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Foreword 

This book offers a complete and self-contained overview of the theoretical aspects 
and applications of fractional calculus-based models in soil physics and hydrology, 
as well as poroelastic properties of porous media. It addresses water flow and solute 
movement in surface water, soils and groundwater systems. Further, this work also 
discusses some fractional generalizations of the main problems associated with flow 
and transport with these theories. 

With the comprehensive and clear evidence of the practical implications of 
fractional calculus and the advantages of this theory to the current lore, this book 
represents a remarkable piece of literature that will certainly be a fundamental 
reference for those who wish to pursue theoretical studies and applications of 
fractional calculus in hydrology, soil science and related topics. 

May 2019 Francesco Mainardi 
University of Bologna 

Italy 
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Preface
 

This book focuses on the development of fractional calculus-based mathematical 
models and their applications in hydrology, soil science and mechanics of flow in 
porous media. 

Fractional calculus has been widely applied to numerous fields since its 
inception in 1695. Hydrology, soil science, mechanics of flow in porous media and 
other branches of geoscience and environmental science are among the fields where 
different mathematical models based on fractional calculus are extensively used. 
In spite of the wide range of applications of fractional calculus, there is no single 
treatise which presents, in a systematic form, its background, theory, models and 
applications with examples in hydrology, soil science, mechanics of flow in porous 
media, and other related topics in geoscience. The reality at the moment is that 
extensive reports on the development of fractional calculus and its applications in 
the form of fractional partial differential equations (fPDEs) and fractional integral 
equations (fIEs) in these fields appear in a wide range of journals and some are 
scattered in a limited number of books. 

In this book, I endeavor to bring together the essential mathematics of fractional 
calculus, particularly the theory of fPDEs and their applications as models and in 
related topics, for readers in hydrology, soil science, mechanics of flow in porous 
media and some related branches of geo-environmental sciences. 

Furthermore, I present the majority of these mathematical models as fPDEs 
in different forms and, in limited cases, fIEs and fractional differential equations 
(fDEs) reported by others (in literature) and developed by myself (including some 
unpublished results). I have also cited more than 900 references through the length 
of the book, listed in the Bibliography, which include both important historical and 
contemporary contributions in fractional calculus and pertinent topics. I believe that 
these references are very valuable and can provide useful information to the readers. 

I aim to present these materials as a summary of the most relevant reported 
models, along with my own research findings in these fields. With this objective, 
I hope the content of this book to be of interest to senior undergraduates and 
postgraduates for their studies, and useful for scientists, engineers and practitioners 
with an interest in the background, theory and applications of fractional calculus-
based models in related fields. 

I first became acquainted with the term Fractional Calculus in my initial days 
serving as a Senior Research Associate at the School of Mathematical Sciences, 
Queensland University of Technology (QUT) in Brisbane, Australia. At a School 
seminar in late 2000, I was sitting next to Professor Fawang Liu, a colleague at 
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the School. In 2012, he was awarded the Mittag-Leffler prize at the International 
Conference on Fractional Differentiation and Its Applications (FDA’12) held in 
Nanjing, China, for his pioneer contributions to numerical methods for fPDEs and 
related models. I noticed that he was holding a book titled Fractional Differential 
Equations by Igor Podlubny. I asked, “Can differential equations be fractional?” 
From this point, I started learning fractional calculus, particularly, fPDEs and fDEs 
and their applications. 

Having published some papers on fPDEs developed for analyzing water 
movement in soils and aquifers, since 2009, I have increasingly realized the absence 
of a compact book which systematically presents the fundamentals and the most 
relevant materials on fPDEs and their applications in hydrology, soil science and 
mechanics of flow in porous media. In April 2016, Mr. Raju Primlani at Science 
Publishers, CRC Press/Taylor & Francis Group contacted me for writing a book 
on certain issues, but I had not decided what to write then. I am thankful for 
Mr. Primlani for his communication over the past few years which eventually 
resulted in this book. 

