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Preface

An ‘analyst’ 1s a mathematician who is seen habitually in the company of
the real or complex numbers; a ‘functional analyst’ is an analyst who 1s not
squeamish about using Zorn’s lemma, definitely relishes the use of topology,
and does not stand in the way of the internal algebraic impulses of the
subject.

The term ‘functional analysis’ dates from the early years of the subject,
when abstract methods were novel and the principal motivation came from
spaces whose elements are functions. Like other generic terms it 1s a catchall,
encompassing a large part of the mathematical analysis of the last four
decades. No portable textbook can hope to survey the subject. The present
book is offered as a sampler. It is limited by my narrow glimpse of a vast
domain, and biased in favor of operator theory. Yet the subject is young
enough that there 1s a wide consensus on a central core (Hahn-Banach
theorem, uniform boundedness principle, Krein-Mil’'man theorem, Gel’fand
representation theorem, etc.); the emphasis of the book is on this core
(Chapters 1-6).

The prerequisites for reading the book are as follows.

Algebra: Elementary concepts of groups, rings and vector spaces.

Topology: Chapters I and II of N. Bourbaki’s Topologie générale, plus
the Weierstrass-Stone approximation theorem (not needed until Section
59).

Complex analysis: Liouville’s theorem is cited in the proof of the Gel’fand-
Mazur theorem (51.8); the algebraic completeness of the complex field is
used in the proof of the polynomial spectral mapping theorem (53.3); the
Taylor expansion of an analytic function figures in the proof of Gel’fand’s
formula for the spectral radius (55.1).

Measure theory: Needed only for understanding some of the applications
(Sections 15, 39, 69, 70).

The prerequisites are respected in the text but are sometimes violated in
the exercises. In particular, exercises marked with a * are not really exercises—
they are generally too difficult—but are reports of advanced topics, relevant to
the text, offered as signposts to deeper water.
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\1 Preface

The book is based on lecture notes for a one-year course, addressed to
general mathematics students at the second year graduate level, which I have
offered on three occasions. {Twice at the University of Iowa (1961-62,
1965-66), once at the University of Texas (1969-70)}. I helped myself to
generous portions of expositions I have admired. These include a course of
lectures by Paul R. Halmos, entitled “Topological algebra™ (University of
Chicago, 1952); a mimeographed set of lecture notes, with the same title, by
Irving Kaplansky (University of Chicago, 1952); Arthur H. Kruse’s personal
notes on Kaplansky’s course; and Chapters I and II of N. Bourbakl’s
Espaces vectoriels topologiques.

My deepest debt i1s to Paul R. Halmos. His superbly organized and
polished lectures kindled my interest in the subject, and his inspiration and
encouragement have helped to sustain it. This book 1s gratefully dedicated
to him.

Sterling K. Berberian

Austin, Texas
February, 1973
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*0. Apéritif (Wiener’s Theorem)

We write Z, R, and C, respectively, for the ring of integers, the field of
real numbers and the field of complex numbers.

Our objective in this section is to formulate in functional-analytic terms—
and almost prove—the following classical result of N. Wiener: The reciprocal
of a nonvanishing absolutely convergent trigonometric series is itself an abso-
lutely convergent trigonometric series. In other words:

Wiener’s theorem. If (a,),.z is a sequence of complex numbers such that

o0

Z la,| < oo,

n=-—20a

and if the (continuous, periodic) function f: R — C defined by

J(t) = Z ae'™  (teR)

n=s—o

never vanishes, then there exists a sequence (by).cz 0of complex numbers, with

o0

Z b,| < oo,

n=-—o

such that

—1-5 = z b,e'™ (t € R).

n=

The proof to be described here was discovered by I. M. Gel'fand [53]; an
early triumph of the functional-analytic point of view, Gel'fand’s proof still
provides a highly instructive and appealing point of entry into the subject.

The statement of Wiener’s theorem immediately draws attention to the

sequence of coeflicients (a,) (strictly speaking, we should call it a ‘bilateral
sequence’): do the sequence and the function determine each other uniquely ?
The affirmative answer depends on being able to solve for the a, in terms of

the function f-

Remark 1. If (a,).ez is a complex sequence such that

then the formula

(1) f)= 5 ae™  (teR)

n= = 00

* Starred sections may be omitted without jeopardy to the unstarred ones.
1



2 Apéritif (Wiener’s Theorem)

defines a continuous function f: R — C that is periodic of period 2w, the series
being yniformly and absolutely convergent on R. Moreover, the coefficients a,

may be expressed in terms of f:

1 2n

(2) ap = >~ | f@e "™dt (nel).

Proof. If h:R—C 1s any bounded, continuous function—say
|h(t)| < K for all t € R—then the series

o0

Z a,e!™h(t)

n==—:00

converges uniformly and absolutely on R; this follows from the validity of
the inequality

_2 la.e™h(t)| < K i |a,|

n=-=29a

for all 1 € R. (We are applying the ‘Weierstrass M-test’ with M, = K|a,|.)
For h(t) = 1 this yields the assertion concerning (1). For general # we then
have

fOhD) = S aemht)  (teR);

n=-—0a

integrating term by term (as we may by the uniform convergence) we have

(*) i f(h(t) dt = i a, f N et™h(t) dt.

= == QD

Fix an integer m and apply (*) to the function A(t) = e~ '™; by elementary
calculus,

2n
] ette~imt dt = 278,

O

(where o,,, = 0 or 1 according as n # m or n = m), thus (*) yields

2n

f()e '™ dt = 2na,. i

0,

Let us denote by &/ the set of all functions f: R — C that are produced by
Remark 1—one for each absolutely summable sequence (a,),cz. Obviously
included in & are the functions u, (n € Z) defined by the formulas

(3) u,(t) = et (t € R).

Also included are the finite linear combinations of the u,, that is, the functions
of the form

4) D aytiy,



Wiener’s Theorem 3

where J is a finite subset of Z (such functions are called trigonometric poly-
nomials). In particular, o/ contains the constant function uy(f) = 1, and,
more generally, the constant functions cu, (c € C). Note that, for all € R,

(5) Um () = Un(t)un(2),

1
(6) u-—n(t) - un(t) = (un(t))*a
briefly, u,,, = unu,, u_, = 1/u, = u¥ (here the * denotes complex conjuga-
tion).

The message of Wiener’s theorem is that if f€.2/ and f never vanishes,
then 1/fe < In the course of the proof, it is shown that .27 is an algebraic
system of functions, closed under the usual pointwise operations of addition
and multiplication. Before getting down to the details, it 1s instructive to note
that &7 consists of the functions that are continuous, periodic of period 2,
and have absolutely summable Fourier coefficients:

Remark 2. Suppose f: R — C is a continuous, periodic function of period
2w, define

— _l_ o7 - {nt
ap = 7~ L f(t)e™™dt (nel),

and suppose that

o0

Z la,| < oo.

n=-—09ao

Then
f()y = O a.e™  (teR)

n=-—aoo

Proof. By Remark 1, the formula

defines a function g: R — C that is continuous and periodic of period 2,
such that

] 2n

a, = — | g(t)e " dt (n € 2).

=27ro

Thus

> |, T8) = fOW_ (1) dt = a, — @, = 0

for all n € Z, therefore

(*) [ te) - My dt = 0

0



4 Apéritif (Wiener’s Theorem)

for every trigonometric polynomial 4 (cf. (4)). A classical theorem of Weier-
strass asserts that every continuous, periodic function k£ : R — C of period 2=
1s the uniform limit of a sequence of trigonometric polynomials; in view of
(*), we infer that

“le(t) — fOW(r) dt = 0

0,

for every such function k. Applying this to the function
k(t) = [g(t) — f(D]*

we see that
n
[ 180 - ro1 dr = 0;
0

since the integrand is continuous, we conclude that g — f= 0. |
In studying the algebraic properties of the function set 7, it will be ex-

pedient to impose an algebraic structure on the set of absolutely summable
sequences (d,)nez-

Definition. We write /1(Z) for the set of all sequences (a,), With a, € C
and >2, |a,| < c0; such a sequence may be regarded as a function

x:Z— C with x(n) = a, (n € Z), thus /*(Z) may be regarded as the set of all
functions x: Z — C such that

C0

Z |x(n)| < oo.

Nn= — 0

Then x, y € I3(Z) are equal iff x(n) = y(n) for all n e Z—viewed as sequences,
x and y are equal term by term. If x € /}(Z) we write

o0

(7) Ixl, = D [|x(m),

n=-o

called the norm (or /*-norm) of x; thus

|x|1 = sup;, ZnE, [ x(n)],

where J varies over all nonempty finite subsets of Z. {The notation /}(Z) is a

traditional one, with roots in the theory of Lebesgue integration (cf. Section
39).}

Remark 3. /*(Z) is a complex vector space of functions on Z, i.e., if
x,y€lXZ) and c € C, then x + y, cx € lX(Z). Moreover,

(8) lx + y[: < |x]. + [ ¥]s
(9) lex]ly = [e] [|x]..
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The formula

(10) d(x,y) = |x — y|:
defines a metric d on 1'(Z).

Proof. The functions x + y and cx are defined by the formulas

(x + y)n) = x(n) + y(n),  (cx)(n) = cx(n),

1.e., these are the ‘pointwise’ (or ‘term-by-term’) operations. For every
finite subset J of Z, we have

> AE+m <> xm + > |y < Ix] + Y]

and

> x| =l >, |xm);

varyingJ, we infer that x + y and cx are also in /*(Z) and that (8) and (9) hold.
The fact that d satisfies the triangle inequality

d(x,z) < d(x,y) + d(y, 2)
results from applying (8) to the relation

x—z=(x—y) + (y — 2).

The properties d(x, y) = d(y, x), d(x,y) > 0, and d(x, y) = 0 1ff x = y, are
obvious. §

Definition. If x € /1(Z) 1t 1s useful to have a notation and a name for the
function R — C defined in Remark 1: we write

a0

(11) £t) = D x(me™  (teR)

and call x the Fourier transform of x. {This is not quite accurate. In the usual
formula for Fourier transform, e ™" appears instead of e'*. Also, the Fourier
transform of x 1s often regarded as a function X on the unit circle T =
{AeC: |A| =1}, with %(A) = >,.2, x(n)A~". These conventions are
explained in Section 70 (in a more general setting).}

Remark 4. 7 is a vector space with respect to the pointwise operations,
and the mapping x +—> X is a vector space isomorphism of 1*(Z) onto .

Proof. 1t is clear from Remark 1 that x — X 1s a byjective mapping of
[1(Z) onto & Thus, assuming x, y € /}(Z) and c € C, it will clearly suffice to
show that (x + y)” = X + y and (cx)” = cx; but these relations follow at
once from the elementary term-by-term operations on infinite series. §}

To show that & is closed under pointwise products (hence i1s an algebra
of functions), it is convenient to impose a suitable multiplication (x, y) — xy
on /}(Z) and then show that Xy = (xy)”. To guess the correct definition of

product in /*(Z), we look at the Fourier transform of certain special elements
of I}(2):
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Definition. For each n € Z we define e, € [*(Z) by the formula
(12) en(m) = 0y (MeZ).

