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Introduction to the First Edition

These Notes aim at providing an introduction to the theory of linear algebraic
groups over fields. Their main objectives are to give some basic material over
arbitrary fields (Chap. I, II), and to discuss the structure of solvable and of
reductive groups over algebraically closed fields (Chap. 111, IV). To complete
the picture, they also include some rationality properties (§§15, 18) and some
results on groups over finite fields (§16) and over fields of characteristic
zero (§7).

Apart from some knowledge of Lie algebras, the main prerequisite for these
Notes 1s some familiarity with algebraic geometry. In fact, comparatively little
1s actually needed. Most of the notions and results frequently used in the Notes
are summarized, a few with proofs, in a preliminary Chapter AG. As a basic
reference, we take Mumford’s Notes [ 14], and have tried to be to some extent
self-contained from there. A few further results from algebraic geometry
needed on some specific occasions will be recalled (with references) where used.
The point of view adopted here 1s essentially the set theoretic one: varieties are
identified with their set of points over an algebraic closure of the groundfield
(endowed with the Zariski-topology), however with some traces of the scheme
point of view here and there.

These Notes are based on a course given at Columbia University in Spring,
1968,* at the suggestion of Hyman Bass. Except for Chap. V, added later,
Notes were written up by H. Bass, with some help from Michael Stein, and are
reproduced here with few changes or additions. He did this with marvelous
efficiency, often expanding or improving the oral presentation. In particular,
the emphasis on dual numbers in §3 in his, and he wrote up Chapter AG, of
which only a very brief survey had been given in the course. It is a pleasure to
thank him most warmly for his contributions, without which these Notes
would hardly have come into being at this time. I would also like to thank Miss
P. Murray for her careful and fast typing of the manuscript, and J.E.
Humphreys, J.S. Joel for their help in checking and proofreading it.

A. Borel
Princeton, February, 1969

*Lectures from May 7th on qualified as liberated class, under the sponsorship of the Students
Strike Committee. Space was generously made available on one occasion by the Umnion
Theological Seminary.






Introduction to the Second Edition

This 1s a revised and enlarged edition of the set of Notes: “Linear algebraic
groups” published by Benjamin in 1969. The added material pertains mainly
to rationality questions over arbitrary fields with, as a main goal, properties of
the rational points of isotropic reductive groups. Besides, a number of
corrections, additions and changes to the orniginal text have been made. In
particular:

§3 on Lie algebras has been revised.
§6 on quotient spaces contains a brief discussion of categorical quotients.

The existence of a quotient by finite groups has been added to §6, that of a
categorical quotient under the action of a torus to §3.

In §11, the orniginal proof of Chevalley’s normalizer theorem has been
replaced by an argument I found in 1973, (and is used in the books of
Humphreys and Springer).

In §14, some maltcrial on parabolic subgroups has been added.

§15, on split solvable groups now contains a proof of the existence ol a
rational point on any homogeneous space of a split solvable group, a theorem
of Rosenlicht’s proved 1n the first edition only for GL, and G,

§§19 to 24 are new. The first one shows that in a connected solvable k-group,
all Cartan k-subgroups are conjugate under G(k), a result also due to M.
Rosenlicht. §§20, 21 are devoted to the so-called relative theory for 1sotropic
reductive groups over a field k: Conjugacy theorems for minimal parabolic k-
subgroups, maximal k-split tori, existence of a Tits system on G(k), rationality
of the quotient of G by a parabolic k-subgroup and description of the closure of
a Bruhat cell. As a necessary complement, §22 discusses central 1sogenies.

§23 1s devoted to examples and describes the Tits systems of many classical
groups. Finally, §24 surveys without proofs some main results on classific-
ations and linear representations of semi-simple groups and, assuming Lie
theory, relates the Tits system on the real points of a reductive group to the
similar notions introduced much earlier by E. Cartan in a Lie theoretic
framework.

Many corrections have been made to the text of the first edition and
my thanks are due to J. Humphreys, F.D. Veldkamp, A.E. Zalesski and

V. Platonov who pointed out most of them.
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I am also grateful to Mutsumi Saito, T. Watanabe and especially G. Prasad,
who read a draft of the changes and additions and found an embarrassing
number of misprints and minor inaccuracies. I am also glad to acknowledge
help received in the proofreading from H.P. Kraft, who read parts of the proofs
with great care and came up with a depressing list of corrections, and from
D. Jabon.

The first edition has been out of print for many years and the question of a
reedition has been in the air for that much time. After Addison—Wesley had
acquired the rights to the Benjamin publications they decided not to proceed
with one and released the publication rights to me. I am grateful to Springer-
Verlag to have oflered over ten years ago to publish a reedition in which-

ever form I would want i1t and to several technical editors (starting with
W. Kaufmann-Bihler) and scientific editors for having periodically prodded

me into getting on with this project. I am solely to blame for the
procrastination.

In preparing the typescript for the second edition, use was made to the
extent possible of copies of the first one, whose typography was quite different
from the one present techniques allow one to produce. The insertions of
corrections, changes and additions, which came i1n successive ways, presented
serious problems in harmonization, pasting and cutting. I am grateful to Irene
Gaskill and Elly Gustafsson for having performed them with great skill.

I would also like to express my appreciation to Springer-Verlag for their
handling of the publication and their patience in taking care of my desiderata.

A. Borel
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Conventions and Notation

1. Throughout these Notes, k denotes a commutative field, K an

algebraically closed extension of k, k, (resp. k) the separable (resp. algebraic)
closure of k in K, and p is the characteristic of k. Sometimes, p also stands for

the chracteristic exponent of k, i.e. for one if char(k) =0, and p if char(k) =

p>0.
All rings are commutative, unless the contrary is specifically allowed, with

unit, and all ring homomorphisms and modules are unitary.

If A1s a nng, A* 1s the group of invertible elements of A.

Z denotes the ring of integers, @) (resp. ]R resp. ) the field of rational (resp.
real, resp. complex) numbers.

2. References. A reference to section (x.y) of Chapter AG 1s denoted by
(AG.x.y). In the subscquent chapters (x.y) refers to section (x.y) in one of them.

There are two bibliographies, one for Chapter AG, on p. 83, onc for
Chapters I to V, on p. 391.

References to original literature in Chapters I and V are usually collected 1n
bibliographical notes at the end of certain paragraphs. However, they do not
aim at completeness, and a result for which none is given need not be new.

3. Let Gbeagroup. If (X,)(1 £i<m)aresetsand f;:X;— G maps, then the
map
f:X, x...x X, — G defined by

(xls"'axn) —')fl(xl) """ fm(xm)a (xiEXi; lé lém),

1s often called the product map of the f/’s.
Let N, (1 £i £ n)be normal subgroups of G. The group G is an almost direct

product of the N/s if the product map of the inclusions N;—» G 1s a
homomorphism of the direct product N, x ... x N, onto G, with finite kernel.

If M, N are subgroups of G, then (M, N) denotes the subgroup of G
generated by the commutators (x,y) = x.y.x" 1.y~ ! (xeM, yeN).

4. If V 1s a k-variety, and k' an extension of k in K, then V(k') denotes the set
of points of V rational over k. kK'[V] is the k’-algebra of regular functions
defined over k" on V, and k'(V) the k’-algebra of rational functions defined over
kK on V. If W is a k-variety, and f:V— W a k-morphism, then the map
k[W]—-k[V] defined by ¢ = @ f is the comorphism associated to f and is
denoted f°.






Chapter AG

Background Material from
Algebraic Geometry

This chapter should be used only as a reference for the remaining ones. Its
purpose 1s to establish the language and conventions of algebraic geometry
used 1n these notes. The intention is to take, in so far as is practicable, the
point of view of Mumford’s chapter I. Thus our varieties are identified with
their points over a fixed algebraically closed field K (of any characteristic).
It 1s technically important for us, however, not to require (as does Mumford)
that varieties be irreducible.

For the most part deflinitions and thcorems are simply stated with
references and occasional indications of proofs. There are two notable
exceptions. We have given essentially complete treatments of the material
presented on rationality questions (i.e. field of definition), in sections 11-14,
and of the material on tangent spaces, in sections 15—-16. This seemed desirable
because of the lack of convenient references for these results (in the form
used here), and because of the important technical role both of these topics
play in the notes.

§1. Some Topological Notions
(Cf. [Class., exp. 1, no. 1].)

1.1 Irreducible components. A topological space X is said to be irreducible
if it is not empty and is not the union of two proper closed subsets. The
latter condition is equivalent to the requirement that each non-empty open
set be dense in X, or that each one be connected.

If Yis a subspace of a topological space X then is irreducible if and only
if its closure Y is irreducible. By Zorn’s lemma every irreducible subspace
of X is contained in a maximal one, and the preceding remark shows that
the maximal irreducible subspaces are closed. They are called the irreducible
components of X. Since the closure of a point is irreducible it lies in an
irreducible component; hence X is the union of its irreducible components.

If a subspace Y of X has only finitely many irreducible components, say
Y,,..., Y, then Y,,..., Y, are the irreducible components (without repetition)

of Y.
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1.2 Noetherian spaces. A topological space X is said to be quasi-compact
(“quasi-” because X 1s not assumed to be Hausdorll) if every open cover

has a finite subcover. If every open set in X is quasi-compact, or,
equivalently, if the open sets satisfy the maximum condition, then X is said
to be noetherian. It 1s easily seen that every subspace of a noetherian space
is noetherian.

Proposition. Let X be a noetherian space.

(a) X has only finitely many irreducible components, say X ,,..., X,

(b) An open set U in X is dense if and only if UNn X, # ¢ (1 £ < i < n.
(c) For each i, X;=X;— | ) (X;nX}) is open in X and U, = UX’ is an

j#1
open dense set in X whose irreducible and connected components are

X0 ., X
1’ > n
Part (a) follows from a standard “noetherian induction” argument.

Since X; 1s irreducible the set X=X — ( ) X j) 1s open 1n X and dense
J#Ei

in X;. Hence every open dense set U in X must meet X;. Conversely if U is

open and meets each X, then Un X, 1s dense in X;, so U contains each X,

and hence equals X. It follows, in particular, that U,={) X} is open,

dense. Since the X; are open, irreducible, and pairwise disjoint, they are
the irreducible and connected components of U..

1.3 Constructible sets. A subset Y of a topological space X is said to be
locally closed in X if Y is open in Y, or, equivalently, if Y is the intersection
of an open set with a closed set. The latter description makes 1t clear that the
intersection of two locally closed sets 1s locally closed. A constructible set is
a finite union of locally closed sets. The complement of a locally closed set
1s the union of an open set with a closed set, hence a constructible set. It
follows that the complement of a constructible set is constructible. Thus, the
constructible sets are a Boolean algebra (i.e. they are stable under finite
unions and intersections and under complementation) In fact they are the
Boolean algebra generated by the open and (or) closed sets.

If f:X—>X is a continuous map then f~! is a Boolean algebra
homomorphism carrying open and closed sets, respectively, in X’ to those
in X. Hence f ! carries locally closed and constructible sets, respectively in
X' to those in X.

Proposition. Let X be a noetherian space, and let Y be a constructible subset
of X. Then Y contains an open dense subset of Y.

Remark. Conversely, by a noetherian induction argument one can show that
If Y is a subset of X whose intersection with every irreducible closed subset
of X has the above property, then Y 1s constructible.
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Proof. Write Y = | ) L; with each L, locally closed. Then Y =| ) L;, so, if Y

is irreducible, Y = L, for some i. Moreover L,(< Y) is open in L;.
In the general case write Y =|) Y, where the Y; are the irreducible
j
components of Y. The latter are closed in Y and hence constructible in X.

Moreover the first case shows that Y; contains a dense open set in Y Since
the Y are the irreducible components of Y (see (AG.1.1)) 1t follows from

(AG.1. 2) that Y = UY; contains a dense open set 1n Y.

1.4 (Combinatorial) dimension. For a topological space X 1t 1s the supremum
of the lengths, n, of chains F,c F, < --- < F, of distinct irreducible closed

sets 1n X; it 1s denoted

dim X.
If xeX we write

dim, X

for the infimum of dim U where U varies over open neighborhoods of x.
It follows easily from the definitions and the properties of irreducible closed

sets that dim ¢ = — oo, that

dim X =supdim_JX,
xeX

and that x+—»dim_X 1s an upper semi-continuous function. Moreover, if X

has a finite number of irreducible components (e.g. if X 1s noetherian), say
Xi,...,X,, then dim X 1s the maximum of dim X (1 i< m).

§2. Some Facts from Field Theory

2.1 Base change for fields (cf. [C.-C., exp. 13-14]). We {ix a field extension
F of k. If k" 1s any field extension of k we shall write

Fo=kK®F.
k

This 1s a k’-algebra, but it 1s no longer a field, or even an integral domain,
in general. However, each of its prime ideals 1s minimal (i.e. there are no
inclusion relations between them) and their intersection is the ideal of
nilpotent elements in F,. (see (AG.3.3) below). We say a ring is reduced if its
ideal of nilpotent elements 1s zero.