In October 2016, following my visit to Ningxia University, I met my uncle, 
Mr. Su Haidong, a retired public servant from the county of Longde, Ningxia, and 
an amateur poet and calligrapher. During one of our conversations, he suggested me 
to write a book on the topics I am working on. I promised him, and decided then, to 
write something on fPDEs and their applications. I am very grateful for his interest in 
my study and career as he has always been encouraging since my childhood. 

I am extremely grateful to Professor Francesco Mainardi at the University of 
Bologna, Italy, who was awarded the Mittag-Leffler prize at the FDA’14 held in 
Catania, Italy, for his pioneer contributions to the applications of the Mittag-Leffler 
function in problems of fractional calculus. I communicated with him over six years 
ago regarding his papers as a part of the materials for my self-education on fPDEs 
and related topics. In December 2018, I also requested him to comment on the 
draft book chapters. With the help of Professor Mainardi, who also sent me some 
of the papers he had published, I was able to apply the continuous-time random 
walk (CTRW) theory to derive fPDEs and carry out related asymptotic analyses of 
the solutions of fPDEs, which resulted in my development of the models for water 
movement in soils (2014) and in aquifers (2015, 2017), all of which have been 
published in the Journal of Hydrology. Through my communication with Professor 
Mainardi, following his comment on my draft chapters in April 2019, I was informed 
of some ‘fake’ fractional derivatives, in his own words, in literature which are 
spurious definitions of fractional derivatives proposed by some authors in contrast to 
the classical definitions identified by Tarasov (doi.org/10.1016/j.cnsns.2018.02.019). 

I am also very grateful to late Professor Rudolf Gorenflo, who was originally 
with the Free University of Berlin, Germany. I contacted him for some papers, 
particularly on fIEs, that were published by him and/or his colleagues and introduced 
me to the solutions of fIEs. Originally, I wrote to him in December 2018 to request 
for his comment on the book’s manuscript, in addition to the comments of Professor 
Mainardi. However, I was sadly informed by his son Harry that Professor R. Gorenflo 
had passed away in October 2017. 

http://www.doi.org/10.1016/j.cnsns.2018.02.019


 
 

 Preface vii 

The library staff at James Cook University have been extremely efficient and 
helpful by locating some very valuable and rare references which could be used and 
included for my writing. Following the submission of the manuscript of this book, 
the editorial staff at the CRC Press/Taylor & Francis Group have efficiently provided 
professional comments and suggestions before the manuscript went into production. 

I thank my partner, Rosalind Gilroy, who has always been supportive, positive 
and interested in what I have been doing. She proofread the whole draft book for errors 
and suggested changes. Despite her training in economics and marketing, she was 
remarkable in identifying some typing errors of highly mathematical nature, such as 
the wrong limits in the definitions of left-hand and right-hand fractional derivatives 
and special functions, which could ideally be identified only by mathematicians. 

I can say that this book is a result of teamwork which originated from an invitation 
from a publisher, the encouragement from my uncle for its inception, and references 
and comments from Professor Mainardi and Professor Gorenflo. The corrections and 
proofreading from Rosalind and the editors are essential for the present form of this 
book. My connection and cooperation with Professor Fawang Liu at QUT, since 
1997, while I was working in New Zealand, has been crucial for me to realign my 
research directions in hydrological and environmental modelling closer with those 
of mathematicians. Without this teamwork, the publication of this book would be 
impossible. I thank you all! However, as the author, I am responsible for everything 
presented herein. 

