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Preface

Their memorials are covered by sand,

their rooms are forgotten.

But their names live on by the books they wrote,
for they are beautiful.

(Egyptian poem, 1500-1000 BC)

The theory of Bergman spaces experienced three main phases of development
during the last three decades.

The early 1970’s marked the beginning of function theoretic studies in these
spaces. Substantial progress was made by Horowitz and Korenblum, among others,
In the areas of zero sets, cyclic vectors, and invariant subspaces. An influential pre-
sentation of the situation up to the mid 1970’s was Shields’ survey paper “Weighted
shift operators and analytic function theory”.

The 1980’s saw the thriving of operator theoretic studies related to Bergman
spaces. The contributors in this period are numerous; their achievements were
presented in Zhu’s 1990 book “Operator Theory in Function Spaces’.

The research on Bergman spaces in the 1990’s resulted in several breakthroughs,
both function theoretic and operator theoretic. The most notable results in this
period include Seip’s geometric characterization of sequences of interpolation and

sampling, Hedenmalm'’s discovery of the contractive zero divisors, the relationship
between Bergman-inner functions and the biharmonic Green function found by
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Duren, Khavinson, Shapiro, and Sundberg, and deep results concerning invari-
ant subspaces by Aleman, Borichev, Hedenmalm, Richter, Shimorin, and Sund-
berg.

Our purpose is to present the latest developments, mostly achieved in the
1990’s, in book form. In particular, graduate students and new researchers 1n
the field will have access to the theory from an almost self-contained and read-
able source.

Given that much of the theory developed 1n the book 1s fresh, the reader is
advised that some of the material covered by the book has not yet assumed a
final form.

The prerequisites for the book are elementary real, complex, and functional
analysis. We also assume the reader 1s somewhat familiar with the theory of
Hardy spaces, as can be found in Duren’s book “Theory of H’ Spaces”, Gar-
nett’s book “Bounded Analytic Functions”, or Koosis’ book “Introduction to H
Spaces”.

Exercises are provided at the end of each chapter. Some of these problems
are elementary and can be used as homework assignments for graduate students.
But many of them are nontrivial and should be considered supplemental to the
main text; in this case, we have tried to locate a reference for the reader.

We thank Alexandru Aleman, Alexander Borichev, Bernard Pinchuk, Kristian
Selp, and Serger Shimorin for their help during the preparation of the book. We
also thank Anders Dahlner for assistance with the computer generation of three
pictures, and Sergei Treil for assistance with one.

January 2000 Haakan Hedenmalm

Boris Korenblum
Kehe Zhu



Contents

Preface

1 The Bergman Spaces

1.1  BergmanSpaces . . ... .. ... ... ...
1.2 Some LP Estimates . . . .. ... ... ...........
1.3 TheBlochSpace . . . . .. ... ... ... ... ......
1.4  Duality of BergmanSpaces . . . ... . ... ........
1.5  Notes . . . . . . . . e e e e e e e e
1.6  Exercises and FurtherResults . . . . . ... ... ......

2 The Berezin Transform
2.1 AlgebraicProperties . . . . .. ... ... .. ...,

2.2 HarmonicFunctions . . . . .. .. ... ...........
2.3 Carleson-TypeMeasures . . . . . ... .. ..........
24 BMOinthe BergmanMetric . ... .. ... ........
25 AlLlipschitzEstimate. . . . . ... ... ...........
26  NOteS . . . . . v i i e e e e e e e e e e

2.7  Exercises and FurtherResults . . . . . . . .. . . ... ...

3 AP-Inner Functions
3.1  Al-InmerFunctions . . . ... ..... ... ... ....
3.2  AnExtremal Problem . .. ... ... .. .. .. ......
3.3  The Biharmonic Green Function . ... .. ... ... ...
3.4  The Expansive Multiplier Property . . . ... .. ... ...

13
17
22
23

28
28
32
38
42
46
49
49

S2
52
35
59
66



Viil

Contents
3.5 Contractive Zero Divisors in A”
3.6  An Inner-Outer Factorization Theorem for A”
3.7  Approximation of Subinner Functions
33 Notes. .. ..........
3.9  Exercises and Further Results
Zero Sets
4.1  Some Consequences of Jensen’s Formula
4.2  Notions of Density . . . . . .
4.3  The Growth Spaces A~ and A~
4.4 A9 Zero Sets, Necessary Conditions
4.5 A% Zero Sets, a Sufficient Condition
4.6 ZeroSetsfor AL . ... ...
4.7  The Bergman-Nevanlinna Class
48 Notes. ... ... ......
4.9  Exercises and Further Results
Interpolation and Sampling
5.1  Interpolation Sequences for 4™
5.2  Sampling Sets for A7 . . .
5.3  Interpolation and Sampling in A}
5.4  Hyperbolic Lattices . . . . .
559 Notes. ... .........
5.6  Exercises and Further Results
Invariant Subspaces
6.1 Invariant Subspaces of Higher Index
6.2 Inner Spacesin A2 . ... ..
6.3 A Beurling-Type Theorem . .
64 Notes.............
6.5 Exercises and Further Results
Cyclicity
7.1  Cyclic Vectors as Outer functions
7.2  Cyclicity in A? Versus in A~
7.3  Premeasures for Functions in A~
7.4  Cyclicityin A= . ... ..
75 Notes.............
7.6  Exercises and Further Results
Invertible Noncyclic Functions
8.1  An Estimate for Harmonic Functions
8.2  The Building Blocks . . . . .
8.3  The Basic Iteration Scheme .
8.4  The Mushroom Forest . . . .

............

.................

71
78
86
94
95

98

98
104
110
112
119
128
131
133
134

136
136
152
155
165
171
172

176
176
180
181
186
187

190
190
191

208
214
214

216
217
219
222
230



Contents

8.5 Finishing the Construction. . . . . . ... ... .......

8.6 TwoApplications . . . ... ... ... ... ...
8.7 NOtES . . . . ot e e e e e e e e e e e e e e e e e e e e e
8.8 Exercises and FurtherResults . . . . . . . . ... ... ...

9 Logarithmically Subharmonic Weights

9.1 ReproducingKernels . .. ... ... ............

9.2  Green Functions with Smooth Weights . . . . .. ... ...

9.3  Green Functions with General Weights . . . . . . . ... ..

94 AnApplication. . . . . .. .. oL .

0.5 NoOtes . . . v v i i i e e e e e e e e e e e e e e

9.6 Exercises and FurtherResults . . . . . .. ... ... ....
References

Index

1X

235
238
239
240

242
253
262
267
269
269

274

282






1
The Bergman Spaces

In this chapter we introduce the Bergman spaces and concentrate on the general
aspects of these spaces. Most results are concerned with the Banach (or metric)
space structure of Bergman spaces. Almost all results are related to the Bergman
kernel. The Bloch space appears as the 1mage of the bounded functions under the

Bergman projection, but it also plays the role of the dual space of the Bergman
spaces for small exponents (0 < p < 1).

1.1 Bergman Spaces

Throughout the book we let C be the complex plane, let
D={ze€C:lz| < 1}

be the open unit disk in C, and let
T={zeC:|z| =1}

be the unit circle in C. Likewise, we write R for the real line. The normalized

area measure on [D will be denoted by d A. In terms of real (rectangular and polar)
coordinates, we have

| ] .
dA(z):-j—r—dxdy:;rdrdé?, z:x—}—iy::.re’e

We shall freely use the Wirtinger differential operators

0 1(8 _8) 0 1(8+_8
— == | ——i—, — == | — — ),
0z 2 \Ox Jy 0z 2 \dx lay
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where again z = x + iy. The first acts as differentiation on analytic functions, and

the second has a similar action on antianalytic functions.
The word positive will appear frequently throughout the book. That a function

f 1s positive means that f(x) > O for all values of x, and that a measure w 1S
positive means that u(E£) > O for all measurable sets £E. When we need to express

the property that f(x) > O for all x, we say that f 1s strictly positive. These
conventions apply — mutatis mutandis — to the word negative as well. Analogously,
we prefer to speak of increasing and decreasing functions in the less strict sense,

so that constant functions are both increasing and decreasing.
We use the symbol ~ to indicate that two quantities have the same behavior

asymptotically. Thus, A ~ B means that A/B 1s bounded from above and below
by two positive constants in the limit process 1n question.

For 0 < p < +o0 and —1 < o < +4o0, the (weighted) Bergman space
AL = AL (D) of the disk is the space of analytic functions in L?(D, dA, ), where

dAy(z) = (@ + (1 —|z])* dA(2).
If fisin LP(D,dA,), we write

l/p
| fllpa = [/ If(Z)IpdAa(z)] .

When 1 < p < +0o0, the space LP(ID, dA,) 1s a Banach space with the above
norm; when 0 < p < 1, the space LP(ID,dA,) 1s a complete metric space with
the metric defined by

d(f.8) = IIf — gllp.a-

Since d(f,g) = d(f — g,0), the metric is invariant. The metric 1s also p-
homogeneous, that is, d(Af, 0) = |A|Pd(f, O0) for scalars A € C. Spaces of this
type are called quasi-Banach spaces, because they share many properties of the

Banach spaces.
We let L°°(ID) denote the space of (essentially) bounded functions on D. For

f € L°°(D) we define
| flloo = esssup {|f(2)]:z € Dj.

The space L°°(ID) 1s a Banach space with the above norm. As usual, we let H°
denote the space of bounded analytic functions in ID. It 1s clear that H° is closed
in L~°(ID) and hence is a Banach space itself.

PROPOSITION 1.1 Suppose 0 < p < 400, —1 < a < 4+, and that K is
a compact subset of . Then there exists a positive constant C = C(n, K, p, @)
such that

sup {lf(”)(z)l .z € K} < Clfllpa

forall f € Af andalln =0, 1,2, .... In particular, every point-evaluation in D
is a bounded linear functional on AF.



1.1. Bergman Spaces 3

Proof. Without loss of generality we may assume that
K={zeC:|z] <r}

for some r € (0, 1). We first prove the result for n = 0.
Leto = (1 —r)/2 and let B(z, o) denote the Euclidean disk at z with radius

o . Then by the subharmonicity of | f|7,
] >
| f(DIF < 5 | f(w)|” dA(w)

O~ JB(z.0)

for all z € K. It is easy to see that for all z € K we have
L—z? > 1=zl = (1 =r)/2.

Thus, we can find a positive constant C (depending only on r) such that

Iﬂ@WSC/

B(z.0)

| f(w)]P dAq(w) < C/ | f(w)]” dAq(w)

for all z € K. This proves the result for n = 0.

By the special case we just proved, there exists a constant M > O such that
f@) M| fllpqtorall || =R, where R = (1 +r)/2. Now 1f z € K, then by
Cauchy’s integral formula,

' fQ)de

(M), —

It follows that

n'MR
O”+1

F"(2)] < | £l p.a

forallz € K and f € AL. n

As a consequence of the above proposition, we show that the Bergman space
Ay is a Banach space when 1 < p < +00 and a complete metric space when
0<p<l.

PROPOSITION 1.2 Forevery0 < p < +00 and —1 < a < 400, the weighted
Bergman space AL is closed in LP(D, dA,).

Proof. Let {f,}, be a sequence in A, and assume f, — f in LP(D,dA,).
In particular, { f,}, is a Cauchy sequence in L? (D, dA,). Applying the previous
proposition, we see that { f,,}, converges uniformly on every compact subset of .
Combining this with the assumption that f,, — f in L?(D,dA,), we conclude
that f,(z) — f(z) uniformly on every compact subset of D. Therefore, f is
analytic in D and belongs to Af. u

In many applications, we need to approximate a general function in the Bergman

space AL by a sequence of “nice” functions. The following result gives two
commonly used ways of doing this.
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PROPOSITION 1.3 For an analytic function f in Dand 0 < r < 1, let f, be
the dilated function defined by f,(z) = f(rz), z € D. Then

(1) Forevery f € AL, we have || f, — fllpa —>0asr - 17.

(2) For every f € AL, there exists a sequence {p,}, of polynomials such that
1 pn — fllpe = Oasn — +0o0.

Proof. Let f be a function in A4. To prove the first assertion, let § be a number
1n the interval (0, 1) and note that

[D £.@) = FQIP dAg(n) < [H 1£@) = FQIP dA(d)

+/5 o) (1 @1+ 1f(@)])" dAg(2).

