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PREFACE TO REVISED EDITION
(OF VOLUMED

There are a multitude of minor corrections. In addition there are a
few substantial changes in and supplements to the exposition, including some
proofs. (Such is the case, for example, with Sections 7.1-7.3.)

Professor Katznelson’s book [Kz] is recommended as a companion text.

Many references to Mathematical Reviews have been inserted. None of these
18 essential to an understanding of the main text, and all may be ignored on a
first reading. There is an already very large and rapidly increasing literature,
and a preliminary glance at a review (often more rapidly accessible than the
corresponding original paper) may help more ambitious readers to decide
which research papers they wish to study. The list of such references is not
claimed to be complete.

I am grateful to Professor Goes for correspondence which has led to a
number of additions and improvements. My warmest thanks go to my friend
and colleague Dr. Jeff Sanders for his help with the revision.

Finally, my wife earns my gratitude for her help in preparing the revised
typescript.

R K K.
CANBERRA, January 1979






PREFACE

The principal aim in writing this book has been to provide an intro-
duction, barely more, to some aspects of Fourier series and related topics
in which a liberal use is made of modern techniques and which guides the
reader toward some of the problems of current interest in harmonic analysis
generally. The use of modern concepts and techniques is, in fact, as wide-
spread as is deemed to be compatible with the desire that the book shall
be useful to senior undergraduates and beginning graduate students, for
whom it may perhaps serve as preparation for Rudin’s Harmonic Analysis
on Groups and the promised second volume of Hewitt and Ross’s Abstract
Harmonic Analysis.

The emphasis on modern techniques and outlook has affected not only
the type of arguments favored, but also to a considerable extent the choice
of material. Above all, it has led to a minimal treatment of pointwise con-
vergence and summability: as is argued in Chapter 1, Fourier series are not
necessarily seen in their best or most natural role through pointwise-tinted
spectacles. Moreover, the famous treatises by Zygmund and by Bary on
trigonometric series cover these aspects in great detail, while leaving some
gaps in the presentation of the modern viewpoint; the same is true of the
more elementary account given by Tolstov. Likewise, and again for reasons
discussed in Chapter 1, trigonometric series in general form no part of the
program attempted.

A considerable amount of space has been devoted to matters that cannot
in a book of this size and scope receive detailed treatment. Among such
material, much of which appears in small print, appear comments on diverse
specialized topics (capacity, spectral synthesis sets, Helson sets, and so
forth), as well as remarks on extensions of results to more general groups.
The object in including such material is, in the first case, to say enough for
the reader to gain some idea of the meaning and significance of the problems
involved, and to provide a guide to further reading; and in the second case,
to provide some sort of ‘‘cultural’’ background stressing a unity that
underlies apparently diverse fields. It cannot be over-emphasized that the
book is perforce introductory in all such matters.

The demands made in terms of the reader’s active cooperation increase

vii
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fairly steadily with the chapter numbers, and although the book is surely
best regarded as a whole, Volume 1 is self-contained, is easier than Volume 11,
and might be used as the basis of a short course. In such a short course, it
would be feasible to omit Chapter 9 and Section 10.6.

As to specific requirements made of the reader, the primary and essential
item 1s a fair degree of familiarity with Lebesgue integration to at least
the extent described in Williamson’s introductory book Lebesgue Integration.
Occasionally somewhat more is needed, in which case reference is made to
Appendix C, to Hewitt and Stromberg’s Real and Abstract Analysis, or to
Asplund and Bungart’'s A First Course in Integration. In addition, the
reader needs to know what metric spaces and normed linear spaces are, and
to have some knowledge of the rudiments of point-set topology. The remain-
ing results in functional analysis (category arguments, uniform boundedness
principles, the closed graph, open mapping, and Hahn-Banach theorems)
are dealt with in Appendixes A and B. The basic terminology of linear
algebra is used, but no result of any depth is assumed.

Exercises appear at the end of each chapter, the more difficult ones being
provided with hints to their solutions.

The bibliography, which refers to both book and periodical literature,
contains many suggestions for further reading in almost all relevant directions
and also a sample of relevant research papers that have appeared since the
publication of the works by Zygmund, Bary, and Rudin already cited.
Occasionally, the text contains references to reviews of periodical literature.
My first acknowledgment is to thank Professors Hanna Neumann and
Edwin Hewitt for encouragement to begin the book, the former also for the
opportunity to try out early drafts of Volume I on undergraduate students
in the School of General Studies of the Australian National University, and
the latter also for continued encouragement and advice. My thanks are due
also to the aforesaid students for corrections to the early drafts.

In respect to the technical side of composition, I am extremely grateful
to my colleague, Dr. Garth Gaudry, who read the entire typescript (apart
from last-minute changes) with meticulous care, made innumerable valuable
suggestions and vital corrections, and frequently dragged me from the
brink of disaster. Beside this, the compilation of Sections 13.7 and 13.8
and Subsection 13.9.1 is due entirely to him. Since, however, we did not
always agree on minor points of presentation, I alone must take the blame
for shortcomings of this nature. To him I extend my warmest thanks.

My thanks are offered to Mrs. Avis Debnam, Mrs. K. Sumeghy, and Mrs.
Gail Liddell for their joint labors on the typescript.

Finally, I am deeply in debt to my wife for all her help with the proof-
reading and her unfailing encouragement.

R.E. K.
CANBERRA, 1967
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CHAPTER 1

Trigonometric Series and Fourier Series

1.1 The Genesis of Trigonometric Series and Fourier Series

1.1.1. The Beginnings. D. Bernoulli, D’Alembert, Lagrange, and Euler,
from about 1740 onward, were led by problems in mathematical physics to
consider and discuss heatedly the possibility of representing a more or less
arbitrary function f with period 27 as the sum of a tmgonometmc series of the
form ’

1hay + Z (a, cos nx + b, sin nx), (1.1.1)
n=1

or of the formally equivalent series in its so-called ““complex’’ form

o0

D cqeme, (1.1.1%)

in which, on writing b, = 0, the coefficients c, are given by the formulae
Cn = I/Z(au T ibn)}/ﬁ—n — I/Z(an + zbn) (n=0,1,2,-. )

This discussion sparked off one of the crises in the development of analysis.

Fourier announced his belief in the possibility of such a representation in
1811. His book Théorie Analytique de la Chaleur, which was pubhshed in
1822, contains many particular instances of such representations and makes
widespread heuristic use of trigonometric expansions. As a result, Fourier’s
name is customarlly attached to the following Prescrlptlon for the coefficients
a,, b,, and c,

= ;f f(x) cos nx dx, b, = }rf“ f(x) sin nx dx, (1.1.2)

— 1 " -inx %k
C, = Q;f_uf(x)e dx, (1.1.2%)

the a, and b, being now universally known as the ‘““real,”’ and the c, as the
“complex,” Fourier coefficients of the function f (which is tacitly assumed to
be integrable over (—m, w)). The formulae (1.1.2) were, however, known
earlier to Euler and Lagrange.

| 1



2 TRIGONOMETRIC SERIES AND FOURIER SERIES

The grounds for adopting Fourier’s prescription, which assigns a definite
trigonometric series to each function f that is integrable over (—=, ), will
be scrutinized more closely in 1.2.3. The series (1.1.1) and (1.1.1*), with the
coefficients prescribed by (1.1.2) and (1.1.2%*), respectively, thereby assigned
to f are termed the “real” and ‘‘complex” Fourier series of f, respectively.

During the period 1823-1827, both Poisson and Cauchy constructed proofs
of the representation of restricted types of functions f by their Fourier series,
but they imposed conditions which were soon shown to be unnecessarily
stringent.

It seems fair to credit Dirichlet with the beginning of the rigorous study of
Fourier series in 1829, and with the closely related concept of function in
1837. Both topics have been pursued with great vigor ever since, in spite of
more than one crisis no less serious than that which engaged the attentions
of Bernoulli, Euler, d’Alembert, and others and which related to the pre-
vailing concept of functions and their representation by trigonometric series.
(Cantor’s work in set theory, which led ultimately to another major crisis,
had its origins in the study of trigonometric series.)

\T Vd

1.1.2. The rigorous developments just mentioned showed in due course |
that there are subtle differences between trigonometric series which converge
at all points and Fourier series of functions which are integrable over (— =, 7),
even though there may be no obvious clue to this difference. For example, the
trigonometric series

converges everywhere; but, as will be seen in Exercise 7.7 and again in 10.1.6,
it 18 not the Fourier series of any function that is (Lebesgue-)integrable over
(—m, m).

The theory of trigonometric series in general has come to involve itself
with many questions that simply do not arise for Fourier series. For the
express purpose of attacking such questions, many techniques have been
evolved which are largely irrelevant to the study of Fourier series. It thus
comes about that Fourier series may in fact be studied quite effectively
without reference to general trigonometric series, and this is the course to be
adopted in this book.

The remaining sections of this chapter are devoted to showing that, while
Fourier series have their limitations, general trigonometric series have others
no less serious; and that there are well-defined senses and contexts in which
Fourier series are the natural and distinguished tools forrepresenting functions
in useful ways. Any reader who is prepared to accept without question the

restriction of attention to Fourier series can pass from 1.1.3 to the exercises
at the end of this chapter.




[1.2] POINTWISE REPRESENTATION OF FUNCTIONS 3

1.1.3. The Orthogonality Relations. Before embarking upon the
discussion promised in the last paragraph, it is necessary to record some facts
that provide the heuristic basis for the Fourier formulae (1.1.2) and (1.1.2%)
and for whatever grounds there are for according a special role to Fourier
series.

These facts, which result from straightforward and elementary calcula-
tions, are expressed in the following so-called orthogonality relations satisfied
by the circular and complex exponential functions:

| (o 0 (m#nm=20,n 2> 0)
-2-7;f cos mx cos nx dx = < 1, (m=mn >0),
—7 1 (m = n = 0)
- 0 (m #n,m = 0,n = 0)
— sin mx sin nx dx = <1 m=mn >0),
27 ) _ /2 ( ) (1.1.3)

0 (m = n = 0)

l n [
— cos mxsin nxdx = 0,
27 J_,

1 J‘u eimx o—inx Jo {O (m 7 n)

2 J_ . 1 (m = n);

in these relations m and n denote integers, and the interval [ —#, 7] may be
replaced by any other interval of length 27.

1.2 Pointwise Representation of Functions by Trigonometric
Series

1.2.1. Pointwise Representation. The general theory of trigonometric
series was inaugurated by Riemann in 1854, since when it has been pursued
with vigor and to the great enrichment of analysis as a whole. For modern
accounts of the general theory, see [Z;], Chapter IX and [Ba, ,], Chapters
XII-XV. | |

From the beginning a basic problem was that of representing a more or
less arbitrary given function f defined on a period-interval I (say the interval
[ — 7, ]) as the sum of at least one trigonometric series (1.1.1), together with a
discussion of the uniqueness of this representation.

A moment’s thought will make it clear that the content of this problem
depends on the interpretation assigned to the verb ‘““to represent’’ or, what
comes to much the same thing, to the term “sum” as applied to an infinite
series. Initially, the verb was taken to mean the pointwise convergence of the
series at all points of the period interval to the given function f. With the
passage of time this interpretation underwent modification in at least two
ways. In the first place, the demand for convergence of the series to f at all
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points of the period-interval I was relaxed to convergence at almost all
points of that interval. In the second place, convergence of the series to f at
all or almost all points was weakened to the demand that the series be
summable to f by one of several possible methods, again at all or almost all
points. For the purposes of the present discussion it will suffice to speak of
just one such summability method, that known after Cesaro, which consists
of replacing the partial sums

So(Z) = 1/2“’0’

N
sn(®) = Yoao + D (@ucosnx + bysinnx) (N =1,2,---) (1.2.1)
n=1

of the series (1.1.1) by their arithmetic means

80+"'+8N

. (N =0,1,2,--.). (1.2.2)

oy =
Thus we shall say that the series (1.1.1) is summable at a point x to the
function f if and only if

Nlim ox(®) = f(x).