November 2019 Ninghu Su 
James Cook University 

Cairns, Queensland, Australia 
Ningxia University 

Yinchuan, Ningxia, China 



http://taylorandfrancis.com
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Chapter 1 

Application of Fractional Calculus in 
Water Flow and Related Processes 

1.  Overview 
Water and its movement on land, in soils and aquifers, and in the oceans support 
terrestrial and marine life on the Earth. Since the very ancient times, human 
settlements had to either be in the vicinity of viable water sources or build water 
storage facilities for their survival. In the first instance, the appearance of fresh 
water sources, in the form of rivers or springs, was essential for humans’ survival 
and, notably, all the earliest civilizations were facilitated by the availability of fresh 
water such as along the river systems of Nile in Egypt, Tigris and Euphrates in 
Mesopotamia, Indus in India, and Huanghe (or Dahe, the Yellow River) in China. In 
the second situation wherein humans lived in dry areas or needed water for special 
purposes, water engineering works can be traced back to 3,200 BC (Biswas 1967) 
across the ancient civilizations. 

In addition to meeting human survival and basic needs as an essential resource 
and commodity, water has been the object of spiritual, mythical, mythological, 
religious and philosophical activities. The earliest Greek philosopher Thales (624 BC– 
548 BC) (Cartledge 1998) is credited with the hypothesis that water was the underlying 
factor behind the development of the world. The great Chinese philosopher Laozi 
(or Laotzu) (~ 571 BC–~ 471 BC) reiterated the virtue of water for humans with 
the saying, “the upmost kindness of a man is like water, being the most modest and 
gracious like water which nourishes all things without conflicts, ends up in the lowest 
positions and provides services without demand for a reward”. 

To understand water and its various properties has always been of constant 
interest to mankind. Over several millennia, scientific communities have explored 
water as a central topic for various purposes and utilities with Archimedes’ principle 
(287 BC–212 BC) as one early example. Truesdell (1953) and Darrigol (2005) 
documented in great detail the evolution of the discipline of hydrodynamics, 
dealing with the motion of ideal fluids as a highly hypothetical form of water, from 
Isaac Newton (1643–1727), Daniel Bernoulli (1700–1782) and Leonhard Euler 
(1707–1783) to George G. Stokes (1819–1903) and Burnett (1935, 1936). 

The topic of water waves alone has attracted significant investigations, 
particularly from the 18th century (Stoker 1958) when many leading scientists and 
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mathematicians joined the race to understand water waves, particularly, Joseph-Louis 
Lagrange (1736–1813), Seméon D. Poisson (1781–1840), Claude-Louis Navier 
(1785–1836), Augustin-Louis Cauchy (1789–1857), A.J.C. Barré de Saint-Venant 
(1797–1886), George G. Stokes (1819–1903), William Thomson (Lord Kelvin, 
1824–1907), Joseph Valentin Boussinesq (1842–1929), Horace Lamb (1849–1934) 
and Jules Henri Poincaré (1854–1912) to list a few. 

After centuries of developments by scientists, particularly physicists and 
mathematicians (Debler 1990), a set of general equations for fluid flow was finalized 
and named after two important contributors—C.L. Navier and G.G. Stokes. The 
Navier-Stokes equations (NSEs), discussed in Chapter 3, are fundamental equations 
that govern the flow of fluids, including that of water in porous media. The NSEs 
accommodate the viscoelasticity of the porous media, or poroviscoelasticity, and the 
compressibility of water to the extent of water movement in soils and aquifers. 

Just like other fields of human knowledge, the pursuit of better solutions 
is never-ending. The high-order hydrodynamics of flow, known as Burnett 
hydrodynamics (Burnett 1935, 1936), is an example capable of explaining more 
physical mechanisms when the NSEs cease to be valid. The processes in which 
the high-order hydrodynamics work while the NSEs fail include phenomena such 
as absorption and dispersion of sound in fluids, dynamics of swarms of particles, 
structure of different profiles in shock waves at large Mach numbers, Couette flows, 
in continuum transition flows that appear around space vehicles, and flows in micro-
channels (García-Colín et al. 2008). 