Since fi1sin LP(ID, dA,), we can make the second integral above arbitrarily small
by choosing § close enough to 1. Once § is fixed, the first integral above clearly
approachesQasr — 1.

To prove the second assertion, we first approximate f by f, and then
approximate f, by its Taylor polynomials. u

Although any function in A% can be approximated (in norm) by a sequence of
polynomials, it is not always true that a function in A/ can be approximated (in
norm) by its Taylor polynomials. Actually, such approximation 1s possible 1f and
only1f 1 < p < 400; see Exercise 4.

We now turn our attention to the special case p = 2. By Proposition 1.2 the
Bergman space Ag, 1S a Hilbert space. For any nonnegative integer n, let

I‘rntﬂ|—12—|—7
€n(Z)=/(**—-2Z", z e D.

Here, I" (s) stands for the usual Gamma function, which is an analytic function of s
1n the whole complex plane, except for simple poles at the points {0, —1. =2, ... }.
[t 1s easy to check that {e,}, 1s an orthonormal set in Ag,. Since the set of poly-
nomaials 1S dense 1n Ag,, we conclude that {e, },, defined above 1s an orthonormal

basis for Az,. It follows that 1f

+00 T
f@ =) aZ and  g(z) =) bp?"
n=0 n=0

are two functions in AC%,, then

+ OO0 'rz
2 n!'(2 + o) 2
-~ —_—— — a
17115 Z%rm+2+aﬂ”|
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and

+00 '
n'l'(2 + «) _
y — — . ~ . rzbn,
(f, 8)a ’;F(H—}—z—}—a)a

where (-, -}y 1s the 1nner product in Ag, inherited from L*(D, dA,).

PROPOSITION 1.4 For —1 < a < 400, let P, be the orthogonal projection
from L*(D, dA,) onto AZ. Then

f(w)dAy(w)

T z €D,

Py f(z) =
forall f € L%(D, dA,).

Proof. Let {e,}, be the orthonormal basis of A?, defined a little earlier. Then
for every f € L*(D, dA,) we have

In particular,

+00
P,f(z) = Z(Pa.fs €n)a €n(2)
n=0

for every z € D and the series converges uniformly on every compact subset of ID.
Since

<Pa’f7 erz)a — <f> Paen)af — <fv en)a,

we have

Jfl’(n+2+a)

Paf () n!'1I'(2+ o)

[ f(w)(zw)" d Ay (w)

n=0
RTrn+2+a),
/ f(w) [;-n-! FO T o) (zw) } dAq(w)

f(w)ydAy(w)
0 (1 _ Z“u—)')2+a '

T'he interchange of integration and summation is justified, because for each fixed
z € D, the series

n=_0

converges uniformly in w € D. _
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The operators P, above are called the (weighted) Bergman projections on D.
The functions

Ko(Z, W) = —=

are called the (weighted) Bergman kernels of [D. These kernel tunctions play an

essential role 1n the theory of Bergman spaces.
Although the Bergman projection P, 1s originally defined on L?'(ID), dA,), the

integral formula

f(w)dAy(w)
D= LA )

clearly extends the domain of P, to L' (D, dAy). In particular, we can apply P,
to a function in L?(D,dA,) whenever 1 < p < 4.
If f is a function in AZ, then P, f = f, so that

f(w)dAy(w)
) (1 _ Z—w-)2+a

f(z) = , z € D.

Since this is a pointwise formula and A2 is dense in A, we obtain the following.

COROLLARY 1.5 If f is a function in A}, then

f(w)dAy(w)

S —gmte S

f(z) =

and the integral converges uniformly for z in every compact subset of .

This corollary will be referred to as the reproducing formula. The Bergman
kernels are special types of reproducing kernels.

On several occasions later on theorems will hold only for the unweighted
Bergman spaces. Thus, we set AP = A, and call them the ordinary Bergman
spaces. The corresponding Bergman projection will be denoted by P, and the
Bergman kernel 1n this case will be written as

]
K(Z, w) — H—:—Z_wj)'i

The Bergman kernel functions are intimately related to the Mobius group
Aut (ID) of the disk. To see this, let z € D and consider the Mobius map ¢, of
the disk that interchanges z and 0,

Z—w

0, (W) = ——, w € D.
| — zw

We list below some basic properties of ¢,, which can all be checked easily.

PROPOSITION 1.6 The Mobius map @, has the following properties:

(1) 90;1 = ¢x.
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(1 —|z]%)?
11— zw|*

(2) The real Jacobian determinant of ¢- at w s [(pé(w)l2 —

1 — zw|?

3) 1= ) = (L1 — 1wl

As a simple application of the properties above, we mention that the formula
for the Bergman kernel function K, (z, w) can be derived from a simple change of
variables, instead of using an infinite series involving the Gamma function. More
specifically, if f € A}, then the rotation invariance of d A, gives

f(0) = /IDJ f(w)dAy(w).

Replacing f by f o ¢,, making an obvious change of variables, and applying
properties (2) and (3) above, we obtain

f(Z) _ (1 - |Z|2)2+a/ f(w) dAa'(w)

) (1 _ wz)2+a(1 _ Zw)2+a '

r_

Fix z € D, and replace f by the function w — (1 — wZ)*1® f(w). We then arrive
at the reproducing formula

f(z) = / ]:(iﬂ_)“"—“ dAy(w), z €D,

_(1"___ ZL_U-)?"JFQ

for f € A,. From this we easily deduce the integral formula for the Bergman
projection P, .

1.2 Some L¥? Estimates

Many operator-theoretic problems in the analysis of Bergman spaces involve esti-
mating integral operators whose kernel 1s a power of the Bergman kernel. In this
section, we present several estimates for integral operators that have proved very
useful 1n the past. In particular, we will establish the boundedness of the Bergman
projection P, on certain L? spaces.

THEOREM 1.7 Forany —1 < «a < 400 and any real B, let

(1 —|w|*)”
Iy p(2) = 1 — w2aih dA(w), z €D,

and

2T 46
Jg(Z) = — . - D.
g(2) [0 T 2o 177 Z €
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Then we have

: if B <0,
lap@) ~ Jp@) ~ | 87—z YP=0
e P70

asl|z| = 17.

Proof. The condition —1 < «a < +o0¢ ensures that the integral 1, g(z)
convergent for every z € ID. The integral Jg(z) clearly converges tor all z € D.

Let A = 2+« + B)/2. If A 1s a nonpositive integer, then clearly 8 < 0 a
Jo.p(z) 1s bounded. In what follows, we assume that A 1s not a nonpositive integ
In this case, we make use of the tollowing power series:

1 ST+,
(1—z0)* ;0 TR

Since the measure (1 — |w|?)¥ dA(w) is rotation invariant, we have

/ (1 = |w|*)* dA(w)
D

Il _ Z_IIJ_IQ’\

"io [(n+ A)?

Iy p(2)

7] " [)(1 — Jw]?)¥ | w|** dA(w)

£~ (n!)2T(1)2
[(a + 1) +Z°:° ['(n+ 1)’ 2P
= — ——— 7]
[(A)? —~n!'l'(n+a+2)
By Stirling’s formula,
["(n —|—)&)2 1
"  _ ~m+ DY ns 4.
Thtasy ot h
If B < 0, then the series
S
n=0 (n + l)l_ﬁ

clearly defines a bounded function on ), and so Iy g(z) 1s bounded on D.
It B = 0, then we have

as |z] > 1.
It B > O, then we have

+00
Iy g(2) ~ n+ DP Tzt ~ ————
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as |z| — 17, because

and

by Stirling’s formula again.
The estimate for Jg(z) is similar; we omit the details. _

The following result, usually called Schur’s test, 1s a very effective tool in proving
the L?-boundedness of integral operators.

THEOREM 1.8 Suppose X is a measure space and | a positive measure on X.
Let T(x,y) be a positive measurable function on X x X, and T the associated
integral operator

I'f(z) = /x I'(x,y) f(y)au(y), x € X,

defined wherever the integral converges. If, for some 1 < p < +0C, there exists a
strictly positive measurable function h on X and a positive constant M such that

/XT(x, y) h(¥)?dpu(y) < M h(x)?, x € X,
and
/X T(x,y)h(x)"du(x) < Mh(y)?, yeX,
where p~1 + q‘“l — 1, then T is bounded on L? (X, dun) with ||T|| < M.

Proof. Fix a function f in L?(X, dw). Applying Holder’s inequality to the
Integral below,

Tf(x)| < / h(Y)Y R~ I fF O T (x, y)du(y),

X

we obtain

1
p

1
q
EWACIIIS [/X T (x,y)h(y)” du(y)] [[ T(x,y)h(y)"p!f(y)lpdu(y)]
X
Using the first inequality in the assumption, we have

|

T f(x)| <MY h(x) [[X T (x, y)h(y)_p\f(y)lpdu(y)]p .
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Using Fubini’s theorem and the second inequality 1n the assumption, we easily
arrive at the following:

/X ITf)Pdu(x) < MP/X fO)N7 du(y).

Thus, T 1s a bounded operator on L¥ (X, du) of norm less than orequalto M. =

We now prove the main result of this section.

THEOREM 1.9 Suppose a, b, and c are real numbers and
dp(z) = (1 —121*)° dA().
Let T and S be the integral operators defined by
(1= w??

Tf(z)=(1—|z]*) 0 _Wf(w)dA(w)

and

(1 = Jwl*)’
Sf(z) = (1 —]z|*)° [ [l — zwratb f(w)dA(w).

Then for 1 < p < 400 the following conditions are equivalent:
(1) T is bounded on LP (D, dn).
(2) S is bounded on LP (D, dup).

(3) —pa <c+1 < pb+1).

Proof. Itis obvious that the boundedness of S on L? (D, du) implies that of 7.

Now, assume that 7 1s bounded on L¥ (D, d). Apply T to a function of the form
f(z) = (1 —1z]*)", where N is sufficiently large. An application of Theorem 1.7
then yields the inequality ¢+ 1 > — pa. To prove the inequality c+ 1 < p(b+ 1),
we first assume p > 1 and let g be the conjugate exponent. Let T* be the adjoint
operator of T with respect to the dual action induced by the inner product of
L*(D, dw). It is given explicitly by

(1 — [w[*)**€ f(w)
) (1 _ Z-ﬁj)2+a+b dA(w)’

I"f(2) = (1 - 2"

must be bounded on L7 (D, d ). Again, by looking at the action of 7™ on a function
of the form f(z) = (1 — |z|>)", where N is sufficiently large, and applying
Theorem 1.7, we obtain the inequality c +1 < p(b+ 1).If p = 1, then T™ 1s
bounded on L°°(ID), and the desired inequality becomes ¢ < b. Let T™ act on the
constant function 1. We see that ¢ < b. To see that strict inequality must occur, we
consider functions of the form

1 — -0 24+a+b
( ) z, w e D.
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Clearly, || fzllcc = 1 forevery z € D. If b = ¢, then

. / (1 — |[w|?)* ¢ dA(w) . 1 o 1-
- = —_—— 0g , — 17,
f~' < D “ __ Z"'ujl2+a+c | — Ile <

by Theorem 1.7. This implies |T™ f;|lcoc — +00 as |z| — 17, a contradiction
to the boundedness of 7* on L°°(ID). Thus, the boundedness of T on L? (DD, du)
implies the inequalities —pa < c+ 1 < p(b + 1).

Next, assume —pa < ¢+ 1 < p(b+ 1). We want to prove that the operator S is
bounded on L#(ID, dw). The case p = 1 1s a direct consequence of Theorem 1.7
and Fubini’s theorem. When p > 1, we appeal to Schur’s test. Thus, we assume 1 <
p < +00 and seek a positive function A(z) on D that will satisty the assumptions
in Schur’s test. It turns out that such a function exists in the form A (z) = (1 —|z|?)®,
where s 1s some real number. In fact, if we rewrite

| — ar — b—c
S5f(z) = [ (1~ 12l )0~ el ) — f(w)dp(w),

l | — Zw|2—l-a—l-b

then the conditions that the number s has to satisty become

(1 — |w]?)?T9S dA(w) C
- . ) < __’ Z G ]D’
) |1 — Zwl”-i—a—l-b ~ (1 — |Z|2)a-—qs
an
(1 —|z|” )“+p“+"dA(z) C 0
H _ Z.'w|2—i-a—}-1:> — (1 — Iw|2)b ps—c’ we Y,

where g 1s the conjugate exponent of p and C 1s some positive constant. According
to Theorem 1.7, these estimates are correct if

b+ gs > —1, a—qs > 0,

and
a—+ ps+c>—1, b— ps—c>0.
We rewrite these inequalities as
b+ 1 a a+c+] b —c
—— <5< —, — <5< —.
q q P p
It 1s easy to check that the inequalities —pa < ¢+ 1 < p(b + 1) are equivalent to
b+1 b—c a+c+1 a
—— <, < —,
q P P q

which clearly imply that the intersection of intervals

p p
1s nonempty. This shows that the desired s exists, and so the operator S is bounded
on LP(D,du). _
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One of the advantages of the theory of Bergman spaces over that of Hardy spaces
1s the abundance of analytic projections. For example, 1t 1s well known that there
is no bounded projection from L' of the circle onto the Hardy space H!, while

there exist a lot of bounded projections from L' (D, dA) onto the Bergman space
A', as the following result demonstrates.