It 1s clear from the definition of Fourier transform that é, = u, (n € Z). The
linear subspace spanned by the e, 1s denoted cy,(Z); i1ts elements are the
functions x : Z — C with finite support, i.e., such that the set

{neZ : x(n) # 0}

1s finite. An element x € ¢,o(Z) may be written as a sum

X = Znez x(n)e,,

where x(n) = 0 for all but finitely many »; the Fourier transform of such a
function,

£=D _ x(nu,

is the typical trigonometric polynomial. We write J for the set of all trigono-
metric polynomials. Thus 7 is a linear subspace of %7, and x — X is a vector
space isomorphism of ¢,,(Z) onto 7. The linear subspace cy,(Z) is dense in
[1(Z)—in fact, the e, are a ‘basis’ of /'(Z) in the following sense:

Remark 5. If x e l'(Z) then

a0

(13) x= D x(ne,

n=-—ao

in the sense that the net of finite subsums converges to x in the metric of 1*(Z).

Proof. Fix x € l*(Z) and, for every nonempty finite subset J of Z, write

Xy = Znel x(n)en;

it 1s to be shown that x; — x 1n the sense that, for every ¢ > 0, there exists a
finite subset K of Z such that

JDKbllx_xJ”]_SS.

Indeed, choose K so that
Znech’ |X(H)I s &

If J © K then x — x; vanishes on J and agrees with x on (J; since 0J < (K,
we have

[x = xslly = 2 X)) < D op [X¥()] < . i

As noted in (5), we have u,u, = u, ., (m,n e Z); it follows that the vector
space 7 of trigonometric polynomials is in fact an algebra of functions. The
vector space 1Isomorphism X — x (X € 7)) therefore induces an algebra struc-
ture on cyo(Z). What does this product (x, y) — xy on cqo(Z) look like? The
answer 1s as follows:
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Remark 6. If x, y € cyo(Z) then

eo

(14) (xp)(m) = D x(m —myn) (meZ).

n=-—ao

Proof. (Note that for each m € Z, all but finitely many terms on the right
side of (14) are 0.) First let us calculate the products e e, : by definition, e,.e,
is the element of c¢,,(Z) whose Fourier transform is é,,é,, that is,

therefore
(15) €m€n = €min (m, he Z)

By definition, the mapping (x, y) —> xy (X, y € ¢o0(Z)) 1s bilinear; it follows
from (15) that if x, y € ¢yo(Z) then

16 w=( 3 xwe)( S soe)

n= -—a0a

= 2 2 xk)ymecin

For each m € Z, (xy)(m) 1s the total coeflicient of e, on the right side of (16),
thus

Q0

p)(m) = > x(K)y(m) = D x(m — n)y(n). I

K+n=m n=-—oo

Formula (14) suggests a plausible definition of product in /1(Z); we now
check that such a definition 1s feasible:

Remark 7. If x, y €l (Z) then, for each m € Z, the series

Q0

> x(m — n)y(n)

n=—o

converges absolutely,; denoting the sum of the series by z(m), we have z € |(Z)
and |z], < |x[1] ¥l

Proof. For each n e Z we have

ao ao

> st =yl = (X Jxm = ml) 1y = Lxlily)

m= — 0 m=-—ao

therefore
2 2, xm=nyeml =lxly 2 [ye] = [x[]y].

Reversing the order of summation (as we may),

*) S S xm — myym)] = Ixllyls < .

m=—o nN=-—0uw
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It follows that for each m, the series indicated in the statement of the propo-
sition i1s absolutely convergent, and, denoting its sum by z(m),

)| < Y Ixm = my(a);

summing on m, we have

o0

2, lzml < 2, 2 |xtm = nym)]| =[xyl

m=—

by (*), thus z€/(Z) and |z||; < |x[.]|»|.- §

Definition. If x, y € /'(Z) as in Remark 7, we define xy:Z — C by the
formula

(17) ) = Y x(m—nym)  (me)

Thus xy € I1(Z) and
(18) Xyl < (x|l »llis

xy is called the convolution of x and y.
With convolution in hand, the proof that .« is closed under pointwise
products 1s straightforward:

Remark 8. If x, y € IY(Z) then Xy = (xy) .
Proof. For all teR,

Q0

> (xp)(m)et™

ms= — o

i ( i x(m — n) y(n))e‘"“

m= — o0 n=-—o
i
m - 00

n =2n (m 2 o x(m — m)e "”) y(n)e'™

o0

= > HOymem = 21) D> yme = 20)5(),

n=-—aouo n=-—ao

(xy)(2)

(n j_w x(m — n)e“"“'""y(n)e‘“‘)

the interchange of the order of summation being permissible because the
doubly indexed family

|[x(m — m)e™~My(n)e'™| = [x(m — n)y(n)|

1s summable (see the proof of Remark 7). §
The algebraic properties of convolution now come free of charge:
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Remark 9. With convolution as product, 1*(Z) is a commutative, asso-
ciative algebra with unity element e,.

Proof. By Remark 8, &7 is closed under pointwise products; it is already
known to be a vector space of functions, thus it i1s an algebra of functions.
Moreover, Remark 8 shows that the vector space isomorphism X +— x of &/
onto /}(Z) preserves products, therefore the convolution product in /1(Z)
enjoys the same algebraic properties as the pointwise product does in &
Since é,(t) =1, e, serves as unity element for the convolution product (this
1s also easy to see directly). §

Let us peruse again the statement of Wiener’s theorem. Assuming that
f e/ and that f never vanishes, it is to be shown that 1/f e & This amounts
to showing that the principal ideal f<7 is equal to & Suppose to the contrary
that fo7 is a proper ideal of &7 By Zorn’s lemma, there exists a maximal ideal
M of &/ such that fof < A.

Thus, supposing to the contrary that 1/f¢ </, we have argued that f
belongs to some maximal ideal .#. How 1s the contradiction to be obtained ?

The answer is contained in another question: What do the maximal ideals
of & look like? There are the obvious maximal 1deals: fix a point £ € R and
consider the algebra epimorphism &/ — C defined by g > g(¢); the kernel

M, = {geA :g(t) =0}

1s a maximal ideal of &/ (because the quotient ring &7/.#, i1s isomorphic to the
simple ring C). The original hypothesis is that f belongs to no .#;. But f
belongs to .#. The desired contradiction results from the following:

Remark 10. Every maximal ideal # of </ has the form M = M, for
suitable t € R.

The proof of this lies beyond the elementary techniques at hand; we defer
it until Section 63, where the powerful machinery of the general Gel’'fand
theory (Section 52) reduces it to an effortless bagatelle. {A forced march on
Remark 10 is possible at this stage, but would cover much the same ground as
the general Gel'fand theory.} For the present, let us examine more closely
what is at issue. Suppose . is a maximal ideal of & Since &/ 1s a commuta-
tive ring with unity, it results from elementary ring theory that the quotient
ring &/ # is a field. Moreover, .# i1s a linear subspace of o/ (because &/
contains the constant functions), therefore 27/.# is an algebra over C; thus
L[ M 1s a field extension of C. The heart of the matter is to prove that the
extension collapses, i.e., i1s one-dimensional—so to speak, &//A# = C. {It is
not surprising that the proof belongs to a circle of ideas that includes the
‘fundamental theorem of algebra.’} The technique of the proof will entail
reformulating this as a problem in the isomorphic algebra /}(Z); one 1s given
the maximal ideal

M={xel(Z): xec A}
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of [1(Z), and the problem is to show that the quotient algebra /1(Z)/M is one-
dimensional over C. The key new ingredient in these considerations is the
fact (not needed for Remarks 1-9) that /(Z) is complete for the metric
d(x,y) = ||x — y|.; the proof of completeness is an elementary exercise that
belies the remarkable consequences that flow from 1t. A first consequence of
completeness 1s that a maximal ideal M of /*(Z) is automatically a closed
subset of /'(Z); this ensures that the field /*(Z)/M has enough additional
structure (topological/geometrical) to force it into coincidence with C.
Another consequence of this is that the natural algebra epimorphism
o: 1Y (Z) — I'(Z)/M = C i1s continuous. Combining this with Remark 5 and
formula (15), 1t 1s easy to see that the complex number pu = ¢i(e;) satisfies
lu| = 1 and that

o0

p(x) = D x(mp*  (xel(2);

n= —aw

writing u = €' for suitable ¢ € R, this means that

p(x) = X(t)  (xelX2)),

and the proof of Remark 10 1s completed by the observation that M i1s the
kernel of o.

The foregoing informal discussion is nothing like a proof, but the implica-
tion is plain: a key role 1s to be played by the interplay between algebra,
topology, and classical analysis. A marriage of algebra and topology, held
together by analysis—a capsule definition of functional analysis that describes
reasonably well the viewpoint of this book.

Exercises

(0.1) [/%(2) is a complete metric space with respect to the metric d(x, y)
|x — ¥l

(0.2) Ifx,yel’(Z) and if x = 0, y = 0 (as functions on Z), then |xy|;
[ x ]2l ¥l

(0.3) A, = A, i1f and only if s — ¢ 1s a multiple of 2#.



Chapter 1

Topological Groups

1. Topological algebraic structures. The concept of a topological alge-
braic structure is a major unifying theme in functional analysis. The concept
1s best explained through representative examples of such structures.

(1.1) Let X be a monoid, 1.e., a set X with an internal law of composition
X x X— X, denoted, say, (x, y)+— xy, that 1s associative and admits a
neutral element. A topology on X is said to be compatible with the monoid
structure if the mapping (x, y) — xy 1s continuous, where 1t 1s understood that
X x X bears the product topology. A topological monoid 1s a pair (X, 7),
where X 1s a monoid and = is a topology on X compatible with the monoid
structure.

(1.2) Let G be a group (notated, say, multiplicatively). A topology on G
1s sald to be compatible with the group structure if the mappings (x, y) — xy
and x +—> x~1 are continuous. A topological group 1s a pair (G, 7), where G
iIs a group and 7 is a topology on G compatible with the group structure.

(1.3) Let 4 be a ring (we shall deal exclusively with associative rings).
A topology on A is said to be compatible with the ring structure if the
mappings (x,y)—x + y, x+—> —x and (x, y)— xy are continuous. A
topological ring 1s a pair (A, ), where A i1s a ring and = 1s a topology on A4
compatible with the ring structure. Such a topology 1s, in particular, com-
patible with the additive group structure, thus the additive group of a topo-
logical ring 1s an abelian topological group. {However, assuming A has a
unity element, the multiplicative group G of invertible elements of 4 need
not be a topological group, since the mapping x — x~*! (x € G) may fail to
be continuous.}

(1.4) Let D be a division ring. A topology on D is said to be compatible
with the division ring structure if the mappings (x, y) —x + y, x> —Xx,
(x, y)— xy and x — x~ ! (x # 0) are continuous. A topological division ring
1s a pair (D, 7), where D 1s a division ring and = is a topology on D compatible
with the division ring structure; in other words, (D, 7) 1s a topological ring
such that = 1s also compatible with the multiplicative group structure of
D — {0}. If, moreover, multiplication 1s commutative, then (D, 7) is called a
topological field.

