

rfz) ={reC:xz~-A¢g A7)

We will develop-the basic.properties of the spectrum, the-first being that
it Is always compact.

PROPOSTTION 1:8.2. For every x € A, o{z) is a closed subsel of the disk:
{ze€:lz] < Jz])).

PRoOOF. The-complement of the spectrum-is given by
C\o{z)={reC:z-re€ 4"}

Since A~? is open and the map A € C = z — XA € A is continuous, the
complement of ¢(z} must be open.

To prove the second assertion, we will.show that no complex dumber A
with jA| > ||z|| can belong to o{z). Indesd, for such a A the formiila

z—A=(-A{1-A""z),
together with the fact that [[A~'z|| < 1, implies that z — A is invertible. O
We now prove » fundamental result of Gelfand.

THEOREM 1.6.3. o(x) # 8 -for every z € A.

PROOF. The ides is to.sbow that if a(x) = @, the A-velued function
JA) = {z- A)‘:" s 8 bounded eatire function thet tonds.to zero as A — 00;
an -appfalu:ohonvﬂle’s theorem yields the desired conclusion. The details
are a8 follows.

For every Mg ¢ o(x), (z—=A)~! is defined for all A suficiently close to A
because o{z) ig closed, and we elaim that | d ’

B30 Jim 5=z~ A 2 d) ) = (- )
in the norm topology of A, Indeed, we can write
AT = 201 = (2 - A - dg) = (2 - Az  Ag)-!
= A~ M)z - Nz - Au),
Divide by A ~ ),

o b4 uﬂd Uue ti a _ -— -1
1o obtain (1.10). ¢ [act that (z — ))

= (5= 20)~t us X - Ag
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Contraposi aasume that o(z) is empty, and choose an arbitrary
tively onal g-on A. The scalar-valued function

d{!ﬂ inenr functi
P 1) = pllz - N7Y)

. defined everywhbere | in C, and it is clear from (1.10) that f has a complex
. here satisfying f/(X) = pl(z — A)~?). Thus f is an entire

fm;:;oe that [ is bounded. To see this we need to estimate |[(z — V|

for large A. Indeed, if [A| > [lz{|, then
~1j — 2 l(1 = A—tg)-d
I = 271 = 5l - A7),

The estimates of Theorem 1.5.2 therefore imply that
1 1
T — A -1 =~ =Ixt 1
Itz =271 < == = ==

and the right side clearly tends to zero as |A\| - oo. Thus the function
A+ [|(z — A)~}| vanishes at infinity. It-follows that f is a bounded’entire
function, which, by Liouville's: theorem, must be constant. The constant
value is 0 because f vanishes at infinity.

We conglisde that p((z — A)~?) = 0 for every A € C and every bounded
linear functional p. The-Hahn-Banach theorem implies that (z~A)"1=0
for every A € C. But this is absurd because (z — A)~! is invertible (and
1#0in A). 0

The lollowing application illustrates the power of this result.

DEFINITION 1.6.4. A division algebra (over C) is a complex associative
algebra A with unit 1 such that every nonzero element in A is invertible.

DEFINITION 1.6.5. An isomorphism: of Banach algebras A and B is an

isomorphism 8 : A — B of the underlying algebraic structures that is also a
topological isomorphism; thus there are positive constants a, b such that

allz|| < ||6(z)}| < bil=|
for every element z € A.

COROLLARY 1. Any Banach division algebra is isoworphic to the one-
dimensional algebra C.

Proor. Define 8 : C — A by §(A) = Al. 8 is clearly an [somorphistn of
C onto the Banach subalgebra C1 of A consisting of all scalur multiples of
the identity, and it suffices to show that & Is onto 4. But for any element
z € A Gelfand's throrem bmplies that there is a complex number A € a(x).
Thus £ — A is not invertible. Since A is a division algebra, . — A must be 0,
hence = = O(A), a6 asserted. O
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are many division algebras in mathematics, especially comimy.-
1.atirehgfe:.r For zxmnple. there is _['.he nlgebra of all rational fumt-mm
r(z) = p(z)/qlz) of onc complex variable, *'wha;g_ P gnd q gf.ﬁ-lfp-nlim"ﬁi_“lﬂ
with g ¢ 0, or the algebrfa of all formal Laurant series of hhe forin E_m G2,
where {a,) i8 n donbly infinite sequence ;qf'-cpml?lgx :9_1@bars with a, = 0
for sufficiently lorge negative n. It i5 significant tlm-t;__,examp,[es guéh a8 thesa
cannot be endowed with a norm that makes them into a Banach algabra.

Exerclsos.

(1) Cive an example of a ong-dimensional Banach algebra that is not
isomorphic to the n.lgabm;gl_'ﬂcﬁltﬁplex pu@bem.

(2) Let X be a compact Heusdorfl space and let A = C'(X) be the
Banach-algebra of all complex-valued -continuous functions-on X.
Show that for every f € C(X), o(f) = J{X). | |

(3) Liet T be the operstar defined on LNO,1) by TF (z) == _f(:::).E T €
[0, 1]. What is the spectrum of T? Does T have point spectrim?

For the remaining exercises, lot (2, : 7 = 1,2,...) be a bounded
sequence of complex-numbers and let & be a complex Hilbert space
baving an orthonormal basis €y, ez, .. ..

(4) Show that there ls a (necessarily unique) bounded operator:- 4. €
B(H} satisfying Ae., = anenyy for every n =1,2,.... Suchaniop-
eralor A is called n unilateral weighted shifi (with weight sequence
(an)).

A unitary operator-on a Hilbert space A is an invertible isometry
U € B(H).

(5) Let A'¢ B{H) bea weighted shift as above. Show that for every
complex nuinber A with |A| = 1 there is a unitary operator U =
Us € B(H) such thal 7 AL~ = AA.
(8) Deduce that the spectrum of a weighted shift must be the union of
(Pﬂbﬂhlr"idegencmeJ coneentric circles about z = 0
(7} Let Abe the weighted shift associated with sequence {(a,) € £°,
(s Calculate ||4}] in terms of (4,,). ‘

(b) Assuming that a,, ~ 0 us n — oq, show that
Jim 4%/ =0,

1.7. Spectral Radius
Throughoui, Lhis sectivn, A . - )
We introduce the wnhqun. ;lm ‘s a unltal Banach algebra with 1)) = 1.

formnly due to Gulfuny, -,M‘:zﬂp.mg;g.@m aud prave a useful asymptotic

n DERINITION 1.7.1. Fo

rz) = supf{lAl: A e o(x}}.



.7. SPECTRAL RADIUS 19

REMARK 7.2. Since the gpectrum of z ig coD ained:in the central disk
» L i t { l ) t 1 )
of radius Il follows that Tl z||. Notice too that for every

(1.11) f(a{z)) € a([(z)).
| s 80, fix A € ala)). Since z — f(z) — f(A) is & polynomial
hT:’w?l'i: :l;ir:i'h:i z :A, there a polynomial g such' that
J(2) = F(A) = (z— A)g(z).
Thus
[(z) = J(A1 = (z — A)g(z) = g{z)(z — A)
cannot be invertible: -A right {respectively left) inverse of f(z) — f(A)X gives
fise (o & right (respectively left) inverse of z — A. Hence f(}) € o(f{z)).
As a final observation, we note that for every x € A one has

(1.12) r(z) < inf [|z"]*/".

Indeed, for every A € o(z) (1.11) implies that A™ € o(z"); bence
A" = |A%] < 7(2") < [|=°],

and (1.12) follows after one takes nth roots.
The following formula is normally attdbuted to.Gelfand and Mazur,
although special cases were discovered'independently by Beurling.

THEOREM 1.7.3. For every x € A we have
s nil/n _ ¢
lim [}2"]'/* = r(z).

ge assertion here is that the limit exists in general, and has r(z) as its
ue.

PROOF. From (1.12) we have r(z) < liminf, [|z"[}/", so it suffices to
prove that

(1.13) lim sup [|z"[|'/" < r(z).
We need only consider the case z # 0. To prove (1.13) choose A € C
satisfying |A| < 1/r(z) (when r(z) = 0, A may be chosen arbitrarily). We
claim that the sequence {(Az)*:n=1,2,...} is bounded.

Indeed, by the Bapach-Steinbaus theorem it suffices to show that for
every bonunded: linear functiona! p on A we have

(M)A = lp((Az)")| € M, <00, n=12,...,

where M), perhaps.depends.on g. To, that. end, consider the complex-valued
function f-defined on the {perhaps infinite) disk {z € C: [z| < 1/r(z)} by

F(z)=p{(1 - z2)7}).
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Note firt that f is annlytic. Indeed, for lzL«: 1/4z)) we maoy expand (1 -
+r)~) into 8 convergent sorfes 1 + 2z +(2x)" +- -+ to obtain a power series

representation for f:
(1.14) J(z) = ol=")="
n=(

On the other hand, in the larger region R = {z : 0 < |z{ < 1/r(z)} we can
wTite

J(z) = :zl-ﬂ ((z"'1—=)7"),

and from Jormula (1.10) it is clear that f is analytic on A, Thken with
{1.14), tlils implies that f is analytic on the disk {z Hz) < 1/r(x}}.

On the smaller disk {z : |2} < 1/]|z{}, (1.14) glves a power series repre-
sentation for f; but since f is analyticon the larger disk {2 : |2| < 1/r(z)}, it
follows thal the anme series (1.14) must converge to.f(z) for all [z} < 1/r(z).
Thus we are free totake z = A in {1.14), and the resulting series converges.
1L follows that p(x")A" is a bountled sequence, proving the claim.

Now choose any complex timber A satisfying 0 < |A] < 1/r(x). By the
claim, there is a constant M = M), such that [A]"|izf" = ||Az||® < M for
every n=1,2,.... after taking nth foots, we find that

Mis 1
nitl/n < . =t
meup =" < limsup = = 5
By allowing | Al to increase to 1/r(z} we obtain (1.13). O

DeFmNITION 1.7.4. An élement > of a Banach algebra A (with or without
unit} is called quesinilpotent if
im )"/ =0,
n—oG

, Significautly, quasinilpotence is characterized quite slmply in-spectral
erms,

(;OBDLLMIY 1. An element 7 of & unital Banach algebra A s quasinilpo-
teud iff o) = {0}, |

PROOF. 7 is quasinilpotent <= r(z) =0 <= o(z) = {0}. 0

Exercises,

(1) Let ay,0,... bea sequance of complex numbers such that o, —.0

U % =.00. Show that the assaciated weiglited shifi o eriitér on £
(see the Exe.rmm of SBCtiogzlf_I_:;ﬁ) hﬂ&ﬁpechmm{u}, perator

{2) Consider the simplex A, ¢ [0,1]? defined by

Bg 18 1/nl Give a decant proof hiesé: For



| 5. IDEALS AND QUOTIENTS 21

o Volterra kernel as in Example 1.1.4, and let X be its
orresponding integral aperator on the Banach space C{0, 1]. Esti-
mate the norms K"} by showmg that there is a positive constant

A such that for every [ € C[0,1] and every n =1,2,.. .,

M™
WK Sl < UL

(4) Let K be a Volterra operator as in the preceding exercise. Show
that for avery complex number A # 0 and every g € C{0,1], the
Volterra equation of the second kind Kf - Af = g has a unique

solution [ € C[0,1].

1.8. Ideals and Quotients

The purpose-of this section is to collect some basic information about ideals
in Banach nlgebras and their quotient algebras. We begin with a complex
algebra A.

DEFINTTION 1.8.1. An idealin A is linear subspace / C A that is invari-
ant under both left and right multiplication, AJ + A C [.

There are two trivial ideals, namely / = {0} and [ = A, and A-is called
simple if these are the only ideals. An ideal is proper if it is ot all of A.

Suppose now that / is a proper ideal of A. Forming the quotient vector
space A/J, we have a natural linear mapz € A= 2 =z + 1 € A/1 of
A onto A/l. Since I is a two-sided ideal, one can unambiguously define a
multiplication in A/F by

(z+1)-(y+1)=zy+1, z, 4 € A.

This multiplication makes A/7 into a complex algebra, and the natural map
Z 4 % becomes a surjective homomorphism of complex algebras having the
given ideal / as its kernel.

This information is conveniently summarized in the short exact sequence
of complex algebras

(1.15) 0— 71— A— A/l — 0,

the map-of J to A being the inclusion map, and the map of A anto 4// be-
ing  ~+ &. A basic philosophical principle of mathematics is to determine
what information about A can be extracted- from corresponding information
‘about both the ideal I and its quotient A/f. For example, suppose that /|
18 fnite-dimensional as a vector space over C. Thea both [/ and A// are
finite-dinmehsional vector spaces, and from the observation that (1.15) is an
exact sequence of vector spaces and linear inaps one finds that the dimen-
sion of A is determined by the dimensions af the ideal and its gquotient by
way of dun A = dim f + dim A/f (see Exercise (1) below). The methods of
homological algebra provide refinements of this observation that allow the
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eomputation of moro subtle inwariants of algebras {such ns K-theoretic in

varlanta), which hnve appropriate generalizations to the category of Bannch
nlgebras.

ProrosiTION 1.8.2. Let A be a Banach algebro with normalized uny |

and et [ he a proper ideal in A, Then Jor every z € we have {1+ 2| > 1.
in particular, the closure of o proper ideal 18 a proper ideal.

Prootr. If there is an element z € J with ||14 2] < 1:_ﬁh§_n-b?"1‘-hmrem
1.5.2 £ youst. be invertible in A; hence 1 = 271z ¢ I, which lmphes that /
cannol. he n praper ideal. The second assertion folloaws from the continyjty

of the noms: if J1 + )] 2 1 for all z € 7, then J|1 4+ 2|| 2 1 persists for all ;
ity the closure of 1. 0]

Remank 1.8.2. If 7 is a proper closed ideal in a Banach algebra A with
normalized unit 1, then the unit of A// satisfles

1)) = inf ({1 = 1:
1)) :x.g{ll + zfl

hence the unit of A/7 is also normalized. More significantly, it‘ fn}lm that
a unital Banach algebra A with normalized unit is simple Iff it is topolog-
tently aimple (ie., A has no nontrivial closcd ideals; see the c,qmﬂary of
Theorem 1.8.5 below). That assertion is false for nonunital Bnnm:h a.lge—
brag. For example, in the Banach algebra K of all compact operators on
the Hilbert space £, the sct ‘of finite-rank operators is a proper ideal _.ttljlﬂgi I8
dense in K. Indeed, K contalns muny proper ideals, such as the idéal i£° of
Hitbert-Sclunidt operators that we will encounter later on. Nevertheless, X
s topologieally simple (for example, see [2], Carollary 1 of Thearem 1.4.2).

More generally, let 7 be o closed ideal in an arbitrary Banach algebra A
(with or without unit). Then A/f is a Bansach space; it is also a complex

algebrn relutive Lo the multiplication defined above, andin fact it is.a Banach
wgebmn since for any z,y € A,

17l = inf oy + 21l < _inl flay + 222 + 219 + 2122 )
=S 3 ':s:Ef \————_N.a——-—'
€t

= ol l(r +2,)(z + 22)] < i),

Notice, too, that (1.15) becames an exact sequence of Banach algebras and
cominuuus homonorphi |

Isms. If 7: A — AfJ denotes the patyral surjective
howomorphism, then

! we obvigusly have finl| < 1 In general, and ||nf] = 1
when A is ualual with normalized unit.

_Thu sequence: (1.15) gives rise to a natural
phinns ax follows, Lot A, B be Banach nlgabras andlebw: A - S bea
humumorphisin of Ny algebras {a bouuded honiumatplﬂam-nf the un-
fil-:ui}':m__f, ®gebrule structures). Then kerw is u closed-ideal in A, and there

iy

Womumorphls s AT ks 8 canes N ¢
b u(_;x) = wiz + ku[i'w W w /kl.ru - 8 "uc.h ulﬂ&. fQ!’ a.ll z e A wo

). T Jos : A .
stz u foln '€ properties of this promotion of w to & are
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ioN 1.8.4. Every bounded homomorphism of Banqch algebras

PROPOSIT; g unique factorizalion w = w o 7, where w is an injec-

WA _L:or;lfi-’m of Al kerw to Band m: A = A/ kerw is the natural
bvji"n':" One has ||@|| = Jlwi-

pro. bapor. The assertions in the first sentence are straightforward, and we

prove | = lwl) From the factorization w = worr and the fact that ||=| < 1

¢ hove Jlw]l € |w|); the opposite inequality follows from
(@) = lw@)ll = lwlz + 2)ll £ lwlliiz+z2ll, 2 € kerw,

n!tertheinﬁmumistakenoverallekerw.

Before introducing maximal ideals, we review some basic principles of
set theory. A partially ordered set is a pair (S, <) consisting of a set § and a
binary relation < that is transitive (z <y, y £ z = z < 2) and satisfies
r<y<z => z=1y. Anelement z € S is said to be maximal if there
is no element y € 8§ satisfying z < y and y # x. A linearly ordered subset
of § is a subset L C S for which any two elements x,y € L are related by
either z <y or y < z. The set L of all linearly ordered subsets of S is itself
partially ordered by set inclusion.

The Hausdorff mazimalily principle makes the assertion that every par-
tially ordered set has a maximal linearly ordered subset; that is, the partially
ordered set £ has a maximal element. Zorn's lemma makes the assertion
that every partially ordered set S that is inductive, in the sense that every
linearly ordered: subset of S has an- upper bound in S, must contain a maxi-
mal element. While the maximality principle appears to be rather different
from Zorn's lemma, they are actually equivalent in any model of set theory
that is appropriate for functional analysis. Indeed, both: Zorn's lemma and
the maximality principle are equivalent to the axiom of choice. Our experi-
ence has been that most proofs in functional analysis that require the axiom
of choice, ot some reformulation of it in terms.-of transfinite induction, usu-
ally run more smoothly (and are simpler) when they are formulated so as
to.make use of Zorn's lemma. That will be the way such things are handled
throughout this book.
 An ideal M in a complex algebra A is said to be a mazimal ideal if it
5 8 maximal element In the partially ordered set of all proper ideals of .
Thus a maximal ideal is a proper ideal A C A with the property that for
any ideal N C A,

MCN = N=M or N=A
Maximal ideals are particularly useful objects when one is working with
nnital Banach algebras.

THEOREM 1.8.5. Let A be a unital Banuch algebra. Then every maznmal
ideal of A is closed, and every proper ideal of A is contained in some muanmul
idcal.

O
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Pnoor. For the Arst asscrtion, let Af-bea mm‘n‘m_nl ideal of 4. Remark
1.8.3 implies that the:unit 1 cannot belong to. the clasure ¥ of M: hene
A 1s a proper idedl of A. Since M C M, maximality of A implies that
A = M s closed. - | |

Suppose now that J .is some proper ideal ofA,m;d consider the se, p
of all iproper ideals of A that 'fcontq;g'- I . +'-I-‘h¢ fam_;lyof getg 'P .1_3. partially
ordered in the natral way by set inclision, and we €laim that it is inductive
in the sense that every linearly ordered sitbsel £ = {Jﬂ- o€ .5‘} of P.hag
an upper bound.in P. Indeed, the union UyJ, is an ideal in A bmm it ig
the union of a linearly ordered family of ideals. It cannot contain, the ynit
1 of A because 1 € J,, for every @ € 'S. Hence U, J, is an élement of P ag

’ ‘AR er bound for L.
“cllzﬂoﬂmﬂ; l;::flma irnplies that P has s maximal elgmgnt M, and M i5 a
proper ideal that contains J. It is & mammal ideal hecauag;;_j".l:'_.-N‘:is auy'it}cm
containing Af, then N must :contain -/ and hence N € P. Since M is p
maximal element-of P, we conclide that M = N, 0

CoRrOLLARY 1. A unital Banach slgebra is simple iff it is topologically
simple.

Exercises.

(1) Review of linear algebrn. Let V and W be finite-dimensional 'vector
spaces over Cand let T : V - W be a linear map satisfying
TV = W, and having kernel K = {z € V : Tz = 0}. Then we have
a short exact sequence of vector spaces

0 —K——V—W-—o.

Show that dimV = dim K + dimW. Yous, proof should procced
from the definition of the dimension of a Bnite:dimensional vector
space s the cardinality of any ‘basis for it.

(2) More lineur algebra. Forn = 1,2,..., let V, Va,..., Vg be finite-
difnensional vector spaces and'set Vp = V,,,; = 0 (the trivial vector
space), Suppose that for each k =0,1,... 5 we have a linear map
of Vi %0 V1) such that the nssociated sequence of vector spaces

oW Voo — Vo — 0
.. 15 exact, Show that T8 (—1)% digsV, = 0.
(3) Show that evary normed linear space £ has a busis 3. C E copsisting

ol unit vectors, and deduce that every hafinite-dimensianal normed
liness npace has a discontinuous linear functional f : £ — C. Re-
call thal u bagis for g veglor : Vi

the: ollowing two Properiics: every finite subset of B 18 linearly lu-

dﬂpﬂnﬂellh HIIL‘I ﬂ‘-’ﬂ:r}' \!eclor in V is N ﬁl’lim r .
elements of B, wear combination of

(4) Let A be s o ideal of A, Show
A)"I is stnple.



0. COMMUTATIVE BANACH ALGEBRAS -

A be o unital Banach algebra, let n be a positive integer, and

(5) Let £ A= M, ben homomorphism of complex algebras such that
let ‘:-; — M., M, denoting the algebra of all n x n matrices over C.
A is continuous (where M,, is topologized in the natural

Show that w : '
woy by c™’). Deduce that every llnf.m' ﬁll}ctlonal f:A->C
sntlﬁfﬁng f(ry) = f(-"-')f(ll)a T,y € A'I i8 continuous.

1.8. Commutative Banach Algebras

We now work out Gelfond's generalization of the: Fourier transform. Let
A be a commautative Banach algebra with unit-1 satisfying ||1]| = 1. We
<onsider the set hom(A, C) of all homomorphisms w : A = C. An element
» € hom(A,C) is a complex linear functional satisfying w(zy) = wiz)h(y)
for all z,y € A; notice that we do not assume that w is continuous, but as
we will sce momentarily, that will be the case. The Gelfand spectrum of A

is defined as the set
sp(A) = {w € hom(A,C) : w # 0}

of all nontrivial complex homomorphisms of A. It is also called the marimal
ideal space of A, since there is a natural bijection of sp(A) onto the set of
all maximal ideals of A (sce Exercise (2) below).

REMARK 1.9.1. Every element w € sp{A) satisfies w(1) = 1. I[ndeed,
for fixed w the complex aumber A = w(1) satisfies Aw(z) = w(l - £) = w(x)
lor every £ € A. Since the set of complex numbers w{) must contain
something other than 0, it follows that A = 1.

REMARK 1.9.2. Every clement w € sp(A} is continuous. This is an
immediate consequence of the case n = I of Exercise (§) of the preceding
section, but perhaps it is better to supply more detail. Indeed. we claim
that |lwjl = 1. For the proof, noto that kerw is an ideal in A with the
Property that the quotient algebra A/ kerw is isomorphic to the field of
complex gumbers. Hence kerw is a maximal ideal in A. By Theorem 1.8.5,
it is closed. Because of the decomposition w = u o 7 where r is the natural
howomorphism of A onto A/ kerw and o is the linear map between the two
one-dimensional Banach spaces A/ kerw and € given by <(A1) = Aw(1) = A,
we have \uff = 1. Hence |lwl| < J&llix]l < 1. The opposite inequality is
clear from ||jw|| > [w(1)| = 1.

With theso observations in hand, one can introduce o topology on sp()
as follows. We have seen that sp(A) is n subsct of the unit ball of the dual Al
of A, and by Alagglu's theorem the lutter is o compact Hausdorlf space lu its
relative weak®-topalogy. Thus sp(A) inberits a natural Hausdor(f topology
as a subspace of a compact Hausdorif space.

ProposITION 1.0.3. n its relnbive weuk” -topology, sp(A)} o ¢ compact
Hausdorff space.
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Proof. It suffices to show that sp(4) is a wenk®-closed: subset, of the
anit ball of the dual of A. Notice that o linear functién‘ql j A Ch &iﬁhgs
Lo 3!'(/1) iff “I" <l f(l) = 1, and ffﬂz) = f(y)f(z) for.all U,z € A. Thﬂe
conditions obviously define a weak®-closed subset of the unit ball 6f A%,

REMARK 1.9.4. The Gelfand map. Every clenient x € A gives rige ¢p o
function z : sp{A) — C by way of #{w) = w(x}, w € sp(A4); £ Is_ called ‘the
Gelfand transform of x, and z — & is called the Gelfind map. Thefunctions
¥ are continuous by definition of the weak*-topology on sp(A). For z,3 € 4
we have

Fw)iw) = wiz)w(y) = w(zy) = THw).
Morcover, since every element w of sp{A) satisfies w(l) = 1, it:follows tha
1 is the constant funetion 1 in C(sp(A)). It follows that the Gelfand map is
g homomarphism of A .onto a unitdl subalyebra of C{8p(A)) Uiat separates
points of sp{A). The previous remarks- also imply that ||zl < ||z]], z € A.

Most significantly, the Geliand map exhibits spectral information about
c¢lements of A in an explicit way.

THEOREM 1.9.5. Let A be a comvnutative Banach algebra with unit, For
every elemenl z € A, we have

o(z) = {&(p) : p € sp(A)}.

PROOF: Since forsoy z € Aand A€C, 2~ X =z ~ A ando(z —A) =
o(z) — A, it suffices to establish the following assertion: An clement z € A
s invertible iff £ never vanishes.

Indeed, if x is invertible, then there is 4 y'€ 4 such that zy = 1; hence
E(w)iw) = TH(w) = 1, w € 5p(A), 50 that % has ng zeros.

Conversely, suppose that  is a nopiovertible elemient of A. We must
show that there is an clement w € sp{A) such that w(z) = 0, For thst,
considerthe set 24 ={za:0a € A} C A. This set is an ;g.calthahdﬂm not.
contain1, By Theorem 1.8.5, A is contained insome maximalideal M C A,
necessarily closed. ‘We will show that there is an ¢jcinient w '€ afs(A) such that
M = kerw. Indeed, A/M is a simple Banach algebra with unit; therefore

it bus no nontrivial ideals at all. Since A/M s also coramutative, this
‘mplics thal A/M js a feld (for. any nonzero element ¢ ¢ A/M C-AfMisa

Honzero ldeg), which must therefore in’ ‘ r _

«@: AfM - €, we obtain a complex o T M ‘6, B0 S0HIorpalam.
. 3 2 complex homomorphism w : A — C b of
because r ‘.-"-..:.::Ag{ n'li_m clear that kerw = M, and finally £ vanishes atg

¢ | Ve pre Ve . spec-
identifics the .C: ﬂ].;:ln?ln:' unital comotative Bﬂ-llﬂﬁh nlgcbr_a, A. Oj.m ﬁ.l;ﬁt.

I coucrele terms a8 n Lopological
map of A inte Clap(4)). Once these calelatimns
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he spectrum of an element * € A is exhibited as

out, t
have mﬂﬁa of ;; [n the following scction we discuss two important

:‘:;g that illustrate the method.

Exercises. (n the Brst foiir exercises, A denotes a commutative Banach

(1) Show that if A is nontrivial in the sense that A # {0} (equivalently,
1 # 0), onie has sp(A) # 0. o

(2) Show that the mapping w € sp(A) — kerw is a bijection of the
Celfand spectrum onto the set of all maximal ideals'in A. For this
reason, sp(A) is often called the mazimal ideal space of A.

(3) Show that the Gelfand 'map is an isometry iff 22} = ||z||? for every
z €A

(4) The rudicel of A is defined as the set rad(A) of all quasinilpotent

elements of A,
rad{A) = {:: € A: lim ||z*|'/" = B} .

n—oo

Show that red(A) is a closed ideal in A with the property that
A/rad(A) has no nonzero quasinilpotents (such a commutative Ba-
nach algebra is called semisimple).

(5) Let A and B be commutative unital Banach algebras and let & :
A =+ B-be 8 homomorphism of the complex algebra structures such
that 8(1,4) = 1. Do not assume that @ is continuous.

(a) Show that # induces a continuous map 8 : sp(B) — sp(A) by
way of O(w) = wo .

(b) Assuming that B is semisimple, show that # is necessarily
bounded. Hint: Use the closed graph thearem.

(c) Deduce that every automorphism of a commutative unital
semisimple Banach algebra is a topological automorphism.

1.10. Examples: C(X) and the Wiener Algebra

We now look more closely at two important examples of commutative Ba-
uach algebras. Following the program described above, we calculate their
maximal ideal spaces, their Gelfand maps, and describe an application of
the method to prove a classical theorem of Wiener on ahsolutely convergent
Fourier series.

EXAMPLE 1.10.1. C(X). The Gelland spectrum of the Banach algebru
A = C(X) of all continuous functions on a cowpact Hausdorff space .X can
bo identified with X ip the following way. Every paint p € .X determines o
complex homomorphism w, € sp{C'(.X'}) by cvaluution:

Wp(n = f(p), JeC(X).

The swp p — w, 18 obvioualy one-1o-aue, and it is continuous by delinition
of the wenk*-topology ob the dun! space of C(X'). The work amounts to
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showing that every w € sp{C(X))} aviacs in this way from some pojy, o:
X. The moihod we use is based on & Chal'ﬂcm!'iZﬁtibﬁ,rqpr csitive Ly
functionals on C{X) in terms of -an extremal property of ﬁh‘eir,-qﬁfm-(ummn
1:10.3). This is a useful technique (or other purposes, and we will gag it Btain
in Chapter 4.

REMARK 1.10.2. Every compact convex set X € C s the interg
ull closed hall-spaces that containit, It is also-trive.that &
of all closed disks that.contsin it. Equivalently, if 29 € C is any poiat ot
in the closed convex hull-of K, then there is-a disk D = Dop = {2 ¢ ¢ .
(2 ~ a| € R} such that K’ C D and z # D. The reador is encotraged 4o
draw a picture illustrating this gegrietric fact.

‘ ection:qf
s the Interadistiop

Lemma 1.10.3. Let p be g lincer fusictional on C(X) salisfying |ipf) =
A1) = L. Then, for every f € C(X),

plf)€ TV f{X),

canvf{X) denoting the closed convex full ‘of the range of {.
In porticular, if f* denotes the complex conjugate of f € C(X), then we
have p{f*} = p(f}.

Proor. Fix f € C(X). Io view of Remark 1:10:2, to prove the-first
asseriion it suffices to.show that every dsk D = {2 € C: |z — a] < R} that
contains J{ X'} ust also contain o(f); equivalently,

\Jip)~e| <R, VpeX = |p(f) —a] < R.

Butif |/(p)—a] < R for every p, then {|f ~a-1)) < R. Since {jpf| = p(1}y=1,
this implies |o(f) — o} = |p(f — @ - 1)] <R, a8 required.

Far the second aseertion, let | =g+ih-€ Q(X) with g end & real-valued

continuous functions. By the preceding paragraph, plg) and p(h) ‘axe__:"{eﬂ"l
numbers; hence g "} = alg— ik) = plg) ~ ip(h) is the complex conjugate
of a(f) = plg) + ip(h).

D

Tuconrem 1.104. Tihe Map’p £ X v w, € 8p(C(X)) iz a homeomor-
phism of X onto fhe Gelfend spectrum of (X). This-map identifies X with
S(CLX)) in such @ way that the Gelfand ‘map becomes the identity map.of
C(X) to.0(X),

Int particular, the specirumn of f € C(X) is JF(X).

& I.:';RDDF* In view of the preliminary vemarks above, the proof reduces to
owing that “very complex hamomarphisin w is associatcd with some point
PEX,w= wp. Fidng w, we have 1o show that

N wex: im)=win) 2o

FeC{X)
f\}:.e St;gjft ai)dc ix an h;utetfsecti:un of contphct mubsety of X; 60 if 1t ig empLy
U By e Rniy: Iersectinn nropesty there ig 5 finlte sey of func&lou.-.;
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wIn € C(X) suchr that

free:
n{pEX fiulp) =w(f}} =40

Define g € C(X) by
glp) = Z [ulp) - wlfe)?. peX.

Then g is obviously nonnegative, and:hy the-choice of f, it has no zeres on

X. Hence there isan e > 0 guch that' g(p) > ¢, p€ X.
Since fjw] = w{1) =1 and g— €l > 0, Lemmna-1.10.3 also implies that

muw — gl) > D hencc
wig) 2 e-w(l)=¢>0.

On the other hand, Lemma 1.10.3 also implies that for each &,
w(lfie ~ wl V1) =w(lfic ~ wlfe1) U ~w(fi)1))
=lw(fe — w(fi)1)]* = 10> =0,

and after summing-on k we obtain w(g) = 0, contradicting the preceding
inequality. »

EXAMPLE 1.10.6.- The Wiener algebra. Gonsider the space W of-all con-
tinuous functions’on the unit cirele whose Fourier series:converges absolittely,
that is, all'furictions J : T = € whose Fourier series have the form

(1.16) f(e?f) ~ Z ane™’
= —00

where 3~ {a.,,] < oa. One may verify directly that VWV is-« subalgebra:of c(T)
(becsuse £ (Z) is a linear space closed under convolution), which obviously
containg the constant functions. The algebra of fimetions W is called the
Wiener algebra.

in connectign with his stucly of Tnubecinn theorems in the 1930s, Norbert
Wiener catriedr oul a deep. analysis of the translation-invariant subspaces
of the Banach spaces £(Z) and L' (R); notice that since both Z and R
are additive groups, they act nni:urally as. groups of isometric transtation
Opemtom ou- their respecnvu I} spaces. For exampie, the kth translate
of n sequence (an)nez in-éHZ) is the sequence {un—i)uez- Amcmg other
things, Wiener proved that-the translates of a saquence (an) € £1{Z) have
all of £{Z) as thsir closed Jinear span iffthe fuaction f defined in {1.16)
never vanishes, He did-this by establishing the following key property of the

algebra W.

THEOREM 1.10:6. If f € W and: [ has no zerus on T, then the reciprucal
1/f belongs to W.
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Wiener's original proof of Theorem 1.10.8 was & remarkab)
hard classical analysis. Subsequently, Gelfand gave an e|ega'n: EXCrelsg |
proof using the elementary theory of Bau'ng;h&;ﬂggbms’ 'Easiiig f}?n“,"’?tua]
step on Theorem 1.9.5. We now describe Gelfandl’s proof. € CTitley|

Consider the Banach algebra 4 = ¢'(Z), with mdltiplicaion defined
convolution . The unit of A is the sequence 1 = {e,), where e = | hﬁ
ew = 0 for n # 0. We show first that sp(A) can be identified with the gy
circle T.

