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Abstract

In this chapter, the recent results for the analysis of local fractional calculus
are considered for the first time. The local fractional derivative (LFD) and
local fractional integral (LFI) in the fractional real and complex sets, the series
and transforms involving the Mattig-Leffer function defined on Cantor sets are
introduced and reviewed. The unique of the solutions of the local fractional
differential and integral equations and local fractional inequalities are considered
in detail. The local fractional vector calculus is applied to describe the Rice
theory in fractal fracture mechanics.
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1 Introduction

Fractional calculus (FC) have successfully been utilized to describe the
fractal problems in engineering practices [1, 2, 3, 4]. The important examples
are the fractal Fokker– Planck equations [5] and fractal description of stress
and strain in elasticity [6, 7, 8]. There are several alternative approaches for
handling the complex and fractal behaviors in nature [9, 10, 11, 12].

The theory of the local fractional calculus (LFC) is a mathematical tool for
handling the non-differentiable problems under the consideration of the complex
and fractal behaviors of the real world problems [13, 14, 15, 16, 17, 18, 19]. The
local fractional derivative (LFD) and local fractional integral (LFI) were used
to present the approaches for describing the fractal phenomena in mathematical
physics (see [20, 21, 22, 23]). For the details of the applications of the LFC,
we see as follows: the LFC to model the shallow water surfaces [24, 25], LC-
electric circuit [26, 27, 28], local fractional partial differential equations (PDEs)
[29, 30, 31, 32], local fractional ordinary differential equations (ODEs) [33, 34]
and so on. The special inequalities via LFI, such as the Ostrowski type [35],
Steffensen type [36], and Pompeiu type [37] inequalities for the LFIs and other
(see [38, 39, 40, 41, 42, 43, 44, 45, 46]) were considered.

The local fractional integral transforms via LFC were proposed in [9, 10, 47]
and developed in [12, 16]. The local fractional Fourier type integral transform
was investigated in [48, 49, 50, 51]. The local fractional Laplace type integral
transform was investigated in [51, 52, 53, 54, ?, 56, 57, 58]. They were applied to
find the non-differentiable solutions for the local fractional PDEs (see[12, 59]).
From the functional analysis point of view, the unique of the solutions of the
local fractional ODE and local fractional integral equations were considered in
[9, 10] for the first time. The existence and unique of the solutions of some local
fractional abstract differential equations were presented in [60]. The existence
and uniqueness of solutions for local fractional differential equations and its
applications were reported in [9, 10, 59, 61]. The local fractional vector calculus
and applications in the fractal heat conduction problems were presented in [2,
11].

The brief aim of the chapter is to investigate the properties of the LFC,
the series and transforms involving the Mattig-Leffer function defined on Can-
tor sets, analysis of the local fractional differential and integral equations, local
fractional inequalities and local fractional vector calculus, and to present the
applications of the extended version of the Rice theory in fractal fracture me-
chanics.

The structure of the chapter is as follows. In Section 2, the theory of the
LFD and LFI in the fractional real and complex sets is presented. In Section 3,
the analysis of the local fractional differential and integral equations is derived.
In Section 4, the local fractional inequalities are discussed in detail. In Section
5, the series and transforms involving the Mattig-Leffer function defined on
Cantor sets are reported. In Section 6, the local fractional vector calculus and
its application in fractal fracture mechanics are considered in detail. Finally,
the conclusions are given in Section 7.
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2 The LFD and LFI in the fractional real and
complex sets

In this section, we introduce the LFC of the real and complex variables and
consider α as the fractal dimension in the chapter.

Let N, R and C be sets of the natural numbers, real numbers and complex
numbers.

Let Nα, Rα and Cα be the fractional sets of the natural numbers, real num-
bers and complex numbers [9, 10, 11, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46].