Classic hydrodynamics, evolving since the 17th century, takes largely from 
mathematics as it deals with imaginary ideal fluids which are frictionless. Its 
application by experimentalists to real fluids creates the applied field of hydraulics. 
The empirical nature of hydraulics is limited in scope to water only. With the 
development of and interests in other forms of fluids in aeronautics, petroleum 
engineering and other areas in civil engineering, a broader field of study was 
developed—fluid mechanics. Fluid mechanics has three branches: fluid statics 
which is concerned with the mechanics of fluids at rest, kinematics which deals with 
velocities and streamlines without considering forces or energy, and fluid dynamics 
for the study of relations between velocities, acceleration and the forces exerted by 
or upon fluids in motion (Daugherty et al. 1989). 

The quest for knowledge about water has created many applied fields in the 
modern classification of scientific and engineering disciplines. In sciences, water-
related fields include fluid mechanics, hydraulics, hydrology, hydrodynamics, 
meteorology, oceanography, marine science, agricultural science and soil science 
with water as a key element. On the other hand, water-related fields in engineering 
comprise hydraulic engineering, irrigation and drainage engineering, marine and 
coastal engineering, etc. 

Water has been a topic for extensive publications in various formats, and 
the myriad properties and aspects of water find mention in many monographs of 
hydrology and hydraulics and their sub-disciplines such as groundwater hydrology/ 
hydraulics, surface water hydrology and soil hydrology. 

Deformation is another aspect of soils and aquifers, for their physical properties 
have significant impact on civil engineering infrastructures and geological materials 
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as well as on the environment. In particular, soil mechanics or geomechanics deals 
with the swelling properties of soil when its water content changes and the reciprocal 
changes in water pressure as a result of deformation in soil. Many reports in soil 
mechanics (geomechanics) can be found in parallel with publications in hydrology 
and hydraulics. Cauchy in 1822 and 1827 laid the foundation of the general theory 
of elasticity and its extension to mathematical physics (Love 1892). Cauchy’s work 
was followed by Green in 1837 and de Saint-Venant in 1844, with six components 
of stress and strains investigated (Love 1892). The reports on the subsidence of 
geological strata first conceptualized by Pratt and Johnson (1926) in oilfields, and 
by Geertsma (1966) and Verruijt (1969) in aquifers resulting from the extraction of 
groundwater are regarded as the early examples of investigation in applied areas of 
geoscience. The term poroelasticity first used by Geertsma (1966) is also important 
for addressing this specific property of porous media (Wang 2000) in civil and 
petroleum engineering. 

Many reports in hydrology, hydraulics and soil science dealing with soils and 
aquifers generally ignore the key issues of deformation and stress-strain relations, 
leaving such discourse for soil mechanics. The separation of soil mechanics and 
soil physics since the 1930s (Philip 1974) discouraged hydrology and soil science 
to integrate with geomechanics, making these fields apparently disconnected even 
though groundwater hydrologists and soil scientists deal with poroviscoelastic soils 
and aquifers—central topics in soil mechanics. 

A weak bridge between hydrology and geomechanics was attempted in limited 
literature such as the works of Wang (2000), which addressed the linear poroelasticity 
of porous media, covering a range of issues—geomechanics (soil mechanics), 
hydrogeology (groundwater hydrology), petroleum engineering, the poroelasticity 
theory and applications based on the works of Terzaghi (1923) and Biot (1935, 1939, 
1941, 1956a, b), and Biot’s thermoelasticity (Biot 1941, 1956c). However, Wang’s 
work does not discuss any aspect of the NSEs which govern the flow of water in 
poroelastic and thermoelastic media, thus eliminating key hydrological elements. 

In terms of quantitative methods, integer partial differential equations (PDEs) 
have enjoyed success as the central mathematical models in hydrology, soil science, 
hydraulics and geomechanics, etc., for over a century since Darcy (1856) embarked 
on the use of differential equations (DEs) for describing water flow in porous media 
and Boussinesq (1904) presented PDEs for groundwater flow in unconfined aquifers. 