Indeed, for every A € T we can define a bounded linear functional u, o

A by

o0

wale) = z arA”, a = (ag,) € £(Z).
n=—Q0o

Obviously, wa{1) = 1, and one verifies directly that wy(a » b) = wy(a}ws(h).

Hence w) € sp(A).
We claim that every w € sp{A).has the form w, for a unique point A € T.
To see thai, fix w € sp{A) and défine a complex number A by A = w((),
where { = ((,) is the sequence ¢, = 1 if n = 1, and (, = 0-otherwise. Then
¢ has unit norm in A, and hence {A| = |w(()] < li{]] = 1. Another direct
computation ghows that ¢ is invertible in A, andits inverse is t_t_le sequence
¢ = (Cn), where {, = 1 for n. = —~1, and ¢, = O otherwise. Since [|(|| =1
and {1/A] = |1/w(Q)| = jw(C}| < )| = 1, we find that || = 1. Natice that
w = w). Indeed, we must have w((®) = A" = wy(¢") for every n €Z, ("
being the unit sequence with a single nonzero.component in thenth pogition.
Since the set {{” : n € Z} obviously lias #(Z) as its closed linear spag, it
follows that w = w). Then A = w(¢) is obviously uniquely de termined'by w.
These remarks show that the map A —+ w; is & bijection of T on sp(4).
The inverse of this map (given by w € sp(A). — w(() € T) is obviously
4 - . 5

continuous, 8o hy.compactness of sp{A) it must be ‘a homeocmorpism, 'EE
we have identified gp(A) with the unit circle T and the Gelfand map, with
the Fourjer transform, which carries a sequence a € £(Z) to the function
4 € C(T) given by

o
&{eﬂ?)r_ Z ﬂ-ﬂe‘"g..

n=-—p6

Having comnputed sp{A4) and the Gelfand map. in concrete terms, we
observe that the range of the Gelfand map {& : a € A} is.axactly-the Wiener
ulgghm W. '-1_‘hl.a proof -of Theorem 1.10,6. can :mw.-:-pmt.‘ead'as fﬁﬂaﬂﬁ* Let
{1 bf ﬂ‘fuuctto_ﬂ‘ in W having no zerps on T and let a be the ‘elemant -of

= {(Z) having Gelfand wransform J. By Tusorem 1.9.5, there is an
clewent b € A such that '

: teb=1; henee a(A)B{A) = 1, It fo
Lh“tlff=b-EW.Mamrmd, (A)U(A) AeT. It lollows

Exercises. Lel B be the ap'n.ce of ol conti |
e - Lev B ‘ ouous functions f defined on
the closed unii disk A = {z € C:z| < 1), which cag be represented there
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by & convergent power series of the form

f(-'f)-"-'-'zﬂm“-'". z€ A,
n=0

(or some sequence ag, a1,a2, ... in C satisfying 3_, lan| < oo.

(1) Prove the following analogue of Wiéner’s theorem, Theorem 1.10.6.
If f € B satisfies f(2) # 0 for every z € 4, then g = 1/f belongs
to B.

Inthe following exercise, Z.. denotes the additive semigroup of

oll ionnegative integers.

(2) Let T be the isometric shift operator that acts on £*(Z,) by

T(Io.II,Ig, ”‘) = (Orxﬂfxllz:h' X )'I

and let @ = (ag;a1;a2,...) € £(Z.). Show that the set of trans-
lates {a,Ta,T?a,...)} spans £!(Z,) if and only if the power series

fz)=Y az", [z <},
n=0

has no zeros in the closed unit disk. Hint: Use the previous exercise.

1.11, Spectral’ Permanence Theorem

Let A be a Banach algebra with (normalized) unit; A is not necessarily
commutative. Suppose we also; have a Banach subalgebra:8 C A of A that
contains the unit of A. Then for every clement € B it makes sense to
speak of the spectrum og(z) of z relative to B as well as the spectrum
o4(z) of x relative to A. There can-be significant differences between these
two versions of the spectrum .of z, and we now discuss this’ phenomenon.

PnroprosiTION 1.11.1. Let B be a Banach subalgebra of A that contains
the unit of A. For every element z € B we have oa(x) C og(x).

Proor. This is an immediate consequence of the fact that invertible
elements of B are invertible elements-of A. U

EXAMPLE 1.11.2. Consider the Banach algebra A = C(T) of continuous
functions on. the unit circle, and let B be the Banach subalgebra gencrated
by-the current vatiable ¢(z) = z, z € T. Thus B'is the closure {in the sup
norm of T) of the algebra of polynomials

p(z) = ag + a2 + -+ an2".
LeL us compute the twp spectra () and on(¢). The discussion of C(X)
in the previous section implles that
oA{{) =¢(T)=T.

We uow show that og(C) is the closed unit disk A € C. Indeced, the
goneral principles we have developed-for computing spectra in commutative
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Banach algebras imply that, in order to computegp(¢). we

pute the Gelfand spectrum sp{B). We wm,dmt@ ap(B) t{;ﬁli ﬁr;t tom.
for every z € A the maximum modilus-prificiple implies thae 002,
(1.17)

ip(2)} < sup |p{A)).
{Al=!

It follows that the linear functional w; on B defined R polynomials
we(p) = p(z) satisfies fw,}| < 1, abd hence éxtends ‘iifﬁhllél}'v to a lineas
functional on. B, which we denote by the same letter w,. Obviousy, 0,
belongs to #p(B). The map z € A + w, € §p(B) is continuons and one-te,
one. It is onto because for every w € sp(B), the comipilex number z = wi()
satsfes |2| = ()] < ¢] = 1, 858 3 has the property that that u(z) -
p{z) = w:(p) for every polynomialp. Hénce w = w, o0 B.

Having jdentified sp(B) with A and observing that (. is identified with

the cirrent, 'vanablc (:'(z) = z, z €A, we can appeal to Theorem 1.8.5 to
conclude that og({) = A.

The following result is sometimes ‘calied the spectra.l permanence Lheo-
rem, since it implies that:points in:the bourdary of o 5(x) cannot be removed
by replacing ‘B with a larger algebra.

TyeoreM 1.11.3.-Let B e a Banach subalgebra of a unilal Banach
elychbra A which contoins the unit of A. Then for every x € B we have

don(z) C oa(z).

Proor. 1t suffices to show that 0 € dog(z) = 0.€ g4(z). Contre-
positively, assume that 0 # o4(x) and 0 € 07(z). Then z is.invertible in A
and there is 2 sequerice of complex numbers A, ~» 0'such that A ¢ o8(2)
Thus (i~ )~} is & sequence of elements of B with-the property that, since
inversion is.continuous in A~!, cojiverges to z~! as n - oo. It follows that
=) = Hmg(z~ M) e B= B, contradicting the fact that § € ag{z)- O

One can reformulate the preceding result into. 8 more precise description
of the relation

vhetween og(z) and o 4(z) us follows. Civena compact set ‘K
of complex numbers, . Jiole of K i defined as a bounded component, of its
complement €\ K. Let us decompose C \ga(x) inlo its connected compo-
;ﬂlllwns';btaiﬂiﬁg an unbounded component .. together with a seqisence of

QI8 324,38, .,

C\ad{:‘):rlmuni Uy-.. .
Of cauurse, there

msy be only ¢ finike number of bholes or none at all.
We require an clementary topological fuct:

LEmMma 1114, £

et A1 be u connected topuiogi ,
closed subaet of St such thut @ #cgfngé 0. Thf: gcis, space, und let X be o

8X #£ 0.
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ppoof. If X = 9, then 2 = int(X) U (2\ X) is & decomposition
of 1 into disjoint open scts; hence either int(X) = # or X = , and hence
int(X) = 0. But this implies that X = int(X)UdX = @, a contradiction. O

CoROLLARY 1. Let 1, € B G A be as above, let z€ A, and let Q be a
hounded component of C\oa(z). Then either QNag(z) = 8 or N C ag(x).

Proor. Let § be a holeof g,4(z). Consider X =N Nog(z) as a closed

subspace of the topological space 2. Since ) is an open set in C, the
boundary 8nX of X relative to ) is contained in

Gop{z) Coalz) CC\ NN

Hence o X = 8. Lemma 1.11.4 implies that either X =@ or X = ), as
asserted. O

We deduce the following description of og(z) in terms of o 4(2).

COROLLARY 2. Let z € B C A be as in the previous theorem. Then
o'p(r)hl: obtained from o 4(z) by adjoining to it some (and perhaps oone)
of Its holes.

For example, if o4(z) is the unit circle, then the only possibilitics for
og{z) are the unit circle and the closed unit disk.

Exercises

(I) Let A be a unital Banach slgebra, let £ € A, and let (1, be the
unbounded:component of C \ o,(x). Show that far every A € {1
there is a sequence of polynomiuls py, p2,... such that

lim [[(x — A1)~" — pa(z)|| = 0.

n—ao

(2) Let A be a unital Banach algebrn that is generated by {1, )} lor
some r € /1. Show that o4(z) has no holes.

{3) Deduce the following thearem of Runge. Lot X € C be a compact
sct whose complement is connected. Show that if f(z) = p(z)/4(2)
is a rational function (p, ¢ being polynomials) with g{z) # 0 for
every ¢ € X, then there is a sequence of polynowials fy, fa, ...
such that

sup |f(2) - fa(z)] 2 0, asn — occ.
X

1.12. Brief on the Analytic Functional Calculus

The analytic fanctional calculus provides an effective way of forming uew
operators having specified propestics out of given oues, lu o very ysueral
context. We will oot have to make use of the snalytic functiooal calculus
i this baok. Llu this section wu describe this calculus in some detail, but
refer the ruader to other sources (such as {12)) for o treatment that includes
prools we bave vinitted.
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Lot C be a simple closed ‘oriented curve in the complex plane ¢ th
is placewise continuously- differentidble. We refer to mich objocts simp?l
as orlented curves. Thus, an eriénted curve C ean ‘be parameterizeg ii
diflerent ways by corntinuous ffhﬂctigi___ns v: 10,1} = € that are piecew:
continuously differentiable, orie:to-one on [0,1), and periodic 4(0) = ‘r"( ll !)E.
Every continuous function .S ¢i C can be integrated ardlifid C by elther
forming a limit of appropriate Riematn'sums that respect the orientation of
C, or aliernatively by choosing a parameterization « : [0,1] = [ consistet
with the orienitation:and setting

]
j-ftx)dxr- f ST (2) .
c 0

The notionof integral over :C' generalizes in a straightforward way 1o
vector-velued functions, namely to continuous:functions f defined:on C that
take values in.2 Banachspace E. Fixing siich =-function f, one considers
finiite oriented partitions P = {70, 1,...,m} of the.curve C (that is, parti-
tions:of C that are consistent with its-orientation). With every such partition
there is 8 corresponding Riemann sum

R(fip} = ZI(T&)('}'&‘ = 7&-1)1
k=1

and the techniques of elementary caleulus -can -be adapted.in a straightfor-
ward'way to show: that the limit of these Rietann sums exists (as the norm

Pl = maxy | ~ 74—y | of the partition P ténds to 0) relative to the norm
topology of E. See Exercise (1) below. Thus one can define

/.-; f)dr=tim R(f,P)

and one has the estimate

(1.18) “fc m)dA“s i /NN < sup L (AECC),

€lC) denoting the length of C. It follows that for every bounded linear
furictional 2 on £ we bave

o{ [ e B) = Lot a,

f’:\’:ﬁﬂmg the orientation of C' has the effect of replacing Jo 7(2) d) with
o egatve — fo f(A)dA. Thus we hove assigned a clear meaning to the
tegxol of o continuous function f : C — f a8 an element of £. |
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the bounded component of the complement of C then one
i A b'-'lc‘f";g; :.:u 1 :h’cn C is oriented counterclockwise and n(C, ) = -1
has n{C On the other hand, n(C,2) = 0 if A belongs to the unbounded
othe ponl ent of C\ C, regardless of orientation. .
com clement of the abelian group generated by oriented curves,

cle is an
subj‘:cfyw the relation C +C* = 0, where C* denotes the curve obtained by
the orientation of C. To review terminology, let S be a set that

m with an involatory map 5 ~ 5°, 8 € S, and let G(S) be the
free abelinn group generated by S modulo the subgroup generated by s+ s°,
+ € S. In more concrete terms, the:free abelian group generated by S can be
roalized as the abelian group Z{S) of integer-valued functions n : § — Z that
satisfy n(a) = 0 off some finite subset of 8, with the pointwise operations

(m + n)(8) = m(s) + n(s), s€ S.

There is a natural notion of linear combinations of elements of Z(S); for
p.q € Zoand m,n € Z(S), p-m-+q-n denotes the function s — pm(s)+-qn{s).
If we identify clements of S with their image in Z(S5) by way of s € § — X{s}
then the elements of Z(S) are linear combimations of elements of S,

Mm: 8+ -+ pp- 8y, pr €L, s €S

The subgroup H C Z(S) generated by elemeunts of the form s+s° iy identified
with the subgroup of all fimctions n € Z(S) satisfying n{s) € 2Z il s* = s
and n(s®) = n(s) if 5*° # s (note that for the example in which S consists
of oricnted curves, the case s° = 3 never occurs). Letting s denote the coset
5+ H € G(S), then 5* = -3, and the most gencral clement of G(S) is o
linear combination g

PL 81+ + Py 8.

The universal property that follows from this construction usserts that
every function ¢ from $ to an abelian group G that satisfics ¢(a*) = —¢(s)
for all 5 can be extended uniquely to a group homomorphism & : G(S) — G,
which acts on elemcents of G(S) as follows:

¢ (.;Ph 'i&) = ):Pk - ¢(ag).
’ k=1

A cycle cun be visualized ns a conglomerate of several urlented curves,
traversed one by one, perbaps scveral Litwes. Every nonzero cycle T can
be written as & linear combinatjon ' = p;é| + -+« + paC,, with nounzero
integer coclficients pa, where the Ci are orlented cueves with the property
Ci ¢ {CJ.C;} for & # j. This cxpression for T is not unique, but the lack
of uniqueness is characterized by the simple fact that p- 3= —p-8°, p € &,
8 € S. Thus the union of suts C,U- - -UC, (point sets without urieutatlos) is
uniguely determined, and we think of this set as the underlying pulat set of I
The atupty sct is the underlying point set of the zoro cycle. Fixing A € C, the
st of all cycies thoat do ot contain A is a subgroup of the group of ull cycles
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(it is the univemal gronp of cycles generated by all grie

nnt eontain A); henee for every such I there is o well-defined winding Nitmb
or

n{l, A) € Z defined by general principles ns above by taking ¢(C) = s
on otlented cvrves C. The map T — n(l, A) +d)

s & homomorphigy
group of all cycles that do not contain \ into Z. ' of the
It ia important that eyeles, like curves, have well-defined interiors,

DeEriNITION 1.12.1. Let T be a cycle. The interiorof I

iB deﬁnﬂd 8s the
set of all points A € T\ I such that n(T,A) # 0, and it is

written int([").
It Is n worthwhile exercise to experiment with this definition. For ex-
ample, consider a cycle I consisting of two cancentric circles of differey
radil nbout the arigin. If the outer circle and inner circle have the same
orientation, then that cycle has interior consisting of all points within the
outer circle that do not belong to the inner circle. If the two circles have

opposite orientations, then the interior of the cycle consists of the snnular
region lying between the two cireles.

If we are given an open set U € C, a Banach space £, anda cbt_;tim_:_mm
function f: I/ = £, then we have seen how to define the integral of f over
uny oriented curve C C U. The set of all cycles whose underlying point sets
are comained in U is also a group with a similar universal property, namely

the universal group generated by the.oriented curves contained in U. Thus
by genceral principles we have a definition of

Lf(A)dAGE

for all cycles ' C U, and this integral satisfies

f fdr= | fAJdA+ [ ) dA.
N 4 Y i ) I

Finally, we introduce the algebra of locally analytic functions on a com-

pact subset of C. Liet X € C be compact. By a locally analytic function:on
X w¢ menn ag an

alytic function f defined on some apen set U 2 X. T“'“
such functions f (defined ou U 2 X) and g (defined on. V 2 X) are said-to
Le equivalent if there is an open set W such that X ¢ W c.U NV and the

restrictious of £ and g to W agree. The set of equivalence classes of locally
analytic functions on X

formns n complex algebra, whose unit is the clnﬁs of
lﬁm zmﬁm){) i function f(z) = 1,z ¢ C. This commutative algebra is denoted
y .

We uow have an effective nogion

: of cycle, o notion of the integral of a
vector-valued funetion over o eyele contained in the iuterior of its domain,
alel Lhe ugtion of i n.tgebru orlﬂﬂﬂll}' ﬂ-ﬂ.&l ?

ytic functions A{X) associated
Wilh 4 vowpact st X € C. These are the

basic constituents of the ai alytdc
lunctional caleulus, which we now describe. “ o
Let A be o Bauach al

c A e gebra with horiglized wnit 1 and 6x an alement
u = A with spuctrum X = ola). Glven § e A{X) we want to define f(a)
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. o mapner consistent with th? Cauchy i:}tEgral theorem. To do this we
:; sosc a cycle [ with the following properties:

o [ is analytic on v int(T).

s TNX=0

o n(l,2)=1lorall z€ X.
Grst and third conditions together imply that there is a representative
in the class of f whose domain contains not only X and I, but also all points
ierior to I'. The third condition asserts that the cycle winds around every
point of X exactly once in the positive direction, allowing for cancellations
as ope moves along the various components of I'.

For example, if X is the unit circle and [ is an analytic function defined
on some annular region U = {z € C:r < |z| < R} where0 < r <1l < R<
~0, one may take T' to be the union of two circles Ty = {|z| = ri}, £ =1,2,
wherer < 1) €1 € ra < R, where I's is oriented in the counterclockwise
direction, and T'; is oriented clockwise.

Consider the resolvent function (A1 — a)~!. This is certainly. defined for
all ) in‘an open set containing I', and it is a continuous function with values
in A. Thus we can define

(1.19) f(ﬂ)='2%‘lf./ll-f(A)(l\1_ﬂ)-ldJ\-

The [act is that f(a) depends on neither the particular choice of [’ nor
!:he ehome?f representative of f (this is an exercise in the use of the Cauchy
mtegml 'Fb,sgrem of complex analysis). Moreover, f € A(X) — f(a) is a
unital hism of complex algebras that has the following property:

For every power series

f)=qt+azs+az +---
converging on some open disk {|z| < R} contsining .X, the corresponding
series cpl 4 ¢cya + cpa® + - - - is absolutely convergent relative to the norm of
A! and we have

oD
fla) = )_ caa™.
n=]
The reader is referred to pp. 566-577 of (12] for further detail.

Exercises.
(1) Let C be an oriented curve in C, let f be a continuous function
definéd on C taking values In a Banach space E, and consider the
set of all 'Gnite oriented partitioans P of C.
(a) Show that for every ¢ > 0 thereisa éd > 0 with the prop-
erty that for every pair of oriented partitions Py, Ps sutisfying
1Pl < 6 for k= 1,2, one has |[R(f,Py) — R(J. P2}l S ¢

(b) Veriiy tha estimate (1.18).
Let T be a bounded operator on a Banach space £.
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(2) Lot D= {2 € C: |2| < R} be an-open disk cofitainin

{+ D = C be an-analytic firction défned bn D, with:

oo
flz) =Y taz", i€D.
n=0

€ o(T). L,

Show that the infinite series of .operators

oo
D> o™

converges ebsolutely in.the sense that 3=, lc.|liT™]] < co.
(3) ‘Give a definition of sinT" and cog T-ising poiver series.
{4) ‘Use youy définitions in the preceding exercise to show that
(80 T)? + (cosT)? = 1.




CHAPTER 2
Operators- on Hilbert Space

Ve now take up the theory of operators on-Hilbert space. It is appropri-
ate to-develop this subject within the context of C*-algebras, and the: most
basic properties of C*-algebras, their ideals, quotients, and morphisms, are
worked out in this chapter. We discuss commutative C*-algebras in detail,
including the characterization of C'(.X), the functional calculus for normal
operators, and the spectral theorem.. Unfortunately, the literature of op-
erator theory contains at least three dissimilar statements that are called
the spectral theorem. The assertions are that normal operators are associ-
ated with multiplication operators, that they are associated with spectral
measures, and that they admit a Borel functional calculus. While these
statements are all in some sense equivalent, only the first of them is a clear
generallzation of the idea of diagonalizing a matrix, and that is the one we
offer as the proper up-to-date formulation of the spectral theorem.
Throughout this chapter, Hilbert spaces will be assumed separable or
finite dimensional. This is an unnecessary restriction, since all the results
we discuss have appropriate generalizations to the inseparable cases. But
the formulation of the spectral theorem thut we use becomes somewhat
esoteric for inseparable spaces, and in dealing with traces or Hilbert-Schmidt
cperatars, the fuct that orthonormal bases {e, : @ € /) are uncountable
while the corresponding sums of numbers Y [|Ae,||? have only countably
many nonzero terms can distract attention from the fundementul issues of
annlysis. In some cases we offer comments to assist the gencralizers In

carrying out their work.

2.1. Operators and Their C"-Algebras

In this section, we discuss Lhe operator-theoretic version of the Riesa lewma,
we introduce some commonly used terminology, and we discuss the multi-
plication algebra of & measurc space. Throughout, # will devote & Hilbert

space with inner product (£, »), linear in £ and antillncar In 9.
The Ricsiz lemma asserts that overy bounded linear functional f ou H

cau be represented uniquely a8 the inner product with a vector 7 € H,
J(&)=(&m  (€H,

moreover, vue has ||f]] = |al]. The Hlesz leuma iplicy that thw ruapping
/ = n s an antilincar isometry of the dual of H ouo H.
‘W
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Fvery operator A € B(H ) glves rise to a complex-valyeq function of

varinbles {§.9] = (AL, n). &1 € H. Notice that this form g linear iy ¢ W
antilinese in i, wich hilinear forms are clled sesquilinear, The qulﬁli;n ‘
forn: assecintedd with A s adso honnded in the sense that ¢ o

here iy g Posiil
canstant C such that {{€. n}l < Cli€lllini] for all €,9 € ¥, and ve

_ the smalleg
wirch conatant is the operator norm C' = || A)). Irequently,

| ] the easiest WHY to
define a bownded operator is to apecify its sesquilinear form. The followip

. : : 8
result guarantees the existence of & unique operator in such definitions, and
is ndxor enllend thie Riesz lemma,

PuorosiTion 2.1.). For every bounded complex-valued sesquilinenr forny
v} om H there s g unique bounded operator A on H such that

€.l = (A&}, &, ne€ H.

Proor. Fix a vector £ € H and consider the linear functional f dﬁﬁ{l@.ﬂ
un ¥ by fin) = {€. 4], the bar denoting complex conjugation. ?mc? fisa
honnded linear fuuctional, the Riesz lemma in its above form implies that

there is n unique vector A€ € H aatisfying f(n) = (n, AE); and after taking

the complex conjugate we find that the function A ;: & — H that we have
tefined must satisfy

[Ei f’l = {A£*ﬂ)! E: " € Hv

it 18 struightforward to vorify that this formuls implies that A is 8 linear
transformation. 1t is bounded because

sup |A€l = sup  |l€ )] < oo
fed< e < Linf <2

The uniqueness of the operator A is evident from the uniquencss gssertign
ol the Ria leawnsn for linear functionals. s

Similurly, there is o characterization of bounded operators A € B(H, KK}
from one

l Hithert space Lo another in terms of bounded sesquilinenr forms
SRR ¢ BY

K = T by way of the identification €.,0) = (AE,5), £ € H,n € K.
Noute that the inner product on the right is that of X, not H.
We immediately deduce the existence of adjoints of bounded operalors

from une Hilbert space to another. When more than one Hilbert space is
mvislved there might. be X

confusion sbout the meaning of inner products;

when we wuit to be explicit about which jnger praduct is involved we will

weite (£, )y for Ve juner product of two vectors §.neH.

COROLLARY 1. Let H, K be Hilbert spuces und et A € B(H,K) be o

mptgl?l spentor rom H v K. Thare s o unitjue aperator 4* € B(K, H)
isfying

(AL, Nx = (&, Ay, £e H, ne kK.
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¢. One simply upplies the above results to the bounded sesquilin-

mﬁ | defined on K x H by [n. €] = (n, AE) to deduce the existence of
w;nith operator A° € B(K, H) satisfying (A*n.§)n = (1, A)k, and then
fnira ‘he complex conjugate of both sides. u,

The cnse H = K is of particular importance, gsince we may deduce
it for every A € B(H) there is a unique operator A* € B(H) such that
(AE,7) = (¢, A*n). The basic properties of the mapping A = A" are sum-

mnﬂ:ﬁd as follows:

(U At = A. )

(2) (A + pB)* = AA" + B,

(3) (AB)* = B"A".

(4) |IA* A = ||AJ1%.
Praperties (1), (2), (3) together define an involution in a complex algebra
Property (4) is the critical relation between the norm in B{H) to the invo-
lution. It is the characteristic property of a C*-algebra (see Definition 2.2.]
below). To verify property (4), note that ||A°A| is given by

sup [{A*AL.p){= sup [(AL,An)| < sup || AE)fiAn| = ||A)?

i lInlj <1 el linf)<1 €0, linfl <3
while on the other hand,
IAI? = sup (A€, AE) = sup (A° AL, €) < | A° AL
€N <1 el <1

We will also make use of standard terminology for various types of op-
erators A € B(H). An operator A is called normal if it commutes with its
adjoint, A°A = AA". An operator A on H is un-isometry iff (A€, AE) = (£, )
for every { € H and in turn this is equivalent to the equation A°A = 1. An
invertible isometry A is charncterized by A°A = AA® = 1 and is called
8 unifary operator. A self-adjoint operator with nonnegative spectrum is
called a positive oparator. It is n nontrivial fact that pesitivity is charac-
terized by the condition (Ag,£) > 0 for every € € H, oy we will see. More
geaerally, for two self-sdjoint operators A aud B one writes 4 < B if B — 4
8 positive. Fiually, a projection is a sell-adjoint idempotent: A7 = 4 = A".

The following clementary facts about the geometry of Hilbert spaces will
be used freely below:

(1) Every nonewmnpty closed couvex set C' in o Hilbert space H has a
unique elemeul of smallest norm; that is, there is a unique element
z € C such that |jzj| = inf{]ly]l : ¥ € C}.

(2) Levt Af bo a closed linear subspace of H. Then every vector § € H
has o upique decompasition £ = & + & where § € M and & €

(3) Let P be any projection in B(H). Then M = (£ € H: PE =&} is
a closed subspace of H. Couversely, every closed subspace of A is
associnted in this way with n unique projection P € B(H).
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DeFINITION 2.1:2. ‘A-C” -algebm of operators is a norm-closed: Bubalgebia
A € B(H) of the algebia of all bounded operators on@oyiie. Hdbertagpace
which is alsoclosed under the adjolit-operatiot--A* = A

There drée many examples of sfich: C-"-algebras For examplai let 8 €
B{H ) be any norlempt} set of operators. ‘Thé interseetion of. all C"-algebmg
in B{H J-that contein S is called the'C*- algabragenera‘l:ed by dfben ‘Written
C(S). Tt can-be realized ‘in .somewhat .stiote conerete ‘termia 28 “follows,
Consider the set P of ‘all-finite pmducts T1T2 Thym=1,2,..., wherz
T € SUS". ’I'he sot of -all finite’ lmear eombmtmm o[ el&ment.s of Pis
obviously the smallmt self-adjo‘tnt ralgebm containing S, and hence 1ﬁs DOTIN-
closure i5.the C"-algebra generated by S. Whitle this construcﬁitiﬁ" "ﬁ'p:ﬁaﬁm
to- exhibit the elements.of C* (8) in e systemgtic way, i€ is not very usefil
for.obtaining: structural information about:C*(:5), sifice. Ehe nature of ‘the
limits of such linear: cambingtiins has not: beén made’ exphcit

A substantial -amount :of icirFrent; wuﬂc in ngngommuthtive analysis has
gone into Heterniiiing the properties and. structiire of the C*-algebta gener-

ated by afinite s¢t of operatorsthint Kutisty certdin relations.

The mrm topnlngy on’ B(H) is mapprepnate for togolaglcal issues that

.,.--.

that are weakcr thﬂ.n.thn nomt topblog:,r-.. *We wﬂl h:we t.o m’hke iise. of' an]y

two of them. In gengral, a- Toeallyconvex tapolag ca.r;, ‘He" ﬂeﬁnﬂd on. &
comiplex vector space;V by speclfmg affamﬂy S:0f seppinorms on:V that
sepatates the points-of V. ‘Given a;finite. sibset £ = {}- }y,...,]- s} € 8
-and 4 positive ¢, one assodiates.a corregponding #ibaet of V:

Ure = {2 € Vilali<e,... faln <ie}.
The set of all such Uy, is a basic gystem :of ne:ghbarhonds of the origin for

44444

2 unique ]acall_y convex Hausdnrﬂ‘ l.opnIog on V.

For ‘example, the norm tapology is deﬁnei b"y the somewhat; degeneidte

family. 8 = {|| . ||}, where || - || is. the aperator-pbrin: “The weak opemiﬂ‘!‘
topology ia defined by the family of seritgcrms. | 4| = |(A&;n)], € Taniging
over.all yeetors:in H. The sivong ‘operalbitogology is defindd by, the: fam.llﬁf'
of seminarms A} = - A&l where ¢ € H., For. example, a tiet of Gperators

An € B(H) converges strongly w 0:if and only if for every € € °H,
"Anfll =

A won Neumgnn. nlgebm is & aelf-a.djnmh \aubalgebna of:B(H) ﬂlﬂh& con-

tams the identity:operator acd .is closed ‘ip the weak erator
ypol¢
While it, 18 true: that von N eumann -glgebr: b IQP 09'

as are C*-algebras of o afa .
Lhey have: ARy properiies that are.nok . Pﬁl‘ P

ﬁhﬂ-ﬁed e ge l:&l. C,, g a8,
le_ m,PlE—s yan an ﬂ-l,gf“.b]:ﬂ.ﬂ. GO b}' IUP E Ilﬁ B'IEEbrﬂB

thom M‘C'--g\gg.bras wltile more ge - ATy g
Projections other thiln the trnial b unisel C* qlg.ﬂhwwrmm.m

from that of the gousral thich s -1 o, DRUeRE, and:it has.a different; Bavor
o that of the geugral theory of C*-algebras. It is. appmpnal.e Lo-view
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ann algebras as a noncommutative generalization of

the tmd w:l;nd td view the theory of C’-algébras ss a noncémmutative

mensUre L of thie theory of topological spaces (8],

5"“‘;‘: scC B(H)bea set of operators: The comiulant of S is the set of
s T € B(H) satisfying ST =TS for every- § € 8§ it is denoted

& The-cotimitant of any set of operators is an algebra containing the

;bdycnmyope ator, and/one may easily check that S" is a weaklyj closed unital

subalgebra of B(H). S =S5" is closed ‘'under the involution‘of B(H), then

§' is. a von Netimsann algebra.
We concludé-the section. with-a discussion of multiplication operators on

Hilbert spoces associated with measure spaces. Let (X, B, s) be a o-finite
measure space; we-suppress explicit; reference to the. g-algebra of sets B
unless there is cause for confusion.- L*(X, ps) is a Hilbert space, which may
ot may tiot be separable; the-measure space (X, u) is called separable when
L3(X, ) is a separable Hilbert space. Every function f € L®(X, i) gives
rise to in operator M, that acts as follows:
(MfE)(p) = f(p)E(P), PEX, E€L¥X,p).
L=(X,p) is a commitative C°-algebra with unit relative to its pointwise
operations and its essential norm
[ il = esssup{|f(p)] : p € X}.

In more detail, the involution in L°°(X, u) is defined by f*(p) = f(p), p € X;
the norm is

| III lo = sup{t > 0 y{pex : | fép)| > t} > 0});
and the involution is related to the norm by ||/* fllo = I/l

THEOREM 2,1.3. For every f € L™(X,u) M; is o bounded operator on
LYX, ).. The map f v> My is.an isometric +-isamorphismi of L=(X, 1)
onto a commulative C*-algebra of operators M C B(H ).

PROOF. The key assertion here-is | M| = [[f]loo- Indeed, the inequality
< is clear:from the fact that |f(p)| < {[fleo for almost every p € X, since
this entails |f - £[ < || f]leo/€| pointwise almost everywhere for € € L*(X, u),
hence ||/ - €]z < ||fllocl€l2- For the.opposite inequality, assume f # 0 and
choose a number ¢, 0 < ¢ < || flloa- The set {p € X : |/(p)] > c} bag positive
measure, go by a-finitepess we can find a subset £ C {p€ X : [f(p)l > c}
having finite. positive measure. Thus xg € L(X, 4). and from

1f(P) - xel@)| 2 exelp)y PEX,
we obtain ||M;xglla > c|lxells after squaring and integrating. Since yg 18
not the zero element of L2(X, u), ||M/]| = ¢ The tnequality AL, jf 2 {|/fllec

follows after ope takes the supremum over such c. ‘.

Obvigusly, f — Af; is a homomorphism of algebras that carries the
unit of L%(X, u) to.1, and one may verify M; = M. directly. The set of
operators {M, : f € L*) is normr-closed because L™ is.a Banach space. L[]
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The set of operators M = {My : [ .€ L¥(X, n}} is called the muisipy;
aatron algebra of the measure space (X, ). It is an abelian vori. Neumanp
algebra. since it is closed in the weak-operator topology, though that ig not
obvious from what has been said. We will look more closely at multiplication
alsebras in Chapter 4.

Let us now compute the spectra of multiplication operators. Since ap
clemem of L(X, p} is not a function but an ‘equivalence class of Fctions
that sgree almost everywhere, the niotion of thé range of f € L*(X, 1) must
be approached with some care. Choose.a representative in the class of §,
which we will call f. We can use [ to défine a measure my on the o-algebra
of Borel sets in C:

It is a straightforward exercise to-show that every Hinction g that agrees
almast everywhere with f gives rise to the same measure, m, = my; hence
thic measure depends only on the eguivalence cldss of J as an element of
L=(X.pu). U p is a finite measure, then so'is my. But if 4 is only o-finite,
then my pred not be o-finite; indeed, in such cases points of C can have
infinite m-measure (consider the case of a constant function f). In all
cases. however, my is a countably additive measure defined on the Borel
o-algebra of the complex plane. As such it has a uniquely defined clased
suppon. defined as follows. By the Lindeldf property, the union G of all
open subsets of C having my-measure zero can be reduced to the union
of a countable subfamily of open sets of mensure zero; hence G satisfies
ms(G) = 0. Obviously, G is the largest ‘apen set of my-measure zero. [t
fullows that the complement F = €\ G is a closed set with the following
property: A complex number A belongs to F if and only if for every ¢ > 0
we hiave

(2.1) ulp € X |f(p} — A} < €} >0,

Muteaver, every point of the complement of F has a nelghborhood of my-
INCaRULe 210,

The st F ig called the essential range of f. To reiterate: A helongs to
the essential range of f if ‘and only if every neighborhood of A has positive

rlrls ,;-me:asme. The vasential range of [ is a campact set £ with the property
t

W e = sup{lA{: A € Y.