THEOREM 1.10 Suppose —1 < a, B < +00and 1 < p < +00. Then Pg is a
bounded projection from LP (D, dAy) onto Ay if and only ifa +1 < (B + 1) p.

Proof. This 1s a simple consequence of Theorem 1.9. _

Two special cases are worth mentioning. First, if « = B, then P, 1s a bounded
projection from L?(D, dA,) onto Ay if and only if 1 < p < +00. In particular,
the (unweighted) Bergman projection P maps L?(ID, dA) onto A? if and only if
| < p < 400.Second, if p = 1, then Pg is abounded projection from L' (D, d A,)
onto Acll, it and only if B > «. In particular, Pg is a bounded projection from

L'(D,dA) onto A! when B8 > 0.

PROPOSITION 1.11 Suppose 1 < p < +00, —1 < ¢ < +00, and that n is a
positive integer. Then an analytic function f in D belongs to A% if and only if the
function (1 — |z|>)" f"(z) is in LP(D, dA,).

Proof. First assume f € A4. Fix any B > «. Then, by Corollary 1.5,

FQ=@+D | T— 75 fadaw),  zeD,

Ditferentiating under the integral sign n times, we obtain

(1 — |w|?)P

0~ zw)2nP w” f(w)dA(w),

(1 —1z])" f"() = C (1 — |z]*)"

where C 1s the constant
C=B+DHB+2)---(B+n+1).
By Theorem 1.9, the function (1 — |z|*)” f™(z) isin LP(D, dA,).

Next, assume that f is analytic in D and the function (1 — |z]?)" f"™(z) is in
LP(D, dA,). We show that f belongs to the weighted Bereman space Al,. Without
loss of generality, we may assume that the first 2n + 1 Taylor coefficients of f are
all zero. In this case, the function ¢ defined by

(1 - 1z1)" f™(2)

p(z) =C —
<

1s1n LP(D, dAq), for any constant C. Fix B, @ < 8 < 400, and let g = Pgy. By
Theorem 1.10, the function g belongs to A. The explicit formula for g is

z e D,

(1 —Jw|*)P

D (i — Z_-lz_'jz_l:ﬁ <p(w) dA(w), Z € D.

g@)=(P+1)
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If we set the constant C to be
]

B+DB+2)--B+n+1)

then differentiating n times in the formula for g yields

C =

e s (1 —wH"P
8 (Z)—-—-(”l‘*‘ﬁ-i- 1) D‘“("ITW+;_;IB'f (w)dA(w), ZE]D.

Applying Corollary 1.5 again, we find that g = ) sothat f and g differ only
by a polynomial. Since g 1s In AL wehave f € AY. n

1.3 The Bloch Space

An analytic function f in DD is said to be in the Bloch space B if

| fllB = sup {(1 — 12N f (D] : z € ]D] < 4+00.

[t 1s easy to check that the seminorm || - ||g 1s Mobius invariant. The little Bloch
space By 1s the subspace of B consisting of functions f with

lim (1 —|z19)|f ()| = 0.

z|— 17

The Bloch space plays the same role 1n the theory of Bergman space as the space
BMOA does 1n the theory of Hardy spaces. When normed with

[ fIE =17+ 1Sl

the Bloch space B3 is a Banach space, and the little Bloch space By 1s the the closure
of the set of polynomials in B.
[f f 1s an analytic function in D with || f|lso < I, then by Schwarz’s lemma,

(1= @l <1=1f@*  zeD.

It follows that H>® C B with || f{B < || f l- B
Let C( D) be the space of continuous functions on the closed unit disk D. Denote
by Co(DD) the subspace of C (D) consisting of functions vanishing on the unit circle

T. It is clear that both C(D) and Co(D) are closed subspaces of L°(D).

THEOREM 1.12 Suppose —1 < a < +0o0 and that Py is the corresponding
weighted Bergman projection. Then

(1) Py maps L>° (D) boundedly onto B.
(2) P, maps C( D) boundedly onto By.
(3) Py maps Co(ID) boundedly onto By.
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Proof. First assume g € L°°(D) and f = P, g, so that
(1 = Jwl*)*g(w)
y (1 — Z'{D')2+a

Differentiating under the integral sign and applying Theorem 1.7, we see that f
belongs to B with

f(2) =(ax+1) dA(w), z € D.

FON+1flB = Cligle

for some positive constant C (independent of g). Thus, P, maps L°°(ID) boundedly

into B.
Next, assume g € C(D ). We wish to show that f = P,g is in the little Bloch

space. By the Stone-Weierstrass approximation theorem, the function g can be
uniformly approximated on D by finite linear combinations of functions of the

form
gn.m(2) =2"7", 7z €D,

where n and m are nonnegative integers. Using the symmetry of D, we easily check
that each P, g, ,, belongs to the little Bloch space. Since P, maps L°°(ID) bound-
edly into B, and By is closed in B, we conclude that P, maps C(D) boundedly
Into By.

Finally, tor f € B we write the Taylor expansion of f as

f(Z):a+bz+cz2+f1(z), z €D,
where £1(0) = fl’(O) — (, and define a function g in L°°(ID) by

a® + 5a + 6 a’ +Ta+12 f{(2) :I

—bz+ ———m—— "+ ———|.
(@ + 1)? 2(a + 1)~ Z(a + 1)

It 1s clear that g is in Cp(ID) if f 1s 1n the little Bloch space. A direct calculation

shows that f = P,g. Thus, P, maps L°°(ID) onto B; and it maps Co(ID) (and

hence C(D )) onto By. »

g(z) = (1 —1z%) [a+

PROPOSITION 1.13 Suppose n is a positive integer and f is analytic in ). Then
f € B if and only if the function (1 — lzlz)"f(")(z)_is in L°°(D), and f € By if
and only if the function (1 — 1ZI5)" F™M(2) is in C(D) (or Co(D)).

Proof. If f is1n the Bloch space, then by Theorem 1.12 there exists a bounded

function g such that
w)dA(w)
f(2) = [ -g"g"—')"—::(——, z € D.
y (I —zw)?
Differentiating under the integral sign and applying Theorem 1.7, we see that the
function (1 — [z]%)” £ (z) is bounded.
It the function g above has compact support in D), then clearly the function

(1—1z19)* ") (z)isin Co(D) (and hence in C(D)).If f isin the little Bloch space,
then by Theorem 1.12 we can choose the tunction g in the previous paragraph to
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be in Co(ID). Such a function g can then be uniformly approximated by continuous
functions with compact support in D. This shows that the function (1— Z]9)" £ (2)
is in Co(D) (and hence in C(DD)) whenever f is in the little Bloch space.

To prove the “if” parts of the theorem, we may assume the first 2n + 1 Taylor
coefficients of f are all zero. In this case, we can consider the function
(1 — 21" f"(2)

8(Z)=C-——‘*—'Z_n , z € D.

By the proof of Proposition 1.11, the functions f and Pg differ by a polynomial.
The desired result then tfollows from Theorem 1.12. _

As a consequence of this result and Proposition 1.11, we see that BB 1s contained
in every weighted Bergman space A;. We can then use this observation and the
following result to construct nontrivial functions in weighted Bergman spaces. In
particular, we see that every weighted Bergman space contains functions that do
not have any boundary values.

Recall that a sequence {4, }, of positive integers 1s called a gap sequence 1f there
exists aconstant A > 1 suchthat A, /A, > Atforalln = 1,2,3.....Inthiscase,

we call a power series of the form Z:ﬁ% a,z*" alacunary series.

THEOREM 1.14 A lacunary series defines a function in B if and only if the

coefficients are bounded. Similarly, a lacunary series defines a function in By if
and only if the coefficients tend to 0.

Proof. Suppose {a,}, 1s a sequence of complex numbers with |a,| < M

foralln = 1,2,3,..., and suppose {A,}, 1S sequence of positive integers with
Ant1/An > Aforalln=1,2,3,...,where 1l < A < +0o< 1s a constant. Let
+0C0
f(z) = Zanz*", z € D.
n=0

Clearly, f 1s analytic in D and

+ 00

fi(z) = Zanknz;‘""l, z € D.

n=0
LetC =A/(A—1);thenl < C < +00. Itis easy to check that

Anel] < C (Ape1 — An), n=1,2,3,....
This implies that
Anpr |27 < C (At — Ag) 2]t
<Clel+- 17, =123
We also have, rather trivially,

Mz S g+ M S CU+ 2+ -+ 2.
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It follows that

MC

f'@) <MCZ|z| T €D

and hence f 1s 1n the Bloch space.
A similar areument shows that if f 1s defined by a lacunary series whose

coefficients tend to O, then f must be in the little Bloch space.
Conversely, 1t

+ 00

f(z):Zanz", z € D,

n=0

1s any function in the Bloch space, we show that its Taylor coefficients must be
bounded. By Corollary 1.5, we have

f'(z) = 2fD H—"_—_——'Z—J')—g f'wyda(w),  zeD,

whence 1t follows that

(n)
a, = f (0) = (n + l)[ (1 — |w|2) f(w)dA(w), n=1,2,3....

This clearly implies that {a,}, 1s bounded. Similarly, the formula above together
with an obvious partition of the disk implies that {a,}, converges to O if f is in
the little Bloch space. _

Finally 1n this section we present a characterization of the Bloch space in terms
of the Bergman metric. Recall that for every z € D, the function ¢, is the Mobius
transformation that interchanges z and the origin. The pseudohyperbolic metric p

on [D 1s defined by

WZ'—-w

— ] ZawE]D)a
| — zw

p(z, w) = |@(w)]| =

and the hyperbolic metric B, also called the Bergman metric or the Poincaré metric,
1S defined by

B(z. w) = | + p(2, w)

z, w € D.
2 1--;0(z w)

It 1s easy to check that the pseudohyperbolic metric (and hence the hyperbolic
metric) 1s Mobius invariant. The infinitesimal distance element for the Bergman
metric on ) 1s given by

dz|
I —|z|*
THEOREM 1.15 An analytic function f in D belongs to the Bloch space if and
only if there exists a positive constant C such that

f(2) = f(w)] =C Bz, w)




1.4. Duality of Bergman Spaces 17

holds for all z and w in .

Proof. If f is analytic in D, then

1
f(z)— fQO) = Zfo f'(tz) dr
for all z € D. If £ is in the Bloch space, then 1t follows that
| f(2) — f(0)

| Z

for all z € D. Replacing f by f o ¢;, replacing z by ¢,(w), and applying the
Mobius invariance of both || - ||g and B, we arrive at

f(2)— fw)l < I fliB Bz, w)

forall f € Band z, w € D.
The other direction follows from the 1dentity

’ | f(w) — f(2)
m —

w—>z  B(w, 2)

L d
< ”f”B[ - -t-;,_—:_; = || flin B(z, 0)
o 1 —|z|°t

= (1 —1z1)I1f @),  zeD,

which can easily be checked. _

Carefully examining the above proof, we find that

7) — f(w
| fllg = sup | LTI e D,z # w}.
B(z, w)
With the help of functions of the type
] 1+zei€
— — Joo — c ]D),
f(2) 5 O"’l-——zefe Z

we can also prove that

Bz, w) = sup{|f(z) — f(w)|: I flig < 1}.

These formulas exhibit the precise relationship between the Bloch space and the
Bereman metric.