It will be convenient to group all these interpretations of the verb ‘‘to
represent’’ under the heading of powntwise representation (everywhere or
almost everywhere, by convergence or by summability, as the case may be)
of the function f by the series (1.1.1).

In terms of these admittedly rather crude definitions we can essay a
bird’s-eye view of the state of affairs in the realm of pointwise representation,
and in particular we can attempt to describe the place occupied by Fourier
series in the general picture.

1.2.2. Limitations of Pointwise Representation. Although it 18
undeniably of great intrinsic interest to know that a certain function, or
each member of a given class of functions, admits a pointwise representation
by some trigonometric series, it must be pointed out without delay that this
type of representation leaves much to be desired on the grounds of utility. A
mode of representation can be judged to be successful or otherwise useful as
a tool in subsequent investigations by estimating what standard analytical
operations applied to the represented function can, via the representation,
be expressed with reasonable simplicity in terms of the expansion coeflicients
a, and b,. This is, after all, one of the main reasons for seeking a representation
in series form. Now it is a sad fact that pointwise representations are In
themselves not very useful in this sense; they are simply too weak to justify
the termwise application of standard analytical procedures.

Another inherent defect is that a pointwise representation at almost all
points of I is never unique. This is so because, as was established by Men’shov
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in 1916, there exist trigonometric series which converge to zero almost every-
where and which nevertheless have at least one nonvanishing coeflicient;
see 12.12.8. (That this can happen came as a considerable surprise to the
mathematical community.)

1.2.3. The Role of the Orthogonality Relations. The a priori grounds
for expecting the Fourier series of an integrable function f to eftect a point-
wise representation of f (or, indeed, to effect a representation in any reasonable
sense) rest on the orthogonality relations (1.1.3). It is indeed a simple
consequence of these relations that, if there exists any trigonometric series
(1.1.1) which represents f in the pointwise sense, and if furthermore the sy (or
the oy) converge dominatedly (see [W], p. 60) to f, then the series (1.1.1)
must be the Fourier series of f. However, the second conditional clause
prevents any very wide-sweeping conclusions being drawn at the outset.

As will be seen in due course, the requirements expressed by the second
conditional clause are fulfilled by the Fourier series of sufficiently smooth
functions f (for instance, for those functions f that are continuous and of
bounded variation). But, alas, the desired extra condition simply does not
obtain for more general functions of types we wish to consider in this book.
True, a greater degree of success results if convergence is replaced by summa-
bility (see 1.2.4). But in either case the investigation of this extra condition
itself carries one well into Fourier-series lore. This means that this would-be
simple and satisfying explanation for according a dominating role to Fourier
series can scarcely be maintained at the outset for functions of the type we
aim to study.

1.2.4. Fourier Series and Pointwise Representations. What has been
said in 1.2.3 indicates that Fourier series can be expected to have but
limited success in the pointwise representation problem. Let us tabulate a
little specific evidence.

The Fourier series of a periodic function f which is continuous and of
bounded variation converges boundedly at all points to that function. The
Fourier series of a periodic continuous function may, on the contrary,
diverge at infinitely many points; even the pointwise convergence almost
everywhere of the Fourier series of a general continuous function remained
in doubt until 1966 (see 10.4.5), although it had been established much
earlier and much more simply that certain fixed subsequences of the sequence
of partial sums of the Fourier series of any such function is almost everywhere
convergent to that function (the details will appear in Section 8.6). The
Fourier series of an integrable function may diverge at all points.

If ordinary convergence be replaced by summability, the situation
improves. The Fourier series of a periodic continuous function is uniformly
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summable to that function. The Fourier series of any periodic integrable
function is summable at almost all points to that function, but in this case
neither the sy nor the oy need be dominated.

1.2.5. Trigonometric Series and Pointwise Representations. Having
reviewed a few of the limitations of Fourier series vis-a-vis the problem of
pointwise representation, we should indicate what success is attainable by
using trigonometric series in general.

In 1915 both Lusin and Privalov established the existence of a pointwise
representation almost everywhere by summability methods of any function f
which is measurable and finite almost everywhere. For 25 years doubts
lingered as to whether summability could here be replaced by ordinary
convergence, the question being resolved affirmatively by Men’shov in 1940.
This result was sharpened in 1952 by Bary, who showed that, if the function
f is measurable and finite almost everywhere on the interval I, there exists a
continuous function F such that F'(x) = f(x) at almost all points of /, and
such that the series obtained by termwise differentiation of the Fourier
series of F' converges at almost all points x of I to f(x). Meanwhile Men’shov
had in 1950 shown also that to any measurable f (which may be infinite on a
set of positive measure) corresponds at least one trigonometric series (1.1.1)
whose partial sums sy have the property that lim, _, , sy = f In measure on
I. This means that one can write sy = uy + vy, Wwhere u, and v, are finite-
valued almost everywhere, lim,,_, , uy(x) = f(x) at almost all points x of [/,
and where, for any fixed ¢ > 0, the set of points x of I for which |vy(z)| > &
has a measure which tends to zero as N — 00. (The stated condition on the

vy 18 equivalent to the demand that

lim | [on] 4

N— o0 —J'll + I’DNI

and the circuitous phrasing is necessary because f may take infinite values
on a set of positive measure.) This sense of representation is weaker than
pointwise representation. For more details see [Ba,], Chapter XV.

These theorems of Men’shov and Bary lie very deep and represent enormous
achievements. However, as has been indicated at the end of 1.2.2, the
representations whose existence they postulate are by no means unique.

Cantor succeeded in showing that a representation at all points by a
convergent trigonometric series is necessarily unique, if it exists at all.
Unfortunately, only relatively few functions f admit such a representation:
for instance, there are continuous periodic functions f that admit no such
representation. (This follows on combining a theorem due to du Bois-Reymond
and Lebesgue, which appears on p. 202 of [Ba,], with results about Fourier
series dealt with in Chapter 10 of this book.) It is indeed the case that, in a
sense, ‘‘'most’’ continuous functions admit no representation of this sort.
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1.2.6. Summary. It can thus be said in summary that pointwise repre-
sentations are subject to inherent limitations as analytical tools, and that
Fourier series can be accorded a distinguished role in respect of this type of
representation only for functions of a type more restricted than one might
hope to handle.

This being so, it is natural to experiment by varying the meaning assigned
to the verb ‘“to represent’’ in the hope of finding a more operationally effective
meaning and of installing Fourier series in a more dominating role.

Before embarking on this program, it is perhaps of interest to add that a
similar choice prevails in the interpretation of differentiation (which in fact
has connections with the representation problem). The pointwise everywhere
or almost everywhere interpretation of the derivative, if deprived of any
further qualification, is also not entirely effective operationally. A new
interpretation is possible and leads to distributional concepts; Chapter 12 is
devoted to this topic.

1.3 New Ideas about Representation

1.3.1. Plan of Action. In the preceding section we have recounted some
of the difficulties in the way of according a unique position to Fourier series
on the grounds of their behavior in relation to the traditionally phrased
problem of representing functions by trigonometric series. We have also
indicated the shortcomings of this type of representation.

To this it may be added that in cases where the mathematical model of a

physical problem suggests the use of expansions in trigonometric series,
pointwise representations frequently do not correspond very closely to the
physical realities.
Faced with all this, we propose to consider new meanings for the verb ‘“to
represent’’ that are in complete accord with modern trends, and which will in
due course be seen to justify fully a concentration on Fourier series as a
representational device.

1.3.2. Different Senses of Convergence and Representation. In
recent times analysts have become accustomed to, and adept at working in
diverse fields with, other meanings for the verb ‘“to represent,”” most of
which (and all of which we shall have occasion to consider) are tantamount
to novel ways in which a series of functions may be said to converge. Such
ideas are indeed the concrete beginnings of general topology and the theory
of topological linear spaces.

Thus encouraged, we contemplate some possible relationships between an
integrable function f on (—=, ») and a trigonometric series (1.1.1) or (1.1.1%)
expressed by each of equations (A) to (D) below.
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For this purpose we write again

N
So(x) = Voay, sy(x) = Yoa, + Z (a, cos nx + b, sin nx),
n=1

so that

su(@) = > cqen®, (1.3.1)
Inl<N
and also

on(z) = w

The relationships referred to are (compare 6.1.1, 6.2.6, 12.5.3, and 12.10.1):

b/ 4

(A) lim B |f(®) — oy(x)] dx = 0;

(B) lim [*|f(@) - sy(a)|? dz = 0;

© lim sup, |/() — ox(@)] = 0;

(D) lim [* w@en(e)dz = | u(@)f@) do

for each indefinitely differentiable periodic function w.

If any one of these relations holds for a given f and a given trigonometric
series, one may say that the trigonometric series represents f in the corre-
sponding sense: in case (A) it would be usual to say that the trigonometric
series is-Cesaro-summable in mean with exponent (or index) 1 to f; in case (B)
that the trigonometric series is convergent in mean with exponent (or index) p
to f; in case (C) that the trigonometric series is uniformly Cesaro-summable to
f; and in case (D) that the trigonometric series is distributionally convergent

to f.

1.3.3. The Role of Fourier Series. It is genuinely simple to verify that,
given f, there is al most one trigonometric series for which any one of relations
(A) to (D) is true, and that this only contender is the Fourier series of f (see
the argument in 6.1.3). Moreover, it is true that the relations do hold if the
trigonometric series is the Fourier series of f, provided in case (B) that either
l <p<ooand feL? or p =1 and flog* |f| e L' (see 8.2.1, 12.10.1, and
12.10.2); and in case (C) that f is continuous and periodic. (The symbols
L' and L? here denote the sets of measurable functions f on (—=, #) such
that |f| and |f|?, respectively, are Lebesgue-integrable over (—m, w). A
tiny modification to this definition is explained in detail in 2.2.4 and will be
adopted thereafter in this book.)
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Each of the relations (A) to (D) can, therefore, be used to characterize the
Fourier series of f under the stated conditions, and each provides some
justification for singling out the Fourier series for study. (There are, by the
way, numerous other relationships that might be added to the list.)

It turns out that the weakest relationship (D) is suggestive of fruitful
generalizations of the concept of Fourier series of such a type that the
distinction between Fourier series and trigonometric series largely disap-
pears. It suggests in fact the introduction of so-called distributions or
generalized functions in the manner first done by L. Schwartz [S; ,]. It will
then appear that any trigonometric series in which ¢, = O(|n|*¥) for some
k may be regarded as the Fourier series of a distribution, to which this
series is distributionally convergent. These matters will be dealt with in

Chapter 12.

1.3.4. Summary. The substance of Section 1.2 and 1.3.3 summarizes the
justification for subsequent concentration of attention on Fourier series in
particular, at least insofar as reference is restricted to harmonic analysis in
its classical setting. We shall soon embark on a program that will include at
appropriate points a verification of each of the unproved statements upon
which this justification is based. As for trigonometric series in general, we
shall do no more than pause occasionally to mention a few of the simpler

results that demand no special techniques.
A bird’s-eye view of many of the topics to be discussed at some length in

this book is provided by the survey article G. Weiss [1].