Here are the basic possibilities:

(a) k" is separable algebraic over k: Then F,. 1s reduced, but it may have
more than one prime ideal.

(b) k' is algebraic and purely inseparable over k. Then F,. has a unique
prime ideal (consisting of nilpotent elements) but F,. need not be reduced.
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(c) k' is a purely transcendental extension of k: Then F .- 1s clearly an integral
domain.

2.2 Separable extensions. F i1s said to be separable over k if 1t satisfies the
following conditions, which are equivalent: We write p for the characteristic

exponent of k (=1 if char(k) = 0).

(1) F? and k are linearly disjoint over k”.
(2) F(kl/p) 1s reduced.
(3) F,. 1s reduced for all field extensions k' of k.

Suppose, for some extension L of k, that F,; is an integral domain, with
field of fractions (F;). Then F is separable over k<>(F,) is separable over L.
The implication = follows essentially from the associativity of tensor
products, using criterion (3). To prove the converse we embed a given
extension k' of k in a bigger one, k", containing L also. Since F,. < F,. it
sullices to show that F,. 1s reduced. But F,. = FL®I<” < (Fp),~ and the latter

1s reduced, by hypothesis.

2.3 Differential criteria. (See [N.B,,(a),§9],[Z.-S.,v.I, Ch.11,§17], or [C.-C,,
exp. 13].) A k-derivation D:F — F 1s a k-linear map such that

D(ab) = D(a)b + aD(b) for all a,beF.
The set of them,

Der, (F, F)
1S a vector space over F.

o

Theorem. Suppose F is a finitely generated extension of k. Put

n = tr deg ,(F)
and
m = dim Der,(F, F).

Then m = n, with equality if and only if F is separable over k.

Let D,,...,D, be a basis of Der,(F,F) and let a,,...,a,eF. Then F is
separable algebraic over k(a,,...,a,) if and only if det(Dfa;)) # 0.

If m = n then aset {a,,...,a,} as above is called a separating transcendence
basis.

2.4 Proposition. Let G be a group of automorphisms of a field F. Then F is
a separable extension of k = F¢, the fixed elements under G.

We shall prove that F and k'/? are linearly disjoint over k, i.e. that if
a,,...,a,ek'? are linearly independent over k then they are linearly
independent over F. The action of G extends uniquely to F!” and G acts
trivially on k''?. Suppose a,,...,a, are linearly dependent over F, but not
over k; we can assume n is minimal. Let a, + b,a, + ---+b,a,=0 be a
dependence relation. If some b;, say b, is not 1n k then 1t 1s moved by some
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geG. Subtracting a, + g(b,)a, + --- + g(b,)a, from the relation above we
obtain a shorter relation; contradiction.

2.5 On occasions, we shall need a generalization of 2.4. Let 4 be a reduced
noetherian algebra over k, denote by k(A) its ring of fractions (cf. 3.1, Ex. 1)
and let G be a group of automorphisms of A. The action then extends to k(A).
By Prop. 10 in [N.B.(b):1V, §2, no. 5], k(A) is uniquely a sum of fields K; then
necessarilly permuted by G. Let ¢; be the corresponding idempotents. Thus
1 =3 e; and the e;’s are permuted by G. If aeA® is non-divisor of zero in
A, then it is one in A. In fact we can write 1 =3 f; where f; is the sum of
idempotents ¢; forming an orbit of G; then we have f;-a # 0 and therefore
since g(e;-a) = g(e,) o, e, # 0 for all i’s. Therefore k(A%) embeds in k(A)°.

Proposition. We keep the previous notation. Then e; k(A)® = K¢, where G; is
the isotropy group of e,. If k(A)® = k(A®), then K is a separable extension of
e.k(A°). *

If ack(A)° then e;-a is fixed under G,. Conversely, if beK, is fixed under
G;, then the sum of the g(b), where g runs through a set of representatives
of G/G;, is an element of k(A)® whose image under e; is b. Then 2.4 shows
that K; is a separable extension of e;-k(4)°. The second assertion is then
obvious.

§3. Some Commutative Algebra

3.1 Localization [N.B,, (b)]. Let S be a multiplicative set in a ring A, 1.e. §
is not empty and s, teS=steS. Then we have the “localization” A[S ']

consisting of fractions a/s (ae A, seS), and the natural map A - A[S~ '] which
is universal among homomorphisms from A rendering the elements of §
invertible.

If M is an A-module we further have the localized A[S ™ ']-module M[S ~'],
consisting of fractions x/s(xeM, seS), which is naturally isomorphic to

A[S I M.
A

If xeM and seS then x/s=0 in M[S™ '] if and only if tx =0 for some
teS. It follows directly from this that, if M is finitely generated M[S™ '] =0
if and only if tM =0 for some teS, 1.e. if and only if Snann M # ¢, where
ann M 1s the annihilator of M 1n A.

The functor M+—>M[S~ '] from A-modules to A[S~']-modules is exact,
and 1t preserves tensors and Hom’s 1n the following sense: If M and N are

A-modules then the natural map (M@ N)[S'l]—»M[S"l) X N[S™']
A

A[S - 1]
is an isomorphism, and the natural map Hom (M, N)[S™']— Hom 4;5- 1
(M[S™ '], N[S™']) is an isomorphism if M is finitely presented.
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Examples. (1) Let S be the set of all non-divisors of zero in A. Then
A— A[S™ '] is injective, and the latter is called the full ring of fractions of
A. When A 1s an integral domain i1t is the field of fractions.

(2) If S ={f"|n =0} for some feA then we write A, or A[1/f], and M,
for the localizations.

(3) An 1deal P in A 1s prime if Sp=A — P is a multiplicative set. The
corresponding localizations are denoted 4, and M,. In this case A, has a
unique maximal ideal, PA4,, 1.e. A, is a local ring.

3.2 Local rings. Let A be a local ring with maximal ideal m1 and residue
class field k= A/m. Let M be a finitcly generated A-module.

(a) If mM =M then M =0.

For let x,,...,x, be a minimal set of generators of M, and suppose n > 0.
Write x; =Y a;x(a;em). Then (1 —a,;)x; = ) a;x;. But 1 —aq, is invertible,

i>1
SO X,,...,X, already generate M; contradiction.

(b) If x,,...,x,eM then they generate M if and only if they do so modulo
mM. Hence the minimal number of generators of M is dim, (M /mM).

This follows by applying (a) to M/N, where N 1s the submodule generated
by x4,...,X,.

(c) If M 1s projective then M is free.

We can write A"= M @ N, so that k" = (M/mM)® (N/mN). Lift a basis of
k" to A" so that 1t lies in MU N. The result is, by (b), a set of n generators
of A". These must clearly be a basis of A", e.g. because the associated matrix
has an invertible determinant. Hence M, being spanned by part of a basis

of A", 1s free.

3.3 Nil radical; reduced rings. The set of nilpotent elements in a ring A 1s
an 1deal denoted nil A. We call 4 reduced if nil A =(0).

If J 1s any 1deal the ideal \/} 1s defined by \/j/.] =nil(4/J). Thus nil
A = . /(0). Moreover, we have

\/5 = the intersection of all primes containing J.

If S is a multiplicative set then \ﬁ A[ST ] = \/ J-A[S™']. In particular
this implies that A is reduced if and only if the full ring of fractions of A is
reduced.

3.4 spec(A) [M, Ch.II, §1]. We let X =spec(A) be the set of all prime 1deals
in A, equipped with the Zariski topology, in which the closed sets are those
of the following form for some J < A:

V(J)={PeX|J < P}.

If Y<X we put I(Y)= ()P, and then V(I(Y)) is just the closure of Y.

PeY



AG.3 Some Commuiative Algcuia

Moreover, 1t J 1s an i1deal of A 1t follows from 3.3 that

I(V()=/J.
Thus closed sets correspond bijectively (with inclusions reversed) to 1deals J

for which J =\/j. It follows that if 4 1s noetherian then spec(A4) i1s a
noetherian space.

The map P+ {P} is a bijection from X to the set of irreducible closed sets
in X. Thus the irreducible components of X correpond to the minimal primes
in A. Moreover the (combinatorial) dimension of X (measured by chains of
irreducible closed sets) is called the (Krull) dimension of A, and it 1s denoted

dim A. Thus

dim A = dim X.

If feA and PeX one sometimes writes f(P) for the image of f in the
residue class field of A, (which is the field of fractions of A/P). With this

notation the complement of V(fA) 1s
X,={PeX|f(P)+#0].

Thas 1s called a principal open set. For any J we have V(J) = ﬂ V(f) so the

principal open sets are a base for the topology. fel
Suppose a,: A — B i1s a ring homomorphism. Then «, induces a continuous

mapa:Y = spec(B)— X, a(P)= o '(P). In fact o™ ' (V(J)) = V(a,(J)).

Examples. (1) If J is an ideal then 4 —» A/J induces a homeomorphism of
spec(A4/J) onto V(J) < X.

(2) If S is a multiplicative set then spec(A[S '])—spec(4) induces a
homeomorphism onto the set of Pe X such that Pn S = ¢.
(1) If feA then we obtain a homeomorphism spec(4,)— X ;.
(1) If PeX it follows that dim, X = dimspec(A4,)= (Krull)dim A,.

3.5 Support of a module. Let X =spec(A) where A is a noetherian ring, and
let M be a finitely generated A-module. Then it follows from 3.1 that

supp(M) = {P|Mp # 0}

1s the closed set V(ann M). In particular M =0 if and only if supp(M) = ¢.
Let f:L — M be a homomorphism of A-modules. Since localization is exact

it follows that the set of P where f, is an epimorphism is the (open)
complement of supp(coker f). Applying this to Hom (M, L)— Hom ,(M, M),
and using the fact that the Hom’s localize properly (see 3.1) we conclude
that the set U of PeX such that f, is a split epimorphism is open, and f is
a split epimorphism if and only if U = X.

Suppose f 1s surjective and L 1s free. Then we deduce from the last remark
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and 3.2(c) that:
U= {PeX|M,is a free Ap-module}

is open, and M is a projective A-module if and only if U = X.

3.6 Integral extensions ([N.B,, (b), Ch. 5] or [Z.-S., v. I, Ch. V]). Let Ac B
be rings. A beB is said to be integral over A if A[b] 1s a finitely generated
A-module, or, equivalently if b is a root of a monic polynomial with
coefficients in A. The set B’ of all elements of B integral over A is a subring,
called the integral closure of A in B. We say B is integral over A if B'=B.
We say A is integrally closed in B if B = A. We call A normal if A 1s reduced
and integrally closed in its full ring of fractions.

Suppose A = B < C are rings. Then C 1s integral over A if and only if C
and B are integral over B and A, respectively.

Suppose B i1s integral over A. Then spec(B)— spec(A) is surjective and
closed. If B 1s a finitely generated A-algebra then B 1s a finitely generated
A-module. If B is an integral domain then every non-zero ideal of B has
non-zero mtersection with A.

To see the latter let b" + a,_,b" "' + --- + a, = 0 be an integral equation of
minimal degree over A of some b #0in B. Thena, = —b(a,_,b" " *+ --- 4+ a,)e
bBn A. Moreover a, #0; otherwise we could reduce the degree of the

equation.

3.7 Noether normalization [M, Ch. 1, p. 4]. A k-algebra A 1s said to be affine
if 1t 1s finitely generated as a k-algebra. Such an A 1s a noetherian ring.

Theorem. Let R =k[y,,...,V,, ] be an affine integral domain over k whose field
of fractions, k(y,,...,¥,,), has transcendence degree n over k. Then there exist
elements x,,...,x,€R, which are algebraically independent over k, and such
that R is integral over the polynomial ring k[x,,...,x,]. If k(y{,...,¥,,) is
separable over k then x,,...,x, can be chosen to be a separating transcendence
basis of k(y,...,y,) over k.

Except for the last assertion this theorem is essentially identical in statement
and notation with that in Mumford, page 4. With the following modification,
the proof in Mumford gives also the last assertion as well.

First, choose y,,...,y,, so that the last n of them are a separating
transcendence basis. Next, choose the integers r,,...,r,, (as well as their
analogues at other stages of the induction) to be divisible by p, the
characteristic exponent of k. The proof in Mumford requires only that the
s be large and increase rapidly, so our additional restriction is harmless.

This done, the x,,..., x, produced by the proof will be congruent, modulo
p'" powers, to the last n of the yis. Thus each x; has the same image under
every k-derivation as the corresponding y (if p > 1, otherwise there is no
problem). It therefore follows that the x's, like the y’s, are a separating
transcendence basis (see (AG.2.3)).
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3.8 The Nullstellensatz [M, Ch.I]. Let A be an affine K-algebra, and let

X = max(A) be the subspace of maximal ideals in spec(A).
If e:A— K i1s a K-algebra homomorphism then ker(e)e X so we have a

natural map
¢:Mor, ,.(4,K)— X.