(1.5) Let (A, ) be a topological ring and let M be an A-module (say a
left module). A topology on M 1s said to be compatible with the 4-module
structure if the module operations (x, y) — x + y, x— —x and (a, x) — ax
are continuous. A topological module (over A) 1s a quadruple (A, 74; M, 7y),
where (A4, 7,) 1s a topological ring, M 1s an A-module, and 7, is a topology

11
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on M compatible with the module structure. {In particular, (M, 7,,) is an
abelian topological group under addition.}

(1.6) Let (D, ) be a topological division ring and let E be a vector space
over D. A topology on E 1s said to be compatible with the vector space
structure 1f the mappings (x, y) — x + y and (A, x) — Ax are continuous. A
topological vector space (briefly, TVS) over D 1s a quadruple (D, 7p; E, 7g),
where (D, 7p) 1s a topological division ring, E is a vector space over D, and 7
1s a topology on E compatible with the vector space structure. Since —x =
(—1D)x, it follows that E is a topological D-module. {We shall deal exclusively

with topological vector spaces over the real field R or the complex field C.}

(1.7) Let A be an algebra (we deal exclusively with associative algebras)
over a topological field F. A topology on A is said to be compatible with the
algebra structure i1f the mappings (x, y)—x + y, (A, x) — Ax and (x, y) > xy
are continuous, 1n other words, the topology makes A simultaneously a
topological vector space over F and a topological ring. A topological algebra
i1s a quadruple (F, rz; A, 74), where (F, 7z) 1s a topological field, 4 1s an
algebra over F, and 74 1s a topology on A compatible with the algebra struc-
ture.

(1.8) With the above examples in view, the reader is invited to roll his
own definition of ‘topological algebraic structure.” The area of mathematics
comprising topological algebraic structures is called ‘topological algebra,’ a
minor conflict with the terminology of the preceding paragraph.

It 1s usually unnecessary to have explicit notations for the topology (or
topologies) involved 1n a topological algebraic structure; for example ‘G 1s a
topological group’ 1s permissible in place of ‘(G, 7) is a topological group,’
provided that only one compatible topology on G 1s under discussion.

The emphasis in this book is on three particular structures: topological
groups (especially abelian, metrizable, complete topological groups), topo-
logical vector spaces (especially locally convex spaces, Banach spaces and
Hilbert spaces), and topological algebras (specifically, Banach algebras).

2. Topological groups. See the preceding section for the definition of a
topological group (1.2). It is useful to begin with a modest repertory of

examples:
(2.1) G any group, with the discrete topology.

(2.2) If Gis atopological group and H is a subgroup of G, then H is also
a topological group for the relative topology. {Proof: The restrictions of the
continuous mappings (x, y) = xyand x — x~ 1 to H x H and H, respectively,

are continuous for the relative topology on H.}

(2.3) The additive group of the complex field C is a topological group
with the topology defined by the usual metric d(A, p) = |A — u|. {Compati-
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bility means that A,—A and u,—>p imply A, + u,—>A + u and
—A, —> — A}

(2.4) The additive groups of the real numbers R, the rational numbers
Q, and the integers Z are topological groups for the usual metric topologies

(cf. (2.2), (2.3)). Of course Z is also covered by (2.1).

(2.5) The multiplicative group C — {0} of nonzero complex numbers,
with the usual topology, is a topological group: A, — A and u, — p 1mply
A, —> An and 1/A, — 1/A.

(2.6) The multiplicative groups R — {0} and Q@ — {0}, with their usual
topologies, are topological groups (cf. (2.2), (2.5)).

(2.7) The multiplicative group T = {Ae C : |A] = 1}, with the usual
topology, is a topological group (cf. (2.2), (2.5)); T 1s called the circle group.
Note that A~ = A* (the complex conjugate of A) for Ain T.

(2.8) Theorem. If a and b are fixed elements of a topological group G,
then each of the following mappings is a homeomorphism of G:

(1) x+—>x"1,
(2) x> ax,

(3) x> xb,

(4) x> axb,
(5) xr>axa~l.

For fixed a € G, the mapping
(6) x+>xax~1
IS continuous.

Proof. (1) The mapping x — x~! is continuous and self-inverse.

(2), (3) x> (a, x) — ax is the composition of two continuous mappings;
the inverse mapping is x — a~'x. Similarly for x — xb.

(4), (5) x> ax+—> (ax)b is the composition of two homeomorphisms.

(6) x+— (xa, x~ 1)~ (xa)x~! 1s the composition of two continuous
mappings, the first mapping being continuous because its compositions with
the coordinate projections (namely, x — xa and x > x~!) are continuous. |

(2.9) Corollary. If G is a topological group and # is a fundamental system
of neighborhoods of the neutral element e, then, for each a € G, the classes
{aV : VeB)and{Va : V € B} are fundamental systems of neighborhoods of a.
Also, {V =1 : VeRB}is a fundamental system of neighborhoods of e.

Proof. The mapping x — ax is a homeomorphism of G (2.8), sending
e to a, and therefore transforming & into a fundamental system of neighbor-
hoods of a. Similarly, x —> xa (resp. x — x~1!) transforms & into a funda-

mental system of neighborhoods of ea = a (resp. e™! =¢). |}
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(2.10) Corollary. If A is a subset of a topological group G and if U is an
open subset of G, then the following subsets are also open: U =1, AU, UA.

Proof. {For subsets S, T of G, one writes ST = {st : s€ S, t € T}, with
the convention that S7 = & if either S = @ or T = @. Similarly, S~ =
{st:5€8}.}

We can suppose that 4 and U are nonempty. Writing Jx = x~, U~! =
J(U) is open because J 1s a homeomorphism (2.8). Similarly, aU and Ua are
open for each a € A, therefore so are the sets

AU =) , aU, UA =) _, Ua. )

(2.11) The terminology for the mappings in (2.8) is as follows: x — x~1
1s the inversion mapping; x — ax 1s left translation by a; x+> xb 1s right
translation by b; x — axa~" i1s the inner automorphism of G induced by a.

The fact that translations are homeomorphisms means that a topological
group 1s ‘topologically homogeneous’: for any pair of points a, b € G, the
mapping x +—> ba~'x is a homeomorphism of G that sends a to b. Conse-
quently, topological behavior at a 1s reflected at . For example, 1f one point
of G has a countable neighborhood base then every point does (cf. 2.9); if
one point has a compact neighborhood then every point does; etc.

(2.12) Theorem. If G and H are topological groups then the product
topology on G x H is compatible with the product group structure.

Proof. Assuming G and H are notated multiplicatively, the product
group structure on G x H 1s defined by

(X, YY) = (xx,py), ()~ t=(x"Ly ;s

in particular, the neutral element of G x H 1s (e, e).

Since x+> x~! and y~ y~! are continuous, so is (x, y)— (x~1, y~1);
thus, inversion 1n G x H 1s continuous.

It remains to show that the mapping ((x, y), (x’, y')) — (xx', yy’'), from
(G x H) x (G x H) to G x H, 1s continuous; since (G x H) x (G x H)
1Is homeomorphic with G x H x G x H via the mapping ((x, ), (x’, y'))
(x, y, x', ¥), 1t 1s equivalent to establish the continuity of (x, y, x', y") —

(xx’, yy"). Indeed,
(x,y, x', )= (x, x") = xx’

1s the composition of two continuous mappings, as is the mapping
(X, ¥, X', ¥') = (3, ') = pY',

consequently (x, y, x’, y') — (xx’, yy') 1s also continuous. J

(2.13) If G and H are topological groups then G x H, with the product
topology and product group structure, 1s a topological group (2.12). More
generally, one can show (directly, or by induction on (2.12)) thatif G4, ..., G,
are topological groups then the product topology on G; x:--x G, 1S
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compatible with the product group structure, thus G; x--- x G, 1s a topo-
logical group, called the product topological group of G,,..., G,. This 1s a
useful construct for generating new examples of topological groups:

(2.14) Let C be the additive group of complex numbers with the usual
topology (2.3), C" the additive group of nples x = (A,), y = (uy). Each of the
following metrics on C" yields the product topology:

d(xa y) = INaXy I/\k D P"kla
and

d(xa y) — (Z: IAk T #klp)“pa

where p 1s a fixed real number >1 (the most popular choices are p = 1 and
p = 2).

(2.15) If R is the additive group of real numbers with the usual topology
(2.4), the product topological group R™ 1s called the n-dimensional vector

group.

(2.16) If T 1s the circle group with the usual topology (2.7), the product
topological group " is called the n-dimensional torus.

Exercises

(2.17) Let G be a group, with neutral element e. A topology on G is compat-
ible with the group structure if and only if (1) (x, y) — xy is continuous at (e, e),
(i1) for each fixed y, x — xy is continuous, (i11) for each fixed x, y+— xy 1s con-
tinuous, and (1v) x+— x~ ! 1s continuous at e.

(2.18) A topology on a group G 1s compatible with the group structure if and
only if (x, y)— x~ 'y is a continuous mapping of G x G into G.

(2.19) If (G))..; i1s any family (not necessarily finite) of topological groups,
then the product topology on G = [ [,e; G, 1s compatible with the product group
structure. G 1s called the product topological group of the family (G)),q;.

(2.20) With notation as in (2.19), let N be the set of all x = (x,),c; iIn G such
that x, 1s the neutral element of G, for all but finitely many «. Then /N i1s a normal
subgroup of G, and N is dense in G (i.e., N = G).

*(2.21) (R. Ellis) If G 1s a group with a locally compact topology such that,
for each a € G, the mappings x — ax and x — xa are continuous, then the topology
1s compatible with the group structure.

(2.22) Let G be the group of all homeomorphisms of [0, 1] (with composition
product (fog)(t) = f(g(t))), equipped with the topology defined by the metric

d(f,g) = sup, |f(t) — g()|. Then (i) d(foh,goh) = d(f,g), and (ii) G is a
topological group.

3. Neighborhoods of e. Due to the homogeneity of a topological group
(2.11), the topology 1s completely determined by the system of neighborhoods
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of the neutral element e (see (3.2) below); the pertinent properties of this
neighborhood system are as follows.

(3.1) Theorem. If G is a topological group, then the class ¥~ of all neigh-
borhoods of the neutral element e has the following properties:

(1) eeV forall Vevy,;

2) if V, WeV then VN We¥,;

(3) if VeV then there exists W ¥ such that WW < V;

(4) if Vey thenV-1ev,

(5) if VeyY and ae G then aVa~leV;

6) if Ve and W > V then WeY.

Proof. (1), (2), (6) are general properties of the filter of neighborhoods of
a point of a topological space. {Note that the term ‘neighborhood,’ used in
the Bourbaki sense, means any superset of an open superset.}

(3) The mapping f(x, y) = xy 1s continuous at (e, e), and f(e, e) = e.
Given any neighborhood V of e, choose a neighborhood 4 of (e, ) in G x G
such that f(A4) < V. One can suppose that 4 = W x W for some We¥

(such neighborhoods of (e, e) are basic). Thus, WW = f(W x W) < V.
(4), (5) x—x~"' and x +—>axa~' are homeomorphisms of G mapping e

onto e (cf. 2.9). }
The properties listed in (3.1) are characteristic of compatibility of a

topology with the group structure:

(3.2) Theorem. If G is an abstract group, with neutral element e, and if ¥~

is a nonempty class of subsets of G satisfying (1)-(6) of (3.1), then there exists
a unique topology on G such that (1) the topology is compatible with the group
structure, and (11) ¥ is the system of all neighborhoods of e.

Proof. Uniqueness: Clear from (2.9).