THEGREM 2.1.4. For every f € L=(X

_ 42), the apectrum of the mudtipli-
talion oprrator My is the eagential runge / 4

of f.

PRODF. 1T A does not balouy to
80 » > D yueh thay beXx: |-
vverywhiere (dy), Iy follows Lhat,

the essential rauge of f, theu chere is
Al <e} =0, e, |f(p) ~ Al > ¢ almost
the function

. 1
B(P}—m, pe X,
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w0 L°(X, 1) and its multiplication aperator M, is a left and right

— Al
inverse of M; . guppose A is s point in the essential range of f. We will

<hibit a sequence of unit vectors £1.&2,-.. € L} X, p) with the property
ﬂﬁ_ﬂa |M€n — AEn]| =0,

_howing that A € a(M;). Indeed, {p € X : |f(p) — A| < 1/n} is n set of
positive measure for every n = 1,2,..., and using o-finiteness of x we fnd

nsuliﬁﬂ
E.C{pe X:|f(p) - Al £1/n}

satisfying 0 < p(En) < 00. Letting £, be the unit vector u(E,)"?xg, one
08

I(f(P) = Méa(P)| S 1~ 'la(p)l, P E X,
and hence [[(f — A)&allza € 1/n tends to 0 as n — oo. 0

Exercises.

(1) Let {-,-] : # x H — C be a sesquilinear form defined on a- Hilbert
space fI. Show that |-, | satisfics the polarizalion formula

3

4[{,;7] = Z ik [E + i"‘rp,E + i"q] .

k=0

(2) Let A € B(H) be a Hilbert space operator. The guadralic form
of A is the function g4 : H — C defined by y4(€) = (A€,£). The
numerical range and numerical radius of A ure defined, respectively,

by
W(A) = {qa(&) : i€l = 1} € C,
w(A) = sup{lga(&)] : &Il = 1}.

(a) Show that A is self-adjoint iff ¢4 is real-vulued.
(b) Show that w(A) < [|A|l € 2w(A)} nnd deduce thot g4 = gu
only when A = 8. Hiant: Polarize.

(3) Show that the adjoint operation A — A° in 8(#) is weukly con-
tinuous but not strongly continuous. Hint: Cousider the sequence
of powers of the unilatcral shift S, 59,8, .. ..

(4) Show that the only operators that commute with nll opcratars iu
B(F) are the scalar multiples of the identity.

(8) Lot C be the closure in the strong operator topology of the sl of
all unitary operators in B(M). Shuow that € conslsts uf isometries.

(6) Show thnt the unilateral shift S belongs to € by «xhibiting o xe-
quence of unltary operators Ly, Uy, ... that couverges Lo S in the
strong operolor topology. Hint: Consuider the mwutrix of S relative
to the obvious Lusis, and louk for unitary mutrices that strungly
approxhinute Inrge n x n blocks af it,
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({7} Let (X, pr) be a o-finite mensure space and Jet f:X o Ch
hounded complex-valued Bore! function. Show that the e,
range of [ can be characterized as the Intersection tlal

(Wo(X): g~ J}

of the closed ranges of all bounded Borel functions g : X — ¢ ypy
ngree with f almost everywhere (dp).

2.2. Commutative C*-Algebras

DEFINITION 2.2.1. A C*-algebra is a Banach algebra A that is endowed
with an involution z ~» z* eatisfying Jlz°z|| = ||z||* for every z € A.

More explicitly, the involution « is an antilinear mapping of A into itself
that satisfies {zy)* = y°z*, z*° = x, and is related to the norm-.of A by
the asserted formula, Cr-algebras need not contain a unit. Any norm-
closud solf-adjoint subalgebra A of B(f) is a C*-aigebra, ns we have seen
in the previous section. On the other hand, abstract C°-algebras are not
necessarlly sssociated with operators on any specific Hilbert space.

We now show that every commistative C*-algebra with unit is-isomet-
rically +-lsomorphic to the algebra G(X) of all complex-valued coptinuous
[unctions on a compact Hausdorff space X. A similar resuit holds for nonini-
tal commutative C*-algebras, provided that oue is willing to replace X with
o locally compact Hausdorff space and C{X) with the algebra of continudus

functions vanishing at infinity. We will confine attention to-thewunital case
here: the uonunital generalization can be found in {2], for example.

This C*-algebraic charscterization ‘of spaces has led analysts to-think
of noncominutative C*-algebras as noncommistative generalizations of topo-
logical ¥paces, and of problems concerning the classification of these alge-

Lras up 10 s-lsomorphisin as o noneommutative generalization-of (algebraic)
\opvlogy. For example, the K -theory of spaces developed by Grothendieck,
Atlyah, Botl, and uthers duriug the.period 19551965 hes now been, general-
ized to'C*-algebras in a way that provides effective tools for the corapiitation
of these iuvariants (8). Indeed, -.contemporary ‘work ‘an the classification of
lm!PlE. C*-algebras has led to the expectation that the mmlmpurta.nt gim-
ﬂﬁr&fﬁ?ﬁgﬁ completely ]:!nemn;:imd by their K-theory! Since very

OCOEI L At e« P con have the same I{-thqnny, this la-gg aspect .f;rl'

fnulative wopology™ that is entircly new and hes no counterpart in

\be clussienl thoeary of Lopological spaces.
um:: beg,m with 8 briel discusslon of the uxponential mep in.-a {perhaps

mlguu:.me]‘ unital ‘Banach algebra A. For every element € A the
expunentiol of = is defined by |

(2.2) z i i
2" =) ......x”_
AL
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Notice ¢hat this series CONVCTEes absolutely, since
o

o0 1 oo
Y =z < ) llzl*/nt = el < oo,
s
n=0 n=0
und we have the estimate lle*|l < eli®l. Obviously, e? = 1.

REMARK 2.2.2. Rearranging products of aeries. Let ag,a),a2,... and
bo, b1, bn, . .. be two sequences of elements of A such that ) _la,| < oo,

5 Jball < oo, and let z = Y . 8n, ¥ = Y.nbn. Then the product zy is
given by the series Ty = Y, tn, Where

(2.3) Cn =agbn +Q)bn—1 +:---+andy, n=012...,

the series ¥, ¢, being abeolutely convergent in the sense that 3_, |lcal < oo
The proof is an instructive exercise in making estimates, and is left for the
reader in Exercise (1) below.

PROPOSITION 2.2.3. Let z,y be elements of o unital Banach algebra A
salisfying zy = yx. Then eV = ¢TeV.

PROOF. Using formula (2.3), we have

= 1 _1 e 1
cev=3 1ol ~ L o).
o= a5 (2 )

Since xy = yz, the proof of the binomial theorem applies here to give

@i =3 (})v* = T oo
p+F=n

k=0
hence the right side of the preceding formula becomes

E %{: +y)t =
n=0

.,

Much_ of the terminology introduced in the preceding section can be
applied to abstract C-algebras as well as C*-algebras of operators. For
example, a normal element of a O-algebra is an element that commutes
with its adjolnt, and a unitary clement of a unital. C*-algebra is an elemeant
u satisfying u'u = uu® = 1. A unitary elewent has norm 1, since Jjul)? =
futw|| = ||1)j = 1.

THEOREM 2.2.4. Let A be a commulative.C*-algebra unth unid, and let

X = sp(A) be the Gelfand spectrum of A. Them the Gelfand mup is un
isomeiric s-isomorphism af A onto C(X).
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Proor. We siow first that every w € sp(A) preserves the adjoin, in

bl ‘ the
senae that w(r®) = w(z}, 7 € A. Since avery € A can be written uniquely
in the form > = 1y + trg where zy and 23 are self-adjoint, it suffices to

show that w(z) is real for any self-adjoint element x € A. To prove this, fix
r=7x"¢€ A, fix t € R, and consider the exponential

m a i b
it )"
e — oitF — Z( ) e

!
o= n

Notire Lhat

(2.4) wing) = Z (_ﬂ)ﬂ wz”) = Z mw(z)“ = pltl=)

! n!
n=0 n n={}

Nole, too, that u, is unitary. Indeed, by inspection of the exponential saries
(ooting that ¢" is ren! and r" is sclf-adjoint for every n > 0), we have
up = « " nod hence wiuy = ¢”"ef™* = ¢ = 1 by Proposition 2.2.3.
Simblarly, ueu; = 1. 1t follows that {ju,]] = 1, and thus jw(wn)] < ||lw|] = 1 for
every § € R, Using formula {2.4) and the foct that R{itw(z)) = —(Qw(x),
we find that

o-10eT) _ JRiitls)) _ |c-t=-r(r)| = |wiu)] < 1, { eR.

Since ¢ € R is arbitrary, this implics that the imaginary part of w(z) must
vanish, proving that w{z) is real,

This shows that the Gelfand map of A to C{X) is self-adjoint in the seuse
thit the Gelfand transform of 2* is the: complex conjugate of the fanctien
z, for every 7 € A, It follows that {f : 5 € A) is a self-adjoint subalgebra
of C(X) that seporates points and contains the constant functions. The
Stane-Weierstrass theorem iniplies that {7 : x € A) is norm-dense in. C(X):

We complete the prool by showing that the Gelfand mAp i8 isgmetric.

We cladin first tht for = € A, [« = ||z}, Indecd, using the formula
f1=° 2]} = 1z} and the fuct that r* commutes with = we have

“Ij“ = "[:.'2}"11“”2 = Il;r'::::-':':.r"” c = ”(:r:'z)2 “un = x| = ||I“2
Replacing z with » gives |23 = l=ii?, and after further iteration
[0 =10, n=1p2....
The Golfand-Mazyr formuin for the spectral radius (Theorem 1.7.3) implies
el = 42 = Y )22 127 = i),

N~
while Bum Theorer 1.9.9, we have

nE) ==sup{iAl: X e a{z)} = sup{|aw)] ' w e 5p(A)} = [|&]io,
ansd bence the asserted formola Izl = ). . L
ConaLLany 1,

Let A biea (perbnps noncomy nutative) upital € '
a . . . - ) n Lﬂl —
Thews tue: spectrum of sny sel-ndjoint, element = of A ia'}tea]m. ¢"-slachr.



22, COMMUTATIVE C*-ALGEBRAS 19

= r° of A, and let B be Lhe nornn-closure

PROOF . iolg in . Then B is a commutative C*-subalgebrn
of the sct of ﬂ:iis:l{h‘f:ln!:;hd A, hence o 4(z) C ag(z). On the other fmnd,
implics that w(z) i real for every w € sp(8), and hence
i, (z) Coplz) = {wlx} W € sp(B)} € R. H

The following result strengthens the spectral permanence theorem for
he category of C"-algebras:

CoroLLARY 2. Let A be a unitel C*-algebra and let B C A be a C°.
subalgebra of A that contains the unit of A. Then for every £ € B we have

= o4(z). In particular, for every self-adjoint T € A,
=l = (=)

Choose &D element I

oa(r)

ProoF. We know that o4(x) C og(z) in general, and to prove the
opposite inclusion it suffices to show that for any element £ € B which is
invertible in A one has z~! € B.

Fix such an z. Then z°'z is a self-adjoint element of B that is also
invertible in A. By the preceding corollary, og(z°z) is real. In particular,
every point of og(z*z) is a boundary point. By Theorem 1.11.3, a5(z°z) =
_803(:'3) C oa(z"z). Since 0 ¢ o4(z°z), 0 ¢ oa(z°z), and hence z°r is
invertible in B, equivalently, (z°z)~' € B. Obviously, (z°z)"'z* is a left
inverse of z; hence z~! = (z°z)~z" must belong to B.

The assertion: that ||z)] = r(x) [ollows after an application of Theorem
2.2.4 to the C*-subalgebra of A generated by z and 1. O

Thus we may compute the spectrum of a Hilbert space aperator T rel-
ative to. any C*-algebra that contains T and the identity. In particular,
we may restrict attention to the unital C*-algebra generated by 7. This
s particularly useful in dealing with normal operators, since in those cases
the generated C*-algebra is commutative. We will pursue applications to
normal operators in the following section.

Exercises.
(1) Prove the assertions made in Remark 2.2.2.

(2) Let A be a C*-nlgebra.
(a) Show that the involution in A satisfies {lz°|| = {|z].
(b) Show that if A contains a unit 1, then |[1] = 1.

In the following exercises, X and Y denote compact Hausdorff
spaces, aud 8.: C(X) — C(Y) denotes an isomorphism of com-
plex algebras. We do not assume continuity of &:

(3) Let p € Y. Show thal there is a unique point ¢ € X such that

8f(p) = fq), [€C(X)

(1) Show that there is b homeomorphism ¢ : ¥ — X such that #f =
f o . Hint: Think in terms of the Gelfand spectruin.
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(5} Canclude that @ is necessarily a sell-adjoint linear map in-the Sense
that 8(f°) = 0(J)*, [-€ C{X).

(6) Formulate and prove a theorem that characterizes unitql algebra
homomorphisms & : C(X) — C{Y’} in termsof certain maps ¢ .
Y — X. Which maps ¢ give rise to isomorphisms?

In the remaining exercises, let H be a Hilbert space and 1g
T € B(HY' be an invertible operator. Define 8 : B{H) ~ B{H)
by

8(A) =TAT', A€ B(H).

{7) Show that # is an automorphism of the Banach algebra structure
of B{H).

(8) Show that the map 8 : B(H) — B(H) of the preceding exercise
satisfies 0{A°) = 8{A)* for all A € B(H)If and onlyif T is 4 scalar
multiple of a unitary operator.,

2.3. Continuous Fanctions of Normal Operators

One can reinterpret Theoram 2.2.4 so as to provide a powerful ‘functional
calculus for normal operators. Sometimes this functional calculus s referred
ta ns o weak form of the spectral thedrem, or even as tlie spectral theorem
itsell; but that is a half-truth at best. The spectral theorem proper will'be
taken up in Section 2.4.

Throughout this section T will:denote a normal operator-on s Hilbert
space £, The spectrum of T is a compact subset X of the complex plane,
and by the Stone-Weierstrass thearem polynomials in z and Z of the form

N
(2.5) iz} = Z Emn2 2, z€ X,

m.={

fnfm 8 unital seli-adjoint subalgebra of C(X) that is norm-dense in C(X).
({‘.:wen guch 8 functibn f (or more properly, given the set of coefficients
Cinn S m,

n < N}, one can-write down a corresponding operator

N
2.6) fT)= 3" cpaT™1™,

m,n=D

Notice tht}t this much could have heen done even if the operator 7' were not
uﬂf}tml. since we 1}.&\:{: been explicit-about the order of the factors 7™ and
':i‘ on the right side of (2,8). However, for nounormal opesators J - JT)
i8 l‘lﬂl. 4 well-defiued map of functions o X.t0:B(H ), cvan for holpgacph‘it
i;:gliiq‘miﬂ?; Jiz)=va4a12 4 4 aya¥ (one can ensily sen why this is

A } tondiderug Lhe case of nilposent 2 %2 matrices dcting as operdtors on

But fur normng) opetotors, we have:
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_Let T € B(H) te a normal operalor with spectrum
ap thal carrics polynomials [ of the form (2.5) to
= '\ of the form J(T) in (2.6) extends uniquely lo on isometric «-
rolo fC(X) onito the C* -algebra generated by T and 1.

pooF. Let A be the C"-algebra generated by T and 1. We apply

The:tm 294 to A as follows.

We claim first that the map w € sp(A) = w(T) € C is a homeomorphism
ofthe Gelfuﬂspect;rum of Aonto X = o‘(T) I.DdEEd, tHiS:mapL-is ohvi |)|'
1 continuoiia map of sp(A) into C, and it s injective because if w; and w;
ore two elements of sp(A) with w) (T') = wy(T), then by Theorem 2.2.4

wWi(T*) = w1 (T) = wo(T) = wa(T"),

and hence wy and wq agree on the linear span of all- products T7T"°", a dense
subspace of A. By compactness of sp(A), this map is a homeomorphism of
sp{A) onto the spectrum of T relative to 4 which, by Corollary 2 of Theorem
2.24, is X = a(T).

These remarks identify sp(A) with X in such a way that the Gelland
map carries an operator of the form f(T) in (2.6) to a polynomial f € C(X)
of the form f(z) in (2.5).

We conclude from Theorem 2.2.4 that the inverse of the Gelfand map
defines an isometric s-isomorphism of C(X) onto A that uniquely extends
the map f — f(T') described above. .

Exercises.

(1) Show that the spectrum of a normal operator T € B(H) is co-
nected if and only if the C*-algebra generated by-T and 1 contains
uo projections other than G:and 1.
Consider the algebra C of all continuous functions f: C — C.
There is no-natural norm on C, but for every compact subset X & C
there is a seminorm

Ifllx = sup|f(2)I.
3€X

C is o commutative s-algebra with unit.

(2) Giveo a normal operator T € B(H), show that these is a natural
extension of the functional calculus to a s-homomorphism f € C —

J(T) € B(H) that satisfles || J(T) = | flla¢)-
(3) Continuily.of the functional calculus. Fix n function f € C and let
Ty, Tz, ... be asequence of normal aperators that converges in norl
to an oparator T, limg T, — T)f = 0. Show that (T ) converges

in norm to f(T).
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2.4. The Spectral Theorem andDiBEQnaliization

The spectral theorem is o generalization of the familiar thﬁ;ﬂfﬁﬁ‘?&om linee
algebra asserting that a self-adjoint n x n-matrix 4 ecan:hg: ﬂfﬁg‘ﬁn'ﬁ]}m
more precisely, there is a diagonal matrix D-and a unitary matitic ¢7 ik
that A= UDU~'. The diagonal coingionénts of D aie the cigenvalues of
A listed in some order, repeated ‘according to thelr miiléiplicity. A simia,
diagonalization result is valid for normal n x n compléx matrices.

In reoding this section one should keep.in mind not oply .the fnite.
dimoensional case, or the infinite-dimensional case of self-adjoint operatom
having pure point spectirum, but:also the case of operators having continuous
spectrum and no eigenvalues at all, such as the operator X acting on /2 of
the unit interval {0, 1] by

(2.7) Xfity=tf{t), 0<t<l

We assume that we ate given a normal ioperator A acting on a separn-
ble infinite-dimensional Hilbert spoce H. There is an appropriate version
of the spectral theotem ‘foroperators acting on inseparable spaces, which
we désoribe briefly ot the end of the section. However, we point out ‘that
operators acting on inseparable Hilbert spaces (in particular, normal ones)
rarcly arise. in practice.

1o order to properly formulate the spectral theorem we must general-
iz the notion of an orthonormal basis s0 as to -accominodate. ‘fcnntipl.lﬂlls"
bases, und we must introduce a precise notion of “diagonalizable™ aperator
relative to this generalized notion of basis.

Consider first the classical notion -of orthonormal basis for H.. This is
a sequence £ = {e),ez,...} of mutually -orthogonal unit vectors in H that
have H as thoir closed linear span, Fixing such an'€ we can define a unitary
operatlor W : £2 — H as followa:

(2.8) ‘1’l=4\161+)l2eﬁ+"-, AE’-’?-

It is clea.r_‘ thut every unitary operator W : £ — H arises in this way
rom & unique orthonormal bagis € for H. 'We conclude that specifying a

particular orthonormal basis for H is the same as specifying a particular
uristary operwtor from 2 o H.

Continuing in Lhis veln, suppose we are also given a normal operator
A € B(H) that hus each of the given basis vectors os an cigenvﬁlﬁc:

(2.9) Ack = Uply, K= 1,2,....

I follows that the sequence .of ‘ej {;
. ot ‘exgenvalues (a4 ) bel o > _
nhitary operator W : 2 — Hoof (@4} belongs Lo £, and for the

- (2.8) we find that the transformes operat
8 =W AW € B(6) is o mulviplication operator: e operator

(BAYy = ag g, Ael, k=112 ...
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operator A acling on H is diagonalized by a given orthonormal
Thus, 87 4 only if the unitary operator associated with the basis implements
loste 'f_ :;}gncc belween A and a mulliplication operator acling on £2.
an cqu! ion of diagonalization is inadequate as it stands, since it involves

wjy'[‘hlsna] opérators having pure point spectrum. However, it can be

‘ -meralized in & natural way so as to ifclude the ‘possibility of continuous

gpectrum.

DeriNiTION 2.4.1. An aoperator A acting on a scparable Hilbert space
i s sakl to be diagonalizable if there is a (necessarily separable) o-finite
mensure space (X,p), a function S € L™(X,u), and 8 unitary operator
W LY X, pu) = H such that WM, = AW, M, denoting multiplication by

(M€){(z) = [(x)€(x), <z€X, £€L*X,p)

Notice that a diagonalizable operator is necessarily normal, simply be-
csuse multijilication operators are-normal. Note, too, that the operator X
of {2.7) is diagonalizable, since it is already a multiplication operator. Some
more subtle examples are described in the exercises. The spectral theorem
asserts that conversely, every normal operator is diagonalizable. We have
broken the proof into u sequence of three simpler assertions.

LEMMA 2.4.2. Let Ay, Az,... be a finile or infinite sequence of diago-
nalizable operators acling on respective Hilbert spaces Hy, Ho, ..., satisfying
sup, [[Anl] < 0o. Then the direct sum Ay ® Ax ® --- is a diagonalizable
operaloron H1 ® Hy & - --.

PROOF. This assertion follows from the fact that the countable.direct
sum of o-finite measure spoces is & o-Gnite measure space. In. mare detal,
by bypothesis, we li;;:éy find o-finite measure spuces (X,,, i), functions f,, €
L*®(X,, ), and tnitary operators W, : L2 X, pp) = Hoon=1,2,...
such that

Wnﬁff;ﬂ = A, W,,. n=12,....
Since A, is uniturily equivalent to Af;,, our previous work with multi-
plication operators implies that the norm of f,, € L*=(X,, p.) satisfies
“!n “an = "A;,", hence

sup I fnlle = sup l4all < oo.

Let ¥ = XU XaU--- be the digjoint union of sets with the obvious
o-nlgebra of subsets and consider the measure u defined on X by

pE) = m(ENXy) +pa(EO X + -

for Borel sets £ € X. The measure i is a:-ﬁnile because ca_ch Hn i8S
Moreover, there is a uatural identificution of L3(.Y, u) with the direct sumn

of L2-spaces L3(X), ) & L3(Xz.p2) & ---. Thus the direct sww of uni-
tary operators W = W, & Wy @ - - gives rise to & unitary operutor fruw

L2(X,p) to H, @ Ha ® ---. The unique function f : X' — T satislying
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{ Ix.= Ju belongs (o L®{X, ), it determines n b,ounr.lgd m

operator My € B(L3{(X,)), and the unitary operator W int
and Ay B Ay p---. Hence Ay & As @ - - - is dingonalizable,

uitiplieation
ertwineg My

L

LeMMma 2.4.3. Lel A be n bounded operalor on o separable Hilbert space
f1 and lct A be the conipler algebre gencrated by A, A®, and the identity,
Then there is g {finite or infinite) sequetice of nonzero A-invariant subspaces
Hy, Ha, ... auch that:

{(WH=HaHa.--.
(2} Earh H, contuins a cyclic vector &, for A: H, = E, n=13....

Proor. This is a standard exhaustion argument. By Zorn's lemma we
can find n fnmily of mutually erthogonal nonzero subspaces {H, : @ € 7} of
H, ench of which is A-invariant, each containing a vector £, such that
is spanned by AL,, and that is maximal with respect to.these properties.
Since H is separable, the index set J must be finite or countable, and we
can replace it with a subset of the positive-integers if we wish.

It remnins only {o show that the spaces Hg span H. But if they did
not then the orthocomplement JC of 3~ H, would be a nonzero A-invariint
subspace of H (note thet since A is a self-adjoint set of operators, the
orthocumplement of an A-lnvariant subspace is A-invariant). ‘Picking afly
nonzero vector § in K we obtain a nonzero cyclic subspace Kg = AL C K
that can be adjoined to the family {H,)} to contradict maximality. ]

The key step {ollows:

LEMMA 2.4.4. Let A be a normal operitor on o Hilbert space H .and

assume that the «-algebra generdted by A and the identily has o cyelic vector.
Then A i3 diagonelizable.

ProoF. The cyclic vector hypothesis means that there is-a veotor £ € H
such that the sct of vectoss A€ is dense in H, where A is the «-algebra
gonerated by A and 1. Fix such a vector € and let X C C be the spectrum:of
A. .We will show that there is a finite mepsure p on X with the property that
A is uniterily equivalent. to-the multiplication operator M, € B(L(X, 1)),
({2} = z (2 € X) belng the current variable function fn C(X) C L=(X, 4).
Recalling that the functional caleulus for normal operators provides a »-
towemorphism f € C(X) ~+ f{A) € B(H), we defiuc a linear functional p
o0 CX) by p(f) = (f{A)E,€). Since
1Y = o7 1) = LAY TEAYE. &) = IS (ANE|E > 0,
p 18 u positive linear funct

tonal; bence the Riesz-Markov theorem: icles
# unique fsdte positive Borel meagyre $p on' X auchliﬁhﬁt e

f.\‘ f(:z)tf;u{:n) = {f{A)¢, €), / € C(x).
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(X) ns a subapace of LY(X,u), then C(X) ia dense, and for

consider C
If o C(X) we have

FE T AN 9(ANE) = (a(A) J(A)E.E) = plaf)
= [ 1H)at)alz) = 4 9uscn

he f € C(X)+— f(A)E € H is an isometry of the dense subspace
Thes ! g"?;(,p) onto the subspace {f(A)E : J € C(X)} C H, which is

JY g
C(X) H because £ is cyclic for the «-algebra generated by A and 1. The

dense in
<Josure of.this operator is a unitary operator W : L3(X, ) — H.

It remains to verify that for every f € C(X) we have WM, = f(A)W
the assertion of Lemma 2.4.4 being that this formula holds for f(z) = =,

ie X): For that, fix f € C(X). Since C(X) is dense in L*(X,u) it is
enough to check that

WM = f(A)Wg, ge C(X).
But for fixed g, WM;g9 = W(fg) = (f9)(A) = [{A)g(A)E = f(A)Wgq. O

SPECTRAL TREOREM 2.4.5. Every normal operator acling on a separuble
Hilbert space is diagonalizable.

PROOF. Let A be the =algebra generated by A and the identity. By
Lemma 2.4.3 we can decompose H into a finite or countably infinite direct
sum of nonzero subspaces ) @ H; ® --- such that AH; C H; and the
restriction of A to H-hns a cyclic vector, & = 1,2,.... By Lemma 2.1.4,
the restriction A, of A to M, is dingonalizable. Since the-decompasition

A = Al D AQ D---
exhibits A as a uniformly bounded orthogonal direct sum of disgonalizable
Operators, Lemma 2.4.2 above implies that A is diagonalizable. 0O

) REMABK 2.4.6. Comments on inacparability. If one insists on general-
hms this form of the spectral theorem so as tq, include normal operators
acting on '%quble Hilbert spaces, then it is possible to do so but some
The definition of diagonalizable operator must be generalized so as to
&"P"’ inseparable measure spaces that are not o-finite. Thus, one says that
an operator A € B(H) is dingonalizable if there is a positive measure space
(X, ), a fupction f € L*(X, i), and & unitary operator W : L3(X,p) =+ H
such that,WM; = AW. One must replace Lemma 2.4.2 with the assertion
that the direct sum of n uniformly bounded family {A, : @ € [} of diag-
onalizable operators is diagonalizable, where / is an index set of arbitrury
cardinality. The proof of that result is similar to the one given, except that
one has to copstruct uncountable direct sums of measure spaces. This re-
Quires some care but poses no substantial difficulties. No change is required
for the key Lemma 2.4.4, but one must replace Lemma 2.4.3 with the as-
sertion that every normal opocator is a perhaps uncountable direct sum of
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normal operators having cyclic vectors, Once these preparations ar

- ¢ made,
the proof of the spectrnl theorem can be pushed through in general ©

Exercises.

(1) Let X be a Borel spacs, let f be a bounded compiox-valyed: Borel

function defined on X, and let i and v be two.g-finite measiies gp
X . The multiplication aperator My defines bounded operatars A op
L*(X, ) and B on L3(X,v). Assuming that u ard v are utually
absolutely continuous, show that thére is a unitary operator W .
L3 X, 1) = L3(X,v) such that WA = BW. Hint: Use the Radon-
Nikodym theorem.

(2) Show that every disgonalizable operator on & separable Hilbert
spnce is unitarily equivalent to a multiplication operator My acting
on L X, 1) where (X, ) is & probability space, that is, a measire
space for which u(X)=1.

The following exercises concern the seif-adjoint operator A.de-
fined on the Hilbert space of bilateral sequences H = £#(Z) by

Afn=Ens1+ 81, n€EZ, EcfZ).

(3) Show thnt A is disgonalizable by exhibiting an explicit unitary
aperator W : LT, d8/27) - H for which WM; = AW, where f
T — R is the function f{e'?) = 2c088. Deduce that the spectum
of A is the interval [-2,2] and that the point spectrum of A is
empty.

(4) Let U be the operator defined on Z*(T, d8/2x)} by

UKe®)=Je®), 0<0<2n.

Show that U is & unitary operator on L3(T,d0/2n) that satisfies
U? =1, end which commutes with A.

(5} Let B the the sct of all cperators an L2(T,d8/2r) thet haye. the
form My 4+ Myl where f,9 € L%(T,d8/2n) and U is the unitary
operator of the preceding exercise. Show that Bis s-isomdtphic to
the C*-algebra of all 2 x 2 matrices of functions. Ma(Bg), wheie B
'a the abelian C*-algebra L°(X, i), X being the upper halfof the
unit circle X = TN{z =z+iy € C: p > 0} and’y being the
restriction of the measure do = dd/2n to X.

The following exerclses ask you to.compare the -operator A fo:.a

related operator B that acts on ‘the Hilbert space L*({-2,2],4), v

Seei,;idbe;ague measure on the interval (-2, 2. The operator B is
Bi(z)=z[(z), ze(-2,2, fe £3({—2,2),v).

(8) Show that 8 has epectrum [-2,2),

that it has no point spectr
wud deduce Lhat for every f € ] RS point spectrum,

—2,2| we have ||f(A}] = | S(B)I
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) Show that A and B are not unitarily equivalent. Hint: What is the
(7

tant of B
(8) ﬁ:ﬁﬂt 4 is unitarily equivalent to B & B.

2.5.- Representations of ‘Banach «-Algebras
\We now discuss some basic facts of representation theory that are best for-

mulated I very gencral terms.
peFNiTION 2.5.1. A Banach +-algebra is a Banach algebra A that is
ndowed with an-involution z — z° satisfying Iz°li = l|Izll, z € A.

Every C*-algebra is, of course, a Banach s-algebra; but we will see many
examples of Banach s-algebras for which the C™-condition |z°z|| = [iz]|°

fails.

DEFINITION 2.5.2. A representation of a Banach »-algebra is a homo-
morphism 7 : A — B(H) of A into:the s-algebra of bounded operators on
some Hilbert space satisfying #(z°) = n(z)* for all z € A.

Notice that we have not postulated that representations v are bounded,
butmerely that they are homomorphisms of the complex s-algebra structure.
The set of all representations of A on a fixed Hilbert space H is denoted
rep(A, H). The image #(A) of A under a s-representation is a self-adjoint
subalgebra of B(H) that may or may not be closed in the operator norm. A
representation  : A — B(H) is said to be nondegenerute if for every £ € H,

7(z) =0, Vz€eA = £=0.

REMARK 2.5.3. A representation @ € rep(A, H) is nondegenerate iff

H = [z(A)H] is the closed linear span of the set of vectors
r(A)H = {n(z)e:z€ A, € H).
Mm'_ﬂ‘ generally, letting N, = {€ € H : n(A)E = {0}} be the null space of
the operator algebra #(A), H decomposes into an orthogonal direct sum of
w(A)-invariant subspaces:
H = N, & [a(A)H)].

See Exercise (1) below. The. closed subspace [r(A)H) is called the essential
space of x.

Given two representations 7, € rep(A, Hy), k = 1,2, there is a natural
notion of the direct sum of representations 7y ® 2 € rep(A, H; & Ha).

m @ m(z) =m(z)dm(z), =€4.

A subrepresentation of a representation 7 € rep(A, H) is a represcntation
%o € rep(A, Hp) obtaited from = by restricting to a n()-invarinnt subspace
Hy C H as follows:

ro(z) = n(x) (#,€ B(Hyp), r€ A
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Finally, two representations #y € rep(A, Hi), &k = 1,2, are saig 4 Y
unitarily equivalent {or simply equivalent} if there is & unitary éﬁaﬁmt
W : Hy — Ha'such that Wm(z)W*® = ma(z) for-every z € A. 1t 18 cloa,
uhat cquivalent representations are indistinguishable from each other.

Thus we may paraphrase Remark 2.5.3 ns follows: Bvery tﬁiﬁfmﬁntabion
% of n Banach s-algebra on & Hilbert space is equivalent to the direct gy,
7. & m of o nondegenerate representation 7, with the zero répresefitation o
on some Hithert space. Thus, the representation theory 6f Banach «algebras
reduces to the theory of nondegenerate representations.

PropostTION 2.5.4. Every nonunital Baniach v-algebra. can be embedded
s a mazimal ideal of codimension 1 in a unital '‘Banach »-algebm for which
aj) = 1.

ProoF. Let A be a nonunital Banach »-algebra. The vegtorspace AL
can he made-into a e-algebra A by introduéing the operations

(a,A) - (b,p) = (ab+ Ab+pa, Xp), (2, A)" = (a®, 3).
The element 1 = (0,1) is a unit for A,.and we have (g,A) = a + Al. Ob-

Lot
i L

viously, A is 2 maximal ideal of codimension 1 in° A. A Becomes a. Banach

+-lgebrs by way of the.norm ||(a, A)|| = llaff+ [Al, with respect to-which' the
inclusiou map of A in A is an isometric »-homomorphism. N

The following implies that representations of Banach s-algebras are nec-
csgarily bounded. There are many applications of this remarkable result.

THEOREM 2.5.6. Let w ‘€ rep(A, H) be o representation of a Bonach
«-algebru A on a Hidber! space H. Then ||7l} < 1.

PROOF. By the preceding remarks, it suffices to-.consider the case in
which 7 is nondegenerate.