Theorem. (Nullstellensatz).

(1) o is bijective.
(2) X is dense in spec(A). Moreover F—F N X is a bijection from the set of
closed sets in spec(A) to the set of closed sets in X. Therefore the analogous

statement is valid for open sets also.

If xeX we shall write e, for the homomorphism A— K such that
x =ker(e,). If feA we shall also use the functional notation

| f(x) = e,(f)-

Thus each f €4 determines a function X — K. If f represents the zero function
then fel(X)= () x. It follows from part (2) that I(x) = I(spec(A)) = nil 4.

xeX

Thus, in general, the function on X associated with f determines f modulo
nil A. If A 1s reduced we can therefore view A as a ring of K-valued function
on X.

We shall use for X the same notational conventions introduced for spec(A).
For example, if feA then X, = {xeX| f(x) #0}. These principal open sets
are a base for the topology on X.

If M is an A-module we also write suppy(M) = {xeX|M, # 0}, or simply
supp(M) when the meaning is clear. In view of part (2) of the Nullstellensatz

all the remarks of 3.5 remain valid with X in place of spec(A).
The correspondence in (2) also matches irreducible closed sets, clearly, and

hence irreducible components. If xe X, then dim, X = dim_spec(A4) =dim A,..
Moreover dim X = dim spec(A).

3.9 Regular local rings [Z.-S., v. 11, Ch. VIII, §11]. Let A be a noetherian
local ring with maximal ideal m and residue class field k = A/m. Then the
minimal number of generators of mt is (see 3.2) the dimension over k of m/m?.

It 1s a basic fact that
dim, (m/m?) > dim A,

where dim A is defined as in 3.4. When this inequality is an equality the local
ring A 1s said to be regular.
Regularity has rather strong consequences for A, for example the fact that

A is then a unique factorization domain.

We shall see in AG.17 that, when A is the local ring of a point x on a
variety V, then regularity of A means that x is a simple point; hence the
importance of the notion. A minimal set of generators of m then gives the
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right number of local parameters at x on ¥, and m/m? is the cotangent space
(see AG.16) of V at x.

§4. Sheaves
M, Ch. 1, §4]

4.1 Presheaves. Let X be a topological space. The open sets in X are the
objects of a category, top(X), whose morphisms are inclusions. If C is a
category then a C-valued presheaf on X is a contravariant functor U F(U)
from top(X) to C. Thus, whenever V < U are open sets in X we have a

C-morphism
res, : F(U)— F(V),

sometimes called “restriction.” A morphism ¢:F — F’ of presheaves is just a
morphism of functors. Thus it consists of morphisms ¢:F(U)— F'(U)
rendering the diagrams

F(U) v, F'(U)

;T

F(V) v F(V)
commutative.
Suppose C is a category of “sets with structure,” like groups, rings,

modules,.... Then we say F is a presheaf of groups, rings, modules,...,
respectively, on X. If xe X then

F_,=1ndlim F(U) (U nbhd. of x)

1s called the stalk of F over x.
If U 1s open in X then top(U) is a subcategory of top(X), to which we can
restrict a presheaf F on X. The resulting presheaf on U is denoted (U, F|U).

4.2 Sheaves. Let F be a C-valued presheaf, on X, where C is some category
of “sets with structure.” Then F is called a sheaf if it satisfies the following
“shealaxiom™: Given an opencover(U,),.; of an openset U in X, the sequence

F(U) [T FU) 2] FUnU,)

of sets 1s exact.

Explanation: “Exact” means that « induces a bijection from F(U) to the
set of elements on which f and y agree. Thus, if F is a presheaf of abelian
groups, for example, exactness means that « is the kernel of (8 — ).

The map a 1s induced by the restrictions F(U)— F(U;)(iel). Similarly, the
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restrictions F(U,;) - F(U;n U;)(jel)induce F(U;)- | F(U;nU;). Taking the
J

product of these over iel we obtain fi. The mapy 1s obtained similarly,
starting from F(U;)— F(U;nU;) to obtain F(U;)—|] F(U;nU)).

Explicitly, the sheaf axiom says that, given s,eF(U;) such that
s\ U;inU;=s;JU;nU,for all i, jel (we write s|V for res;(s)) then there is a
unique se F(U) such that s|U; =s, for all iel.

Example. Let F(U) be the ring of continuous real valued functions on U.
Then, with respect to restriction of functions, F is clearly a sheaf (of
commutative rings).

4.3 Sheafification. Let F be a C-valued presheaf on X, where C is some
category of “sets with structure.” Then there i1s a sheaf, F’, called the
“sheafification” of F, or the sheaf associated with F,and a morphism f:F — F’
through which all morphisms from F into sheaves factor uniquely. In other
words the map

Mor(F’,G)— Mor(F, G)

induced by f is bijective whenever G i1s a sheal.
Roughly speaking, F’ can be constructed in two steps. First define F,(U)
to be F(U) modulo the equivalence relation which relates s and t if their

restrictions agree on some open cover of U. Then form F' from F, by “adding”
to F,(U) all elements obtainable from compatible local data on some covering

of U. This process makes sense thanks to step 1.
If xeX the morphism of stalks F, — F’_1s bijective.
Presheaves of abelian groups or modules form an abelian category, with

the obvious notions of kernel, cokernel, exact sequence, etc. Thus,if f:F— G
iIs a morphism of presheaves then (ker f)(U)=ker(F(U)- G(U)), and
similarly for coker(f). If F and G are sheaves then ker(f) is also a sheaf. On
the othe hand coker(f) need not be a sheaf. The cokernel of f in the category
of sheaves 1s the sheafification of the presheaf cokernel.

One can show that the category of sheaves of abelian groups is abelhan.
A sequence F — G — H of sheaves is exact if and only if F, - G, — H_ 1s exact

for all xeX.

§5. Affine K-Schemes; Prevarieties

5.1 A K-spaceis a topological space X together with a sheaf @, of K-algebras
on X whose stalks are local rings. If xe X we write 0y , for the stalk over
x, or simply @, if X is clear from the context. Its maximal ideal is denoted
m_, and its residue class field by K(x). One often writes X in place of (X, O)
if this leads to no confusion.
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A morphism (Y, 0,) = (X, @) of K-spaces consists of a continuous function
a:Y — X together with K-algebra homomorphisms

‘Ig:@x(U)“"’ Oy(V)

whenever U < X and V < Y are open sets such that a(V) < U. These maps
are required to be compatible with the respective restriction homomorphisms
in Oy and O,. For yeY we can pass to the limit over neighborhoods V of
y and U of x = f(y) to deduce a homomorphism a,:0,— O,. It 1s further
required of a morphism that this always be a “local homomorphism,” Le.

that o (m,) = m,.

5.2 The affine K-scheme specy(A). An affine K-algebra A is one which if
finitely generated as an algebra. For such an algebra the subspace X = max(A4)
of maximal ideals in spec(A4) will be denoted

specy(A).

Recall from the Nullstellensatz (AG. 3.8) that there is a canonical bijection
x—ker(e. )

X =specg(A) onto Hom,_, (4, K).
Moreover we adopt the functional notation

J(x)=elf) (xeX, fed).

The resulting function f: X — K (for f € A) determines f modulo the nil radical
of A (see AG.3.8)) so, if 4 is reduced, we can thus identify 4 with a ring of
K-valued functions on X.

We now introduce the K-space (X, A), where A is the sheaf associated to
the presheaf U+ A[S(U)™']. Here, for U open in X, S(U) is the set of feA
vanishing nowhere on U. It is easy to see that the stalk of 4 at xeX is the
local ring A_, so that (X, A) is a K-space. The symbol specy(A4) will be used
both for X and for the K-space (X, A). A K-space isomorphic to one of this
type will be called an affine K-scheme.

In case A4 1s an integral domain with field of fractlons L then the A s are
subrings of L and we can describe A directly by: A(U) = () 4,.

xel

A homomorphism a:4 — B of affine K-algebras induces a continuous
function «": Y = X, where Y =spec (B). f Uc X and V < Y are open and
a'(V)c U then o(S(U))< S(V) so there 1s a natural homomorphism
A[S(U)” l]——rB[S(V) 1] These induce a morphism on the associated
K-spaces (Y, B) = (X, A), thus making A specyg(A) a contravariant functor

from affine K-algebras to K-spaces.

5.3 K-schemes and prevarieties. By a K-scheme we shall understand a

K-space (X, () such that X has a finite cover by open sets U such that
(U, 0,|U) 1s an affine K-scheme. Note that X 1s thus a noetherian space. If
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(X, Ox) 1s reduced, 1.e. if, for each xe X, the local ring @ , has no nilpotent
clements # 0, then we call (X, @) a prevariety. In case X = specg(A) 1s affine
then X 1s a prevariety if and only if 4 1s reduced, in which case we call

specg(A) an affine variety.

Caution. (1) A K-scheme is not a scheme in the usual sense. This would be
the case if, in place of spec,(4) = max(A4) we had used all of spec(A4) (in the
affine case). With this modification the definition of K-scheme above

corresponds to the notion of a “scheme of finite type over K” (or over spec(K)).

(2) Our notion of prevariety is essentially the same as that of Mumford
(Chapter I) except that we have not required X to be irreducible.

Consider the affine K-scheme specg(K), consisting of one point with
structure sheaf K. A morphism spec,(K)— X just picks a point xe X together
with compatible K-algebra homomorphisms 0,(U)— K for all neighbor-
hoods U of x. The latter correspond to a K-algebra homomorphism 0, — K,
and there is only one such: f+ f(x). Thus x determines the morphism, 1.c.
we can identify Mor, __ (speck(K), X) with X (as sets).

5.4 Theorem. Let X =specy(A) be an affine K-scheme and let Y be any
K-scheme. The natural map A — A(X) is an isomorphism, and the map

Mor sch(Y X)_) MOI'K alg(A mY(Y))

is bijective. In particular Ar-specy(A) is a contravariant equivalence from the

category of affine K-algebras to the category of affine K-schemes.
For this equivalence, see [M, Ch. II, §§1-2].

5.5 QuaSI -coherent modules [M, Ch. III, §§1-2]. Let 4 be an affine K-algebra.
If M is an A-module then the sheaf M on specy(A) associated with the
presheal urs A[S(U)" 1]C)@M is a sheal of A-modules, or, simply, an

{1_ -module. Moreover M —M is an exact functor from A-modules to
A-modules.

If Y is a K-scheme we say that an (Oy-module (or sheaf of @,-modules) F
1S quasi-coherent if Y can be covered by affine K-schemes U = specg(4) on
which F|U is isomorphic to some M as above. If the U’s can be chosen so
that each M 1s a finitely generated (resp., free) A-module then we say F is
coherent (resp., locally free).

If F 1s coherent then it follows easily from AG.3.5 that

supp(F)={yeY|F, # 0}

1s closed. Moreover AG.3.5 implies that, for F coherent, {yeY|F, is a free
@ ,-module} is open.

Theorem. Let X =specg(A) be an affine K-scheme, and let feA. For any
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A-module M the natural map M f—+M (X /) is an isomorphism. In particular
(speck(dy), A;) (X[, A| X )

is an isomorphism of K-schemes. Moreover M—M is an equivalence from the
category of A-modules to the category of quasi-coherent A-modules. M is
coherent if and only if M is finitely generated. In this case M is locally free if
and only if M is a projective A-module.

5.6 Closed immersions [M, Ch.Il, §5]. A morphism a:Y — X of K-schemes
1s called a closed immersion if @ maps Y homeomorphically into a closed
subspace of X and if the local homomorphisms O, . — O, are surjective
for each yeY.

If # 1s a quasi-coherent sheaf of ideals in @,. and if Y = supp(0,/.#) then
Y is closed and 0/.# is the “extension by zero” of a sheaf @, on Y for which
there 1s a natural closed immersion (Y,0,)—(X,©,). We then call Y the
closed subscheme of X defined by .£.

In case X = specy(A) is affine every such . is of the form I for some ideal
I 1n A, and Y is just the affine subscheme

X,a(y)

specg(A/I) = specg(A).

Theorem. The map I specy(A/I) is a bijection from the ideals of A to the
set of closed subschemes of specy(A). In particular every closed subscheme is

affine.

An open immersion 1s a morphism isomorphic to one of the form
(U, Ox|U)—>(X,0,) where X 1s a K-scheme and U i1s an open subset. We call
(U, O0,|U) an open subscheme of (X, ®). A closed subscheme of an open
subscheme is called a locally closed subscheme.

