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PREFACE

This book is a systematic exposition of the part of general
topology which has proven useful in several branches of mathe-
matics. It i1s especially intended as background for modern
analysis, and I have, with difficulty, been prevented by my
friends from labeling it: What Every Young Analyst Should
Know.

The book, which is based on various lectures given at the
University of Chicago in 1946—47, the University of California
in 1948-49, and at Tulane University in 1950-51, is intended to
be both a reference and a text. These objectives are somewhat
inconsistent. In particular, as a reference work it offers a rea-
sonably complete coverage of the area, and this has resulted in a
more extended treatment than would normally be given in a
course. There are many details which are arranged primarily for
reference work; for example, I have taken some pains to include
all of the most commonly used terminology, and these terms are
listed in the index. On the other hand, because it is a text the
exposition in the earlier chapters proceeds at a rather pedestrian
pace. For the same reason there i1s a preliminary chapter, not a
part of the systematic exposition, which covers those topics req-
uisite to the main body of work that I have found to be new to
many students. The more serious results of this chapter are
theorems on set theory, of which a systematic exposition is given
in the appendix. This appendix is entirely independent of the
remainder of the book, but with this exception each part of the

book presupposes all earlier developments.
\ '



vi PREFACE

There are a few novelties in the presentation. Occasionally
the title of a section is preceded by an asterisk; this indicates
that the section constitutes a digression. Other topics, many of
equal or greater interest, have been treated in the problems.
These problems are supposed to be an integral part of the dis-
cussion. A few of them are exercises which are intended simply
to aid in understanding the concepts employed. Others are
counter examples, marking out the boundaries of possible theo-
rems. Some are small theories which are of interest in them-
selves, and still others are introductions to applications of general
topology in various fields. These last always include references
so that the interested reader (that elusive creature) may continue
his reading. The bibliography includes most of the recent con-
tributions which are pertinent, a few outstanding earlier contri-
butions, and a few “cross-field” references.

I employ two special conventions. In some cases where mathe-
matical content requires “if and only if” and euphony demands
something less I use Halmos' “iff.” The end of each proof 1s
signalized by . This notation 1s also due to Halmos.

J. L. K.

Berkeley, California
February 1, 1955
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Chapter 0

PRELIMINARIES

The only prerequisites for understanding this book are a knowl-
edge of a few of the properties of the real numbers and a reason-
able endowment of that invaluable quality, mathematical ma-
turity. All of the definitions and basic theorems which are as-
sumed later are collected in this first chapter. The treatment 1s
reasonably self-contained, but, especially in the discussion of the
number system, a good many details are omitted. The most
profound results of the chapter are theorems of set theory, of
which a systematic treatment is given in the appendix. Because
the chapter is intended primarily for reference it 1s suggested
that the reader review the first two sections and then turn to
chapter one, using the remainder of the chapter if need arises.
Many of the definitions are repeated when they first occur in
the course of the work.

SETS

We shall be concerned with sets and with members of sets.
“Set,” “‘class,” “family,” “collection,” and “aggregate’” are syn-
onymous,* and the symbol e denotes membership. Thus x e 4
if and only if x is a member (an element, a point) of 4. Two sets
are identical iff they have the same members, and equality s

* This statement is not strictly accurate. There are technical reasons, expounded in
the appendix, for distinguishing between two different sorts of aggregates. The term
“set” will be reserved for classes which are themselves members of classes. This distinc-
tion is of no great importance here; with a single non-trivial exception, each class which
occurs in the discussion (prior to the appendix) is also a set.



2 PRELIMINARIES

always used to mean identity. Consequently, 4/ = B if and only
if, for each x, x e 4 when and only when x ¢ B.

Sets will be formed by means of braces, so that {x: - - - (propo-
sition about x) - - -} 1s the set of all points x such that the propo-
sition about x i1s correct. Schematically, y € {x: .- (proposition
about x) ---} if and only if the corresponding proposition about
y is correct. For example, if 4 is a set, then y e {x: x ¢ A} iff
yed. Because sets having the same members are identical,
A = {x: xe A}, a pleasant if not astonishing fact. It 1s to be
understood that in this scheme for constructing sets “x”’ is a
dummy variable, in the sense that we may replace it by any
other variable that does not occur in the proposition. Thus
(x:xed} = {y:yed}, but {x: xe A} # {A: 4e A).

There 1s a very useful rule about the construction of sets in
this fashion. If sets are constructed from two different proposi-
tions by the use of the convention above, and if the two propo-
sitions are logically equivalent, then the constructed sets are
identical. The rule may be justified by showing that the con-
structed sets have the same members. For example, if 4 and
B are sets, then {x: xe 4 or xe B} = {x: xe B or x e A}, be-
cause ¥ belongs to the first iff y e 4 or y € B, and this is the case
iff y € B or y e A4, which is correct iff y is a member of the second
set. All of the theorems of the next section are proved in pre-
cisely this way.

SUBSETS AND COMPLEMENTS; UNION AND INTERSECTION

If 4 and B are sets (or families, or collections), then 4 is a
subset (subfamily, subcollection) of B if and only if each mem-
ber of A4 is a member of B. In this case we also say that A is
contained in B and that B contains /4, and we write the follow-
ing: 4 € Band B 5 4. Thus 4 < B iff for each x it is true
that x ¢ B whenever x ¢ 4. The set 4 is a proper subset of B
(4 1s properly contained in B and B properly contains A) iff
Ac Band 4 B. If A4is asubset of B and B is a subset of
C, then clearly A4 is a subset of C. If 4/ © B and B c 4, then

A = B, for in this case each member of 4 is a member of A
and conversely.
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The union (sum, logical sum, join) of the sets 4 and B, writ-
ten 4 U B, 1s the set of all points which belong either to A or
to B; that1s, 4 U B = {x: xe 4 or xe B}. It is understood
that “or” 1s used here (and always) in the non-exclusive sense,
and that points which belong to both 4 and B also belong to
A U B. The intersection (product, meet) of sets 4 and B, writ-
ten 4 N B, 1s the set of all points which belong to both 4 and
B; thatis, 4 N B = {x:xe 4 and x e B]. The void set (empty
set) 1s denoted O and is defined to be {x: ¥ ## x}. (Any proposi-
tion which is always false could be used here instead of x 7 x.)
The void set is a subset of every set 4 because each member of
O (there are none) belongs to 4. The inclusions, 0 c 4 N B
c 4 c AU B, are valid for every pair of sets 4 and B. Two
sets 4 and B are disjoint, or non-intersecting, 1ff 4/ N B = 0;
that 1s, no member of A4 is also a member of B. The sets 4 and
B intersect iff there is a point which belongs to both, so that
AN B 0. Ifais a family of sets (the members of @ are sets),
then @ is a disjoint family iff no two members of @ intersect.

The absolute complement of a set A4, written ~ A4, 1s {x: x ¢ 4}.
The relative complement of 4 with respect to aset X1s X 1 ~A4,
or simply X ~ 4. This set is also called the difference of X
and 4. For each set A it is true that ~~A4 = A; the corre-
sponding statement for relative complements is slightly more
complicated and is given as part of 0.2.

One must distinguish very carefully between “member” and
“subset.”” The set whose only member is x is called singleton x
and is denoted {x}. Observe that {0} i1s not void, since 0 ¢ {0},
and hence 0 3 {0}. In general, x e A4 if and only if {x} C 4.

The two following theorems, of which we prove only a part,
state some of the most commonly used relationships between the
various definitions given above. These are basic facts and will

frequently be used without explicit reference.

1 TueoreM Let A and B be subsets of a set X. Then A C B f
and only if any one of the following conditions holds:

ANB=4 B=AUB, X~BcCcXn~,
ANX~B=0, or X~A4) UB=X.
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2 THEOREM Let A, B, C, and X be sets. Then:

(a) X~ X~A)=40NX.

(b) (Commutative laws) A U B =B U dand AN B=BMNA.

(c) (Associative laws) A U (B U C) = (4 U B) U C and
ANBNC)=(A4NAB)NC.

(d) (Distributive laws) 4 N (B UC) = (4 N B) U (4 N C)
andAU(BNC)=(A4UB)N(4UDC).

(e) (De Morgan formulae) X ~ (4 U B) = (X ~A4) N
(X~BandX~(ANB)=X~A) U (X ~B).

PROOF Proof of (a): A point x is a member of X ~ (X ~ A) iff
xeX and x¢ X ~ 4. Since x¢ X ~ A4 ff x¢ X or xe 4, it
follows that xe X ~ (X ~4) iff xe X and etther x ¢ X or
xe 4. The first of these alternatives i1s impossible, so that
xeX~(X~A iff xeX and xe 4; that 1s, iff xe X N 4.
Hence X ~ (X ~ 4) = 4 N X. Proof of first part of (d): A
point ¥ i1s a member of 4/ N (B U C) iff x e 4 and either x ¢ B
or x8 C. This is the case iff either x belongs to both 4 and B
or x belongs to both 4 and C. Hence xe 4 N (B U C) iff
xe(A4 N B) U(A4 N C), and equality i1s proved. §

If 4,, Ay, ---, A4, are sets, then 4; U 4, U---U 4, 1s the
union of the sets and 4, N 4, N--- N A, 1s their intersection.
It does not matter how the terms are grouped in computing the
union or intersection because of the associative laws. We shall
also have to consider the union of the members of non-finite
families of sets and 1t 1s extremely convenient to have a notation
for this union. Consider the following situation: for each mem-
ber a of a set 4, which we call an index set, we suppose that a
set X, 1s given. Then the union of all the X,, denoted |J{X,:
aeAd),1s defined to be the set of all points x such that x e X,
for some a2 1n 4. In a similar way the intersection of all X, for «
in A, denoted [} {X,: a € A}, is defined to be {x: x € X, for each
a in A}. A very important special case arises when the index
set 1s itself a family @ of sets and X, is the set A4 for each 4 in q.
Then the foregoing definitions become: |J{A4: A e @} = {x:x e A
for some 4 in @) and (Y{A: A e @} = {x:x e 4 for each A in a).

There are many theorems of an algebraic character on the
union and intersection of the members of families of sets, but
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we shall need only the following, the proof of which is omitted.

3 THEOREM Let 4 be an index set, and for each a in A let X, be
a subset of a fixed set Y. Then:

(a) If B is a subset of A4, then J{Xv: be B} ¢ U X,: a e 4]
and (\{Xv:6e B} D {X,:a¢ed).