Definition 1 The complex number defined on the fractal set Cα, is given as
[9, 10, 11, 12, 13]

zα = xα + iαyα, x, y ∈ R, (1)

and its conjugate by

zα = xα − iαyα, zα ∈ Cα, x, y ∈ R, (2)

with its fractional modulus is defined as [9, 10, 11, 12, 13]

|zα| = |zα| =
√
zα · zα =

√
x2α + y2α. (3)

The complex number defined on the fractal set Cα is represented in the form:

zα = Re (zα) + iαIm (zα) = xα = xα + iαyα,

where Re (zα) = xα is the purely real part and Im (zα) = yα is the purely
imaginary part, which can be expressed as [9, 10, 11, 12, 13]

zα = xα + iαyα =
√
x2α + y2α (cosα (xα) + iα sinα (xα)) ,

with

cosα (xα) =
xα√

x2α + y2α
,

sinα (xα) =
yα√

x2α + y2α
,

where

cosα (zα) :=

∞∑
k=0

(−1)
k z2αk

Γ (1 + 2αk)
, (4)

sinα (zα) :=

∞∑
k=0

(−1)
k z(2k+1)α

Γ [1 + α (2k + 1)]
. (5)

Definition 2 The complex Mittag-Leffler function on the fractal set Cα is de-
fined as [9, 10, 11, 12, 13]

Eα (zα) :=
∞∑
k=0

zαk

Γ (1 + kα)
, (6)
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where zα ∈ Cα, which leads to the formulation in the form: [9, 10, 11, 12, 13]

zα

= xα + iαyα

=
√

x2α + y2α (cosα (xα) + iα sinα (xα))

=
√

x2α + y2αEα (iαzα) ,

where
Eα (iαzα) := cosα (zα) + iα sinα (zα) . (7)

2.1 The LFD and LFI in the fractional real set

Definition 3 A function f (x) is said to be local fractional continuous at x = x0

if for each ε > 0 there exists for δ > 0 such that [9, 10, 11, 12, 13, 35, 36, 37,
38, 39, 40, 41, 42, 43, 44, 45, 46]

|f (x)− f (x0)| < εα, (8)

whenever 0 < |x− x0| < δ.
It is to say that

lim
x→x0

f (x) = f (x0) . (9)

If f (x) is local fractional continuous in the domain I = (a, b), then we write it
as [22, 23, 24, 25, 26, 27, 28, 29, 30]

f (x) ∈ Hα (a, b) . (10)

Definition 4 Letf (x) ∈ Hα (a, b). The LFD of the function f (x) of order αat

x = x0, denoted as f (α) (x0) or
dαf(x)
dxα |x=x0 , is defined as [9, 10, 11, 12, 13]

D(α)f (x) = f (α) (x0) =
dαf (x)

dxα
|x=x0 = lim

x→x0

∆α (f (x)− f (x0))

(x− x0)
α , (11)

where ∆α (f (x)− f (x0)) ∼= Γ (1 + α)∆ (f (x)− f (x0)).
Let f (x) , g (x) ∈ Hα (a, b).

The properties of the LFD are presented as follows [9, 10, 11, 12, 13]:
(1)

dα

dxα
(f (x)± g (x)) =

dαf (x)

dxα
± dαg (x)

dxα
;

(2)

dα (f (x) g (x))

dxα
= g (x)

dαf (x)

dxα
+ f (x)

dαg (x)

dxα
;

(3)
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dα

dxα

(
f (x)

g (x)

)
=

1

g (x)
2

(
g (x)

dαf (x)

dxα
+ f (x)

dαg (x)

dxα

)
,

where g (x) ̸= 0;
(4)

dα (hf (x))

dxα
= h

dαf (x)

dxα
,

where h is a constant;
(5)
If y (x) = (f ◦ u) (x), where u (x) = g (x), then we have

dαy (x)

dxα
= f (α) (g (x))

(
g(1) (x)

)α
.

The LFDs of the elementary functions defined on fractal sets are given as
follows [9, 10, 11, 12, 13]:

(1)
dα

dxα

xkα

Γ(1 + kα)
=

x(k−1)α

Γ(1 + (k − 1)α)
;

(2)
dαEα (xα)

dxα
= Eα (xα) ;

(3)
dαEα (kxα)

dxα
= kEα (kxα) ,

where k is a constant.
(4)

dα sinα (xα)

dxα
= cosα (xα) ;

(5)
dα cosα (xα)

dxα
= − sinα (xα) .