We denl first with the case in which A has a unit 1., Because of nonde-
generacy we have w(1) = 1 (see Exercise (2), below). Notice that for every
a € A, o{x(a)) C o(a). Indeed, A € C\o(a), then (a—A)~? € A, ard gince
(1) =1, ={{as ~ A)~!) is the inverse of {a) — A. Hence ) € C\ g{n(a)).

We ghow next that {|=(a)l| < ||ail for every @ € A. To'see that, we tse
the C*-property of the norm in B{H) to write

(ol = lix(a) w(a)ll = lir(a"2)}.

Stuce m{a‘a) is 8 self-ndioint element of B(H), its norm agrees with its
spectral radiug, so that by the Preceding parograph, |

irla®a)}| = rim{a*a)) < r(a®a) < Jle%af} < lia*illaft = [alf*.
Hence im(a)]) < |jai).
Suppase now that A kos no . unjt,

- and let A b .
discussed in Propositivn 2.54, The nat * be its unital. extension

ural extension of r to A is
T(a + A1) = w(a) + A1,
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verifies that 7 i8 8 representation of A on H. By what WAS
| < 1, and since A is isometrically included in A, it

and ODE readily
O

follows thal lirll € 1

Exercises.
(1) Let A = A° C B(H) be a self-adjoint algebra of operators on a

Hilbert space, and let
N = {€ € H : At = {0}}

be the null space of A. Show that the orthogonal complement of
N is the closed linear span of AH = {T€:T € A,£ € H} and that
both N and [AH] are A-invariant subspaces.

(2) Let A be a Banach «-algebra with unit 1, and let = & rep(A, H) be
a representation of A. Show that 7 is nondegenerate iff 7(1) = 1.

(3) Let A be a Banach +-algebra. A represeutation 7 € rep(4, H) is
said to be cyclic if there is a vector £ € H with the property that
the set of vectors x( A)€ is dense in H. Show that a representation
T € rep(A, H) is nondegenerate iff it can be decomposed into a
direct sum of cyclic subrepresentations in the following sense: There
is a family H; C H, i € I, of nonzero subspaces of & that are
mutually orthogonal, 7(A)-invariant, that sum to &, and such that
for each i € [ there is a vector §; € H; with a{A)§; = H;.

(4) Let A be a Banach s-algebra. A representation = € rep(4, H) is
said to be irreducible if the only closed 7(A)-invariant subspaces of
H are the trivial ones {0} and H. Show that 7 is irreducible iff
the commutant of #(A) consists of scalar multiples of the identity
operator.

(5) Let X be a compact Hausdorff space and let 7 be an irreducible
representation ‘of the C*-algebra C(X) on a Hilbert space . Show
tl':at. H is one-dimensional and there is a unique point p € X" such
that

w(f)=Jfp)1, [eC(X)

2.8. Borel Functions of Normal Operators

l"""”N|i?!’“‘-|»l‘llorm.t:i,lt:g]:»eml:l:u'.t.u:&i_ngt;m1_1._Eill::ertr.lsi]:n.u:'.vaIa" with spectrum
X C C. We have discussed how to form continupus functions of ¥V of the
form f(N), f € C(X). We now. show how this functional calculus can be
extended, in & more or less ultimate way, to bounded Borel functions.

Let X be a compact metrizable space. A complex-valued function de-
fined on X is called a Borel function i it is measurable with respect to
the Borel o-algebra 8 of X, the o-algebm of subsets of X geoerated by its
topalogy. The space of all bounded complex-valued: Borel functious oo X
is denoted B(X); it is closed in the sup norm and is o unital comunutative
C*-algebra relative to the paintwise operations and the natural invelution
f*(p) = f(p). p € X. Clensly C(X) C B(X), but the differenco between
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these two C*-algebras is significant. Notice, for example, that while O X
in sparable, B(X) is typically inseparable; while C(X) has nonttivial pr,
jections‘only when X fails to be conhected, B(X) Is always generat e&'by i
projections.

We will 'show that every representation 7 € rep(C(X), H) can be ex.
tended ¢n ‘@ parficular way to a representation # € rep(B(X), H).

DEFINITION 2.6.1. A representation = € rep(B(X), H) is called a o-
representation il it ébfs the following property: Ehr ‘evary uulformlybéhuded
sequence i, f2,... €B(X) which converges pointwise to zero in 'that

n—400

the sequence of operators 7(fq) converges strongly to 0,
lim {|7(fn)éll =0. €€ H.
1300

REMARK 2.6.2. It is significant.that because « is a representation, we can
replace strong convergence in the definition.above with weak convergence.
To see that the two definitions are equivalent, stuppose 7 € rep(B(X), H)
has the property that for every unifarmly ‘botiinded ‘séguence f), f2,... that
converges pointwise to:0, #(f,) converges weakly to 0. We claim that ris a
o-representation. :Indeed, for fixed £ € H we have

(210)  =(NEWR = (x(N)E, 7(1)8) = ((F) 7 (FIE.E) = (w([* ))E.E).

If /1, f2,... is a bounded seqiience converging:pointwise to.0, then f; fa(p) =
[/n(e)% p € X, is elso & bounded sequerice converging pointwise to 0, and
bence w{f; fn) ~ O weakly by hypothesis. The identity (2.10) impliés that
w{fn} — O'strongly, as required.

THROREM 2.6.3. Let X be a compact metrizable space and let H be a

Hilberl space. Every nondegenerate representation € rep(C(X) H) ex-
tends uniquely Lo a o-representation &t € rep(B{X), H).

PROOF. We deal first with uniqueness, and for that some notation will
be useful. Leét, B he the

 0-algebra of all Bore! sets in X aad let AM{X) be the
Banach space of all complex-valied Borel measures p: B~ C. An clament
of M{X) is a function p2: B — C

salisfying u{@) = 0, and for every sequence
of mutually disjoint Barel sela ELEa,...,

MEUEU-. ) = }: n(Ey),
n=1

’;:flz: the right side is interp reted as a convergent series of complex numbers.
very m 0" il
ﬁatisf)n:{; casure 4 € M(X) there is 8 smallest positive Borel mrasure m

(S < lul(S), Sses,
aud the nory is given by flull = 1ul(X) < oo
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. = ds Ty fix 6'; 7 € H and consider the
_representation & that exten

Glven 8o | B - C deﬁned.by
”G.ﬂ(s) = (#{x9)§. m S €B.
hat peq 1 8 fnitely additive measure because 7 preserves the
i bmdw opt mmf‘i y of muiltiplication-and addition. We'claini’ that, in fact,
alge is countably ndditive. To see this, let E}, E;,... be a sequence of
Fen disjoint Borel sets with union F = U, E,. We have to show that

mutually
pealF) = lim ¥ pen(Ei).
k=1

Letting Fn = By U---U E,, we have
peqalF) = Y ben(Br) = pen(F\ Fr) = (F{xm\r, )6 1)-
k=1

Siace the sequence of functions f, = xf\f, isuniformly bounded and tends
to zero pointwise, the right side of the preceding formula must tend to zero
as n — 00 because 7 is o-representation.

We claim next that for every f € B(X) we have

(2.11) FE M) = L f dyie.n

Indeed, (2.11) is true when f = g is a characteristic function by definition
of uc,. By taking linear combinations it follows for simple functions f; it
follows in general by an obvious limiting argument, since every function in
B(X) can be uniform!y approximated by n sequence of simple functions (see
Exercise (1) below).

To prove uniquencss, let # and 7’ be two o-representations that exteud
the same representation x of C(X). It suffices to show that for every [ €
B(X) and €, € H,

(2.12) (F()E,n) = (7 ()€, n).

Notice that (2.12) holds for all f € C(.X') because #(f) = #(f) = =([} in
that case. Consider the measure ug,, and its counterpart ug  for 7. Tnking
J € C(X), formulas (2.11) and {2.12) together imply that

/ fdﬂ{.q =/ /df‘z,:p
X N

and hence g, = pg, by Lhe uniquencss wssertion of the Riesz-Markov

theorem on the representation of bounded linesr functionuls on C(X) in
terms of measures. Applying (2.11) we conclude that for all g € B(X),

(#(9)E 1) = L g dyig.y = L gdii, = (P9I 1),

and uniquencss is proved.
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Turning now 6. cxjstcncepne;simply reverses the argumen
Starting with € rep(C(X), H), fix a pair of vectors £,
the linear functiona!

Nt aa followy,

/€ C(X) — {rn([)E,n).

This is & bounded linear functional of morm at most |i€lfjin}l. By the Ries,-
Markov theoreni thiere is a unique pge., € M{X) such that

(2.13) (+(1)Em) = [x fdug [ E€CX).

and moreover, {lugqoll < €l Nptice. too; that the map &, + ¢, ¢
M{X) is linésr in € and antilinear in 7. -

Fix a fiiction § € :B(X). We define an aperator #(f) € B{(H) by
gppealing to the Riesz lemnia for sesquilinear forms as follows: Since

s [xf ditgin

is a bounded sesquilinear Jorm of norm-at most {| fi{li€|jlinll, there is & unique
opersior #(f) € B(H) suchthat

(2.14) (FNEm) = fx fduga, EmEH.

Obviously, the aperator mapping # : C{X) — B(H ) is linear and satisfies
IFN < W7l for f € B(X). Tt is also clear from the defiition (2.13) of the
MeASIES j1g,, and the defining formuln (2.14) for 7 that #(f) = #(f) when
S € C(X). Astraightforward argiiment (which we omit) shows that 7 carries
real-valued ‘functions to self-adjoint *6perators, and hence #{f°) = #(f)",
] € B(X}.

Thus it remains to.show that # is multiplicative, #(Jg) = #(f)#(g), for
J,g € B(X) and that it satisfies the continuity property of Definition 2.6.1.

To prove the multiplication property, ngte firat that for every §,n € H

ud g€ C{X) we have g - Py = ﬂ'i'{n)(m' Indeed, this follows. from the fact
that for every f € O{X),

[ Tadnen = (w(fo)end = tr(yn(o)e,nh = [t g

We claim next that for F e B

string of identities, where we no e o

te that for g € C(X) we have

jxgdtf' ‘ ﬂ{,n) - _[x gF d”{,q = -[x F&”‘{Q)(ﬂ = <i(F)r(ﬂJ£1 ")

= {r(g)E, F(F)'n) = -[x 2db¢ 57y n-
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' m = #(F)*(G), for F,G € B(X). Indeed,
we claim that x#(FG) = #(F)w(
quy'd ¢ and clicosing §,7 € H we have

(#(FG)E, M) = _/x FGdpen = /x Gdpez(r)q
= (®(G)E, #(F)'n) = (#(F)%(G), n).

The proof that # is a p-representation is a straightforward, application of

he bounded convergence theorem. Let Fy, Fa,... be a uniformly bounded
sequesice in B(X) converging pointwise to 0. For every £,% in # we have,

I(E(Fu)f:ﬂ)l = Ij; Fi d&“{-ﬂ < j; IFuI d| e nl

and the right side tends to 0 as n — oo by the bounded convergence theorem,
since Jpt¢ o/ i8 o finite positive measure on X and:|F;| is a uniformly bounded
sequence of functions tending pointwise to zero. In view of Remark 2.6.2, #
is n o representation of B(X). O

Applying these results to a normal operator N € B(H) we consider the

continuous functional calculus f € C{o(N)) — f(N). By Theorem 2.6.3
there is a unique o-representation of the algebra B(o(/V)) that extends the

orlgh{nl. This map is also written as if we were applying bounded Borel
functions f € B(o(N)) to the aperntor to obtain f(N). The properties of
this Bore| functiona) caleulus will' be exploited in the following section.

Exercises.

(1) Show that for every f € B(X) and every ¢ > 0, there is n finite
linear combination of characteristic functions in B(X) (i.e.. asimple

function)

g =C1XE, T CIXEy t+ - FEaXE,

such that |[f — gll < e. Hint: Cover the range f(X) € C with a
finely meshed grid and “pull back.”

(2) Let (X, B) be a Borel space. For every o-finite measure p on X let
m, be the representation of B(X) ou L*(.X, u) defined by

m {IEP) = J(P)E(p). € € LI (X, ).

(a) Show that x, I8 8 o-representstion of B(.X) on L} X, ). (Nur
tice that the definition of g-representation mukes good sense

in this more gencral coutext.)
(b) Given two g-Aaite mewsures 4, v ot (X, B), show that =, and

7, are unitarily equivalent iff ;s and v ure wutually ubsolutuly
coutinuous. | :
(c) Deduce that a multiplication operutor ucting ou tho L° spucy

of a o-Anite measure is unitardly equivalent to o wmultiplication
operator acting on the L? spuce of u finite messusv space.
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2.7. Spectral Measures

We have formulated the spectral theorem in terms of diagonalizing operatory
In this section we present an equivalent formulntion of the spectral I:ht:of'eu;
in terms of apectral measures. While this is the more classical form of the
spectral theorem, it suffers from certain defects (mostly resthetic) that gy,
associated with the somewhat peculiar technology of spectral measuyes, In
ther defenne of spectral measures we point ot thal they can- provide
effoctive tool for dealing with bronder isaues, such 8s the multipiicity thieory
of normal operntors. And there are important resitlts that are'most sy
formulated in terms of spectral measures, Exampie: Stone's theorem, that
makes the elegant assertion that a strongly cantintous one-parameter group
of unitary operators is the PFourier transforim of a spectral measire on the
real line.

Let us firsl rovisit the idea of diagonalizing a pormal matrix. Let NV be
o nortoal operntor acting on a Hilbert space H of finite dimension n. There
iv an orthoporma) hasis ey,.. ., ¢, for H consisting of eigenvalues of N,

Ne;,.=4\gc;.. k=1,.”.ﬂ.,

a very

where Ay, ..., A, are complex numbers. There may be repetitions among
the Ay, but the set {Ay,...,An} is exactly the spectrum of N.

This decomposition of ¥ into eigenspaces can be reformulated in 4 basis-
free way as follows. For every A € C let H), be the eigenspace

Hy={¢eH: NE = A£).

The subspaces {H) : A € C} are mutually orthogonal, they sum: to H,
eschs is invariant under both A aod N°, and H) is nonzero iff A €:o{N).
These observations can be converted into a structural statement about N
as follows. Let £, be the projeetlon onto H,. The £, form a system+of

mtually orthogonal projections in B(H), they sum to 1, By £0 <= A€
o(N), and we have

(2.15) N= Y XE.

Wit is peculinr bere is that these sums h

, ave a mulliplicative property that
Tus counter to the inwgition of nemerica

1 sums,

(*‘E&"}I(l, . EA) ( Z B(Ji] : E;.) = z !{A)y{)‘) . E,\,

AEC{N) A€a(N)
% tutsequence of wvhe fact tha the f : : | _
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formula (2.15) expresses the operator N as a “spectral
right side represents the integral of the complex-

l-ﬂ uny cpse,
z € a(N), against the projection-valued measure

function f(z) = 2

vlued E(S) = ZE,\, ScC.
A€S
Despite its somewhat awkward appearance, the projection-valued function
\ € C— E) (or the projection-valued measure associated with it) contains
n about the operator N. For example, o(N) ig the set of

eritical informatio | ator
points A (or which Ej # 0. More significantly, the multiplicity m(A) of an

cigenvalue A € a(N) is given by
2.16) m(A) = rankE) = dim H.

The function m : ¢(N) — N is called the mulliplicily function of the normal
operator N. Tt has these properties: m(A) > O:-for every A € o(N), and

Y m()) =dimH.
AEa(N)

Once one knows the spectrum and the multiplicity function of a normal
operator N on a finite-dimensional Hilbert space, one knows N up to unitary
equivalence (see Exercise (1) below). There is a natural generalization of
this classification of normal operators to the infinite-dimensional case {see

[2]), but we are not concerned with that here.
Our goal in this section is to point out how the formula (2.15) can be

generalized to normal operators acting on infinite-dimensional Hilbert spaces
by simply, refornilating the results of the preceding section. Let B denote
the o-algebra of all Borel sets in C. By a spectral measure (on C) we mean
a function £ € B — P(E) € B(H) taking projections as values, such that
P(8) = 0, P(C) = 1, and for every sequence E, E;, ... of mutually disjoint
sets, we have

(2.17) P(EUEU---) = iP(E.‘,,).

=l

The sum on the right of (2.17) is interpreted as the limit in the stroag

opérator topology of the sequence of:partial sums P(E;)+- -+ P(En). The
fact that this limit exists is o consequence of the following observations.

PROPOSITION 2.7.1. A spectrul measure P has the following properfies:

(1) B, C By = P(E,) £ P(£2).
(2) BNF =0 => P(E) L P(F).
(3) For cvery E,FeB, P(ENF)= P(E)P(F).

Proor. Thg first assertion follpws from finite additivity of P, together
with tEé.t.dé,mmp'éﬂitiqp F = EU(F\ E) and the fact that P(F\E)>0
For (2), we can write

1 = P(EU(C\ E)) = P(E)+ P(C\ E).
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Honee by (1), P(F) < P(C\ E) = 1 - P(E), the latter being the projection
otto P(EYHL.

Th deduce (3) from (2), one can-write P(E) = P(EN F) 4 P(E\ F)
P(F) = MENF) + P(F\ E), and observe that becatise of (2), P(£n F):
M E\ F), and P(F\ E} nre mutunlly orthogenal projections. 0

These obaervations imply that the projections P(E,), P(I5;),... appenr-
ing an the right of (2.17) dre mutueally orthogonal, so that the infinite s
has a clear menning.

Starting now with n spectral-measure 2 : B — B(H) and a ‘bounded
Borel function f: C — C, we waat to give meaning to the spectral integral
[ 1dP. This is dono as follows. For every -pilr of vectors £,11 & H we
can define o complex-valued neasure pgq on C by pe (B} = (P(E)E,m).
Then jig , 18 & countably additive complex-valued measure on B 'whose total
varintion is estimated as follows:

leqll < UEllinll, Ened.

Morcover, the map of /f x & into the space of ‘measures on C defined by
£.1 —+ pg,y is lincar in § nand antilinear inig. Thus we can-deéfine a boundéd
sesquilinear form (-, -] on H x ‘# by simple integration,

[£.7] = /cf Biig.n.
nnd n straightiorward estimate shows that
€ m)l < sup |7 )€l lInll = §FHeollERiimll-

By the Riesz lemma, there s a unique operator x(f) € B(H) satisfying
e = | fduga  Eme A,

and one bos |[w(f)| < |ifllco. This defines the:operator m(f) 25 a wealk
Integral, and we can now interpret it as [ fdP.

More precisely, for every spectral :measure P defined op € and talking
values in the set of projections of B(H} aud overy botnded Borel function
J : € C there Is a unitjue operator [ 74P defined‘by

((f d dP) g"’) = j;f (2) (Pld2)6,n),  EneH.

We leave it for the rexder to verify
the C*-algebra B{C) of all bounde
of the preceding section.

Spoctrul weasures us we have dis e | | :
required for the discussio discussed thew ace ‘more: general than

0 of bounded normal operaiors. However, if o
ﬁiml‘:«l ﬁ}lmme P hos compuet support in the sense that there iai'a._cqmg_n.ct.
S Cwith PIC\ K) = 0, then P i ussociated with o bounded

that f > [ fdPisa o-represeatation; of
d Borel functions an C, using the methods
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follows. Since P is concentrated on K, the function f(z) =z is
operatof :JB most cverywhere with respect to P, and hence

N = /c zdP(z) = [K zdP(z)

dofines 8 bounded normal operator with the property that

218) [P = 18), 1 € BO)

“ c

s, spectral integrals are simply another way of looking at the functional
-alculus for Borel functions.

Indeed, if we tufn this around by starting with a bounded normal oper-
ator N € B(H) and asking how to construct its spectral measure P, then
the roply is simply to apply the characteristic functions of Borel sets to N
according to the calciilus of the preceding section:

P(E) = xg(N), Eg€B.

Because [ € B{o(N)) — J(N) is a o-representation extending the continu-
ous functional calculus for N, P can be regarded as a spectral measure that
is supparted on.o{N). Again, the preceding formula (2.18) simply provides
a reinterpretation of the extended functional calculus as a spectral integral.

Exercises.

(1) Let Ny € B(H,) and N; € B(H2) be two. normal operators acting
on finite-dimensional Hilbert spaces Hy, Hz. Show that there is a
unitary operator W : H, — Hp such that WNW ™! = Ay iff N,
and N have the same spectrum and the same multiplicity function.

(2) Calculate the spectral measure of the multiplication operator X
defined on L?[0, 1] by (XE)}¢t) =t€(t), 0 < ¢t < 1.

(3) A resolulion of the identily is a function A € R — P, € B(H)
from R to the projections on a Hilbert space with the following
properties:

pASu => P,< P,
e Relative to the strong operator topology,

lim P,=0, im Pa=1.

A=t —00 A=+$00
» (Right contlnuity) For every A € R,
lim P, = P

p=tAd

Early formulntions of the spectral theorem nude extensive use of
resolutions of the identity. It was gradunlly realized that these ob-
jects are equivalent to spectrsol mensures, in much the same way
that Sticltjes iniegrals are equivalent to Integrals with respect to
o measure. This excrcise is related to the bijective correspoudence
that exists botween resolutions of the ideutity and gpectrul mes-

sures on the real line.
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(a) Consgider the Borel space (R, B) of the real-line. Qv
spectral measure £ : B — B(H), show that the ﬁmv::; °
Py = E{(~00,A]), A € R, is & resolution'of the identity, "

(b) Given two-spectral measures £, F ; B —» B{H). that give ’
to the same resolution of the identity, show that B«

2.8. Gompact ‘Operators

ball {AL : Jl€]] < 1} is totally bounded. There is an enormous litergtyr,
concerning classes of compact operators acting on Hilbert spaces. In this
section. we sgraich the surface by discussing normal compact operators and
Hilbert-Schmiidt operators.

Compact norinal operators can be diagonalized in the classical sense, in
that there is an orthonormal bagis consisting of elgenvectors. We base this
on the following assertion about “approxdmate” eigenvectors.

An operator A on a Hilbert space " is compact if the image of the unit

PROPOSITION 2.8.1. Let N be.a normial.operator acting on an infinite-
dimensional :Hilberl space H. For every aacumu!atwn point A € g(N) there
is un orthonormal sequence &,€2,... in H such that

nlEga “NEn - )*fn” ={.

PROOF. By the Spectral Theorem we may assume that H = L3 X, ;f)
has been coordinatized by a o-finite messure space and that N = M; is
multiplication by an L™ function. By Theorem 2.1.4 the spectrum of N is
the esseotial range A of 7.

Stnee A.ls an accumulation point of A, we can find a sequence of distinct
points A, € ‘A that converges to A. For each n choose €, > 0 small enough
that €y — 0 and the digks D, = {z e C: |z — ,\"‘ < fn}q = 1,2,...,
are mutually digjoint. For each n the set {p € X : f(p) € Dy} bas positive

weasure because A, belangs o the cssentin! range of f; and by o-finiteness
there is a gsubset E, C Ip € X : f(p) € D,) of finite positive measure,
n = 1.2,.... Cousidered s elements of L2(X,u), the chasncteristic func-

tiens xg,, X g, .. are mutually orthogonal because the sets Ey, Ea,... ore
mutually disjoint. Moreover,

‘! - }.‘ ’ XE'I S UI - )‘ﬂl + ‘AI'I - A“)XEH S (cﬂ. + 'Al’l — ADXE-'
It Inllows that

N~ Mg ) < (en + 1A~ AMixE N2 = (€0 + 1, ~ A B )12,
t;ug the orthonotmal sequenco can he taken s §0 = p(Ey) Wixg., n =
2,.... 0
We abtsin the followi

uil infinite-dimensional
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Let N € B(H) be a compact normal operator. Then
er finite or has the form: {0;31,;\2,...}, where

t comipler numbers converging o 0. For each
= {€ € H : N§ = A} is nonzerv and finile-

THEOREM 2.8.2. .
0 € o(N) and o{N) 1 eith

diatine
is 0 ,gqumﬁ‘l'-' of
g";’ o in a(N) the space H)

onal.
lfl%: be the prajection onto Hy, . The By are mulually orthogonal and

we have oo
N = Z A Eg,
k=1

the partial sums of the series converging in the operator norm to N. In par-
ticular, there is an orthonormal basis ey, e3,... for H consisting of eigen-

vectors of N.

PROOF. A compact operator on  cannot be invertible; for if it were,
then some open ball about 0 would be totally bouiided, a clear absurdity as
ote sees by considering an orthogonal sequence of vectors having the same

norm r > 0. Hence 0 € a(N).
We claim that o(N) \ {0} consists of isolated points. Indeed, for every

accumulation point A € o(N), Proposition 2.8.1 implies that there Is an

orthonormal sequence ey, e3,... satisfylng ||Ne, — de,]| & 0 us n = oo
Since N is compact, ||Nexll — 0 as & — oo (see Exercise (1) below); hence

A = lim [lAeall = lim [|Ne — Aeq)l = 0.

It follows that o(N) \ {0} cannol contain sccumulation points of o(V).
Thus a(N) is either finite or it consists of 0 together with a sequence

Al Ay, ... of distinct isolated points converging to 0. Cousider the ciso whore
o(N} = {0,A1,Az,...} Is infinite. For cach n = 1,2,..., the characteristic
function u, = X{.} belongs to C(o(N)). aud we can express the current

variable {(:) = :, = € g(N), as an infinite series
o
(= Z)U:“h
k|

converging uniforwaly in the norn of C(a(NV)); indeed, we havo
s V)

n
IC - gakmum =1l 3. Al =mpiAel

k=an+4]

which tends to 0 as n — oo. By the properties of the coutiuuois functionnl
calculus it follows that

)
lites ” N - Ag E;.

[ Rt R W
k=]

= limsuj A = U,

k—¢a0
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where £ is the projection £

= ux{N). Once one hes such g gar:
sentation e

o o]
N =Y ME
k=1

of N, onc easily identifiea the range of E; as {£ € H : Ng = AE}. That
completes the proof in the case where (N} is infiite. The cage of finite
spocirum will be left for the reader, )

Turning away from normal operators, let us fix an orthonormal haglg
ey ea,... for H. A Hitbert-Schmidt operator is an operator A on g with
the property that

{2.19) Z{"Ae,,ll"" < 0o,

n=]

As we will sce, Hilbert-Schmidt operators;are not only bounded,.but.com-
pact. They form an ideal £2 in the C*-algebra K of all-compact aperators,
and £? is a Hilbert space in-its own right.

Most (but not all) of the integral operators that we have encountered:are
Hilbert-Schmidt operstors, and :that is why the theory of Hilbert-Schmidt
operators 1s inportant for approaching classical problems involving integral
cquations. While in this book we have concentrated on the idea of solv-
ing such equations, Hiibert-Schmidt operators enter into many - aspects of
operator theory and: functionsl analysis, including the theory of Ganasian
stochastic processes, ropresentations. of the caronical commutation and:an-
ticornmutation relatipns of mathematical physics, and the'theory:of unitary
representations of locally compact groups.

We firat rephrase the definition of Hilbert-Schmidt operator so a8 o
emphasize the role of the trace. Recall that an operator A.on H is said to be
putitive If A is self-adjoint and has noniegative spectmm. -This_igiggp;*mleut
1o the passertion (A€.£) 2 0 dor every € € H, as one can.see i'concrete terms
by appealing tothe spectral theorem and Exercise (5) belaw. It follows that
the set B(H)* of all positive operators on A is a cone, being closed under
sums and multiplication by nonnegative scalars. For every positive operator

A we cag define an extended real number trace A € [0, +00] as follows:

oo
trace A = Z‘(A'ek.ek)a
k=1

€, .

. belng an orthonormal basis for §f , which-for the moment we hold
fixed a5 A varies. It is clear that

(2.20) trace (A + B) = trace A + trace 8,
\tace (AA) = A -trace 4

lor A, B € B(H )Y and-positive

: scalarg A, with the obyi
bundling sums and prodycts of -- obyigus conventions for

extended mumbers n (0, +oo).
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prOPOSITION 2.8.3. The trace has the follownng properties:
(1) crace A°A = trace AA®, for any A € B(H).

(2) For B > 0 and U unilary, trace Y BU*® = trace B.

(3) The trace does nol depend on the choice of basis {e.}).

noor. For (1), consider the double sequence of nonnegative terms
lﬂz = I(epi A“q)r"' P.q = 11 2,-.- . Summing first on qal'ld then

Y3 llAep e = Y lidegl?,
p=1

p=l =1
~hile summing in the opposite order gives

o — o
z z |{ep. A'e,,)lz = Z IIA’quI’.
=1 p=1 q=1
Since the sum of a nonnegative double sequence is independent of the order
of summation, this-proves (1). Assertion (2) follows from it by setting A =
UB'/? in (1), noting that B = A*A and UBU" = AA°.

To prove (3) let f;, fa,... be another orthonormal basis and let U be the
unique unitary operator-on H-satisfying Uey = fi for k= 1,2,.... Then
Ji = U’ey, and for every positive operator B, (2) implies

P
Ae rcﬂ
L(npfw obtain

Y (Bfu,Ji) =Y (BU"ex,Urey) = trace UBU" = trace B,
k=1 k=1
as asserted. O

?.V (2:20), the set of all positive aperators with finite trace is a cone. By
analogy with integration theory, we défine £! to be the linear space spanned
by the positive operators having finite trace. Operators in L' are called
trace class operators. Every trace class operator can be written in the form

A= P - +i(R~F),

dwn ——a

but the basic properties (2.20)1"i‘mply that there is a unique linear functional
defined on £! by
trace A = trace P, — trace P + i(trace P; ~ trace Fy).

Obviously, for every A € £} and every orthonormal basis ), €z, ... W€ have
o0
tracc A = Z(Afju ﬂn}r
n=l]

where the series on the right is absolulely convergent. The value trace A of

the sum does, not depend on the choice of basis.
There is & nptural porm oa £V that wmakes it into a Banach space (nawely

|Allzs = tracelA|), having many hnportant operator-theoretic propertics,
und we refer the reader to

(18] for u Fuller development. What is important
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for us here is the relation between £! and Hilbart— o
we now describe. wert-Sehmidt Operators,
According to {2.19), A is a Hilbert-Schmidt operator
trace A"A < 0o, equivalently, when A°A € £). The set of all Hil
Schmidt operators on ¥ is denoted by £2. 1t is clear that £2 ig doaei:l-n::i.'t_
multiplication by scalars, and note that it is closed itnder addition ag m;r
Indeed, for any two operators A, B we have the “parallélogram Jow* '

(2.21) (A+ B)({A+B)+(A-B)"(A-B)=24"A+28°B,

from which it follows that 0 € (A 4 B)*(A+ B) < 24* A4 + 28°8 ¢ hoth
A and B belong 1o £2, then

trace (A + B)"(A 4+ B) < 2trace AA 4+ 2trace B* 8B < o0

hence A+ B € L2

Thus £? is n complex vector space, which by Proposition 2.8.3 (1} is
closed under the adjoint operatich. That it is a Jeft ideal is an-obvious
consequence: of the defining property (2.19); and since £2 is self:adjoins, it
must be a two-sided ideal.

The operator space £2 has a natural:inner product, defined ns follows.
Corresponding to the polarization formils for sesqiiilinear forms on a com-

plex vector spuce there is 8 polarization formula for bounded' operators
A B e B(H):

Which

Precigely whap

J
(2.22) 4B"A =Y i*(A+i*B) (A +i*B).
k=0
The proof is a similar computation (see Exercise. (2) below). If both A and
B belong to £2, then each of the four terms on the right of (2.22) belongs
to £}; hence so does B° A, and we have

3
4trace B*A =Y i*trace (A +*B)" (A +i*B),

=0
W follows that one can define an inner product on £2 as follows:
(2.23) (AiB) =wace B°A, A BefL?

Ii is t{]gu]ﬁm“t Lhﬂ'. l]liB . r e . 5 _ . 3
| ) inner product space is complete (see Excrcise (3)
below). -£2 is therefore 4 Hilbert space.

PHOPOSITION 2.8 4 Every Hitber ' ‘
- ; 8.4, Lvery H L.- . {, and
aulisfres || AW < vroc A L Schmidt operator A is compuci,

P ;
overy ?n?: ,,,3:, st prave the ineguality HA4l% < troce A*A. Indeed, for
T € vt can find un orthonorimal basis er, £z, ... starting with

El:ﬁ- Hl.'.n." 2#" v i _ _
vinaiy < WAell® < L, lAe, I* = trace A* 4, and since ¢ s arbitrary we
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t every Hilbert-Schmidt operator A is compact, fix an or-
To see LIP _and for cvery n > 1 let @, be the projection onto

bﬂsiﬂ €1,€2-- . .
thonormA 20 ed by Ent1,€nta- ... Obviously, F, = A(1-Q,) is a

bspace _
;il:t:.umgkopemton and by the preceding paragraph we have
o
1A = Fall? = |AQqll? < trace(@nA°AQn) = ) [l Aey®.
k=n<41

The right side tends to 0 as » — oo because 3, |lAexl? < oo. Hence
A = lim, F, is the norm limit of a sequence of finite-rank operators, and is

therefore compact. O

EXAMPLE 2.8.5. Hilbert-Schmidl inlegral operators. Let (X,u)-be a
(separable) o-finite measure space and let & € £2(X x X, s x ) be a square-
integrable function. of two variables on X. We want to define an integral

operator A on L%(X, 1) by way of
22)  Afle)= [ kanEwdu), €€ X0

but there are several things that have to be checked.
In the first place, since

] k(z. y)|? du(z)duuly) < oo,
X»xX

the Fubini theorem implies that for almost every € X. (du) the section
k(z,-) belongs to L2(X,du), and for such z the Runction y — k(z, y)E(y)
belongs to L'(X, ). This implies that the integral in (2.24) is well defined
for almost every z, and writing its value as A£(x), we have the estimate

AE(z)) < L Ik (z, )€ Cy)] duy)-

Moreover, another application of Fubini's theorem implies that for every
n € L2 X, u) we have

[ 1Ag@neNdutz) < [ kG ulint)Ew) da(z)dutn)
X XxX
which by the Schwarz inequality is dominated by

1/2
™ ( /. Pl du=dutn)) = WkllElalnla

where Jjk|| denotes the uormn of k as an clement of L*(X x X, 4 x p).
It follows that formyln (2.24) defines u linear operator A ou Lo(X, n)

satisfying [(AE,n)| < IIkllIENallallz for every € n € L7(X,u). und heuce
1Al < ikl
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l.nt us now enlculnte trace A°A. Choose an ort
fur LY X.dpu). For every mn=1,2,.... we have

fﬁf-’rml”u) =L.‘lem{;r)é,.(z}dp(:c}

honarmal basis €l 8y,

_ /; Kz v)Ea(elem(y) du(u)duz).