(b) (De Morgan formulae) Y ~ J{X,: ae 4} = (Y ~ X,:
aed) and Y ~ (Y| Xa: aed} = Y ~ X,: ae d).

The De Morgan formulae are usually stated in the abbreviated
form: the complement of the union is the intersection of the com-
plements, and the complement of an intersection is the union of
the complements.

It should be emphasized that a reasonable facility with this
sort of set theoretic computation is essential. The appendix con-
tains a long list of theorems which are recommended as exercises
for the beginning student. (See the section on elementary alge-
bra of classes.)

4 Notes In most of the early work on set theory the union of
two sets 4 and B was denoted by 4 -+ B and the intersection by
AB, 1n analogy with the usual operations on the real numbers.
Some of the same algebraic laws do hold; however, there 1s com-
pelling reason for not following this usage. Frequently set theo-
retic calculations are made in a group, a field, or a linear space.
If 4 and B are subsets of an (additively written) group, then
{c:c = a + b for some a in A and some b in B} 1s a natural candi-
date for thelabel “A4 + B,” and 1t is natural to denote {x: —x e 4}
by —A4. Since the sets just described are used systematically in
calculations where union, intersection, and complement also ap-
pear, the choice of notation made here seems the most reasonable.

The notation used here for construction of sets is the one most
widely used today, but “E” for “the set of all ¥ such that” i1s

X

also used. The critical feature of a notation of this sort is the
following: one must be sure just which is the dummy variable.
An example will clarify this contention. The set of all squares
of positive numbers might be denoted quite naturally by {x?*:
x > 0}, and, proceeding, {x* + 4%: ¥ < 1 + 24} also has a natu-
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ral meaning. Unfortunately, the latter has three possible natural
meanings, namely: {2: for some x and some a, z = x* + a* and
x < 1+ 2al, (z: for some x,z2 = x* + a* and x < 1 4 2a}, and
(2: for some a, 2 = x> + a® and x < 1+ 2a}. These sets are
quite different, for the first depends on neither x nor 4, the sec-
ond is dependent on 4, and the third depends on x. In slightly

€€ V) t€ ¥

more technical terms one says that “x’’ and *“4” are both dum-
mies in the first, “x” is a dummy in the second, and “4” 1n the
third. To avoid ambiguity, in each use of the brace notation
the first space after the brace and preceding the colon 1s always
occupied by the dummy variable.

Finally, it is interesting to consider one other notational fea-
ture. In reading such expressions as “4 N (B U C)” the paren-
theses are essential. However, this could have been avoided by
a slightly different choice of notation. If we had used “U4B”
instead of “4 U B,” and similarly for intersection, then all pa-
rentheses could be omitted. (This general method of avoiding
parentheses 1s well known in mathematical logic.) In the modi-

fied notation the first distributive law and the associative law
for untons would then be stated: NA U BC = UNAB N AC

and U4 U BC = UUABC. The shorthand notation also reads
well; for example, U.4B is the union of 4 and B.

RELATIONS

The notion of set has been taken as basic 1n this treatment,
and we are therefore faced with the task of defining other neces-
sary concepts in terms of sets. In particular, the notions of or-
dering and function must be defined. It turns out that these
may be treated as relations, and that relations can be defined
rather naturally as sets having a certain special structure. This
section 1s therefore devoted to a brief statement of the definitions
and elementary theorems of the algebra of relations.

Suppose that we are given a relation (in the intuitive sense)
between certain pairs of objects. The basic idea is that the re-
lation may be represented as the set of all pairs of mutually re-
lated objects. For example, the set of all pairs consisting of a
number and its cube might be called the cubing relation. Of
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course, 1n order to use this method of realization it i1s necessary
that we have available the notion of ordered pair. This notion
can be defined in terms of sets.* The basic facts which we need
here are: each ordered pair has a first coordinate and a second
coordinate, and two ordered pairs are equal (identical) if and
only if they have the same first coordinate and the same second
coordinate. The ordered pair with first coordinate ¥ and second
coordinate y 1s denoted (x,y). Thus (¥,y) = (%,v) if and only if
x =y and y = v.

It 1s convenient to extend the device for the formation of sets
so that {(x,y): ---] 1s the set of all pairs (x,y) such that ---
This convention is not strictly necessary, for the same set 1s ob-
tained by the specification: {z: for some x and some y, z = (x,y)
and - +}.

A relation 1s a set of ordered pairs; that is, a relation 1s a set,
each member of which is an ordered pair. If R is a relation we
write xRy, and (x,y) € R interchangeably, and we say that x is
R-related to y if and only if xRy. The domain of a relation R 1s
the set of all first coordinates of members of R, and its range is
the set of all second coordinates. Formally, domain R = {x: for
some y, (x,) € R} and range R = [y: for some x, (x,y) e R}. One
of the simplest relations is the set of all pairs (x,y) such that x is
a member of some fixed set 4 and ¥ is a member of some fixed
set B. This relation is the cartesian product of 4 and B and is
denoted by 4 X B. Thus 4 X B = {(x,y): xe A and y e B).
If B is non-void the domain of 4 X B 1s 4. It is evident that
every relation is a subset of the cartesian product of its domain
and range.

The inverse of a relation R, denoted by R™, is obtained by
reversing each of the pairs belonging to R. Thus R™ = {(x,y):
(y,x) € R} and xRy if and only if yR™'x. For example, (4 X B)™
= B X A for all sets 4 and B. The domain of the inverse of a
relation R is always the range of R, and the range of R™ is the
domain of R. If R and § are relations their composition, R+ §
(sometimes written RS), is defined to be the set of all pairs (x,z)

* An honest treatment of the problem is given in the appendix, where N. Wiener’s
definition of ordered pair is used. The ingenious notion of representing relations in this

fashion is due to C. S. Peirce. A very readable account of the elementary relation alge-
bra will be found in A. Tarski [1].
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such that for some y it is true that (x,y) e § and (y,2) e R. Com-
position is generally not commutative. For example, if R =
{(1,2)} and § = {(0,1)}, then R~ § = {(0,2)} and §- R 1s void.
The identity relation on a set X (the identity on X), denoted A
or A(X), is the set of all pairs of the form (x,x) for £ in X. The
name is derived from the fact that A R = R-A = R whenever
R is a relation whose range and domain are subsets of X. The
identity relation is also called the diagonal, a name suggestive
of its geometric position in X X X.

If R 1s a relation and A is a set, then R[A], the set of all R-
relatives of points of 4, is defined to be {y: xRy for some x in A}.
If 4 is the domain of R, then R[A] is the range of R, and for arbi-
trary A the set R[A] i1s contained in the range of R. If R and §
are relations and R < §, then clearly R[4] < S[4] for every A.

There 1s an extensive calculus of relations, of which the follow-

ing theorem 1s a fragment.

S Tueorem Let R, §, and T be relations and let A and B be sets.
Then:

(a) (R~ = Rand (R-8)~' = §~1- R,
(b) Re(§°T) = (R>S§) T and (R~ 8)[A4] = R[S[A]].
(c) R[4 U B) = R[A4) U R[B] and R[4 N B] c R[A] N R[B].

More generally, if there is given a set X, for each member a of a
non-void index set A then:

(d) RIU{Xs:aed}] = UlR[X.):ae A} and RIN [ X,: a e A)]
c (R[X,]: a e A4]}.

PROOF As an example we prove the equality: (R- 8! =
§~'e R™'. A pair (z,%) i1s a member of (R 8)~Liff (x,2) e RS,
and this is the case iff for some y it is true that (x,y) e § and (y,2)
e K. Consequently (z,x) e (R §) 71 iff (2,) e R™! and (y,2) £ !
for some y. This is precisely the condition that (z,x) belong to
S~ R7L |

There are several special sorts of relations which occur so fre-
quently in mathematics that they have acquired names. Aside
from orderings and functions, which will be considered in detail
in the following sections, the types listed below are probably the
most useful. Throughout the following it will be convenient to
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suppose that R is a relation and that X is the set of all points
which belong to either the domain or the range of R; that is,
X = (domain R) U (range R). The relation R is reflexive if and
only if each point of X is R-related to itself. This is entirely
equivalent to requiring that the identity A (or A(X)) be a subset
of R. The relation R is symmetric, provided that xRy whenever
yRx. Algebraically, this requirement may be phrased: R = R™.
At the other extreme, the relation R is anti-symmetric iff it is
never the case that both xRy and yRx. In other words, R is
anti-symmetric 1ff R N R~ is void. The relation R is transi-
tive iff whenever xRy and yRz then xRz. In terms of the com-
position of relations, the relation R is transitive if and only if
R- R c R. It follows that, if R is transitive, then R~ R™! =
(R R)~! ¢ R™!, and hence the inverse of a transitive relation
1s transitive. If R is both transitive and reflexive, then R R O
R-° A and hence R R = R; in the usual terminology, such a re-
lation 1s idempotent under composition.

An equivalence relation i1s a reflexive, symmetric, and transi-
tive relation. Equivalence relations have a very simple struc-
ture, which we now proceed to describe. Suppose that R is an
equivalence relation and that X is the domain of R. A subset A4
of X is an equivalence class (an R-equivalence class) if and only
if there 1s a member x of A such that 4 is identical with the set
of all y such that xRy. In other words, A is an equivalence class
iff there is x in A4 such that 4 = R[{x}]. The fundamental re-
sult on equivalence relations states that the family @ of all equiv-
alence classes 1s disjoint, and that a point x 1s R-related to a
point y if and only if both x and y belong to the same equivalence
class. The set of all pairs (x,y) with x and y in a class 4 1ssimply
A X A, which leads to the following concise formulation of the

theorem.