1.4 Duality of Bergman Spaces

Suppose 0 < p < +o0and —1 < & < +00. A linear functional F on Ay, is called

bounded if there exists a positive constant C such that |F(f)| < C|| f|l«.p tor all
f € AL, where

L/ p
”f“a..p — [/ID? lf(Z)IPdAa(Z)] :

Recall that point evaluation at every z € D is a bounded linear functional on every
Al . In particular, every weighted Bergman space AP has nontrivial bounded linear
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functionals. We let AL™ denote the space of all bounded linear functionals. Then

P” is a Banach space with the norm

\Fll =sup {{F (NI = I flla.p < 1},
even though Af is only a metric space when 0 < p < 1.

THEOREM 1.16 For1 < p < +o0 and —1 < a < 400, we have A" = Al
under the integral pairing

(f,8) = fo(z)g(z_idAa(z), f e AP, ge Al

where q is the conjugate exponent of p: p~' +q~ ' = 1.

Note that the identification isomorphism A2~ = AZ need not be isometric for
p # 2.

Proof. By Holder’s inequality, every function g in A defines a bounded linear
functional on A via the above integral pairing. Conversely, if F is a bounded
linear functional on A%, then by the Hahn-Banach extension theorem, F can be
extended to a bounded linear functional (still denoted by F)on L? (D, d A, ) with-
out 1ncreasing its norm. By the duality theory of L¥ spaces, there exists a function
@ 1n L1(D, dA,) such that

F(f) —":[Df(Z)MdAa(Z), feAs

Wnting f = P, f and using the fact that the operator P, is self-adjoint with
respect to the inner product associated with d A, we obtain

F(f) = [D [ (@) Pap(2)dAy(2), f € Ag-

Letting g = P,¢ and using Theorem 1.10, we conclude that g is in A/ and that

F(f) = fo(Z)E(?)-dAa(Z)

forall f € AL. =

In order to identify the dual space of A5 when 0 < p < 1, we first introduce a
certain type of fractional differentiation and integration.

Let H (D) denote the space of all analytic functions in [ and equip H (D) with
the topology of “uniform convergence on compact subsets”. Thus, a linear operator
I on H(ID) 1s continuous if and only if T f,, — T f uniformly on compact subsets
whenever f, — f uniformly on compact subsets.

LEMMA 1.17 Foreverya, —1 < a < +00, there exists a unique linear operator
D% on H (D) with the following properties:

(1) DY is continuous on H (D).

(2) D [(1 —zw)~?] = (1 — zw)~ &+ for every w € D.
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Proof. Recall that

(] — Zu))2 Z(fl + l)zn—n

and
i C(n+2+a) nsn
(1 -—-zw)”‘a ~ n'I'2 + a)

[f we define
'n+24+a)
n+ DITC+a):
foralln =0, 1,2, 3,... and extend D¢ linearly to the whole space H (D), then

the resulting operator D¢ has the desired properties. The uniqueness also tollows
from the earlier series expansions. N

DO,’(ZH) —

By Stirling’s tformula,

['(n+ 2+ o) @
(n+ D' T2+ )

as n — oo. Thus, the operator D% can be considered a fractional differential
operator of order « in the case @ > 0.
[t 1s easy to see that for each —1 < o < 400, the operator D% can also be
represented by
f(rw)dA(w)

D® f(z) = lim —_—, c 1D,
/) r—>1- Jp (1 — zw)*t« :

for f € H(D). In particular, the limit above always exists. It f 1s in Al then
f(w)dA(w)
-~ (1 — Z'ﬂ'j)?.—l-a ’

LEMMA 1.18 Forevery —1 < a < 400, the operator D is invertible on H(ID).

D® f(2) = z € D.

Proof. Define an operator D, on monomials by
n+D'T'Q+a) ,

D7y = ————————
a(Z) ['(n + 2+ o) :
and extend D, linearly to the whole space H (D). Then D, is a continuous linear
operator on H (D), and it is the inverse of D“. n

[t 1s easy to see that

D, f(z) = Im (a+l)[ (! ‘ )2 frw)dA(w), ze D,
r—1- 1-—-—zw)

forevery f € H(D). When«a > 0, the operator D, is a fractional Integral operator
of order «.
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We now proceed to identify the dual space of Ay when O < p < 1. The

e

following two lemmas will be needed tor this purpose, but they are also of some
independent 1nterest.

LEMMA 1.19 Forevery0 < p < land —1 < a < +09, there exists a constant
C,0 < C < +oc, such that

f F(2)] (1 —|z) P dAGZ) < C |l flla.p
D
forall f € Aj.

Proof. For z € D, we let D(z) be the Euclidean disk centered at z with radius
(1 — |z|)/2. By the subharmonicity of | f|”, we have

4

—s P dA(w).
=102 Lo | f (w)]” dA(w)

| f()]F <

Since (1 — |w]) ~ (1 —|z]) for w € D(z), we can find a positive constant C such
that

@I <CU—=1zH) 9 flle,, zeD,

forall f € A,.For 0 < p < 1, we can write

f@l = 1f@IP I f@)] P

use the above inequality to estimate the second factor, and write out the remaining
integral. What comes out 1s the desired result. N

LEMMA 1.20 Suppose —1 < «« < +0o0 and f is analytic in D. If either f or
the function (1 — Izlz)_a’f(z) is bounded, then the function (1 — |z|>)*D® f(2) is
area-integrable and

fo(z)E@dA(z) = (o + l)fTDD“f(z)%(l — 2]9)* dA(2),

forall g € H*.

Proof. The case ¢ = O1stnvial. It 0 < o < 4oc¢, then by the integral
representation of D and Theorem 1.7, the function (1 — 2]%)% D¥ f (2) 1s bounded.

It -1 < ¢ < 0 and f is bounded, then Theorem 1.7 and the integral
representation of D% imply that D® f(z) is bounded, and hence the function
(1 — |z]%) D f (2) 1s area-integrable.

If -1 <« < 0and|f(2)] < Ci (1 —|z]*)%, then by Theorem 1.7 and the
integral representation of DY, we have

l
1= 2D f@I < C2(1 — 2 log 5. 5 <2l < 1.

and hence (1 — |z|%)? D f (z) i1s area-integrable.
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The desired 1dentity now follows from the integral form of D%, the reproducing
property of Py, and Fubini’s theorem. _

THEOREM 1.21 Suppose0 < p <1, -1 <a < +o0,and 8 = 2+a)/p—2.
Then AE™ = B under the integral pairing

(f, 8) = 11m / frg@)(1 — 1z19)P dA(2),
where f € Al and g € B.

Proof. Firstassume F € Ay and f € AL. Since I f—frllap = Oasr - 17,

we have
F(f) = linl]“ F(fr), fEAg-
Write
o= [ IReAw)
p (I—zw)~-

Since the integral converges in A%, the continuity of F implies that

]
F(fr) __/ fr(w) F l:(l — Z_ﬂ)_)z] dA(w).

where on the nght hand side we think of F' as acting with respect to the running
variable z. Let

(1 — zw)?

Then A 1s analytic in D and

F(f,) = L £(w) () dA(w).

Put

2
p=""2_>
p

and apply Lemma 1.20, with the result

F(f,)=(B+1) /D fr(w) DER(w) (1 — lw|?)? dA(w).

Let g = (B + 1) DPh and apply the second property of Lemma 1.17. Then

1
gw)=P+ 1 F ["““_—;——_—]

(1 — zw)Et+a)/p

+ D2
o) = LHDEro) [_____Z____], weD.

p (1 — Z@—)(Z-}—a)/p-l-l
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Using Theorem 1.7 and the boundedness of F, we easily check that g is in the
Bloch space and that

F(f) = lim f) £orw) 2@ (1 — 1212 dA(w)

r—1-

for every f € AY.
Next, assume ¢ € B. We show that the formula

F(f)= lim / fr(g@ (1 —1z21)P dA(z), f € AL,
)

r—1-

defines a bounded linear functional on A% . By Theorem 1.12, there exists a function
@ € L°°(D) such that

8(z) =Ppop(z) = (B + )[ 1= Z;))"zi-ﬂ‘@(w)dA(w)’ z € D.

Using Fubint’s theorem and the reproducing property of Pg, we easily obtain

/Dfr<z)’§(é‘>'<1 — 1z dA(z) = /D fr(w) p(w) (1 — [w|*)F dAw).

By Lemma 1.19, we have

F(f)= [Df(Z)m(l —121°)P dA(2), f e Ag,

and this defines a bounded linear functional on A% . n

1.5 Notes

The notions of Bergman spaces, Bergman metric, and Bergman kernel are by now
classical. General references include Bergman’s book [19], Rudin’s book [105],
Dzhrbashian and Shamoyan’s book [36], and Zhu’s book [135]; see also Axler’s
treatise [14]. The classical reference for Bloch spaces is [9].

Theorems 1.7 and 1.10 were proved by Forell1 and Rudin 1n [47] 1n the context
of the open unit ball in C”. Proposition 1.11 should be attributed to Hardy and
Littlewood [53]. That the Bergman projection maps L (ID) onto the Bloch space
was first proved by Coifman, Rochberg, and Weiss [34]. The duality results 1n
the case 1 < p < +o¢ follow directly from the estimates of the Bergman kernel
obtained by Forelli and Rudin [47]. The duality problem for 0 < p < 1 has been
studied by several authors, including [41] and [115]). Theorem 1.21 1s from Zhu
[136].
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1.6 Exercises and Further Results

. Suppose 1 < p < +4o00. Show that f, — O weakly in A? as n — 400
if and only if {|| f, || p}» is bounded and f,(z) — O uniformly on compact
subsets of D as n — +oc.

2. For —1 < a < +00, show that the dual space of the little Bloch space can
be identified with A} under the integral pairing

(f.g) = lim [D f(rz)g(2)dAa(z), f €Bo, g€ A,

r—1-

3. Showthat f,, — 0Oin the weak-star topology of A é 1f and only 1f the sequence
{ fn}n 18 bounded 1n norm and f,(z) — O uniformly on compact subsets of
Dasn — +ox.

4. For an analytic function f on D, let f,, be the n-th Taylor polynomial of f.
[fl<p<+4+o0,—1l <a<+00,and f € A? . show that fn — f 1n norm
in AL as n — +o00. Show that this is false if 0 < p < 1.

5. Prove Proposition 1.6.

6. If f 1s a function in the Bloch space, then there exists a positive constant C
such that | f(z)| < Clog(1/(1 — z|%)) for all z with -;— < |z| < 1. Similarly,
if f 1s 1n the little Bloch space, then for every ¢ > 0 there exists § € (0, 1)
such that | f(z)| < elog(1/(1 — z1%)) for all z with 8 < |z] < 1.

7. Forevery § € (0O, 1), there exists a positive constant C = C(p, 6) such that
if f and g are analytic functions in D with | f(2)| < |g(2)| for§ < |z| < 1,
then

[ f(DIPdA(z) < C [) g(2)” dA(2).
i [

8. There exists an absolute constant o, 0 < o0 < 1, such that

[_ﬁ (@7 dA(z) < L 2(2)|° dA(z)

whenever | f(2)] < |g(2)]ono < |z|] < 1|, where f and g are analytic in .
For details, see [87], [57], and [75].

9. For 1 < p < 400, let B, denote the space of analytic functions f in D
such that

[D(l — 21?1 f'(@)|7 dA(z) < +o0,

where

dA(z)
di ——J—
&= 0
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1S the Mobius-invariant measure on [D. These are called analytic Besov
spaces. Show that the Bergman projection P maps L” (D, dA) onto B, for
all 1 < p < +4o¢. For details, see [135].

10. Ifl<p<2,pl4g ' =1,and

+ OO
f(2)=) an?"
n=>0
1S1n A?, then
= la, |
Z ] qg—1 < +09
— (n+1)

For problems 10-14, see [95].

11. Suppose ] < p<2andp~!+qg ' =1.1If

then the function

f(z) = Zanzn
n=>0
belongs to AY.
12. It 1 < p <2 and
+00
f(2) = Zanzn
belongs to AP, then
{fi an|” < 400
(n+ 1)3-» '
n=0
13. If 1 < p <2 and the function
+0O0
f(z) — Zanzn
n=0
1s 1n AP, then the function
+00 a,
g(z) = nz:(:) (n—+ l)T/_}’_Z

belongs to the Hardy space H?.



14.

15.

16.
17.

18.

19.

20.
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If 2 < p < 400 and the function

+00
f(z) = Zanzn
n=>_
1s in H?, then the function
+00
g(2) =) (n+1)7a,"
n=0

belongs to A”.