Writing timnfr, y) = €4 I}Etn(!f}. we find that {um,, myn= |2, “'} i8 an
arthonormal basia for L5(X x X, u % p1), and the preceding fornmla beécomos

‘Afm,ﬁ'n) = (k, u’ﬂ"‘l)l

the inner product an the right being that of L3(X x X i X i), It follows
that trace A A is given by

i Aeal® = 3 ) HAem e = 3> e uma) P = JEI2,

m=D m=0 n=0 rn=0 n=]
We snmmarize the results of this discussion as follows:

PraorosiTioNn 2.8.8. Lel (X, ) be a separable o-finite measure space.

For nery function k € L4 X x X, x s1) there is a unique bounded cperator
As an LY X, p) satisfying

Alz) = _/; klz, w)e()duly), € e LYX,p).

The map k — Ay is an isomeiric isomorphism of the Hilhert space Lz(x x
Nt x p} onto the Hilbert space L2 of all Hilbert-Schmid! ‘operaiors on
L*(X, ).

Exercises

(1) Let Abea compact operaior on 8 Hilbert space H. Shaw that for
every sequence of mutually orthogonal unit vectors £;,82,... € &

we have
lim "AEr;“ ={.

N~

Hiut: Consider the decrensing sequence of projections: £, -defined
by the decreasing sequence of closed subspaces {€q,&ni1,Ens2s - - J,
n=1,2.... |

(2} Lt e),¢9,... be an orthonorma) baais for a Hilbert space H and
let A€ B(H). Show that A i compact iff

Jm 1 - £)AQL - Bl =0,
whure £, denctes the projection unto spuniey,..

(3) Verily the pol
spnce If-

s 1l __ 1€n}.
#rization fermula for hounded operators on o Hilbert

3
AB* A = E};* (A +~;*B)' (A + :'."B.)‘.
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7 = (A, .4);/? for every Hilbert-Schmidt operator A.
' Ag,... be a sequence in L? that satisfies

ey, -4 00
Show that there is an operator A € B(H) such that ||4, —

All - 0 as n —+ o0.
(b) Show that L? is a Hilbert space relative to the inner product

(2.23).
(5) Show that a multiplication operator M is self-adjoint and has non-
negative spectrum iff (A7 €,£) > 0 for every & € L3( X, ).

2.9. Adjoining a Unit to a C°-Algebra

We have discussed the procedure of adjoining a unit to a nonunital Banach
algebrs so 08 to obtain a unital one. Proposition 2.5.4 describes the corre-
sponding procedure for the category of Banach s-algebras. If one applies the
latter to a nonunital C*-algebra such as the compact operators X C B(H),
the result is a unital Banach s-algebra, but its norm fails to satisfy the C*
condition ||z*z|| = ||z||2. Fortunately, one can always renorm this unital-
ization 50 that it becomes a C*-algebra, without changing the norm on the
::fl:lw representing the original algebra, in a unique way. The details are as
5.

Let A be a C*-algebra without unit and let L : A — B(A) be the left
regular representation of A, in which L. represents left multiplication by
T, Z € A. For any Banach algebra, L is a homomorphism of the algebra
structure of A such that ||L;}| < ||z|| for every z € A. Let A* denote the set
of operators on A given by

A={L,+M:ac A AeC}

Then A® is a complex algebra with unit, and we may define an involution in
At by (Lg + M1)* = L,- + A1, @ € A4, A € C. The.operator norm determines
a norm on A°, which makes it into a normed algebra. Moreover, the natural
map ® : A — A® defined by n(a) = L. is 8 +-homomorphism satisfying
m@)=0 = a=0,a€ A We will show that (8) there is a C*-algebra
norm on A° and (b) with respect to that norm, » is an isometry.

REMARK 2.9.1. Suppose one is given o Bansch algebra A that is also

endowed with an involution » satisfying |lz°z]| > [iz||* for all £ € A. Th'-’-"
A 18 o C*-plgebra: [|z||° = llz°z|), £ € A. To see this, note that the given

inequality implies that ||z)|2 < liz*z]| < Jl=*) - |=]l, so that ||zf| < llz*|| for
all z € A. By replacing  with z* we obtain the opposite inequality; hence
lz}| = Jlc*||. 1t follows that jjx°z]| < ll<°}} - ll=ll = lz||?, providing the athur
half of the asserted equality.

PROPOSITION 2.9.2. The involution in A® satisfies | X° X[ = X2 Jor
every X € A€, and A® ia closed in the operator norm of B(A); hence it i3

1) Let [|Al
{) (n) Let A
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a unital C*-aigebra. Moreover, the regular represeniation is an isometrs,
s -isomorphism- of A onto a marimal ideal of codimension ene in A2

Proor: Notice first that [lLall = {la]] for every a € A. Indeed, < is trye
for any Banach algebra, and the opposite inequality fallows for ag elemen
¢ of Horin 1 because

)Zall 2 RLala®)l = laa*]] = lle®|1? = fa|l® = 1.

The set {L, : a € A} Is obvioiisly an ldealm A of qudimgggion at most
one. If the codimension were zero, then the identity dperator would have
the:fori Ly for some clement f € A; that watil imply f wes a uiilt for A,
contrary to bypothesis. Hence {L, : a € A} has codimension one. Since L
is an isometry, this ideal must be closed in the operator norm-of B(A); and
since -A° is obtained from this ideal by adjoining the one-dimensional space
spanned:by.1, it follows that A® must also benorm closed.

It remains:to show that the Involution in. A satisfies [ X" X]) = ||.X]J2.
By Remark 2:9.1, it is enough.to verify the inequality ||X)]2 < X" X)) for
X =L,4 Al in A¢. For such an X, we have

IX1? = sup [[{La + MNB)P = sup llab+ AbjJ?

il <1 k<

= sop ||(ab+ Ab)*(ab+ Ab)|| = sup ||b*(X°X (b1}
hbll<1 o)<l

< sup X" X{B)]| < XX,
<1

o

The lollowing result asserts that C*-algebray have a remarkable praperty
of rigidity that is not shared by other types of Banach *-algebras.

PROPOSITION 2.9.3. Every s-honmomorphismn. 7 : A — B of C*-algeliras
has normn at most \. {f % hay trivial kernel, then it is an isometry.

PROOF. Suppose first that A hos a unit 14. By passing from B to the
closure of the »subalgehra w(A) if tiecessury, we may assume that x{A) is
deuse in 8. In this case, (1 A) 18 the unit 1g of B. Thus we may argue
u we did for nondegenerate representations, For example, since 7 must
wap wvertible elements of A to invertiblo elements of B, it follows that
oln()) C ofx) for every clement z € A, Carollary 2 of Theorem 2.2.9

unplics that for self-adjoint eloments € A we have
() = rin{z)) < r(z) = ).
60 that for genery) eleinents » € A we have

ISt = fimtey m{z))) = f(ee2 W< Ntz = ()22

i, in additlon, 1 s irivial keruel, then

for every 7 € A, Ax ubove, this g g we clain that |[w(2)(| = ||zif

the case where = 2° Iy sulf-
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same spectrum when z = I°. We have already seen

aud (%) 1;;);-.2 :}i). Por the opposite inclusion; suppose that A is a point
that & ;“gﬂ does not bélong to o(w(z)). There is a:confiouous function
"f.d};) - R such that f vanishes ‘on-o{7(z)) and f()) # 0. Since [ = 0
/O ey), we must have J((z)) = 0. Notice that /(n(z}) = ((z)) (chis
s obvious i f i5 8 polynomial, sud it fallowa for general contimuous f by
o application of the Weierstrass approximation theorem and the previously

t 7 is a bounded linear map.of A to B). Bat-#{f{x)) =0

implies that f(z) =0 because w has trivial kernel; in turn, f (2) = 0 implies
' couittadicting the fact that f(A)# 0.

ihat f = ﬂn_a(z)- i
Now nssume that A hiss no unit and-let A® be the unital extension of A,

identifving A with its imege in A®. By adjoining a unit to B'if necessary,
we oy assume that B-hag a unit 1g. Orie may verify directly that the map
& : A¢ = B defined by

#{a+ Al) = 1{a) + Alg

is & e-homomorphism carrying the unit of A® to 15. The argument above
implies that ||7|] < jj7|| < 1. Finally, assuming that = is one-to-one, we
claim that 7 is one-to-one. For if ¢ € A and A # 0 is a scalar for which
o)+ Alg = 7{a+ Al) =0, set [ = ~\"ta & A. Since x{f) = 1g, 7{/)
ls a unit for 7{A), aud since 7 has trivial kernel, [ must: be & unit for A,
contrary to hypothesis, Thus n(a) +Ag =0 = A=0and ¢ =0, and
thus & i5 one-to-one as psserted. The preceding paragraphs imply that # is
Isowsetric; hence 7 is isometric. 0

CQRQLLARY 1. Let A be a complex algebra. with involution, If there is
" norm on A that makes it into a C*-algebra, then that norm is unique.

Proor. Let || - ||, and || - 2 be two (complete) Banoch algebra norms

on A satisfying [[2"xz|}y = Wz for = € A, and let Ay be the algebra A
considered a8 a C*-algebra in each norm respectively, & = 1, 2. The identity
;ngp of A can be regarded as a «-Isomorphismo of Ay anto A;. By Proposition
9.3 this map must be an ispmetry; bence [[z{f; = [[zff2 forallz € A D

Conroutary 2. Let A be a nonusitel C*-nlgebra, lot r: A — A be the
tatural ap of A into its unitallantion, uud endow A* with its (/*-norm.
Then 7 is an sometric wisomorphism of A onto nn ideal of cadimension |

in A%,

Exercisas.

{1) Lot A be a nonunital C*-algebrn and let 7 : A —» A* be the ustosal
map of A into lts unitalization. Considering A9 na o C**-algebrs,
suppose that there 18 ap sometric o-homomarphlstn 7 @ A - 124
of A into nupther unltnl C*-nlgebra B such thal a{A) s un idenl

of codimension | in B. Show that thers is o unigue isomctric o
isomorphism 8 : A* — B such that fox = o
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(2) Let K be the C"-algebra of compact operators on a Hilbert space
H. Shaw that the space of operstors (A1 4+ K : A e C K ¢ K} is
a C*-algebra +-isomérphic ta K.

(3) Let X be a compact Hausdorff space and let F' be a proper-closeq
subset of X. Let A be the ideal of all functions f € C(X) that
vanish-throughout F, f(p) =0, p'€ F. Note that A is a C*.algebra
in its own right. |

(a) Show that A 'has a unit il and only if F ls both closed and
open.

(b) Assuming that F is not open, identify the unitalization of A
in concrete terms by exhibiting a comhpact Hansdorff space ¥
such that A® = C(Y'), déscribing the precise relationship of ¥
to X and F.

2.10. ‘Quotients of C*-Algebras

In order to discuss comipact perturbations ‘of operators on:a Hilbert space
one must bring in:the Calkin algebra {the C*-algebra:B(H)/K obtained by
passing to the quotient moduio compact operators), and that requires some
basic results sbout the formation of quotients of C*-algebiras. We work ount
the relevaol material in this section, in a general setting.

Throughout, A will denote a C"-algebra that veed not.contain a unit.
When - no unit is present there ie an efective substitute, called an approzni-
male unil. More precisely, an approximate unit for A is 8 net {e; : A € I}
indexed by an increasing directed set F (whith nced not be the positive
integers M and which need not even be countable) that has the followiog
properties:

(1) e = ¢} and o{ey) C {0, 1).
(2) Bmy_ o flzes —z} = 0, for every z € A
The meaning of the second assertion of (1) requires clarification, since our
discussion of spectra has sa far been limited 1o unital Banach algebras snd
unital C*-algebrus. The spectrum of an element r of & nonunital C*-algebra
A 18 defined by embedding A in its unitilization 4¢; a(z) is then well defined
by cousidering = 10 be an element of A¢. The spectrum of an element of a

:Ezzur?iufloc.’*-algabm 5 o compact set of complex numbers which necessarily

Significuatly, ap

- L .
orem 1.8.2 of 12] proximale units exist (n arbitrary C*-algebras (see The-

» for example); but all we regiire hare is the following:

LEMMA 2.10.1. Let A be ¢ C”-algebry * ‘
in A For curmy sl e 4 € g und let J be a closed left ideal

| 4as - P
elements of J auch that olen) £ (0,1 end Srience en.ea.... of self-adjoint

Jm |re ~ 2| = q.
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: - \ that A is
cining a nnit to. A if necessary, .we CAD assum? b
PHOOF- z‘: ;ﬂ?maf the given element is self-adjoint, and define

l—fnfﬂi), 71-=f1?.-,”.,

te R,

ca [ ls combinuious and vanishes at the origin, e» belongs to the closed
- ie positive powers of z, hieuce eq € J. Moreover, since

- [ th

3" Z},,Z';“_Z f fr all 2 € R, we have o(ey) C [0.1].
Writing '
ren - 22 = fiz(1 — ea)li” = (1 — ea)2*(1 —ea)li < =°(1 — ea)ll

and using the fact that 1 — f,(2) = 1/(1 + nt?), we find that
1

(1 - eq) = P2+ = —ne?(1 + 0z}
has norm at moet 1/n. Thus {|z2{1 —e,)|| — 0 as n ~» oo, and (2) is proved

for the case z° = ..
In the general case, we apply the preceding paragraph to the seif-adjoint

element x*x € J to find a sequence of self-adjofnt elements e, € J satisfying
o{ea) € [0.1], for which ||x*z — z°ze,)) — 0 as n — 0o. In this case we have

Iz — zea|l* = (1 — ea)x"z{1 — &n)|| < [Iz°=(1 - e},
and (2) follows because the right side tends to 0 as n — oo.
THEOREM 2.10.2. Fvery closed ideal in o C*-algebra.is seif-adjont.

D

Proor. Lot J-be a closed Ideal in a C*-algebra A and choose an-element
T € J. We have to show that 2* € J. By Lemmna (2.10.1} there is s sequonce

of sell-adjaint, clements ey, ey,... in J such that ze, converges in poriu tor
a8 1 — o0, Taking adjoints we find that e,c* converges to z°; since €,2° € J
it follows that z* € J = J. N

Suppose now that we are given a closed ideal J in & C*-algebra A. We
.lom’ the quotient Banach algebra us in Section 1.8. Since J* =7, we ean
mtroduce an antilinesr mapping on cosotd by

(z+J) =2+ J, £ € A,
and this defines an involution of the quotient algebra AA/J.
THEOREM 2.10.3. The involution above makea A/J inlo 4 C*-ulgebra.

PROOF: It suffices to show that for every cloemewt & € A the cowt £ =
x + J satisfies ||2]]2 < Jj£°¢)]. To prove this, consider the follawing sel of

elements of J:
E={ecJ: e =ea(e) C{01]})
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We claim that for every = € A,

(2.25) Nzl = ;g}:_ |z — zejj.

Indeed, the inequality X is clear from the fact that ze € J for every e ¢

For the apposite ineqidlity, fix an elemeént & € J and ¢hoose a sequence of

elements e, ez, ... satisfying the conditions of Lemma 2.10.1 with ke < i

Thén '
(z + k}1 — en) = (z — zep) + (k — ke,).

The second ‘term on the right tends to'0 as n — oo, and since ||z + k| >

I(z +2Y(2 — e,))]| for every n, we have

=+l > liminf |}z - zen] > nf |lz - zel.

If we now take the infimum over all & € J, we obtain

41 = inf iz + kfl 2 ia |1z — zel)

and formula (2.25) is proved.
To see that |z||> < ||2°%)|, 6x = and apply {2.25) as follows:
Y e well? < oAttt
lz|* = 32{9 |z ~ zel :E:IE! (1 - e)z*z{1 — )|

< inf =°2(1— )}l = ="z + J|| = |l2"2].

Ol

TueOREM 2:10.4. Let A and B be C*-algebros and let 7 : A = B be
a =-homomaorphism. Then w(A) is ¢ C*-subulgebrn of B, and the nalura!
promotion of w,

w:Alkerr — B,
i8 an tsometric s-isomorphism of Al ket onto w(A),

F_'ltpor-“. The map i : Afkernr — Bisa »-homomorphism having ker-
Elfal {0} . Sioce Afkerw Is o C*-algebra Proposition 2.9.3 implicy that + is
someinic. Hence its range 7{A) = #(A/kern) is norm-closed in B. 0

Exercises.

(1) Ler {e;, e, } be an orthonormal basi
{€1.e2,... “ _ basis for u separable Hilbert
;I;ﬁm H, and lot E, Ha the projection on Lhe span of {e),....eq}.
how that an aperator T € B(H) is compocet, ifl

lim (T~ TE,|i =0,

U B Yo%

atd deduce ¢ . 1 - . .
g algebr?x:_hm €, :n € N} is an approximute unit (or thie
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2 Let 1/ be a unitary Operator on s Hillbcrt space H. Then o(/) C T,
(= and hence there is a unique representation p € rep(C(T), H) satis-
fying p{f) = {(U) for [ € C(T). [deptify ker p as an idenl in C(T),
Jentify the quotient C(T)/kerp in' concrete terms os a commu-
.ative C"-algebra, and similarly describe the natural factorization

p= fm T, where
7 : C(T) = C(T)/ ke p

is the natural map onto the quotient C*°-algebra.

The remaining exerciscs relate to the Stone-Cech compactification
of the real line, and of more general locally compact Hausdorff
spaces. Let Cp(R) be the space of all bounded: continuous complex-
valued functions of a real variable.

(3) Show thal there is a compact Hausdorff space AR and an isometric
o-Isomorphism of Cp(R) onto C(AR). (Hint: C,(R) is o unital C*-
algebra. You must be explicit about this Isomorphism or you will
have trouble later on.)

(4) For every ¢t € R, show that there is a (nuturaily defined) point
¢ € AR, and that the map ¢ — { is & homeomorphism of R onto a
dense subspace of AR.

The space SR is called the Stone-Cech compactificatiou of the
rea] line R.

(5) Identifying R with its image in AR, the subspace AR \ R is called
the corona of R. Show that the corona is closed (and hence, R is an
open subset of AR). Hint: For which points p € R does evalnation
at p vanish on the ideal Co(R) C Cp(R)?

(6) Deduce that the quoticnt C*-algebra Cp(R)/Co(R) iy isometrically
isomorphic to C{/R \ R).

A compactification of R is s pair (¢, Y) where YV is a compact
Hausdorff space and ¢ : R — Y is a contibuous mnp such that
P(R) isdense in Y.

(7) Show that (¢ — ¢, AR) is a universal compactification of R in the
foliowing scnsc: If (¢, Y) iy any compactification of R, then there
Is o unique extension of ¢ : R —+ ¥ to a coutinuons surjection
¢:0R — Y. Hint: The map ¢ induces a e-isomorphism of C(Y)
onto a unital C*-subalgebra of Cy(R).

Your proof above extends easily to give n more genural theorem, in
which R is replaced Ly any locally compoct tipnucotnpact Hausdori
space X (such us BR", Z°, ur an apen wnnifuld), aud voe obtainy o
universal compuctificatiovn 3. called tho Stone-Cech compactilici-
tioo of X. Furmulate vhis thearem for yoursell.






CHAPTER 3

Asymptotics: Compact Perturbations and
Fredholm Theory

rator theory modulo compact perturbations should be regarded as a
' jc" properties of operators. After making this vague

study of the “asymptot :
potion more precise in the context of Hilbert space operators, we take up
the general theory of compact and Fredholm operators acting on Banach

spaces and discuss a remarkable asymptotic invariant, the Fredholm index.

3.1. The Calkin Algebra

Let H be a separable Hilbert space and let X be the C*-algebra of all
compact operators on H. We have seen that X is a closed ideal in B{H).
The quotient C*-algebra C = B(H)/K is called the Calkin algebra. The
Calkin algebra is important because it is the repository of all asymptotic
information about operators on H. The purpose of this section is to discuss
this aspect of operator theory in preparation for the more precise results to

follow.
Let us begin in a simpler, commutative, context. A bounded sequence

z = (x1,23,...) of complex numbers is an element of the C*-algebra £,
w'here addition, scalar multiplication, and multiplication are defined point-
wise, and the norm is the usual one:

|zlle0 = sUP |24l
n>]

We want to discuss properties of the sequence r that depend only on the
behavior of the sequence at infinity, for example, the notion of a convergent
soquence. Such properties can be expressed io terms'of certain functions
defined on all of £, such as

lwsup |zl = lim (sup{{zal, |Zn+th |Tas2ls - - })-
oo n—o0

Other examples are the limit inferior and the limit superior.of the sequeuce of
real parts Rz, of the components of . In particular, 8 sequence I CODVEIEES

if and only if
lim sup Rx,, = liminf Rz, and LmsupIz, = lggg}f Sxy.
A= Q0

n—oa 11—+ 0
One can formalize the idea of an asywmptotic invariant &8 follows. [rm us
say that a function ¢ : £ — C i8 asympletic if it is coptinuous relative to
the norm topology of £° and haa the property that for any two sequences

(N
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thal. we do nat require that ¢ be a linear functional: in fact Otige

. 1 any of
fiportant asymptotic propertles of sequences, such as the exnmpltj ab-::‘:
are nonlinear. .

The proper domain for asymptotic functions is the quotiens, o

-tlgehy
> Jey. More precisely, consider the space cg of all saquénces ﬁhal:-cunvmg:
f zeron

fm =, = 0.
& To o]

Herr ry is n closed ideal in £, and the quotient £%/cp is a commutaive
C'*.algebra, whose Geliand spectrum is identified with the corons AN\ N of
the Cech compactification of N. Notice that by their definition, esymptotic
functions ¢ : £° — € promote naturnliy to continuous functions

¢:0%)cg = C

by way of éx(z + cp) = (). Conversely, every continnous complex-valued

function defined on £%° /cp i associated with an asymptotic function defined
on £*,

These remarks show that the asymptatic properties of sequenges are
ticd to the quotient C*-slgebra £ /e, or equivalently, to the f@ﬁ?ﬁg%ag'ghe
OGN\ N. The latler is u very mysterious object: It is a compact Hamc!orﬁ
spuce without isolated points, but whose topélogy is so large that Iji!?:.:g?lnt
p of SN\ N can be approached with a sequence py,pa, ... of distinet noints
of SN\N. In particilar, it is not possible to realize this space as.a Sﬁli}ﬂﬂtﬂf
nny metric space. Thus one does not approach the analysis of asymptotic
properties by analyzing SN\ N as & topological space, but rather by desling
directly with concrete properties of the guotient C°-algebra £ /.

Turning now to operator théory, the noncomimtaiive counterpart of
% 5 vhe algebra B{H) of ali bounded operators op a separable infinitc-
dimensional Hilbert space H. Lel usintroduce coordinates in K- by choosiog
un orthonormal basis {e;,ez,...}. Let E, be the projection of H:onto the

n-dimensionn! space spanned by.ey,...,e,. The sequence £, is incrensing
n ihe seuse that £, € £, 4, and we have

imwm £, =1

relative to the stron

g operator topology-of B(H). Chogse an operator 4 €
BUH) nand consider

Its matrix (a;;) relative to this basis:

L = {AC,,.E«,‘), i,j ='1|2,....

Notice that tlw matrix of (1 — Eq)A({l — E,) is obtained Fom (g,y) by
teplacing the fiest n rows and columns. of (ay;} with zeros and:lcaving the
reiniug entries fixed. Mofcover, the result of Exercisa (2) of Soction 2.8
buplien thit A is compact. il

Jm (1~ £,)AQ - E8,)) = 0.
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com ors in B(H) becomes the noncommuta-
f the ideal cp of all null-convergeat sequences in £.

é: B(H)/K = C,

and cvery CONLInLOuS complex function defined on the Calkin algebra ariscs
in this way from an asymptotic function defined on B(H).

The most obvious example of an asymptotic invariant of operators A €
B(R) Is their cosel norm i the Calkin algebra,

JA+K] = lim [{(1~ En)A(L~ Ea)l.
corresponding to the coset norm of sequences x € £°,

“I + Co" = ﬂl_l_’ﬂ;a “(Iﬂtzn-l-ltmﬂ-l-?: <. )"m-

Another example is the essential spectrum, or more specifically the essential
spectral radius,
r.(A) = sup{|A| : A € 0.(T)}-

Further examples are described in the Exercises.

Exercises. These exercises concern Banach limits and their noncom-
"?_‘""._‘F}W counterparts. Let £° = {°(N) denote the Banach space of all
bﬁ“_ﬂded sequences of complex numbers a = (g, : n > 1), with the sup
norm. We regard £°° as a commutative C°-algebra with unit 1 = (1,1.1,... }
ﬁﬂﬁw to the pointwise operations. Let T be the linear operator defined on

by translating one step to the left and discarding the initial compoaent:

(Ta)s =apsry n=12....

m“"“d’ limit is o linear functional A on £ satisfying Al = A1) = 1.
that is translation-invariant ib the sense that A(Ta) = A(a), o € (% For
the following exercises, A will denote a Banach limit.

(1) Show that A is a positive linecar functional in the sense that
g, >0, n=12.. == Ala) 2 0.
(2) Show that far every realvalued sequence a € 7,
liminfa, < Ala) < limsupa,,
n>i n>l
and deduce that A{a) = Lima—ao Un whenever a is a (complex)
convergent sequence in c; i particular, for every bhe  and k €
A(b + &) = A(b).
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(3) For n=1,2,..., let &, be-the linear funetional gy goo defineq
a) +a82% - +ay &

n ) ag€
Then @y obviously satisfies |jon]l = ou(1) = 1. By
norm, Show that limg oo o T — o) = 0.

(4) (Existence of Banachlimits) For every n = 1,2,... lat Ky be the
closure {in*the weak®-topology of the:dual of £°) of the set of linear
fllnCﬁUﬂﬂjﬁ {qrns Ciat110n42, -+ }“ Show that r‘nKﬂ F 'at and that
every linear finctional 'in-this intérsaction is a Banach limit.

oa{a) =

mﬂmﬂtiﬂg the

In the remaining exercises, you. will-consider “noncommutative’
Banech limits, as linear functionals on’thé noncommutative conn-
terpart-of £, Let ej, €z2,... be an orthonoimisal basis for a Hilbert
space .H, let S € B(H) be the:unilateral shift associated with this
orthonormal basis by requiring Se, = en4y, # = 1,2,..., and let
A be a Banach limit. Defiie a bounded linear functional p on
B(H) as follows: p{A) = Ala), where a = (a,) i5 the sequence
an = (Aen,eq), n = 1,2,.... It is obvious that p is a positive
linear functional in the sense that A > 0 = p(A) >0, and of
course p{1) = 1.

(5) Show that p{ K) = 0 for every compact operator K.

Far the last exercise, it may help to compare the matrix of ao
operator A (relative to a'fixed orthonormal basis (g,,)) to the matrix
of its kth “translate” S**AS*, noting that the latter is obtained
from the matrix {a,s, ) of 4 by deleting the first k rows and columns

of (gmn) and repositioning the result. How is the miatrix of S*AS*
related to (a,n)?

(6) Show that p(5°AS) = p(A) and p(SAS") = p(A), for every opern-
tor A€ B(H).

3.2. Riesz Theory of Compact Operators

leL E be a complex Banach space. An operator T € B(E) is said to.be
compact if

the imuge of the unit ball {7€ : I€ll € 1) of E has compact
closu.rr_a telative 10 the norm topology of E. The set of sll compact operntors
on .Eéls denol.'cdaby K(E).
ince bounderd sets in finite-dimensional Banach
| Lo . spaces are precompact,
?mﬁliliw—iﬁt operator must. be compact. The result of Exercise {3) Lelow
Phes A(E) is a norm-closed two-sided ideal In B(£). In particular,

auy vperator T that can be norppea o ' | .
opersbors Fy, in the scose that |7° EDF " by u sequence of finite-rank

Y E is o Hilbert gpac - AT all = 0 as n — oo, guust be compact.
rank oparutors. space, then K(E) is the nopn closure of the space of finjte-
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s, However, the reader should keep in ‘mind that

operator® “ﬁ“fﬁ?@'ﬂmﬁon-pmpmy can: fsil-for Banach spaces: K(E)
lﬁi-";:';f:ﬁw lnrger than thé ndrm closure of the finite-rank operators.
coft = ¢

Kernels and cokernels: We intraduce some terminology
throughout. the sequel. Siuppose that A € B(E)isa
blz’:nded operator that, for simplicity, we amiiﬁ’e-hn&dbse‘d.;ange.- There
are wwo-patural Banach Spaces associated withi A, namely, its kernel and
cakernek

kerA={ze E: Az =0},  cokerA=E/AF.

The notion of cokernel bears some elaboration. An elementary result from
the theory ‘0f Banach spaces esserts that there is & natural isomorphismn
between the annihilator AE+ C E' of AF and the dual'space of £/AE. On
the other hand, the annihilator of AE is. precisely the kernel of the operator
sdjoint A’ € B(E') of A. Thus we conclude that

dim coker A = dimkor A’

at lesst for every operator 4 € B(E) whose range is closed and of finite
codimension in E.

For such operators the two.integers dim ker A and:dim coker A provide
important information about solutions of linear equations of the form

Az =y,

where y is given and z is to be found. The number dimker 4 measures
the degree of failure of uniquencss of solutions, and the number dim coker A
micosures the degree of failure of oxisterice of solutions. Much of what jollows
I this chapter has subtle and impprtant implications for understanding
these numerieal invariants and their relatlon to each other.

The purpose of this section is to establish the following two general
resuits about compact operators and their spectrn.

THEOREM 3.2.2 (Fredbolm alternative). Let T € K{E) and et A be o
nonzero compler number. Then either
(1) A=T is invertible, or
(2) ker(A ~ T) # {0}
Moregver, the kernel of A — T is finite dimensional, the runge of A~T s a
closed subspace of E of finitc codimenaion, and we have

dit ker{A — T') = dimcaker (A = T).

puct opeiutor

‘Tueonem 3.2.3 (Countability of spectruw). Let T be o comn
). amd euery

on an infinite-dimensional Banach spoce E. Then 0 € {7’
nunzerp point of a(T') ts an wolated point of o(T).
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Remanx 3.2.4. The Fredholn alternative leads to an cffective Praced
fiie sulving linear eguations of the form ure

(3.1) Tr — Ar =y,

where 7 s a given rompact operator, A # 0 I8 a complex numb
s a given veetor in E. One frst determines whether or not there are nop.
trivial eigenvectars with ecigenvalue A, by carrying out an annlysis with the
spechic Information one has about 7. If there are no nonzero elgonvectors,
then equation (3.1) is unigquely solvable for every given y € E. Otherwige,
there iy A finite lincarly independent set of vectors xy,...,z, that 8pan the
cigenspace {x € £ : Tx = Ax}. In this case the equation has a solutioy iff
p belongs te (A - T)YE, morcover, the general solution z of (3.1) can be dp

terinined from any particular solution xq as in undergranduate linear aigelra
and differential equations:

Cr, ahd 7]

I=I{;+ﬂt.'1'| +"'+a"$~n'

where ay.. . ., ay, arce arbitrary complex numbers.

Thin begs the issue of whether or notl y belongs to the range of A - T.
To approach that, one first computes the adjoint TV € B(E’). Noting that
the anuihitstor of (A — T)E i the dual eigenspace {g € £': T'g = Ag}, one
sces from Theorem 3.2.2 that there is a set of n linearly independent linear
functionals fy...., f, € E' which span the apace {g € E’ : T'g-= Ag}. Once

on has computed such a basis f,..., fy one may conclude that for a given
g€ E, (3.1} i a solution iff

hty)=---=fulin =0.

Finully, uotice tbat Theorem 3.2.3 implies that when _E 15 'nﬁmr'edl'
wetsional, the spectrum of any compact operator is either just {0} (which
13, by the Gelfund-Mazur theorem, equivalent to the assertion that T s

quasinilpoteut ), or it consists of 0 and a finite number of nonzeto points, or
else it has the forns

af{T) = (0} U{Ay, Ay, ...},

s a seguence of nonzero complex numbers converging to 0.

WEMARK 3.2.5. Note first Uhat by replacing 7" with A7IT, we may with-

out o of genorality assumie that X = { in the nssertions of Theorem 3.2.2:
The keru.el of 1 -7 is finite diunensional, This is an immediate consequence
of Exwrc.;tsu- (1) below, since 7 is a commpnel. operator whose restriction. to
kmh; = I') Is the identity operator of ker{1 — T).
fa\.mllmly. U R denotes the closyre of (1 ~T)E, then R.pust be of Boite
f-§t111nuu5i011 & E becayse the annihilsior of R in the dual of £ Is .;*Jm kewigl
o Whe operstor 1~ 7, and 7 1s compact by the result of Exercise ('dz) halow.

The proof of the Fredholin alternatg '
rnative
stpn, whish we establish as Lotome. (Theorem $.2.2) involves thiree

wlhere '\lq Ag‘ .o -
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0g. LetT € K(E), and let Ml C E be a closed subspace of E.

TIM i closed.
rst point out that it suffices to prove the assertion for
costriction of 1 — T is one-to-one. Indeed, let F =
the ﬁl _T). By Remark 3.2.5, F is a finite-dimensional subspace of Af,
M:thus it ust have a complement, a closed subspace N C Af with the
ant y that NNF = {0} and N + F = M (see Exercise (2) below). It
Jows that (1= T)M = (1 — T)N, and the restriction of 1 — T to N has
trivial kernel. . . .
that M N ker{1 — T') = {0}. Pick an element y in

Thus we may assune
the closure of (1-T)M. We will show that y € (1 — T)A. To see that,

hoose 8 scquence T, € M such that z, -~ Tz, — y as n — 00. We claim

that [|za]] 18 bounded. Indeed, if it is not, then there is a subsequence z, of

r, such that ||z || = 0o. Set e, = ||zn||” z. This defines a sequence of

unit vectors of M for which [|Te,» —e, || — 0. Since T is a compact operator,
there must be a subsequence e,» with the property that Te,. converges in
the norm of E. Since {je,» — Teq¢|| —= 0, it follows that e,~» must converge to
some vector [, which must be a unit vector in Af because each e, has these
peoperties and M is closed. Finally, we have f = T'f, contradicting the fact
that the restriction of 1 — T to M is injective.

| Thus the sequence z;,z3,... is bounded. Again, compactness of T im-
!)lm that there is a subsequence x,,; with the property that Tz, converges
in norm to some vector. Since z, — Tz, — J, it folows that r,- must itself
tonverge to some vector z € M, and we have

r—-Tr= lim z, — Tz, =y,
n’—a0

and hence y € (1 - T)M.

LEMMA 3.2.7. For every compact operator T on E,
ker(1 - T) = {0} <= (1-T)E=E.

Proor. We first prove = . For every n =0,1,2,..., set
M, = (1 - T)"E.

We have E = My D My 2 My 2 ---, each M, is F-invariant in that

TM, C M, . and from Lemma 3.2.6 and an obvious induction it follows that
"wn Is clased.