§6. Products; Varieties

6.1 Products exist [M, Ch. 1, §6]. Let X and Y be K-schemes. The product
X x Y is characterized by the property that morphisms from a K-scheme Z
to X x Y are pairs of morphisms to the two factors. Applying this to
Z = specg(K) we find that the underlying set of X x Y 1s the usual cartesian
product. From AG.5.4 it follows immediately that the product of affine
K-schemes specg(A) and specg(B) exists and equals

SpecCy ( AX)B )
K
This is because (X) is the coproduct in the category of affine K-algebras.
K

More generally:

Theorem. The product X x Y exists and the two projections are open maps.
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If Uc X and V < Y are open subschemes then U x V- X X Y is an open

iImmersion.
From this theorem and the description of the product in the affine case it

1s easy to show that the local ring of X x Y at (x, y) 1s the localization of
0,X)0,at m, @0, + O, @m,.
K

6.2 Varieties. Let X be a K-scheme. The pair (1,,1,) defines a diagonal
morphism d:X - X x X, and one says X is separated if d 1s a closed
immersion. A separated prevariety is called an (algebraic) variety.

For example:
(a) An affine variety i1s a variety.
(b) A locally closed subprevariety of a variety i1s a variety.
(c) A product of two varieties is a variety.

Let o, f:Y = X be two morphisms of K-schemes, and let

I', ;= {yeYla(y) = B(y)}.

The pair («, B) defines a morphism y:Y - X x X and I', ; =7y ' (d(X)), clearly.
Hence, if X 1s separated then I', ; is closed. In particular, if « and B coincide

on a dense set then they coincide at all points.
Applying the above remarks to acpry, pry:Y x X - X we see also that the

graph of a 1s closed if X 1s separated.

6.3 Regular functions and subvarieties. Let (X, ®,) be an algebraic variety. If
U is open in X we shall write

K[ U] 1n place of 0,(U).

The elements f of K[U] can be identified with K-valued functions on U,
sometimes called regular functions. Moreover res,:K[U]—K[V] then

corresponds to restriction of functions. For xeU the map fr=f(x)=e,(f) 1s
the composite of K[U]— @, with the map of @, to its residue class field

K(x)= K.
If U is open in X then (U, ®,|U) is a variety, called an open subvariety of

X. In case U 1s affine we have U = specy (K[ U]).
If Y 1s a closed subspace of X then there i1s a unique reduced subscheme

(Y,0,) of X. 0, 1s the sheaf associated to the presheaf (U Y)— K[U]/I,(Y),
where I,(Y) 1s the ideal of all functions on U vanishing on Y nU. (Thus, 1n
case U 1s affine, YN U 1s just specy(K[U]/I,(Y)).) In this way we can
canonically regard a closed subspace Y of X as a closed subvariety.

A locally closed subvariety is then just a closed subvariety of an open

subvariety.
Let a:Y — X be a morphism of varieties. Then a 1s a continuous function

and, whenever Uc X and VcVY are open and o(V)< U, there is a

comorphism
oy K[U] - K[ V]
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such that

o, (f)(y) =f(a(y)), or
oap(f) =f o

for feK[U] and yeV. Since we are dealing here with rings of functions it
follows that o (as a map of spaces) determines the sheaf homomorphisms a;,.
We shall denote the latter simply by a° (for all U and V) and call «° the
comorphism(s) of a.

Note that, for any set function a: Y — X, the comorphisms a° can be defined
as above on the rings of all K-valued functions. The condition that « be a
morphism of varieties then can be reformulated as follows: (1) a 1s continuous,

and (11)1ifUc Xand V < Y areopenand ifa(V) < U then «’K[U } < K[ V].

6.4 The local rings on a variety. Consider the local ring @, of a point x on
a variety V. It reflects the “local properties” of V near x. For example, by
passing to a neighborhood of x we may assume V =specg(A4), an affine
variety. Then O 1s the local ring of 4 at the maximal ideal m = ker(e,), and
it follows from properties of localization that the prime ideal of @, correspond
bijectively to those of 4 contained in m, i.e. to the irreducible subvarieties
of V passing through x. We see thus that dim_V (in the sense of AG.1.4) 1s
the Krull dimension of 0..

Note further that the irreducible components of V containing x correspond
to the minimal primes of @.. Thus x lies on a unique irreducible component
if and only if @, 1s an integral domain.

6.5 Let f:Y - X be a morphism of varieties. It is said to be finite if X has
an open cover by affine subvarieties X, (iel) such that f~' X, is affine and
K[f~'X.]is a finitely generated K[ X.]-module. In that case, this condition
1s fulfilled by every open afline subset of X (cf [Ha: II, 3.2]). If f is finite, the
fibre over each point of X 1s finite [EGA: II, 6.1.7] and f 1s closed [EGA:
I1, 6.1.10].

The morphism fis said to be affine if there exists an open affine finite cover
{X;} [iel) of X such that f~'X; is affine for all iel. Then f~'(U) is affine
for every open affine subset U of X (see [Ha: II: 5.17] or EGA 11, §1.2).

[n particular, a finite morphism 1s affine by definition.

6.6 Let X and Y be two varieties. The Zariski topology on X x Y 1s finer
than the product topology. We have already remarked that the two
projections are open. Moreover,if Ac X and Bc Y, then (A x B)” = A4 x B:
By using the continuity of the projections, we see that the right-hand side
1s closed and contains the left-hand side. On the other hand, for any beB,
the closure of A x bis A x b, hence A x B < (A4 x B)™. Similarly, for any ae A4,
the product a x B is contained in (4 x B)~, whence our assertion. By
induction, it follows that if X, are varieties (i=1,...,n) and 4, < X, then
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the closure of A=A4; x---xA4, n X; x--xX,=X is the product of
the A,’s.

As a consequence, if f:X—>Z 1s a morphism of varieties, then
f(Ay x - x A4,) = f(A).

§7. Projective and Complete Varieties

7.1 The affine spaces V and K". Let V be a finite dimensional vector space
(over K). Then the symmetric algebra A = S§(V*) on the dual of V is the
(graded) algebra of “polynomial functions” on V, generated by the linear
functions V* in degree one. The universal property of the symmetric algebra

implies that
HomK-alg(SK(V*)a K) — HomK-mod(V*, K) = (V*)* =V.

In this way we can identify V with the points of the affine variety spec,(A).
In case V=K" we have A=K][T,,...,T,], the polynomial ring in n
variables, where Ti{(t)=t; for t =(¢,,...,t,)eK".

1.2 The projective spaces P(V) and P, [M, Ch. 1, §5]. The set of lines in V
can be given the structure of a variety, denoted P(V), and called the projective
space on V. We also write P, = P(K"™1).

It 1s convenient to describe the set P(V) as the set of equivalence classes,
[x], of non-zero vectors xeV, where [x] =[y] means y = tx for some te K*.
Let n:V — {0} - P(V) denote the projection, n(x) = [x]. We topologize P(V)
so that n is continuous and open, where V— {0} is viewed as an open
subvariety of V. Thus U < P(V) is open if and only if ™ !(U) is open.

Let A =S8,(V*) a above, and let S be the multiplicative set of all homo-
geneous elements # 0 in A. Then A[S™ '] is still a graded ring whose degree
zero term 1s

L={f/g|fand g are homogeneous of the same degree in A and g # 0}.
If [x]eP(V) we shall write

O =1{S/9€L|g(x) #0}.

First note that the condition g(x) # 0 depends only on [x], for if g 1s of degree
d we have g(tx) = t’g(x) for te K*. This shows further that f(x)/g(x) depends
only on [x] because [ also has degree d. Thus a given f/geL can be viewed
as a function on the set of [x]eP(V) for which g(x) # 0. Moreover O, 1s the
local ring of all such functions defined at [x].

If U is open in P(V) we put

@P(V)(U): ﬂ @[x]

[x]leU
and define restriction maps to be inclusions whenever U’ < U. This is a sheal
on P(V), and (P(V), Op)) 1s the algebraic variety promised above.
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Suppose V = K"*! so that A=K[T,, T,,...,T,]. Here we have T;(t)=t,
for t=(t,,...,t,)eK"**. Even though T, is not a function on P, =P(K"* ')
the set P, ={[t]eP,|T(t) #0} still makes sense. Moreover, there is a
bijection P, ; — K" sending [t,,...,t,] to (t,/t;s.., Eiftis. - b/t =(Sys.. ., 5p)-
It 1s easily shown that this 1s an isomorphism from the open subvarnety P, .
of P, to the affine space K". Since the P, ; (0 <i<n) cover P, this shows
why P, 1s at least a prevariety.

Consider the open set U° in K"*! of all (¢,,...,t,) such that t, # 0. Then
we have an 1somorphism of varieties

K*x K"->U
(S,,S15.--,8,)8,°(1,8,,...,8,)

The composition of this with U - P, 1s just projection on the factor K"
followed by the inverse of the isomorphism P, , — K" constructed above.
In this way we see that V— {0} - P(V)looks, like a projection from a cartesian
product as above.

1.3 Projective varieties. A projective variety 1s one isomorphic to a closed
subvariety of a projective space. A quasi-projective variety 1S an open
subvariety of a projective variety. Since affine spaces are open subvarieties
of projective spaces 1t follows that all affine varieties are quasi-projective.

Products of projective varieties are projective. To see this it suffices to
show that each P, x P, 1s projective. For this, in turn, one has the explicit
closed immersion

Pn X Pm_)P(n+l)(m+l)-—l =P

nm+n+m

defined by:
([x:], [J’j] ) ( [xiij] ).

7.4 Complete varieties [M, Ch. I, §9]. A variety V 1s complete if, for any
variety X, the projection pry:X x V— X is a closed map. (In the category
of Hausdorff topological spaces the analogous property characterizes

compact spaces. Thus “complete” for varieties 1s the analogue of “compact”
for topological spaces.)

It follows immediately from the definition that a closed subvariety of a
complete variety is complete, and that a product of complete varieties is
complete.

Let a: V' — X be a morphism of varieties with V complete. Then the graph
I' <V x X is closed, so its projection into X, which is a(V), is closed in X.
If « 1s surjective then 1t follows directly from the definition that X 1s also
complete. Applying this to a(V) we conclude that the image of a morphism
from a complete variety is closed and complete.

The affine line K 1s an open but not closed subset of the projective line
P,, so K i1s not complete. The only other closed subsets of K are the finite
ones, so a connected complete subvariety of K consists of a single point.
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If V is a connected complete variety then K[V] =K, 1.e. every regular
function f on V is constant. This follows from the last paragraph because

f(V) 1s a connected complete subvariety of K.

Combining the observation above we conclude easily that a morphism from
a connected complete variety into an affine variety must be constant. For the
image, being closed, i1s affine as well as complete. But an affine variety with

only constant regular functions 1s a point.
That complete varieties exist in abundance {ollows from the:

Theorem. Projective varieties are complete.

§8. Rational Functions; Dominant Morphisms

8.1 Rational functions. Let V be an algebraic variety. The open dense sets
U in V form an inverse system, under inclusion, so their rings of functions,

K[ U], form an inductive system. The inductive limit
K(V)=1ind.lm. K[ U], (U open dense 1n V)

is called the ring of rational functions on V. The following properties are
easily established.

(a) If U is open dense in V then K[U] - K(V) is injective; we shall regard
it as an inclusion. Moreover K(U) = K(V).

(b) If feK(V) we say f1s regular at x if fe K(U] for some neighborhood
U of x (which i1s open dense). The set of all such x is then a dense open set
U, called the domain of definition of f. U, is the largest dense open set for
which feK[U,].

(c) Suppose V 1s irreducible. Then each dense open U is irreducible also.

If feK[U] is not zero then U, ={xeU|f(x)#0} is non-empty and open,
hence dense (by irreducibility), and 1/feK[U ]. It follows that K(V) 1S a

field, called the function field of V.
(d) In general, let V,,..., V, be the irreducible components of V. It follows

from (AG.1.2) that there is adense open U such thatthe U.=UnNV;(1 £i< n)
are open in V and pairwise disjoint. It follows, using (a) and (c) above, that

K(V) - K(U) — n K(Ui) — HK(Vi),
the product of the function fields of the irreducible components of V.

(e) If V =specg(A) is affine, where A = K[V], then K(V) 1s just the full
ring of fractions of A.

8.2 Dominant morphisms. The ring K(V) of rational functions on V is not
functorial. For if a: V' — W 1s a morphism of varieties, and if U i1s open dense
in W, then a™'(U) need not be dense in V. But if this is always true, and if

o(V) = W, we say o is dominant. Such an « induces an injective comorphism
a’: K(W)— K(V).
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If V, and therefore also W, are irreducible then this makes K(V) a field
extension of K(W). We then say that a is separable if this extension is
separable. Similarly we call a purely inseparable if K(V) is a purely inseparable
algebraic extension, and « is said to be birational if K(V)= a"K(W).