Existence. By (1), (2) and (6), ¥ 1s a filter of sets containing e. For each
a € G,define ¥, = {aV : V € ¥7}; since x > ax is bijective and maps e onto a,
¥, is a filter of sets containing a. In particular, ¥, = 7.

We assert that the family (7,).¢ 1s the family of neighborhood filters for
a topology on G. Given N € ¥, it is to be shown that there exists M € 7,
such that ye M implies Ne ¥ ,. Say N = xV, Ve ?. By (3) choose We¥
such that WW < V, and set M = xW. Then y e M implies yW < xWW <
xV = N, thus N > yWe ¥, and therefore N € 7,

It remains to show that the topology on G defined in the preceding
paragraph 1s compatible with the group structure.

Fix a, b € G. To see that (x, y) — xy 1s continuous at (a, b), let a neighbor-
hood C of ab be given, say C = abV, Ve¥ ; it will suffice to find Ue ¥
such that (aU)(bU) < abV, ire., (b~*Ub)U < V. By (3) choose W e ¥ with
WW < V; then bWb~' € ¥ by (5), and, setting U = (bWb~1) N W one has
Ue? and (b~'U)U < [b~' (Wb~ )b]W = WW < V.

Finally, fixing a € G, it 1s to be shown that x+> x~! is continuous at a.
Given any Ce¥,-1, say C=a"'V, VeV¥, we seek We¥ such that
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(@W) < a"'V, 1e, W-lcalVa ie, W< a'V~'a. Indeed,
a V-lac¥ by (4) and (5), thus W = a~'V ~'a is suitable. |}

Recall that, in a topological space, ‘Z 1s a fundamental system of neigh-
borhoods of x’ means that & is a base for the filter of neighborhoods of x;
that is, (1) every set 1n &4 1s a neighborhood of x, and (11) every neighborhood
of x contains some set in #. The statement ‘B 1s a basic neighborhood of x’
means that B is a generic element of some fundamental system &£ of neighbor-
hoods of x. Theorem (3.2) can be formulated 1n terms of basic neighborhoods

of e:

(3.3) Theorem. Let G be an abstract group, with neutral element e, and
let Z be a nonempty class of subsets of G satisfying the following properties
(D-05):

(1) ee B forall Be #;

(2) if B,, B, € Z then there exists B; € # such that B; < B, N By;

(3) if Be & then there exists C € # such that CC < B;

(4) if Be &P then there exists C € B such that C < B™1;

(5) if Be # and a € G then there exists C € # such that C < aBa™".

Then, there exists a unique topology on G such that (1) the topology is com-
patible with the group structure, and (1) # is a fundamental system of neighbor-

hoods of e.

Proof. 2 is the base for precisely one filter ¥, namely,
¥ ={V : V > Bfor some B e %}.

Evidently ¥ satisfies the hypotheses (1)-(6) of Theorem (3.2). §
A topological space X is said to be separated if, for each pair af distinct
points x, y of X, there exist neighborhoods U, V of x, y, respectively, such

that UN V = &. {Synonyms: Hausdorfl, T,.}

(3.4) Theorem. If G is a topological group and # is any fundamental
system of neighborhoods of the neutral element e, then the following conditions
are equivalent:

(a) G is separated;

(b) {e} is a closed subset of G,

©) (g B = fe}

Proof. (a) implies (b): In a separated space every singleton 1s closed.

(b) implies (¢): Assuming x # e 1t 1s to be shown that some B in %
excludes x. Since {x} is also closed (2.8) and e ¢ {x}, there exists a neighbor-
hood V of e such that VN {x} = &, 1.e.,, x ¢ V. Choose Be # with B < V.

(c) implies (a): Assuming x # y, we seek a neighborhood V of e such that
(xV)N (yV) = @. Since y~'x # e, by (¢) there exists Be % with y~1x ¢ B.
Choose C € # with CC < B (cf. (3) of (3.3)). Then V = C N C~!is a neigh-
borhood of e, and (xV) N (yV) # @ would imply y"!xe VV~-! = VYV c
CC < B, a contradiction. |
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Exercises

(3.5) A topological group 1s a Ty-space if and only if it is separated. {A T,-
space 1s a topological space such that for every pair of distinct points there exists
a neighborhood of one of the points that excludes the other (but one cannot

specify which point is excluded).}

(3.6) If E is a topological space and A = {(x, x) : x € E} is the diagonal of
E x E, then E'i1s separated if and only if Ais closed in E x E. If G is a topological
group, then A = {(x, y) : x 1y = e} is the inverse image of {e} under the con-
tinuous mapping (x, y)— x~'y; this yields a brief proof of ‘(b) implies (a)’ in
(3.4).

(3.7) Suppose E i1s a topological space in which every singleton is closed: if
x € E and # is a fundamental system of neighborhoods of x, then (Mzcg B = {x}.
This property is characteristic of spaces in which every singleton is closed.

4. Subgroups and quotient groups. Subgroup, product group, quo-
tient group—these constructs are part of the elementary grammar of group
theory. In the theory of topological spaces, the parallel constructs are sub-
space, product space, quotient space. For topological groups, both sets of
constructs are available; it 1s natural to ask whether the results of applying
a pair of parallel constructs are compatible. If H is a subgroup of a topo-
logical group G, is the relative topology on H compatible with its group
structure ?7; the obviously affirmative answer (2.2) allows one to say, briefly,
that a subgroup of a topological group is a topological group. If G and H
are topological groups, then the product topology on G x H is compatible
with the product group structure (2.12); briefly, the product of topological
groups 1s a topological group (see also (2.19)). If N 1s a normal subgroup of
the topological group G, there 1s a quotient group structure on the set of
cosets G/N, and, via the canonical mapping = : G — G/N, a quotient topology
on G/N; the main result in this section is that the quotient topology on G/N
1s compatible with the quotient group structure, i.e., a quotient group of a
topological group is a topological group. Also included are some odds and
ends about subgroups, for which there is no better place.

(4.1) Theorem. In a topological group, the closure of a subgroup is a
subgroup, and the closure of a normal subgroup is a normal subgroup.

Proof. Suppose H 1s a subgroup of the topological group G. Write
f:G x G—G, f(x,y) = x~'y. The subset H has the property f(H x H) <
H; the desired conclusion, f(H x H) < H, follows from the continuity of f
and the fact that H x H is the closure of H x H.

If, in addition, H 1s normal in G, then for each a € G the homeomorphism
x +>axa~! (2.8) maps H into H and therefore H into H. |

The following corollary 1s of interest only for nonseparated topological

groups (3.4):
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(4.2) Corollary. In a topological group G, with neutral element e, {e} is a
closed normal subgroup of G.

(4.3) Definition. If H is a subgroup of a group G, G/H denotes the set of
all left cosets xH (i.e., the set of all equivalence classes for the equivalence
relation x R y defined by x~'y € H). The canonical mapping = . G— G/H
is defined by n(x) = xH. Dually, H\G denotes the set of all right cosets Hx.
When H is normal in G, 1.e., when xH = Hx for all x € G, we need not dis-
tinguish between G/H and H\G; for definiteness, we use the notation G/H.

(4.4) Lemma. If H is a subgroup of a topological group G, G/H is the
space of left cosets equipped with the quotient topology, and = : G — G/H is the
canonical mapping, then (1) = is an open, continuous mapping, and (11) for each
a € G, the neighborhoods of m(a) are precisely the sets w(aV), where V is a
neighborhood of the neutral element e of G.

Proof. By definition, the quotient topology on G/H is the final topology
for the mapping =, thus the open sets of G/H are precisely the sets 4 < G/H
such that =~ 1(A4) is open in G; in particular, 7 is continuous.

(i) If U 1s an open subset of G, then =~ '(#(U)) = UH 1s open in G
(2.10), therefore #(U) 1s open in G/H.

(i) Fix a € G. If V is a neighborhood of e then aV is a neighborhood of a,
therefore m(aV’) is a neighborhood of #(a) by (i1). Conversely, if A4 is a neigh-
borhood of =(a) then, by the continuity of =, #=1(A4) is a neighborhood of a.
Say 7~ 1(A4) = aV, V a neighborhood of e; then w(aV) = n(w~1(4)) = A4
since = 1s surjective. |

(4.5) Theorem. Let N be a normal subgroup of a topological group G, let
7w : G — G/N be the canonical mapping, and equip G/N with the quotient group
structure and the quotient topology. Then:

(1) G/N is a topological group;
(11) = is an open, continuous mapping,

(ii1) for each a € G, the neighborhoods of m(a) for the quotient topology are
precisely the sets w(a)m(V'), where V is a neighborhood of the neutral element e
of G;

(iv) G/N is separated if and only if N is a closed subset of G.

Proof. (11) was proved 1n the lemma.
(ii1) Since N is normal, = 1s a homomorphism, therefore n(aV) = n(a)=(V);
quote the lemma.

(1) Let ¥ be the set of all neighborhoods of e. By (ii1), n(¥") =
{m(V) : Ve¥}is the set of all neighborhoods of =(e), the neutral element of
G/N. Let us show that =(¥") satisfies the neighborhood axioms (3.2) for a
topological group structure.

Of course #(¥") is a filter of sets containing =(e), 1.e., it satisfies conditions
(1), (2), and (6) of (3.2); indeed, it is the filter of all neighborhoods of =(e)
for the quotient topology. Suppose V € ¥"; choosing We¥ with WW < V
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one has #(W)n(W) = a#(WW) < «(V), thus #(¥") satisfies condition (3)
of (3.2). If Ve then (#(V))~! = «(V 1) e #(¥") shows that =(¥") satisfies
(4) of (3.2). If Ve¥ and ac G then wn(a)n(V)m(a)~! = w(aVa~') e n(¥")
shows that =(¥") satisfies (5) of (3.2).

It follows from (3.2) that there exists a topology » on G/H compatible
with the group structure, for which #(¥") 1s the system of neighborhoods of
m(e); since the r-neighborhoods of =(a) are the sets #(a)=(V) (2.9), it follows
from (111) that = coincides with the quotient topology.

(iv) If G/N is separated then {m(e)} is closed in G/N, therefore N =
n~1({m(e)}) 1s closed in G by the continuity of =. Conversely, it N is closed
then 0N is open, thus #(0N) is open by (ii); since #(CN) = G/N — {=(e)},
{m(e)} 1s closed and therefore G/N is separated (3.4). }

Exercises

(4.6) Let G be a group equipped with a topology such that (i) x> x~1 is
continuous, and (ii) for each a € G, x+— ax is continuous. Then the closure of a
subgroup 1s a subgroup, and the closure of a normal subgroup is a normal sub-

group.

(4.7) In a separated topological group G, the centralizer C(a) =
{xe G : xa = ax} of each ae€ G 1s a closed subgroup of G, and the center Z =
Maec C(a) i1s a closed normal subgroup of G. In a nonseparated topological

group, the center need not be closed.

(4.8) If G is any topological group and N = {e}, then G/N is a separated
topological group.

(4.9) An open subgroup of a topological group is necessarily closed.

(4.10) Let H be a subgroup of a topological group G and let G/H be the space
of left cosets (4.4). Then (1) G/H is separated iff H is closed in G, and (ii) G/H is

discrete iff H is open in G.