Suppose 0 < p < 4+o¢ and f 1s analytic and bounded in [D. Then

] 27T |
him [ | f(DP dAy(2) = —-—/ | f(e'")|P dr.
) 21 Jo

¢——17 4

Suppose ¢ is analytic in D. Then ¢ AL C A} if and only if ¢ € H™.
Suppose ¢ 1s analytic in D. Show that ¢ B8 C B if and only if ¢ € H* and

sup { (1= 12121/ (@) log[1/(1 = 2)] : € D} < +oc
Formulate and prove a similar result for the little Bloch space. See [134].

Recall that K,(z, w) 1s the reproducing kernel for the weighted Bergman
space A-. Show that

Ko (z, w))* < Ko(z, 2) Ko(w, w)

for all z and w 1in D, and that

N N
> D cickK(zj u) =0

i=1k=1

forallcy,... ,ecyinCandall zy,...,zy InD.

Let X be a linear space of analytic functions in [D. Suppose there exists a
complete seminorm || - || on X such that:

(1) ||foel =I|lf|| forany f € X and any Mobius map ¢ of the disk.
(2) Point evaluations are bounded linear functionals on X.

Then X C B. See [104].

Let X be a linear space of analytic functions in [D. Suppose there exists a
complete semi-inner product (-, -) on X such that:

(1) (fop,gop) = (f, g) forall f, g in X and any Mobius map ¢ of the
disk.

(2) Point evaluations are bounded linear functionals on X.

Then X = B> (See Exercise 9). Note that B3 is usually called the Dirichlet
space and frequently denoted by D. See [11].
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21.

22.
23.

24.

23.

26.

27.

23.

29.

30.
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Show that there exist infinite Blaschke products in the hittle Bloch space.
See [23].

If f € AP and ¢ : D — D is analytic, then f o ¢ € AP. See [135].

ForO0 < p < 4+o0and —1 < o < 400, define

dpo(z,w)y =sup{|f(@)— fWI: I fllpa=<1}, zweD.
Show that

. dpo(w,2)
lim 22~ >
w— 7 lw — ZI

for each z € D. See [137].

=sup{|f' @ : I fllpa <1},

There exist functions in the little Bloch space whose Taylor series do not
converge 1n norm.

Let B consist of analytic functions f in D such that f” € A'. Show that
f € By if and only if there exists a sequence {c,}, in I! and a sequence

{an}, 1n D such that

+ 00 a, — z
f(z):ZCn —, z € D.
n=0 I —anz

Show that the Bergman projection P maps the space L!'(D, dA) onto Bj,
where dA 1s as 1n Exercise 9.

Show that for f € H(D) and 1 < p < 400, we have f € B, 1f and only 1if
[ | f(z) = f(w)]”
D

1 Zw|4 dA(2) dA(w) < +o0.
) _

See [135].

Foreachl < p < +o00oand —1 < a < +00, there exists a positive constant
C such that

[fllp.a < ClRe fllp.aq
forall f € A, with £(0) =

Foreach |l < p < 4+ and —1 < o < 400, there exists a positive constant
C such that

/ 1(2)|” dAg(z) < C[ u(2)|” dAqg(2)
) )

for all harmonic functions u« in D, where u is the harmonic conjugate of u
with u (0) = 0.

Solve the extremal problem

inf {ll fllpa : f €AE, f(w)=1},

where w 1s any point in [D.
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31. Try to extend Proposition 1.11 to the case 0 < p < 1.



2

The Berezin Transform

In this chapter we consider an analogue of the Poisson transform in the context of
Bergman spaces, called the Berezin transform. We show that its fixed points are
precisely the harmonic functions. We introduce a space of BMO type on the disk,
the analytic part of which 1s the Bloch space, and characterize this space in terms
of the Berezin transform.

2.1 Algebraic Properties

Recall that one way to obtain the Poisson kernel is to start out with a harmonic
function 4 in D that is continuous up to the boundary and apply the mean value
property to get

2T

1 27 |
h(0) = ——-—[ h(e'l)dr.
0

Replace h by h o ¢,, where ¢, is the Mobius map 1nterchanging O and z,

Z — W
QOZ(w): Ty wEID)')
1l — zw

and make a change of vanables. Then

2w o 11— ze |2 |
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This 1s the Poisson formula for harmonic functions. The integral kernel

1 — lzl2

Pl )= ——
( ) 1 — zeit|2

1s the Poisson kernel, and the transform
l 27T | .
f e LT, dr) — 57?]0 P(e', 2) f(e'") dt

1s the Poisson transform.

Now, let us start out with a bounded harmonic function # in ID and apply the
area version of the mean value property

n0) = / n(w)dA(w).
D

Again replace h by h o ¢, and make a change of variables. We get
1 — |z 2N\2
h(z) = [ '(——'—l—.!_—)q"h(w)dA(w), z € D.
D |l —zw]

By a simple limit argument, we see that the formula above also holds for every
harmonic function 4 in L' (D, dA).

For every function f € L! (D, dA), we define

(1 — |z]%)*
p |1 —zwl|*

Bf(z) = f(w)dA(w), zeD.

The operator B will be called the Berezin transform.

Actually, we shall need to use a family of Berezin type operators. Recall that
fora > —1, we have

dAy(z) = (@ + (1 — |2]9)* dA(2).

Suppose A 1s a bounded harmonic function on D. The mean value property together
with the rotation invariance of d A, implies that

h(0) = (o + 1)[Dh(w)(l — lez)a dA(w).

Replacing & by & o ¢, and making a change of variables, we get

,)
— [219)* (1 — |w]?)®
I | — Z'ﬂ)"|4+2a

1
h(z) = (a + 1)] ¢ h(w)dA(w), ze€D.
)

Thus, for f € LY(D, dA,) we write

2]2)%F (1 — Jw|?)®

1 w2 f(w)dA(w), zeD.

B, f(2) = (@ + 1)[ 0=
)

A change of variables shows that we also have

B, f(2) = []D)f o p,(w)dAy(w), z €D,
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forevery f € L'(D, dA,). Note that By = B.

PROPOSITION 2.1 Suppose —1 < a < 400 and ¢ is a Mobius map of the disk.
Then

(Baf) o =By(f o @)
forevery f € LY(DD,dA,).

Proof. For every z € D, the MoOb1ius map ¢, ;) o ¢ o ¢, fixes the origin. Thus,
there exists a unimodular number ¢ (depending on z) such that

Ppiz) CP o (w) =Cfw, thatis, @ o@;(w) = Yy, (w),

for all w € D. It follows that

B.(fop)z) = f fopop(w)dAy(w)

— [)fo¢w(z)(§w)dAa(w)
L
— (Baf) (QO(Z))

In the last equality above, we used the rotation invariance of dA, . N

Since dA, 1s a probability measure for —1 < «¢ < 400, the operator B, is
clearly bounded on L°°(ID). Actually, ||By flloo < l| flloo forall —1 < a < +ox.

PROPOSITION 2.2 Suppose —1 < a < +00, 1 < p < 400, and that B € R.
Then By is bounded on LP (D, dAg) ifand only if —(¢+2)p < B+1 < (¢ + 1)p.

Proof. This is a direct consequence of Theorem 1.9. _

Fix an @, —1 < o < +oc. By Proposition 2.2, the operator Bg is bounded
on LI(ID), dAq) if and only 1f B > «. Actually, Bg 1s uniformly bounded on
L'(D,dA,) as B — +o0c. To see this, first use Fubini’s theorem to obtain

/ Bg f(2)|dAx(2) < (B + 1)[ lf(w)I/ wdA (z)dAg(w)
p " T D y |1 —zw|?p+4 R

Making the change of vaniables z — ¢,,(z) in the inner integral, we get

(1 - |Z|2)2+a+ﬁ

f Bsf(2)|dAq(z) < (B+ 1) f f)l | o dA(2) dAg ().
|1 — zw|*“

)

Note that for all z, w € D, we have
] ] 1 4+ |z 2

— < — << .
[1—zw|] — 11—z} 1—1z]> = 1—|z|?

It follows that for 8 > o + 1,

f 1Bg f(2)|dAy(2) < C[ lf(w)ldAa(w)/(l — 1z1H)P @D g A(2),
) ) )




2.1. Algebraic Properties 31

where C = 49t2(8 + 1); that is,

a+2(ﬁ+)
,B——a'——l

j By f(2)| dAo(z) < [) F(w)) d A (w).
L

This clearly shows that Bg 1s uniformly bounded on L'(D,dA,) when B — +oc.

PROPOSITION 2.3 Suppose —1 < a < +oc and f € C(D). Then we have
B.f € C(D)and f — By f € Co(DD).

Proof. We use the formula

B, (2) = [Df oo (wydAg(w),  zeD.

Since @,(w) — zop as z — zo € T, the dominated convergence theorem shows
that By f(2) — f(z0) whenever z — zo € T. This shows that f — B, f € Co(D).
In particular, we have B, f € C(D). n

PROPOSITION24 If -1 < B < a < +oo, then B,Bg = BgB, on
LY(D, dAg).

Proof. By Proposition 2.2, the Operator B, is bounded on L!(DD, dAg). Thus,
BsB, f makes sense for every f e LY(D, dAg). Also, the operator Bg maps
LI(IDD d Ag) boundedly 1nto L'(D,dA,). Hence B «Bg f 1s well defined for f €
LY(D, dAg).

Let f € LY(D,dAg). To prove ByBgf = BgB, f it suffices to show —
according to Proposition 2.1 — that B,Bg f(0) = BgB, f (0). Now,

BaBﬁf(O)

/ Bg f(2)dAy(2)

o Br1 _ 1-12ya+B+2
] f(w)dA(w)[ (L= w0~ 2P — dA(2),

Il _ Zw|2ﬁ+4

where C = (o + 1)(B + 1). Making the change of vanables z — ¢,,(z) 1n the
inner integral, we find that « and B will switch positions, and hence ByBg f(0) =

BgB,, f(0). -

PROPOSITION 2.5 Let —1 <« < +ocand f € L'(D,dAy). Then Bsf — f
in L'(D,dAg) as B — +oc.

Proof. First, assume that f is continuous on the closed disk. Since dAg is a
probability measure, we have the formula

Bsf() —f(@)=(B+1) [D(l — [wI*)P(f o @z (w) — £(2)) dA(w).

Writing D as the union of a shghtly smaller disk D, of radius r € (0, 1) centered
at 0 and an annulus, estimating the integral over D, by the uniform continuity of
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f on I, and estimating the integral over D \ D, using the fact that f 1s bounded
and that

(B + l)[ (1—|z]1))P dA(z) — 0, p — 400,
N\D,

we easlly find that
Bs f(2) = f(2), z €D,

as B — +00. Since |Bg flloo < || flloo for every g, it follows from the dominated

convergence theorem that Bg f — f 1n L'(D,dA,) as B — +00. The general

case then follows from a simple limit areument, using the density of C(D) in
L' (D, dA,) and the uniform boundedness of the operators Bg on LY(D,dA,). =

PROPOSITION 2.6 For each a with —1 < a < 400, the operator B, is one-
to-one on the space L : (D,dA,).

Proof. Suppose f € L'(D,dA,) and B, f = 0. Let
w)dA,(w
[

3 (1 — Z-w-)2+a(1 _ -Z-w)2+a ’

Since

B, f(2)
(1 — lZ|2)2+a ’

we have F (z) = O throughout [, and hence

F(z) =

an+m

for all nonnegative integers n and m. Differentiating under the integral sign, we
find that

[ w w” f(w)dAy(w) =0
)

for all nonnegative integers n and m. This clearly implies that f = O. _

2.2 Harmonic Functions

Recall that if f 1s a harmonic function in L (D, dA), then Bf = /. In this section
we prove the converse, that is, the conditions f € L' (D, dA) and B f = f imply
that f 1s harmonic.

In dealing with harmonic functions on the unit disk, we find it more convenient
to use the invariant Laplacian A instead of the usual Laplacian A. We shall use

the operator
A 9° _1(3'—’- N 32)
- 9z07 4 \0ox?  9y? )’




2.2. Harmonic Functions 33

where z = x + iy, as the Laplacian (this is a quarter of the standard Laplacian).
This renormalization has the advantage that certain formula assume a particularly
attractive form; for instance, if f is a holomorphic function, then Al f |2 = |f ’[2.
The invariant Laplacian s defined by

Af(z) = (1 —1|z1)°Af(2).
As its name suggests, the invariant Laplacian A 1s Mobius invanant, namely,

A(f op)(2) = (Af)(e(2))

for every Mobius map ¢ of the disk. We may interpret A as the Laplace-Beltrami
operator on [, provided D 1s supplied with the Poincaré metric.