The local rings of V and W can be viewed as subrings of K(V) and of
K(W), respectively, and a° induces an injection o°:0,—0, . for xeV.
[dentifying K(W) with o’ K(W) we see that the sheaf morphism corresponding
to a 1s just induced by the inclusions of local rings in K(V).

In gencral, if V 1s not irreducible but a(V) = W, then it 1s casy to sec that
oa:V - W i1s dominant if and only if, for each irreducible component V' of

V, a(V')= W' 1s an irreducible component of W. We then say that a is
separable (purely inseparable, birational,...) if, for each such V’, the induced
morphism V'— W' (which i1s dominant) has the corresponding property.

If V' 1s an irreducible component of V then a(V’')= W’ i1s an irreducible
subvariety of W, and it will be an irreducible component of W provided it
contains a non-empty open set in W. Since V' contains such an open set in
V' this remark shows that: If a is surjective and open then « is dominant.

As a converse, if W and V are irreducible (for convenience), given an
injective homomorphism fi: K(W)— K(V), there is a dominant morphism «a
of a Zariski open subset U of V into W, such that f=a’. We postpone
the discussion of this point to 13.4, where we can add some complement
pertaining to fields of definition.

§9. Dmmension
'™, Ch. I, §7]

9.1 Thedimension of avariety V. We have the combinatorial dimension of V,
denoted by dim V, introduced in (AG.1.4). It 1s the supremum of the
dimensions of the irreducible components of V. In case V is irreducible we
have the function field K(V), and the basic fact 1s that, in this case,

dim V = tr.deg. . K(V).

9.2 Hypersurfaces. Let V be an irreducible variety and let feK[V] be a
non-constant function whose set Z(f) = {xe V| f(x) = 0} of zeros is not empty.
Then the dimension of each irreducible component of Z(f) 1s dimV — 1.

9.3 Products. The dimension of V. x WisdimV 4+ dim W.

§10. Image and Fibres of a Morphism
[M, Ch. I, §8]

10.1 The basic theorem. Let a: X — Y be a morphism of varieties. The fibre
of a over ye Y is the subvariety o™ '(!y}) of X. To study the non-empty fibres
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there is no harm in shrinking Y to the closure of the image, a(X), 1.e. we may
as well assume a(X) is dense in Y. If X (and Y) are irreducible this means

that o 1s dominant.

Theorem. Let a: X — Y be a dominant morphism of irreducible varieties, and
put r=dim X —dim Y. Let W be an irreducible closed subvariety of Y and

let Z be an irreducible component of o™ '(W).

(1) If Z dominates W then dimZ 2dim W +r. In particular, if W ={y},
then dim Z > r.

(2) There is an open dense U c Y (depending only on a) such that
(1) U ca(X), and
(i1) If Zna~ ' (U) # ¢ then

dimZ=dim W +r.
In particular, if W = {y} < U then dimZ =r.

10.2 Corollary (Chevalley). Let a: X — Y be any morphism of varieties. T hen
the image of any constructible set is constructible. In particular a(X) contains

a dense open subset of o X).
The last assertion follows from the first using AG.1.3. The proof of the

first assertion can be reduced easily to the case of a dominant morphism of
irreducible varieties. Then it is deduced, by induction on dim Y, from part

(2)(1) of the theorem.

10.3 Corollary. Let a:X — Y be a morphism of varieties. If xe X let e(x) be
the maximum dimension of an irreducible component, containing x, of the fibre
of a through x (i.e. of a™ *(a(x))). Then x+>e(x) is upper semi-continuous, i.e.
the sets {xeX|e(x) = n} are closed for each integer n.

011. k-Structures on K-Schemes

This and the following two sections contain the basic notions required here
for the treatment of rationality questions. Recall that k denotes a subfield

of the algebraically closed field K.

11.1 k-structures on vector spaces. A k-structure on a (not necessarily finite

dimensional) vector space V (over K) is a k-module V, < V such that the

homomorphism K (X) V, — V, induced by the inclusion, is an isomorphism.
k

The surjectivity means that V, spans V (over K), and the injectivity means
that elements of ¥, linearly independent over k are also linearly independent
over K. The elements of V, are said to be rational over k.

If U s a subspace of V we put U, =UnV,, and we say U 1s defined (or
rational) over kil U, is a k-structurc on U. This is equivalent to U, spanning U.
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If W=V/U we write W, for the projection of ¥, into W, and we say W
is defined over k if this is a k-structure on W. This happens if and only if U
is defined over k, or if and only if elements of W, linearly independent over
k are linearly independent over K.

Let f:V—> W be a K-linear map of vector spaces with k-structures. We
say that f is defined over k, or that f is a k-morphism if f(V,) = W,. The
k-morphisms from V to W form a k-submodule

Hom(V, W), = Homg(V, W),

and this is even a k-structure provided that W is finite dimensional. In
particular, when W = K, we have a k-structure on the dual V* of V.

Similarly V,(X)W, is a k-structure on V (X)W, and there are natural
k K

k-structures on the exterior and symmetric algebras of V.

11.2 k-structures on K-algebras. A k-structure on a K-algebra A4 1s a
k-structure A, which i1s a k-subalgebra.

If J 1s an 1deal in 4 then J 1s defined over k if and only if J,(=JnNA,)
generates J as an ideal. This 1s easily seen.

If S is a multiplicative setin 4, then 4,[S ™ "] is easily seen to be a k-structure
on A[S™'].

If B 1s another K-algebra with k-structure then we write

Mor.,,(A4, B),

for the K-algebra homomorphisms defined over k. The map f+—[,® f1is a
bijection from Mor,_,,.(4,, B,) to this set.

11.3 k-structures on K-schemes. A k-structure on a K-scheme (X, ®,) con-
sist of

(1) a k-topology k-top(X) < top(X), and
(2) a k-structure on O,(U) for each k-open U, such that the restriction
homomorphisms are defined over k.

(Condition (2) just says that the restriction of @y to k-top(X) is a sheaf of
K-algebras-with-k-structures.) It i1s further required that, on k-open affine
subschemes, the induced k-structure be of the following type:

A k-structure on an affine K-scheme X =specy(A4) 1s one defined by a
k-structure 4, on A as follows: A set i1s k-closed if it 1s of the form supp(A4/J)
for some ideal J defined over k. For example, if f € A, then X, is k-open, and
any k-open set 1s covered by a finite number of these. Moreover A, = A(X )
has the k-structure (A,), (see 11.2).

It U 1s k-open we can cover U by X, ’s for a family of f;e 4,. Moreover
X, NnX; =X, . By the sheal axiom we have an exact sequence

AU)-TT1Ax )3 TTAX )

g iJ
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Therefore ,Z(U) acquires a natural k-structure as the kernel of

which is a k-morphism of vector spaces with k-structures.
It is not difficult to check that this k-structure on A(U) is well defined,

and that the above construction satisfies the requirements of (1) and (2) above.

Note that we recover A, as the k-structure on A(X).

Let a: X — Y be a morphism of K-schemes with k-structures. We say « 1s
defined over k or that « is a k-morphism if (1) o 1s continuous relative to the
k-topologies, and (i1) if U « Y and V < X are k-open such that a(V) < U then
ol :0y(U)— Oy (V) is defined over k. The set of morphisms defined over k will

be denoted
Mor(X, Y),.

A homomorphism «”:B— A of K-algebras with k-structures induces a
morphism a:specy(A)— specy(B) and it 1s clear that a 1s defined over k if
and only if a° i1s defined over k. Thus the category of affine K-schemes with
k-structures, and k-morphisms, is contravariantly equivalent to the category
of affine K-algebras with k-structures, and k-morphisms, and the latter 1s
clearly equivalent to the category of affine k-algebras.

11.4 Subschemes defined over k. Let (X, 0,) be a K-scheme with k-structure.
If Uc X 1s k-open then (U, 0,|U) has an induced k-structure.

Suppose (Z,0,) is a closed subscheme of X. We say it 1s defined over k if
(1) Z 1s k-closed, and (11) the sheaf .# of ideals such that @,/.# is the extension
by zeros of (0, 1s defined over k, 1e. #(U)< 0,(U) 1s defined over k for all
k-open U. Condition (11) is equivalent to the condition that, for all k-open
affine U, the kernel J4(U) of the epimorphism of affine rings,
O0,(U)->0,(UnZ), 1s defined over k. Thus we see that (Z,(,) acquires a
unique k-structure such that the closed immersion Z — X 1s defined over k.

[t further follows easily that (Z,0,) is defined over k if and only if, for
some cover of X by k-open alline U's (ZnU,C,|ZnU) 1s delined over
kin (U,0,|U) for each U.

§12. k-Structures on Varieties

12.1 Affine k-varieties. A variety V with a k-structure will be called a
k-variety. Let V =specy(A) be an affline k-variety with k-structure defined
by A, =k[V] in A=K[V].

Let Z =specg(A/J) be a closed subvariety of V, where J is the 1deal of all
functions vanishing on Z. Then we have an exact sequence

0-J, 2 k[V]-k[Z]—-0,
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where J, =JnNk[V] and where k[Z] is the restriction to Z of k[ V]. Thus

k[Z] 1s a reduced affine k-algebra, and we denote its full ring of fractions
k(Z). We have K(X)k(Z)=K[V]/J,-K[V] so that the kernel of the

k
epimorphism K X)k[Z]—K[Z] is J/J,-K[V].
k

Now Z is k-closed when 1t 1s the set of zeros of some 1deal defined over k.
It follows that

Z 18 k-closed<>J = \/Jk-K[V].

In this case then the kernel above is the nil radical of K (X)k[Z].
k

We conclude therefore that the following conditions on a k-closed Z are
equivalent:

(a) Z 1s defined (as a subvariety) over k, 1.e. J =J,-K[V].
(b) k[Z] and K are linearly disjoint over k in K[Z].
(c) KX)k[Z] is reduced.

K
(d) KX)k(Z) is reduced.
X

The equivalence of (c) and (d) follows from AG.3.3 because K@k(Z) 1S a

ring of fractions of K@k[Z] with respect to a multlpllcatlve set of

non-divisors of zero.
We can look at these conditions also from the following point of view.

Suppose we are given a reduced affine k-algebra B,. Then B, 1s a k-structure
on B= K ® B, and hence defines one on the affine K-scheme Z = specg(B).

k
Z is a variety if and only if B i1s reduced. Thus we can think of k-closed

subsets of V' as the underlying spaces of closed subschemes of V which are
defined over k, but not necessarily as subvarieties defined over k.

Suppose char(k) =p > 0. Then the zeros of feA and of f” coincide. If
fek'?[V] then fPek[V]. Thus any k'/’-closed set is also k-closed. It follows
that the k-topology coincides with the kP “-topology.

12.2 Subvarieties defined over k. Let V be any (not necessarily afline)
k-variety, and let Z be a k-closed subvanety. If U 1s k-open in V we write
k[ Z n U] for the restriction to Zn U of k[ U]. Passing to the inductive hmit
over k-open U for which ZnU 1s dense in Z we obtain the ring k(Z) of
“rational functions on Z defined over k.” In case V is affine this notation is
consistent with that introduced in 12.1 above (cf. (AG.8.1). It follows; from
AG.11.4 and 12.1 that Z is defined over k if and only if K (X)k(Z) is reduced.
k

Now k(Z) is the product of a finite number of finitely generated field
extensions of k. Using the results of AG.2.2 we therefore conclude that the
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following conditions are equivalent:

(a) Z is defined over k.
(b) KX)k(Z) is reduced.

K
(c) k?”"(X)k(Z) is reduced.

k
(d) Each factor of k(Z) is a separable field extension of k.

In particular we see that:

A k-closed subvariety is defined over kP ~, and hence over k if k is perfect.

12.3 Irreducible components are defined over k. Consider the irreducible
components of a k-variety V. To show that each one is defined over k, there
1s no loss in assuming that k = k_. It suffices further to check this on a cover
of V by k-open afline subvarieties, so we may assume V is affine. Then we
must show that, if P,,..:, P, are the minimal primes of k[ V], each P;- K[ V]
i1s still a prime ideal. Since k 1s separably closed it follows from AG.2.1 that
K[V1/(P; K[V]), which equals K (X)(k[V]/P;), has a unique minimal prime,
k

so it remains to be shown that K (X)(k[V]/P;) is reduced.
k

We have k[ V] < I1(k[V]/P;), because k[ V] i1s reduced, and both of these
rings have the same full ring of fractions, k(V). Since K X)k(V)= K(V) is
k

reduced it follows, as claimed, that each K (X)(k[V]/P;) is reduced.
k

124 Let X, Y be two k-varieties. Then
k[ X x Y]=k[X]T®k[Y].

More precisely, the obvious map of the right-hand side in the left-hand
side 1s 1njective. There remains to check the other inclusion. If X and Y are
affine, it holds by definition 6.1. Assume now X to be affine and let Y = U Y,

(iel) be a finite open affine cover of Y. Let f be a regular function on X x Y.
Its restriction to X x Y, belongs to k[ X ]® k[ Y;]. Since I 1s finite, there exists
a finite dimensional subspace V < k[X] such that f|X x Y, belongs to
V®k[Y;]foreachi. Let f;(jeJ)beabasis of V. Then we can write uniquely

f1X x Yi:ij®gi,js with gi,jEk[Yi]'
J

By the uniqueness, g; ; and g, ; have the same restriction to Y;nY, (i,kel).
Therefore, for given jeJ, the g; ; (iel) match to define an element of k[ Y ],
hence fek[X]®k[Y]. If now X is not affine, argue similarly using a finite
open cover of X.