6 TueoreM A relation R is an equivalence relation if and only
if there is a disjoint family @ such that R = |J{A4 X A4: 4 e a}.

prooF If R is an equivalence relation, then R is transitive: if
yRx and 2Ry, then zRx. In other words, if xRy, then R[{y}] C
R[{x}]. But R is symmetric (xRy whenever yRx), from which
it follows that, if xRy, then R[{x}] = R[{y}]. If z belongs to
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both R[{x}] and R[{y}], then R[{x}] = R[{z}] = R[{y}], and con-

sequently two equivalence classes either coincide or are disjoint.
If y and z belong to the equivalence class R[{x}], then, since
R[{y}] = R[{x}], it follows that yRz or, in other words, R[{x}]
X R[{x}] € R. Hence the union of 4 X A for all equivalence
classes A4 is a subset of R, and since R is reflexive, if xRy, then
(x,y) e R[{x}] X R[{x}]. Hence R = U{4 X A: Ae@a}. The
straightforward proof of the converse is omitted. |

We are frequently interested in the behavior of a relation for
points belonging to a subset of i1ts domain, and frequently the re-
lation possesses properties for these points which it fails to have
for all points. Given a set X and a relation R one may construct
a new relation K N (X X X) whose domain is a subset of X.
For convenience we will say that a relation R has a property on
X, or that R restricted to X has the property iff R N (X X X)
has the property. For example, R is transitive on X iff R N
(X X X) 1s a transitive relation. This amounts to asserting that
the defining property holds for points of X; in this case, when-
ever x, ¥, and 2z are points of X such that xRy and yRz, then

x Rz.
FUNCTIONS

The notion of function must now be defined in terms of the
concepts already introduced. This offers no difficulty if we con-
sider the following facts. Whatever a function is, its graph has
an obvious definition as a set of ordered pairs. Moreover, there
Is no information about the function which cannot be derived
from its graph. In brief, there is no reason why we should at-
tempt to distinguish between a function and its graph.

A function 1s a relation such that no two distinct members
have the same first coordinate. Thus f is a function iff the mem-
bers of f are ordered pairs, and whenever (x,y) and (x,2) are
members of f, then y = 2. We do not distinguish between a
function and its graph. The terms correspondence, transforma-
tion, map, operator, and function are synonymous. If fis a func-
tion and x 1s a point of its domain (the set of all first coordinates
of members of /), then f(x), or f, is the second coordinate of the
unique member of f whose first coordinate is . The point f(x)
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1s the value of f at x, or the image of x under f, and we say that
[ assigns the value f(x) to x, or carries x into f(x). A function
fison X iff X is its domain and it is onto Y iff Y is its range (the
set of second coordinates of members of f, sometimes called the
set of values). If the range of f is a subset of Y, then fis to Y,
or into Y. In general a function 1s many to one, in the sense
that there are many pairs with the same second coordinate or,
equivalently, many points at which the function has the same
value. A function f is one to one iff distinct points have distinct
images; that is, if the inverse relation, f~1, is also a function.

A function 1s a set, and consequently two functions, f and g,
are 1dentical iff they have the same members. It is clear that
this 1s the case iff the domain of f 1s identical with the domain of
g and f(x) = g(x) for each x in this domain. Consequently, we
may define a function by specifying its domain and the value of
the function at each member of the domain. If f is a function
on X to Y and A4 is a subset of X, then f N (4 X Y) is also a
function. It 1s called the restriction of f to A4, denoted f| 4, its
domain is 4, and (f|4)(x) = f(x) for x in 4. A function g is
the restriction of f to some subset iff the domain of g 1s a subset

of the domain of f, and g(x) = f(x) for ¥ in the domain of g;
that is, iff g € f. The function f is called an extension of g iff

g C f. Thus f is an extension of g iff g i1s the restriction of f to
some subset of the domain of /.

If 4 is a set and f i1s a function, then, following the definition
given for arbitrary relations, f[A4] = (y: for some x 1n A, (x,y)

e f}; equivalently, f[A] is [y: for some x in A, y = f(x)}. The
set f[A] is called the image of 4 under f. If 4 and B are sets,

then, by theorem 0.5, f[4 U B] = f[A4] U f[B] and f[4 N B] C
flA4] N f[B], and similar formulae hold for arbitrary unions and

intersections. It is not true in general that f[4 N B] = f[A4] N
f[B], for disjoint sets may have intersecting images. If fis a
function, then the set f~'[A4] is called the inverse (inverse image,
counter image) of A4 under f. The inverse satisfies the following

algebraic rules.

7 THEOREM If f is a function and A and B are sets then

(a) /74 ~ B] = f7'[4] ~f[B],
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(b) f7'[4 U B] = f[4] U f7'[B], and
(c) f7'[4 N Bl = f7[4] N f7B].

More generally, if there is given a set X, for each member ¢ of
a non-void tndex set C then

d) AU X ceCH = UfTXe]: c e C}, and
(e) [N {Xe: ceCl] = NI [Xe]: c e C).

prooF Only part (e) will be proved. A point x 1s a member of
NN {X.: ¢ e C}] if and only if f(x) belongs to this intersection,
which is the case iff f(x) e X, for each ¢ in C. But the latter con-
dition is equivalent to x e f~![X,] for each ¢ in C; that 1s, x €
(MSf7'[X]:ceC). |

The foregoing theorem 1s often summarized as: the inverse of
a function preserves relative complements, unions, and intersec-
tions. It should be noted that the validity of these formulae
does not depend upon the sets 4 and B being subsets of the range
of the function. Of course, f~![4] is identical with the inverse
image of the intersection of 4 with the range of f. However, 1t
1s convenient not to restrict the notation here (and the corre-
sponding notation for images under f) to subsets of the range
(respectively, the domain).

The composition of two functions i1s again a function by a
straightforward argument. If fis a function, then f~'¢f is an
equivalence relation, for (x,v) e f~!<f if and only if f(x) = f(y).
The compostition f-f~! 1s a function; i1t 1s the identity on the
range of /.

8 Notes There are other notations for the value of a function f
at a point x. Besides f(x) and f,, all of the following are in use:
(/%) (%,f), fx, xf, and -fx. The first two of these are extremely
convenient in dealing with certain dualities, where one is con-
sidering a family F of functions, each on a fixed domain X, and
it 1s desirable to treat F and X in a symmetric fashion. The no-
tations ‘fx”’ and “xf”’ are obvious abbreviations of the notation
we have adopted; whether the “/” is written to the left or to
the right of “x” is clearly a matter of taste. These two share a
disadvantage which is possessed by the “‘f(x)”’ notation. In cer-
tain rather complicated situations the notation is ambiguous, un-
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less parentheses are interlarded liberally. The last notation
(used by A. P. Morse) is free from this difficulty. It is unambig-
uous and does not require parentheses. (See the comments on
union and intersection in 0.4.)

There 1s a need for a bound variable notation for a function.
For example, the function whose domain is the set of all real
numbers and which has the value x? at the point x should have
a briefer description. A possible way out of this particular situ-
ation 1s to agree that x is the identity function on the set of real
numbers, in which case 2 might reasonably be the squaring func-
tion. The classical device is to use x2 both for the function and
for its value at the number ». A less confusing approach is to
designate the squaring function by ¥ — x2. This sort of nota-
tion 1s suggestive and is now coming into common use. It is
not universal and, for example, the statement (x — x2)(f) = #2
would require explanation. Finally it should be remarked that,
although the arrow notation will undoubtedly be adopted as
standard, the A-convention of A. Church has technical advan-
tages. (The square function might be written as Ax: x¥2) No
parentheses are necessary to prevent ambiguity.

ORDERINGS

An ordering (partial ordering, quasi-ordering) is a transitive
relation. A relation < orders (partially orders) a set X iff it is
transitive on X. If < 1s an ordering and x < y, then it is cus-
tomary to say that x precedes y or x is less than y (relative to
the order <) and that y follows x and y is greater than x. If A4
1s contained 1n a set X which 1s ordered by <, then an element x
of X 1s an upper bound of 4 iff for each y in A either y < x or
y = x. Similarly an element x is a lower bound of A4 if x is
less than or equal to each member of 4. Of course, a set may
have many different upper bounds. An element x is a least
upper bound or supremum of A if and only if it is an upper bound
and is less than or equal to every other upper bound. (In other
words, a supremum is an upper bound which is a lower bound for

the set of all upper bounds.) In the same way, a greatest lower
bound or infimum is an element which 1s a lower bound and is
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greater than or equal to every other lower bound. A set X 1s
order-complete (relative to the ordering <) if and only if each
non-void subset of X which has an upper bound has a supremum.
It is a little surprising that this condition on upper bounds is
entirely equivalent to the corresponding statement for lower

bounds. That is:

O THEOREM A set X is order-complete relative to an ordertng if
and only if each non-void subset which has a lower bound has an
infimum.

PROOF Suppose that X 1s order-complete and that 4 1s a non-
vold subset which has a lower bound. Let B be the set of all
lower bounds for 4. Then B is non-void and surely every mem-
ber of the non-void set 4 1s an upper bound for B. Hence B has
a least upper bound, say, 5. Then & is less than or equal to each
upper bound of B, and 1n particular 4 is less than or equal to
each member of 4, and hence 4 1s a lower bound of 4. On the
other hand, & 1s itself an upper bound of B; that is, 4 is greater
than or equal to each lower bound of 4. Hence & 1s a greatest
lower bound of 4. The converse proposition may be proved by
the same sort of argument, or, directly, one may apply the re-
sult Just proved to the relation inverse to <. |

It should be remarked that the definition of ordering is not
very restrictive. For example, X X X 1s an ordering of X, but
a rather uninteresting one. Relative to this ordering each mem-
ber of X 1s an upper bound, and in fact a supremum, of every
subset. The more interesting orderings satisfy the further con-
dition: if x 1s less than or equal to y and y is also less than or
equal tox, theny = x. In this case there is at most one supremum
for a set, and at most one Infimum.

A linear ordering (total, complete, or simple ordering) is an
ordering such that:

(a) If x <yandy < x, then x = y, and
(b) ¥ <y ory < x whenever x and y are distinct members of the
unton of the domatn and the range of <.

It should be noticed that a linear ordering is not necessarily re-
flexive. However, agreeing that x < y iff ¥ <y or ¥ = y, the

relation S 1s always a reflexive linear ordering if < is a linear
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ordering. Following the usual convention, a relation 1s said to
linearly order a set X iff the relation restricted to X is a linear
ordering. A set with a relation which linearly orders it is called
a chain. Clearly suprema and infima are unique in chains. The
remaining theorems in this section will concern chains, although
it will be evident that many of the considerations apply to less
restricted orderings.

A function fon a set X to a set Y is order preserving (mono-
tone, isotone) relative to an order < for X and an order < for
Y iff f(u) < f(v) or f(u) = f(v) whenever u and v are points of X
such that # < v. If the ordering < of Yis simply Y X Y, or if the
ordering < of X is the void relation, then f i1s necessarily order
preserving. Consequently one cannot expect that the inverse of
a one-to-one order preserving function will always be order pre-
serving. However, if X and Y are chains and f 1s one to one
and isotone, then necessarily f~! is isotone, for if f(u) < f(v) and
f(u) # f(v), then it is impossible that v < # because of the order-
preserving property.