Theorem 1 (The mean value theorem for the LFD)
If f (x) ∈ Hα [a, b], then there exists a point x0 ∈ (a, b) such that [9, 10, 11,

12, 13]

f (b)− f (a) = f (α) (x0)
(b− a)

α

Γ (1 + α)
.

Definition 5 Let f (x) ∈ Hα [a, b]. The LFI of the function f (x) of order α
(0 < α ≤ 1) is defined as [9, 10, 11, 12, 13]
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aI
(α)
b f (x) =

1

Γ (1 + α)

b∫
a

f (x) (dx)
α
=

1

Γ (1 + α)
lim

∆xk→0

N−1∑
k=0

f (xk) (∆xk)
α
,

where ∆xk = xk+1 − xk with x0 = a < x1 < · · · < xN−1 < xN = b.

Let f (x) , g (x) ∈ Hα (a, b). The properties of the LFI are presented as
follows [9, 10, 11, 12, 13]:

(1)

aI
(α)
b (f (x)± g (x)) = aI

(α)
b f (x)± aI

(α)
b g (x) ;

(2)

aI
(α)
b (hf (x)) = haI

(α)
b f (x) ,

where h is a constant.
The LFIs of the elementary functions defined on fractal sets are given as

follows [9, 10, 11, 12, 13]:
(1)

1

Γ (1 + α)

b∫
a

Eα (xα) (dx)
α
= Eα (bα)− Eα (aα) ;

(2)

1

Γ (1 + α)

b∫
a

xkα

Γ (1 + kα)
(dx)

α
=

a(k+1)α

Γ (1 + (k + 1)α)
− b(k+1)α

Γ (1 + (k + 1)α)
;

(3)

1

Γ (1 + α)

b∫
a

sinα (xα) (dx)
α
= cosα (aα)− cosα (bα) ;

(4)

1

Γ (1 + α)

b∫
a

cosα (xα) (dx)
α
= sinα (bα)− sinα (aα)

Theorem 2 (The mean value theorem for the LFI)
If f (x) ∈ Hα [a, b], then there exists a point ξ ∈ (a, b) such that [9, 10, 11,

12, 13]

aI
(α)
b f (x) = f (ξ)

(b− a)α

Γ (α+ 1)
.
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Theorem 3 If f (x) ∈ Hα [a, b], then there exists a point ξ ∈ (a, b) such that
[9, 10, 11, 12, 13]

f (b)− f (a) =
f (α) (ξ) (b− a)

α

Γ (1 + α)
.

Theorem 4 Suppose that f (x) ∈ Hα [a, b], then there is a function [9, 10, 11,
12, 13]

Π(x) = aI
(α)
x f (x) ,

such that it has the LFD,

dαΠ(x)

dxα
= f (x) , a ≤ x ≤ b.

Theorem 5 (The LFI is anti-differentiation)
If f (x) = g(α) (x) ∈ Cα [a, b], then we have [9, 10, 11, 12, 13]

aI
(α)
b f (x) = g (b)− g (a) .

Theorem 6 Theorem 6 (The LFI by parts)
If f (α) (x) , g(α) (x) ∈ Cα [a, b], then we have [9, 10, 11, 12, 13]

aI
(α)
b f (t) g(α) (t) = [f (t) g (t)]

b
a − aI

(α)
b f (α) (t) g (t) .

Theorem 7 (The local fractional Taylor’ theorem)
Suppose that f ((k+1)α) (x) ∈ Cα (a, b), fork = 0, 1, ..., n, then we have [9, 10,

11, 12, 13]

f (x) =
n∑

k=0

f (kα) (x0)

Γ (1 + kα)
(x− x0)

kα
+

f ((n+1)α) (ξ)

Γ (1 + (n+ 1)α)
(x− x0)

(n+1)α

with a < x0 < ξ < x < b and ∀x ∈ (a, b), where f ((k+1)α) (x) =

k+1times︷ ︸︸ ︷
D(α)

x ...D(α)
x f (x).