We shall use this when one factor is affine and the other quasi-affine, 1.e.,
by definition, isomorphic to a k-open sub-set of an affine k-variety X. Note
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that if X' is quasi-affine and irreducible, then k(X) is the quotient field of
k[ X ], (since k(X) = k(X)).

§13. Separable Points

13.1 The functor of points. Let V be a k-variety. For any affine K-algebra
B we shall write

V(B) = Mor, , (speck(B), V).

If B has a k-structure B, we also write V(B,) = V(B), for the set of morphisms
as above which are defined over k.
If V =specg(A) is affine then

V(B) = Mor,_,. (4, B) = Mor,,,.(4,, B),

and V(B,) = Mor, . (4,, By). From these descriptions it is clear that one can
extend the definitions to any K-algebra B, not necessarily affine. (For example
B might be a large field extension of K.) In this way we obtain a functor
B,— V(B,) from k-algebras to sets. It 1s called the functor of points of the
k-variety V.

V(B,) 1s also functorial in V. If a:V — W i1s a k-morphism of k-varieties
then a induces a map V(B,)— W(B,).

In the special case B = K we have V(K) = Mor, _, (speck(K), V), which we
can, and will canonically identify with the points of V. Moreover, for any
subfield k' of K containing k we have V(k') < V. These are the k’-rational
points of V. In particular we have V(k)c V(k,) = V(k) = V. The points of
V(k,) are called separabie points.

If W 1s any locally closed subvariety of V, not necessarily defined over k,
we shall permit ourselves to write W(k') for the k’-rational points of V which
lie in W.

Examples. If V = K" =specg(K[ty,...,t,]) with the standard k-structure,
given by k[t,,...,t, ], then V(k)= k"

If V is a vector space with k-structure V, then P(V) acquires a k-structure
so that P(V)(k) is the image of V, — {0} under the canonical projection
V —1{0}->P(V).

We remark, finally, that the definitions above apply without change to
any K-scheme V (resp. K-scheme with k-structure).

13.2 Theorem. Let a:V — W be a k-morphism of k-varieties which is dominant
and separable. Then there is an open dense set W, < W such that W, c a(V)
and such that, for each we W, (k). the fibre a™ '(w) has a dense set of separable
points.

We shall carry out the proof in several steps.

(a) There 1s clearly no loss in assuming that k =k,
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(b) This done, 1t follows from AG.12.3 that the irreducible components of

a k-variety are defined over k.
(c) There is no harm in replacing W by a dense k-open set W', and V by
o~ *(W’). Thus we can easily reduce to the case when W is irreducible and

affine. Then cover V by irreducible k-open affines V;. This 1s possible, using
(b). If W,, answers the requirements of the theorem for a;:V;— W then
W,=(\W,; will work for a. Hence we may assume that V and W are
irreducible and affine. furthermore, with the aid of AG.10.1 we can, after
shrinking W, assume that « is surjective and that all irreducible components
of all fibres have the same dimension.

(d) « 1s induced by the comorphism k[W1]— k[ V] which we can regard
as an inclusion. Since K(V) is separable over K(W), by hypothesis, and since
K is linearly disjoint, over k, from k(W) and from k(V), it follows that k(V) is
separable over k(W). Hence we can apply the (separable) normalization
lemma (AG.3.7) to the affine k(W)-algebra k(W) (X) k[V]. This permits us to

k(W]
consider the latter as a finite integral extension of some polynomial ring
k(W)[t,,...,t,] over whose field of fractions k(V) is (finite and) separable.
Since k[V] has a finite number of generators we can find a “common
denominator” f # 0 in k[ W] for each of the t; as well as for the coefficients
of the integral equations of the generators of k[ V'] over the polynomial ring.
Then if, using (c), we replace k[W] by k[W],=k[W,], and V by
V,=a"'(W,), we can already write k[ V] as a finite integral extension of the
polynomial ring k[W][t,,...,t,] =k[W x K"]. Thus we have reduced our
problem to the case where a admits a factorization

f .
V—oWwx K" S W.

Here = is the coordinate projection, and f is a finite integral morphism such

that k(V) 1s separable over k(W x K").
() We claim that there 1s a dense open set U, W x K" such that

B,:V.=B""U,)— U, has the following property. Each fibre of f, over a
separable point consists entirely of separable points.

Write A = k[W x K"] and say k[V] = A[b,,...,b,,]. Let Py(b;) =0 be the
minimal polynomial equation of b; over the field of fractions, k(W x K"),
of A. Since P, i1s a separable polynomial its derivative, P;, does not vanish
at b;.

The P; all have coefficients in A, for some g #01n A. Put b = [T Pib)( 0).

Since k[ V], is integral over A it follows from AG.3.6 that there 1s a non-zero
multiple h of b in A,. Then k[ V], is integral over A, and each residue class
field of the former is generated by roots of polynomials which are separable
over the corresponding residue class field of 4 ,. Thus U, =(W x K"),, has

the property described above.
(f) We conclude the proof now by showing that W, = n(U,) satisfies the

requirements of the theorem. Since 7 is an open map W, 1s open in W. We
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must show, for we W(k) (recall k = k), that « ™ *(w) has a dense set of separable

points.
Since the irreducible components of a ~ !(w) are equidimensional, and since

B is a closed surjective map, it follows that f:a~'(w)— f(a™ '(w)) =7~ (w) is
dominant. Clearly =~ !(w) 1s a subvariety defined over k and k-isomorphic
to K". Therefore B maps each irreducible component, X, of a™'(w) onto
n~'(w). Let X' denote the closure of the set of separable points in X. It
follows from (d) that f(X’) contains all separable points in U,n 7~ '(w), which
form a dense set in (the irreducible variety) =~ '(w). Since f§ is closed it
follows that B(X') = n~ }(w). Therefore, since B is finite, dim X' =dimn~'(w) =
dim X. But X is irreducible so X'=X. Q.E.D.

13.3 Corollary. Let V be a k-variety. Then V(k) is dense in V.
We just apply the theorem to the projection of V onto a point.

13.4 Dominant morphisms. Assume V and W are irreducible k-varieties. We
know (§3, 1.3) that if the k morphism «:V — W is dominant, then the
comorphism «°: K(W)— K(V) is an injective homomorphism defined over k.
Let now f[:K(W)—K(V) be such a homomorphism. Let Y and Z be
non-empty Zariski k-open afline subvarieties of V and W respectively. Then
k(V) and k(W) are the quotient fields of k[ Y] and k[ Z] respectively. Let { f;}
(iel) be a finite generating set for k[Z]. Then f(f;) = u;/v; with u,, v,ek[Y].
Let U be the subset of Y on which all the v; are nowhere zero. It i1s a
non-empty Zariski k-open afline subset of V, with coordinate ring over k
equal to k[Y][S '], where S is the product of the v’s (iel). We have an
injective homomorphism k[Z]—k[U], whence, canonically a surjective
k-morphism of U into Z with dense image, hence a dominant morphism,
whose associated comorphism is . Thus, as a converse to 8.2, we see that
an 1njective k-homomorphism f:K(W)— K(V) i1s associated to a dominant
k-morphism of a non-empty Zariski k-open subvariety U of V into W.

13.5 Assume here that K is a “universal field” (over k), 1.e. has infinite
transcendence degree over k (besides being algebraically closed, as usual).
Let V be an irreducible k-variety. A point xeV(K) is generic over k if
k(x) = k(V), 1.e. if the evaluation at x yields an isomorphism of k(V) into K.
Generic points always exist: Let r=dim V. By 3.7, we may write the
coordinate ring k[U] of an affine k-open subset U of V in the form
k[x,,...,x,]/J where J 1s the 1deal of U, t=r and the x; (1 £i<r) are
algebraically independent over k. Choose ¢&,,...,6, in K algebraically
independent over k. Since k(V) 1s a finite algebraic extension of k(x,,..., x,),
the map x;—¢,(1 £i<r) extends to an isomorphism of k(V) into K. The
images of the x; (1 £i<1t) are then the coordinates of a generic point over
k. In fact, this construction shows easily that the generic points form a Zariski
dense (but not open if r = [) subset.
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Generic points were ubiquitous in earlier formulations of algebraic
geometry, consequently rather prominent in [2], but are less talked about
nowadays. In this book, we use them only in the following proposition. When
we draw some consequences of it later, it is tacitly understood that K is

universal.

13.6 Proposition. Let o:V - W be a k-morphism of (absolutely) irreducible
k-varieties. Assume that a(V(E)) = W(E) for every extension of E of k contained
in K. Then there exists a non-empty k-open subset U of W and a k-morphism
B:U—V such that a°f = Id.

By restricting V and W if necessary, we may assume that ¥V and W are
affine and a« 1s surjective. Let now x be a generic point of W over k
(13.5). By assumption, there exists yea™ '(x)n V(k(x)). Let [, (iel) be a finite
generating set for k[V] over k. We can write f;=u,/v, with u; v,ek[ W]
and v;(x) #0 (iel). Let U <« W be the set of points on which all the v,’s are

non-zero. We have now a homomorphism y:k[V]—k[U] and obviously,
yea’(f)= f if fek[U]. Therefore the unique k-morphism B:U — V such that

B° =y satisfies our condition.

13.7 Rational and unirational varieties. Let W be an irreducible k-variety.
It 1s said to be rational over k if k(W) 1s a purely transcendental extension
of k, unirational over k 1f there exists an injective homomorphism f:k(W)— L,
where L is a finitely gencrated purely transcendental cxtension of k. Let n
be the transcendence degree of L. Then L can be viewed as the field of rational

functions defined over k of the affine n-space A" over k.

Therefore, W 1s a rational k-variety if and only if it contains a Zariski
k-open subset which is k-isomorphic to a Zariski k-open subset of affine
space. By 8.3, 13.4, W is unirational over k if and only if there exists a
dominant k-morphism of a Zariski k-open subset of affine space into W.

Let k be infinite. Then A"(k) i1s obviously Zariski dense in A". Since the
image of a Zariski dense subset under a dominant morphism i1s Zariski dense,
we see that if W is unirational over k and k is infinite, then W(k) is Zariski

dense in W.

§14. Galois Criteria for Rationality
The Galois group Gal(k /k) of k, over k will be denoted by I

14.1 Galois actions on vector spaces. Let V be a vector space with k-structure
V.. Then I" operates on V, = k,(X)V, through the first factor, and it is clear
k

that V, is the set V| of fixed points under I". If W is another vector space
with a k-structure, then I operates on

HOITIK(V, W)k.s = Homk,(Vk,:! Wks)
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by
(")) =0a(f(a™ 'v)).

Here sel’, f:V — W 1s defined over k,, and veV, . It is easily seen that the
following conditions on such an f are equivalent:

(1) f 1s defined over k.
() f:V,, — W, 1s I'-equivariant.
(i11) feHom(V, W),f;.

14.2 The k-structure defined by a Galois action. Consider a vector space V
with a kg-structure ¥V, on which I" operates semi-linearly, 1.e.

o(ax) =o(a)o(x) (aekg,xeV, ).

Suppose further that the stability group of each xeV,_1s an open subgroup
(of finite index) in I'. Then we claim that

Vk=V£

is a k-structure on V.
Certainly V, is a k-subspace, and the natural mapk,X)V,— V;, is
k

I'-equivariant. Its kernel is therefore a I'-invariant k-subspace having zero
intersection with | ® V,. Therefore the proposition below implies that the
map 1s a monomorphism.

It remains to show that V, spans V, . Let xeV, and I', be the stability
group of x. It contains a normal open subgroup I’ of I'. The fixed point
set kK" of I'' 1n k, 1s a Galois extension of finite degree of k. Let

r=r/r'={e,...,0,} =~ Gal(k'/k)

and let ay,...,a, be a k-basis of k'. The elements y;, = X ;5,(a;x) clearly belong
to V.. Since the elements of I'’ are linearly independent over k', the matrix
(0;(a;)) 1s 1nvertible, say with inverse (b,,). Then

\

Z binyi = Z b;y Z o;(a;)o(x) = Z (Z o;(a;)b; ) 0;(x) = Z 5jh0j(x) = 0p(X).