Order-complete chains have a very special property. Suppose
that X and Y are chains, that X, i1s a subset of X, and that f 1s
an order-preserving function on X, to Y. The problem 1s: Does
there exist an isotone extension of f whose domain 1s X? Unless
some restriction is made on f the answer is “no,” for, if X 1s the
set of all positive real numbers, Xy is the subset consisting of all
numbers which are less than one, Y = X, and f is the identity
map, then it is easy to see that there is no isotone extension.
(Assuming an extension f—, what is f7(1)?) But this example
also indicates the nature of the difficulty, for X, 1s a subset of X
which has an upper bound and f[X,] has no upper bound. If an
isotone extension f— exists, then the image under f~ of an upper

bound for a set A is surely an upper bound for f[4]. A similar
statement holds for lower bounds, and 1t follows that, if a sub-

set A of X, is order-bounded in X (that 1s, it has both an upper

and lower bound in X), then the image f[4] is order-bounded in
Y. The following theorem asserts that this condition is also suf-

ficient for the existence of an isotone extension.

10 TueoReEM Let [ be an isotone function on a subset Xo of a
chain X to an order-complete chasn Y. Then f has an ssotone ex-
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tension whose domain is X if and only if f carries order-bounded
sets into order-bounded sets. (More precisely stated, the condition
is that, if A4 is a subset of Xy which is order-bounded 1n X, then
f[A] is order-bounded in Y.)

proOF It has already been observed that the condition 1s neces-
sary for the existence of an isotone extension, and it remains to
prove the sufficiency. We must construct an isotone extenston
of a given function f. First we note that if 4 1s a subset of X,
which has a lower bound 1n X, then f[4] has a lower bound, for,
choosing a point x in 4, the set |y: ye 4 and y < x} 1s order-
bounded, hence its image under f 1s order-bounded, and a lower
bound for this image i1s also a lower bound for f[A4]. A similar
statement applies to upper bounds. For each ¥ in X let L, be
the set of all members of X, which are less than or equal to x;
that 1s, L, = {y: y S x and y e Xo}. If L, 1s void, then x 1s a
lower bound for X,, hence f[X,] has an infimum v, and we de-
fine f~(x) to be v. If L. i1s not void, then, since x 1s an upper
bound for L., the set f[L.] has an upper bound and hence a
supremum, and we define f~(x) = supf[L.]. The straightfor-
ward proof that f~ 1s an 1sotone extension of f 1s omitted. |

In certain cases the 1sotone extension of a function is unique.
One such case will occur 1n treating the decimal expansion of a
real number. Without attempting to get the best result of the
sort, we give a simple sufficient condition for uniqueness which
will apply.

11 TueoreMm Let f and g be isotone functions on a chain X to a
chain Y, let X be a subset of X on which f and g agree, and let Y,
be fIXol. A sufficient condition that f = g is that Y intersect every

set of the form {y: u <y <v, u#y and y 7 v}, where u and v
are members of Y such that u < v.

PROOF If f 7 g, then f(x) # g(x) for some x in X, and we may
suppose that f(x) < g(x). Each point of X, which is less than
or equal to ¥ maps under f into a point less than or equal to f(x),
because f 1s 1sotone, and each point which is greater than or
equal to ¥ maps under g into a point greater than or equal to
g(x), because g is isotone. It follows that no point of X, maps
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into the set {y: f(x) <y < g(x), f(¥) # y and y # g(x)}, and
the theorem s proved. |

12 Notes There 1s a natural way to embed a chain in an order-
complete chain which i1s an abstraction of Dedekind’s construc-
tion of the real numbers from the set of rational numbers. The
process can also be applied to less restricted orderings, as shown
by H. M. MacNeille (see Birkhoff [1; 58]). The pattern is very

suggestive of the compactification procedure for topological spaces

(chapter 5).

ALGEBRAIC CONCEPTS

In this section a few definitions from elementary algebra are
given. For the most part these notions are used in the problems.
The terminology 1s standard, and i1t seems worth while to sum-
marize the few notions which are required.

A group 1s a pair, (G,-) such that G is a non-void set and -,
called the group operation, i1s a function on G X G to G such
that: (a) the operation is associative, thatis, x-(y-2) = (x-y) -2 for
all elements x, y and z of G; (b) there is a neutral element, or
identity, e, such that e-x = x.¢ = x for each x in G; and (c) for
each ¥ in G there 1s an inverse element ¥~ such that x-x™! =
x 1.x = ¢. If the group operation is denoted +, then the ele-
ment inverse to x i1s usually written —x. Following the usual
custom, the value of the function - at (x,y) is written x-.y in-
stead of the usual functional notation -(x,y), and if no confusion
seems likely, the symbol - may be omitted entirely and the group
operation indicated by juxtaposition. We shall sometimes say
(imprecisely) that G is a group. If 4 and B are subsets of G,
then A4-B, or simply 4B, 1s the set of all elements of the form
x-y for some x in 4 and some y in B. The set {x}-A4 1s also de-
noted by x-A4 or simply ¥4, and similarly for operation on the
right. The group is abelian, or commutative, iff x-y = y-x for
all members ¥ and y of G. A group H is a subgroup of G iff
H < G and the group operation of H is that of G, restricted to
H X H. A subgroup H is normal (distinguished, invariant) iff
x-H = H-x for each x in G. If H is a subgroup of G a left coset
of H is a subset which is of the form x:H for some x in G. The



18 PRELIMINARIES

—

family of all left cosets is denoted by G/H. If H is normal and
A and B belong to G/H, then A-B is also a member, and, with
this definition of group operation, G/H is a group, called the
quotient or factor group. A function f on a group G to a group A
is a homomorphism, or representation, iff f(x-y) = f(x)-f(y) for
all members ¥ and y of G. The kernel of f is the set f~'[e]; 1t is
always an invariant subgroup. If H is an invariant subgroup of
G, then the function whose value at x is x-H 1s a homomorphism,
usually called the projection, or quotient map, of G onto G/H.

A ring 1s a triple (R,+,-) such that (R,+) is an abelian group
and - 1s a function on R X R to R such that: the operation is as-
sociative, and the distributivelaws - (x + y) = #-x + u4-y and
(# + v)-x = u-x 4+ v-x hold for all members x, y, #, and v of R.
A subring i1s a subset which, under the ring operations restricted,
1s a ring, and a ring homomorphism or representation is a func-
tion f on a ring to another ring such that f(x 4+ y) = f(x) + f(y)
and f(x-y) = f(x)-f(y) for all members ¥ and y of the domain.
An additive subgroup 7 of a ring R is a left ideal 1ff xI c I for
each ¥ in R, and is a two-sided ideal iff x7 c I and Ix c [ for
each ¥ in R. If I 1s a two-sided 1deal, R/I is, with the proper
addition and multiplication, a ring, and the projection of R onto
R/I is a ring homomorphism. A field is a ring (F,+,-) such that
F has at least two members, and (I ~ {0},-), where O 1s the ele-
ment neutral with respect to 4, is a commutative group. The
operation 4 1s the addition operation, - 1s the multiplication,
and the element neutral with respect to multiplication is the
unit, 1. It 1s customary, when no confusion results, to replace -
by juxtaposition, and, ignoring the operations, to say that “F is
a field.” A linear space, or vector space, over a field F (the
scalar field of the space) is a quadruple (X, ®,-,F), such that
(X,®) 1s an abelian group and - is a function on F X X to X
such that for all members x and y of X, and all members @ and 4
of F, a-(b:x) =(a-0)x,(a+b)x=axDbxa(x0y) =
a-x ® a-y,and 1-x = x. A real linear space is a linear space
over the field of real numbers. The notion of linear space can
also be formulated in a slightly different fashion. The family of
all homomorphisms of an abelian group into itself becomes, with
addition defined pointwise and with composition of functions as



THE REAL NUMBERS 19

multiplication, a ring, called the endomorphism ring of the group.
A linear space over a field F 1s a quadruple (X, ®,-,F) such that
(X,®) 1s an abelian group and - 1s a ring homomorphism of F
into the endomorphism ring of (X, ®) which carries the unit, 1,
into the identity homomorphism.

A linear space (Y,®,0,F) i1s a subspace of a linear space
(X,+,,F) iff Y € X and the operations + and - agree with @
and © where the latter are defined. The family X/Y of cosets
of X modulo a subspace Y may be made into a linear space if
addition and scalar multiplication are defined in the obvious way.
The projection f of X onto X/Y then has the property that
fla-x + b-y) = a-f(x) + &-f(y) for all members a and & of F and
all ¥ and y in X. Such a function is called a linear function. If
f 1s a linear function the set f~'[0] 1s called the null space of f;
the null space of a linear function is a linear subspace of the do-
main (provided the operations of addition and scalar multipli-
cation are properly defined).

Suppose f is a linear function on X to Y and g 1s a linear map
of X onto Z such that the null space of f contains the null space
of g. Then there is a unique linear function 2 on Z to Y such
that f = A g (explicitly, A(z) is the unique member of f- g™'[2]).
(The function 4 is said to be induced by f and g.) A particular
consequence of this fact is that each linear function may be writ-
ten as a projection into a quotient space followed by a one-to-one

linear function.

THE REAL NUMBERS

This section is devoted to the proof of a few of the most im-

portant results concerning the real numbers.
An ordered field is a field F and a subset P, called the set of

positive elements, such that

(a) if x and y are members of P, then x +y and xy are also

members; and
(b) if x is a member of F, then precisely one of the following
statements is true: x e P, —x e P,or x = (.

One easily verifies that < is a linear ordering of F, where, by
definition, ¥ < y iff y — x e P. The usual simple propositions
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about adding and multiplying inequalities hold. The members x
of F' such that —x e P are negative.

It will be assumed that the real numbers are an ordered field
which is order-complete, in the sense that every non-void subset
which has an upper bound has a least upper bound, or supremum.
By 0.9 this last requirement is entirely equivalent to the state-
ment that each non-void subset which has a lower bound has a
greatest lower bound, or infimum.