(4.11) If G is any topological group and C is the connected component of
the neutral element e, then (i) C is a closed normal subgroup of G, (ii) for each
a € G the connected component of ais aC = Ca, and (iii) the quotient topological
group G/C is separated and totally disconnected (i.e., its connected components

are all singletons).

(4.12) Let G and H be topological groups, let f: G — H be a continuous
homomorphism of G onto H, and-assume that G is compact and H is separated.
Then, (1) H is compact, (i1) the kernel N of fis a closed normal subgroup of G,
and (1ii) the quotient mapping xN — f(x) is a bicontinuous isomorphism of G/N
onto H.

(4.13) If G and H are topological groups and if f: G — H is a homomorphism
of G onto H with kernel N, then the following conditions are equivalent: (a) fis
an open mapping; (b) for every neighborhood V of eq, f(V) is a neighborhood of
ey ; (¢) the natural isomorphism of G/N onto H is bicontinuous.

(4.14) If G 1s a connected topological group and V is any symmetric (i.e.,
V = V1) neighborhood of e, then every element of G can be written as a finite

product of elements of ¥V, i.e., G = U ., V™
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5. Uniformity in topological groups. The neighborhoods ¥V of the
neutral element e play a central role in the description and determination of
the topology of a topological group G. Specifically, for fixed x € G and
variable V, xV (or Vx) varies over the set of all neighborhoods of x. A slight
rearrangement of emphasis leads to the idea of uniformity: for fixed V, xV
(or Vx) is a neighborhood of x for each x € G, so to speak of ‘uniform size V’
independent of the particular point x.

The example (2.4) of the additive group of R with the usual metric
d(x,y) = |x — y| is instructive. The set of open intervals V, = (—e, ¢),
e > 0, 1s a fundamental system of neighborhoods of 0. Each ¥V, 1s a measure of
nearness to the origin: y € ¥V, means d(0, y) < e. The points of x + V, are
the points ‘within V.’ (i.e., within &) of x: yex + V, means y — x € V,,
.e., d(x,y) < e Moreover, for fixed ¢« > 0 the neighborhoods x + V,,
x variable, are of uniform °‘size’ (diameter).

In a general topological group G, with neutral element e, a neighborhood
V of e represents a degree of nearness to e. By homogeneity, this notion of
degree of nearness can be translated throughout the group: xV 1s the set of
points ‘within ¥ of x,” in the sense that y € xV precisely when x~ 'y e V.
{In general xV # Vx; the y € xV are, so to speak, ‘left-within V of x,” and
the y € Vx are ‘right-within ¥ of x.”} Thus the V’s play the role of &’s in the
theory of topological groups.

The concept of uniformity is discernibly at work in condition (d) of the
following theorem:

(5.1) Theorem. If G and H are topological groups, with neutral elements
eq and ey, and if f: G — H is a group homomorphism, then the following con-
ditions are equivalent:

(a) fis a continuous mapping;

(b) fis continuous at some a€ G,

(¢) fis continuous at eg;

(d) given any neighborhood V of ey, there exists a neighborhood U of e,
such that x~1y € U implies f(x)~*f(y) € V.

Proof. By hypothesis, f(xy) = f(x)f(p) for all x, y € G.

(a) implies (b) trivially.

(b) implies (c): Let V be a neighborhood of f(e;) = ey; we seek a neighbor-
hood U of e; such that f(U) < V. Since f(a)V 1s a neighborhood of f(a), by
hypothesis there exists a neighborhood U of e; such that f(aU) < f(a)V
(cf. 2.9), that is, f(a)f(U) < f(a)V and theretore f(U) < V. Moreover,
x~ 1y e U implies f(x)~f(y) = f(x~'y) e f(U) < V, thus (c) implies (d).

(d) implies (a): Fix a € G; let us show that f'i1s continuous at a. Let B be a
neighborhood of f(a), say B = f(a)V, V a neighborhood of ey. Choose a
neighborhood U of e; satisfying the condition in (d). For any y € aU one has
a~'y € U and therefore f(a)~f(y) € V, i.e., f(y) e f(a)V = B; thus f(aU) <
B. }
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(5.2) The continuity of the homomorphism f at every x, as implied by
the relation between U and V in condition (d) of (5.1), can be expressed as
follows: y € xU implies f(y) € f(x)V, 1e., f(xU) < f(x)V. To paraphrase:
given any ‘e’ (namely V') there exists a °3’ (namely U) that works at every x.
This is the idea of ‘uniform continuity,” to which we shall return shortly.
Let us first give a definite meaning to ‘uniformity’ in topological groups by
making connection with the theory of uniform structures, as follows.

(5.3) Definition. Let G be a topological group and let ¥~ be the class
of all neighborhoods of the neutral element e. For each V' € ¥ define a subset

V.of G x G by

Vs ={(x,y) : x~'ye V}.

The class of all such V; is denoted ¥,. Each V; ‘surrounds’ the diagonal
A = {(x,x): xeG}of G x G, in the sense that V; > A.

(5.4) We recall two notations from the theory of relations (here G can
be any set): if A and B are subsets of G x G (i.e., 4 and B are relations in G)
then 4 o B (the composite of 4 and B) and A~! (the reverse of A4) are the
subsets of G x G defined by

AeB ={(x,2) : Iy (x,y) €A & (y, z) € B},

A=t = {(y,x) : (x,y) € A}.

A uniformity on G 1s a filter  of subsets of G x G such that (i) A < A4 for
all A e, (i1) A€ implies A~ € %, and (iii) A € % implies there exists
B € % such that Bo B < A. A uniform structure 1s a pair (G, ), where G 1s a
set and % 1s a uniformity on G; the sets A € % are called the entourages for
the uniform structure. A base for the uniformity is a base & for the filter %
of entourages. If G i1s a set and 4 is the base for a filter % of subsets of G x G,
then % 1s a uniformity if and only if (1) A< A4 for all Ae%, (ii') A€ X
implies there exists Be # such that B < A~1, and (iii’) A € #Z implies there
exists B € # such that Bo B < A.

In any topological group, the filter of neighbourhoods of the neutral
element determines two uniform structures, in general distinct, called the left
uniform structure and the right uniform structure. For clarity we will con-
sider them one at a time.

(5.5) Theorem. If G is a topological group, ¥ is the system of neighbor-
hoods of the neutral element e, and ¥ is the class of subsets of G x G described
in (5.3), then ¥ is the base for a uniformity U, on G, U, = {A : A > V, for
some V e ¥V }.

Proof. Already noted is that the V, are supersets of the diagonal A.
If U, Vev?, evidently U < V implies U; < V; consequently if U, V € ¥ are
arbitrary then for the neighborhood W = UN V one has W, < U,N V..
Thus 75 is the base for precisely one filter %, namely, %, = {4 : A > V, for
some V, € ¥,}. It remains to verify the conditions (ii"), (iii") of (5.4).
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If Ve? then also V~'e ¥, and (V1) = (V,)~ 1! results from the chain
of equivalent relations (x,y)e (V~Y),, x~ye V1!, y~ixeV, (y,x)eV,,
(x, y) € (V,)~ 1. Thus ¥, satisfies (ii’).

If Ve¥ and if We¥ is so chosen that WW < V, then W,o W, < V,
results from the following chain of relations, each of which implies the next:
(x,2) e W,o W, (x,y)€ W, and (y, z) e W, for some y, x“lye W and
y~lze W for some y, (x y)(y~1'z2)e WW < V for some y, x~zeV,
(x,2) eV, |

(5.6) Definition. With notation as in (5.5), the uniform structure (G, %,)
1s called the /eft uniform structure of the topological group G, and %, the left
uniformity of G.

(5.7) With notation as in (5.5), if # is a fundamental system of neighbor-
hoods of e (i.e., if # is a base for the filter ") and if 4, = {U, : U € #}, then
Z#. 1s a fundamental system of entourages for the left uniform structure of G
(1.e., %, is a base for the filter %;); this is immediate from (5.5) and the fact
that U < V implies U, < V..

(5.8) We recall another notation from the theory of relations (here G
can be any set):if A € G x G and x € G, one defines A(x) = {y : (x, y) € 4}.
Informally, A(x) 1s the projection, onto the y-axis, of the vertical slice of A4 at
x. In a topological group, one recaptures all neighborhoods by slicing the V;:

(5.9) Lemma. If Visaneighborhood of the neutral element of a topological
group G, then V{(x) = xV for all x € G.

Proof. The following relations are equivalent: y € Vi (x), (x,y) € V,,
x~lyeV, yexV. (The argument is purely group-theoretic; topology enters
only since we have chosen to define the notation V; only for neighborhoods V
of the neutral element of a topological group.) §

(5.10) Theorem. If G is a topological group, then the uniform topology
deduced from its left uniform structure (G, %) coincides with the given topology
on G. In particular, G is a uniformizable topological space.

Proof. Let x € G. As V varies over a fundamental system of neighbor-
hoods of e in the given topology, V, ranges over a fundamental system of
entourages for the uniformity %, (5.7) and therefore V(x) varies over a
fundamental system of neighborhoods of x for the uniform topology deduced
from %,; since the sets V(x) = xV are also a fundamental system of neigh-
borhoods of x for the given topology (2.9), the two topologies coincide. §

(5.11) The rationale for the above terminology and notation 1s as follows.
The neighborhoods x¥V = V(x) are left translates of the neighborhoods ¥V of
the neutral element, hence % is termed the /eft uniformity on G (see also
(5.20)). The subscript s abbreviates ‘sinistral’ (in preference to / for ‘left,’
which is too easily confused typographically with the numeral 1).

Theorem (35.1) can now be reformulated as follows:
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(5.12) Theorem. Let G and H be topological groups, each equipped with
its left uniform structure, and let . G — H be a group homomorphism. Then,
[ is continuous if and only if it is uniformly continuous.

Proof. The condition on U, V in (d) of (5.1) is that (x, y) € U, implies
(f(x), f (M) eVs |

The closure operation in a topological group can be simply expressed in
terms of the neighborhoods of e:

(5.13) Theorem. If A is any subset of a topological group, then A =
(Y AV = () VA, where V runs over any fundamental system of neighborhoods
of the neutral element.

Proof. Since the intersections are unaffected by the particular choice of
fundamental system of neighborhoods, we may assume that V runs over the

class ¥~ of all neighborhoods of e. If V' € ¥ one defines

V{(A) = {x :3a€ A 3 (a,x)e V};
thus

Vi(d) ={x:3aed s> xeVa} =) _, Vi@ =) _,aV =4V

But A = (Nyey Vi(4) by the theory of uniform spaces, thus 4 = (Nyey, AV.
Since x — x~! is a homeomorphism, and Ve ¥ iff V' ~! € ¥, one has (letting
V vary over ¥)

(Y VA=V A=A =(47P)"
= (4 t=4 i

Another important dividend of uniformizability (see also (5.22)):

(5.14) Corollary. In any topological group, every point has a fundamental
system of closed neighborhoods.