We clnimn that if (1 —T)E # E, thes M, # My for every n = 0.1,....

To see this, assume that there is a vector o € £ that fails to belong Lo

(1 - T)E, and fix n. We will show that (1 — T)"zo ¢ 1“’!&-{-1-7’;-“2?""’*

n w'

If there were to exist n yo € £ such that (1 — T)%zg = (1 —
then (1 — T)*(xp — (1L — T)wo} = 0. Since we are assuming thal 1-7T

is injective, (1 — T)" is also injective; bence the previous formula implics
o = (1 — T)w € (1 — T)E, contrary to asswuptiou.
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Thus, assuming (1-T)E # E, it follows that the

sCquence Af, A
stricily decréasing., Foreachn =0,1,2,., 0, My, . 1

- we choose a Uit veetq

such that Fen€ M,
. . 1
. dlen, Masy) = inf fleq —yll > 2
(3.2) (ens M) il llea — 3l 2 5
Notice that
. 1
(3.3) |\ Ten — Tenssl] 2 3 k21, n=042,...

Indeed, we have

Ten, —Teni1 = €n ~ [(1 — 'T)En + Ten.;.g)].

The bracketed term-on the right belongs to M, .y, since Teq o € M, C
Mniy anid (1 —Te, €(1 — TIM, C Mp4y. Henee

1

2 ’

which proves(3.3). Clearly, (3.3) violates the compactness hypothesis on 7T,
and hence (1L=T)E = E.

For the proof of <=, consider the adjoint operator 7° € B(E'). The
hypothesis (I-T)E = E implies that Ker(1-7") = {0}. Since 7" is compact
(see Exercise (4)), the argument just given implies that (1 — T9)E! = E'.
In turn, this implies that ker(1— T} = {0}. Indeed, every bounded linenr
functional f.on Ehes the form f = go(1 —7T7) by hypothesis; hence for any

vector z € ker{1 —T) we bave f(z) = g((1 — T)z) =0, and z = 0 follows
from the Hahn-Banach theorem. o

llea = [(1 — T)ea + Tensrllll 2 dlen, Mps1) 2

To swnmarize progress, we have shiown that ker(1 — T} and coker (1—7T)
are both finite dimensional and that 1 — T has closed range; and we have

tfh;; assertion of Lemma 3.2.7. We now extend the result of Lemma 3.2.7, o8
ollows:

dim ker(1 — 7') = dim coker (1 — 7).

v oyn foOr ker(l — T} and choose vectors
<+« 1lin are a basis for the cokemel Ef(1 —
span {y,... , Yn] Intersects teivially with (1-

M S Norm >k can be dealt with in turn. Assuming
o 1, o closed complement N for kar(1l — T und
cousuder the Gnite-runk operalor F e B( 7 d '

‘o PTh oy ot ke g (£) deBned a8 zero on NV and so #s

The operatar T — 14y -0 7. Notiga thut kﬁl‘(l - T) Nker F = (0}‘

T + F. being o fnlte-rangk
We claim that 1 -7 ) t. . g : Imr!_-urfgnllou of T, iy compact.
Fre(1-T)En lm'-,ﬂﬂ rivial keruel. indeed, if Tir = Z,then x —~ T =

o otin) = {0}, Henee x £ ker(l - T} ker F = {a},
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1gim. It follows from Lemma 2.4.3 that £ = (1 ~ T)E. Now,
procisg oo, . .
mghﬂﬂﬂﬂ E/(I-T)E":h’h”*tyn]'
Jlle Si0Ce (1-TEC (1-T)E+ FE=(1-T)E +[n..-..ym), we also
" -
- (1-T)E/(L-T)EC lin,..- )
Since £ = (1 - T)E, these relations imply that (1,...,%] G [51,- -+ Jm],
from which we conclude that n = m.
one can construct a fAnite-rank operator G map-

Assuming that m 2 n, ety e _ e
oing (21, - ,Zm] anto {11, ... ¥a]- By arguing with the perturbation T+ G

o o similar way one shows that 1 — (T + G) is injective, and argues to the
conclusion that m can be no larger than n. The reader is asked to flesh out
this argument in- Exercise (5) below. 0

Pnoor oF THEOREM 3.2.2. We deduce Theorem 3.2.2 from the pre-
ceding discussion as follows. If 1 — T is not: invertible, then ker(l — T)
must be nontrivial, since if the kernel is trivial, then by Lemma 3.2.7,1 -7
is onto, hence invertible. The finite dimensionslity of ker(1 ~— T'), and the

dosure and finite codimensionality of (1 — T)E, have also been established,
and Lemma 3.2.8 provides the formila relating the dimensions of the kerne!

and cokerne). 8,

PROOF OF THEOREM 3.2.3. We show first that 0 € o(T). Indeed, if O
does not belong to o(T'), then T is investible. Since K(E) is an ideal, it
lollows that 1 = 7=T is compact. This implies that the unit ball in E is
compact, and hence £ is finito dimensional (Exercise (1) below).

In order to establish the remaining asscrtions of Theorem 3.2.3, it suffices
‘0 prove the lollowing: If \;, Aa,... isa sequence of distinct nonzero complex
wumbers in (T, then

(3.4) lim A, = 0.

n—eon

_TO prove this, assume that Ay, Az,... is a sequence of distinet nonzero
Poluts in o(T') thot does not converge to 0. By passing to a subsequence it
fitcessary, we can assume that there is an ¢ > 0 such that |A,| 2 ¢ for every
n=

L I B

Theorem 3.2.2 implies that A, — 7 has nouzero kernel for overy #; ll{!;l'c(.a
o-

we con find a unit vector ¢, such that Te, = An¢, for every n.
tice that the sequence e, €3, ... is linearly independent. lndeed, for fixed

R Aly..., Ay ore distinct complex nunbers, so we can find polynominls
Piy..., pn such that pi(A;)) = 6, for | <i,) < n. I some lincur cotubination
of ¢y,...,e, vanishics,

G1e) + - b lpe, = 0,
then after applying po(T) to this equation and using p(T)e, = dyee we

obtain
apey = aypa(Tier + - -+ + agpa(T)en = T Hasey + -+ +agen) = 0,
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snd henee g = 0 for all &.

The: subspaces Aly, M3, ... defined by M, = [g,

cﬂu--fc ] arg 8
inerensing with ni; hence we can find unit vectors uy, u,, o Uricaly

_ .+« Buch that
My nnd d{vg, My_1) 2 § for every k = 2,3,.... Finally, notice thye ('f_'l‘if

A M, © M,_y for every n > 2, simply hecause each e, is an eigenvectar gy
T with cigenvalue Ax. In particular, (7"~ Ay)e, € M, forn > 2.
It Iollows that for | < & < n we have

Tuy — Ty = Aty + [(T — An)un — Tuyl.
Sinee the bracketed vector on the right belongs ta M,,_,, it follows that
\Tu,, — Tupll 2 d{Antin, Mp—y) = "\n'd(uﬂ: Mao1) 2 €/2,
and the Intter inenquality contradicts the compactness hypothesis on 7. (O

F.xercises.

{1} (n) Let r be a renl aumber satisfying 0 < r < 1. Show that an
infinite-dimensional Banach space £ contsins a sequence of
unit vectors e,,ez,... satisfying {lex — )] 2 r for all j # k.
Hint: Use induction-and elementary properties of the quotient
nann in E/F -where F is a finite-dimensional subspace of E.

(b) Deduce that the unit ball of a Banach space E' is compact iff
¥ is Bnite dimensional.

(2) () Let F be = finite-dimensional subspace of o Banach:space £,
Show that there is an-operator P € B(E) satisfying P? = P
and PE = F. Hiot: Pick o basis zy,..., %, for 7 andfnd
bounded linear functionals f1,..:, f, on £ such that fi(xy) =
5,

(b} Deduce that every finite-dimensional subspace F C £ is com-
plemented in the sense that there is a closed subspace G € &
withGCNF ={0}and G+ F = E.

(c} Show thay every closed subspace M € E of finite codimension
in £ is complemented.

(3) Show that for any Banach space £, K (E) is n norm-closed two-sided
deal in B(E).

(4) Let T be a compact, operator on 4 Banach space E. Show that the
adjoint T° € B(E') is compact. Hint: Use Ascoli's theorem.

(8) Supply the missing details to the last parsgreph of the proof of
Letann 3.2.8,

3.3. Fredholm Oparators

A buunded operator T op a B

. anach space £ is said to. be -
wrulor i ker T is finite dime ach, sp said to-be a Fredhplm op

fut . wsicual and TE is o closed subspace of finite
t,m‘humtwiun \nt &£, Mure briefly, one says that T has finite-dimensional ker-
my pnd caks.-r_nul, Notice that the assertion about coker T is éubhle, ll;l that
ase must venfy that the sange of T i8 closud, and of finite codimension. In
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subspaces of Banach spaces that are of fnite
goverl ‘hemma:g :!:;Lozeedrnels of discontinuous linear functionals. On the
wdimmwi:;“'lfn linear subspace A of Anite codimension in £ is the range of a
other wlix.:eﬂf' operntor T € B(E), then R must be closed (see Exercise (1)
boundEdThuB one can make a more symmetric linear-algebraic definition
helow). Im"- operator ns 8 bounded operator on E with the property that
&ah kor T and coker T = E/TE are finite dimensional as complex vector
APHILCS -
REMARK 3.3.1. Obviously, invertible operators have the Fredholm prop-
erty. A noninvertible example is the unilateral shift acting on ?(N): Its
rnge ls a closed subspace of codimension 1, and its kernel is {0}. In the
preceding section we have seen that any operator A+T, with 7 compact and
1 a nonzero scalar, is a Fredholm operator. In this section we summarize the
basic properties of Fredholm operators and establish an important criterion,
Atkinson's theorem. These results imply that Fredholmness is un asymptotic

property in the sense that it is stable under compact perturbations.

Throughout the section E denotes an infinite-dimensional' Banach space,
and K( E) denotes the closed ideal of all compact operators in B(E). The nat-
ural homomorphism of B(E) onto the quotient Banach algebra B(E)/X(£)

is denoted by T T = T + K(E).

THEOREM 3.3.2 (Atkinson's theorem). A bounded operator T on £ 5 a
Fredholm operator iff T' is invertible in B{(E)/K(E).

Before giving the proof, we collect some of its immediate consequences.
Let F(E) be the set of all Fredholm operators on £.

ConoLLAry 1. A bounded operator T belongs to F(£) iff there is an
Operator § € B(E) such that 1 — S7" and 1 — T'S are both compact.

ProOOF OF CoroLLARY 1. If T is invertible in B(£)/K(E), then its in-
verse is an element of the form § for some S§ € B(E), and the cperators
1~ ST and 1 -~ T'S must bo compact because they map to @ in the quotient
algebra. The converse follows immediutely from Atkinson's theoremw. »

COROLLARY 2. The sel F(£) of Fredholm operators is open in the norm

topology of B(E), it is stable under compact perturbatious, it contains all
invertible operators of B(E), and it is closed under operator multiplicution.

PROOF OF COROLLARY 2. Atkiuson's theorem implies that F(£) is the
inverse image of the gencral linear group of B(£)/K(E) under thie continuous
bomomorphisin T — T; hence these assertions all follow from the fuct that
the sat of invertible clements of o unital Baonach algebra A forms a group

that is apen in the norm topology of A.

The essential spectrum o.{T) of an operator T € B(£) s defined as the
spectrum of the imoge T of T in B(E)/K(E). 0.(T) is u compact subsct of
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(7). The following result implies that there are points in t

he spect
T that cannot be removed by perturbing T with compact o i of

peratary,
Conrott.ARY 3. Let T be a bounded aperator on an infinite-dimengjgy, ol
Dannch apace £. Then o.(T) # 8, and

2.(T) C o(T + K) : K € K(E)).

Perbaps it (5 overkitl to present this Corollary as a consequence of Atkin.

son's theorem, sinee it can bhe readily deduced from more basie consideration,
(ar0 Exercise {(2) below).

Proor of THEOREM 3.3.2. For the proof of Atkinson's theorem, sup-
pose firt that T is invertible, and let § € B(E) be an operator such that

S = T-1. Feom the formulas ST = 1 and TS = 1, it follows that there are
coupact aperntors Ky, K3 such that

1 ~8T = K;, 1-7TS5 =K,

We hiwve to show that ker T° is finite dimensional and that TF is & closed
subspace: of finlte codimension in £.

Far the first assertion, we have ST = 1 — Ky, 50 that ker? C ker.?_T =
ker(1— K, ), and Theorem 3.2.2 implies that ker(1 - K, } is finite dimensional.
Consider now the range TE. Since T'S = 1 — K3, we have T'E 2 TSE =
(1 - K3)E, and by Theorem 8.2.2, (1 — J{2)E is a closed subspace of E of
finite codimension. Using elementary linear algebra we can make an obvious
Inductive argument to find & Hnite set of vectors vy, ..., u, such that

TE = (1 ~ K2)E + [v,. ... ),

exhibiting TE as o closed subspace of Rnite codimension in E. ‘
Canversely, suppose thet T is a Fredholm operator on E. Since ker T is
hoite dimensionnl and TE is a closed subspace of finite codimension, '*h'f'-'-"e
are buunded operators P, Q on IZ such that P2 =P, Q* =@, PE = kr{rT,
sl QE = TE {see Exercise (2) of the preceding section). Notice that since

------

P and 1 - Q are finite-rank tdempotents, it suffices to show that there is a
buunded operator S on £ such that

(3.5) ST=1-P, TFS=Q=1-(1~-Q).

The formulas (3.5) imply that $T = T§ = 1 in B{(E)/K(E). The operator

5 Is obitalued os follows. Let N = (1 - P)E. The restriction 7p of T't6 N-is
Ui upernbor with trivial keraal that tnaps onto TE (sinte TP = 0). By the
cluedd graph theorem Th 1 an

invertible opesator. Let Sy € B(TE,N). be
I luverse. We have Syfr=zforall z € N , and TSy =y for all y € TE.
L"t.:::.'ils be the compusition S = Sy 0@, ane finds that formulns (3.5) are
antistied.

0
REMARK 3.3.3. The proof of Atkinson's \heorern shows somewhat more
W we Lave anserted, d. o) P

A namely that for any bounded. operator T on £ tho
ullowing thoe conditivng are equivalent:
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holm operator.
g;; :{:hi:,: ::?;1 operator S € B(E) such that 1 ST and 1 - TS are
t.
) %ﬂm ap operator § € B(E) such that ¥ — ST and 1 ~ TS are
finite-rank operators.

_we have the remarknble conclusion that invertibility modulo
is the same as invertibility modulo finite-rank operuators.

(1) Let E be a Banach space and let T be a bounded operator on E
such that the vector space E/TE is finite dimensional. Show that

the range-of T is closed.

The Weyl spectrum ow(T) of a bounded operator T on E is de-
fined as the intersection N{a(T + K) : K € K(E)} of the spectra
of all compact perturbations of T'. It is empty when E is finite
dimensional.

(2) Show that when F£' is infinite-dimensional the essential spectrum
o.(T) is a nonempty subset of oy (7). Use elementary properties

of Banach algebras and their quotients, but not Atkinson’s theorem.

Let § be the unilateral shift, realized on a Hilbert space. # with
orthonormal basis e;, e;, . .. as the unique bounded operator S sat-

isfying Se, =ep1, n=1,2,....
(3) Show that the essential spectrum of S is the unit circle
T={AeC:|A|=1).
(4) Show that the Wey! spectrum of S is the closed unit disk.

3.4. The Fredholm Index

We introduce the Fredholm index, develop its basic properties in general,
“d.“-'“da the section with a: brief discussion of the index in the more concrete
setting of operators on a Hilbert space.

Let T be a Fredholm operntor on o Banach space £. Both vector spaces
kee T = {z € E : Tz = 0} and coker T = £/TE are finite-dimensional, and
the indez of T is defined as the difference

ind T = dim ker 7" — dim coker ..

The Fredholm alternative (Theorem 3.2.2) becomes the asscrtion that an
operator of the form A + 7, with 7 compact and A a nonzero scalur, 1s
a. Fredholm oparagor of index zero. The unilaters! shift S is a Fredholm
operator with ind S = —1 (see Remark 3.3.1). We bave also poiuted out

in the last section that the dimension of coker T is the same as dim ker 7Y,
where 7¥ € B(E£') is the adjoint of T, so that
ind T = dim ker 7" — dim ker 7.
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Thix formuda is perhaps most useful for operators op -

one: can replace TV with the Hitbert SPBmpadjoin't :'r'EI Hilbert paces, whope
Avkinson’s theorem implies that the product ST of twe Fedliol |

ators S, T € B(E) s a Fredholm operator. The most important pry. 7"

the index in its logarithmic additivity, Praperty of

{3.6) ind 8T = ind S + ind T,

which will be proved shortly. Once this formula is established, the temainin
pruperties of the Fredholm index follow easily. Thus it is significast tha%
formula (3.6) is fundamentally a result in infinite-dimiensional linear algetirg,
hnving nothing to do with the topology of -E or B(E). While it ig not
aperator-theoratic arthodaxy to do so, we have chosen to present the genery|
algebraic reault and deduce {3.6) from it. This proof is not only natural fem
o forinal point of view, it is also quite transparent.

For the moment, we shift attention away from the category of Banach
spaces with bounded linear aperators as maps to the category of complex
vectur spaces with linear transformations as ‘maps. Let V' be a complex
vector spuce. By an operator on V we simply mean & linear transformation
T:V = V, and the sct of all such is denoted by £(V), which is a complex
algebra with unit. Every operator T'-€ £{V') has two vector spaces associzted
with it, numely, its kernel and cokernel

kerT ={z eV :Tx=0}, cokerT = E/TE.

T is said to be o Fredholm operutor if both of these vector spaces are finite

dimeusional. The set of Fredholm operators on 'V is denoted by (V). Every
operator T-€ F(V) has an index, namely,

ind T = din ker T — dim coker T'.

Notice that if E is a complex Banach spuce and V is its underlying vector
space structure, then, as we have already seen, a bounded aperator belongs
to F(E) iff it defines an slgebraic Fredliolm operator on V, that is, F(£) =

F(V)N B(E). Thus the following result tmplies the addition:formula (3:6)
lor Fredholm operators on Banach spaces.

THEOREM 3.4.1 (Addition formuls). Let V be o compler vector space
ﬂ'u; (el A, B be Fredholm operutors on V. Then AB is o Fredholm. aperalor,
an

ind AB = ind A 4 Ind B.

We will deduce Theorens 3.4.1 from two, more prucise formulas, in which
both defects - 2

dimker A + cimker B ~ dinyker A 3
utscl

disn coker A +-ditn coker B — dinm coker AB
e computed explicily.
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LEsMA 342 Lat V be o vector space, and lel A; B € F(V). Then
3.7) dim ter A + dim ker B = ditirker AB + dim({ker A/(BV N ker A)).

38) dim(ker AB/ ker B} = dim(BV N ker A).

Tp prove this, it i8 eénough to exhibit a linear map I from ker AB onto

BY N ker A whose kernel is exm_zl:ljr kerB. It is-défihed by L : z — Bz,
. Cleatly, L(ker AB) & BV Nker A; and Lz = 0iif w € ker B. L

TE Ill!l'J‘LB .
is surjective; since if 3 hag the form ¢y = Bv. € ker A for some v € V, then

ABu = Ay = U; Hence v € ker AB'and-Ev= Bv =7.

We now add-'giimlm:ﬂ;‘-l-‘ dimi{ker A/(BV Nker A)) to both sides.of (3.8).
Sinco dim(ker A8/ ker B) + dimker B = dim ker’A'B, the left side becomes
dim ker A8+ dim(ker A/(BV N ker A));
for a similar reason, the right side.becomes
dim ker 8 + dimker A,

and we obtain.the asserted formula.

LEMMA:3.:4i3. Let V be a vector space, and let A,B € F(V). Then
(3.9)-dim coker A'+-dirn coker' B = dim coker AB +dim((BV +ker A)}/BV).

Proor. We first establish an elementary formula. If A/ is a subspace of
V of finite codimension, then
(3.10) dim(V/M) = dim{AV/AM ) + dim{{M + ker A) /M),

For theproof, consider the-natural linear map b .: V/¥ — AV/AM: defined
by E{v+M) = Av+AM. The range of L is obviously AV/AM, and we claim
that kerL = (M +'ker.A)/M. Indeed, a coset v+ M belongs to the keroel
of L iff Av+ AM =0:iff Av € AM iff there is.an element m € M such that
A(v—m} = 0, and the latter is.equivalenb to.v € M +ker . Formula (3:10)
now follows from'a familiar identity of finite-dimensicns! linear algebra:

dimi:domain L = dim ran L + dim ker L.

Thiking M = BY in (3:10), we obtaip

dim(V/BV) = dim(AV/ABV) + dim{(BV + ker A)/BV).
If we add dim V/AV to bpth sides, the lef side becomes

dim coker A + dim coket'B,

while the right side: becomes

dim(V/AV) + dim(AV/ABV) + dim((BV + ker A)/BV).

B,

Since ABV C AV, the first two terms sum to-dim V/ABV = dim coker A
completing the proof. m

]
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ProoF. Turning to the proof of Theorem 3.4.1,

‘hat & 3:4.2 iniplieg

dim ker A8 < dimker A + dimker B < 00,
while Lemmn 3.4.3 implies

dim coker AB < dim coker A + dim coker B < oo,

Thus A, B € F(V} =+ AB € #{V). Now, for:any two subspaces M,N of
# vector space there is an obvious linear map of M onto (N + M)/N wiy,
kernel N N Af; hence M/(N N M) = (N + AM)}/N. Tt follows that

ker A/BV Nker A =2 (BV + ker A)/ BV,
and in particular,
dim(ker A/BV Nler A) = dim{(BV 4 ker A)/BV).
We infer from fiemmas 3.4.2 and 3.4.3.thit
dim ker A+ dimker B ~ dim ker AB =
dim coker A + dim coker B — dimcoker AB,

and the required formuls ind AB = ind A+iid B follows after 6ne rearranges
terms in (3.11). 0

(3.12)

Returning now to the settingin which E is an infinite-dimansional Be-
uach space, we obtaio a fundamental resylt:

COROLLARY 1. For any two Fredholm operators A, B oa E, the product
AB is Tredholm, and

ind AB = ind A -+ ind B.

Proor. Atkinson’s:theorem implies that F(£) is closed; under operator

multiplication: Il we forget the topology of E and apply Thesiém 3.4'1, we
obtain the esserted formula. H

. ConoLiary 2 (Stability -of index). For every Frédholm operator A €
B(E) and compact operator K,

ind{A + K} =ind A.

Froor. By Atkinson's thegrem there is a Fredholm:apprator B € B(E)

::.ﬁ; '.'h;:"_‘wz = 1+ Lwith L € K(E). We have (A +K)B = 1 +.L'
e ~~ KB €X(E). As we have already pojnted out, the Frédholm

d{A+ K)+imd B = nd{A+ KYB.=ind AR = lud 4 + ind 2,

aud the formule follows. aftur ane cancels the integer ind 8. [J



2.4, THE FREDHOLM INDEX %0

4, Given 8 Fredholm operator A and an integer n, one can

4 finito-rank operators F and F’ such that
ﬁ dim ker{A 4+ F) > n, dim coker (A + F') > n

instructive exercise to carry this out with A the unilateral shift).
ar, both dimker(A + F) and dim coker (A + F'). luctuate in an
way as F varies gver the finite-rank operators. It is quite re-
these Auctuations cancel each other, so: that the difference
— dim coker (A + F) remains at the constant value ind A.

RE&MRK 3.4.

i s 0 18
n particy
unbolmﬂed
markable that
dim ker(A +F)

CoroLLARY 3 (Continuity of index). Given a Fredholm operator A,
let Ay, Aa,... be a sequence of bounded operators that converges to A,

liMasoo |An — All = 0. There is an ng such-that for n > ng, A, is a
Fredholm operator with ind A, = ind A.

Proor. By Atkinson's theorem, F{FE) is open, so that A, € F(E) for
sufficiently large n. We can also find a Fredholm operator- B such that
AB =1+ K with K compact. Writing A, = A+ T, with |[|T,,|| = 0 as
n — 0o, we can.ifind ng so that, for n > ng, ||T,,B|| < 1 and hence-1 + T, B
is invertible. For such n, we have

Thg right side vanishiés because 1+ 7,8+ K is a compact perturbation of
an invertible operator (see Exercise (1) below). On.the sther hand,

ind A+ ind B = indAB = ind(E+ K) = 0

lt;yrgthe Fredholm alternative; hence ind A,, = —ind B = ind A for sufficiently
en. O

Finally, let us consider the case of Fredholm operators acting on a Hilbert
5pace H. The unique featuce of Hilbert space is the existencs of the adjoint
Operation A ~» A®, carrying B(H) to itself. One cannot identify A® with
the Banach space adjoint A’ € B(H’), as one sees by considering the fact
that A+ A*'is an antilinear map, while, for operators 4 on Banach spaces,
A~ A’ is o linear map. That is because the identification of H' with
H given by the Riesz lemma is not a linear- map but.an antilinear map.
But the Hifference between A® and A’ is slight; and when one is working
with Hilbert spaces it is customary to use A° rather than A’. Thus for
Fredholm operators A acting on a Hilbert space we have AM 1 = ker A*;
hence dim coker A = dim ker A* and

ind A = dim ker A — dimker A",

(1) Let £ be an Infinite-dimensional Banach space.
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(8} Show that a Fredholm -operator T on & ig

bation of an-invertible dperator iff its index
vanigh

ind T = 0, show.how to'construct a finite-rank: Pert:h:;m If

T that is one-to-one and onto. On'of

(b) Deduce the following gsitcrete description. of th
relation A ~ B <= ind A = ind'B; Two. F&edh:l:iq;i;::ftm
A -and B on ‘E have the same index iff there is nn'iﬁmigﬁ
operator C such that A — BC is compict.
(2) Let §'be the unilateral shift acting.on a Billiert space § (see the
Exercises of the preceding section).

{a) Show that there is no commipact operator K such that § 4K is
invertible.

(b). Let T € F(H) be a Fygdholm operator of positive index n.
Show that ‘there is an:invertible operator-C € B(H) and a
compact operator & suchthat T = §°"C + K.

(3) (a)} Let N be a pormal Eﬁdhblm -operator on.a Hilbert apace H.

Show that the index.of N vanishes.

(b) Deduce that the unilateral shift S is not a compact perturba-
tion‘of a normdl operatar.

(4) With S as in:the preceding exercises, let S @ 5° € B(H @ H)be
the direct sum of § with its adjoint. S*. Show that § & S* is.a
Fredholm operator and calmﬂate its index.

(3) Let U be l:he bilateral shll’l: _defined on o Hilbert space H: by its
action on abilaterdl mthonoma_Lbams {en :n '€ Z} for H by Uen =
¢nt1y 1 € Z. Let Pbe the prejéction -onto the: nne—dunenmonal
space spanned by co, Show that U — U P is unitarily egivalent
to the operator S'® S* of, thejpmceding exercise, and ‘dednce that
5@ S* i5 a compact pﬁrtuﬂmtion of 4 niormal operator.

(6) Show that the spectrum of 5§ ® S* is the closed unit disk, but the
Weyl spectrum of S'® S* is the unit circle.

8 CO Pﬂﬁt penmr



CHAPTER 4
Methods and Applications

In this chapter, a variety of operator-theoretic methods are developed within
;e context of determining the spectra. of Toeplitz operators.

Let Z, be the additive semigroup of nonnegative integers, and let A be
2 boimded operator that acts as follows on the Hilbert space #(Z.,):

o
(4.1} (A€)n = Zcﬂ-kfh n=0,1,2,...,
k=0

where (cy,) is a bilateral sequence of complex numbers. Such-an operator A is
called a Toeplilz operalor with associated sequence (c,). More invariantly,
A 'lheglitz operator is a bounded: operator A on a Hilbert space H' with
the property that there is an orthonormal basis ep, €, €2, ... for which the
matrix (a;;) of A relative to this basis depends only on i — j,

g C-] C-2 O
: g € €2
(4.2) 2 € € C-y
Q3 02 €6 O

Toeplitz operators arise in diverse applications, and u great deal of effort
has gone into computing their spectra. The results are definitive for- Toeplitz
aperafors ‘i"l‘h_“cﬂnﬁﬁilbﬁs symibol,” and these results are presented in Sec-
m"‘ﬁ For more general Toeplitz operators the results are incomplete,
and this is an aren of continuing research.

) The resiilts of Section 4.6 require tools that have significance extend-
ing well beyond the immediate problem of coimputing spectra, and wo de-
velop these methods in a general context appropriate for broader application.
Topics treated in this chapter include o discussion of maximal abelian von
Neumapn algebrus, the characterization of bounded Toeplita matrices aud
the notion of symbol, Lhe structure of the Toeplitz C*-algubra including the
identificalion of its Fredholm operators and their relatian to the topology
of curves, the elementary theary of the Hardy space H3, and the index the
orem. We conclude the chapter with a discussion of states of C* '

and the Gelfand—~Nalmark theorem.
109
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4.1. Maximal Abelian von Netimann Algebrag

A von Neumann nlgebra is an' algebra M af operntora ona Hﬂhm

that contains the ideritity operator, is self-adjoint in'the sefise that M"?acfi\f
and-is closed in the weak operatortapology of B{H). We will. 1iot, Have myg,
to say nbout gnneral von Neumann anebras but we will look closaly at 1y,
..... Opemtor Blgebm
acting on H is part:al]y ordered With rmpect to m_t;}uuinn, and a
elemient -of this set 18 éalledl a maximal abelian self-adjoint algebra. Thoy
are commonly denotad by the colorless acronyth MASA.

REMARK 4.1.1. Since the closure in the weak: operator topology of any
commutative self- adjoint: aubalgebra of: B(H) is a mmmutative sell-adjoint
algebra, 3 MASA is a weakly cloded mibalgebra of B{H). 1t must contain
the identity opérator, since otherwise, it could ‘be enlarged nogtrivially by
adjoining the identity :to it. Hence a MASA is an abelian vén Neumann
algebra.
lgeiﬂmfsu,rea.llz,r, a MASA ‘A4 coincides with-its commutant M’ = {T € B(H):
T#A = AT, A € M}. Tt is clearly a subset of A because it is cominutative.
On the other hand, if A € M/, then ‘writing 4 = X +iY with X,Y self-

adjmnt elements of;M’ (here we. use the fact that M is self-adjoint) we
find that X must belong to M because the algebra generated by M and
X is a commutative algebra containing M. Similarly, Y € M, and hence

M’ = M. Finally, A straightforward .application of Zorn's lemma shows

that every self-adjoint family of commiiting operators is contained in some
MASA.

THEOREM 4.1.2. Let (X, ) be a o-finite tneasure space. Then the mul-

Liplication algebra M = {M; : { € L?(X,u)} is a mazimal abelian von
Neumann algebra in B(L*(X, p)).

PROOF. Let T -,1E 0 be a bounded.gperator on L3(X, ) that commutes
with every operator in M. We have to show that T° € M.
Consider first the case in which : is a finite measure. The constant

function 1 belongs to L2(X 1), and we can define a function g in L*(X,u)
by g = T1. We will show

that g € L, < IT}l, and T = M,. Nete
that for every [ ¢ L%(X. Iglls < T, g

u) we bave fg = M,T1 = TM,1 = Tf. Since
T#0, it lollows that ¢ # 0, and moreover, d !

el < UTH - i £lla-

Choosing EC X tobe a Borel set and taking f = xg, we obtain

(4.3) jf__ o dis = xeall} < 1T xeld = FTYPu(E).

This inequalivy unplics that | <
~ 2{p) Tl almost ¢ e
€ 2 0 is sny number such that )E = “{p"e X . o e, Indeed, If

la(P) > ¢} has pasitive
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d.1. MAXIMAL ABELI

Lo, then (4.3) implies

Au(E) < js g1? < ITWu(E),
is the supremum of all such ¢, we conclude

menst

4Ty Since flglloe

e hvﬁ;éﬁ' ) and Jlglleo < IT)- | l
thut‘ge have shown that M, is a bounded operator. that satisfies M,f =

. hence My = T because L*°(X, u) is dense in

2 :
L (ﬁflze | case where u is o-finite, we decompose X into a sequence
of disjoint Borel sets of finite measure:

X=XiUXqU.:-.

Letling pn be the restriction of u to: Xy, iin(E) = p(£ N X,), we find that
[? decomposcs into a direct sim of Hilbert apaces:
LA(X,p) = LY Xy, 1) © L} Xp pi2) B . - ...

Since the projection of L2(X, u) onto L¥(X,, un) belongs to M (it is the op-
erator that multiplies by the characteristic function of X, ), it must commute
with T, and we obtain a corresponding decomposition

T=T1$Tge-".

where T, is the restriction of T" to L*( Xy, ). Since 7, commutes with the
muliplication algebra of L?(X,, iy ), the argument just given implies that
there is o function f, € L% (Xp,pa) such that T, = M), and moreover,
Ialieo < ITx)] < |IT)] for every n. Thus the f,, are uniformly bounded, and
we can define a function f € L%(X,u) via f = f, on X, n=1,2,.... The
desired conclusion T = M; follows. O

Every normal operator N geoerates a von Neumann algebra W*(N),
bamely the closure in the weak aperator topalogy of the s-algebra gener-
ated by N nnd 1. Since N is normal, W*(V) is an abelian von Neumann
algebra; and in some cases it is 8 mazimal abelian vou Neumann olgebra.
These are the narmal operators that are “multiplicity-free.” A compreben-
sive treatment of multiplicity theory would be insppropriate here, and we
refer the reader to [3) for mare detail. What we do require is the following
sufficient condition for a multiplication operator to have this useful property.

THEOREM 4.1.3. Let X be o compuct subset of C, let [ € C(X) be a
continuous funclion that separutes points of X su the scnse that [(p) # fln)

Jor distinct points p # q € X, and let p de a finile measure on X. ]
Consider the multipiicalion vperator My € B(L*(X,u)). Then We ()

is the multiplication algebra M of L3(X, 1), and cvery operulor A that doubly

commutes Ay,
(1.4) AM, = My A, AM; = Al A

belonga to M = W*(My).
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PRrooOF. Since f separates points of X, the Stone~Wot
implies that C(X) is generated as a C*-algebra |
tion 1. Theorem 2.1.3 implies that .4 = {7, suby]
of the miiltiplication algebra, and in fact, it is the C™-algebig gE'nﬁntﬁbm
the two operators My and 1. by

We claim now that the closure of A<inthe weak operator tq
the multiplication -algebra M. Inideed, for every hounded Borg
h : X — C thére is a uniformily bounded sequence g;,go, ... 6f_~mum
functions su'cﬁ'%tha.t lim, Ga{p) = h{p) lor alﬁ':gqst every p € X. Choﬁng
such & sequéfice g,, then for every pair of functions €,9 € L3 X, 1) the
function €7 is integrable, so by the doniinated convergence theorem

lim (M. 6. = I . 0n(PE@MTP du = [ MPEENIP)da = (g,
Hence My € A" and we conclude that M is penerated 2s a von Nenmann
algebra by My and 1.