We first prove a few propositions about integers. An induc-
tive set i1s a set A4 of real numbers such that 0 € 4, and whenever
xed, then x +1¢ 4. A real number x 1s a non-negative in-
teger iff x belongs to every inductive set. In other words, the
set w of non-negative integers is defined to be the intersection of
the members of the family of all inductive sets. Each member
of w is actually non-negative because the set of all non-negative
numbers is inductive. It is evident that v is itself an inductive
set and is a subset of every other inductive set. It follows that
(principle of mathematical induction) each inductive subset of w
is identical with w. A proof which relies on this principle is a
proof by induction. We prove the following little theorem as an
example: if p and ¢ are non-negative integers and p < g, then
g — pew First observe that the set consisting of 0 and all
numbers of the form » + 1 with » 1n w 1s inductive, and hence
each non-zero member of w 1s of the form p + 1. Next, let 4 be
the set of all non-negative integers p such that ¢ — pew for
each larger member ¢ of w. Surely 0 e 4, and let us suppose that
9 1s a member of 4 and that ¢ 1s an arbitrary member of w which
is larger than p + 1. Then p < ¢ — 1 and therefore ¢ — 1 — »
ew, because pe 4 and ¢ —1ew. Consequently p + 1¢ 4,
hence A 1s an inductive set, and therefore 4 = w. It is equally
simple to show that the sum of two members of w 1s a member of
w, and it follows that the set {x¥: ¥ ew or —x e w} is a group. It
is the group of integers.

There is another form of the principle of mathematical induc-
tion which is frequently convenient, namely: eack non-void sub-
set A of » has a smallest member. To prove this proposition con-
sider the set B of all members of w which are lower bounds for

A; that1s, B = {p: pewand p < q for all g in A}. The set B
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1s not inductive, for, if ge 4, then ¢ + 1 ¢ B. Since 0 ¢ B it fol-
lows that there i1s a member p of B such that p +1¢B. If
p e 4, then clearly p i1s the smallest member of 4; otherwise
there 1s a member ¢ of 4 such that p < ¢ < p + 1. But then
g — p 1s a non-zero member of w and hence ¢ — p — 1 is a nega-
tive member of w, which 1s impossible.

It 1s possible to define a function by induction in the following
sense. For each non-negative integer p let w, = {¢: gew and
g < p). Suppose that we seek a function on w, that the func-
tional value @ at 0 is given, and for each function g on a set w,
there 1s given F(g), the value of the desired function at p + 1.
Thus the value desired at » + 1 may depend on all of the values
for smaller integers. In these circumstances it 1s true that there
ts a unique function f on w such that f(0) = @ and f(p + 1) =
F(f| w,) for each p in w. (The function f| w, is the function f re-
stricted to the set w,.) This proposition is frequently considered
to be obvious, but the proof is not entirely trivial.

13 THEOREM Suppose a is given and F(g) 1s given whenever g 1s
a function whose domain is of the form w, for some p in w. Then
there 1s a unique function f such that f(0) = a and f(p + 1) =
F(f|w,) for each p in w.

prooF Let & be the family of all functions g such that the do-
main of g is a set w, for some p in w, g(0) = a, and for each mem-
ber ¢ of w such that g < p — 1, glg + 1) = F(g| wg). (Intui-
tively, the members of & are initial segments of the desired func-
tion.) The family & has the very important property: if g and /4
are members of &, then either g € A or A c g. To prove this it
is necessary to show that g(g) = A(g) for each ¢ belonging to the
domain of both. Suppose this is false, and let ¢ be the smallest
integer such that g(g) # A(¢). Then ¢ £ 0, because g(0) = A(0)
= a, and hence g(g) = F(g| w,_1) which, since g and 4 agree
for values smaller than ¢, is F(k| w,—1) = 4(g), and this 1s a con-
tradiction. Now let f = J{g: geF}. Then the members of f
are surely ordered pairs, and if (x,y) e g e and (x,2) € 4 € &, then
(x,) and (x,2) both belong to g or both to A, and hence y = 2.
Consequently f is a function, and it must be shown that it 1s
the required function. First, because {(0,a)}ed, f(0) = a.
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Next, if ¢ + 1 belongs to the domain of f, then for some g in &,
g+ 1 is a member of the domain of g, and hence f(¢g + 1) =
glg+ 1) = F(g|w) = F(f| w,). Finally, to show that the do-
main of f is w, suppose that ¢ is the first member of w which 1s
not in the domain of f. Then ¢ — 1 is the last member of the
domain of £, and f U {(¢,F(f))} is a member of . Hence ¢ be-
longs to the domain of f, which 1s a contradiction. |

The foregoing theorem can be used systematically in showing
the elementary properties of the real numbers. For example, if
b 1s a positive number and p an integer, 47 is defined as follows.
In the foregoing theorem, let 4 = 1 and for each function g with
domain w, let F(g) = bg(p). Then f(0) =1 and f(p + 1) =
bf(p) for each p in w, if f1s the function whose existence 1s guat-
anteed by the theorem. Letting 47 = f(p), it follows that ° = 1,
and *t! = bb?, from which one can show by induction that
6?2 = p?p for all members p and g of w. If 577 is defined to be
1/4” for each non-negative integer p, then the usual elementary
proof shows that 5?7¢ = p?pe for all integers p» and gq.

So far in this discussion of the real numbers we have not used
the fact that the field of real numbers is order-complete. We
now prove a simple, but noteworthy, consequence of order com-
pleteness. First, the set w of non-negative integers does not have
an upper bound, for, if x were a least upper bound of w, then
x — 1 would not be an upper bound, and hence x — 1 < p for
some p in w. But then ¥ < p 4+ 1 and this contradicts the fact
that x was supposed to be an upper bound. Consequently, if x
1s a positive real number and y is a real number, then px > y
for some positive integer p because there is a member » of w
which is larger than y/x. An ordered field for which this propo-
sition 1s true is said to have an Archimedean order.

We will need the fact that each non-negative real number has
a v-adic expansion, where & is an arbitrary integer greater than
one. Roughly speaking, we want to write a number x as the
sum of multiples of powers of 4, the multiples (digits) being non-
negative integers less than 4. Of course, the 4-adic expansion of
a number may fail to be unique—in the decimal expansion,
.9999- - - (all nines) and 1.000- - - (all zeros) are to be expansions
of the same real number. The expansion itself is a function
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which assigns to each integer an integer between 0 and 4 — 1,
such that (since we want only a finite number of non-zero inte-
gers before the decimal point) there is a first non-zero digit.
Formally, 4 1s a b-adic expansion iff 4 is a function on the inte-
gers to wy_y (= [g: gewand g £ b — 1}), such that there is a
smallest integer p for which 4, (= a(p)) 1s not zero. A b-adic
expansion ¢ is rational iff there is a last non-zero digit (that is,
for some integer p, a, = 0 whenever ¢ > »). For each rational
b-adic expansion 4 there is a simple way of assigning a corre-
sponding real number 7(a). Except for a finite number of inte-
gers p the number 4,6~? 1s zero, and the sum of a,6~" for p in
this finite set 1s the real number r(a). We write (a) = Z{a,b~?:
p an integer}. A real number which is of this form is a 4-adic
rational. These numbers are precisely those of the form, ¢b=>,
for integers p and ¢. Let E be the set of all 4-adic expansions.
Then E 1s linearly ordered by dictionary order; in detail, a 5-adic
expansion a4 precedes a b-adic expansion ¢ in dictionary order
(lexicographic order) iff for the smallest integer p such that
a, # c, 1t 1s true that g, < ¢,. It 1s very easy to see that, like
a dictionary, E 1s actually linearly ordered by <. The corre-
spondence r 1s order preserving, and this 1s the key to the fol-
lowing proposition.

14 Tueorem Let E be the set of b-adic expansions, let R be the
set of rational expansions, and for a in R let r(a) = Zla,b™?:
p an integer}. Then there 1s a unique isotone extenston 7 of r
whose domain ts E, and 7 maps E ~ R onto the positive real num-

bers 1n a one-to-one fashion.

prooF According to theorem 0.10 there will be an 1sotone exten-
sion 7 of r iff r carries each subset of R which 1s order-bounded
in E into an order-bounded subset of the real numbers. But for
each a in E there 1s evidently & in R such that 4 > 4, and 1t fol-
lows that, if a subset 4 of R has a for an upper bound, then r(5)

1s an upper bound for f[4]. A similar argument applies to lower
bounds, and we conclude that r carries order-bounded sets into

order-bounded sets and consequently has an isotone extension 7

whose domain is E.
To show the extension is unique it is sufficient, by 0.11, to
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prove that, for non-negative real numbers ¥ and y, if ¥ <y,
then there is 4 in R such that x < 7(a) < y. Because & > p
for each non-negative integer p (a fact which is easily proved by
induction), and because the set of non-negative integers 1s not
bounded, there is an integer p such that 42 > 1/(y — x). Then
b~? < (y — x). There is an integer ¢ such that g6~ = y because
the ordering is Archimedean, and since there is a smallest such
Integer g, it may be supposed that (g — 1)4™® < y. It follows
that (¢ — 1)4™ > x because 477 is less than (y — x) and this
proves that there 1s a 4-adic rational, (¢ — 1)67?, which 1s the
timage of a member of R and lies between x and y. Consequently
the correspondence 7 is unique.

Next, we show that the correspondence 7 1s one to one on
E ~ R. It is straightforward to see that 7 is one to one on R,
and this fact is assumed in the following. Suppose that 4 ¢ E,
ce E ~R, and a < ¢. Then for the first value of » such that
a, and c, are different, a, < ¢,. The expansion 4, such that for
q < p,dy = ag forqg > p,d, =0,and d, = a, + 1, 1s a member
of R which 1s greater than 4, and since ¢ does not have a last
non-zero digit, a < d < ¢. Repeating, there 1s a member e of
R such that a < d < ¢ < ¢. Then, since on R the function 7 is
one to one, 7#(a) < 7(d) < 7(e) £ 7(¢), and 7 is therefore one to
one on £ ~ R.