The decade around 1990 was a turning point when fractional PDEs (fPDEs) 
appeared as better models, with more information about environmental processes 
(Lenormand 1992, Zaslavsky 1992, Compte 1997). Environmental processes such 
as solute transport, sediment transport and groundwater flow, etc., have been shown 
to be better modelled with fPDEs by Compte (1997); groundwater flow/seepage by 
He (1998); and solute transport in groundwater by Lenormand (1992) and Benson 
(1998). These developments were part of the evolution since 1974 when fractional 
calculus was re-launched, and monographs appeared in applied mathematics and 
other fields of science (Oldham and Spanier 1974, Samko et al. 1987, 1993, Miller 
and Ross 1993, Podlubny 1999, Kilbas et al. 2006, Hilfer 2000, Mainardi 2010, 
Herrmann 2011, Atanacković et al. 2014, Atangana 2018). 
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2.  Objectives of This Book 
In order to eliminate the invisible boundaries between hydrology, hydraulics, 
soil science and geomechanics (soil mechanics), and to address the inconsistent 
spectrum of mathematical models based on fPDEs in these fields, this book aims 
to systematically present key concepts, theories, quantitative methods and ideas 
centered on the application of fractional calculus in hydrology, soil science, flow 
in porous media and geomechanics (soil mechanics). This book aims to establish 
frameworks of mathematical models with concepts in fractional calculus, particularly 
fPDEs and fractional integral equations (fIEs), and stochastic methods such as the 
continuous-time random walks (CTRW) theory to water flow, solute transport and 
related processes. 

Water flow on land is categorized as overland flow, water movement in unsaturated 
soils as flow in unsaturated soils, and that in saturated aquifers as groundwater flow  
(generally classified into two types—confined and unconfined aquifers). With the 
aforementioned goals and classification in mind, this book presents the following 
materials: 
 1.  Fundamentals of mathematics in Chapter 2, dealing with concepts commonly 

used in fractional calculus for models and quantitative methods in hydrology 
and hydraulics of water flow, solute transport on land, in soils and aquifers, and 
soil mechanics; 

 2.  Essential properties of soils and aquifers in the context of porous media, in 
Chapter 3; 

 3.  An overview of the historical transition from quantitative methods based on 
integer PDEs to fractional calculus-based approach, in Chapter 4, and 

 4.  The remaining Chapters present topics related to water flow and solute transport 
in unsaturated soils (Chapters 5, 6 and 7), overland flow (Chapter 8), in saturated 
aquifers (Chapters 9 and 10), and geomechanics (Chapter 11). 
The topics in this book are central issues in hydrology, soil science and 

geomechanics, and the fundamentals, models and methodologies used for 
investigating water-related processes can be categorized in three parts, namely, 
fundamentals, traditional methods  for quantification and evolving approaches  with  
fractional calculus. 

3.  A Brief Description of Key Concepts 
Soils and aquifers are porous media, the former generally unsaturated while the latter 
is saturated. Unsaturated soils and saturated aquifers are domains of soil science  
and groundwater hydrology, respectively. The land surface, both floodplains and 
undulating terrains, falls within the purview of surface water hydrology. Porous 
media of geological origin, such as soils and aquifers, are studied in geomechanics 
(soil mechanics), centered around the physical phenomena of deformation with 
viscoelastic or poroelastic properties measured by stress-strain relationships or 
similar terms. 

Soils are either constantly unsaturated by water or variably saturated depending 
on the local climatic conditions such as rainfall and management options like 
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irrigation. In most cases as reported in literature, there has been a tendency to regard 
soils as unsaturated porous media even though soils can be saturated. Aquifers, 
adjacent to the soils in the deeper strata, are physically connected to soils with 
varying levels of permeability for the exchange of water, solutes (a term representing 
chemicals, fertilizers, nutrients, microbes and other particles), gases and energy. 