Proof. By translation it 1s sufficient to consider neighborhoods of the
neutral element e (2.9). If U is any neighborhood of e, choose a neighborhood

V of e such that VV < U (3.1). Citing (5.13), V < V¥V < U. Thus each
neighborhood U contains a closed neighborhood V. |

(5.15) The right uniform structure of a topological group G can be
derived briefly as follows. Suppose the binary operation of G i1s denoted xy;
let G’ be the opposite group, 1.e., the set G equipped with the opposite binary
operation xoy = yx. Then G’ 1s also a topological group for the given
topology. Consider the /left uniform structure for the topological group G’':
a neighborhood V of e defines the entourage {(x,y): x toyeV} =
{(x,y) : yx~' eV}, and, writing

Ve =1{(x,y) : yx~* eV},

it follows at one from (5.5) that the class ¥, = {V, : V €77} is the base for
a uniformity %, on the set G' = G.
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(5.16) Definition. With notation as in (5.15), the uniform structure
(G, %,) 1s called the right uniform structure of the topological group G, and
U, the right uniformity of G. {In strict analogy with (5.11), the appropriate
subscript would be d, for “dextral’; however, we are reserving the notation
U, for the uniformity derived from a metric d.}

Paralleling (5.10) we have:

(5.17) Theorem. If G is a topological group, then the uniform topology
deduced from its right uniform structure (G, %,) coincides with the given
topology on G.

Proof. Write G’ as 1n (5.15). By (5.10) the topology derived from the
uniformity %, coincides with the given topology on G’, that 1s, with the given
topology on G. Incidentally, V(x) ={y:(x,y)eV,} ={y:yx" eV} =
{y:yeVx}=Vx. |}

(5.18) For a topological group G the uniformities %, and %, may be
different (5.25); nevertheless, 1n view of (5.10) and (5.17), they define the same
topology, namely, the given topology on G.

The left and right uniform structures of a topological group are trans-
formed into one another by the inversion mapping:

(5.19) Theorem. If G is a topological group and Jx = x~1 is the inversion
mapping, then J induces an isomorphism between the uniform structures (G, %,)
and (G, %,). Explicitly, (x, y)+— (Jx, Jy) is a bijective mapping on G x G that
transforms U, into %,. Equivalently, J is a uniformly continuous mapping of
(G, U,) onto (G, %,), with uniformly continuous inverse J ! = J.

Proof. 1If Vis a neighborhood of e, the following relations are equivalent:
(x,y)eV, x“tyeV, y ixeV-i (JyUx)"te V-1 (Ux,Jy)e (V~1),. Thus
(J x J)(V,) = (V~1Y),. Since the filters %, %, are generated by the sets V,
(V' —1),, respectively, the theorem follows. Incidentally, another proof results
from (5.12) and (5.15), since J 1s a bicontinuous group isomorphism of G
onto G'. {Stripped of fancy notation and terminology, the theorem essentially
reduces to the calculation (xV)~! = V-1x"1.} §

Exercises

(5.20) Let G be a topological group, fix an element a € G, and write f(x) = ax
for left translation by a. If g = f x f is the product mapping, g(x, y) =

(f(x), f(»)), then for any neighborhood V of e one has g(V;) = V. Thus, the left
translations in G are uniformly continuous for the left uniform structure on G.

(5.21) If G and H are topological groups, with left uniformities ,(G) and
U(H), then the product uniformity on G x H coincides with the left uniformity
U(G x H) on the product topological group G x H. What about infinite

products ?

(5.22) It follows from (5.14) that if A4 1s a closed set in a topological group G
and if x ¢ A, then there exist disjoint open sets U and ¥V such that x € U and
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A < V. The theory of uniform structures yields even more: if N is any neighbor-
hood of x, there exists a continuous function f: G — [0, 1] such that f(x) = 1
and £ = 0 on ON. {This last property is characteristic of uniformizable spaces.}
In particular, if G is a To-space (3.5) then it 1s automatically a T34-space; 1.e., a
completely regular space.

(5.23) The following conditions on a topological group G are equivalent:
(a) Gisseparated; (b) Y Vs = A; (¢) () V: = A. (Here V runs over any funda-
mental system of neighborhoods of e.)

(5.24) If G is a compact group, it follows from (5.10) and (5.17) that %, =%,.
{Recall that in the Bourbaki terminology, compact spaces are separated.}

(5.25) There exists a locally compact group G for which %, # %,.

*(5.26) Every locally compact topological group G i1s normal (i.e., i1s a T4-
space): if A and B are disjoint closed subsets of G, then there exist disjoint open
sets U and Vsuch that A <« Uand B < V.

6. Metrizable topological groups. A topological space X is called
metrizable if there exists a metric d on X such that the topology derived from
d coincides with the given topology on X; such a metric is said to be compatible
with the given topology. A metrizable topological space is obviously sepa-
rated and first countable (i.e., at each point there exists a fundamental se-
quence of neighborhoods).

A topological group G is said to be metrizable if it 1s metrizable as a
topological space; then each point of G (equivalently, the neutral element of
G) has a fundamental sequence of neighborhoods. A remarkable fact, proved
independently by G. Birkhoff and S. Kakutani, 1s that the converse 1s true:
If the neutral element of a topological group G has a fundamental sequence of
neighborhoods (equivalently, if G is first countable) and if G is separated, then
G is metrizable. The present section is devoted to a proof of this key result.
Actually, the Birkhoff-Kakutani result includes significantly more, a point
to which we will return after the following definitions.

(6.1) Definition. A metric d on an abstract (i.e., not necessarily topo-
logical) group G is said to be left-invariant if d(ax, ay) = d(x, y) identically,
and right-invariant if d(xa, ya) = d(x, y) identically.

The full statement of the Birkhoff-Kakutani theorem is that a first count-
able, separated topological group is metrizable via a left-invariant metric.
Incidentally, if a topological group G admits a left-invariant compatible
metric d, then the metric d'(x, y) = d(x~1, y ~1) is obviously right-invariant,
and, since x — x~ ' 1s a homeomorphism of G, d’ generates the same topology
as d, 1.e., d’ 1s also compatible with the topology of G. Thus, in the Birkhoff-
Kakutani theorem it 1s immaterial whether one says ‘left’ or ‘right.” {How-
ever, a metrizable topological group need not admit a compatible metric
which is both left- and right-invariant (cf. (10.4), (10.8)).} Part of the machin-
ery of the proof can be separated out as an elementary combinatorial lemma:



Metrizable Topological Groups 27

(6.2) Lemma. Let X be a set and suppose f: X x X — R is a function
satisfying the following conditions:

(1) f(x,y) = 0 for all x, y;

(2) f(x,x) =0 for all x;

(3) if ¢ > 0, the relations f(w,x) < e, f(x,y) < e f(y,2) < e imply
f(w, 2) < 2e.

Define a function d: X x X— R as follows. If (x,y)e X x X and
p ={Xx = Xo, X1,..., Xn = Y} IS any finite system of points in X that begins at
x and ends at y, write

|p| = Z:f(xk-h X1c)
and define
d(x, y) = inf |p|,

where p varies over all such finite systems. Then, d has the following properties:
4) 3f(x,y) <d(x,y) < f(x,y),
(5) d(x,2) < d(x,y) + d(y, 2);
6) if f(x,y) = f(y, x) for all x, y, then d(x, y) = d(y, x) for all x, y.

If f(x,y) = f(y, x) for all x,y, and if f(x, y) > 0 whenever x # y, then d
is a metric on X.

Proof. 1t 1s obvious that (6) holds and that the final assertion 1s imme-
diate from (4), (5), (6); it remains only to verify (4) and (5).

First, we note that for each ¢ > 0, f satisfies the following ‘weak triangle
law’: 1if f(x,y) < e and f(y, z) < e then f(x, z) < 2¢ (take w = x in (3)).
In particular, 1if f(x, y) = f(y,z) = 0 then 0 < f(x, z) < 2¢ for every ¢ > 0
and therefore f(x,z) = 0. It follows by induction that if f(x,, x;) =
f(xy, X3) =+ += f(Xn-1, X,) = 0 then f(x,, x,) = 0; in other words, if
p = {Xx = Xq, X1,..., Xn = y} 15 a system such that |p| = 0, then f(x, y) = 0.

(4) For the system q = {x = x4, x; = y} one has d(x, y) < |q] = f(x, ).
To prove that 4 f(x, y) < d(x, y) one must show that 4 f(x, y) < |p| for every
finite system p = {x = xq, X;,..., X, = y}. The proof 1s by induction on ».
If n =1 then p = {x = x,, x; = »} and so |p| = f(x, y) = 1 f(x, y) by (1).
Suppose n > 2 and assume the assertion true for systems of length <n. We
consider three cases.

Case 1: f(xo, x1) 2 ¥|p[. Then %}|p| = |p| — %|p| = [p| — f(x0, X)) =
28 f(xk-1, X)) = 4f(x,, x,) by the induction hypothesis, that is, f(x;, x,) <
lp|; obviously f(xo, x;) < |p|, therefore f(x,, x;) < 2|p| by the remarks at
the beginning of the proof (even if [p| = 0), i.e., 3 f(x, y) < |p].

Case 2: f(x,-1, X,) = %|p|. The argument is similar to that for Case 1.

Case 3: f(x¢, x;) < 4|p| and f(x, -1, x,) < %|p|. In particular, |p| > O
and n > 3. Let r be the largest integer such that

(*) D fxi-1, %) < 3pl;
r > 1 because f(xo, x;) < |p|. Since f(x,_1, x») < 3|p|,

D f(e=1 X) = |P| = fXn1, Xa) > 3P,
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therefore r <n — 1. Thus 1 <r <n - 2. By the maximality of r,
it f(xk -1, xi) > %|p|, therefore

(**) Z:.,.zf(xk—la x) < %|p.

By induction and (*), 3 f(x,, x;) < 21/(Xk-1, X;) < %|p|, thus

(i) f(xo, %) = [P

trivially

(11) S(Xes X41) < |5

by induction and (**), 3 f(x,,1, X») < 2P o f(Xk -1, X)) < %|p|, thus
(i) Frans Xa) < [Pl

Citing (3), it follows from (i), (i1), (iii) that f(x,, x,) < 2|p|, thatis, 3 f(x, y) <

[Pl
(5) Fix x, y, z € X. Given any pair of systems

p={x=x09x1,--"xn=y}s q={y=yo,y1,---,ym=z}a

let s be the concatenation of the two systems,

8 = {X = Xgy X15++5Xn =Y = Yoy V1s++ s Vm = Z}.

Obviously d(x,z) < |s| = |p| + |q|; varying p and q independently,
d(x,z) < d(x,y) + d(y,2). |

(6.3) Theorem. (Birkhoff-Kakutani) A topological group G is metrizable if
and only if it is separated and the neutral element e has a countable fundamental
system of neighborhoods. A metrizable topological group admits a left-invariant
(or a right-invariant) compatible metric.

Proof. Only if: Any metrizable space is separated and first countable.