2.2 The LFD and LFI in the fractional complex set

Let the complex function f (z) be defined in a neighborhood of a point z0.

Definition 6 The LFD of f (z) at the point z0, denoted by z0D
α
z f (z), dα

dzα f (z) |z=z0

or f (α) (z0), is defined as [9, 10, 11]:

z0D
α
z f (z) =: lim

z→z0

∆αf (z)

(z − z0)
α , 0 < α ≤ 1 (12)

where ∆αf (z) = Γ (1 + α) [f (z)− f (z0)].
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If this limit exists, then the function f (z) is said to be local fractional
analytic at z0.

If this limit exists for all z0in a region ℵα ∈ Cα, then the function f (z) is
said to be local fractional analytic in a region ℵα ∈ Cα.

Let f (z) and g (z) be local fractional analytic functions. Then there is as
follows [9, 10, 11]:

(1)

dα (f (z)± g (z))

dzα
=

dαf (z)

dzα
± dαg (z)

dzα
;

(2)

dα (f (z) g (z))

dzα
= g (z)

dαf (z)

dzα
+ f (z)

dαg (z)

dzα
;

(3)

dα

dzα

(
f (z)

g (z)

)
=

1

g (z)
2

(
g (z)

dαf (z)

dzα
+ f (z)

dαg (z)

dzα

)
where g (z) ̸= 0;

(4)

dα (hf (z))

dzα
= h

dαf (z)

dzα

where h is a constant.

Definition 7 Let f (z) be defined, single-valued and local fractional continuous
in a region ℵα ∈ Cα. The LFI of the complex function f (z) along the contour
C in ℵα ∈ Cα from point zp to point zq is defined as [9, 10, 11]

IαCf (z) =
1

Γ (1 + α)
lim

∆z→0

n−1∑
i=0

f (zi) (∆z)
α
=

1

Γ (1 + α)

∫
C

f (z) (dz)
α
, (13)

where (∆zi)
α
= zαi − zαi−1, z0 = zp , zn = zq and i ∈ N0.

Theorems for the LFC of the complex variables are presented as follows:

Theorem 8 If the contour C have the end points zp and zq with the orientation
zp to zq, then we have [9, 10, 11]

1

Γ (1 + α)

∫
C

f (z) (dz)
α
= F (zq)− F (zp) (14)

where the functionf (z) has the primitive F (z) on the contour C.

8



Theorem 9 Let the function f (z) be a primitive on C, where C is a simple
closed contour. Then we have [9, 10, 11]

1

Γ (1 + α)

∮
C

f (z) (dz)
α
= 0 (15)

Theorem 10 If f (z) is local fractional analytic on C1 , C2 and between them,
and the contours C1 and C2 have same end points, then we have [9, 10, 11]

1

Γ (1 + α)

∫
C1

f (z) (dz)
α
=

1

Γ (1 + α)

∫
C2

f (z) (dz)
α

(16)

Theorem 11 If the closed contours C1 and C2 are such that C2 lies inside C1,
then we have [9, 10, 11]

1

Γ (1 + α)

∫
C1

f (z) (dz)
α
=

1

Γ (1 + α)

∫
C2

f (z) (dz)
α
, (17)

where f (z) is local fractional analytic on C1 , C2 and between them.

Theorem 12 If f (z) is local fractional analytic within and on a simple closed
contour C and z0 is any point interior to the contour C, then we have [9, 10, 11]

1

(2π)
α
iα

· 1

Γ (1 + α)

∮
C

f (z)

(z − z0)
α (dz)

α
= f (z0) (18)

Theorem 13 If f (z) is local fractional analytic within and on a simple closed
contour C and z0 is any point interior to the contour C, then we have [9, 10, 11]

1

(2π)
α
iα

· 1

Γ (1 + α)

∮
C

f (z)

(z − z0)
(n+1)α

(dz)
α
= f (nα) (z0) . (19)

Theorem 14 If f (z) is local fractional analytic within and on a simple closed
contour C and z0 is any point interior to the contour C, then we have [9, 10, 11]