Finally, 1t must be shown that the image of £ ~ R under 7
1s the set of all positive numbers. First notice that for every
pair of members ¢ and 4 of R for which ¢ < d thereisain E ~ R
such that ¢ < @ < d, and consequently for positive real num-
bers x and y with x < y there is 2 in E ~ R such that ¥ < 7(a)
< y. Ilf now x is a positive real number which is not the image
of a member of E ~ R, let F = {a: ae E ~ R and 7#(a) < x).
If the set I has a supremum ¢ then, if 7(¢) < ¥ no point of E ~ R
maps into the interval (7(c),x), and if 7(c) > x, then (7 is order
preserving) no point of £ ~ R maps into the interval (x,7(c)).
In either event a contradiction results, and the theorem will fol-
low if it 1s shown that each non-empty subset of E ~ R which
has an upper bound has a supremum: that is, £ ~ R is order-
complete. Suppose then that F is a non-void subset of £ ~ R
which has an upper bound. Then there is a smallest integer 2
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such that 4, £ 0 for some 4 in F. Define ¢, to be zero for ¢ < p,
let F, be the set of all members a of F with non-zero p-th digit
a,, and let ¢, = max {a,: ae F,}. Continue inductively, letting
F, 41 be the set of all members 4 of F, such that a, = ¢, for ¢ = »,
and let ¢, 4, = max {a,,,: ae F,,}. No one of the sets F, can
be void and without difficulty one sees that the expansion ¢ ob-
tained by this construction is an upper bound of F, and in fact
a supremum, and thatce £ ~ R. |}

The foregoing theorem will be used for 4 equal to two, three,
and ten. The 4-adic expansions are then called dyadic, triadic,
and decimal, respectively.

COUNTABLE SETS

A set 1s finite iff 1t can be put into one-to-one correspondence
with a set of the form {p: p ew and p < ¢}, for someginw. A
set 4 1s countably infinite iff it can be put into one-to-one corre-
spondence with the set w of non-negative integers; that is, 1ff 4
is the range of some one-to-one function on w. A set is countable
iff 1t 1s either finite or countably infinite.

15 THEOREM A4 subset of a countable set is countable.

PROOF Suppose 4 is countable, f is one to one on w with range
A, and that B c 4. Then [, restricted to f~[B], 1s a one-to-one
function on a subset of w with range B, and if it can be shown that
f~YB] is countable, then a one-to-one function onto B can be
constructed by composition. The proof therefore reduces to
showing that an arbitrary subset C of w 1s countable. Let g(0)
be the first member of C, and proceeding inductively, for p 1n
w, let g(p) be the first member of C different from g(0), g(1), - - -,
g(p — 1). If this choice is impossible for some p then g is a
function on {¢: gew and q < p} with range C, and C 1s finite.
Otherwise (using 0.13 on the construction of functions by induc-
tion) there is a function g on w such that, for each p in w, g(p)

is the first member of C different from g(0), g(1), -+, g(p — 1).
Clearly g is one to one. It is easily verified by induction that

g(p) = p for all p, and hence it follows from the choice of g(p + 1)
that each member p of C is one of the numbers g(g) for ¢ S .
Therefore the range of g1s C. ||
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16 THEOREM If the domain of a function is countable, then the
range is also countable.

prooF It is sufficient to show that, if 4 is a subset of w and f 1s
a function on 4 onto B, then B is countable. Let C be the set
of all members x of 4 such that, if y e 4 and y < ¥, then f(x) 7
f(y); that is, C consists of the smallest member of each of the
sets f~![y] for y in B. Then f| C maps C onto B in a one-to-one
fashion, and since C is countable by 0.15,so1s B. |

17 TueorREM If @ is a countable family of countable sets, them
U (A4: 4 €@} is countable.

pPROOF Because @ is countable there is a function ' whose do-
main is a subset of w and whose range 1s @. Since F(p) 1s count-
able for each p in w, it is possible to find a function G, on a sub-
set of {p} X w whose range is F(p). Consequently there is a
function (the union of the functions G,) on a subset of w X w
whose range 1s | J{4: 4 ¢ @}, and the problem reduces to show-
ing that w X w is countable. The key to this proof 1s the obser-
vation that, if we think of w X w as lying in the upper right-hand
part of the plane, the diagonals which cross from upper left to lower
right contain only a finite number of members of w X w. Ex-
plicitly, for ninw,let B, = {(,9): (9,9) ew X w and p + q = n}.
Then B, contains precisely #» + 1 points, and the union |J{B.:
new}isw X w. A function on w with range w X w may be con-
structed by choosing first the members of B,, next those of B;,
and so on. The explicit definition of such a function is left to
the reader. |

The characteristic function of a subset 4 of a set X is the
function f such that f(x) =0 for x in X ~ 4 and f(x¥) = 1 for
x 1n 4. A function f on a set X which assumes no value other
than zero and one is called a characteristic function; it is clearly
the characteristic function of f~'[1]. The function which is zero
everywhere 1s the characteristic function of the void set, and the
function which is tdentically one on X is the characteristic func-
tion of X. Two sets have the same characteristic functions iff
they are tdentical, and hence there is a one-to-one correspondence

between the family of all characteristic functions on a set X and
the family of all subsets of X.
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If w1s the set of non-negative integers, the family of all char-
acteristic functions on w may be put into one-to-one correspond-
ence with the set F of all dyadic expansions 4 such that ¢, = 0
for p < 0. The family of all finite subsets of « corresponds in a
one-to-one way to the subfamily G of F consisting of rational
dyadic expansions. We now use the classical Cantor process to
prove that F 1s uncountable.

18 THEOREM The family of all finite subsets of a countably in-
finite set is countable, but the family of all subsets is not.

PROOF In view of the remarks preceding the statement of the
theorem it 1s sufficient to show that the set F of all dyadic ex-
pansions a with a, = 0 for p negative is uncountable, and that
the subset G of F consisting of rational expansions is countable.
Suppose that f 1s a one-to-one function on w with range F. Let
a be the member of F such that 4, = 1 — f(p), for each non-
negative integer p. That is, the p-th digit of 4 is one minus the
p-th digit of f(p). Then a e F and clearly, for each p 1n v, a
f(p) because a and f(p) differ in the p-th digit. It follows that 4
does not belong to the range of f, and this ts a contradiction.
Hence F 1s uncountable.

It remains to be proved that G is countable. For p in w let
G, = {a: aeG and a, = 0 for ¢ > p}. Then G, contains just
two elements, and since there are precisely twice as many mem-
bers in G,4, as in G,, it follows that G, 1s always finite. Hence
G = U{G,: p ew] 1s countable. }

The natural correspondence between F and a subset of the
real numbers is, according to 0.14, one to one on F ~ G. Since
G is countable, F ~ G must be uncountable. Hence

19 CoroLLARY The set of all real numbers is uncountable.

CARDINAL NUMBERS

Many of the theorems on countability are special cases of
more general theorems on cardinal numbers. The set « of non-
negative integers played a special role in the above and, in a
more general way, this role may be occupied by sets (of which
w is one) called cardinal numbers. Let us agree that two sets,
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A and B, are equipollent iff there is a one-to-one function on A
with range B. It turns out that for every set 4 there is a unique
cardinal number C such that /4 and C are equipollent. If C and
D are distinct cardinal numbers, then C and D are not equipol-
lent but one of the cardinal numbers, say C, and a proper sub-
set of the other are equipollent. In this case C is said to be the
smaller cardinal number and we write C < D. With this defi-
nition of order the family of all cardinal numbers is linearly or-
dered, and even more, every non-void subfamily has a least
member. (These facts are proved in the appendix.)

Accepting the facts in the previous paragraph for the moment
it follows that, if 4 and B a:c sets, then there i1s a one-to-one
function on A4 to a subset of B, or the reverse, because there are
cardinal numbers C and D such that 4 and C, and B and D,
respectively, are equipollent. Suppose now that there 1s a one-
to-one function on A to a subset of B and also a one-to-one func-
tion on B to a subset of 4. Then C and a subset of D are equi-
pollent, and D and a subset of C are equipollent, from which it
follows, since the ordering of the cardinal numbers s linear, that
C = D. Hence 4 and B are equipollent. This 1s the classical
Schroeder-Bernstein theorem. We give a direct proof of this
theorem which 1s independent of the general theory of cardinal
numbers because the proof gives non-trivial additional informa-
tion.

20 THEOREM If there is a one-to-one function on a set A to a sub-
set of a set B and there is also a one-to-one function on B to a sub-
set of A, then A and B are equipollent.

PROOF Suppose that f is a one-to-one map of 4 into B and g is
one to one on B to 4. It may be supposed that 4 and B are dis-
joint. The proof of the theorem is accomplished by decompos-
ing A and B into classes which are most easily described in terms
of parthenogenesis. A point x (of either 4 or B) is an ancestor
of a point y iff y can be obtained from x by successive applica-
tion of f and g (or g and f). Now decompose A into three sets:
let Ag consist of all points of 4 which have an even number of
ancestors, let 4o consist of points which have an odd number of
ancestors, and let 4y constst of points with infinitely many an-
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cestors. Decompose B similarly and observe: f maps A onto
Bo and Af onto By, and g~! maps A4p onto Bg. Hence the func-
tion which agrees with f on 4Ag U A4; and agrees with g~! on
Ao 1s a one-to-one map of £ onto B. |

21 Notes The foregoing proof does not use the axiom of choice,
which is interesting but not very important. It is important to
notice that the function desired was constructed from the two
given functions by a countable process. Explicitly, if f 1s a one-
to-one function on 4 to B and g i1s one to one on B to 4, if Eg =
A~gBl, Epqyy = g°f[E,] for each ny,and it E = J{E,: » e v},
then the function A which is equal to f on E and equal to g~ on
A ~ E is a one-to-one map of 4 onto B. (More precisely, 2 =
(f| E) U (g7'| 4 ~E).) The importance of this result lies in
the fact that, if f and g have certain pleasant properties (such as
being Borel functions), then % retains these properties.

The intuitively elegant form of the proof of theorem 0.20 1s

due to G. Birkhoff and S. MacLane.

ORDINAL NUMBERS

Except for examples, the ordinal numbers will not be needed
in the course of this work. However, several of the most inter-
esting counter examples are based on extremely elementary prop-
erties of the ordinals and it seems proper to state here the few
facts which are necessary for these. (The ordinal numbers are
constructed and these and other properties proved in the ap-

pendix.)

22 SuMMARY There is an uncountable set ', which is linearly
ordered by a relation < itn such a way that:

(a) Every non-void subset of Q' has a smallest element.

(b) There is a greatest element Q of .
(c) If x e Y and x % Q, then the set of all members of & which

precede x is countable.

The set & is the set of all ordinals which are less than or equal
to ©, the first uncountable ordinal. A linearly ordered set such
that every non-void subset has a least element is well ordered.,
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In particular, each non-void subset of a well-ordered set has an
inimum. Since every subset of ' has an upper bound, namely,
Q, it follows by 0.9 that every non-void subset of @' has a su-
premum. One of the curious facts about €' is the following.