PROPOSITION 2.7 For —1 < a < 4+, the identity
AB, f = (@ + 1)(a +2) (Bg f — Bay1 f)
holds for every f € L'(D, dA,).

Proof. By the Mobius invariance of both B, and A, 1t suffices to show that

AB, f(0) = (¢ + D)(a + 2) By f(0) — By+1£(0))

holds for every f € LY(D,dA,). This follows from differentiating under the
integral sign and regrouping terms. _

In other words, for —1 < ¢ < +00, we have the operator identity

A
b= (1o )
(@ + 1)(a + 2)

The following conclusion is immediate.

COROLLARY 2.8 Suppose n is a positive integer, and set

k Z
Gn(Z):n(l“m), z € C.

k=1
Then B, = G, (A)B on LY(D, dA).
[et

+00 7
so=]1(1- )

k=1

It 1s clear that G is an entire function and that G,(z) — G(z) uniformly on
compact sets of C. It should not be surprising now to see that the function G plays
an important role in our analysis of the Berezin transform.

Throughout this section, we let

X ={welC: -1 < Rew < 2},

and

QR={ze€C: z=-w(l —w) forsomew € T}.
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By the open mapping theorem for analytic functions, £2 1s a connected open subset

of C.
PROPOSITION 29 [fz = —w (1 — w), then
SIn{T w)
(; —
= i —w

Furthermore, G(z) # 1 for z € Q2 \ {0}.
Proof. The k-th tactor in the product

T w(l — w)
G)=|] (1 +——-———-—--k(k+ 5 )

k=1

equals

[(1 4 %) e"w/k] [(1 4 ; w) e““‘“’)/"] {(1 + i—)_l el/k:| .

The desired formula for G then follows from the well-known identities

1 +00

4
— Y7 (1 -+ —) e /K
I'(z+ 1) 11_——.[1 k
and
['(DI'(l —2) = — .
SIN 7T Z

To show that G(z) # 1 for z € Q\ {0}, it suffices to show that the function

b - mw(l — w)
(w) = sin(Tw)

has ®(w) # 1 forw e X \ {0, 1}.
Observe that ® has the symmetry property

o(3+w)=2(5-v),

] mw(y? + !
CI)(——!—i’y):——(y )
2 cosh(my)

for all real y. Thus, it suffices to show that the only solution of ®(w) = 1 in the
strip —1 < Rew < %— 1s w = 0. We achieve this with the help of the Argument

Principle.

By an easy estimate, we can choose a positive number A such that | (w)| < 1
forall w = u + iv, where —1 < u < -12- and v 1s real with |v| > A. We now

consider the positively oriented contour y given by the following picture.

and that it has
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~1+iA 3 +iA
—1Hie
|
1 L
) 2
—— — —
—1=1¢&
| |
—1-iA  1-iA

We proceed to show that the image of the contour y, ®(y), winds around the
point 1 exactly once. We start from w = %— on y and move upwards. The curve
®(y) will then start at 7 /4 and move toward O along the real axis. When w makes
a left turn at -5— + 1 A and moves horizontally to the left, the curve ®(y) oscillates
in the half-plane to the left of the point 1. For w between —1 +iA and —1 + i¢,
we have

. /4 LD
P(—1+iv) = ——— [——31} + 1 (v° — 2)] .
sinh(r v)
This part of ®(y) meets the real axis to the left of the point 1 when (and only
when) v = +/2. So far, the image of y under ® has not reached the real axis to

the right of the point 1. Next, consider ®(w) for w on the little semicircle near the

point w = —1. An easy calculation shows that
P(w) = + Y(w),
(w) T (w)
where W(w) 1s analytic near w = —1. It follows that
it 2 it
O(—1+4+¢ce”’)=—-¢e " + O(¢).
£

This shows that if ¢ > 0 is small enough, then the curve

O(—1+ee!), —— <1<—

, ;5 =t=75,
Crosses the real axis near the point 2/¢; the winding number of ®(y) around 1
will not depend on the exact number of times the above curve crosses the real axis.
Finally, by the analysis above and the symmetry relation &(w) = $®(w), when
w moves downward from —1 — ¢i and comes back to the starting point =, the
image & (w) will not cross the real axis from the right-hand side of the point 1.

We conclude that the curve ®(y) winds around the point 1 exactly once. _
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We need the following facts about eigenfunctions of the invariant Laplacian
before we can prove our main result.

PROPOSITION 2.10 Suppose o and A are complex numbers related by A =
—a(l — «). Let X, be the eigenspace of A corresponding to the eigenvalue A. Let

(1 o lzl?.)a' [QJT d6
= — — c .
8ur(2) 27 o |1 —ze 0% ¢

Then we have:
(1) The function g, belongs to X.
(2) If f € X, and f is radial, then f = f(0)g,.

(3) The space X contains a nonzero function in L' (D, dA) ifand only ifa € ¥.

Proof. Let P(¢'?, 7) be the Poisson kernel. Then the function g, can be rewritten
as

27r

Part (1) now follows from differentiating under the integral sign and the fact that
P (€'Y, 7) is harmonic in z.

To prove (2), we let f(z) = g(\zlz) be a radial function 1n X;,. It is easy to
check that the function g(x), 0 < x < 1, 1s a solution to the following differential
equation:

2a(2) = : [2N [P(ew, z)]a de., z € D.

x(1l — x)zg"(x) + (1 — x)zg/(x) =Ag(x), O<x <.

The solution space of the above differential equation is two-dimensional, and we
can exhibit a basis for it. In fact, by (1), the function g (x) = g (./x) is a solution,
and an easy calculation shows that the function

£2(x) = 1) | g1<z)2’ 0<x <1,

1s also a solution. It is obvious that g1 and g5 are linearly independent. Thus, there
exist constants a and b such that g = a g1 + b g>. Since the functions ¢ and g, are
bounded near x = 0 and g, 1s unbounded near x = 0, we must have b = 0 and
hence g = ¢(0)g1,sothat f = f(0)g,.

To prove (3), let us assume that X; contains a nonzero function f € L' (D, dA).
By invariance, we can also assume that f(0) # O. It 1s easy to check that f € X,
implies that its radialization

i 1 [ i
f (Z)=27“T f(ze")dt, z € D,
O

also belongs to X,. By (2), we have f* = f(0)g,. This clearly implies that X
contains a nonzero function of L1(D, dA) if and only if go € LI(ID),dA). By
Theorem 1.7, the function g, isin L'(D,dA) ifand only if ¢ € . n
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We now prove the main result of the section.

THEOREM 2.11 Suppose f € L'(D,dA). Then f is harmonic if and only if
Bf = f.

Proof. Let M be the set of fixed points of B in L!(ID, dA). It is easy to see
that M is a closed subspace of L' (D, dA). We already know that every harmonic
function in L' (DD, dA) belongs to M. We proceed to show that every function in
M 1s harmonic.

By the integral tormula for the operator B, every function satisfying f = B f is
real-analytic 1n . In particular, we can apply the Laplacian to every function in
M. Let Ay be the restriction of A to M. By Proposition 2.7,

Amf =2(f =B1f), feM

Since B; 1s bounded on Ll(ID), dA), we see that Ay, maps M boundedly into
LY(D, dA). Moreover, since BB; = BB, we have

BAyf=2Bf—-BBf)=2(f —Bi1f)=Aum], feM

Thus A, maps M into M, and hence Ay 1s a bounded linear operator on the
Banach space M.
Recall from Corollary 2.8 that

B,f = Gn(A)Bf = Gu(Am)f, feM.

Since G, — G uniformly over compact subsets of C, and A »s is a bounded linear
operator on M, we have G, (Apy) — G(A ). This together with Proposition 2.5
shows that G(A ) f = f forevery f € M, making G (A js) the identity operator
on M.

Suppose A 1s an eigenvalue of A . By Proposition 2.10, we must have A € Q2.
Also, if f 1s a nonzero eigenfunction corresponding to A, then

f=GAMmMf=GCA)T.

It follows that G(A) = 1. By Proposition 2.9, we must then have A = 0. Thus, the
only eigenvalue of the operator A 1s O.
Recall that G(z) — | = zH(z), where H i1s an entire function with H(0) # O.

By the holomorphic functional calculus (see, for instance Rudin’s book [106]), we
have

O0=G(Am) -1 =H(Ay)Apm,

where [ is the identity operator on M. Since the only eigenvalue of A s is O, the
Spectral mapping theorem (see, for instance, [106, Theorem 10.33]) implies that
the only eigenvalue of H (A ) is H(0) # 0. In particular, H (A ) is one-to-one:
after all, if for some f € M, H(Ay) f = 0 holds, then f is an eigenvector for
(eigenvalue) 0, which is possible only for f = 0, as O fails to be an eigenvalue of

H(Ap). Now if f € M, then H(Ap)Apy f = 0. It follows that Ay, f = 0; in
other words, f 1s harmonic. »
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2.3 Carleson-Type Measures

Just as we can integrate the Poisson kernel against a measure on the circle, we can
also integrate the kernel of the Berezin transtorm against a measure on the disk.
More specifically, for a positive Borel measure p on [, we consider the function

du(w)
y |1 —zw|*

Bu(z) = (1 — |z]7)? z € D.

In this section we characterize those positive Borel measures i on [D such that
B 1s bounded. As a by-product we also characterize those measures p such that
Bu(z) > 0Oas|z| > 1.

Recall that

| 11 —zw| + |z — w]
Bz, w) = 5 log —————
2 11 —zw| — |z — w]
1s the Bergman metric on [D. Throughout this section, we fix some positive radius
0 < r < 400 and consider disks D(z, r) in the Bergman metric. The set

D(z,r)={welD: B(z,w) <r}, z €D,

1s called the hyperbolic disk of radius r about z. It 1s well known (see [49] or [135])
that D(z, r) is a Euclidean disk with Euclidean center (1 — s%)z/(1 — s2|z|*) and
Euclidean radius (1 — |z|2)s/(1 — 5%|z|%), where s = tanh r € (0, 1).

Let |D(z, r)|4 denote the normalized area, or the d A-measure, of D(z, r); the
subscript indicates precisely that dA is used. Then |D(z,r)|4 ~ (1 — |z|%)? as Z
approaches the unit circle. The following lemma lists some additional properties
of the hyperbolic disks.

LEMMA 2.12 Let r, s, and R be positive numbers. Then there exists a positive
constant C such that for all z and w in D, we have

(1) C~ N1 —|z1®) < |1 — zw| < C (1 — |z|?) when Bz, w) <r.
(2) C7YD(z,r)|a < |D(w, s)|a < C|D(z,r)|s when B(z, w) < R.

Proof. If w € D(z,r), then w = @,(u) for some |u| < s, where s = tanhr. It
follows that
[ — IZE

| —zw = — :
< 1l — zu

This clearly implies (1). Since the condition B(z, w) < r is symmetric, (1) also
holds with the positions of z and w interchanged. In particular, we have 1 — |z|* ~

| — |Jw|?if B(z, w) < r. Thus
ID(z,r)a ~ (1 —|z15)* ~ (1 —|wl®)? ~ |D(w, 5)|4
for (z, w) < R. .
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LEMMA 2.13 Fixr, 0 < r < 400. There exists a positive integer N and a
sequence {an tn in D such that:

(1) The disk D is covered by {D(a,, r)}n.
(2) Every point in D belongs to at most N sets in {D(ap, 2r)}n.

(3) If n # m, then B(an, am) = r/2.

Proof. It is easy to construct a sequence {a, }, 1n D satisfying conditions (1) and
(3). We show that (2) has to hold, too. In fact, if we let N be the smallest integer
such that D(0, 2r) can be covered by N hyperbolic disks of radius r/4, then by
Modbius invariance of the Bereman metric every hyperbolic disk of radius 2r can
be covered by N hyperbolic disks of radius r /4. Now, 1t a point z in D belongs to
N + 1 disks D(ay,,2r),1 <k <N+ 1,thena,, € D(z,2r)forl <k < N+ 1.
Let D(zx,r/4),1 <k < N, be acover of D(z, 2r). Then at least one of the disks
D(zx, r/4) contains two points from a,,, 1 < k < N 4+ 1. Two such points will
have hyperbolic distance less than r /2, a contradiction to (3). B

In connection with the above lemma, we mention that a sequence {a;} ; of points
in D is said to be separated (or uniformly discrete) provided that

0 < inf{ﬁ(aj,ak) . ] F k}.