1

(2π)
α · 1

Γ (1 + α)

∮
C

(dz)
α

(z − z0)
α = iα (20)

Theorem 15 If f (z) is local fractional analytic within and on a simple closed
contour C and z0 is any point interior to the contour C, then we have [9, 10, 11]

1

Γ (1 + α)

∮
C

(dz)
α

(z − z0)
nα = 0 (21)

where n > 1
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Definition 8 Let f (z) = φ (z) / (z − z0)
nα

and φ (z) ̸= 0, where φ (z) is local
fractional analytic everywhere in a region including z = z0. There are as follows
[9, 10, 11]:

(1) If n is a positive integer, then f (z) has an isolated singularity at z = z0,
the point is called as a pole of order n, where n is a positive integer.

(2) If n = 1, the pole is often called a simple pole;
(3) if n = 2, it is called as a double pole.

Theorem 16 If f (z) has a pole of order n at z = z0 but is local fractional
analytic at every other point inside and on a contour C with the center at the
point z0, then (z − z0)

nα
f (z) is local fractional analytic at all points inside and

on the contour C and has a local fractional Laurent type series about z = z0 so

that f (z) =
∞∑

i=−∞
ak (z − z0)

kα
, 0 < α ≤ 1 where [9, 10, 11]

ak =
1

(2π)
α · 1

iα
· 1

Γ (1 + α)

∮
C

f (z)

(z − z0)
(k+1)α

(dz)
α

(22)

for the contour C : |z − z0|α ≤ Rα.

Theorem 17 If f (z) is local fractional analytic within and on the boundary
C of a region ℵα ∈ Cα except at a number of poles a within ℜ, then we have
[9, 10, 11]

1

(2π)
α
iαΓ (1 + α)

∮
C

f (z) (dz)
α
= Res

z=z0
f (z) = a−1. (23)

where Res
z=z0

f (z) = a−1 is the residue of the function f (z).

3 Analysis of the local fractional differential and
integral equations

Here, we introduce the local fractional continuity, convergence, and complete-
ness in a generalized metric space.

Definition 9 A metric space on a fractal set E is a map ρα : E × E → Rα

such that for all xα, yα, zα ∈ E.
The following rules hold [9, 10, 11, 12]:
(1)ρα (xα, yα) ≥ 0 with the equality ρα (xα, yα) = 0 if xα = yα;
(2) ρα (xα, yα) = ρα (yα, xα);
(3) ρα (xα, zα) ≤ ρα (xα, yα) + ρα (yα, zα).
The pair (E, ρα) is a generalized metric space in the fractal space with the

fractal dimension α.

Let E is a generalized metric space and aα, bα, cα ∈ E. Then we have

|ρα (aα, bα)− ρα (bα, cα)| ≤ ρα (aα, cα) . (24)
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Definition 10 Suppose that X,Y are generalized metric spaces and f is a map-
ping of X into Y . If for each ε > 0 there exists δ > 0 such that ρα (f (a) , f (x)) <
εα whenever xα ∈ Xand ρ (a, x) < δ, then f is called local fractional continuous
at the point aα ∈ X, which is noted as follows [9, 10, 11]:

lim
x→a

f (x) = f (a) . (25)

Definition 11 Let X be a generalized metric space.
A sequence {xα

n}
∞
n=1 in a generalized metric space X is called a Cauchy

sequence if for each ε > 0 there exists a positive integer N such that [9, 10, 11]

ρα (xα
m, xα

n) < εα (26)

whenever m,n ≥ N . This is equivalent to the requirement that

lim
m,n→∞

ρα (xα
m, xα

n) = 0. (27)

Definition 12 Let X be a generalized metric space. If each Cauchy sequence
in the space X converges in X, the generalized metric space X is complete
[9, 10, 11].

We notice that Rα
n and Cα

n are complete.

Definition 13 Let (X, ρα) be a generalized metric space and T : X → X.
If there exists a number β ∈ (0, 1) such that [9, 10, 11]

ρα (T (xα) , T (yα)) ≤ βαρα (xα, yα) (28)

for all xα, yα ∈ X.
We say that T is a contraction mapping on the generalized metric space X.