If: Let G be a separated topological group possessing a fundamental
sequence of neighborhoods U, (n = 1, 2, 3, ...) of e. {Since the sets (U,), are
evidently a fundamental system of entourages for the left uniform structure
of G (5.5), the proof of the metrizability of G could be based on a general
theorem on the metrizability of uniform structures (6.7). However, this would
exceed the topological prerequisites stated in the Preface; instead, we pro-
ceed with a direct proof (on which, incidentally, a proof of the general
uniform space result can easily be modeled).}

The first step 1s to construct an ‘improved’ fundamental sequence of
neighborhoods V,. Replacing U, by U, © U,~ !, one can assume that the U,
are symmetric (U, = U, 1). Let V; = U;. By (3.1) there exists U, such that
U2 < U, N V;; let V, be the (say) first such U,. Inductively, let V, be the
first U, such that U,° < U, N V,_,. Since V, < U, for all n, the sequence of
neighborhoods ¥V, 1s also fundamental; also

(1) mf Vi = {e}
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because G 1s separated (3.4), and by construction

(il) V}?.;.]_ S Vk (k — 1, 2, 3,...).
Set Vo, = G. From (11) we have
(lil) G=VODV13V2:V3:"';

thus, every x € G belongs to some V,, and it follows from (1) and (i11) that if
x # e then V, excludes x from some k£ onward, that i1s, x belongs to only
finitely many V,. (Incidentally, if G admits a finite fundamental system of
neighborhoods of e, then G is obviously discrete; in this case the discrete
metric, d(x, x) = 0 for all x and d(x, y) = 1 when x # y, i1s a left-invariant
compatible metric. Having disposed of this case, let us assume G nondiscrete.)

Each V, represents a degree of ‘nearness’ to the ‘origin’ e; alternatively,
x "1y e V. 1s a measure of the nearness of x to y. The problem is to express
such qualitative statements in terms of real numbers (eventually, in terms of a
metric). Left-invariance will then follow from the fact that the germinal
relation x 'y € V. is itself left-invariant, 1.e., (ax) " (ay) = x~1y.

Suppose x # y. A qualitative assertion is that x~'y € V. for some k (e.g.,
k = 0). A quantitative assertion i1s that there exists a largest such k; this
permits the definition

f(x, y) = min{(})* : x™'y € V}.

On the other hand, if x = y then x~'y = e € V, for all k; setting f(x, x) = 0,
one has

(1v) f(x,y) = inf{(3)* : x~Ty e ¥}

for all x, y € G. The desired metric 4 will be derived from f via the lemma;
we now show that the hypotheses of the lemma are fulfilled.

Obviously f(x, y) = 0, and f(x, y) = 0 iff x = y. Also, f(x, y) = f(y, x)
since the V, are symmetric. To apply the lemma, we need only verify the
condition (3); the left-invariance of d will follow at once from the evident

property f(ax,ay) = f(x,y). Assuming ¢ >0, f(w,x) <e, f(x,y) <&,
f(y, 2) < &, itisto be shown that f(w, z) < 2¢. This s trivial if ¢ > 4 (because
f < 1); suppose 0 < ¢ < 4. According to (1v) there exist positive integers
i, j, k such that

w-lxeV, and @) < e,
x“lyeV, and () < e,
y~lzeV, and ) <e;
if r = min {i, j, k}, then (3)” < ¢ and it follows from (11) that
wlz = (W x)(x" W) (y 2)e ViV,V, < V,°2 < V,_,,

therefore f(w,2) < ()~ ! = 23)" < 2e.
The lemma 1s now applicable, and yields a left-invariant metric d; it
remains to show that d generates the given topology.
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For any ¢ > 0 and any «a € G, define

UJa) = {x: f(a, x) < &}.

We assert that the sets U,(a), ¢ > 0, form a fundamental system of neighbor-
hoods of a for the given topology. First, every U,(a) is a neighborhood of a;
for, if k is a positive integer such that (3)* < ¢, then aV, < U, (a) results
from the chain of implications x€aV, = a 'xeV, = f(a, x) < 3) < .
On the other hand, if 4 is any neighborhood of a, let us show that U.(a) < A4
for some ¢ > 0. Let k be a positive integer such that aV, < 4 (a~ 14 is a
neighborhood of e, and the V, are basic), and set ¢ = (3)*. If x ¢ aV,, then
a~'x can belong to V; only for j < k, therefore f(a, x) > (3)* = & (by the
definition of f) and so x¢ U a); thus U,(a) < aV, < A. (Incidentally,
U.(a) = aU,(e) follows at once from the left-invariance of f.)

By (4) of the lemma, }f(x, y) < d(x, y) < f(x, y); it follows that, for
e>0,f(x,y) <e=>d(x,y) < e=>%f(x,y) < ¢, thus

(V) Ui(x) = {y 1 d(x,y) < e} = Usz(x);

since the U,(x) are a fundamental system of neighborhoods of x for the given
topology, and the open balls {y : d(x, y) < ¢} are a fundamental system of
neighborhoods of x for the topology derived from the metric d, 1t i1s immediate
from (v) that the two topologies coincide.

Finally, if G 1s metrizable then G i1s separated and first countable by the
‘only 1f’ part of the proof, and therefore G possesses a left-invariant com-
patible metric by the ‘if’ part of the proof. For ‘right-invariant’, see the
remarks following (6.1). §

In a metrizable topological group, every subgroup (with the relative
topology) 1s also a metrizable topological group; this i1s an elementary
remark valid for any subspace of a metrizable topological space. For quotient
groups, the situation 1s deeper:

(6.4) Corollary. If G is a metrizable topological group and if N is a closed
normal subgroup of G, then the quotient topological group G/N is metrizable.

Proof. Let w: G — G/N be the canonical mapping. By hypothesis, the
neutral element e of G admits a fundamental sequence of neighborhoods V,;
since = 1s continuous and open, it follows that =(}V,,) 1s a fundamental sequence
of neighborhoods of n(e), therefore G/N is metrizable (6.3). {See (8.14) for an
alternative approach to the proof.} |

The possibility of switching from an arbitrary compatible metric to an
invariant one seems, at first glance, innocuous; actually, it is of great signifi-
cance for the theory of completeness to be given in the next section.

Exercises

65 IfG,(n=1,2,3,...)i1s a sequence of metrizable topological groups,
then the product topological group G = [[°=1 G» (2.19) is metrizable.
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(6.6) (V. L. Klee) If a separated topological group G admits a fundamental
sequence of neighborhoods V, such that aV,a ! = V, for all ae G, then G
admits a compatible metric that is both left- and right-invariant. (Cf. Section 10.)

(6.7) (A. Weil) If (X, %) 1s a uniform structure such that (1) the intersection
of all entourages is the diagonal, and (11) there exists a fundamental sequence of
entourages (1.e., the filter % has a countable base), then there exists a metric d on
X such that the sets V, = {(x, y) : d(x, y) < ¢}, e > 0, are a base for the uni-
formity %.

(6.8) Let G be a group, let d be a right-invariant metric on G, and equip G
with the topology derived from d. If, for each a € G, the left translation x — ax
is continuous, then x — x~! is continuous. Thus if (x, y) — xy is continuous, then
G is a topological group. {Cf. (2.22).}

(6.9) Let G be a metrizable topological group, let d be any metric compatible
with the topology of G, and let %; be the uniformity derived from d, i.e., the
uniformity for which the sets {(x, y) : d(x, y) < &}, ¢ > 0, are basic entourages.
As usual, , denotes the left uniformity of G (5.6). Then (1) %, < %, iff given any
e > 0, there exists 6 > 0 such that d(x 'y, e) < & implies d(x, y) < &; (ii)
U, < U4 Iff given any ¢ > 0, there exists 6 > 0 such that d(x, y) < é implies
d(x=1y, e) < e {Cf. (10.9).}

7. Metrizable complete topological groups. There is a notion of com-
pleteness for metric spaces (X, d) and for uniform structures (X, %) (the
definitions will be reviewed shortly). Any metric d on a set X defines a uniform
structure (X, %), where the sets {(x, y) : d(x, y) < ¢}, e > 0, are a base for
the uniformity %,; 1t 1s a pleasant fact that 4 is a complete metric if and only
if (X, %,) 1s a complete uniform structure (7.7).

Suppose G 1s a metrizable topological group. Like any topological group,
G has the uniform structures (G, %,) and (G, %,), described in (5.5) and (5.16).
If d 1s any metric compatible with the topology of G, one has also the uniform
structure (G, %,); however, %, depends on the choice of a particular metric d,
and, regrettably, %, may difier from the ‘natural’ (or ‘intrinsic’) uniformities
Us and %, (6.9). Thus, for a metrizable topological group, there are competing
notions of completeness: the completeness of the uniform structure (G, %,)
(which turns out to be equivalent to the completeness of (G, %,)) and the
completeness of the metric d (which 1s equivalent to the completeness of the
uniform structure (G, %;)). It is an unpleasant surprise that the relationship
between these notions of completeness 1s not transparent; it can happen that
(G, %) 1s complete but d 1s not (7.11), or that 4 i1s complete but (G, %,) is not
(7.14), though the situation is repaired when d is left-invariant (7.8). The
present section i1s devoted to clarifying this relationship, and to showing that
it (G, %,) 1s complete, then there does exist a compatible complete metric d
(7.9). Section 8 1s a technical preliminary to Section 9; in Section 9 we show
that the appropriate notion of completeness for a metrizable topological group
survives on passage to quotients modulo a closed normal subgroup.
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(7.1) We review here the concepts from general topology, in particular
the theory of uniform structures, that are needed for the discussion.

Let X be a topological space. For each x € X let ¥, denote the filter of all
neighborhoods of x. A filter # on X (i.e., a filter # of subsets of X)) is said to
be convergent if there exists a point x € X such that # > ¥, ; one then says
that # converges to x, denoted # — x. If 4 is any base for the filter # and
if #.. 1s any fundamental system of neighborhoods of x (i.e., £, is a base for
the filter 7,), then the condition # — x is equivalent to the following: if
V e #, there exists A € # such that A < V. When X is separated, such a point
X 18 unique, 1.e., if # — x and &# — y then x = y.

Let (X, %) be a uniform structure. Equip X with the topology derived
from the uniformity % ; thus, for each x € X, the sets U(x) = {y : (x, y) € U},
U e %, form a base for the neighborhood filter ¥,.. If A € X and U € %, one
says that A 1s small of order U provided 4 x A < U. A base & for a filter #
on X1s said to be Cauchy (with respect to the uniformity %) if, forevery U € %,
there exists a set A € # such that A x 4 < U (so to speak, #Z contains sets
of arbitrarily small order). Evidently &£ is Cauchy if and only if # is Cauchy.
Every convergent filter 1s Cauchy. The uniform structure (X, %) is said to be
complete 1if every Cauchy filter on X 1s convergent.

(7.2) Let us specialize the foregoing concepts to the left and right
uniform structures of a topological group G, (G, %,) and (G, %,), described 1In
(5.5) and (5.16). Let ¥ be the filter of neighborhoods of the neutral element e.
Thus, the sets V, = {(x,y) : x~yeV}iand V, ={(x,y) : yx~ eV}, Ve,
are basic entourages for the respective uniform structures.

A filter # on G i1s convergent to x € G in case, for each V €7 there
exists a set 4 € # such that 4 < xV (equivalently, for each Ve ¥ there
exists a set 4 € # such that A < Vx). A filter # on G 1s Cauchy with respect
to the uniformity %, in case, for every V € ¥, % contains a set A4 that is small
of order V (i.e., A"'4A < V); & 1s Cauchy with respect to %, in case, for
every Ve ¥, % contains a set A that is small of order V., (i.e., A4~ < V).

By (5.19) the inversion mapping Jx = x~! induces an isomorphism of
the uniform structures (G, %,) and (G, %,), consequently one of the structures
is complete if and only if the other is; this justifies the parenthetical remark
in the following definition.