1.3.5. Fourier Series and General Groups. There are still other reasons
in favor of the chosen policy which are based upon recent trends in analysis.
Harmonic analysis has not remained tied to the study of Fourier series of
periodic functions of a real variable; in particular it is now quite clear that
Fourier-series theory has its analogue for functions defined on compact Abelian

groups (and even, to some extent, on still more general groups); see, for
example, [HR], [Re], [E,]. While the level at which this book is written
precludes a detailed treatment of such extensions, we shall make frequent
reference to modern developments. However regrettable it may seem, it is a
fact that these developments cluster around the extension of precisely those
portions of the classical theory which do not depend upon the deeper properties
of pointwise convergence and summability, and that a detailed treatment of
the analogue for compact groups of the theory of general trigonometric series
appears to lie in the future. Moreover, the portions of the classical theory that
have so far been extended appear to be those most natural for handling those
problems which are currently the center of attention in general harmonic
analysis. Of course, these prevailing features may well change with the passage
of time. While they prevail, however, they add support to the view that it is
reasonable to accord some autonomy to a theory in which the modes of
representation mentioned in 1.3.2 take precedence over that of pointwise
representation.
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EXERCISES

1.1. KEstablish the formulae

inx . N + ;
DN(SU) '—'"-'n'ZNe = e éin %x/z)x,
Fy(x) = (N + 1) [Do() + - - - + Dy(2)]

- _, [sin WL (N + 1)x]?2
- 0 B

for N > 0 an integer and # # 0 modulo 27, where the equality signs im-
mediately following Dy(x) and Fy(x) are intended as definitions for all real .
1.2. Prove that if p and g are integersand p < ¢,and if x # 0 modulo 27,
then
| Z e!"®| < |cosec Yoz .

PsSn<(q

By using partial summation (see 7.1.2 and [H], p. 97 ff.) deduce that if
Cp = Cpypq =+ 2= €y = 0, then, for x # 0 modulo 2,

| Z c.e"*| < ¢, |cosec Vsox|.
psn<q

1.3. Assume thatec¢, > ¢,,, and lim,_, , ¢, = 0. Show that the series

o0
Z cnema:
n=0

is convergent for x # 0 modulo 27, and that the convergence is uniform on
any compact set of real numbers x which contains no number =0 modulo 2~.
1.4. Assume thatc, > ¢,,; > 0 and nc, < 4. Show that

N
| Z ¢, sinnx| < A(w + 1).
n=1

Hints: One may assume 0 < < 7. Put m = min (N, [#/x]) and split
the sum into DT + >, .;, an empty sum being counted zero. Estimate the
partial sums separately, using Exercise 1.2 for >, ,.

1.5. Assume that the ¢, are as in Exercise 1.4. Show that the series
D01 ¢, 8in nx is boundedly convergent, and that the sum function is con-
tinuous, except perhaps at the points x = 0 modulo 27». (More general
results will appear in Chapter 7.)
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1.6. Compute the complex Fourier coefficients of the following functions,
each defined by the prescribed formula over [ — 7, #) and defined elsewhere
so a8 to have period 2=

(1) f(x) = =;

(2) f(x) = |sin z|;

3) f(x) =zxfor —#a <2 <0, f(x) =0for0 < z < =.

1.7. By a trigonometric polynomial is meant a function f admitting at
least one expression of the form

f@) = > e,
Inl< N

where the c, are f-dependent complex numbers.
(1) Use the orthogonality relations to show that, if f is a trigonometric
polynomial, then

fy = 5 [ f@e=da

vanishes for all but a finite number of integers n» and that f(x) = >, f(n)ex,
Show also that

5 [ l@Pdz = 3 |fm)

L nez

whenever f is a trigonometric polynomial. (This is a special case of Parseval’s
formula, to which we shall return in Chapter 8 and Section 10.5; see also
Remark 6.2.7.)

A trigonometric polynomial f such that f(n) = 0 for |n| > N is said to be
of degree at most N.

(2) Verify that the set Ty of trigonometric polynomials of degree at most
N forms a complex linear space of dimension 2N + 1 with respect to point-
wise operations, and that if f € T, then also Re fe Ty and Im f e T),.

(3) Show that if fe Ty, f # 0, then f admits at most 2N zeros (counted
according to multiplicity) in the interval [0, 27) (or in any interval congruent
modulo 27 to this one).

1.8. (StecCkin’s lemma) Suppose fe€ Ty is real-valued, and that

Iflle = BEP |f(@)| = M = f(x,).

Prove that
_’_T.

f@o +y) > Mcos Ny  for |y| <

Hints: Put g(y) = f(xo + y) — M cos Ny. Assuming the assertion false,
we choose y, 8o that |y,| < #/N and g(y,) < 0. We assume 0 < y,<n/N;
otherwise the subsequent argument proceeds with the interval [ —2=, 0) in
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place of [0, 27). By examining closely the signs of g at the points kn/N
(k =0,1,2,..-,2N), show that g admits at least 2N + 1 zeros in [0, 27). A
contradiction results from Exercise 1.7.

1.9. (Bernstein’s inequality) Prove that if fe Ty, then |f'|, < N | ]l
(the notation being as in the preceding exercise).

Hints: 1t suffices, by Exercises 1.7 and 1.10, to prove the inequality for
real-valued f € Ty. If f'(xy) = m = ||f’| . (Which can be arranged by changing
f into —f if necessary) and M = | f|., Exercise 1.8 gives f'(x, + y) > m cos
Ny for |y| < n/N. Integrate this inequality.

Notes: Many other proofs are known; the above, due to Stec¢kin, is perhaps
the simplest. For a proof based upon interpolation methods, see [Z,], p. 11.
More general results, also due to Bernstein, apply to entire functions of order
one and exponential type; see [Z,], p. 277.

See also the approach in [Kz], p. 17; W. R. Bloom [1], [2]; MR 51 # 1239;
52 ## 6288, 11446; 53 # 11289; 54 # 829.

The 1nequality has also been extended in an entirely different way by
Privalov, who showed that if I = (a’, b’) and J = (a, b) are any two sub-

intervals of [ —#, ] satisfying a < @’ < b’ < b, then there exists a number
c(Z, J) such that

sup |f'(2)| < (I, J)N - sup |f(z)|

xel

for any f € Ty. It is furthermore established that similarly (but perhaps with a
different value for ¢(Z, J)) one has

([ 17@ dape < oL, )N - { |f(@)|P dayii

for any f € Ty and any p satisfying 1 < p < 00. Both inequalities are also valid
when I =J =[—=, n] and ¢(I, J) = 1, the first reducing to that of Bernstein

and the second being in this case due to Zygmund. For more details, see [Baj],
pp. 458-462. See also [L.;], Chapter 3.

1.10. Suppose that E is a complex linear space of complex-valued
functions on a given set (pointwise operations), that E = E, 4+ 1E, where
E, is the set of real-valued functions in E, that [l is a complex-linear functional
on E which is real-valued on E,, and that p is a seminorm on E (see Appendix
B.1.2). Suppose finally that p(x) < p(y) whenever z,y € E and |z| < |y|,
and that |l(x)| < p(x) for x € E,. Prove that |l(x)| < p(x) for x € E.

Hwnts: Write x = a + b with a, b € E, and l(x) = r(e¢ + 18) with r > 0,
o and B real, and «? 4+ 82 = 1. Then

i@)] = r = (« — B)(z) = U(x — iB)(a + ib)];

expanding and taking real parts: |l(z)| = l(aa + Bb) < p(ea + Bb), and so
forth.
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1.11. Prove that, if a trigonometric polynomial f is real-valued and

nonnegative, then f = |g|2 for some trigonometric polynomial g (Fejér

and F. Riesz).
Hwntds: Suppose f(x) = D a1 <nCre'™* and consider first the case in which

f(x) > O for all x. Assume (without loss of generality) that c¢_, # 0 and
examine the polynomial P(2) = 2V > .. < vC,2". Observe that P(z) = 22V P(z~1)
and f(x) = e~ *"*P(e'*). Verify that the zeros of P are of the form a,, a,, - - -,
and a; ', az; ', -, where 0 < |a,| < 1, and factorize P accordingly.

In case one knows merely that f > 0, apply the above to the f;, = f 4+ 1/k
(k =1, 2,..-) and use a limiting argument.

Remarks. The theorem does not extend in the expected way to other
groups; see [R], 8.4.5.



CHAPTER 2

Group Structure and Fourier Series

The aim of the first two sections of this chapter is to show how and to
what extent the topological group structure of the set R of real numbers,
and of some of its subgroups and quotient groups, lead to the study of
periodic functions, the complex exponential functions, and the problem of
expansions in trigonometric series in general and Fourier expansions in
particular. In the remaining sections of this chapter we shall begin the study
of Fourier coefficients in some detail.

In pursuing the aims of Sections 2.1 and 2.2 we are led to refer to fairly
general topological groups and to constructs related to them. It is hoped
thus to convey a very rough idea of how the classical theory of Fourier series
fits into contemporary developments in parts of analysis, and to prepare the
reader for a later perception of genuine structural unity underlying obvious
similarities. It is of course not expected, nor is it necessary for an under-
standing of subsequent developments in this book, that the reader should
at this stage stop to gather the details concerning topological groups and the
related concepts to be spoken of (duality, invariant integrals, and so on);
this writer will indeed venture the opinion that the return to a detailed study
of generalizations is best made after some familiarity with special cases has
been attained. On the other hand the reader will, it is hoped, gain from the
realization that the classical theory is tributary to a broader stream, and will
in due course want to try his hand at exploring the latter with the help of the
references cited in this chapter.

2.1 Periodic Functions

For any reasonable interpretation of the term ‘‘represent’’ (see Chapter 1),
any function of a real variable which is to be globally representable by a
trigonometric series must admit 27 as a period, or must do this after suitable
correction on a null set. Insofar as such correction does not alter the Fourier
series of the function, we may and will assume that all functions of a real
variable have period 2#. (Representation over a restricted range by so-called
“half-range series’’ does not in any way conflict with this convention.)

14
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2.1.1. The Groups R and T. The set B of real numbers, taken with
addition as its law of composition and with its usual metric topology, is an
example of an Abelian topological group. This means that it is first an
Abelian group, and second a topological space, and that moreover the
algebra and the topology are so related that the mapping (x, y) > x — y is
continuous from B x R into R. If one drops the demand that the group
structure be Abelian, one has here the concept of a topological group in
general; see [B], pp. 98 ff., and/or [HR], Chapter II. Hereinafter the term
“group’’ will always mean ‘‘locally compact group whose topology satisfies
the Hausdorff separation axiom.”” This particular topological group R is
locally compact but noncompact. We wish to focus attention, not so much on
R, as on quotient groups thereof.

It is a simple matter to show that the only closed subgroups of R, other
than {0} and R itself, are those consisting of all integer multiples of some
nonzero positive number (see Exercise 2.1). Which of these is selected is
largely immaterial: we choose that one which is formed of all integer multiples
of 2= and which is hereinafter denoted by 2#Z (Z denoting the additive
group of integers).

Let us form the quotient group R/27Z = T and denote by p the natural
projection of R onto 7', which assigns to x € R the coset 2 = x + 2#Z
containing z. The group 7' is made into a topological group by endowing it
with the so-called quotient topology. In concrete terms, this means that the
open sets in 7' are precisely the sets p(U) where U is open in RE. Even more
concretely put, the quotient topology on 7T is that defined by the metric
d(x, y) = inf{lx — y + 2n=|: n € Z}.

Another way of looking at 7' is to recognize that the mapping & — exp(:x)
is an isomorphism of 7' onto the multiplicative group of complex numbers
having unit absolute value. In this isomorphism, the quotient topology
corresponds to that induced on the unit circumference in the complex plane
by the usual metric topology on the latter. In view of this, the group 7' is
often referred to as the circle group or the one-dimensional torus group.

Perhaps the most essential difference between R and 7 is that the latter is
compact. Were we to attempt to apply to R the subsequent considerations
concerning 7', we should be led to Fourier integrals in place of Fourier series;
almost all the additional difficulties thereby encountered would stem from
the fact that R is noncompact.

2.1.2. Periodic Functions. Iffis a periodic function on R (by ‘“‘periodic”
we shall always mean “with period 27 ), there is just one function f on T

such that f = fo p. (Notice that we shall never speak of so-called ‘“many-
valued functions.’’) Conversely, every periodic function f on R is expressible

In this way. Moreover, in this one-to-one correspondence f« f, continuous
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f’s correspond to continuous f’s. It will in fact be the case that this corre-
spondence preserves every structure relevant to our purpose, and we shall

before long ask the reader to make a mental identification of f and f.