Finslly, Jet A be a bounded operator.on L3(X, p) that commutes with
My and M}. Then A commmtes with the weaklyclqaeda]gehm gencrated
by My, My, and 1,; which, by the preceding paragraphs, contains the mul-
tiplication algebra M. By Theorem 4.1.2, A€ M. 0

REMARK 4.1.4. It is significant that the second 't;y'p,qﬁbesis AM; = :M}A
in (4.4) is rédundant. That is a consequence of a théorem of Bent Fuglede
({28], Proposition 4.4.12), which asserts that any operatdr that commutes
with & norral operator N mist elss commyite with its adjoint N°.

We also remark that the Bniteness hypothesis on the measure & can be
relaxed tp o-finiteness, in view of the fact that for mutually abaolu}ﬂl}; equiv-
alent o-finite measures p, ¥ on X, the multiplication algebras of L*(X, )
and L*(X, v} are naturally unitarily equivalent. (Exercise (2) of Section 2.6).

Fiually, we point out that the hypotheses on f can be replaced with the
hypothesis that f is 2 bounded Borel funciion that separates points of X

but thal generalization requires more:information about Borel structures
than we have at our disposal (see chapter 3 of [2)).

ConoLuany 1. Let X be the standard operator on -£3[0, 1],
Xeit)=1£(t), o0<t<gi, £el?o0,1)

Far every operator A that commutes with X , there is o function f € L*{0, 1)
such thay A = M;.

o SreLruss thegyy,,
by f and the Cﬂnatan:, fur,
1 e C(X)} isa C

pology 1y
“fiinetigy

COROLLARY 2. Let {e, : n € Z} be o bilateral orthopormal basis for o

Hilbert space H,und let U be the bilaleral shift defined an ¥ by Ue, = ept1.
# € Z. Then the vun Neumann aigebra W (/) generaled by U Is maximnal
abulian, and consistys of al) operators in B{J) that commuic with U.
PROOF. We l‘m.we seen ;.hul. U is uniturily equivalent o the multiplication
bpurator M¢ ucting on L2(T) by Mc&lz) = ((2)&(2), ¢ being the current
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arinble ()= 3¢ e T. Since M is unitary, 5331’ meat_or' commuting with
AR oo ComMLLe with its adjoint ME = M'( . On the other hand, since
it m es points of T, it follows from Theorem 4.1.3 that any operator
( SEF’;':ing with {Mc, M} must belong to the multiplication algebra of
(3(T), and that the multiplication algebra coincides withy the von Neumann

Exercises.

(1) Show that the unit ball of B(H) is compact in its weak operator
topology. Hint: Show that the unit. ball of B{#) can be embedded
as a.closed subset of a Cartesian product of copies of the complex
unit disk A = {z € C : |z] < 1}, and appeal to the Tychonoff
thegrem.

In the following exercises, H denotes a separable Hilbert space.

(2) (a) Let &,&7,... be a sequence of vectors dense in the unit ball
of H. Show that

|{Afm, &n) — (BEm . En)l

AAB) = ) T e €7 — (Bt &1

mmn=l

is a metric on the unit ball of B(H ) that is svparately contin-
uous in the weak operator topology.
(b) Show that, with its weak operator topology, the unit ball of
8(H) is homeomorphic to a compact metric spnce.
(3) Deduce that every von Neumann algebra Af acting on H contains
n unital C*-subalgebra .4 that is (1) scparable (i.e., A contains a
countable norm-deanse subset) and (2) weakly dense in M.

In the following exercises, you will show that every maximal abelian
von Neumann algebru M C B(H) is unitarily equivalent to the
multiplication algebra of a finite measure space, and deduce the
gpectral theorem from that result.

(1) If an abelian von Neumann algebru M C B(f) hus a cyclie vector,
then there ia a compact metric space X and a probability measuse
4 on X such that M is unitarlly equivalent to the multiplication
algebra of L3(X, u). Hint: Use Exearcise (3)

(5) Let M C B(H) be 0 MASA. Show that thiere s o sequuuce of ws-
tually arthogoual cyclic projections In A that sn to Lho identity.
Hint: The prujection outo asy AM-invariaat subspace must beloug

to M.
(6) Deduce that every MASA bas a cyclic vectur, und henee is unitarily
equivalent to a amitiplication nlgebra as in Exercise {4).
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(7) Show that every commautalive =-subalgebra .4 C B(H .
in a maximal-abelion von Neumann algebra in. B( ) is COntaineg

the spectral theorem fromthe Fesult of thé*pféceﬂ(;_ﬁg) eizﬂﬁgzd“m

4.2. Toeplitz Matrices and Toeplitz Operators

Starting with & “symibol” (s fiinction in" £}, we intraduce jts n8sociated
Toeplitz operator acting on the Hardy space H? and develop the basic ra,
lations betwecen.the symbol .and the:operator. Then we discuss the more
classical notion of Toeplitz‘matrix, and relate the two. Historically, Toeplit,
mntrices caine Hrst.

We begin by reviewing some notation and terminology that will be ygeq
throughoirt the following sectioiis. L? will denote thiéHilbert space L3{T, o),
wheré o is the pormalized length-do = d8/2% on the-unit citele T of the
complex plane: Tet ¢ € C(T) be the current variable, {(z) = 2, z € T. The

set {(" : n.€ Z} of :powems of ( is an orthonormal basis for £2, and -H7 is
definied as the closed subspace

H? = [11(1421-”]-

spanned by the nonnegative powers of (. The orthocomplement of H* is
spantied ‘by the negative powers of (|

Bl =" :n<0).

Elements of H? are functions f in ‘L2 whose Fourier series have the form
o0

(4.5) fe®) ~ YT ane™.
n=0

Similarly, L% denotes the algebrs L=(T,q). It is a commutative C°-
algebra which, in addition to its norm topology, has a weak? topology defined
:yy l;; ;mtural pairing with L'. The corresponding subace of L™ is denoted

H*® = [ n H2.

By definition, 2 bounded . o ;
series has {he Torm measurable function f belongs to H™ iff its Fousler

4.6). Gi - o ‘ |
membership .in *Hw( )- Given f € L*, the following observation relates

) to properties of the muitiplication operator Ay, and
loplies that H® ig g weak*-closed unital subalgebra df"L"E. f

PROPOBITION 4.2.1. H™ — {#€ L= M2 C H?).

PROOF. let ¢ € [, |f ¢ € H*®, thien for n > 0,

Mo =" g€ (" H? C Y2

= [11 Ct c21 ~ e l 'in.mhl.lll.
WMH? C H2, then ¢ = M, e 41,

hﬁm:c M_¢ lﬁu\fﬁ m
Convemsaly,
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[, let Te € B(H?) be the compression of My to H?.

gvery ¢ €
For T¢ = P+M¢ [H?,

ting the projection of L2 onto'H3. The operator Ty is called the
Pe bt operator with symbol 9
is obviously a s-preserving bounded

4.2.2. The map ¢ — Ty ‘
ng of the commutative C°-algebra L™ into B(H?), which-carries
oent of 1= to the identity operator and is posilive in the sense that

the umit
¢ >0 = T¢ > 0.
Certainly, it is not o representation, but it has the following restricted mul-
tiplieativity property. For f € H* and g € L, we have
(4.8) Ty = TyTy, Ty, = TiT,.
Indeed, the first formula follows from
Tfﬂ = P+Mg! [13= P-l-Mgﬁ’I[ [ 2= P+JV!3P+J“!! [4y3= Tng‘

:dng MyA* C H?; the second-formula follows from the Erst by taking
joints.

A fundamenta! problem concerning Toeplitz operators is to determine
o(T4) in terms of the properties of ¢. While the answer is known for impor-
lant classes of symbols (e.g., when ¢ is real-valued, or belongs to H™, or
s continuous), the genera! problem remnins unsolved. The difficulty stems
from the fact that the map ¢ -+ T fails to be multiplicative. We now direct
our attention to developing tools for calculating o(7,) when ¢ € C(T).

. A Toeplitz matrix is a matrix of the form {4.2) whose entries ay; i,j =

+4s-.., depend only on i — j. We first show that Toeplitz matrices corre-
"pond to Toeplitz oparators Ty, and we determine their norm in terms of the
“ymbol ¢. The unilatera! shift is identified in this context as the Toeplitz
Gperator § = T(‘

PR‘_’POSFI'ION 4.2.3. Let A be a bounded operator on H?. The malriz of
g.:;atw'-’ to the natural baasis {(" : n = 0,1,2,...} is a Toeplitz matrix iff
= A,

PROOF. The hypothesis on the matrix cnotrivs gy, = (A¢ (') of A i
“Yuivalent to requiring
Gitig+t = Qyj,
Noting that S¢* = ¢™*! for n > 0 we find that this is equivalent to the
fequiremeut that
(S°ASC.CH = (ASC?, 5¢Y) = (ACHH.¢FY) = (462, ¢)
for all §,j 2 0; honce It is equivalent to the forinuls 5°A48 = /.

i, =012,....
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Thus, in order to determine which Toeplitz matrices (4.2) cortespond 1o
hounded operators, we must characterize the bO!ded:opemtqm A OﬂfH?
that have the property S*AS = A. This is accomplishied ‘a8 follgws, Notice
first. that any Theplitz aperator Ty with ¢ € L™ salisfiey 8°T4S = T, sinca
by {4.6) we have

S'T¢S = Tle#TC = TE¢T( = TE('«” =e '-T¢1
since (( = 1. Conversely:

TuEoREM 4.24 (Characterization of Toeplitz operators). Let A be @
bounded operator on H* aatisfying S*AS = A There is a unigue funclion
¢ € L= such that A = Ty, and one has | All = ||¢ll .-

Proor. For every n = 0,1,2,... let M, be the following subspuce of
L
My = lﬂmﬂ; C‘ﬂ-‘-!tc—ﬂ"-zl <o -]*
Wehave HR = Mg CM; C Mz C - - and-the union U, M, is .d@ﬂe in L2,
Let U = M¢ € B(L?). U is & unitary opérator whose restriction to. H? ia the
unjlateral shift S, and it maps My, into.M,-y forn > 1. Thus UM, € I
and we can define n sequence of gperators An € B(M,) as follows:
Aﬂ -_— U"‘ﬂAUﬂ r“'-_fll .

Each A, is obviously unitarily equivalent to A; hence ||A,|| = || A]l. More-
over, we claim:

¢ The sequence A;, Ag, ... is coherent in the sense that

(4.7) (Ant1£.0) = (Anki),  E.m €M,
e For every n > 1,

(4.8) PyAn [a= A.
Indeed, since U™ und Uy beléng to H?, we have
(Ans1€m) = (UHNAUIE, 1) = (ASUE, SU™n)
={S* ASU™E, U™y).

Since 5°AS = A, the right side is (AU™E, UMy) = {A4€,7).88 {(4.7) asserts.
For (4.8), uote that for £, € H? one has

Py Ankm) = (U™"AU"En) = (AU™E, Up) = (AS7€, S™n)

= (S*AS"E.n) = (AL, m).

s foliows fror (4.7) that we can use the Riesz lemma to define a unique
uperator A € B(LA) us o wenk lirnis

(‘aﬁlﬂ) = '}L%(Aﬂei 7?) ' er € Un?_,l M!H
sud since (A, =

1 1 NAY for every n, we

, | have ||A]| < 4l We claim. that
% multiplication gperator M,

¢ € L™. In view of Corollary 2 of
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his follows from the fact that A commutes with U; indeed,
we have

Thﬂﬂfﬂm 4.1-31 t
for £,17 € Un21 M

- AUE ) = lim (U™ AUE, n) = lim (Anyi€,m) = (AL, 7).

= ||A]] < {|Al. Formula (4.8) implies that the
compression of A to H? is A; hence A = Ty. The inequality [ Al = |ITy|| <
|$lico i obvicus, sndiniqueness of ¢ follows from [[Ty|| = [[¢]]c- (]

In more coucrete terms, Theorem 4.2.4 makes the following assertion:
Let {a;;) be a formal Toeplitz matrix

we have @l = | Mol

where ¢,,, » € Z, is a doubly infinite sequence of complex numbers. Then
(ai;) is the matrix of a bounded operator iff there is a function ¢ € L™ with
Fourier series

o}(e“)m i cuciuﬂ‘

=00

When such a function ¢ exists, it is unique, ||(2i;)§ = ||¢]le, and in that
case, the operator-defined on £#(Z, ) by the matrix

(A€)n = ) _cnrr.  E€8(Z4),
k=0

?B unitarily equivalent to the Toeplitz operator Ty € B(H~). The function ¢
i8 called the symbo! of the Toeplitz matrix (ai;) or of the operator 7.

COROLLARY 1. Every Toeplitz operator T, ¢ € L™, satisfies
inf{[|7, + K} : K € K} = |ITs]| = 19l
In-particular, the only compact Toeplitz operator is 0.

PROOF. Let S be the unjlatern! shift acting on H2 by S¢" = ("*!,u 2 0.
It suffices to show that for any operator A € B(H?) salisfying S*AS = A
and for any compact operator X we have

iA+K]) 2 |4l

The hypothesis S*AS = A implies that, 54AS" = A foreveryn=1,2,...;
noting thes P, = S™S*" s the projection onto [C7. ¢, ... ] wo havo

1A + K| 2 |Pu(A + K)Pull = |5 (A + K)S"[| = lIA + ST KS".
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The norm of the compression of X to the subsg
[ PaK Ppj] = |S°" K S™|j, which t
and 2, | 0. Thus

pace [C" ¢n+t |
ends to 0 as n - o I;ECBuse K] ::i:::ag
|4+ Kl 2 lim [A+S"KS) = |ap,

ns asserted.

Q
Exorcises. Let A be a Banach limit.on £ (see the Exercises of Section
3.1). Given a sequence @ = (81,a2,...) € £ we will write

y te Anay, for the
value of A on a. Let § = T¢ be the natural realization of thé unilater) shift
on H3.

(1) Show thal for every operstor A € B(H?) there is a-unique operator
¢({A) € B(H?) satisfying

(é{}”f, 7?) - Aﬂ(smAsngtﬂ)s §J? € Hz.

(2) Show that ¢(A) is a Toeplitz operator (i.e., has the form T} for
some f € L) for every A € B(H?).

(3) Deduce that ¢ is a projection ‘of fiorm 1-of the Banach space B(H?)
outo the subspace S = {Ty : f € L™} of allToeplitz opérators:on
H3, satisfying ¢(ATy) = ¢(A)Ty for f € H™ and ¢(K) = OTor
every compact operator XK.

4.3. The Toeplitz C"-Algebra

Let H be e Hilbert space having an:orthonormal basis eg, £1,¢€32,... and let
S be the unique operator defined by Se, = en41, 7 2 0. The operator S
is called the unilalern! shift. The C"-algebra generated:by S is of central
Lnportance in modern analysis; it is called the Toeplitz C°-algebra and is
often denoted by 7. In this section we give a ‘concrete deseription of the
Fredholm ‘operators in T and in thenext we celeulate their index.

This is accomplished by relaking 7 to Toeplitz operators with.continuous
symbol. We have seen that S can be ‘realized as the Tagplity Gperator
T¢ € B(H*), ¢ being the current variable, and throughout “this section we

take § = T. Recallthat the map.¢ € L™ — T € B(H?2) is a positive linear
map of norm 1, and satisfies T) = 1.

PROPOSITION 4.3.1, Let f,g € L. If one of the Junctions f, g
conlinuous, then Ty, ~ TT, € XK.

Proor. Siace Tj, = Ty, and (T3T,)" = 7577, it sulfices to prove the
following assertion: 1§ f € C(T) and g € L*°, then Ty, — Ty7,; € K. Mare-
over, Bince C(T) s the norm-closed linéar span of the nionomials (", n € Z,

snd K is a noru-closed linear spoce, we may reduce to the case f = ¢ and
ge L™, neZ,

Un 20, then ™ € H%™, so that

bjf (4.3.1] we have T!(“I} = T!Tcn. Thus
Tgy - T¢T, = 0 in this case.
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< 0, say n = —m with.-m > 1, then (" is the complex conjugate
v nﬂw Emu:l;ion ¢™, and another application of (4.3.1) gives Tyen =
T = 5Ty Noting that S'mT!Sm = Tf {by iterating the basic formula
gf},{g = T; valid for any Toeplitz operator) we can write
IfTen = TyS'™ = ST ST = STy — STy (1 - §75™).
Hence
Tyen = FyTen = 8Ty — TyS™ = =5 Ty(1 - §"§™™),

which is o finite-rank operntor, since 1 — S™S§°*™ is the projection onto
[Lthat“'iCm-']‘ D

THEOREM 4.3.2. The Toeplitz C*-algebra T = C*(S) consists of all
operators of the form Ty + K, where f € C(T) and K is compact. Moreover,
this decomposition is unique: For f,9 € C(T) and K,L € K,

T+ K=Ty+L = [=9 and K =L
Proor. We claim-first that the set ol operators
A={T;+K:feC(T), KeKk}

ibs a C’-algebra. To see this, consider the map p: C(T) — B(H?%)/K given
y
pN=Tr+K, [e€Cl(T).

This defines & self-adjoint Jinear mapping of C(T) to the Calkin algebra. By
Theotem 4.3.1, p is actually a homomorphism of C*-algebras. By Theorem
2.10.4, p(C(T)) is a C*-subalgebra of the Calkin algebra; and. the inverse
image of this C*-algebra under the natural projection T € B(H) = T €
B(H?)/K is exactly A.

Clearly, A contains S = T, and hence A 2 7. On the other hand, for
n 2 0 we have Ty = 5™ € T, and forn < 0 we have Tgn = S*nl € T; thus
Ten € T for-all n € Z. Using Exercise (1) below, we see that 7 contains all
compact operators, and thus

T +K€T, neZ Kek.

Since C(T) is the norm-closed linear span of the set of functions {(": n € Z},
it follows that 7" contains all operators Ty + K with f € C(T), K compact.
Hence AC 7. _ .

the representation of operators as Coupact

Finally, the unjquencss of : _
perturbagions of Toerlitz operators Is as obvious consequence of Carﬂllngl

1 of Theorem 4.2.4.
REMARK 1.3.8. If we compose the lincur map f € C(T) — Ty € T with

: i heu we obtain al
the notural homomarphism of 7~ to. the Calkin algebra, ti -
mjm'::iva «-homomorphism f — Ty of C(T) into the Culkin algebra. Using
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this map to identify C(T) with the quetieut T/K, we obtain
sequence of C*-ulgebras and s-homomorphisms ‘ i Bhort. axgey

(4.0) 0——»){:——}7’-—;45'(’5'}___,0.'

m being the e-homemorphism of 7 to C(T) given by »(T, + KY=/ t¢e
C(T), K € X. The sequence (4.9) iy called the Toeplitz extension of)c by
C(T). The Toeplitz extension is semisplit in the sense that there is a natiyrgl
positive lincar map ¢ : C(T) = T, such that ¢(1) = 1, with the Property
that = o ¢ Is the identity map of C(T) (namely, ¢(f) = Ty). 1t Is signiificany
that @ is not a s-homomorphism but rather & positive linear map. Indeed
we will sce luter that this extenslon is not split; more explicitly, there does
unt exist a e-homomorplism 8 : C(T) — T with the property that 700 is
the identity mnp of C'(T). The nonexistence of & splitting homomerphism #
hns to do with the Fredholm index (see Exercise {4) below).

We immedintely obtain the fallowing deseription of the Fredholm ope-
ntors in 7

CoroLLARY L. The Fredholm operators in 7 are precisely the operators
of the form Ty + K where § is an invertible symbol in C{(T)™! and K e X.

Consider a Fredholm:operator in 7, say Ty + K where f € C (’_I') has oo
zeros on the circle and K is a compact operator. By the stability results of
Chapter 3 we sce thet Ty is also a Fredholm operator and

ind (T; + K} = ind (Tr)-

We know that for § = (, T is the ghift; hence ind (T7) = —1. ‘:HFWEWI': wB
still lack tools for computing the jndex of more general 'Ifgeplitg' operators
with symbals in C(T)~!. This issue will be takenup in the followirig sectipn.

Exercises. Let ¢g,#;,... be an orthonormal basis for a Hilbert space
H', and realize the uniluteral shift S as the unique operator on 4 satisfying
Sen = €441, 1 2 0. Let 7 = C*(S) be the C*-algebra generated by S.
(1) Show that for every mi,n 2> Q,

S — gmHigelatl) _ gm(y _ g5 )5

is o rank-one operator and describe this operator in terms of jts
aclion on ¢g,¢),.... Deduce that 7 contains the C*-glgebra X'of
dll compact aperators gn H.

(2} Noting that K is o closed ideal in T, identify the quotieot C*-
algebra by showing that there is & unlque ~isomorphism o : 7/K —
C{T) thut satislies oS + K) = ¢, where ¢ is the ogrent varigble
i C(T), ((z) = z for all 2 € T. Hiot: Show that the image of S in
the Calkin algebra is o unitary operator whose spectrum is T.

(3} Let X be anuther Hilbert space, and lat W be a unitary.operator in

B(i). Deduce that there is a unique representation w2 77— B(K)
fuch thut #(S) = W,
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Fredholm operator acting on a Hilbert space.
(4) LF:; i:;:ﬁng that the index of T i8 nonzero, show that T cannot

be decompased T = N 4+ K into a compact perturbation of a
nurmﬂ.l O]JETHI-UI' N.
(b) Deduce that the unilateral shift is not a compact perturbation
of a unitary operator and that the Toeplitz extension (4.9) is

not split.

In the following exercises, V denotes an arbitrary isometry acting
on some {separable) Hilbert space K. The subspaces V" K" decrease
with 7, and V is called a pure isometry if N, V™K = {0}. A closed
subspace M € K is said to be reducing for V if it is invariant
under both V and V*. The (self-adjoint) projections onto reducing
subspaces are the projections in B{K') that commute with V.

(5) Skow that for every isometry V &€ B(K) there is a unique decom-
position. of K into reducing subspaces K = L @ M, where the
restriction of V' to L is a pure isometry and the restriction of V
to. M is a unitary operator. Hint: Let N = (VK)L be the or-
thogonal complement of the range of V. Show that VPN L VIN
fp#qgand N@ VN@WN @ --- is the orthocomplement of
M=VKnVKnNnViKn..

(6):Show that the restriction of V to the “pure” subspace L is unitarily
equiivalent. to a (Anite or infinite) direct sum' S & S® --- of copies
;f; the shift S, and that the number of copies is-the dimension of

The result of Exarcises {5) and (B) asserts that every isometry de-
mmpﬂﬁ& uniquely into a direct sum of two operators, ane of which
15 a multiple COpY. of the unilateral shift, the other being s unitary
operator. This is. called the Wold: decomposition of ap isometry V.

after the statistician: who discovered the result in connection with

the theory of stationary Gaussian processes, The following result
is due to Lewis Coburn (1988), and. should .be compared with the

resull: of Exercise (2). It implies that the Toeplitz C-algebra is
universal for all C*-algebras generated by isometries.

(7} For every isometry V acting on a Hilbert:space K’ there is a unique
répresentation . : 77 — B(K) such that x(5) = . Hint: Use the
Wold: decompaosition.

The result.of Exercise (7) is sometimes
terms ns follows. Let A be a C*-algebra with unj

of A. Then the following are equivalent:
o There is o (necessarily unique} «-homomorphism w: T — -1 such
that {S) = v.

e U°u=1.

formulated in-purely «-algebraic

¢ and let v be s element
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Tha difference between Exercise (7) and this mora abstract Unitjuen
involves the Gelland-Naimark theorem, which asserts phae eve,.},e:;;mull
("*-algnbra has a nondegenerate isometric representation as a C'-algebr?ﬂ
oprrators on some Hilbert space. The Gelfand-Naimark thearem wjj‘]";_{
eatahlished in Section 4.8 below.

4.4. Index Theorem for Continuous Symibols

Consider the multiplicative group G = C(T)™! of all complex-valued con-
tinnous functions on the circle that heve no zeros. & is o commutative
topalogical group telative to its norm topology. We seck a nontrivial ho-
momorphism of ¢ into the additive group Z. This homomorphism ig o
generalization of the winding number, about the origin, of piecewise smoath
functions in G. We frst describe this generalized winding number in some
detnil. Then we relate Lhis topological invariant of functions f € G to the
index of their Toeplitz operators Ty € B{H?). Throughout, C* denotea the
multiplicative group.ol nonzeéro complex numbers.

We begin with a result about the general linear group of a related C*-
slgebra C{0,1], While onc can base that result on the fact that [0,1) is
u contractible space, or on the properties of covering maps:of §poces, the
argument we give uses only elementary methods. The reader shaciild keep
in mind that the range of a function f € C[0, 1]} can be very comiplicated,
perhaps having nontrivial interior.

PROPOSITION 4.4.1. For every function F € C[0,1] such that F(2) #0
or cvery L € [0,1), there is a funciion G € C|0, 1] such that

Fity=eB,  p<gt<l.
PROOF. On the domain {z € C: |z — 1} < 1}, let Jog z be the principal
branch of the logarithin,

o
_ 1 —2)"
log z = — ( :
gz =3 0=

n=|

The log function is holomorphic, satisfies log1 = 0, and’ of course glo8® = 2
for l: - 11 <1. Let

A = sup |F{OL.
u<e<t

sup  |F() — Fltaoy)| < ot

Ly -y SE20 2M
i follows tlat for k=1, ., ynand L € tf-k-utkL
. Ft) |F(t) — Fte— )i 1 1
(4.10) \l--—-—-——- - LLlp N BNy
Fi-0l ™ 1Fonl . S 2oy S8 <
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tioE ) og(F()/Flli1))y b1 SES b
‘hat Gy 15 continuous, Gilti-1) = 0, Gu(ty) = log(F(te)/ Flx—1)),

we find L fies
wod 1 F(t) = Flte-1)e

(proughout the interval [te—1,2k). There is an obvious way to piece the
G, together 50 88 1o obtain a continuous function G : [0,1] = C, namely
gft) = G, (1) for ¢ € [0, 4] and, for k=2,...,n,

G(t) = Ci(ts) + -+ + Gr=1(lk-1) + Gu(2),

1t follows that
F(t)= F(0)eY, 0<t<l.

Writing F(0) € C* as an exponential F(0) = e, we obtain a continuous
function G satisfying F = ¢C by way of G(t) = G(t) + 2. O

We can now define the winding number (about the origin) of a function
fe G =C(T)"}. The function F : [0,1] - C* defined by

F(t) = f(e*™)
is continuous, and. hence by Proposition 4.4.1 there is a continuous functionu
G:[0,1] - C such that
(4.11) J(e®#) =2Cl), gt
Note that G(1)—-G(0) € Z because e27C(!) = ¢27C(9). The function G is not
uniquely determined, but if G is another such, then G — G is a continuous
function with
pIFH{G()-G(1)) _ (™)) f(c2™) = 1, 0<t<l,

and hence G(t) and G(t) differ by a constant. It follows that for any choice
of & continuous fanction G satisfying (4.11),
(4.12) #(f) = G(1) - G(0)
is 2 well-defined integer. This integer is called- the windsng number of f. The
properties of'this generalized winding number are summarized as follows:

PROPOSITION 4.4.2. For f.g € G =C(T)™/,

(1) #(fg) = #(J) + #(9). i
(2) #EI?L T:“EI{Q iff Hl(frl is a function h e C(T) such thut. [ = ¢ el
1) — C such that

Proor. For (1), pick continuous functions F, G': [0,
g(c'lrit.) —_ cﬂliG(”' P E [.[]'_ ”,

Gt}

t € [tk._[  LEl.

J(e2mity = 2mFO),

T
hen wi(F{)+a) ¢ e [0, 1)

J(e®**)g(e®™) = e

and the winding number of fg.ls given by
PQ) +G(1) - (F(0) + G(0)) = #{/) + #(9).
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For (2), cousider first. the case » = 0. If f = e is th
function ‘A€ C(T); then we have © €Xpanential of 4

(4.13) J(e ™)y =2F g ei<ny,

where F(t) = (2r) " h(e?™"). Clearly, F(1) = F(0), so that #(f) = Py -
(D) = 0. Conversely, il #{f) = 0, then there is a finction F ¢ €10, 1) suck
Lhat (4.13} is satisfied and F(1} — F{0) = #(f) = 0. Since F is periodic we
have f = ¢", where h'€ O(T) is the function h{e?"t) = 2miP(t), 0< L < 1.

Todeal with the case of arbitrary n € Z note first that #(¢) = 1. Indeed
this is imimediate from the Tact that '

™) =, p<t<.

From the property (1) it follows that #((") = = for every n € Z: hence
#(C?e") = #(C") + #(e") = n, as asserted. Conversely, If f € O(T) satisfies
#(f) = n, consider g = (™™ € C(T)~". Using (1) again we have #(g) =0,
and by the preceding paragraph there is an‘h € C(T) such that g = €.
Thus f = ("g = ("e” has the asserted form. 0

We now complete the computation of the index of Fredholm operators
in the Toeplitz C'*-algebra T

THEOREM 4.4.3. For every | € G = C{(T)~},
ind Ty = —4(f).

Proor. In view of Proposition 4.4.2, it suffices to show that for f = (e
with n €.Z and ;g € G(T) we have ind Ty = —n.
We claim first that ind T, = 0. Indeed,

A‘\:Tc*h 0<Agl,

defines a continuous are of Fredholn operators in B(H?) satisfying ind Ap =

indl =~0-and_."h1d Ay = indT. By continuity of the index, we must have
ind Ay =ind Ay = 0.

Notice that the map f € G = €(T)! « ind T} € Z Is 8 homomorphism
of abelian groups. For fixed f.g € € Proposition 4.3.1 implies that Ty, =
TyTy + K for some compact operator i, Hence

ind Ty, = ind (Ty, + K) = ind (7YT,) = ind Ty + ind T,

by thc:m.ability and additivity properties of the index. F inally, since T, Iy
the unilateral shift, ils index is —1; henre

wd 7y = ind Ten s = ind Ten +ind T = 0 - ind T = -,
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Exercises. In Exercises (1} thmugh (6), {as : n € Z} denotes & doubly
ence of complex numbers thit is summable; 3°  la,| < 00, and

. 't...u oo ol e o o w. :
infinite 54 inuons function défined on thie“unit circle by

4 is the cont

o0
¢(:) = z: ﬂﬂznt < = eiﬂa OS 9 _<_ 217.

=00

As usual, Z denotes the additive group of integers, and Z+ = {0,1,2... .}
denstes the additive semigroup of nonnegative integers. '

(1) Consider the Hilbert space H = £2(Z). Show that the convolution

operator A defined by
oa ox
{Af)ﬂ = z Qp kb == Z ajfn-—j
k=-an 1=—3a

I;bogndecl‘, and-in fact, {j Al < )_nlau|. Labor-saving hint: Realize
- Shappmpnnte!y 88 3 a,,T™ where T is & transiation operator.
A'T that A is a normal operator by caleulating 4°, AA*, and

(4) T;ﬁi:jns L3 (X, p): What is the multiplication operator?
n i ng that {a, } I8 not a triviel sequence satisfying a,, < 0 for ul
 doduce that 4 hes no point spectrum (i.c., no vigenvalues),

determin : R .
exnctly, e when it Is invertible in terms of 1, and calculate J|A|

ln Exercises (5) and (6)
v You will cousider a related operator 3,
defiaed on the subspace K = E(ZY) c H by oreE

ti

(4.14) =
(BEn = 3 Jan-sbu= Y ajba-,,
k=

Ja-oo
forn=0,1,2,..., e K.

(5} Show that BB -~ Bg° iy compact, and show that the cssemtinl
shectrum of B is the spuctriun of A.

(6) Specialize the operator 8 in (4.14) as follown: (B€)y = €n-y —£n-u
for n > 2, (B€) = &g, (BE)y = 0. Skutch the essantind spectrum
0:(B) of B and calculate the Fredholm index of 4 - AL for ll
A € C\a,(8). Give u clenr aketch with an indication of the vartous
vialues of the index; it tnay help so Indicate the points whiere og(44)
moots Lhe r-axis and the g-uxis. Precise numerical computations
are unnecessasy, provided that von have a clegsr pictuse spd good

qualitative suinarks.
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4.5. Some #* Function Theory

In this section, we present severnl remilts connecting the fun
nnd the operator theory of the Hardy space H2. The results are imnn
for many aspects of funrtional analysis, including but eortaj oo

nly ot +
to the computations of operator spectra that we will carry out ip téLm':l&d
seetlomn, oxt

We bhegin with a result characterizing the (closed) subspaces of 12 that
ore invariant under the unilaterad shift. This is a famotis result 6f Ame
Dewrling {6): it is remarkable because there are very few aperatorg whose
invarinnt subspuces are completely known. Indeed, it -is not even: known
whether an arbitrary uperator on & (separable) Hilbert space # muat haye
n closed invarisn subspace other than the trivial ones {0} and H.

An inner function Is a function f € H* satisfying | f{e®®)] = 1 almost
everywhere on the unit circle. The term “inner” has classical origins, and
refers to the fact that if f is a rational function of a complex variable whose
restriction to the unit circle has no poles and defines an inner function
as ahove, then the zeros of f are all contained in the interior of the unit
disk {z : |z] < 1}. Such rationsl functions are important in linear systems
theory (thiey correspond to “causal™ filters), and in the prediction theory of
stationary Gausslan random processes.

For every function f € H™, the multiplication operator M carries H’
into itself, f - H? € H? by Proposition 4.2.1; and if f is an inner function,

then Af = f - H? s o closed subspace of H? that is invariant under the
unilateral shiR Te = Me {49

THEOREM 4.5.1 (Beurling). For every closed shift-invariant subspace
M C H? there is an inuner function v such thet M = v - H.

A complete proof of Beurling's theorem is outlined in the exercises at the
¢ud of the gection. The following consequience is a dmicalfﬁﬁmﬂ.m:'ﬂ.f the
brothess Riesz. whose original method was quite diffevent. It has attracted a
great deal of attention aver the years, and far-reaching geneml‘izatlunsgh_rw&
been discovered that celate to diverse areas, including (a) effective general-
\zotions of H? theory that can be formulsted whenever one has a Bow acting
un a spuce (18}, (b) the theory of one-parameter groups of automorphisms of
vou Neuwmann algebras that satisfy a “positive cuergy™ condition (4], and-(¢)
the properties of annibilating measures of abstract Fanction algebras [13).