Definition 14 (see [9, 10, 11])
Let (X, ρα) be a generalized metric space.
If xα ∈ X and Txα = xα, then we say that xα is a fixed point of T .

Theorem 18 (see [9, 10, 11])
Let X be a generalized metric space. A convergent sequence in the fractal

space X may have more than one limit in X.

Theorem 19 (Contraction Mapping Theorem) (see [9, 10, 11])
A contraction mapping Tdefined on the complete generalized metric space

(X, ρα) has a unique fixed point.

Theorem 20 (Generalized Contraction Mapping Theorem) (see [9, 10, 11])
Let T : X → X be a map on the complete metric space (X, ρα). Then, for

some m ≥ 1, Tm is a contraction, and

ρα (Tm (xα) , Tm (xα)) ≤ βαρα (xα, yα) (29)

for all xα, yα ∈ X.
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3.1 The unique of the solutions of the local fractional dif-
ferential equations

In this subsection, we discuss the unique of the solutions of the local fractional
differential equations.

Theorem 21 Suppose that x0 ∈ [a, b] and y0 ∈ Rα, F : [a, b] × Rα
1 → Rα

1 is
local fractional continuous. For all x ∈ [a, b], there is a continuous condition
given as (see [9, 10, 11, 61])

|F (x, y1)− F (x, y2)| ≤ kα |y1 − y2|α . (30)

where 1 > k > 0 and 1 ≥ α > 0.
Then local fractional differential equation

dαy

dxα
= F (x, y) (31)

subject to the initial condition y0 = y (x0) has a unique solution in the space
Cα [a, b].

Proof 1 We consider the map T : Cα [a, b] → Cα [a, b] defined as

Tf (x) = y0 +
1

Γ (1 + α)

∫ x

x0

F (t, f (t)) (dt)
α
.

We claim that for all n,

|Tnf1 (x)− Tnf2 (x)| ≤ knα
|x− x0|nα

Γ (1 + nα)
ρα (f1, f2) .

The proof is by the induction on n.
The case n = 0 is trivial (and n = 1 is already done).
The induction step is as follows:∣∣Tn+1f1 (x)− Tn+1f2 (x)

∣∣
=
∣∣∣ 1
Γ(1+α)

∫ x

x0
F (t, Tnf1 (x))− F (t, Tnf2 (x)) (dt)

α
∣∣∣

≤
∣∣∣ 1
Γ(1+α)

∫ x

x0
kα |F (t, Tnf1 (x))− F (t, Tnf2 (x))| (dt)α

∣∣∣
≤
∣∣∣ 1
Γ(1+α)

∫ x

x0

k(n+1)α|x−x0|nα

Γ(1+nα) ρα (f1, f2) (dt)
α
∣∣∣

≤
∣∣∣ 1
Γ(1+α)

∫ x

x0
k(n+1)α |x−x0|nα

Γ(1+nα) ρα (f1, f2) (dt)
α
∣∣∣

≤ k(n+1)α |x−x0|(n+1)α

Γ(1+(n+1)α)ρα (f1, f2)

≤ k(n+1)α |b−a|(n+1)α

Γ(1+(n+1)α)ρα (f1, f2) .

We have

k(n+1)α |b− a|(n+1)α

Γ (1 + (n+ 1)α)
ρα (f1, f2) → 0

12
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Figure 1: The plot of the solution of the local fractional differential equation
when α = ln 2/ ln 3.

as n → 0.
If n is sufficiently large, we have

0 < k(n+1)α |b− a|(n+1)α

Γ (1 + (n+ 1)α)
< 1

such that Tn is a contraction on the space Cα [a, b].
Hence, T has a unique fixed point in the space Cα [a, b], which gives a unique

solution to the local fractional differential equation.

Example 1 The local fractional differential equation

dαf (x)

dxα
+ f (x) = 0,

has the unique solution given as f (x) = Eα (−xα) and its graph is shown in
Figure 1.