It is also perfectly legitimate to regard functions on the circle group as
functions of the complex variable z = ¢!* having unit absolute value, but we
shall make no systematic use of this notation.

2.1.3. Role of the Group Structure. As we shall see in Section 2.2, the
topological group structure of T is inextricably bound up with the genesis
and study of Fourier series. Indeed, it will slowly emerge that many of the
most fundamental aspects of this study depend almost exclusively on the
fact that 7' is a compact Abelian group. It will be seen, too, that the Lebesgue
integral itself is determined (up to a nonzero constant factor of proportionality)
by the topological group structure.

To this basic ingredient may be added, for the sake of richness and
refinement, more specialized structures and concepts—the concepts of
bounded variation and differentiability for functions, for example. In line
with the remarks in 2.1.2, we say that a function f on 7 is of class C* (=k
times continuously differentiable, or indefinitely differentiable if k¥ = o0),
or is of bounded variation, if and only if the function fo p on R has the

corresponding property on some one (and therefore every) interval in R of
length 2.

2.2 Translates of Functions. Characters and Exponentials. The
Invariant Integral

2.2.1. Translates and Characters. We pose the question: What are the
fundamental reasons for considering expansions in terms of cosines and sines
cos Az and sin Az, or, equivalently, in terms of the complex exponentials e!** ?

The historical answer, which is also the one based on applications, might
be that these functions are the eigenfunctions of particularly simple linear
differential operators. The restriction of the continuous parameter A to the
discrete range 27 Z reflects periodic boundary conditions.

There is, however, another and even more fundamental explanation,
which hinges only on the topological group structure of R and 7'. Let us look
into this.

The simplest and most obvious way in which the group structure can be
used in handling functions is via the translation operators T, (a = a group
element) acting on functions according to the rule

Taf(x) =f(.'L’ — a).

Attention paid to the 7T, is justified in retrospect, because most of the linear
operators featuring in harmonic analysis prove to be limits in some sense of
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linear combinations of translation operators (see, for example, 3.1.9 and

Chapter 16).
To fix ideas, we visualize the T, as acting on the linear space C = C(R) or

C(T) of continuous, complex-valued functions on R or T as the case may be.
(Almost all we have to say would remain true on replacing € = C(R) or ((T)
by various other function spaces over R or T'.)

If fe(, then T,feC. Each T, is indeed an automorphism of the linear
space C. To this we add for future reference the relations

TO —_ I, Ta+b — TaTb’ T_a — Ta_l (2.2.1)

where I denotes the identity automorphism of C.

In general, and certainly for the groups R and 7T here considered, the space
C is infinite-dimensional and the problem of analyzing the behavior of the
operators 7', on C is a complicated one. However, elementary linear algebra,
(and, even more so, suitable forms of the simultaneous spectral resolution
theorem) encourage one to hope for simplification if one can ‘“‘reduce’ the
problem by finding linear subspaces V of € which are invariant in the sense
that 7',(V) < V {for all group elements a. For brevity we term such a V an
invariant subspace. The hope would lie in decomposing € into some sort of

(possibly infinite) direct sum of invariant subspaces V,, V,,:-.-., each V;
being as small as possible. The 7', could then be examined on each V;
separately.

In this way one is led to consider the existence of minimal invariant sub-
spaces V of C, ““minimal” meaning that V contains properly no invariant sub-
space other than {0}. Now it is evident that a one-dimensional invariant
subspace V (if any such there be) is certainly minimal; and that such a
subspace V is generated or spanned by a function f which is a simultaneous
eigenvector of the T, (if any such functions exist). So, without more ado, we
seek such functions. (For non-Abelian groups in general there would not
exist any one-dimensional invariant subspaces—one would have to be content
with seeking finite-dimensional ones, which in fact exist in abundance for
compact groups; for noncompact, non-Abelian groups, the situation is even
more complicated.)

Given f € (, denote by V, the smallest invariant subspace containing f,
that is, the set of all finite linear combinations of translates 7T',f of f. We
seek functions f such that dim V, = 1. Clearly, therefore, f # 0 and to each
group element a corresponds a complex scalar y(—a) such that

T.f=x(—a)f.
This signifies that

f(x — a) = x(—a) f(x) (2.2.2)

for all pairs (a, x). If x = 0, f(—a) = f(0) x(—a), which shows in particular
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that y is continuous and that y # 0. On the other hand, (2.2.1) and (2.2.2)
yield the functional equation

x(@ + b) = x(a) x(b). (2.2.3)

As a matter of definition, a complex-valued function y # 0 that satisfies
(2.2.3) is termed a character of the group in question. It follows at once that y
is nonvanishing, ¥(0) = 1, and x(—a) = x(a)~!. We shall have occasion to
consider only characters that are continuous. If a character y is bounded,
then (2.2.3) shows that |y(a)| = 1 for all group elements a, so that y defines a,
homomorphism of the group into the multiplicative group of complex
numbers of absolute value 1.

Returning to (2.2.2), we may say that the function y appearing there is a
continuous character. Moreover, since (2.2.2) gives f(—a) = yx(—a)f(0) for
all a, it follows that ¢ = f(0) is nonzero, and f = cy is thus a nonzero scalar
multiple of the character y.

Let us next determine explicitly all the continuous characters of R and of

T'. Concerning characters that are not assumed to be continuous, see Exercise
3.19.
Supposing that y is a continuous character of R, we integrate the relation

(2.2.3) with respect to b, over an interval (0, &), to get

h h
f x(a + b) db = y(a) ‘fo x(b) db.

0

Since y is continuous and y(0) = 1, » may be chosen and fixed so that the
factor
h
f x(b) db
0
i1s nonzero. Moreover,

fh yv(a + b) db = f“hx(c) dc.

0 a

Again since y is continuous, this last expression is a differentiable function
of a. It follows that y is differentiable. Knowing this, we find that (2.2.3)
yields

X’(a’) — lim X(a’ -+ h) — X(a’)

h—=0 h
. h) — x(0
— }‘I-IgX_L)_.’;._X_.L.l . X(a’)’

so that y satisfies the differential equation

X =1k x, (2.2.4)
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where k = —1y’(0). The only solution of (2.2.4) taking the value 1 at the
origin 18
y(x) = et**. (2.2.5)

Evidently, whatever the complex number £, (2.2.5) defines a continuous
character of R. This character is bounded, if and only if £ is real.

To determine the continuous characters of 7', it is merely necessary to add
the demand that y have period 2=. This signifies that k € Z.

To sum up, we find that

(1) The continuous (and so necessarily bounded) characters of T' are in
one-to-one correspondence with Z, the character corresponding to ne Z
being (derived by passage to the quotient from) the function

eq(x) = e'™*, (2.2.6)

Corresponding to n = 0 is the character ¢,, which is the constant function 1;
this is usually termed the principal character.

(2) The one-dimensional invariant subspaces of C(7') are precisely the
subspaces V, = {Ae,: A a scalar}, where n» ranges over Z.

(3) The problem of harmonic analysis in respect to C(7') (and similarly in
respect of other function spaces) may be suggestively but perhaps oversimply
described as that of expressing C(7') as some sort of direct sum of the
subspaces V, (n € Z). This task falls into two parts:

(a) Given f e C(T), 1t is required to determine the corresponding ‘‘ com-

ponents’’ of f lying in the various subspaces V,. This is, strictly speaking, the
problem of harmonic (or speciral) analysis and is, in the case of compact

Abelian groups anyway, relatively simple. The said components are just the
functions f (n)e,, where

fn) = 57 [f@0ent® do.

It will appear in Chapter 11 that the component f(n)e, is nonzero, if and only
if V, NV s# {0}, where V is the closed invariant subspace generated by f.
(b) The study of the formula

f=2 fne,,

nez

which it 18 hoped will reconstitute f from its harmonic components. This may
be described as the problem of the harmonic (or spectral) synthesis of f. It
presents what 1s by far the more difficult part of the program and embraces,
of course, the question of representing f by a trigonometric series. It must
be stressed that such a series representation is indeed generally impossible in
C, if one demands pointwise convergence. The study of the sense in which
the synthesis is valid (which will vary from one function space to another)
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13 an essential part of the problem before us; see the remarks in 10.3.6 and
Section 16.8.

In connection with (1) above, it is interesting to observe that the group
structure of Z corresponds, when Z is used to label the characterse,, to point-
wise multiplication of characters. Moreover, the corresponding “dual topology ’
on Z is that for which the relation n — n, signifies that

en(r) — €no ()

uniformly for x € 7', and turns out to be just the discrete topology on Z (having
a base of neighborhoods of 0 € Z comprising the one set {0}). This is a general
feature: the bounded continuous characters of any given group may them-
selves be formed into a group under pointwise multiplication, termed the dual
or character group of the given group, and topologized in such a way that
(speaking mmformally) a sequence or net (x;) of characters converges to the
character y 1f and only if lim; y,(x) = x(x) uniformly for x € K, and this for
each compact subset K of the original group. Up to this point, everything is
largely a matter of observation and definition. The interesting and decidedly
nontrivial fact i1s that, by way of justification of the term ‘‘duality,” the
character group of the character group turns out to be (isomorphic with) the
original group. This duality is profound and is fundamental in general harmonic
analysis, but to develop the ideas in any generality would take us much too
far afield. Suffice it to say that locally compact Abelian groups run around in
mutually dual pairs—such as (R, R) and (7', Z)—either member of such a pair
being i1somorphic with the dual of the other: this is the so-called Pontryagin
duality law, for more details of which the reader is referred to [B], Chapter 11,
and [HR], Chapter VI. Our main concern will always be harmonic analysis on
the group 7', but we shall from time to time cast fleeting glances at the dual
problems concerning harmonic analysis on the group Z, which is always to be
thought of as being endowed with its discrete topology. To the reader we issue
a standing invitation to reflect on the possible analogues for Z of results
established in the text for 7'. As a start, he might verify that, in conformity
with the Pontryagin duality law, the character group of Z can be identified
with 7' in the manner suggested by (2.2.6); that is, to each bounded (necessarily
continuous) character { of Z corresponds exactly one x € T such that {(n) =
en(x) for n € Z, and that the initial topology on 7' corresponds exactly to its
dual topology under the association x «» {, (see Exercise 2.3).

Studies of harmonic analysis on each of the groups 7' and Z form, when
taken together, a useful forerunner to that of general harmonic analysis. This
18 partly because they illustrate separately a number of the difficulties that
one encounters in an intermingled state when one moves along to harmonic
analysis on general groups. Actually, the next degree of complexity is repre-
sented by the group R (the additive group of real numbers with its usual
topology). In 7', R, and Z one has, so to speak, the natural building bricks
from which quite general locally compact Abelian groups may be built up. It
18 known, for example, that any such compactly generated group is isomorphic
with a product B¢ x Z® x F, where a and b are nonnegative integers and F 1s
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a compact Abelian group (see [HR], Theorem (9.8)); moreover, F' 18 isomorphic
to a closed subgroup of a possibly infinite product of copies of 7'; and there
exist arbitrarily small closed subgroups H of F such that F/H 1s isomorphic
with T° x F,, where c is a nonnegative integer and F|, is a finite group (see
[HR], Theorem (24.7)). These facts are quoted merely i1n order that the reader
may get some idea of how the limited program attempted by this book fits
into the scheme of general harmonic analysis; they will never be used hereafter

in this book.
The reader would do well to peruse the survey article G. Weiss [1], which

deals with both classical and modern aspects of the subject.

Before temporarily leaving the present topics we should indicate that in
Chapter 11 the theory of Fourier series obtained up to that point will be

used to classify all the closed invariant subspaces of C(7') (and of certain other

function spaces). The theory will also show to what extent C(7T') (and these
other function spaces) can be decomposed into a direct sum of one-dimensional

(and therefore minimal) invariant subspaces.