Porous media is the largest category of materials on the Earth. It includes a very 
wide range of soils and other geological strata, biological materials, and extensive 
types of artificial products. Soils and aquifers are major porous media of geological 
origin. As the biologically active and productive parts of land, soils are the most 
important porous media on the Earth, for they support terrestrial life. Soils are 
also the medium for material and energy exchanges with the atmosphere and the 
subsurface through a number of physical, chemical and biological processes. These 
processes include infiltration of water into the soil, evaporation  of water from soil, 
percolation of infiltrated water into aquifers, and runoff on the land (hence forming 
streams of varying sizes, eventually leading into the oceans). 

3.1  Evolution of Mathematical Models in Hydrology, Hydraulics,  
Soil Science, and Geomechanics Based on Fractional Calculus 

Mathematical models in applied fields related to water in porous media were 
incepted by Darcy (1856), with a differential equation as the flux of water or its 
velocity in porous media, and by Boussinesq (1904), who used an entire set of 
PDEs for water movement in unconfined aquifers. The concept of poroelasticity 
since Terzaghi (1923) and Biot (1935, 1941) entered the investigations of porous 
media of geological origin in the 20th century. However, fractional calculus was 
only specifically applied to porous media after 1974 when fractional calculus was 
re-launched, marked by three events: publication of the first monograph on fractional 
calculus by Oldham and Spanier (1974); the first PhD conferred to Bertram Ross on 
the topic of fractional calculus; and the first International Conference on Fractional 
Calculus and Its Applications  organized by Bertram Ross and held at the University 
of Newhaven, Connecticut in June 1974 (Miller et al. 1994). 

The terminology of fractional calculus, as recorded in history, was the result of a 
question raised by the mathematician Marquis de L'Hôpital  (1661–1704) to Gottfried 
Wilhelm Leibniz (1646–1716) in 1695, regarding the meaning of the differentiation 

d y  n 1of when n =  (Kilbas et al. 2006, vii). Leibniz was unable to resolve this 
dxn 2

d1/ 2 y x( )  x query of L’Hôpital’s until 1819 when S.F. Lacroix proved that 1/ 2 = 2 for 
dx π 

y(x) = x (Miller and Ross 1993). In 1823, Niels Henrik Abel (1802–1829) showed the 
d k  1/ 2 x

result = π f x  ( ), with the integral equation k = ∫ (x − ) −1/ 2 
1/ 2 t f ( )  t dt (named after

dx 0 
him) to determine f(x) for constant k (Miller and Ross 1993). 

The slow evolution of fractional calculus from 1695 to 1974 saw many 
mathematicians and scientists in different fields applying fractional calculus to 
investigate various processes and phenomena. However, a complete set of fPDEs 
readily applicable to water flow and solute transport in soils, aquifers and closely 
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related processes is attributed to the works of Compte (1997). This development will 
be detailed in Chapter 4 along with other issues. 

As will be evident from Chapter 5 onwards, the order of a fractional derivative 
or fractional integration can be any function rather than being restricted to a fraction. 
It is, therefore, logical to say that fractional calculus is a generalized form of calculus, 
with classic integer calculus as a special case. 

3.2  Developments in the Theory and Methodologies for Poroelasticity 
With soil mechanics as an independent field since the 1930s (Philip 1974), the 
‘standard’ text books and research reports on soils and aquifers in hydrology and 
soil science today almost ignore the deformation and stress-strain relations of porous 
media. An example of this fact is the Richards equation (1931) for the movement 
of water in soils, and many procedures dealing with various model parameter 
estimations. 

However, with the property of porous media possessing elasticity termed 
as poroelasticity (Geertsma 1966, Detournay and Cheng 1993), the historical 
developments in elasticity, plasticity and viscoelasticity, marked by the contributions 
of Terzaghi (1923) and Biot (1935, 1939, 1941), signified the most important 
foundations relevant to flows in poroelastic media. Poroelasticity, a term first used by 
Geertsma (1966), according to Wang (2000), is also further named poroviscoelasticity 
in some cases by considering the flow of a viscous liquid in elastic porous media 
(Bemer et al. 2001). Both poroelasticity and poroviscoelasticity are the central issues 
in Chapter 11. Besides, the time-dependent deformation process described by Nutting 
(1921a, b) can be fundamentally treated as a creep-relaxation process that can be 
interpreted as a property with memory initiated by Caputo and Mainardi (1971a). 
The general property of thermoelastic relationships as studied by Newmann (1833) 
(Love 1892) and Zener (1938) constitutes more complex, yet realistic, processes of 
deformation and related mechanisms when poroviscoelastic materials are subjected 
to variable conditions. 