23 TueoreM If A is a countable subset of ' and Q¢ A4, then the
supremum of A 1s less than .

prRoOF Assume that 4 is a countable subset of @ and that
Q¢ 4. For each member g of 4 the set {x: ¥ S a} 1s countable
and hence the union of all such sets is countable. This union 1s
(x: x < a for some a in A} and the supremum & of the union 1s
therefore an upper bound for 4. The point # has only a count-
able number of predecessors relative to the ordering, and hence
b # Q. It follows that the supremum of 4 1s less than Q. |
One member of Q' deserves special notice. The first member
of € which does not have a finite number of predecessors is the
first non-finite ordinal and is denoted w. The symbol w has al-
ready been used to denote the set of non-negative integers. In
the construction of the ordinal numbers it turns out that the
first non-finite ordinal is, in fact, the set w of non-negative integers!

CARTESIAN PRODUCTS

If 4 and B are sets the cartesian product 4 X B has been de-
fined as the set of all ordered pairs (x,y) such that xe 4 and
y e B. It is useful to extend the definition of cartesian product
to families of sets, just as the notion of union and intersection
was extended to arbitrary families of sets. Suppose that for
each member a2 of an index set A4 there is given a set X,. The
Cartesian product of the sets X,, written X{X,: a e 4}, is de-
fined to be the set of all functions ¥ on 4 such that x(a) ¢ X, for
each @ in 4. It is customary to use subscript notation rather
than the usual functional notation, so that X{X,: ae 4} =
(x: x 15 a function on A and x, € X, for a in A}. The definition
s initially a little surprising but it is actually a precise statement
of the intuitive concept: a point x of the product consists of a
point (namely, x;) selected from each of the sets X,. The set
Xa 1s the a-th coordinate set, and the point x, is the a-th coordi-
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nate of the point x of the product. The function P, which car-
ries each point ¥ of the product onto its a-th coordinate X, is
the projection into the 4-th coordinate set. That is, P,(x) = Xa.
The map P, is also called the evaluation at a.

There 1s an important special case of a cartesian product.
Suppose that the coordinate set X, is a fixed set Y for each 4 in
the index set 4. Then the cartesian product X{X,: ae 4} =
X{Y:ae A} = {x: x is a function on A to Y}. Thus X|Y:
ae A} 1s precisely the set of all functions on A to Y, sometimes
written Y4, A familiar instance is real Euclidean n-space.
This 1s the set of all real-valued functions on a set consisting of
the integers 0, 1, ---, » — 1, and the i-th coordinate of a mem-
ber x 1s x;.

There 1s another interesting special case. Suppose the index
set 1s 1tself a family @ of sets, and that for each /4 in @ the A4-th
coordinate set i1s 4. In this case the cartesian product X{.A4:
A e @} 1s the family of all functions x on @ such that x4 ¢ 4 for
each 4 1n @. These functions, members of the cartesian product,
are sometimes called choice functions for @, since intuitively the
function x “chooses’” a member x4 from each set 4. If the empty
set 1s a member of @, then there is clearly no choice function for
@; that 1s, the cartesian product is void. If the members of @
are nhot empty it is still not entirely obvious that the cartesian
product is non-void, and, in fact, the question of the existence of
a choice function for such a family turns out to be quite delicate.
The next section i1s devoted to several propositions, each equiv-
alent to a positive answer to the question. We shall assume as
an axiom the most convenient one of these propositions. (A
different choice is made in the appendix; together with the next
section, this shows the equivalence of the various statements.)
With unusual self-restraint we refrain from discussing the philo-
sophical implications.

HAUSDORFF MAXIMAL PRINCIPLE

If @ is a family of sets (or a collection of families of sets) a
member A is the largest member of @ if it contains every other
member; that is, if A is larger than every other member of @.
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Similarly, 4 is the smallest member of the family iff 4 1s con-
tained in each member. It is frequently of importance to know
that a family has a largest member or a smallest member. Clearly
the largest and smallest members are unique when they exist.
However, even in cases where the family @ has no largest mem-
ber, there may be a member such that no other member properly
contains 4, although there are members which neither contain
nor are contained in 4. Such a member is called a maximal
member of the family. Formally, /4 is a maximal member of @
iff no member of @ properly contains 4. Similarly 4 1s a mini-
mal member of @ iff no member of @ is properly contained in 4.
It is very easy to make examples of families which have no maxi-
mal member, or families in which each member i1s both maximal
and minimal (for example a disjoint family). In general, some
special hypothesis must be added to ensure the existence of maxi-
mal members.

A family 9t of sets is a nest (sometimes called a tower or a
chain) iff, whenever 4 and B are members of the family, then
either 4/ € B or B c¢ 4. This is precisely the same thing as
saying that the family 9t is linearly ordered by inclusion, or, in
our terminology, that 9t with the inclusion relation is a chain.
If 9t € @ and , is a nest, then 9T is a nest in @&. We know that
a family of sets may fail to have a maximal element. Let us
consider the collection of all nests in a fixed family @ and ask if
among these there is a maximal nest. That is, for each family @,
1s there a nest 9 in @ which is properly contained in no nest in
@’ We assume the following statement as an axiom.

24 HAUSDORFF MAXIMAL PRINCIPLE If @ is a family of sets and
9N 15 a nest in Q, then there is a maximal nest M tn @ whickh con-
tains 9.

The next theorem lists a number of important consequences of
the Hausdorff maximal principle. Before stating the results we
review some of the terminology which is commonly used in this
connection. A family @ of sets is of finite character iff each
finite subset of a member of @ is a member of @, and each set 4,
every finite subset of which belongs to @, itself belongs to a.
If < is an ordering of a set /4, then a subset B which is linearly
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ordered by < is called a chain in 4. A maximal element of the
ordered set A4 is an element x such that x follows each comparable
element of A; that is, if y € A4, then either y precedes x or x does
not precede y. A relation < is a well ordering of a set A4 iff <
1s a linear ordering of A such that each non-void subset has a
first member (a member which 1s less than or equal to every
other member). If there exists a well ordering of 4, then we
say that /4 can be well ordered.

25 THEOREM

(a) MAXIMAL PRINCIPLE There is a maximal member of a family
Q of sets, provided that for each nest in Q there is a member of
Q@ which contains every member of the nest.

(b) MINIMAL PRINCIPLE There is a mintmal member of a family
Q, provided that for each nest in Q there is a member of @ which
is contatned tn every member of the nest.

(c) Tukey LEMMA There is a maximal member of each non-void
family of finite character.

(d) KuraTowskl LEMMA Eack chain in a (partially) ordered set
{s contained tn a maximal chain.

(€) ZorN LEMMA If each chain in a partially ordered set has an
upper bound, then there is a maximal element of the set.

(f) axiom oF cHolicE If X, is a non-void set for each member a
of an index set A, then there is a function ¢ on A such that
c(a) € X, for each a 1n A.

(g) ZERMELO POSTULATE If G is a disjoint family of non-void
sets, then there is a set C such that A N C consists of a single
point for every A tn Q.

(h) WELL-ORDERING PRINCIPLE FEach set can be well ordered.

proOF We sketch the proof of each of these propositions, leav-
ing a good many of the details to the reader.

Proof of (a): Choose a maximal nest 91 in @ and let A4 be a
member of @ containing |J{M: M e om}. Then A4 i1s a maximal
member of @, for if 4 is properly contained in a member B of
@, then o U {B} is a nest in @ which properly contains o1,
which 1s a contradiction.

Proof of (b): A proof very much like the one above is clearly
possible. However, one may use (a) instead, by letting X =
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U{4: 4ea}, letting € be the family of complements relative
to X of members of @, observing that because of the De Morgan
formulae @ satisfies the hypothesis of (a), hence has a maximal
member M, and that X ~ M is surely a minimal member
of @.

Proof of (c): The proof is based on the maximal principle (a).
Let @ be a family which is of finite character, let 9 be a nest in @,
and let 4 = |J{N: Nea}. Each finite subset F' of 4 1s neces-
sarily a subset of some member of 9, for we may choose a finite
subfamily of the nest 9t whose union contains F, and this finite
subfamily has a largest member which then contains F. Conse-
quently 4 e @. Then @ satisfies the hypothesis of (a) and there-
fore has a maximal member.

Proof of (d): Suppose B is a chain in the partially ordered set
A. Let @ be the family of all chains in 4 which contain B. If
9N 1s a nest in @, then 1t can be directly verified that {J{/NV: NV e 9t}
is again a member, so that @ satisfies the hypothesis of (a) and
consequently has a maximal member.

Proof of (¢): Choose an upper bound for a maximal chain.

Proof of (f): Recall that a function is a set of ordered pairs
such that no two members have the same first coordinate. Let
g be the family of all functions f such that the domain of f 1s a
subset of 4 and f(a) e X, for each a in the domain of f. (The
members of & are “fragments” of the function we seek.) The
following argument shows that § is a family of finite character.
If f1s a member of &, then every subset of f, and 1n particular
every finite subset, 1s also a member of §. On the other hand,
if f1s a set, each finite subset of which belongs to &, then the
members of f are ordered pairs, no two different pairs have the
same first coordinate, and consequently f i1s a function. More-
over, if a 1s a member of the domain of £, then {(a, f(a))} ¢ § and
hence f(a) € X,, and it follows that feF. Because  is a family
of finite character there is a maximal member ¢ of &, and it is
only necessary to show that the domain of cis 4. If ais a mem-
ber of 4 which is not a member of the domain of ¢, then, since
X, 1s non-void, there 1s a member y of X, and ¢ U {(a,y)} is it-

self a function and i1s a member of &, which contradicts the fact
that ¢ 1s maximal.



HAUSDORFF MAXIMAL PRINCIPLE 35

Proof of (g): Apply the axiom of choice to the index set @
with X4 = A for each 4 in a.