2.2.2. The Invariant Integral. Let us momentarily broaden the outlook
by considering a locally compact topological group G' (see 2.1.1); for the
moment we do not assume that G is Abelian. Owing to this we must be careful
to specify that our concern will lie with the left translation operators 7',
defined by 7, f(x) = f(—a + z). If G is Abelian, this agrees with the notation
introduced in 2.2.1; in the contrary case one must distinguish these 7', from
the right translation operators f(x) — f(x — a).
Denote by C.(@) the linear space of complex-valued continuous functions
f on G, each of which vanishes outside some f-dependent compact subset of
G. Evidently, C (@) is a linear subspace of C(@). If G is compact (for example,
it G = R/2nZ), C.(G) and C(@) are identical.

A fundamental and cardinal fact underlying all general harmonic analysis
is the existence of a linear functional 7 on C.(G) which is

(1) positive, in the sense that I(f) > 0 if f # 0 is a nonnegative real-
valued function in C,(G); and

(2) lett (translation) invariant, in the sense that

K(T.f) = I(f)

for all fe C (@) and all a € G.

It is also a fact that, apart from a positive factor of proportionality, there
18 only one such functional. Any such funectional I is called a left invariant
(or left Haar) integral on Q. (Similar remarks apply to right Haar iniegrals.)

It is known that the left invariant integral can in all cases be extended to
more general functions in such a way as to preserve the basic, crucial, and
pleasant properties of the Lebesgue integral of functions of one real variable.
The details of this extension are to be found in any one of several references,
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for example: [HR], Chapters III and IV; [HS], Chapter 3; [B], Chapters
8-10; [E], Chapter 4. However, an intelligent reading of the present book
will demand no more than a knowledge of the results of this extension for
functions of one real variable; it is of little importance which of several
possible approaches to the Lebesgue integral has been followed. More details
about what we shall need to assume appear in 2.2.4.

The choice of C,(G) in place of C(G) as the initial domain of definition of I
comes about in the following way. It is quite easy to see at the outset that,
whenever G is noncompact, there cannot be any invariant integral I for which
I(f) is finite-valued for all nonnegative real-valued f € C(@) (or even for all
nonnegative real-valued f e C(G) which tend to zero at infinity). In other
words, the “integrability’’ of a function will demand quite severe restrictions
on the “average smallness” of the function at infinity. One very simple and,
as it turns out, entirely effective way of imposing a priori such a restriction
on f is to demand that it shall vanish outside some compact subset of G.
(Of course, it turns out ultimately that this condition is not necessary for
integrability.)

It is not too much to say that the inauguration of modern harmonic
analysis on groups had to await the discovery, by Haar in 1933, of the
existence of a left invariant integral on any locally compact group G satisfying
the second countability axiom. Subsequent developments, including the
removal of all countability restrictions on G, have been due to Weil, Kakutani,
H. Cartan, von Neumann, and many others. The interested reader may also
wish to consult a recent note by Bredon [1]. See also MR 39 # 7066.

On considering some familiar groups, old friends appear in a new light.
For example, if G = R", the characteristic properties (1) and (2) show that an
invariant integral is

1) = [+ [t 20 day - da,

a Lebesgue (or Riemann) integral extended over any hypercube outside
which f vanishes.
Again, if G is R[2=nZ, an invariant integral is

I(f) = 5 f fo p(z) da, (2.2.7)

a Lebesgue (or Riemann) integral extended over any interval of R of length
2w. Here we have chosen the disposable proportionality factor so as to
arrange that I(1) = 1 (a choice that is possible for compact groups and for
those only).

The essential uniqueness of the invariant integral for the circle group
T (and likewise for R™) can be established by quite simple and down-to-earth
arguments, as follows. We handle functions on 7' as if they were periodic
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functions on R (see 2.1.2). Let us first note that any invariant integral I has
the property that

[ 1(f)] < I(1) - sup |f]; (2.2.8)

this follows from property (1) and the linearity of 1. Now, if f is continuously
differentiable,

lIim
a-0

Taf"'f_ ’
—J = g

holds uniformly. Consequently (2.2.8) and property (2) combine to show that
I(f’) = 0 for any continuously differentiable f. Next, if ¢ is continuous and
periodic and satisfies

27
f g(x) dx = 0,

0
then g = f’, where

f(x) = f ] g(t) dt

0

is continuously differentiable and periodic. Thus I(g) = 0 for such ¢. Finally,
choose any nonnegative continuous periodic 4, such that

2%
ho(x) dx = ]. .

0

Given any continuous periodic &, we apply what precedes to the function ¢
defined by

2%
g(x) = h(x) — hy(x) 0 h(t) dt,
which is continuous and periodic, and satisfies

fzn g(x)dx = 0.

0

The result of this application, namely, the conclusion I(g) = 0, signifies

exactly that
21

I(h) = I(ho) h(z) de,
0
showing that I differs from the expression appearing on the right-hand side
of (2.2.7) by the constant factor 2#I(h,) > 0. This completes the verification
of the essential uniqueness of the invariant integral on 7'.

Armed with this uniqueness property, it is simple to deduce other invariance
properties of the integral. The elementary properties of the Riemann integral
show that, if f is a continuous periodic function on R, and if £k € Z and
k # 0, then

1 an 1 2n
— flkx) dx = — f(x) dx. (2.2.9)

271' 0 277' 0
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This can be established by using the identification afforded by (2.2.7) and
invoking the uniqueness property of the invariant integral. In doing this, we
may replace 7' by any compact group ¢ and the mapping x — kx by any
continuous group homomorphism ¢ of G onto itself. Let I be the invariant
integral on G, normalized so that /(1) = 1. We will show that

I(fot) = I(f) (2.2.10)

for all continuous functions f on G, from which (2.2.9) will follow by special-
ization. It is to be observed that, since k€ Z and k¥ # 0, the mapping

t: & — (kx) is a continuous homomorphism of 7' onto itself.
To prove (2.2.10), we consider the new functional I’ defined by

I'(f) = I(fo t); (2.2.11)

this definition is effective since, owing to the continuity of ¢, fo ¢ is con-
tinuous whenever f is continuous. Since { maps G onto G, it is clear that I’
enjoys property (1) of invariant integrals. Since also

T.(fot)(z) = f otz — a) = fliz — a)] = flt(x) — t(a)]
= Tyoflt@)] = (Tuaf) ° Hz),

owing to the fact that ¢ is a group homomorphism, we have 7 ,(f o)
= (Tyof) o t. We again use the assumption that { maps G onto G; then the
translation invariance of I shows that I’ is also translation-invariant. By
uniqueness, therefore, there is a number ¢ such that I'(f) = ¢« I(f) for all
continuous functions f. Choosing f = 1, we find that (2.2.11) gives I'(1)
= I(lot) = I(1) = 1. Hence ¢ = 1 and I’ is identical with /. This is just
what (2.2.10) asserts.

The dual situation. Let us turn momentarily from the circle group 7'
to the dual group Z. There is no lasting mystery about the invariant integral
on Z; apart from a disposable constant of proportionality, it must be ex-
pressed by summation:

I(g) = D $(n), (2.2.7%)
nez
at least for those functions ¢ on Z whose support {n € Z : $(n) # 0} is
finite. (The compact subsets of a discrete space, such as Z, are exactly the
finite subsets thereof.)

The linear space of functions ¢ on Z having finite support is, however, too
narrow to accommodate fully effective operation, and it is desirable that the
invariant integral be extended to other functions. No problem arises for
those functions ¢ for which the series in (2.2.7*) is absolutely convergent:
this is the space usually denoted by £'(Z) and is the exact analogue, for the
group Z, of the space L' of Lebesgue integrable functions on 7'.
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To go still further, it will be necessary to interpret the right-hand side of
(2.2.7*) according to one of a number of conventions. For example, the
conditional convergence of the series will by convention always mean the
existence of a finite limit for the sequence of symmetric partial sums

> $(n)

In|< N

when N —00. A yet more general interpretation which will play a funda-
mental role in the sequel lies in interpreting the right-hand side of (2.2.7*) as
the limit as N — 00, when it exists, of the arithmetic means of the first N + 1
symmetric partial sums. This arithmetic mean is expressible in the form

7|

.MZ‘N (1 "N+ 1) #(),

and this process of attaching a generalized sum to the series in (2.2.7%) is
known as summation by Cesaro means of the first order. As applied to Fourier
series, the method will be studied in some detail in Chapters 56 and 6. Yet
other summability methods are known to be useful and eftective, though
we shall not dwell on them to any length in this book (see Section 6.6).

2.2.3. The Orthogonality Relations. It is interesting to note at this
point that the orthogonality relations (1.1.3), which have been seen to be at
the basis of the formation of Fourier series, flow inevitably from the defining
properties of the invariant integral.

Suppose here that @ is any compact topological group and that I is that
left invariant integral on G' for which I(1) = 1. Consider any nonprincipal

continuous (and therefore bounded) character ¥y of ¢ and choose any a € @
such that y(—a) # 1. Then, by (2.2.3) and property (2) of 2.2.2,

I(x) = I(Tyx) = I[x(—a)*x] = x(—a)* I(x)

showing that I(y) = 0. Applying this to the product y = y; * ¥5 of two con-
tinuous characters y, and ¥,, we obtain the orthogonality relations

1 if x;, = x2
I(y:%2) = 2.2.12
baka) {O otherwise. ( )

In view of (2.2.6) and (2.2.7), these relations reduce, when G = T, to the
relations (1.1.3), which are now seen in their true relationship to the group

structure of 7'.
There are other orthogonality relations pertaining to irreducible unitary

representations of compact topological groups that reduce to (2.2.12) when
the representations are one-dimensional (see 2.2.1); to discuss these would
take us too far afield, and is in any case irrelevant to our main theme.
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The dual orthogonality relations. In view of (2.2.7*), any would-be
orthogonality relations for the discrete group Z would read somewhat as follows:

z emz ety =1 or O
nez

according as the real numbers © and y are, or are not, congruent modulo 2.
There 18, however, no way of making sense of this relation which is based upon
applying a summability method to the series on the left for individual values
of x and y. On using concepts to be introduced in Chapter 12, it 18 nevertheless
the case that, for a fixed y, the series converges distributionally to a certain
distribution (or generalized function) known as the Dirac measure placed at the
pownt y. This latter entity does, in a sense, vanish on the open set of points
x # y modulo 27, but there 18 no reasonable way of attaching to it a numerical
value at points x = ¥y modulo 2.

There is therefore a residual and irreducible asymmetry separating the
mutually dual situations; this is, in the last analysis, because of the profound
topological differences between the “smooth’® compact group G and the
discrete noncompact group Z.

2.24. L? and Other Function Spaces. It has been remarked in 2.2.2
that the invariant integral can in all cases be extended to functions more
general than those in C,(G). For G = T, in which case the invariant integral
has been identified 1n (2.2.7), the extension involved is that from the Riemann
to the Lebesgue integral; for the dual group Z, several stages in the extension
have already been mentioned at the end of 2.2.2. It is essential for a smooth
and satisfactory development of Fourier theory that advantage be taken of
this extension. Broadly and figuratively speaking, the Lebesgue theory of
integration is that which is necessary and sufficient for the major portion of
contemporary analysis; integration theories for functions on more general
sets and spaces almost invariably share the characteristic basic properties of
the Lebesgue theory. However, in certain special connections involving
functions of a real variable, more elaborate theories have proved useful. We
shall have neither occasion nor space for more than a passing reference in
12.8.2(3) to some such theories. (Others, mainly designed to handle integration
strictly as an antiderivation process, will receive no mention at all in this

book.)

We shall therefore assume that the reader is familiar with the definition
and basic properties of the Lebesgue integral of a function of one real
variable. With but relatively few exceptions, some of which are dealt with in
Appendix C, all the results we shall need will be found in the brief account in
[W]. For the exceptional points the reader is referred to [HS], [AB], or [E],
Chapter 4, or to any one of the several excellent accounts of integration
theory now available. In making use of these sources of results about the
Lebesgue integral of functions of one real variable, it will be agreed that a
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function f on 7' is measurable (or integrable) if the associated periodic function

fop is Lebesgue measurable (or integrable) over some one—and hence
every—interval of length 2.