3.2 The unique of the solutions of the local fractional inte-
gral equations

In this subsection, we discuss the unique of the solutions of the local fractional
integral equations.

Theorem 22 Let Cα [a, b] = {x (t) : x (t) be local fractional continuous on the
interval [a, b]. The metric on the space Cα [a, b] is defined as (see [9, 10, 11])

ρα (x, y) = {max |x (t)− y (t)| : t ∈ [a, b] , x, y ∈ Cα [a, b]} . (32)

Let us consider that the local fractional integral equation

13



f (x) =
λα

Γ (1 + α)

∫ x

a

F (x, y) f (y) (dy)
α
+ φ (x) , (33)

has a unique solution in Cα [a, b], where λα ∈ Rα, φ ∈ Cα [a, b] and F (x, y) ∈
Cα [a, b]× Cα [a, b].

Proof 2 We define T : Cα [a, b] → Cα [a, b] by

Tf (x) =
λα

Γ (1 + α)

∫ x

a

F (x, y) f (y) (dy)
α
+ φ (x) .

Let f1, f2 ∈ Cα [a, b]. Then

ρα (Tf1, T f2)
= max

x∈[a,b]
|Tf1 − Tf2|

= max
x∈[a,b]

∣∣∣ λα

Γ(1+α)

∫ x

a
F (x, y) (f1 (y)− f2 (y)) (dy)

α
∣∣∣

≤ |λ|αM
Γ(1+α)

[
max
x∈[a,b]

|f1 (x)− f2 (x)|
] ∣∣∫ x

a
(dy)

α∣∣
≤ |λ|αMρα(f1,f2)

Γ(1+α)

∣∣∫ x

a
(dy)

α∣∣
= |λ|αMρα(f1,f2)

Γ(1+α) |x− a|α

≤ |λ|αM |b−a|α
Γ(1+α) ρα (f1, f2)

where M = max ≤ {|F (x, y)| : x, y ∈ [a, b]}.
We claim that for all n,

ρα (Tnf1, T
nf2) ≤

|λ|nα Mn |x− a|nα

Γ (1 + nα)
ρα (f1, f2) ≤

|λ|nα Mn |b− a|nα

Γ (1 + nα)
ρα (f1, f2).

The induction step is as follows:

ρα
(
Tn+1f1, T

n+1f2
)
= max

x∈[a,b]

∣∣Tn+1f1 − Tn+1f2
∣∣

= max
x∈[a,b]

∣∣∣ λα

Γ(1+α)

∫ x

a
F (x, y) (Tnf1 (y)− Tnf2 (y)) (dy)

α
∣∣∣

≤ |λ|(n+1)αMn+1

Γ(1+nα)

[
max
x∈[a,b]

|f1 (x)− f2 (x)|
] ∣∣∣ 1

Γ(1+α)

∫ x

a
(x− a)

nα
(dy)

α
∣∣∣

≤ |λ|(n+1)αMn+1ρα(f1,f2)
Γ(1+(n+1)α) |x− a|(n+1)α

≤ |λ|(n+1)αMn+1|b−a|(n+1)α

Γ(1+(n+1)α) ρα (f1, f2)

For each λα ∈ Rα, there exists N ∈ N such that

0 <
|λ|nα Mn |b− a|nα

Γ (1 + nα)
ρα (f1, f2) < 1,

where n > N .
It is to say that Tn is a contraction mapping and has a unique fixed point f .
Thus, f provides the unique local fractional continuous solution to the local

fractional integral equation.
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Figure 2: The plot of the solution of the local fractional integral equation when
λ = 2 and α = ln 2/ ln 3.

Example 2 The local fractional integral equation

f (x)− λ

Γ (1 + α)

∫ x

0

f (x) (dx)
α
= 1,

has the unique solution given as f (x) = Eα (λxα) and its graph is shown in
Figure 2.

4. Local fractional inequalities

In this chapter, we present the inequalities within local fractional integral, such
as the Hölder type, Cauchy–Schwarz type and Minkowski type inequalities.