(7.3) A topological group G 1s said to be complete if the uniform struc-
ture (G, %,) 1s complete (equivalently (5.19), the uniform structure (G, %,) 1s
complete).

(7.4) Let us note explicitly the meaning of completeness, in the sense of
(7.3), for a topological group G: if & is any filter on G that is Cauchy with
respect to %, (i1.e., for each neighborhood V of e there exists a set 4 € #
such that A='4 < V), then & — x for some x € G; equivalently, if # is any
filter on G that 1s Cauchy with respect to %, (i1.e., for each neighborhood V of
e there exists a set A € # such that A4~! < V), then # — x for some x € G.
One can simply say that in a complete topological group, every Cauchy
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filter is convergent; it does not matter whether ‘“Cauchy” refers to the left
uniform structure or the right uniform structure (but see (7.15)).

(7.5) If acomplete topological group 1s metrizable, we shall refer to it as a
metrizable complete topological group (rather than a ‘complete metrizable
topological group’), to emphasize the fact that the notion of completeness
defined 1n (7.3) i1s topological-algebraic (rather than metric). The gist of the
next series of results 1s that the way to avoid confusion 1s to stick to invariant
metrics.

(7.6) Lemma. If G is a metrizable topological group and if d is a left-
invariant compatible metric on G (6.3), then the uniform structure (G, %,)
derived from d coincides with the left uniform structure (G, ;).

Proof. The problem is to show that %, = %,; it suffices to show that the
two filters have a common base. Let ¢ > 0. A basic neighborhood of e is
V ={x :d(e, x) < ¢}, therefore a basic entourage for %, is V, =
{(x, ) i x7lyeV}={(x,y) : d(e,x"'y) < e} ={(x,y) : d(x,y) < e} (be-
cause d is left-invariant), and this is also a basic entourage for %,. {There is a
dual result with ‘left’ replaced by ‘right’ throughout. See also (6.9).} §

(7.7) Lemma. Let (X, d) be a metric space and let (X, %,) be the uniform
structure derived from d. Then, (X, d) is a complete metric space if and only if
(X, ;) is a complete uniform structure.

Proof. The sets U, = {(x,y) :d(x,y) < 1/n} (n=1,2,3,...) form a
fundamental system of entourages for %,. {Incidentally,

Un(x) ={y : (x, ) e Up} = {y : d(x,y) < 1/n}

1s a basic neighborhood of x for the topology derived from d, thus the uniform
topology derived from %, coincides with the metric topology derived from d;
this shows that a metrizable topological space is uniformizable, but the rub is
that topologically equivalent metrics may give rise to different uniform struc-
tures.}

If: Assume (X, %,) 1s a complete uniform structure. Given a sequence
X, € X with d(x,,, x,) = 0, the problem 1s to find an x € X such that d(x,,, x) —
0. For each n, let A, ={x;:i > n} and let & be the filter with base
{4, :n=1,2,3,...}; that is, let # be the elementary filter determined by
the sequence x,,.

The filter # i1s Cauchy with respect to %,; for, given a basic entourage
U={(xy) :d(x,y) <e}, e >0, 1f nisso chosen that d(x;, x;) < ¢ for all
i,j = n, then A, X A, < U, thus & contains a set that i1s small of order U.

By hypothesis, # — x for a suitable x € X; let us show that d(x,, x) — 0.
Given any ¢ > 0, consider the neighborhood N = {y : d(x, y) < ¢} of x.
Since # — x, there exists an index » such that A, < N, thus d(x;, x) < ¢ for
alli > n.

Only if: Assume (X, d) i1s a complete metric space. Given a filter # on X
that 1s Cauchy with respect to %,, we seek an x € X such that # — x. The
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point x will be produced by constructing a decreasing sequence of nonempty
closed sets B, such that diam B, — 0; the intersection of the B, will then
reduce to the desired singleton {x}.

For each n, there exists, by hypothesis, a set 4, € # that is small of order
U,,, i.e., d(x,y) < 1/2n for all x, ye€ A,. Then for all x, ye 4, one has
d(x,y) <1 /2n < 1/n by the continuity of d, thus A4, is small of order U,. Let
B, =A,Nn---N A,. Since A, © A, €% and Z is closed under finite inter-
section, one has B, € # and 1n particular B, # &. Moreover, B, is closed,
B, © B, > B;>---, and diam B, < 1/n because B, < A,. By a standard
characterization of complete metric spaces, the intersection of the B, is a
singleton {x}.

The proof will be concluded by showing that # — x. Given a basic
neighborhood Nof x,say N = {y : d(x, y) < ¢}, e > 0, we wish to show that
N contains some set 1n #. Choose »n so that 1/n < ¢; we show that B, < N.
Let y e B,; since also xe B,, one has (x,y)eB, x B, < A, x A, < U,
thus d(x, y) < 1/n < e and therefore ye N. §}

(7.8) Theorem. Let G be a metrizable topological group and let d be any
left-invariant (or right-invariant) compatible metric (6.3). Then, G is a complete
topological group if and only if d is a complete metric

Proof. Say d is left-invariant; then %, = %, by (7.6). According to the
definition (7.3), G is a complete topological group if and only if the uniform
structure (G, %,) = (G, % ;) 1s complete, that 1s, if and only if d 1s a complete
metric (7.7). If, on the other hand, d is right-invariant, one considers instead
the right uniform structure (G, %,) (see the remark at the end of the proof of
(7.6)). 1§

Implicit 1n (7.8) i1s the following striking consequence of the Birkhofi-
Kakutani metrization theorem:

(7.9) Theorem. If G is a metrizable complete topological group, there exists
a metric d on G such that (1) the metric topology coincides with the given
topology, (11) d is left-invariant, and (111) the metric space (G, d) is complete.

Proof. 1f dis any left-invariant compatible metric (6.3) then the condition
(i11) holds automatically by (7.8). |

Exercises

(7.10) If a topological group G admits a neighborhood V of e which is
complete for the uniform structure induced by either the left or the right uniform
structure of G, then G is complete. In particular, every locally compact topological
group is complete.

(7.11) Let R — {0} be the multiplicative group of nonzero real numbers,
topologized via the usual metric d(x, y) = |x — y| (2.6). Then R — {0} is a com-
plete topological group (7.10), although the compatible metric 4 is not complete
(consider x, = 1/n). A compatible complete metric is D(x,y) = |x — y| +
| x=1 — y7i.
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(7.12) (J. Dieudonné) Let G be the topological group of homeomorphisms
of [0, 1], with the sup metric d, as described 1n (2.22). For each positive integer n,
let f, € G be the continuous, piecewise linear function whose graph is determined
by the points (0, 0), (1/2,1 — 1/n), (1, 1). Then (1) f, is a Cauchy sequence with
respect to the metric d, but f,~ ! is not; (ii) 4 is not a complete metric on G; (iii)
G is not a complete topological group; (iv) the left and right uniform structures
of G are different, 1.e., %, # %,.

(7.13) Let G be a metrizable topological group, let d be any compatible
metric, and define D(x, y) = d(x, y) + d(x~1, y~1). Then D is also a compatible
metric.

(7.14) Let G, d be as in (7.12) and define D(f, g) = d(f,g) + d(f~t, g~ 1) as
in (7.13). Although G is not a complete topological group (7.12), D is a com-
patible complete metric (cf. 7.11).

(7.15) Let G be a separated topological group. In order that G ‘be’ a dense
subgroup of some complete topological group (i.e., in order that there exist a
complete topological group G’ and a group monomorphism f: G — G’ such that
f(G) is a dense subset of G and such that f maps G homeomorphically onto the
subspace f(G) of G’), it is necessary and sufficient that the following condition
hold: (*) if & is any filter on G that 1s Cauchy with respect to the left uniform
structure (G, %), then the image of # under the inversion mapping x+> x~ !, name-
ly the filter # 1 = {4~ : A € #}, 1s also Cauchy with respect to (G, %;). In view
of (5.19), an equivalent condition is that every filter on G that i1s Cauchy with
respect to (G, %,) is also Cauchy with respect to (G, %,). The condition (*) is
trivially verified if %, = %, (5.19); such groups, which of course include the
abelian ones, are called bi-uniform (see Section 10 for a discussion of bi-uniform
groups). However, condition (*) does not imply bi-uniformity: there exist
locally compact groups—necessarily complete, by (7.10)—for which %, # %, (an
example is given in (10.8)). The condition (*) does not hold for the group of
(7.12), even though the group admits a compatible complete metric (7.14).

(7.16) If f: G— H is a bicontinuous group isomorphism, where G and
H are topological groups and G 1s complete, then H is also complete.

8. Valued groups. Quotient groups of metrizable groups are the main
concern of this section. In addition, we introduce the concept of a value on a
group; this is nothing more than a reformulation of the concept of invariant
metric, but it has the advantage of a very suggestive notation. The results and
techniques of this section are applied in the next section to prove decisive
results on quotient groups of metrizable complete groups.

(8.1) Definition. Let G be a group (notated multiplicatively, with neutral
element e). A value on G is a nonnegative real-valued function x — |x| on G
such that

(i) le| =0,
(ii) [x] > 0 when x # e,
(iii) |x~ ! = |x| for all x,

(iv) |xy| < |x| + |y| for all x, y.
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When G 1s written additively (as 1s often the case when G is abelian), the
axioms for a value take a more famihar form:

(i) |0] =0,
(ii") |x| > 0 when x # O,
(i1i") |—x| = |x| for all x,

(iv) |x + y| < |x] + |y| for all x, y.

(8.2) Definition. A valued group is a pair (G, |x|), where G is a group and
x +>|x| is a value on G.
In the next two theorems, we establish a one-to-one correspondence

between the values on a group and the left-invariant metrics on the group.

(8.3) Theorem. If (G, |x|) is a valued group, then the formula d(x, y) =
|x~1y| defines a left-invariant metric d; in turn, the value is expressible in terms

of the metric, |x| = d(e, x).

Proof. If x # y, then d(x,y) = [x~'y| > 0 because x~!y # e; on the
other hand, d(x, x) = |x~1x| = |e] = 0 for all x. Symmetry: d(y, x) =
ly=1x| = [(y~1x)"| = |x~y| = d(x,y). Triangle inequality: d(x,y) =
x~ly| = [(x72)(z"y)| < Ix7z| + |z7ly| =d(x,2) + d(z,y). Left-
invariance: d(ax, ay) = |(ax)"!(ay)| = |x"'a"tay| = |x~'y| = d(x, y). Fi-
nally, d(e, x) = le” x| = |x|. |

(8.4) Definition. With notation as in (8.3), we call d(x, y) = |x~1y| the
left-invariant metric defined by the value; the topology derived from d is
called the left value topology of the valued group (G, |x]).

According to (8.3), every value gives rise to a left-invariant metric; con-
versely, every left-invariant metric gives rise to a value:

(8.5) Theorem. If d isaleft-invariant metric on a group G, then the formula
|x| = d(e, x) defines a value on G, in turn, the metric is expressible in terms of
the value, d(x, y) = |x~1y|.

Proof. If x # e then |x| = d(e,x) > 0; on the other hand, |e| =
d(e, ¢) = 0. By left-invariance, [x~!| = d(e, x~!) = d(xe, xx~ 1) = d(x, e) =
d(e, x) = |x|. Also, |xy| = d(e, x<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>