Proof of (h): Suppose that X s the (non-void) set which is to
be well ordered. Let @ be the family of all non-void subsets of
X, and let ¢ be a choice function for @; that is, ¢ is a function on
@ such that ¢(A4) e A for each 4 in @. The idea of the proof is to
construct an ordering < such that for each “initial segment” A4
the first point which follows 4 in the ordering is ¢(X ~ 4). Ex-
plicitly, define a set 4 to be a segment relative to an order < iff
each point which precedes a member of A is itself a member of
A. In particular the void set is a segment. Let @ be the class
of all reflexive linear orderings < which satisfy the conditions:
the domain D of < is a subset of X and for each segment /4
other than D the first point of D ~ A4 1s ¢(X ~ A). Itis almost
evident that each member of @ is a well ordering, for if B is a
non-void subset of the domain of a member £ and 4 = {y:
y S x and y # x for each x tn B}, then ¢(X ~ A) s the first
member of B. Suppose that < and < are members of @, that
D is the domain of <, and that E 1s the domain of <. Let 4
be the set of all points ¥ such that the sets {y: y < x} and {y:
y < x} are identical and such that on these sets the two order-
ings agree. Then A is a segment relative to both < and <. If
A is not 1dentical with either D or E, then ¢(X ~ A) 1s the first
point of each of these sets which does not belong to 4; but then
(X ~ A) e 4 in view of the definition of 4. It follows that
A=Dor 4A=E. Thus any two members of € are related as
follows: the domain of one member is a segment relative to the
other, and the two orderings agree on this segment. Using this
fact it 1s not hard to see that the union < of the members of €
is itself a member of e; it is the largest member of €. If F'is
the domain of <, then F = X, for otherwise the point ¢(X ~ F)
may be adjoined at the end of the ordering (more precisely,
< U (FX {c(X) ~F)} is a member of @ which properly con-
tains <). The theorem follows. |

26 Notes Each of the propositions listed above 1s actually
equivalent to the Hausdorff maximal principle, and any one of
these might reasonably be assumed as an axiom. In the ap-
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pendix the maximal principle is derived from the axiom of choice.

The derivation of the well ordering principle from the choice
axiom which is given above is essentially that of Zermelo [1].
A proof which uses 0.25(e) 1s also quite feasible. It may be noted
that the union of a nest of well orderings 1s generally not a well
ordering, so that a direct application of the maximal principle
to the family of well orderings is impossible.

It should be remarked that the labelling of the various propo-
sitions 1n 0.25 is somewhat arbitrary. The Hausdorff maximal
principle was used independently by C. Kuratowski, R. L. Moore,
and M. Zorn in forms approximating those above.

Finally 1t may be noted that, although the formulation of
Tukey’s lemma which 1s given 1s more or less standard, 1t does
not imply (directly) the most commonly cited applications (for
example, each group contains a maximal abelitan subgroup).
There 1s a more general form which states (very roughly): if a
family @ of sets is defined by a (possibly infinite) number of con-
ditions such that each condition involves only finitely many
points, then @ has a maximal member.



Chapter I

TOPOLOGICAL SPACES

TOPOLOGIES AND NEIGHBORHOODS

A topology 1s a family 3 of sets which satisfies the two condi-
tions: the intersection of any two members of 3 1s a member of
3, and the union of the members of each subfamily of 3is a mem-
ber of 3. The set X = |J{U: Ue 3} is necessarily a member of
3 because 3 is a subfamily of itself, and every member of 3is a
subset of X. The set X is called the space of the topology 3 and
7 is a topology for X. The pair (X,3) is a topological space. When
no confusion seems possible we may forget to mention the to-
pology and write “X is a topological space.” We shall be ex-
plicit in cases where precision is necessary (for example if we are
considering two different topologies for the same set X).

The members of the topology 3 are called open relative to 3,
or 3-open, or if only one topology is under consideration, simply
open sets. The space X of the topology is always open, and the
void set is always open because it is the union of the members
of the void family. These may be the only open sets, for the
family whose only members are X and the void set is a topology
for X. This is not a very interesting topology, but it occurs fre-
quently enough to deserve a name; it is called the indiscrete (or
trivial) topology for X, and (X,3) 1s then an indiscrete topologi-
cal space. At the other extreme is the family of all subsets of X,
which is the discrete topology for X (then (X3) 1s a discrete
topological space). If 3 is the discrete topology, then every sub-

set of the space 1s open.

The discrete and the indiscrete topology for a set X are re-
37
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spectively the largest and the smallest topology for X. That is,
every topology for X is contained in the discrete topology and
contains the indiscrete topology. If3and« are topologies for X,
then, following the convention for arbitrary families of sets, 3 1s

smaller than . and @ is larger than 3 1ff 3 C 4. In other words,
3 1s smaller than « iff each J-open set is U-open. In this case 1t
1s also said that 3 is coarser than 4 and u is finer than 3. (Un-
fortunately, this situation is described in the literature by both
of the statements: J is stronger than 4 and 3 1s weaker than «u.)
If 3 and u are arbitrary topologies for X 1t may happen that 3 1s
neither larger nor smaller than a; in this case, following the
usage for partial orderings, it is said that 3 and U are not com-
parable.

The set of real numbers, with an appropriate topology, i1s a
very interesting topological space. This 1s scarcely surprising
since the notion of a topological space 1s an abstraction of some
interesting properties of the real numbers. The usual topology
for the real numbers is the family of all those sets which contain
an open interval about each of their points. That is, a subset
A of the set of real numbers is open iff for each member x of A4
there are numbers 4 and 4 such that 4 < ¥ < 4 and the open
interval {y: 2 < y < 4} is a subset of 4. Of course, we must
verify that this family of sets is indeed a topology, but this offers
no difficulty. It is worth noticing that, conveniently, an open
interval ts an open set.

A set U in a topological space (X,3) is a neighborhood (3-
neighborhood) of a point x iff U contains an open set to which
x belongs. A neighborhood of a point need not be an open set,
but every open set is a neighborhood of each of its points. Each
neighborhood of a point contains an open neighborhood of the
point. If 3 is the indiscrete topology the only neighborhood of a
point x 1s the space X itself. If 3 is the discrete topology, then
every set to which a point belongs is a neighborhood of it. If X
is the set of real numbers and 3 is the usual topology, then a

neighborhood of a point is a set containing an open interval to
which the point belongs.

1 THEOREM A set is open if and only if it contains a neighborhood
of each of its points.
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PROOF The union U of all open subsets of a set /4 is surely an
open subset of 4. If A4 contains a neighborhood of each of its
points, then each member » of 4 belongs to some open subset
of 4 and hence x e U. In this case 4/ = U and therefore A4 is
open. On the other hand, if 4 1s open it contains a neighbor-
hood (namely, A4) of each of its points. |}

The foregoing theorem evidently implies that a set 1s open iff
it 1s a neighborhood of each of its points.

The neighborhood system of a point is the family of all neigh-
borhoods of the point.

2 THeorREM If U s the neighborhood system of a point, then
JSintte intersections of members of W belong to U, and each set which
contatns a member of W belongs to .

prRooF If U and V are neighborhoods of a point x, there are
open neighborhoods Uy and 7, contained in U and » respectively.
Then U N 7 contains the open neighborhood Uy N ¥ and 1s
hence a neighborhood of x. Thus the intersection of two (and
hence of any finite number of) members of U 1s a member. If
a set U contains a neighborhood of a point x 1t contains an open
neighborhood of x and i1s consequently itself a neighborhood. |

3 Notes Fréchet [1] first considered abstract spaces. The con-
cept of a topological space developed during the following years,
accompanied by a good deal of experimentation with definitions
and fundamental processes. Much of the development of the
theory may be found in Hausdorff’s classic work [1] and, a little
later, in the early volumes of Fundamenta Mathematicae. There
are actually two fundamental concepts which have grown out of
these researches: that of a topological space and that of a uni-
form space (chapter 7). The latter notion, which has been for-
malized relatively recently (A. Weil [1]), owes much to the study

of topological groups.
Standard references on general topology include:

Alexandroff and Hopf [1] (the first two chapters), Bourbaki
[1], Fréchet [2], Kuratowski [1], Lefschetz [1] (the first chap-
ter), R. L. Moore [1], Newman [1], Sierpinski [1], Tukey [1],
Vaidyanathaswamy [1], and G. T. Whyburn [1}].
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CLOSED SETS

A subset A of a topological space (X,3) is closed iff its relative
complement X ~ A is open. The complement of the comple-
ment of the set 4 is again 4, and hence a set is open iff 1ts com-
plement is closed. If 3 is the indiscrete topology the complement
of X and the complement of the void set are the only closed sets;
that is, only the void set and X are closed. It is always true that
the space and the void set are closed as well as open, and 1t may
happen, as we have just seen, that these are the only closed sets.
If 3 1s the discrete topology, then every subset is closed and open.
If X is the set of real numbers and 3 the usual topology, then the
situation 1s quite different. A closed interval (that is, a set of
the form {x: a S x S 4}) 1s fortunately closed. An open inter-
val is not closed and a half-open interval (that is, a set of the
form {x:a < x S b} or {x:a = x < b} where a < &) 1s neither
open nor closed. Indeed—(problem 1.J)—the only sets which
are both open and closed are the space and the void set.

According to the De Morgan formulae, 0.3, the union (inter-
section) of the complements of the members of a family of sets
is the complement of the intersection (respectively union). Con-
sequently, the union of a finite number of closed sets i1s neces-
sarily closed and the intersection of the members of an arbitrary
family of closed sets 1s closed. These properties characterize the
family of closed sets, as the following theorem indicates. The
simple proof is omitted.

4 THEOREM Let § be a family of sets such that the union of a
finite subfamily is a member, the intersection of an arbitrary non-
void subfamily is a member, and X = \J{F: FeS) is a member.
Then  is precisely the family of closed sets in X relative to the to-
pology consisting of all complements of members of .

ACCUMULATION POINTS

The topology of a topological space can be described in terms
of neighborhoods of points and consequently it must be possible
to formulate a description of closed sets in terms of neighbor-
hoods. This formulation leads to a new classification of points
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in the following way. A set A is closed iff X ~ A4 is open, and
hence iff each point of X ~ A has a neighborhood which 1s con-
tained 1In X ~ A4, or equivalently, 1s disjoint from 4. Conse-
quently, 4 1s closed iff for each x, if every neighborhood of x
intersects 4, then x e 4. This suggests the following definition.

A point x 1s an accumulation point (sometimes called cluster
point or limit point) of a subset 4 of a topological space (X,3)
iff every neighborhood of x contains points of 4 other than x.
Then it 1s true that each neighborhood of a point x intersects A
if and only if x 1s either a point of 4 or an accumulation point
of 4. The following theorem is then clear.

S THEOREM A subset of a topological space is closed if and only
tf it contains the set of its accumulation points.

If x 1s an accumulation point of 4 it is sometimes said, in a
pleasantly suggestive phrase, that there are points of 4 arbi-
trarily near x. If we pursue this imagery it appears that an in-
discrete topological space is really quite crowded, for each point
x 1s an accumulation point of every set other than the void set
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