J

Some o, 1s the identity, so x is indeed a inear combination of fixed elements.

Proposition. Let W be a subspace of a vector space V with k-structure. Then
W is defined over k if and only if (i) W is defined over k,, and (ii) W, _is I'-stable.

Proof. The “only if” is clear, and the “if” follows if we prove that the subspace
W'’ spanned by W, coincides with W. In any case we can pass to V/W’ and
the subspace W/W' and so reduce to the case W, = 0. We claim W = 0. Choose
a k-basis (e;) for V and, if W #0, choose a w#0 in W,_so that w 1s a linear
combination of the least possible number of e;'s. After renumbering the e;’s
and multiplying w by an element of k* we can write w =e¢, + a,e, + --- with
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each coeflicient in k,, but a,¢k. Then there 1s a el such that a(a,) # a,, so
w—oweW, 1s non-zero and is a linear combination of fewer of the e;s;

contradiction.

14.3 Galois actions on k-varieties. Let V be a k-variety. We know from
AG.13.3 that V(k,) 1s dense in V. We shall introduce now an action of " on
V(k,). It will leave U(k,) stable for all k-open U, so it suffices to describe the
action when V is affine. Then we can match V(k,) with Mor,__,..(k,[V], k)
so that xe V(k,) corresponds to the algebra homomorphism e,. If el then
o(x) is defined by

ea(x) — O'OBIOO'_ 1.

Here the left hand o operates on k, and the right hand one on
k,[V] = k,k[V]. If we denote the latter action by f+a, for fek[V] then
k

the equation above reads

flex)=06(" f)(x), or (f)x)=a(f(o""x)).

Writing V(f) for the variety of zeros of f we see that ¢ maps the separable
points of V(f) to those of V(°f). The same applies to V(J) for any i1deal J 1n
k.[V]. In this way we can define the conjugate variety °W of any closed
subvariety W of V defined over k.. Such a definition is allowable because of
the density of separable points. In the affine case “W 1s just the variety
obtained by applying ¢ to the coefficients of equations defining W over k,.

Let a:V — W be a morphism of k-varieties, and assume « 1s defined over
k.. Then, for oel’, we define a k--morphism “a:V — W as follows:

‘a(x) = o(a(c ™ 'x)) (xeV(k)).

By density of separable points there is at most one k-morphism with this
property. To see that there 1s one it suffices to exhibit, for k-open V' < V
and W' < W such that aV’' < W’, the comorphism (“a)’:k[W' ]k [V']. It

is defined by the commutativity of

k[V'] —  k[W]

ks[V’] "_—a's—'—_' ks[wf]’

ie. (a)’ =0 'ea’cq. Thus, for fek [W], Ca)(f)=" (a(°f)). Thus I
acts on Mor(V, W), .
The following conditions on a are easily seen to be equivalent

(1) a 1s defined over k;
(1) a:V(k,)— W(k,) 1s I'-equivanant;
(iii) aeMor(V, W), .
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14.4 Theorem. Let V be a k-variety and let Z be a closed subvariety. The
following conditions are equivalent.

(1) Z is defined over k.
(2) Z is defined over k, and Z(k,) is I -stable.
(3) There is a subset E c Zn V(k,) such that E is I -stable and dense in Z.

Proof. (1)=(2) is clear, and (2)=(3) follows from the density of Z(k,)

(AG. 13.3).
(3)=(1): By covering V with k-open affine varieties, we can reduce to the

case when V is affine. Then J = () m, = I(E) =1(2) is the ideal of functions

xekE

vanishing on Z. Since E < V(k/) it follows that J is defined (as a subspace of
K[V]) over k. If ael’, then

Sy, = m My, = m My (x),ks = m M, . = Ji,s

xekE xek xek

the latter because E i1s I -stable. Hence, by (14.2), J 1s defined over k, as claimed.

14.5 Corollary. Let o:V - W be a k-morphism of k-varieties. Then a(V) is
defined over k.

Proof. Since V(k,) is dense in V (AG.13.3), «(V(k,)) is dense in a(V'), so that
we may apply criterion (3) to it.

14.6 Corollary. Let (Z;) be a family of subvarieties of V defined over k, and
let Z be the closure of | | Z;. Then Z is defined over k.

Proof. Apply criterion (3) to E = ( | Z.(k,)

14.7 Corollary. Let a:V — W be a k-morphism of k-varieties which is dominant
and separable. Then there is a dense open set W, in W such that every fibre
of « over a k-rational point of W, is defined over k.

Proof. Let W, be as in (AG.13.2). If we W, (k) then the set E of separable
points in a~ (w) is I -stable. Moreover AG.13.2 implies that E is dense in
o~ '(w) so the corollary follows from 14.4, criterion (3).

§15. Derivations and Differentials
(Cf. [EGA, Ch. 0, §20].)

This section contains the algebra which 1s preliminary to the discussion of
tangent spaces, to follow in (AG.16).



AG.15 Derivations and Differentials 33

15.1 2 ,,. Weshall work with k-algebras, even though most of the discussion
applies when k is a commutative ring, not necessarily a field.

Since a k-algebra A is commutative we can regard an A-module M as a
bimodule, so that ax =xa for xeM and aeA. With this convention a
k-derivation from A to M is a k-linear map X:A4 — M such that

X(ab)=(Xa)b + a(Xb) (a,beA).

Since X(ab) = aX(b) for aek we can take b =1 to conclude that Xa =0 for
aek.

The set
Der, (A, M)

of all such k-derivations is an A-module which 1s functorial in M.
There 1s a universal k-derivation

d(‘= dA/k):A - (= ‘QA/k)

obtained by taking (2 to be the A-module defined by generators, da (ac A),
and relations, d(ab) = (da)b + a(db) (a,be A) and dc = O(cek). Its universality
1s expressed by the natural isomorphism

Hom 4 ,,4(£2, M) — Der, (A4, M)

sending f to f od.
(There 1s a well known construction of £2 which we shall not need: Let J be

the kernel of A ®A—>A, a® b+—ab. Then a® 1 — 1®a-—da induces an
k

isomorphism J/J*— .)

If f:A—> B i1s a k-algebra homomorphism, 1t induces a semi-linear map
df :Q2 ,— 25 sending d ,a to dg f(a). (We drop k from the notation when k is
fixed by the discussion.) This corresponds to the map

Der, (B, M) — Der, (A, M)

defined by:
X Xof,

for each B-module (and hence also A-module) M. In this way 2 , 1s functorial
in A.

15.2 Polynomial rings. If A=k[T,,...,T,] i1s a polynomial ring, then (2 is
a free A-module with basis dT,,...,dT,. Moreover d:A— {2 1s given by

0
if =y -ar

for feA. These assertions translate the fact that a derivation X:4A—-M 1s
determined by the X T;, which can be arbitrarily prescribed.

15.3 Residue class rings. Let A'= A/J for some ideal J, and let M be an
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A’-module (or A-module annihilated by J). Then, since JM =0, we have
Der,(A,M)=Hom,_ .4, M)=Hom, __.,(£2,/JS2,, M)
We can identify Der,(A’, M) with the k-derivations 4 - M which kill J, 1.e.
Der,(A’, M) =Hom,.__ 4,2 ,/A-d J, M).

Thus 2,. is 2, modulo the A-module generated by all df(fe€J). It even
suffices to vary the f’s over a set of generators of J.

For example, suppose A =k[T,,...,T,] 1s a polynomial ring, so that
A =k[t,,...,t,] (t,=1mage of T;). Then if f,,...,f, generate J we conclude
from above that 2 ,. is defined by generators dt; (1 £i < n) and relations

Z(Z{f)mdri:—o (1<jsm)

Here g(t) denotes the image in A’ of a polynomial ¢(T)=¢(T,,...,T,) In A.

15.4 Proposition. Suppose above that A=k® J, i.e. that k is mapped onto
A"= A/J. Then d , induces an isomorphism of A’-modules

JJJ2 >0 ,/1-Q,.

Proof. It suffices to show that these modules have the same homomorphisms
into any A’-module M, i.e. that Der, (4, M)~ Hom ,.__ ,(J/J*, M).If X:A-> M
1s a k-derivation then X(k) =0 so, since A =k® J, X 1s determined by X|J.
Since JM =0 we must have X(J°)=0, so X is determined by a
homomorphism h:J/J*— M. Conversely, given such an h, it induces

J—J/J?*— M, and hence an X:4 — M so that X(k) = 0. A routine calculation
shows that X 1s a k-derivation.

15.5 Localization. Let S be a multiplicative set in 4. Then 2, _,, =Q ,[S” 1,

and we have
d _
d(f); As—alds) 4 ses)
S

32

In particular, it follows that, if M is an A[S™']-module, i.e. an A-module on
which the elements of S act invertibly, then

Der, (A, M) = Der, [A[S '], M).

For example, if M is a module over one of the local rings A, of A then
Der, (A, M) = Der,(Ap, M).

Here 1s another important consequence of the localizability of €2: Suppose
V 1s a K-scheme. Then there is a coherent sheaf 2, ¢ of @),-modules such
that, on any affine open subscheme U = specg(A), the sheaf Q= 2, «|U
1s the sheaf €2, corresponding to €2, . If xeU then the stalk 2, of £,
1s therefore just the localization of 2, at the local ring O, of A, or,
alternatively, 24 .
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15.6 Separable field extensions (see AG.2.3). Suppose A 1s a finitely generated
field extension of k of transcendence degree n. Then

dim, 2,=2n

with equality if and only if A is separable over k. In this case a,,...,a,eA are
a separating transcendence basis of A over k if and only if da,,...,da, are

an A-basis of 2, ([N.B] (a): V, §16, no. 6, Cor. 1).
If B is a finitely generated field extension of 4 which is separable over k

then 1t follows from the exact sequence ([N.B] (a). IT1, §10, no. 7, Prop.7)
0 — Der ,(B, B) - Der, (B, B) — Der, (A, B),

by counting B-dimensions, that B is separable over A<>Der,(B, B)-
Der, (A4, B) is surjective <> B(X)Q2,— Q is injective.
A

15.7 Tensor products. Suppose A = A,(X)A,, and write 2,=Q, . Then
k

Q,= (.Ql ®A2)®(A1 @nz).
k k
Equivalently, if M is any A-module, we have

Der, (A, M) = Der, (A, M)@® Der,(A4,, M).

The map from left to right 1s induced by the homomorphisms A; - A. For
the inverse we must produce a k-derivation X:4 — M from a given pair of
them X;:A;— M. The formula is:

X(a;®a,)=(X,a,®a,)+(a; ® X,a,).

15.8 Base change. For any base change k — k' we have a natural isomorphism

K(X)Q2,,.—-Q,. ...
G? A/k kCi()A/L

15.9 The tangent bundle lemma. We consider k-algebras A and D where D
1s of the form D= B@® M with B a subalgebra and M an ideal of square
zero. If f:A— B 1s an algebra homomorphism we write M , for the resulting
A-module M with A operating via f.

The projection D — B = D/M induces a map

Hom,_,,,(A, D) — Hom,_,,,(4, B).
We assert that, for f as above, there is a canonical bijection
Der,(4, M) = p~ (/).

In fact, any element of p~'(f) can be written uniquely in the form f + X,
for some k-linear map X:A4 — M, with the understanding that (f + X)(a) =
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f(a) + X(a)eD = B@® M. The assertion above can then be translated: f + X
1s multiplicative if and only if X 1s a derivation. To see this take a, be A. Then

(f(a) + X(a))(f (D) + X(b)) =/f(a)f (b) + X(a)f (b) +f(a)X(b) + X(a)X(D})
= f(ab) + (X(a) f(b) + f(a) X (D)),

because fis multiplicative and M?* = 0.

§16. Tangent Spaces

16.1 The Zariski tangent space. Let x be a point on a variety (or even a
K-scheme) V. Recall that K(x) = @ _/m_ denotes the residue field of the local
ring of x. It coincides with K, but the notation refers, more precisely, to its
@ .-module structure.

The tangent space of V at x is

T( V)x = DerK((ﬁxs K(X))
It follows from (AG. 15.4) that this is canonically isomorphic to
Homg .4 (M, /m?2, K).

If e, write (df), for the image modulo m? of f — f(x). Then the “tangent
vector” XeT(V), corresponding to h:m,/m2—K(x) is defined by

Xf = h{(df),)

Suppose V has a k-structure and xe V(k). Then @_ has a natural k-structure
0., whose residue class field k(x) 1s a k-structure on K(x). Thus we obtain
a k-structure Der, (0 ,, k(x)) on T(V),. As above this k-structure is isomorphic
(0

HOMy noq (1M /M2, ).