Having reached this stage we shall drop the notational distinction between
f and fo p—Iin other words, we shall not distinguish between a periodic
function on R and the corresponding function on the circle group.

It will be convenient to introduce some notations for the function spaces
that will appear constantly in the following pages.

If k is an integer, k > 0, C* = C¥(T) will denote the set of complex-valued
functions with period 27 and with k£ continuous derivatives, and C* =
C*(T) = (Y{CFk:k =1, 2,...}. For brevity, C is written in place of C°.

For any real number p > 0 we denote by L? = L?(T) the set of periodic
complex-valued measurable functions f such that

£l = G5, [If@]® da 2213

is finite, the integral being extended over any interval of length 27; compare
[W], p. 68, [AB], p. 215, or [HS], p. 188. In addition, L* = L®(7') denotes the
set of essentially bounded periodic complex-valued measurable functions,
that is, of periodic complex-valued measurable functions f for which

|flle = ess.sup |f(z) (2.2.14)

1s finite, the essential supremum being taken relative to any interval of z-
values of length 2#.

To be perfectly accurate, we shall frequently use L? (0 < p < o) to
denote the set of equivalence classes of the appropriate type, two functions
going into the same class if and only if they agree almost everywhere (a.e.).
Since we shall not always signal which viewpoint is being adopted, the reader
is warned to be on his guard and to be prepared to devote a little thought to
deciding which interpretation is appropriate. The Fourier series of a function
depends only on the class determined by that function.

Each of C¥ (k an integer >0, or o0) and L (0 < p < o) i8 a linear space;
in view of preceding remarks, the reader should check the truth of this when
L? is regarded as a set of equivalence classes.

When 1 < p < o0, » 18 & norm on L? if the latter is considered as a set
of equivalence classes of functions (but only a seminorm if L” is viewed as a
set of individual functions); see Appendix B.1.2 for an explanation of the
terminology. This statement is virtually the content of Minkowski’sinequality,
which asserts that f + g € L? and

If + gll, < Il + lgl (2.2.15)

whenever 1 < p < o0 and f, g € L?. For a proof of Minkowski’s inequality,
see p. 68 of [W], or p. 146 of [HLP], or Section 4.11 of [E], or [AB], p. 218, or
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[HS], pp. 191-192. The assertion is false if 0 < p < 1 (see [HLP], loc. c:t.),
but it is then true that |f — ¢g|} is a metric on L? qua set of equivalence
classes (or a semimetric if L? is considered as a set of individual functions).

For 0 < p < o0, L? is complete for the metric || f — g, if p > 1, or for the
metric |f — g[3if 0 < p < 1; the former case is dealt with in [W], Theorem
4.5a, and the same argument adapts readily to the case 0 < p < 1; alterna-
tively, see [HS], p. 192, or [AB], p. 220.

To complete the picture, on C* (£ an integer >0) we introduce the norm

| flli = sup || D', (2.2.16)
Oshsk

here and subsequently D is the symbol of derivation.
On C> we introduce the metric |f — g/ o), Where

_ N 275 f e .
Wl = ol + [flloo e
Despite the notation, ||f ||, is 7ot a norm. Then C* is complete for the metric
lf — gll¢y whenever k = 0, 1,2,. .., oo (the reader should supply a proof of
this).

With their appropriate metric topologies, all these spaces are topological
linear spaces (see Appendix B.l.1), that is (compare 2.1.1 in relation to
topological groups), the linear space operations (f,g)—f — g and (A, f)
— A f (A a complex scalar) are continuous. Further details concerning C®
appear in Section 12.1.

There will be constant use for one or more links in the chain of inclusion

relations

(Pc...c(ktlclkc..c(P=C0CcL®clL?cl?

. (2.2.18)

where k is an integer >0 and where c0 > p > ¢ > 0. What is more, each
inclusion map of one term of this sequence into any other lying to its right
is continuous. The only nontrivial portion of this last assertion depends on
the inequality

[fle < Ifl,  0<g<p<oo, (2.2.19)

The estimate (2.2.19) is itself a consequence of Hoélder’s inequality, which
asserts that if 1 < p < o0, and if p’ denotes the conjugate exponent (or index)
defined by 1/»p + 1/p’ = 1 (supplemented by the convention that p’ = o0
ifp=1andp’' =11if p =00), then f+-ge L' and

I+ glls < Ifll> - llgll (2.2.20)

whenever f € L” and g € L?'. A proof of Holder’s inequality will be found on
pp. 72-73 of [Ka], the assumption there made concerning continuity of f
and g being unnecessary; see also Section 4.11 of [E], or [HS], pp. 190-191, or
[AB], p. 217. An extended discussion of both the Minkowski and Hoélder
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inequalities is undertaken in Chapter VI of [HLP], but this is unnecessarily
elaborate for our purposes.

Each of the spaces L? (0 < p <o) and C* (k =0,1,2,---, c0) is trans-
lation-invariant, as also are the appropriate metrics or norms. If E denotes
any one of these topological linear spaces other than L*®, and if f € E, the
mapping a — 7',f is continuous from R (or from R/2nZ) into E. (For the
case E = L! a proof appears on p. 67 of [W]; this proof is readily adaptable
to the case E = L? whenever 0 < p < 0. In the remaining admissible
cases the result is almost evident in view of the well-known result that a
continuous complex-valued function on a compact metric space is uniformly
continuous. Regarding the excluded case p = oo, see Exercise 3.5.) In all
cases the mapping f— T, f is, for any fixed a € R, a continuous endomorphism

of E;: moreover
| Taf ||, = If]5

if feL? and 0 < p < o0, and

| Taflao = [fllces

if feCkand ¥k =0,1,2,..-, co.

Convergence in the sense of the metric on L? (0 < p < o) will be termed
convergence in LP or convergence in mean with index (or exponent) p. We note
also that convergence in C in the sense of the norm | « |, is equivalent to
uniform convergence.

2.2.5. The Dual Concepts. In view of (2.2.7¥%), the natural analogues,
for the group Z, of the spaces L? introduced above, are the spaces £? = ¢?(Z)
of complex-valued functions ¢ on Z such that

|$]l, = { 22 $(n)|7}?  if0 < p < oo,
or
|é]o = sup d(n)] if p =00,

is finite.
In addition to these, we occasionally wish to refer tothe subspacecy, = ¢,(Z)

of £°(Z) formed of those ¢ for which
Iim ¢(n) = 0.

In| -~ co

Each of ¢, and 47 (1 < p < o©0) is a Banach space; if0 < p < 1, fPis a
complete metric space.
In lieu of (2.2.18) and (2.2.19) one has the relations

(i cC(? c eyl (2.2.18%)

[l < Il < léle (2.2.19%)

for 0 < ¢ < p < oo. (Notice that ||¢]|, < 1 implies |[$(n)| < 1 for all n € Z,
hence |¢(n)|? < |$(n)|? for all n € Z, hence 3 |¢|” < > |4|? < 1.)

and
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The Holder and Minkowski inequalities suffer no change in form other than
the obvious replacement of integrals by the appropriate sums. Proofs for
the case of finite sums appear on pp. 67-72 of [Ka]; for our purposes, which
involve infinite sums, transparent limiting processes constitute the final step;
see [HS], p. 194. A much more elaborate account appears in Chapter 11 of
[HLP].

Concerning notation, we shall sometimes denote a function ¢ on Z in the
sequential form: (¢,),.z; this is sometimes a convenience and is in any case
in accord with tradition. There is, however, a nonvanishing chance of con-
fusion with the convention according to which (¢,),. ; might also denote a
two-way infinite sequence of functions on Z. The context will in all cases

dispel initial doubts on this score.

2.3 Fourier Coefficients and Their Elementary Properties

Except in the discussion of certain specific examples, we shall use
systematically the so-called ‘‘complex’ Fourier coefficients. Indeed, the
substance of Sections 2.1 and 2.2 constitutes ample indication that the
exponentials e¢!"* play a much more fundamental role than do their real and
imaginary parts separately. Not until Chapter 12 is reached shall we consider
the Fourier coefficients and Fourier series of anything more general than
integrable functions.

For f € L! we adopt in general work the systematic notation

f(n) = -é%ff(x)e"‘“ de forallneZ (2.3.1)

for the (complex) Fourier coefficients of f. The integral in (2.3.1) extends over
any interval of length 27. The symbol f naturally denotes the function
n— f(n) defined on Z; it is a two-way infinite sequence. Throughout this
section we shall establish some of the simplest properties of the Fourier
transformation f — f. In order to avoid confusion with the Fourier series of
measures and distributions introduced in Chapter 12, a series of the type
S ez f(n)e™® with f e L! will be termed a Fourier- Lebesgue series.

The reader will notice that (2.3.1) makes no sense for a general f e L?, if
0 < p < 1. At no time shall we contemplate in detail any such extension,
though the methods of Chapter 12 would permit us to make one sort of
extension to restricted nonintegrable functions; see the example in 12.5.8.

Before beginning to display the elementary properties of the Fourier
transformation, we introduce the following notations:

The symbol D will be that of derivation, as applied to functions of a real
variable. There will be no occasion, until we reach Chapter 12, to apply D to
any functions that are not absolutely continuous; for absolutely continuous
functions, the new interpretation of D introduced in Chapter 12 is in agree-
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ment with the traditional one referred to here. For any complex-valued
function f, f denotes the complex-conjugate function. For any function f

defined on any group (on R, T, or Z in particular), f denotes the function
t — f(—t), and f* the function t —> f(—t); thus f* = ()" = (f)~. Accord-
ingly D and f — f are linear, whereas f — f and f — f* are conjugate-linear.

2.3.1. Themappingf— fislinear. Moreover, (f)~ = (f)*and (f*)" = ().
Proof. The first statement is clear, integration being a linear process on

the integrand. Of the remaining two assertions it will suffice to indicate the
proof of the first, thus

FYm) = 5 [Fe-1= d
_ [‘217, f f(z)en dx] == = (H*m)

for all n € Z.
Note: In 3.1.1 and 4.1.2 we shall add some most important complements
to the first assertion in 2.3.1.

2.3.2. Foreach feL'and ne Z, |f(n)| < ||f]..
Proof. By [W], Theorem 3.4c, we have

| f(n)] < '2177 flf(x)e""”’l dr = % flf(x)] dx
= [fl..

Note: If we write || f|lo = sup {{f(n)| : n € Z}, 2.3.2 is equivalent to the
inequality || flo < |f];. This estimate, although well-nigh trivial, is the best
possible in the sense that f(0) = |f|l. whenever f is real and nonnegative.
On the other hand, for general real- or complex-valued functions f the
relationship between | f||, and ||f|, is complicated; see Exercise 8.8 and
Subsections 11.3.1 and 11.4.14. In particular, there exist functions f e L!
for which |f||, > 0 and the ratio |f|./|f|, is arbitrarily small. Hosts of
examples of this phenomenon can be constructed by using the results of
Chapter 15. A simpler example is provided by the so-called Dirichlet kernel

sin (N + 1/2)x
Dy(z) = et = ———
v(®) WZN sin x/2

if f = Dy, | fle = 1 and yet ||f|, is (as will be seen in 5.1.1) asymptotic to
(4/7%) log N as N — oo, 80 that the said ratio is in this case #2/(4 log N) and
can be made as small as we wish by choosing N sufficiently large. Moreover,
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it has been shown (D. J. Newman [2]) that for each positive integer N there
exists a trigonometric polynomial

f (x) = Zo cnemx

such that |c,|] =1 (n =0,1,..-, N) (and therefore ||f|. = 1) and |f]|,
> N2 — ¢, where ¢ is a suitable absolute constant.

Were this type of phenomenon absent, the theory of Fourier series would
be much simpler and much less intriguing than it in fact is.