With the introduction of the concepts of strain and stress, different methods have 
been developed over time to quantify the relationships of the two basic phenomena of 
poroelastic media (Wang 2000): solid-to-fluid coupling which occurs when a change 
in applied stress produces a change in fluid pressure or fluid mass, and fluid-to-solid 
coupling as a result of a change in the volume of the porous media due to a change 
in fluid pressure or fluid mass. 

There are extensive literature reviews on poroviscoelastic media, some of which 
involve water flow and solute transport in porous media (Love 1892, Bagley and 
Torvik 1983, Koeller 1984, Bemer et al. 2001, Liingaard et al. 2004, Kausel 2010, 
Koeller 2010, Mainardi 2012, Lai et al. 2016, Sun et al. 2016). 

Soil physics, since its separation from soil mechanics in the 1930s, developed 
its own methodologies to deal with the actual properties of soils. As outlined in 
section 2.8 of Chapter 3, an integral transform is used to convert the standard Cartesian 
coordinate in the vertical dimension to a material coordinate (represented by m) 
for swelling soils (Raats 1965, Raats and Klute 1968, Smiles and Rosenthal 1968, 
Philip 1969b, Philip and Smiles 1969). With this approach for swelling-shrinking 
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soils, the material coordinate is valid for vertically deforming soils by neglecting 
the horizontal expansion of the soil resulting from an increase in the water content 
of swelling soils. This simplification allows deformation to be analyzed with void 
ratio as the variable which depends on the moisture content in the soil. Similar to the 
development of ideas for elasticity and deformation, more complicated factors like 
the thermal effect and time-dependent processes or processes with memory, etc., can 
also be introduced. 

As Mainardi (2010, 26) and Mainardi and Spada (2011) showed, linear elasticity 
can be quantitatively related as reciprocal relations which have been observed in the 
field (Hsieh 1996) and are used for estimating aquifer parameters (Burbey 2001). 
fPDEs have also been developed to investigate water flow in soils by incorporating 
swelling-shrinking properties of soils (Su 2010, 2012, 2014). These topics are 
discussed in Chapters 5, 6 and 7. 

3.3  Hydrology, Hydraulics, Soil Science, Geomechanics  
(Soil Mechanics) and Their Relevance to Environmental Issues 

Despite its irreplaceable role in all the sectors of society and for sustaining life on 
Earth, water is, however, often taken for granted. The continual worldwide pollution 
of soils and land, water bodies and oceans is an example of this ignorance and has 
been highlighted in numerous reports by FAO (2015), UNEP (2017) and UNESCO 
(2018). 

Solutes in water and in porous media, collectively referring to a number 
of materials like ions, microbes, natural or artificial particles and pollutants or 
contaminants of various forms, are central to the issues of environmental and health 
concerns. The integral analysis of water movement, solute transport and related 
processes in deforming porous media, with fPDEs and fIEs, is a major focus of 
this book. To this end, the objective here is to achieve an improved understanding 
and quantification of water-related processes in soils and aquifers as well as on the 
surface to sustainably manage the limited resources of water and land. 

4.  Notation in the Book 
Throughout the book, mathematical symbols have been defined independently in 
each chapter, thus a small number of symbols having different definitions in different 
chapters. I have tried to ensure consistency in the definition of symbols within each 
chapter, except in a few cases wherein the original equations have been preserved 
with the corresponding specific symbols. 
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