Let a:V — W be a morphism of varieties (or of K-schemes). Then we have
the comorphism

a’:0 . —0..

x(x)

K(x), thus viewed as an 0, ,-module coincides with K(a(x)). Therefore we
have a natural map

Derg(0,, K(x)) = Derg (O, K(x(x)))
which we denote by
(da): T(V), = T(W)yx).
Exphcitly, if XeT(V), and f f e,
(do) (X)) = X(a®(f)).

In case o is a k-morphism relative to k-structures on V and W and if
xeV(k), then a(x)e W(k) and 1t 1s easy to see that (dx), 1s defined over k,
relative to the k-structure described above on the tangent spaces.

then
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The differential, (da),, behaves functorially in the following sense:

(le)x — ]T(V)x-
If B:W — Z then

d(foa), = (df)y°(da), (chain rule).

Suppose V =V, x V, 1s a product and that x =(x,, x,). Define a;:V,—>V
(i=1,2) by a,(u) =(u, x,) and a,(y) =(x,, y). We claim that

(dal)xl + (daZ)xz: T( Vl)xl @ T( VZ)xz — T( V)x

1s an 1somorphism. Since this 1s a local matter we can assume the V; to
be affine, say V;=specg(A4,). Then V =specy(4) where A=A4,(X)4,. It
K

follows from (AG.15.5) that we can compute the tangent spaces as

T(V), = Derg(A4, K(x))and T(V}),, = Derg(4,, K(x;)). As an A-module we have

K(x) = K(x;)X)K(x,). (both sides being isomorphic to K). Hence it follows
K

from AG. 15.7 that T(V), = T(V,),, ® T(V,),,, and it is easily checked that
this 1dentification admits the description given above.

16.2 The tangent bundle. At cach point of a K-scheme V' we have a tangent
space. We shall now construct the tangent bundle, T(V'), which fits all of these
vector spaces into a coherent family parametrized by V.

Write K[ 0] = K® Ko for the dual numbers, the algebra with one generator,
¢, and one relation, 2 =0. We have the inclusion i and projection p,

K[6] =K,

defined by p(d0) =0. As a set we define T (V) to be V(K[0]), the points of V
in K[d] (see AG.13.1). It therefore comes equipped with maps

I(V)=V(K[0])

v V(K)

induced by p and i above. Morcover T(V) is functonial: If :V =W is a
morphism of varieties we have a commutative square

T(V) —2— T(W)

[

V ———— 5 W

[t also commutes if we replace the p’s by i's.
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Recall that
V(K[0]) = Morg. . (speck(K[2]), V).

It 1s clear that the scheme specy(K[d]) consists of a single point, with local
ring K[0]. Hence a point of V(K[d]) corresponds to a point xeV and a
comorphism @,— K[o]. The latter can be written in the form e_+ 06X for
some K-linear map X:0,— K. This sends fe®_ to f(x)+ oX(f) in K[d].
According to (AG.159) the X's so obtained vary precisely over
Derg(0,, K(x))= T(V),. We shall denote the element e, + 0 X also by

0X
x I

e

and view it both as a homomorphism @_,— K[é] and as a point of T(V).
From the latter point of view we see that the projection p, is given by

pye¥iox.

(Moreover i), sends x to e, = e%.) Thus we can reformulate the conclusion
above as follows: There is a natural bijection

T(V),—p, ' (x)
given by

X—e

X

Suppose a:V —» W is a morphism. Then T(x)(e2*)=e?*-a°, where
.0, 0, Expanding the right side we obtain (e, +0X)oa’=e,oa’ +
0Xoa’=¢e,  + d(da) X. Thus

Xy é(da)x X
T(0)(e}”) = €5y
In other words, the map that T(x) induces on the fibre over x corresponds
to the differential (da),.

16.3 T(V) “is” a K-scheme. To give T(V) the structure of a K-scheme it
suffices tp do so when V is affine and to verify that the construction in that
case is suitably functorial. Before doing this we recall some properties of
symmetric algebras.

Let M be a module over a (commutative) ring A. The symmetric algebra,
S (M), is the largest commutative quotient of the tensor algebra of M. Both
of these A-algebras are graded, with 4 in degree zero, and M in degree one.
The universal property of the symmetric algebra i1s expressed by the
identification

HomA-alg(SA(M):! B) = HomA-mod(Ma B)

for all commutative) A-algebras B. In other words, a module homomorphism
M — B extends uniquely to an A-algebra homomorphism § ,(M)— B.
The following [acts are easily verified:
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(a) If M is free with basis ¢,,...,t,, then S, (M)=A[t,,...,t,], the
polynomial ring.

(b) S, MDN)= ®S

(c) I A— A’ 1s any base change then S . (A’@M) = A'X)S (M
A A

Now let V =specy(A) be an affine K-scheme, and put 2=, the
A-module of K-differentials (see AG.15.1). We propose to construct a

bijection
@:T(V)—speck(S 4(£2)),

which 1s functorial in A4, and so that p, and i, on the left correspond, on
the right, to the inclusion 4 — § ,(2) and the projection S ,(£2) —» A sending
2 to 0O, respectively. Moreover, if V has a k-structure given by 4, < A4 then
@ will be compatible with the k-structure on the right given by S, (£2,), where

2, =10, . (see AG.15.8 and (c) above).
We define the K-algebra homomorphism

p(er’):S ()= K
as follows: Viewing e :4 — K(x) as a base change, it induces

e, S 4(£2) - S(£2(x)),

where Q(x) = K(x)(X)£2. We define ¢(e®*) to be the composite of this with
some 4

h:Sg(£2(x))— K
to be explained now. We have
HomK-alg(SK(Q(x)): K) — HomK-mod(Q(x): K)

If Q. is the localization of £ at @, then Q(x)=K ®.Q K x)®.()

Q2. /m_Q_. Moreover, with the aid of AG.13.5 and AG. 15 3 we see that
Homg_,,,4(£2(x), K) = Derg (0,, K(x)) = T(V),.

Combining these 1dentifications, we can now choose heHomy_,, (Sx(£2(x)), K)

to correspond to XeT(V),.
The properties of ¢ claimed above are all easily verified, in particular, the

fact that ¢ 1s bijective.
Suppose now that V i1s a variety. It does not then follow from the con-

struction above that T(V) is a variety, because S ,(£2) may not be reduced.
However, if £2 is free then (see (a) above) S ,(£2) 1s a polynomial ring over A,
so T(V) 1s a variety of the form V x K" for some n. More generally, then,

we conclude that:
If V is a variety and if £2 is locally free then T(V) is a variety locally

isomorphic to the product of V with an affine space.
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§17. Simple Points

17.1 A point x on a variety V is said to be simple on V if @, 1s regular local

ring (see (AG.3.9)). If all points of V are simple we say that V 1s smooth.
In the next theorem, (2, denotes the module of differentials €2, .

(cf. AG.15.5).

Theorem. The following conditions are equivalent:

(1) x is simple on V.
(2) dim, T(V), =dim_V.
(3) x lies on a unique irreducible component of V,and £2 _is a free O -module.

Using (AG.15.4) we see that
T( V)x = DerK(COJv K(X)) = HomK-mod (Qx/mxgxﬁ K)

and
2./mQ =~m/m?.

Moreover (see (AG.3.9)) we have
dimg(m,/m?%) = dim 0, (= dim, V)

with equality if and only if @ 1s regular. These remarks already show the
equivalence of (1) and (2).

The point x lies on a unique irreducible component if and only if @_ is an
integral domain. Since regular local rings are integral domains it suffices, for
the rest of the proof, to assume V is irreducible. If not, pass to an irreducible

open neighborhood of x.

Let S be a minimal set of generators of 2, as an @_-module. It follows
from AG.3.2 that card S =dimg(Q2,/m £2.), and £2_ is free if and only if S
is a basis. The latter 1s equivalent to 1 ® S being a basis over K(V), the field
of fractions of @,, of K(V)(X)£2,. Since 1 ® S spans the latter we conclude

Ox

that 2, 1s O -free if and only if card § = dimK(V,(K( V)®.(2x).

From the fact that £, /m 0_=~m, /m? we see that -

cardS=dim T(V), 2dim, V.
On the other hand it follows from AG.15.5 and AG.15.6, using the separability
of K(V) over K, that K(V)%)@.QJc = Qxwyx> and
dimg,) 2wk = tr-deg-xK(V)=dim, V.
Combining these remarks we have:
Q_1s O _-freee>cardS =dim, V<dim, T(V), =dim, V.

This proves (2)<>(3), thus concluding the proof of the theorem.
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17.2 Corollary. Let V be a variety. The set U of simple points on V is an
open dense subvariety whose irreducible and connected components coincide.

It follows from AG.1.2 that the set U, of points of V lying on a unique
irreducible component is open and dense, and the irreducible and connected

components of U, coincide. Since U <« U, we can therefore reduce to the
case when V 1s irreducible. If €2 is the coherent sheafl of differentials on V
(see AG.15.5) then it follows from criterion (3) above that U = {xeV|{2, 1s
a free 0,-module}. To show this is open dense we can assume V is affine,
say spec (A), and that 2 i1s the A-module 2, . In this case it follows from
(AG.3.5) that U’ = {xespec(A4)|£2, is a free A,-module} is open in spec(A).
Taking for x the zero prime ideal, in which case A, is a field, we see that U’
1s not empty. Since spec(A) is irreducible, U’ i1s dense, and hence likewise for

U = U'nspecg(A).

17.3 Theorem. The following conditions on a morphism a:V — W of varieties
are equivalent:

(1) a is (dominant and) separable.
(2) There is a dense open subvariety V, of V such that (da)_ is surjective for

all xeV,.
(3) In each irreducible component of V there is a simple point x (of V) such
that a(x) is simple on W and such that (da), is surjective.

Suppose V' < V and W' <« W are dense open subvarieties such that a induces
a morphism o': V' — W'. Then clearly the theorem for a will follow once we
prove it for o, thanks to the density of simple points. In this way one can
easily reduce to the case where V and W are each irreducible, affine, and
smooth. The latter condition implies that the modules Q, =Q,,,,, and
Qw = Qywyx are locally free. By shrinking V and W still further we can
assume they are (globally) free.

The comorphism oy:K[W]— K[V] induces Q4 — €2, and (da), then
corresponds to the induced homomorphism from

Hom lrq,,]_md(.Q,,». K(x))

to

Hom,, ...« K[V] R 24 K(x)).

K[W)

Write d: M — N for the homomorphism K[ V] (X) Q4 — Q. The modules M

K[W]
and N are free of ranks dim W and dim V, respectively, and d is represented
by a matrix (f;;) over K[ V]. The description of (da), above shows that it 1s
represented by the matrix (f;(x)) over K. Thus (da), 1s surjective if and only
if the rank of (f;(x)) 1s dim W. The set of such x is therefore open, and it i1s
non-empty 1if and only if (f;;) has rank dim W as a matrix over K(V). The
latter, 1in turn, is equivalent to the injectivity of £2,, — €2,.. This is equivalent
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to (1) the injectivity of a, (i.e. the dominance of a), and (ii) the surjectivity of
Derg(K(V), K(V))— Derg(K(W),K(V)). The last condition means that
K-derivations of K(W) into K(V) extend to K(V), and this condition (see
AG.15.6) characterizes separability of K(V) over K(W).

17.4 Corollary. If a;:V,> W, (i=1,2) are two separable morphisms then
o, X 0y:Vy X V> W, x W, is separable.
This follows easily from criterion (2).

§18. Normal Varieties

This section contains the main results needed in Chapter II, §6 for the
construction of homogeneous spaces.

18.1 Definition. A point x on a variety V is said to be normal on V if the
local ring @, is normal, 1.e. if @_ is an integral domain integrally closed in
its field of fractions. In particular such an x lies on a unique irreducible
component of V, i.e. it has an irreducible open neighborhood. Consequently
most questions involving normality can be easily reduced to the case of
irreducible varieties.

If every point of V 1s normal on V then V is called a normal variety.

As an example, every simple point of V is normal on V (i.e. a regular local
ring 1s normal). It follows (see AG.17.2) that the set of normal points on V
contains a dense open set; in fact, 1t is itself open.

Moreover, a product of two normal varieties is normal [Fond., Ch. V, I,

Prop. 3].

18.2 Normalization. Let V be an irreducible algebraic variety, and let L be
a finite (algebraic) extension of K(V). Then there is a normal irreducible
variety V' and a surjective morphism a:V'— ¥V with finite fibres, and a
K(V)-algebra isomorphism K(V')— L. Moreover these data are essentially
unique. We usually identify K(V’) with L, and call a: V' — V the normalization
of V in L. 1t is determined by the following property: If U is open affine in
V, then U' = o~ '(U) is specy[K[UY), where K[U'] is the integral closure of
K[U]in L, and a is induced by K[U] <« K[U] = K[U']. If L = K(V) we just
call a: V' — V the normalization of V.

Note that a normalization of an affine variety is affine. Moreover, a normaliz-
ation of a project<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>