2.3.3. (T,f)"(n) = e~"ef(n) for n € Z and f e L.
Proof. It is easy to verify that, if g(x) = f(x)e~'**, then

T.9(x) = e« T, f(x)* e~ "~

Integrating this relation and using translation-invariance of the integral, we

obtain

fin) = 'Q'l';f () dx = -Q-l-;fTag(a:)dx

= e'nd . %; fTaf(x) c e~ " dy
= ¢'ne . (Taf)A(n) ’

which is equivalent to the stated result.

Note: On being asked for a proof of 2.3.3, the reader’s first reaction might
be to apply the usual formula for change of variable in the integrals involved:
this procedure is, of course, perfectly legitimate. But we prefer to phrase the
device in terms of the characteristic invariance property of the integral

(see 2.2.2).

2.3.4. Suppose that f is absolutely continuous, and let Df denote any
integrable function equal almost everywhere to the derivative of f. Then

(Df)"(n) = 1n + f(n) for all n € Z.

Proof. That the derivative of f exists almost everywhere and is integrable
follows from [W], Section 6.3, Exercises 15 and 16 on p. 111, and Theorem
5.2g. The formula for partial integration ((W], Theorem 5.4a) then yields

1 27

(DfY"(m) = 5 | Df(z) - e~ da

1 -{inx12n 1 o -4 Y
= 5= [f@) e ™ + = | f(a)-e"= in - da

217' 0
= f(n) * in,

which completes the proof.
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Remarks. All that is required of Df is that the partial integration formula
2n 2n
f Df*u*dx:— f'Du'dx
0 0

shall hold for all periodic, indefinitely differentiable functions . This means
that the preceding interpretation of Df for absolutely continuous functions f
will accord with the generalized concept of derivation introduced in Chapter
12. The reader 18 reminded, however, that the result 18 not generally true for
functions f possessing almost everywhere an integrable derivative: it is in
addition necessary that f be equal to the indefinite integral of this derivative,
which is ensured by (and indeed equivalent to) absolute continuity. o

2.3.5. Suppose that f is absolutely continuous, and that its derivative Df
is equal almost everywhere to an absolutely continuous function. Then
f(n) = O(1/n?) as |n| =00, so that the Fourier series of f is absolutely and
uniformly convergent.

Proof. The result expressed in 2.3.4 may now be applied to Df in place
of f, showing that

f(n) = (in)~2(D?f)™(n)

for n # 0. The desired majorization follows upon using 2.3.2.

Remarks. (1) Much stronger results will be noted in Section 10.6.

(2) On using 2.3.8 (which could quite well be established immediately
following 2.3.4), the O appearing in 2.3.5 could be replaced by o. Notice that
the hypotheses of 2.3.5 are amply fulfilled whenever f € C2.

(3) The hypotheses of 2.3.5 ensure that the Fourier series of f is indeed

convergent to f(x) at all points, though we are not in a position to prove this
just yet; see 2.4.3. ....
(4) In a similar way, 2.3.4 shows that (n) f = O(1/|n|) (and, with 2.3.8, that

f (n) = o(1/|n|)) whenever f is absolutely continuous. The next result asserts

that the former majorization is in fact true for any f of bounded variation.

For a periodic function f we define the total variation V(f) to be the

supremum of all sums
m

Z |f(x) — f(w,-1)]

c=1

with respect to all sequences (z,)r=osuchthatz, < 2, <---< 2, < 2y +27.

Then f is of bounded variation if and only if V(f) < co in which case we
shall write f e BV; compare [W], p. 105; [HS], p. 266; and [AB], p. 256.

Evidently, in taking the supremum above one may assume that the z, fall
into any preassigned interval of length 2=.

2.3.6. If fis of bounded variation, then

|n-f(n)| < -2177 V(f) for all » € Z.
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Proof. Granted a knowledge of Riemann-Stieltjes integrals ([HS],
Section 8; [AB], Chapter 8), one may write

foy = 5- [ s a[ =]

—n)

for n # 0, and apply partial integratlon for such integrals. Since we do not
wish to make explicit use of properties of Riemann-Stieltjes integrals, we

shall adopt a more pedestrian approach.
Suppose first that f is continuous. Put, forn # 0, g(x) = e~ "*/(—1n). It is
then easy to verity that, given ¢ > 0, one has forn # 0

) — o 2 f@Ng (@) — (-] <

for all sufficiently fine partitions0 = z, < 2, <--- < z,, = 27 of the interval
[0, 27]. Denoting by > the sum appearing above, and applying partial

summation, we obtain
me

> =[f(27) — f(x)l9(0) — Z [f(@ 1) — f@)]9().

ke

By continuity (and periodicity) of f, the first summand on the right will not
exceed e in absolute value, provided the partition is sufficiently fine. Thus

g 1 m-1

|f(n)] < &+ o T o~ kZ1 @k +1) — @) - |g()]
1
< (1 -+ '2-;) V(f) |n|
since |g(x)| < 1/|n|. Letting e — 0, we obtain
V
| f(n)] < 2-”(|{7, )I

for n # 0, which is equivalent to the stated result.
Suppose finally that f is merely of bounded variation. We shall obtain the

desired result in this case by approximating f by a suitable sequence of
continuous functions f, of bounded variation. Perhaps the simplest choice is

1/r

x+(1/r)
[i(x) = "f f@)dt =r f(x + t) dt.
x 0
Whatever the increasing finite sequence () of points of [0, 27], one has

1/r
Z lfr(xk) — [e(®i-1)| < "fo 2 'f(xk + t) — f(zpe_y + t)l dt,

which, since the integrand never exceeds V(f), is majorized by V(f). Thus
V(f,) < V(f) for all ». By what is already established, therefore, we have

lfr(n)l S V(ifrl 21:1_('{2' (2.3.2)

for n £ 0 and all .



[2.3] FOURIER COEFFICIENTS, THEIR ELEMENTARY PROPERTIES 35

Beside this, a simple computation shows that

fim) = exp (53) - fom) - 220

so that
lim |fy(n)| = |f(n)|.

r-—» 00

Combining this with (2.3.2), we are led to

lf(n)l < 217|n|

for n # 0, and the proof is complete.

Remarks. (1) The converse of 2.3.6 is false: there exist continuous
functions f for which f(n) = o(1/|n|) as |n| =00 and yet f ¢ BV.

(2) The estimate in 2.3.6, namely, that f(n) = O(1/ |n|) as |n| — o0, cannot
be improved, even if it be assumed that f is continuous as well as being of
bounded variation. In other words, there exist continuous functions f of
bounded variation such that f(n) # o(1/|n|) as |n| —co. For a proof, see
[Ba,], pp. 210-211; or Exercise 12.44. In view of 2.3.4 and 2.3.8, any such
function f fails to be absolutely continuous.

Incidentally, it is known (after Wiener) that a function f of bounded
variation is continuous if and only if

lim > Inf(n)| = 0;

see KExercise 8.13.
(3) At the expense of replacing the factor (2#)~! by 1 in 2.3.6, there is a

very neat proof due to Taibleson [1]. Thus, if n € Z and n # 0, write a, =
2kmw|n|-! for k€{0,1,2,---, |n|}. Denote by g the step function which is
equal to f(a,) on (a,_,, a;) for ke {1, - - -, |n|}. Then, since

2n(k + Din| =1
f e~ dy = 0,
2kxnin|—1 "

it follows that

(f(x) — g(x)) e~ '"* dx

o

> f @) — flay)| da

2m| f(m)] =

|nl
f Vidx = Z Vila, — ay_1),
Gk -1

k- k=1
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where ¥V, is the total variation of f on the interval [a, _,, a,]. Since V, + - - .
+ Vn < V(f) and ak — ak_l — 27T|n|_1,

27| f(n)] < V(f)-2m|n|?

and hence

nf(n)] < V(f).
See also M. and S.-1. Izumi [1].

2.3.7. Define the mean modulus of continuity of f with exponent (or index)
1 by

w f(@) = |Tof = fl1 = wif(—a).
Then, if f € L,

fol < zanf(Z) (mezn%0).

Proof. By definition

fo) = 57 [f@e== da.
and by 2.3.3

p 1 T\, —inx
Subtracting and dividing by two, we obtain

f(n) = 1/2(f T T—Jtlnf)/\(n)’
whence the result follows on applying 2.3.2.

2.3.8. (Riemann-Lebesgue lemma) For any integrable f one has

lim f(n) = 0.

Inl— o

Proof. This follows immediately from 2.3.7 and the fact (W], Theorem
4.3c) that w,f(a) >0 as a — 0.

Remarks. (1) The Riemann-Lebesgue lemma is so fundamental that it
is worth pointing out another method of proof (which indeed lies behind the
proof of Williamson’s Theorem 4.3c just cited and used). Suppose we denote
by E the set of integrable functions f for which the statement of the lemma
holds. Then 2.3.2 shows that E is a closed subset of L (relative to the topology
defined by the norm | « |I,). It is otherwise evident that E is a linear subspace
of L. To prove the lemma it therefore suffices to show that E contains a
set of functions, say S, the finite linear combinations of which are dense in L.
There are many such sets S which may be indicated. Examples are: (1) the
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set of characteristic functions of intervals [a, b] (0 < a < b < 27), extended
by periodicity. The finite linear combinations of these are dense in L' (as is
shown in [W], Theorem 4.3a); and each such function is directly verifiable
to have a Fourier transform satisfying the lemma (assurance on this point
also comes from 2.3.6). (ii) the set C*; see [W], Theorem 4.3b and 2.3.4.

(2) It is worth pointing out that 2.3.4 to 2.3.8 are all essentially concerned
with restrictions on the rate of decay of f(n) as |n| —oo. The indications are
clearly that the smoother the function f, the more rapid this decay. This
conclusion will receive further reinforcement as we progress; some extreme
instances are covered by Exercises 2.7 and 2.8.

2.3.9. Introduction of A(Z). The preceding results and remarks might raise
hopes that the membership of f to various function spaces (such as C or L? for
various values of p) might be decidable solely by inspection of the rate of
decay of f, or at any rate by examining | f|. However, while there are many
criteria of this sort that are either sufficient or necessary, with the sole
exception of the case of L? (dealt with in Chapter 8), there are no known
necessary and sufficient conditions of this type. Moreover, it will appear in
Chapters 12 and 14 that there definitely cannot be any such complete
characterization involving only the values of |f|. The few necessary and
sufficient conditions that are known are of a much more complicated sort
and are unfortunately extremely difficult to apply in specific instances; sec
2.3.10. Much remains to be discovered in this direction.

To make things more specific, let us consider L! itself. If we denote by
co(Z) the linear space of complex-valued functions (two-way infinite sequences)
¢ on Z for which lim, _, »,$(n) = 0 and equip it with the norm

|¢llo = sup {|$(n)]| : n € Z} (2.3.3)

(see 2.2.5), we have learned so far that f— f is a continuous linear mapping
of L! into ¢y,(Z). Denote by A(Z) the range of this mapping. The question
18: Given in advance a ¢ € ¢,(Z), how can one determine whether or not
¢ € A(Z)? No eftective and general method is known for doing this.

Although we know that f tends to zero at infinity for each f € L!, the rate
of decay can be arbitrarily slow. For example, given any ¢ € ¢,(Z), one may
choose positive integers N, < N, <. .- so that

[¢(n)] < k=2 for  |n| > N,.
Then

f@) =S 2(N,) cos Nyz

is a continuous function for which

f(n) = $(N,)
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forn = +N, (k= 1,2,-..). Furthermore we shall see in Section 7.4 that
(again for any assigned ¢ e€cy,(Z)) a function feL' can be chosen so

that
f(n) = |$(n)|

for all » € Z.
Again, although the sequence ¢ defined by

1
$(n) = {108 In!

0 otherwise

for |n| > 2

belongs to A(Z), the sequence ¢, defined by

sgn n
$1(n) = log l'”'l

0 otherwise

for |n| > 2

has not this property (see Exercise 7.7 and 10.1.6). This shows that an orderly,
and therefore seemingly harmless, change of sign can destroy membership
of A(Z).