TuEOEM 4.6.2 (F. and M. Riesz). The set 2 = {2 € T: f(z) = 0} of
eroa of any nonzere funclion [ € H° is o sel of Lebesque measure 0.

Proor. Fix o function f # 0.in H? and. comsider the closed subspace
M =1f.Cf.¢%f,...] of H2, Then M # {0). it is invariant updor the shift
T¢. wtid every funciion in M vanishes alinost everywlieré on the zero set Z.
Deurliog's Theorem 4.5.1 implies thoe M containg.un inner function v. Since
lele™)] = 1 abingst everywhore on T, Z must have messure 0. O
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ARk 4.5.3. Some remarks on H'. We collect some details relating
&E; nction theory of E1 that will be used in the proof of the following
i 4! is defined as the space of all functions f € L' whose Fourier

t

Sarics has the form

f(ew) —~ Zﬂﬂclnﬂ‘
n=0

if g € H* ia such that its conjugate g also belongs to H', then g must be a
copstant. [ndeed, (4.15) implies that all the negative Fourier coefficients of
g are zero, while 7 € H? implics that the positive coefficients of g are zero.
Hence the Foiirier series of g is the Fourter series of a constant function, and
g miust be a constant. Let Hj denote the space of all functions f in H ! with
ser0 constant term, (f, 1) = 0. We may conclude from these remarks that

HNnA'=C-1 and H'NnH}={0}.

Second, we point out that the product of two functions in H? must
belong; to: 4. Indeed, if f,g € H?, then fg € L', and moreover, || fgll; <
I/ H2llgll2. Thus for a fixed negative integer n the Fourier coefficient (fg.¢C")
defines a bounded bilinear functional on H? x H? that vanishes whenever
f and g are finite sums. of the form ag +a,{ +--- + ap(P. It follows that
{/9,¢(") =0 identically on H? x H>. We conclude that the Fourier series of
[9 has the required form (4.15).

Finally, let A2 = {f € H?: (J,1) = 0}. Then H = [(,¢*, (... .]: hence
the orthocomplement of #? in L? is related to Hj by

H* =H} ={]: € H}}

The following result of Lewis Coburn {7] implies that when a Toeplitz
operator is a Fredholm operator of index zero, it must be invertible:

‘ THEOREM 4.5.4 (Coburn). Let ¢ be any nonzerv symbol in L. Then
either kﬂl‘T@ = {0} orkBtT; = {0}.

(1.15)

ProOF. We show that if both kernels are nontrivial, then © =0 O.W f‘ar
= U. il

that, choose nonzero functions f,¢ € H? such that Tyf =138 = _
Py € B(”‘) denoting the projection onto F1?, we have poof = 0. 1.0
¢f € H*' = HZ. Thercfore,

(4.16) of € Hy.
Similarly, 729 = 0 mplics that P, dg = 0, that Is, ¢y € Hy. Therelore.
(4.17) o € H§.-

Multiplying the term of (1.16) by g, we obtain
dfg € H3 - H* C Hg.
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by Remark 4.5.3. ‘On the other haad, multiplying the term of (4.1

gives __ -17) by f
bfg = ¢af-€ Hg - H* C H].

Thus ¢/g € Hy N Hy = {0}. Since neither f nor g is the ze

the F:-and M. Riesz theoréin implies that the produet F(2)g

for almiost every z € T. Thus ¢5f = 0 implies that ?(2)
everywhere,

'0 funeg;

(2) is DONzZero
vanishes almog
O
Exercjm‘ h-these+qxacm, you Wlll deduce Beurling'a theorem from
the following .more general resuit, which .chiracterizes certain: sithspaces of
L? that are ifvafient under the umbﬂ-l‘}' mﬂlt{lﬁﬁmtion operator [V ~ M e
B(L?). Notice that for ity such subspace M, the sequence of subspaces
U™ M- decreases with n.

‘]!haoram A Let M C L? bea aonzero ¢closed U-ipvariant subspace
of £ that is purein the sense ‘that N,5ol/"Af = {0}. There is a function

v € I™ such that |v(e??)| = 1 alinost everywhers on the unit circle and
M=v-H2

For the following exercises, let M C L? be a nonzero closed subspace
satisfying the hypotheses of Theorem A.
(1) Let N = M & UM be the orthocomplement of UM in M. Show
that N # {0} and that it is & wendering subspace in the sense that
form,n € Z with m # n we have U™N | U"N.
(2) For every operatar A € B(N) define A € B(L?®) by

a0

A=Y UrAPyU™,
n=—00
APy € B(L?) denoting the composition of A with the projection
onto N. Bhow that A belongs to the multiplication algebra M =
{My: f € L),
(3} Deduce that B(N) is abelian, hence N must be one-dimensionsi.

Choose an elernent v € N with lv|lez = 1.

(4) Show that for every m,n € Z with m #n one hag (y- 2", v -2") =

0, und deduce that ju{e®?)| = 1 almost everywhere on Lthe unit circie.

(5) Shaggthut M is spanned by N, UN,U?N. ... and doeduce that M =
v-H2,

That cowpletes the praof of Theorem A,
(6) Deduce Beurling's theorem from Thearemn A.

4.6. Spectra of Toeplitz Operators with Continuous Symbol

Given a continyoys symbol

e J € C(T), we are now in ition to give a
description of o'{T!j, Let ‘ poed Sl

us first consider the essential spectruin o (T) €
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By the exact sequence (4,9) the essential spectrum of T is the
a7} f / as an element of the commutative C*-algebra C(T), namely,

trum O
e 2o(Ty) = J(T).

4.18} |
{ What remains is to determine the other points of the spectrum. Let us
ecompose C\ f(T) into its conuected components, obtaining an unbounded
compoaent {loo together with a finite, infinite, or possibly empty set of holes
Ql?nzt 10t | ~

C\f(T) = Ui URU---.

Choose A € C\ f(T). Then f —~ A€ C(T)~!, and hence Ty - A =Ty_, isa
Fredholm operator. Consider the behavior of ind (7y — A) as A varies over
one of the components Q of C\ f(T). Since A+ T, — A is a continuous
function from . to the set of Fredholin operators on H? and since the index
is continuous, it follows that ind (77 — A) is constant over {1;. Let ng € Z
be this Integer, £ =00, 1,2,....

Obviously, n., = 0 because Ty — A is-invertible for sufficiently large A {for
example, when |A| > [Ty{|). When holes exist, ny can take on any integral
wlue for k = 1,2,.... In such cases Theorem 4.4.3 allows us to evaluate n;

me = ind (Ty — A) = ind (Tgp_y)) = —#(f = A),

in terms of the generslized winding number of the symbol f about A, Thus
we bave calculated ind (Ty — A} throughout the complemant of f(T).
Ik is such that ny # 0, then Ty — A is & Fredhalm operntor of nonzero
index for all A € ;. Obviocusly, such operators cannot be invertible; hence
O C o(Ty). Ob the otber hand, if ny = 0, then Ty-y is a Fredholm
aperator of index zero for oll A € ;. By Theorem 4.5.4 such operators
must be inveriible; henco (I is disjoint from (7). We assemble these
remarks about Toeplitz operatars with continuous symbol lnto the following
description of their spectra.

THEOREM 4.6.1. Let f € C(T), and let C\ f(T) = Qxc LUt U fe
the decomposition of the complement of f(T) inlo its unibounded componeid
. and holes Q;, k > 1. For cach findte k and A € S, the wriniling nurnber
Wy = #(f — A) is a constant independent of A. |
The specirum of Ty is the union of J{T) ond the holes S for which

we # 0.

In particular, the spectrum of a Toep
bo! contains no isoluted polnts, and Is in fact n conn ‘
of giving a similurly dotailed dexcription of thie spucten of Tovplitz operators
with symbol in L™ remaing open b general, However, a Lheurum qfr H:m_:l:l
Widom asserts that o(Ty) I8 connected for every f € {.-" f{ﬂff-' (11)). The
cuse of sell-adjoint Toeplitz operators is trentend in Lho Excreises helow.

litz opesrator with continumu syui-
ectxl set. Tho problem

Excrclsos. | .
it nssociatied multiplicalion operatas

1) Let ¢ € L™, aud considur _ ,
o M, € B{L3) and Toeplitz operator 1, € Biii*).
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(n) Given ¢ > 0 such thec ||T,f)| > eff]| forall f ¢
NMaall 2 ellgll for 8l ¢ € L2, Hint: The ‘lt-tflitfnf':;' ;l‘ww th
("H3, n <0, is dense in I3. © Spacey

() Prove: If Ty is invertible, then M, is invertible.

(c) Deduce the spectral inclusion theorem 6f Hartmon-and Wig,
ner: For ¢ € L™, ofT,) dontains:the essential rfige of ¢,

Let ¢ be a resl-valued functior in L™ and let m < M be the
essontinl infimum and essential supremum of ¢,

m=inf{t eR:o{z€T:e(z) <t} >0},
M=pp{teR:0{z€T:9(z2)>1t} >0},

o deuoting normalized Lebeggue measure on T. Thus, [, M) is
the smallest closed interval 7 € R with the property that ¢(z) € £
almost everywhere do(z). Equivalently, it is the smallest inter-
val containing the essential raiige of ¢. In the remaining exercises
you will obtain information about the specttum of the self-adjgint
Toeplitz operator T,

(2) Let A be a real number such that Ty — A is invertible. Show that
thete is a nonzero function f € Hg such: that T f — Af = 1, 1
denoting the constant*function.in {{2

(3) Show that (¢ — A)}fI? = (¢ —A)}S - f belopgs to. ' and deduce
thal there is a real number ¢ such that (¢(z) — M|f(z)]? = ¢ for
g-almoet cvery 2 € T. |

(4) Deduce that ¢(z) — A is cither positive almost everywhere on. T or
negative almost cverywhere on ¥. Hint: Use the F. and M. Riesz
theorem.

(5} Deduce the following theorem of Hartman and 'Wintner (1954): For
every real-valued symbol ¢ € L,

a(T'qﬁ') = [m'l Mr

m and M being the essential inf and essential sup of .

4:7. States and the GNS:Construction

"Throughout this seciion, A will depote a Banach s-algebra with;-nqrmg.l_i&ed
Wit 1. A lisear functional p : A — C is said to'be positive if p(z°z) 2 0
fur every = € A. A slale i8 n positive llnear functional satisfylng (1) = 1.
This terminology hus its ariging in the connections between C *-algabras
wnd quantum physics, an important subject that is not touched gp; here.

Notice that we.do not assume that statea are .bo_;;p_dgg,;‘bﬁi_LPrppj;aéi!ijgp
4.7.1 below jmplies that this is the cose. It is a mentol result that

R

slarling with o state p of A, goe can constryct a nontrivial sepresentation
m: A — B(H). This procedure is called the GNS construction after the
three tthamaticians, 1.M. Gelfaod, M.A. Nnimark, and LE. Ségal, who
intrisduced it. The puspose of this pection is to discuss the GNS conitfiiction
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. the gencral context-of unital Banach s-algebras. Applications to C*-
n

algebras will:be taken up in Section 4.8.
proPOSITION 4.7.1. Bvery positive linear functiondl p on A satisfies the

Sehwors inequality
(4.19) lo(y"=)* < plz*z)ply"y)

md moreover, ||pl| = p(1). In porticular, every stale of A has norm 1.

Proor. Counsidéring A as a complex vector space,
z,9 € A [z,y] = p(y°2)

défines a sesquilinear _fp_nn which is positive semidefinite-jn: the sense that
[z, ] 2.0:for every . The argumerit that establishes the Séllwarz-inequa.lit}r
for complex inner product spaces applies verbatim- in this' context, and we
deduce (4.18) from: |(z, 3} < [z z)[y, ¥).

Clearly, (1) = p(1°1) > 0, and’ we claim that ||} < p(1). Indeed, for
every = € A the:Schwarz inéquality (4.19): implies

Ip(z)° = |p(1°2)) < plz"z)oll).

lf-1n-addition, |jzf| < 1, then z°z is & self-adjoint element in A of norm at
most 1; consequently, 1 — z°z must have a seif-adjoint square root y € A
(seo Exercise (2b) below). It follows that p(1 — z°z) = p(s?) > 0, ie.,
0< plz*z) < p(1). Substitution. into the previous inequality gives [p(z)|* <
p(z"2)p(1) < p(1)?, and ||gl| < p(1) follows. Since theiinequality {pf] > o(1)
I5'obvious, we conclude that Jjpl] = a(1). 0

DBFIN]TION 472 Let pbe o positive linear functional on 2 Banach
#—algetfm A. By a GNS paly for p we mean a pair {m,£) ‘coosisting of a
fﬁvrmtgtion. 7 of A on a Hilbert space A and o vector § € H such that

(1} (Cyclicity) (A} = H, and
(2) p(z) = (m(x)€,E), Ior every z € A.

Two. GNS.pairs (,€) and (%, £’) are said to be equivalent if there is a
unitary operstor W : B — H' such that W¢ = & and: Ww(z) = o/(z}¥,
TeA

THEOREM 4.7.3. Every positive lineu
algebra A hes a GNS pair (#,€), and any

rfi nnqt,ignai .01 (4 unitial Banach «-
two GNS pairs for p are equivalent.

PRroor. Consider the set
N = {a € A: p(ae) =0}
With fixed a € A, the Schwarz inequality (1.18) implies that for every
z € A we have |p(z"a)l < pla*a)p(z"x}, from which it.fallows that p(a*a}l =
0 <= p{z*a) =0forevery 7 € A. Thus N is a left [deal: s linear subspuce
of 4 such that A-NC N,
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The sesquilinear form 1, € A = p(3°2) promotes .

L DALl .
ear form (-} on the quotient space A/N via ¥ b0 sesquiliy.

(z 4+ N,y+ N) = p(y*z),

T, Y € A,
and for every r we have

(x+Nax+N)=plz’z) =0 = z+N=0.

Hence A/N becomes an inner product space. Its completion is o Hilbert
space A, and there is-n natural vector £ € H definied by

£E=1+N.

It remnins to define 7 € rep(A, H), and this is done as follows. Since N
ia a left ideal, for every fixed @ € A ‘there is a linear opérator n(a) defined
on A/N by n{a)(z + N) = ax + N, z € A. Note irst that

(4.20) (w{a)n, €) = {n.m{(a")C},

for every pairof clements g =+ N,{ = 2+ N € A/N. Indeed, the left side
of (4.20) is p(2*ay)}, whiile the right side is p{{a"z)*y) = p{z"ay), gs'asserted,
We claim next that for every a € A, ||x{a)|| < llal|, where n(a} is viewed

a5 an operator on the inner product space A/N. Indeed, if |zl < 1, then
for every r € A we have

sy @)z + N)ra)z + N)) = (az + N,az + N) = pl{as)"az)
42 = p{z'a’az).
Since a’c is a self-adjoint element in tbe unit ball of A, we can find &

self-ndjoint aquare root y of 1 — a*a {see Exexcise (2b)). It follows that
x*c - 2*a*ar = 2*(1 - a*a)x = z° )%z = (yz) yz; hence

plz'z — z*a"ex) = p((yz) yz) 2 0,

[rom which we conclude that p(z*a"az) < p{z*z). This provides an upper
bound for Lhe right side of (4.21), and we obtsin

(n(a)(z + N),m{o)(z + N)) < ofz’z) = (z+ N,z + N).
I follows that [|w(a)}) < 1 when |jal] < 1, and the claim is.proveg.

Thus, for each g € A we may extend n{a) unigucly to s bounded.opérator

ou the completion H by taklpg the closure.of its graph;.and we denote the
tlosure w{a) € B(H) with the same notation. Note that {4.20) implies that
(main,¢) = {nw(a")() for ol 7, € H, and from this we deduce that

W) = w(a"),'a € A 1t is cleas from the définition of 7 that w(ab) =
w{a)r(b) for a,b e A hence 7 € rep(A, H).

Finally, note that (o, §€) is a GNS pair for p. Indeed,

MAY =m{AH1+ N)={a+ N :a € A)
s obviously demse in H, and

(r{@)€,€) = (@ + N,1 +N) = p(1°a) = pla).
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for the uDiquENess assertion, let (7, &) be another GNS pair for p,
Ngtice that there i5 a unique linear isometry Wy from the

Hf
“1 5 ’ep(bapmg r(A)E onto 7' (A)E' defitied by Wo : w(a){ —+ r'(a)¢’, simply
Luse for all a € A:

(r{a)E, w(a)§) = (w(a’a)§,£) = pla'a)= (7 (a)€', 7' (a)E").

Ty isometry Wp extends uniquely to a unitary operator- W : H - H', and
one verifies readily that WE = €, and that Wr(a) = 7' (6)W on:the dense set
of vectars T(A) C H. Tt:follows thit (xm,€).and (7', ') are equivalent. O

REMARK 4:7.4. Many important Banach s-algebras do:not have units.
For example; the group algebras L'{@) of locallycompact.groups fail to have
uiilts except-when G is discreté. 'C*-algebras such a5 X do not have units.
But the:mbst.ifhportant examples of Banach: s-algebres hiave “approximate
units,” and it i significant that there is an appropristé generalization of
the. GNSr'construction. (Theorein 4.7.3) that applies t6 Banacly «-algebras

cmmimng il Epproxiroate uhit (10], [2).

bccﬂ

Exerclses.
(1) (a) Pix ain-the;interval 0 < o < 1. Show that the binomial series
of (1 — z)® has the form

K-
(1—-z*=1- Zc,,z;",-
u=1‘

~ where e, > 0forn=1,2,....
(b) Deditce that
oo
Z_c,. = ].

(2) (a) Let 4 be a Bannch n.lgebrn withs normalized upit, and- let
€1:Ca, ... be the binomial meﬂicients of the preceding exercise

for the parameter valiie @ = %. Show that for every element
z € A satisfying |iz]] € 1, the serles

oD
=1
converges absolutely to an clement » € A satisfying
yl=1 -
(b) Suppose in additian that A ls a Banach s-glgebrn: Deduce thot

for every self-aq,lpint. elemgnt T in thc unit ball of A, 2

o salf-agljoint squgre root in A
denotes the

In: the reqidining exercises, A A={zeC:lz £l

| 10531 unit. disk and A denotes tho disk plgubra, cousisting of all

functions f € O(A) thet ure anulytic ob the iuterior of A.
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(3) (n) Show that the map f — f* defined by

[(s)= T(gjt z €A,
makey A into a Banach s-algebra.
(b) For each z € A, let.w:(f) = f(z), € A. Show that w,

positive finear functional if and only if z€ [~1, 1] is req| i8 n
(4} Let p be the lincar functional defined on A by :

|
olf} = fu [(z) dz.

(a) Show that p is a state.

(b} Caleulate a GNS: pair {7, £) for-p.in-concrete terms as follows,
Consider the Hilbert space Z2[0),1], and let € € £2[0,1] be the
constant, function () = 1, ¢ € [0,1]. Exhibit a representation
7 of Aon L2[0,1] suchthat {,£) becomes a:GNS palr for p.

(¢) Show that 7 is faithful; that is, for f € A we have

(=0 = f=0.

(d) Show that the closure of #{A) in the weak operator topology
is o maximal abelian von Neumann-algebra.

4:8. Existence of ‘States: The Gelfand-Naimark Theorem

Tuming our attention to C‘-algebras, we now show that every unital -
algebrn ‘has an abundance of states. The ‘GNS construction implies that
every state is assoctated with s representation; these two p_r::ig'nr':ipl_es‘-qgmbiue
to show that every unital C"-algebra has an isometiic Tepresentation as &
conarcie C*-algebra ofoperators on some Hilbert space. .
Let Abe a unital C-algebra, fixed througliout. A positiveelement.of A5
u self-adjoint element with nonnegative spectruni, #{z) € [0, oo).- One writes
z > 0. Notice that 22 > D for every self-adjoist -element z € A hdmd,
one cun compute o{x?) relative to auy utital C"-subalgebra containing it,
snd I oue uses the conlmwar;iyc C*-algebra geugu_t_ted by = and 1, the
result follows immediately From Theorem 2.2.4 and basic properties of:the
Gelfand ‘map. Significantly, this argunient :does not imply that z°z has
nounegative spectrum for nopnotmal elements z € A, and o fack, the praof
tiat 2°z > 0 in general (Theorem 4.8.3) is the cornerstone of the Gelfand-
Noimark theorem.
We'let A% denote the set of all positive elements of A. Tt is cleay that A™

ks closed under muli:i*lpl_ical;im_i by uonnegative séalars, but it is not ohvious
that the sun of Lwo-positive cletuerily is positive,

LEMMA 4.8.1. If z,y are two.positive elements of A, then T+ is positive.

Progy. By replacing z, y with Az, Ay for.an appropriately smull positive
tumber A, we can sssutee What ||5|| < 1 and {iy}] < 1. This implies that both



E OF STATES: THE GELFAND-NAIMARK THEOREM 127

s8 EXISTENC
4 p have their gpectra in the umnit interval [0, }]. Hence 1 -z and 1 - y
) .
;:: their spectra 1o
(1-r:2€(0,1]} =[-1,0] C [-1.+1]).

if-adjoint, their norms agree withtheir spectral radii, and

|<Tand 1~y <1.
:f_;(z+ y) is positive. z is obviously self-adjoint

canclude that |1 — z|
- 1 suffices to show that 2 =

and
= 1.

2] =

1 1 1
-— T —— p— — hend ¥ — : < p——
1 - z]] l|2(1 z) + 2(1 il £ 5+

Hepce
o(z) C{teR:[1-1| <1} C[0,).

O

LEMMA 4.8.2. Jf a € A salisfies o(a"a) C (—o0,0}, then a = 0.

ProoF. If a, b are elements of any Banach algebra with unit, then the
nonzero points of o(ab) and:o(ba) are the same (see Exercises (3) and: (4) of
Section 1.2). It follows that o{aa*) C {—o0,0]. From the preceding lemma
we conclude that o(a’a +aa’) C (—00,0].

Let a = z + iy be the Cartesian decomposition of a, with z = z* and
¥ =y - Expanding a®a = (z — iy)(s + iy} and'aa® = (z + iy)(z — iy) and
canceling where possible, we obtain

a’a+aa® = 2% + 22
Hence —(2z2 + 2)?) > 0. Adding the positive element 2y? we find that
~22% > 0, and thus ~z? > 0. Since z° is a positive element, the preceding
tentence implies that its spectrum is contained in (—o00,0) N [0.00) = {0}:
hence ||z°]] = r(22) = 0, and = = O follows. Similarly, y = 0. 0

The key result on the existence of positive elements is the following:

THEOREM 4.8.3. In a unital C*-ulgebra A, every element of the formn
a"a has nonnegative spectrum.
PROOF. Fix a € A, and consider the following contipuous functions

Lg: R R
vt .20,
S = {0 <0,

0 1220,
o) =3 /=t <o
R. The propertics of the

We have f(1)? — g{t)? = ¢t and f(t)g{t) = 0. ¢ € K. perties .
cmdnumli(ft{nnll‘:gll calculus imply that £ = J(a a) ad y = gla’a) ar
self-?uﬂ]bint clements of A satisfyinyg £y = y£ = 0 and

3
u=2" -




4. METHODS AND APPLICATIONS

= y(z* ~ 1)y = ~y*. The
’ = 8pect .
«S. lies that ay = 1. EH?;]CG :.:nluf H“’_“U is
(), and since y is self-adjoint, this entails ~ T ap

. v =:0_‘ We Cﬂniﬂ : ®

i the square of a self-adjoint elemenit of 4 and ig e‘hm'rd;'f;;l}:;: a= S
CoRroLLARY 1. Let p be a linear functional on a unita) o
satisfying Jlll = p(1) = 1. Then p is a state. olgebra A

Proor. We have to show that p{a*a) > 0 for everya € A, By Tlicore
4.8.3 it is enough to show that for every self-adjoint element = S

' € A having
honnegative spectrum, we have g(r) > 0. More generally, we claim that for
evory normal clement 2 € A,

p(z) € Tonvo(z).

To sce this, let B be the commutative C*-subalgebra generated by z and 1.
The restriction pg of p to B satisfies the samé hypotheses {|pol| = pg(1) = 1.
By Theorem 2.2.4, B is isothetrically »-isomorphi¢ to C(X), and for C{X)
this is the result of Lemma 1.16.3. 0O

COROLLARY 2. TFor every element z in a unital C*-algebra A there isa
stute p such that p(z°z) = ||z|}*.

Pnoor. Consider the self-adjoint element 3 = z°z, and let B be the BJ}_b
C°.nlgebra generated by y and the identity. Again, since B 2 C(X) tharc
is 8 complex homomorphism w € sp(B) such that w(y) = [lyfl. Let o beany

extengion of w to a linear functional on A with{[pl]] = Jjwll = 1. We;also

have p(1) = w(1) = 1. Thus ||p}] = #(1) = 1, and the preceding corallary
implies that p is a state. O

Let us examine the implications of Corollary 2. Fixing an element = € A,
choose a state p satisfying p{z"s) = ||z]|2. Applying the GNS construction
o p we obtain a Hilbert space H, a vector £ € H, and a representalion
7 € rep(A, H) with the property

pla) = {r{a)6.£), acA.

Taking ¢ = 1 we have Jj€]|2 = p(1) = 1; hence £ is o unit vector. Taking
a = r we lind that ||={2)€]]? = p(z*z) = ||z|2; hence fix(z) = =i, We

......
LRL I T

conclude that for every clement = € A thére is o representation 7y of A 0B

some Hilbert space H, such that ||r.(z)|| = ||z||. Considering the direct
sum of Hilbert spaces

H = $:€AH:
sud the representation n € rep{A, 1) defined by
n = &:El‘n‘:l

we see that # is an isometric representation of A ou . Thus we have proved
the lollowing result:
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THEOREM 4.8.4 (Gelfand-Naimark). Every unital C*-algebra can be rep-
resented isometrically and «-isomorphically as a C*-algebra of operaiors on
some Hilbert space.

Of course, the Hilbert space @,cH; is never separable, and a patural
question is whether A can be represented faithfully on o separgble Hilbert
space. There is no satisfactory answer in general; .but for the important
class of C*-nlgebras that are generated by a couritable set of clements the
answer is yes (see Exercise (4) below).

REMARK 4.8.5. Pure slates: Irreducible representations. Let A be a
unital C*-algebra. The set S(A) of all states is a convex set in the unit
ball'of the-dual of A, and it is closed and therefore compact in its relative
weak®-topology. By the Krein-Milman-theorem, S(A) is the closed convex
hull of ita set of extreme points.

An extreme point of S(A) is called a pure state. The result of Exercise (6)
below implies that Corollary 2 can be strengthened so that p(z*z) = ||z|? is
achieved with a pure state p. It is significant that pure states correspond to
irreducible representations in the sense that a state p is pureif, and only if,
its GNS.pair (7, £) has the property that = is an irreducible representation.
Thus one may infer that for every element z € A there is an irreducible
representation 7 € rep(A, H) such that ||r(z)|| = ||z||- The reader is referred
to [2] and [10] for more detail and-further applications.

(1) Show that the Gelfand—Naimark theorem remains true verbatim for
C*-algebras without a unit.

(2) Show that in the disk algebra A, considered as a Banach «-aigebra
with lnvolution [*(z) = f(Z), = € A, there are elements ¢ for which
the spectrum ol a®a is the closed unit disk.

A C*-algebra is separsble if it contalns a countable norm-dense sel.

(3) Let A be a C*-algebra that is generated us a C*-algebra by & Hnifc
or countable set of its elements. Show that A is a separable C*-

algebra. |
(1) Show that every sepacable C*-algebra can be represcnted (isowet-
| separable Hilbert space.

tically and s-ispmorphically) on a .

(5) Lot X be a compact Hausdorh space. Show that for every j:' )r.-: X
the point ¢valuation f € C(X) f(p) 18 a pure state of C( >

(6) Let A be a unital C*-algebra and let = be au cl:ummt of;;l. o
that there is a pure state p of A such that p(z*z) = |l=ll”. nmd
Apply Exercise (5) to the unital C*-subalgehra Ag € /A goner :
by.z"x, and show that a pure state of g can be extended to a pur

state of A.






Bibliography

SM_VJM. Now York (reprimed 1993') | unte texts in mathematics, vol. 39,

o i ot e o bt o Loy Gt v s
_ \ , : . . arveson.

M) ‘:l;' mm?l; ng;f;q;f automorphisms of operator alpebras, Jour. Funct. Anal. vol.
(o i ;l:'ﬂr.‘i-wh;a; :l{gcl;;)ﬂmc Right, Undergradutate texts in mathematics, Springer-
16} Wyﬂt&a IO('; %}% mnummg linenr transformations in Hilbert space, Acta
Y ;5- C;I;nm Wepl's theorem for nonnormal operutors, Mich. Math. J. vol. 13 {1966),
18] A. Connca, N ' '
(9 ﬁg?:)vidnm gﬂ&ﬁﬁ:&?ﬁgﬁmufmm ﬁfﬁ klath. Soc.
[[:'11 r{n-' mbacz i;;m cfr t:h:i ::wm. Gauthier-Villara, Paris (1964).

Y&kf{IM). ruior Theory, Academic Press, New
(12} (Tmﬂ;mford and J. Schwartz, Linear Operators, volume I, Interscience, New York
13 l,lﬁn(ilfz:ba& The abstract F. and M. Riesa theorem, Jour. Funct. Anal. vol. 1 (1967),
8 B s o B i R S O,
18} E. Hewitt aud K. Ross, Abstruct Harmonic Awmfcé’?{mﬂfﬂﬁ

(1970).
17} L. Loomia, An Introdyuction (o Abstruct Harmonic Analysis, Van Nostrand, New York,

(1953).
18] P. Muhly, Function algebras and flows I, Acta Sci. Math. (Secged) vol. 35 (1973),

111-121.
19) G.K. Pedarscu, Auulysis NOW, Graduate texts in wachemstics, vol. 118. Sprioger-

Verlag, New York (1969).
20) C. Ridart, Generul Theory of Banach Algebrus, Van Nostsand, Princeton (1560).
2 F. Ricaz nad B. S=.-Nogy, Functwnal Analysis, Fredorick Uugur, New York (1355).

t3l






A, 4
absclutely eonvergent serles, 8, 11
adjolot

of an operator, 40
algebira

Banach, 8

comphex, 7

dizsk 8

division, 17

group, 10

matrix, 9

normaed, 8
asympioiic invaniant, 83, 85
Atkinson's theorem, 83

Banach =-algebra, 57

Banach algebra, 8
semiaimple, 27

Banach limit, 85

baxis for n vector spece, 24

Beurling’s theorem, 118
proof of, 120

C(X), 8
C"-algebea
of operators, 42
Calkin algebira, 83
clossd convex hull, 28
Coburn's theorem, 119
coberne], 87
cominulant of a set uf operalors, 43

coordinate systems

andl upitary opuratom, 52
COUrona

of R, 81 ‘
current variable, 31, 54, 69, 105, 108, 112

Index

133



CNS construction, 122

GNS pair
oxistense, 128
{or staten on Banach e-algebrns, 123
usicjioness, 123

group slgnbras, [0

TSR

H?, 108

H™, 106

Henr measure, 10

lartinan- Wintner theorems, 122
Haundorfl maximality principle, 23
Hitbert -Sclimide operator, 70
hnle of K C €, 32

ideal, 21
in 8 C*-nlgelsra, 79
nuximal, 23
proper, 21
ndex
continuity of, 99
of a -bounded operntor, 95
of a lincar Ltransformation, 08
of & product, 87
uf Tooplite operators, 116
stabiliiy .of, 98
inductive partially ordered set, 23

integral equations
Volwerra, 4
yuterior of @ cycle, 36
iuvertible clement of @ Benach algebra,
14

invertible operator, 6
involulion, 4)

irnedueible representation, B9
wometry, 41

ssomorpliiy

of Banoch nlgiobeas, 17

(£}, 80
herne, 87

£\Z), 8

.

LY {R), ¥

L2, 5%

Unuarly ordered set, 25
Hoearly ordured subiset

mnxisnal, 24

locully analytic (unetion, 30

MASA. 102

maximi) Clemient, 2)
Waxima| ideal, 23

clomire of, 23
maximal Ideat space, 25
multiplication slgobra, 44
multiplication operatsr, 43
multiplicity-free operator, 103

Nﬁqmnnn serics, 7, 14
nondegenerato representation, §7

normsl aperator, 41

numerical radiiss, 45
nutnerical range, 46

orlented ciarve, 34

partially ordered sel, 23
polarization formula
-for operatars, 72, 75
for sesquilinear. forms, 45
pogitive
lineat functional, 122
positive operatar, 41
projection, 41
proper ideal, 21
pute ometry, 113
pusre state, 129

qunsiailpotest operstor; 20
quétient
C-algebra, 79
algebra, 21
‘Banach algebra, 22

r(z), 18
radical, 27
Radon measure, 10
range of p »~-homomorphismn, 80
rank
of ai operutor, 13
reducing subspoce, 113
ragular representatjos, |13
representation
cyclic, 5%
dircet wusn, 57
esgautlal gpace of, 67
icpedugible, BY, 120
nondegunerale, 57
norsa of, 58
of 4 Banucls s-algebru, DT
subrepresentatlan of,: 58



rﬂﬂ""tl'm of the idenﬂl:.%' 67

Runge*l ‘.m: 33

ﬂ{fni 8
a-representation, 60
p(A), 25

ﬂ'l{T'_’r N

W(T}l 85

Schwarz inequality

for positive linear functionals, 123

SCROC, 34
semisimple, 27

scparable
C"-algebra, 105, 126

au-dt.lucnmplunumbuﬁekf."
compactoess, 16

Geliand, 25
lnuBnuuhllsabra. 16

olnummpumhnapcmm,M
of a Tovplits opemstor, 121, 122

of an operator, 0
state, 122

INDEX

pure, 129

Stone-Cech compacuﬁcutmn nf X, 81

subre'prmunl.am

symbol

Toeplitz " -alg:bn.. 110
Toeplitz matrix, 101, 107
Toeplitz opérator, 101, 107
characterization of- 107
index of, 116
spectrum of, 121,122
topology
locally convex, 12
strong.operalor tapology, 42
weak Gperatas topology, 42
trace class operator, 71

unilateral shifi, 110
unit
appraximate, 9

of an algebra, 7
unital algebea, 7

unitarily equivalent rcpresentations, 58

unitary operaltor, 41
vou Neumana algebra, 42, 102

weighted shilt, 18
Wey!l spectrum, 95
Widom's theorem, 121
Wiener ulgebra, 29
winding oumber

of a curve, 35
_Ofﬂ C)‘th 36
of an elewent of C(T)1, 115

Wald decompasition, 113
Zorn's lnm&:m. 23