LEMMA 2.14 Fixanr, O < r < +00. Then there exists a positive constant
C = C(r) such that

C
P —— PdA D,
[/ (@)]7 =< DGz [D(“) |/ (w) (w), 2 €

holds for all f analytic inD and all 0 < p < +oc.

Proof. Recall that D(0, r) 1s a Euclidean disk centered at the origin. By the
subharmonicity of | f|?,

]
| fF(0)]7 < ———"—“—[ | f(w)|P dA(w).
D(0.r)

— DO, r)|a
Replace f by f o ¢, and make a change of variables. Then
1 (1— z]%)?
| f()]F < ———————-——/ | f(w)|P —— dA(w).
|IDO,r)la Jpiz.r 11— zwl*
The desired result then follows from Lemma 2.12. n

As a consequence of Lemmas 2.14 and 2.12, we obtain the following inequality:

(=P IF@F <C [ (1= wPy 2wl dAw).
D(z.r)
where f is analytic in D, s is real, and 0 < p,r < +oc, and C is a constant

depending on p, r, and s (but not on the function f and the point z € D).
We now prove the main result of this section.
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THEOREM 2.15 Fix0 < p,r < 400, and let i be a positive Borel measure on
D. Then the following are equivalent:

(1) The function Bu is bounded on .
(2) The function 11,(z) = u(D(z,r))/ID(z,r)|a is bounded on .
(3) The Bergman space AP is boundedly contained in L¥ (D, d ).

Proof. Recall that

(1 — |z|*)?

¢ (1~ lzf%)’
) Il — Z_ﬂ)_|4

du(w) > f = dp(w).
D

r) |1 —zwl?

Bu(z) =

That (1) implies (2) now follows from (1) of Lemma 2.12 and the fact that
(D(z, r)|4 is comparable to (1 — |z]%)°.
To see that (3) implies (1), assume that there exists a constant C > 0O such that

[D Fw)IP du(z) < C f) Fw)I? dAGw)

forall f € AP.Fix z € D and let

Then we obtain Bu(z) < C.

[t remains to show that (2) implies (3). Thus, we assume there exists a positive
constant Cy such that u(D(z,r)) < C1|D(z,r)|4 for all z € D. Pick a sequence
{an }» 1n D satisfying the conditions in Lemma 2.13. For f € AP, we have

+00
f f@IPdu(z) < Z/ f (@) dp(z)
) n=—1 D(ay.r)

+00
< ) u(D(an,r))sup{|f(2)|” : z € D(ay, )}
n=1

By Lemmas 2.14 and 2.12, there exists a positive constant C» such that

CH
sup{| f(2)|¥ : z € D(ap,r)} < - f | f(2)]F dA(2)
| D(an,r)la D(a, .2r)

foralln = 1,2, 3,....1Itfollows that

+0O0
[ f(D)IF du(z) < C1C2 Z[ |17 dA(2).
) n=1 D((ln.Zr)

Since every point in D belongs to at most N of the sets D(a,. 2r), we conclude
that

fle(z)lpdu(z) < ClCszle(z)lpdA(z)
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forevery f € AP. n

Note that if a positive measure u satisfies any one of the three conditions in the
theorem, then 1 must be finite. The following 1s the “little oh™ version of the above
theorem.

THEOREM 2.16 Fix1 < p < +ocand0 < r < +00. Let i be a positive Borel
measure on D. Then the following conditions are equivalent:

(1) The function Bu is in Co(ID).
(2) The function i, is in Co(D).

(3) AP Cc LP(D, du) and the inclusion map is compact.

Proof. That (1) implies (2) follows from the estimate in the first paragraph ot
the proof of the previous theorem.
To prove (3) implies (1), recall that

Bu(z) = [D | fz(w)]? du(w), z €D,

where

1,12 4/p
f(w) = [—l——-_l—.z-l-—] . z,weD.

(1 — Zw)?

[tis easy to check that f, — Oweaklyin A” as |z| — 17.Thus, the compactness of
the inclusion map from A” into LP (D, d ) implies that Bu(z) — Oas |z] — 1.
To prove (2) implies (3), let us assume that i1, (z) — Oas|z] = 17 and f,, = O
weakly in AP as n — +00. We must show that f, — 0 in norm in LP(ID, d )
as n — +oc. Let {a,}, be the sequence from Lemma 2.13. It i1s easy to see that
la,] = 1~ asn — +oc. Given ¢ > 0, we can find a positive integer Ng such
that u(D(a,, r))/|D(a,,r)|la < ¢ forall n > Np. Since f,, — 0 weakly in A? as
n — +00, we can find a positive constant C such that || f,]|, < C forall n > 1;
see Exercise 1 of Chapter 1. The desired result now follows from the inequality

L | fi(@)P dp(z) < Z/D | fe ()P du(z).

(ap.r)

In fact, we can break the sum above into two parts; the first partis for 1 < n < Ny
and the second part for n > Ny. The first part can be made arbitrarily small by
choosing k sufficiently large, because fy — O weakly in A” impliesthat f;(z) — O
uniformly over compact sets. By the technique used in the proof of the previous

theorem, the second part here can be shown to be less than a constant (independent
of &) times €. We omit the details of this elementary ¢-N argument. |
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2.4 BMUO in the Bergman Metric

A well-known characterization of BMO on the unit circle 1s Garsia’s lemma (see
149]), which says that a function f in L? of the circle belongs to BMO of the circle
1f and only if the function

| | 2

| 2 _ . -
P(e", 2) f(e't) di]

27T | o, 1
Z > ——'[ P(e'", 2)|f(e'")|"dr — |
O

27T 5_7; 0

is bounded, where P(¢'!, 7) is the Poisson kernel at z. A similar result also holds
for tunctions in VMO of the circle. The purpose of this section is to develop this

theory in the Bergman metric.
Recall that for 0 < r < +oc¢ and z € D, the set D(z, r) is the hyperbolic disk

with hyperbolic center z and hyperbolic radius r. Also, | D(z, r)| 4 1s the Euclidean
area of D(z, r) divided by 7. R

For a locally integrable function f on D, we define the averaging function f,
as follows:

r(2) = f(w)dA(w), zeD.

|D(z,r)iA /;)(z.r)

[t f 1s locally square-integrable, then we define the mean oscillation of f at z in
the Bergman metric as

1

P 2
MO, (f)(z) = [ fD ( )If(w) - 7@ dA(w)] .

1D(z,r)|A

Let BMO, = BMO, (D) denote the space of all locally square-integrable functions
f such that

I fllr =sup{MO,(f)(z) : z € D} < +o0x0.

The main result of this section is that the space BMO, is independent of r and can
be described 1n terms of the Berezin transform.

LEMMA 217 Supposer and s are positive numbers and B is the Bergman metric
on ). Then the following conditions on a function f defined on D are equivalent.

(1) M, = sup{| f(z) — f(w)]: Bz, w) < r} < +o0.
(2) My = sup{|f(z) — f(w)] : B(z, w) < s} < +00.

(3) 1f(z2) — f(w)| < C(B(z,w) + 1) for some positive constant C and all
z, w € D.

Proof. Assume r < s. Then M, < M;, and hence (2) implies (1). It 1s clear

that (3) implies (2). To prove the remaining implication, we fix two points z and w

in D with B(z, w) > r; the desired inequality is obvious if B(z, w) < r. Let a(?),
0 <t < 1, be the geodesic from z to w in the hyperbolic metric. Let N be the



2.4. BMO 1n the Bergman Metric 43

smallest integer greater than or equal to (z, w)/r. Forty = k/N,0 <k < N —1,
we have

B(z, w)

Bla(ty), altys1)) = ¥

<r.

[t follows that

N —1
f(@) = f)l < )| fla) — flals)] < N M,.
k=1

By the choice of N, we have

N < 'B(Z;w) + 1 s%(ﬁ(z,w)+l).
Thus,
2M,
1 f(2) = f(w)] < n (B(z, w) + 1)
forall B(z, w) > r. »

The Bergman metric grows logarithmically:

| 4+ |z
| —z|

[t follows that a Borel measurable function f which satisfies any of the three equiv-
alent conditions of Lemma 2.17 1s in L (ID, d A) tor all finite positive exponents
p.

We can now prove the main result of the section. For convenience, we introduce
for f € L*(D, dA) the following notation:

z € D.

1
,0) = = log
B(z,0) 5 1o

1
2

MO()(@) = |BUf D)@ - IBf ()P

It 1s easy to see that B(|f 2)(z) > |B I (2)|%, so that the above eXpression 1s
well-defined. In fact, we can write

“ dA(u)dA((v)

D[D (1 — u2)?(1 — v7)?

THEOREM 2.18 Suppose 0 < r < +00 and that the function f is locally
square-integrable in D. Then f € BMO, if and only if f € L*(D,dA) and the
Junction MO(f) is bounded on D.

; 1/2

Proof. By Lemma 2.12, we can choose a small constant o > 0 such that

ko (w)|* >
ID(z,7)|4

forall z e D and w € D(z, r), where

1 — |z]
K (w) = _"“""(1 — w.‘.Z_)"z“
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are the normalized reproducing kernels of A%. In view of the above formula for
MO( f), we have

,) ]
MO(H @ = 5 / | f ) — £ )Pk 0) Py ()12 dA ) dA()
D

which we compare with
5 ] -
MO, 2 _ 2 dA(u) dA
MO (NP = 2o [D B [D 10 = FO)PdAGW dAW

for z € D. By shrinking the domain of integration D to D(z, r), we obtain

MO(f)(z) = o MO,(f)(2), z e D.

Thus, the boundedness of the function MO(f) implies that f € BMO,.
Next, assume that f 1s in BMO,. Let r = 2s, and recall that f; 1s the averaging

function for f with parameter s. Write f = f1 + f2, where fi1(z) = fs(z) and
(z2) = f(2) — fs(z) Since the space of functions f in L*(ID, d A) with bounded

MO( f) 1s linear, 1t suffices to show that both f; and f> have this property.
First, using the 1dentity

fi(2) — fo(w) = [D( )[f(u) — fs(w)] dAu)

|D(z, 5)|A

and the Cauchy-Schwarz inequality we easily obtain

7:(2) — fs ()|’
]

U — — *dA(u)dA®).
< D(z.5) 2 1D(w.5)a [D(Z‘S) /D(w.s) | f(u) — f(v)|"dA(u) dA(v)

It B(z, w) <s, then

D(z,s) C D(z,r), D(w,s)C D(z,r),
and
|1D(w, s)|la ~ |D(2,8)|a ~ |D(z,r)|a:

see Lemma 2.12. Thus, there exists a positive constant C such that

fi@) — frw)|” <

2 = 2dA(u)dA
21D(z, r)|2A /D(z.r) /D(z.r) | f (u) — f(v)] (u) dA(v)

— C[MO,(f)(2))°

for all B(z, w) < s. Since MO, (f) is bounded, 1t follows from Lemma 2.17 that
there exists a positive constant Cy such that

7:(2) — fi(w)| < Ci (B(z, w) + 1)
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for all z and w 1n D. In particular, f; c L*(D,dA). Now,
2 [MO(f5)(2)]”
— /D fD F () — f) 1k, )1k, (V)|> dA(u)dA(v)

< ¢ ] ] (B, v) + D2k () 21k, ()2 d AGu)d A(v)
) JI)

— C%f /(,B(u, v) + D2 dAu) dA(v).
D JD

The last equality follows from a change of variables and the invariance of the

hyperbolic metric. The last integral above can easily be checked to be finite. Hence
the function MO( /) 1s bounded.