This (or any other similar) example shows incidentally that A(Z) is a
proper subset of ¢,(Z); it also shows that |¢| may belong to A(Z) while ¢ fails
to do so. There is an entirely different, and typically modern, approach to

the proper inclusion relation A(Z) S ¢o(Z) which shows a little more,

namely, that A(Z) is in fact a meager (that is, first category; see Appendix
A.1) subset of ¢,(Z).

To see this, we must observe that L! and ¢,(Z) are Banach spaces when
endowed with the norms defined in (2.2.13) and (2.3.3), respectively, and
that T': f— f is a continuous linear operator mapping L! into ¢,(Z) whose
range 1s A(Z) (see 2.3.1 and 2.3.2). If, contrary to our assertion, A(Z) were
nonmeager in ¢y,(Z), the open mapping theorem (Appendix B.3.2) would
entall that 7' is an open map of L! onto ¢y,(Z). Assuming for the moment the
uniqueness theorem (2.4.1), this would imply the existence of a number

B > 0 such that
Ifl: < B* | flle (2.3.4)

for each f € L!. However, (2.3.4) can be negatived, the resulting contradiction
thus establishing our assertion. For example, if f = Dy, as in Exercise 1.1, a
direct computation, which will be carried out in detail in 5.1.1, shows that

4
I£ls = | Dxlly ~ = log ¥

for large N. Since in this case | f|l, = 1, it is plain that a contradiction of
(2.3.4) results whenever N is sufficiently large.



2.3] FOURIER COEFFICIENTS, THEIR ELEMENTARY PROPERTIES 39

At this point see also Exercise 9.8.

In addition to the linear space structure of ¢,(Z), one may consider its
structure as an algebra under pointwise operations. It is then natural to ask
whether A(Z) is a subalgebra (as well as a linear subspace) of ¢4,(Z). This
leads us to seek a way of combining integrable functions—a sort of multiplica-
tion—which corresponds to pointwise multiplication of their Fourier trans-
forms. We shall consider this question and its ramifications in Chapter 3,
returning in Chapter 4 to the consideration of A(Z) and the Fourier trans-
formation in this enriched setting. Further results will appear in 11.4.13 and

11.4.16.

2.3.10. Criteria for Membership of A(Z). Simply as a matter of interest
(for we shall make no subsequent use of these results), we sample a few of the
known criteria for a given sequence ¢ = (¢,),cz t0 be the sequence of Fourier
coefficients of a function belonging to certain prescribed function spaces.
Further results of this sort will appear in Section 8.7, 10.6.3(1), and (2),

12.7.5, 12.7.6, 12.7.9(2), and Exercise 12.50. If the reader will ponder these
conditions, he will soon be convinced of the difficulty of applying them in

speclfic instances.
(1) In order that ¢ shall belong to A(Z), it is necessary and sufficient that,

having chosen any p satisfying 0 < p < o0, one has

lim 2 $,,(n) = 0

r=+® nez

for any sequence (u«,),~; of trigonometric polynomials satisfying

|4, ] < 1, lim |, = O.

r—

An equivalent condition is that to each ¢ > 0 shall correspond a number
k(e) = 0 such that

ullo + k(e) * ||u|,p (2.3.5)

'S $utt(n)] < &

nez

for all trigonometric polynomials »; see R. K. Edwards [1] and Ryan [1].
The case p = 2 of this result is due to Salem; see [Ba;], pp. 239-240.

(2) In order that ¢ shall be the sequence of Fourier cocfficients of a con-
tinuous function, it is necessary and sufficient that to each ¢ > 0 shall corre-
spond a number k(¢) = 0 and a finite subset /. of Z such that

| S $ati(n)| < e |ufy + k(e) * sup |d(n)] (2.3.6)

nez neF,

for all trigonometric polynomials u; see R. E. Edwards [1].

(3) It will appear in 13.5.1 that, if ¢ = f for some f € L?, where 1 < p < 2,
then ¢ € ¢7, that is,

z |7 < o0, (2.3.7)
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P’ being defined by 1/p 4+ 1/p” = 1. It is known (Rooney [1]) that if ¢ satisfies
(2.3.7), then 1t 1s the sequence of Fourier coefficients of some function In

L?(1 < p < 2) if and only 1if
sup, (v + 1)*=1 > |M, ,(¢)|? < oo, (2.3.8)
m=0

the supremum being taken as v ranges over all nonnegative integers, where

Mv.m(¢) — 2 an.v.m¢n’

nez

and

1
oy m = Cp f (1 — )P =m gint gy
0

forneZ,veZ,meZ,v > 0,and 0 < m < v.

(4) A further sufficient condition for membership of A(Z) will be discussed
at some length in Section 8.7.

(5) The behavior of A(Z) under permutations of Z is discussed by Kahane

[4].

2.4 The Uniqueness Theorem and the Density of Trigonometric
Polynomials

In this section we shall establish the uniqueness theorem, which asserts
that a function is determined almost everywhere by its Fourier transform,
and certain consequences thereof concerning approximation by trigonometric
polynomials.

24.1. (1) IffeCand f = 0, then f = 0.

(2) If feL!and f = 0, then f = 0 a.e.

Proof. Statement (1) is, of course, a special case of (2). We shall prove it
first and deduce statement (2) from it.

By 2.3.1, we may in all cases assume that f is real-valued. Moreover, since

f = 0 entails (T,f)”™ = 0 for all a (by 2.3.3), it will suffice to show that if
f € C and

-2}; f ftdx = 0 for all trigonometric polynomials ¢, (2.4.1)

then
f(0) = 0. (2.4.2)

We will in fact show that the negation of (2.4.2) implies the negation of (2.4.1).
If (2.4.2) is false, we may (by changing f into — f if necessary) assume that
f(0) = ¢ > 0 and then choose 6 > 0 so that

f(x) = Yo¢  for || < 6. (2.4.3)
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To construct a trigonometric polynomial ¢ violating (2.4.1), write
to(x) = 1 4+ cosx — cos d

and then ¢ = {,", where the large positive integer N will be chosen later. It
is plain that ¢ is indeed a trigonometric polynomial. It is also clear that

t(z)| < 1 for 8 <|z| < =, lz) =20  for |z| < 8,} 2.4.4)

lx) = ¢V  for || < 146,
where ¢ = 1 + cos 15,6 — cos 6 > 1. By (2.4.3) and (2.4.4) we have
1 1

1
5o [fde > 5o | prdz — o |fle 2n — 29

I5¢
> 22 [ tde - ]

which is positive provided we choose &V larger than log (47 | f| »/cd)/log ¢, thus
negating (2.4.1). This proves statement (1).
Now assume that f is as in statement (2). Define

F(z) = ¢ + f:ﬂy) dy,

where the number c is chosen so as to make F(0) vanish. Since f(0) = 0, F is
periodic. Now F is absolutely continuous and DF = f a.e. ((W], Theorem
5.2g). By 2.3.4, the choice of ¢, and the main hypothesis on f, it follows that
F = 0. Thus statement (1) shows that F = 0, and so f = 0 a.e., as alleged.

Remark. The uniqueness theorem for trigonometric polynomials is a
direct consequence of the orthogonality relations (1.1.3) and is covered by

Exercise 1.7(1).
We proceed to deduce from 2.4.1 two rather special and purely provisional

results concerning the recapture of a function from its Fourier series; more
satisfactory results of this nature will appear in Chapters 6 and 10. As was
pointed out in 2.2.1, these results concern harmonic synthesis on the circle

group.

24.2. If fe L' has a Fourier series that is dominatedly convergent almost
everywhere, then

f(x) = Z f(n)ein= a.e.

neZ

Proof. Let g be defined almost everywhere to be the sum of the Fourier
series of f wherever the latter converges, and to be, say, 0 elsewhere. By
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dominated convergence, g € L!. By the same token, one has for any m € Z,

g‘(m) — _2177 fg(x)e—imx dx = z f(n) . -2177 fein:c ¢ g iMT (o
= f(m)a

the last step by the orthogonality relations. By the uniqueness theorem
(2.4.1), f = g a.e.

2.4.3. If f is a continuous function with a uniformly convergent Fourier
series, then

flz) = D> f(n)en

nez
everywhere.

Proof. Using the notation of the prootf of 2.4.2, the sum function ¢ is
now everywhere defined and is continuous thanks to uniform convergence of
the series. Also, since the range of integration involved is a bounded interval,

uniform convergence entails dominated convergence. So 2.4.2 entails that f
and g agree almost everywhere. But, since both are continuous, this in turn

implies agreement everywhere.
A further and very important deduction from 2.4.1 is the following density
theorem; it too will be refined later.

2.4.4. The set T of all trigonometric polynomials is everywhere dense in
each of the Banach spaces C, L? (1 < p < o), that is, given f € C (respectively
feL?) and e > 0, there exists ¢ € T such that

If —t|o < &  (respectively ||f — t]|, < ¢). (2.4.5)

Proof. (1) First take the case of C. Given & > 0, first choose g € C2 such
that

"f - g"oo < 1/23' (2.4.6)

This may be done by choosing a sufficiently small positive a and setting

gi(x) = a™* f: af(y) dy, ¢g(x) =a""! f“agl(y) dy .

9

By 2.3.5 and 2.4.3,

> d(n)e,,

nez

g

the series being convergent in C (that is, uniformly convergent). One may
therefore choose NNV so large that

lg — D dm)es]o < Ye. (2.4.7)

In|<N
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Then (2.4.6) and (2.4.7) combine to yield (2.4.5) with

t = Z g(n)e,.
Inl<N
(2) This case follows from (1), the fact that C is everywhere dense in L?
(compare [W], Theorem 4.4e), and the inequality |2||, < |?[.. Thus, given

feL?and e > 0, first chooseg € Cso that || f — g|, < V5e, and then [by (1)] a
t € T so that ||g — t|, < V5e. Then, a fortiori, g — ¢||, < Ye and so

|f =t < If =gl + llg — ¢, < e

Remarks. (1) The assertion in 2.4.4 is false for p = co. (Why?)

(2) It is possible to deduce 2.4.4 from 2.4.1 via the Hahn-Banach theorem
(see Appendix B.5) and results about the topological duals of the spaces C
and L? given in Chapter 12 and Appendix C, respectively. One of the con-
sequences of the Hahn-Banach theorem is, in fact, that uniqueness theorems
and density theorems consort in “dual pairs,”’ so to speak.

(3) When combined with 2.3.2, 2.4.4 leads to an independent proof of
2.3.8; see Exercise 2.9.

(4) Assuming that part of 2.4.4 which refers to the space C, one can derive
2.4.1; see Exercise 2.10. Thus, 2.4.1 and 2.4.4 are equivalent, a fact which
illustrates the substance of Remark (2) immediately above.

(6) Other proofs of 2.4.1 and 2.4.4 will appearin 5.1.2 and 6.1.1, where more
refined versions of 2.4.4 are considered; see also Section 6.2, where some
applications are mentioned.

2.5 Remarks on the Dual Problems

2.6.1. Definition of the Fourier Transform. If we are given a function

$on Z,itis natural to attempt to define its Fourier transform ¢ as the function
on 7' given by

$) = D (n)en; (2.5.1)

nes

In comparing this with (2.3.1), the reader will observe a change from e~ ** to
e'"®, which is made purely on the grounds of subsequent convenience.
Although (2.5.1) makes excellent sense whenever ¢ € ¢1(Z), in which case ¢ is
evidently a continuous function on 7' satisfying

[l < |l (2.5.2)

(compare 2.3.2), it is plain that complications arise if, for example, ¢ is
known merely to belong to £7(Z) for some p > 1. (In the case of the group T

no analogous complications appeared, because of the compactness of 7'.)
One has in fact to contemplate conditional convergence and summability,
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perhaps merely for almost all z, as was heralded by the remarks at the end of
2.2.2 concerning the interpretation of the invar<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>