Second, we look at f» = f — fs. Then, by the triangle inequality,

(AR = [— — | -7 (w)lsz(w)]%
’ |1 D(z,5)|a D(z.s) S

l

] ~ 4 2
_ — 1 “dA
< [ID(Z,S)IA [D(Z‘S) | f(w) — f5(2)] (w)]

] R R : !
ID(7.5) 4 S — Js “dA .
T [lD(Z,s)IA /D(z.s) | /s(2) — fs(w)] (w)]

The last term 1s bounded 1n z because of an earlier estimate on f;. The term
preceding it 1s bounded, too, because f € BMO, and

MO;(f)(2) < C2MO,(f)(2), z € D,

which follows from Lemma 2.12 and the double-i1ntegral formula for MO, ( f) used
earlier in the proof. By Theorem 2.15, the function B(|f2|2) 1S bounded, which
obviously implies that f, € L*(D, dA) and that MO( f>) is bounded. m

It follows from Theorem 2.18 that the space BMO, does not depend on the
parameter r, 0 < r < 400 (but the norm changes with r, of course). Let us

write BMOy = BMOj (D) for the space BMO,, for any O < r < +oc. The new
notation signifies the independence of the parameter r; it also emphasizes the fact

that whether or not a function from L*(D,dA) belongs to BMO; is a boundary
property.
It 1s easy to check that BMOjy becomes a Banach space with the norm

|71 = [Bf(O)] + sup tMO(f)(z2) : z € D}.
If the term involving

Bf(O) = /Df(z)dA(Z)

Is removed, then what remains is only a seminorm. This seminorm is Mdbius
Invariant, although the norm above is not.
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Let VMO, be the space of locally square-integrable functions f in [D such that
MO, (f)(z) — Oas |z]| = 17. It s clear that VMO, 1s contained in BMO, .

THEOREM 2.19 A locally square-integrable function f in D belongs to VMO,
if and only if MO(f)(z) —> Oas|z] — 17.

Proof. The proof is similar to that of the previous theorem; we leave the details
to the interested reader. B

Again we let VMO, = VMO, (D) stand for the space VMO, for any r, 0 <
r < +o<. It 1s easy to check that VMOj 1s a closed subspace of BMOj and that
VMO, contains C(D).

THEOREM 2.20 Let H(ID) be the space of analytic functions in ID. Then
(1) BMOy N H(D) = B.
(2) VMO, N H(D) = By.

Proof. Since both BMO, and B are contained in L*(D, dA), we may begin
with a function f in A”. By the symmetry of D,

f1(0) = 2[D_u7(f(w) — f£(0)) dA(w).

Replacing f by f o ¢, and performing an obvious estimate, we get

(1 —1zI9)%|f @)* <4 [D | f o @ (w) — f(2)|* dA(w)

tor every z € D. Since B f = f for analytic f, we easily verify that

/D f o(w) — f(2)IPdAw) =B(|f1*)(z) — IBf(2)|*.

This shows that BMOy N H(D) C B.

On the other hand, if f € B, then by Theorem 1.15, there exists a positive
constant C such that | f(z) — f(w)|] < CB(z, w) for all z, w € ). This, together
with the integral formula for B(] f|?) — |Bf|* in the previous paragraph, then
shows that B C BMOy N H(D).

The proof of the identity VMO, N H (D) = By 1s similar. _

2.5 A Lipschitz Estimate

Let a(t) be a smooth curve in D. If s(#) 1s the arc length of a(¢) in the Bergman
metric, then

ds (1)

dr 1 —|a(@)?
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For a point a € D, we let I1, denote the rank-one orthogonal projection from A>
onto the one-dimensional subspace spanned by k,, where

| — |a|?

Ka(Z) = m,

z €D,

: : . . 9.
which 1s a unit vector in A<. In concrete terms,

Nof = (f. ka)ka = (1 = |a|®) f(a) ks,  a eD.

LEMMA 2.21 Let a(t) be a smooth curve in D, and let s(t) be the arc length of
«(t) in the Bergman metric. Then

d
i 7 I (1 — Mo (Z,';ka(r)) ,

where || - || is the norm in A% and I is the identity operator.

Proof. Since

4y YW@ e’ | 21 - je®))
dr T (1 — e (t)z)? (1 —a(t))3 |

a simple calculation gives

d —o/(1)a(t) + a(t)o! (t)
o) | 57kad —
(1) (dt ( )) (2) = 1 —am2?

and so

d 20’ (t) (z — a(t))
I —Il1, o (1 —e
( ") (d, <>) (z) = AR

By a change of variables we then obtain
F 2P

- 1eo) () = 220
dt (1 — Ja(2)]4)

which clearly implies the desired result. _

THEOREM 2.22 Let a(t) be a smooth curve in D, and let s(t) be the arc length
of «(t) in the Bergman metric. Then, for any f € BMOjy, we have

d ds
—Bf ()] < 23/2 MO(f) (@ ().

Proof. Recall that

Bf(a(t)) = [) f(w) Ika(t)(w)lz dA(w).
L
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Differentiation under the integral sign gives

d d
— B f(a(t)) = 2[ f(w)Re [(—“ka(z)(w)) ka(r)(w)] dA(w).
dt ) dt

Also, differentiation of the identity (ky(r), k(1)) = 1 glves

d
Re (E;ka(t)’ ka(t)) = (.

Using this and the formula

d d
na(!) E;ka(r) — E;ka(l)a ka(r) ka(r),

d
Re |:na(t) (d a(r)) (w) ka(t)(w):l

a d
E;Bf(a(t)) — 2/}) f(w) Re [(1 — na(z‘)) (d a(z)) (IU) ka(t)(w)} dA(w)

we then obtain

[t follows that

On the other hand,

d
/D (1 — Ha(:)) (g‘;ka(r)) (w) kgy(w) dA(w) =0

by the definition of Ily(;). Theretore, the derivative dB f (x(z))/dt 1s equal to

d _
2[) (f(w) = Bf(a(r))) Re [(1 — He@)) (dt a(z)) (w) ka(r)(w)] dA(w),

and hence |dB f (x(t))/dt| 1s less than or equal to

d
2]@ f(w) — Bf(a()) Ika(t)(w)l I(I — Ig()) (dt a(r)) (w)| dA(w).

The desired result now follows from Lemma 2.21 and an application of the Cauchy-
Schwarz inequality. B

COROLLARY 2.23 For f € BMOjy, we have
Bf(z) — Bf(w)| <2v2| fllsmo B(z, w)

for all z and w in D, where

| fllIBMO = sup {(MO(f)(z) : z € D}.
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Proof. Fix zand win D and let ¢(¢), 0 <t < 1, be the geodesic from z to w
in the Bergman metric. Then, by the above theorem,

L d
Bf(z) —Bf(w)] = I/ E-Bf(a(t))dt
0 [

|

]
< 2\/5[ MO( ) (a(?)) ff-dz
0 dt

L d
< 22 ”f”BMO/O E::_dt = 2v2 | fllsmo B(z, w),

as claimed. -

2.6 Notes

The Berezin transtorm was introduced by Berezin in [17] and [18]. Most applica-
tions of the Berezin transtorm so tar have been 1n the study of Hankel and Toeplitz
operators; see [ 135]. Section 2.1 1s elementary. All results in Section 2.2 are taken
from the paper [4]. The results of Section 2.3, 1n various forms, are due to Hast-
ings [54], Luecking [92], and Zhu [133]. The theory of BMO and VMO 1n the
Bergman metric, as presented in Sections 2.4 and 2.5, was begun by Zhu in his
thesis [132] and then developed by Békollé, Berger, Coburn, and Zhu in [15].

2.1 Exercises and Further Results

. If f € L'(D, dA) is subharmonic, then B f is subharmonic and f < B f on
D.

2. It f € L*(ID) and f has a nontangential limit L at some boundary point
€ T, then B f also has nontangential limit L at .

3. Find a real-valued function f &€ L (D, dA), strictly negative on a subset of
positive area, such that B f 1s strictly positive on .

4. Show that there exist two functions f and g in A% such that B(|f|2) <
B(|g|%) on D, but nevertheless

[D () p@)|"dA(z) > f} 2(2) p(2)|" dA(2)

holds for some polynomial p.

5. Show that the Berezin transform commutes with the invariant Laplacian on
the space C*(D).

6. If f is a bounded subharmonic function in D, then {B" f}, converges to a
harmonic function in D.

7. If f is continuous on D, then {B” f1n converges uniformly in D to the
harmonic extension of the boundary function f. See [42].
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10.
11.

12.

13.
14.

13.

16.

17.

2. The Berezin Transform

. If f 1s bounded and radial, then B f € Cy(D) if and only 1f

l

] —r

1
/ f(tydt — 0

asr — 17. See [89].
It f € L°(D), then Bf € Cy(D) if and only if

n/ f@)lz|*"dA(z) — 0O
D

asn — +ox.
For f(z) = —2log |zl on D, showthat Bf(z) =1 — 7],
If f e C?%(D), then

Bf(z) = F(z) — /

D)
where F 1s the harmonic extension of the boundary function of f.

If f e C*(D), then

f(z)==F(z)+/

)

11— 10.@P| Awfw)dAw),  zeD,

loglp-(w)| Awf(w)dAw),  zeD,

where F 1s the harmonic extension of the boundary function of f.
For f(z) =log[1/(1 — |z|?)] on D, show that Bf = f + 1.

Let 0 < p < +o¢. Characterize those functions ¢ € H® such that

o-/D f()IPdA(2) < /D 9(@) f()I" dA(2)

for all f € AP and some constant 0 > O (depending on ¢ and p but not on
). See [29].

Suppose 2 < p < +o¢ and that f 1s an analytic function on D. Show that
MO(f) € LP(D,dX) it and only 1f f € B, (the analytic Besov spaces).
See Exercise 9 in Chapter 1 for the definition of dA. See [135].

A bounded function ¢ on D is a pointwise multiplier of BMOj if and only
if MO(gp) log(1 — |z|*) is bounded in D. See [134].

Fix a sequence {z,}, in D. For t > 0, let A, be the operator on /? whose
matrix under the standard basis has

(1 — IZmlz)I/z(l — Ianz)I/z
(1 —zmzn)

as its (m, n) entry. For t > 1, A; 1s bounded on [ if and only if {z,}n, 1S
the union of finitely many separated sequences; fort = 1, A; 1s bounded on
I if and only if {z,}, is the union of finitely many (classical) interpolating
sequences. See [ 142].
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18. Show that the Bergman projection maps BMOj onto the Bloch space.
Similarly, the Bergman projection maps VMOj; onto the little Bloch space.

19. Fix -1 <a < +o0and 0 < p < +00. For a sequence A = {a,}, in D), let
R 4 be the operator that sends an analytic function f to the sequence

[(1 = 1anHETP fan)},.

Show that R4 is bounded from A to [P if and only if A is the union of
finitely many separated sequences. See [ 139].

20. If f € BMOj,, then the function
(1 —|z])|VBf(2)]

1s bounded on . Here, V stands for the gradient operator.
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AP -Inner Functions

In this chapter, we introduce the notion of A% -inner functions and prove a growth
estimate for them. The AZ4-inner functions are analogous to the classical inner
functions which play an important role in the factorization theory of the Hardy
spaces. Each A -inner function is extremal for a z-invariant subspace, and the
ones that arise from subspaces given by finitely many zeros are called finite zero
extremal functions (for « = 0, they are also called finite zero-divisors). In the
unweighted case @ = 0, we will prove the expansive multiplier property of A”-
inner functions, and obtain an “inner-outer’-type factorization of functions in A?.
In the process, we find that all singly generated invariant subspaces are generated
by 1ts extremal function. In the special case of p = 2 and ¢ = 0, we find an
analogue of the classical Carathéodory-Schur theorem: the closure of the finite
zero-divisors in the topology of uniform convergence on compact subsets are the
A*-subinner functions. In particular, all A2-inner functions are norm approximable
by finite zero-divisors.

3.1 AZ-Inner Functions

Classical inner functions in D play an important role in the theory of Hardy spaces.
Recall that a bounded analytic function ¢ in D is called inner if |@(z)| = 1 for
almost all z € T. This 1s clearly equivalent to

1 2T
7 /o ()P —1)Z" |dz] =0

27T
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for all nonnegative 1ntegers n; and the condition above 1s independent of p, 0 <
p < +oo. This motivates the following definition of inner functions for Bergman

spaces.

DEFINITION 3.1 A function ¢ in A is called an Ag-inner function if

]D(Iw(z)l" — 1)72"dAs(2) =0

for all nonnegative integers n.

It follows easily from the above definition that a function ¢ in A is an AL -inner
function 1f and only 1f

/D 0(2)]” q(z) dAy(2) = q(0)

for every polynomial g, and this condition is clearly equivalent to

/DIQO(Z)Iph(Z) dAq(z) = h(0),

where % is any bounded harmonic function in . In particular, every A% -inner

function is a unit vector in A% .
An obvious example of an Aj-inner function is a constant times a monomial.

In fact, forany n =0, 1, 2, ..., the function

is AL -inner. More examples of AP -<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>