Let E be a fractal set.
The Hölder type, Cauchy–Schwarz type and Minkowski type inequalities in

the fractal finite series are presented as follows:

Theorem 23 (Generalized Hölder type inequality) (see [9, 10, 11])
Let |xα

i | > 0, |yαi | > 0, p > 0, q > 0, i ∈ N and 1/p+1/q = 1. Then we have

n∑
i=1

|xα
i | |yαi | ≤

(
n∑

i=1

|xα
i |

p

) 1
p

+

(
n∑

i=1

|yαi |
q

) 1
q

, (34)

where p > 1, q > 1 and 0 < α ≤ 1.

Theorem 24 (Generalized Cauchy–Schwarz type inequality) (see [9, 10, 11])
Let |xα

i | > 0, |yαi | > 0 and i ∈ N. Then we have

n∑
i=1

|xα
i | |yαi | ≤

(
n∑

i=1

|xα
i |

2

) 1
2

+

(
n∑

i=1

|yαi |
2

) 1
2

. (35)
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Theorem 25 (Generalized Minkowski type inequality) (see [9, 10, 11])(
n∑

i=1

|xα
i − yαi |

p

) 1
p

≤

(
n∑

i=1

|xα
i |

p

) 1
p

+

(
n∑

i=1

|yαi |
p

) 1
p

, (36)

where p > 1 and 0 < α ≤ 1.

For the linear space of bounded infinite sequences, denoted as E = lp,α, the
generalized normed linear space on E is defined by (see [9, 10, 11]):

∥xα∥p,α =:

( ∞∑
i=1

|xα
i |

p

) 1
p

< ∞, (37)

where 1 ≤ p < ∞.

Theorem 26 (The infinite version of the generalized Minkowski type inequali-
ty)

The infinite version of generalized Minkowski type inequality can be write as
[9, 10, 11]: ( ∞∑

i=1

|xα
i − yαi |

p

) 1
p

≤

( ∞∑
i=1

|xα
i |

p

) 1
p

+

( ∞∑
i=1

|yαi |
p

) 1
p

,

where ∞ > p ≥ 1 and 0 < α ≤ 1.

Let E = Lp,α [a, b]. Then the normed space with the p−norm is given as
([9, 10, 11]):

∥f∥p,α =:

(
1

Γ (1 + α)

∫ b

a

|f (t)|p (dt)α
) 1

p

< ∞, (38)

where 0 < α ≤ 1 and ∞ > p ≥ 1.
The following rules hold ([9, 10, 11]):

1. If ∥f∥1,α = 0, then f (x) = 0;

2. ∥ag∥1,α = |a|α ∥f∥p,α ;

3. ∥f + g∥1,α ≤ ∥f∥1,α + ∥g∥1,α .

Theorem 5 (The integral form of the generalized Hölder type in-
equality)

Let f, g ∈ Lp,α [R] , 1 ≤ p < ∞. Then we have (see [9, 10, 11])

∥fg∥1,α ≤ ∥f∥p,α ∥g∥q,α , (39)

where p ≥ 1, q ≥ 1 and 1/q + 1/p = 1.
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Theorem 6 (The integral form of the generalized Minkowski type
inequality)

Let f, g ∈ Lp,α [R] , 1 ≤ p < ∞. Then we have (see [9, 10, 11])

∥f + g∥p,α ≤ ∥f∥p,α + ∥g∥p,α . (40)

For more details of the Hölder type, Cauchy–Schwarz type and Minkowski type
inequalities defined on the fractal domain, see [9, 10, 11].

5. The series and transforms involving the Mattig-
Leffer function defined on Cantor sets

In this section, we consider the concepts and theorems of the series and trans-
forms involving the Mattig-Leffer function defined on Cantor sets.

5.1 The Fourier type series via Mattig-Leffer function de-
fined on Cantor sets

In this subsection, we introduce the concepts and theorems of the series involving
the Mattig-Leffer function defined on Cantor sets.

Definition 15 Let f (x) be 2π-periodic. For n ∈ Z, the complex Mittag-Leffler
form of the local fractional Fourier type series of f (x) involving the Mattig-
Leffer function defined on Cantor sets is defined as (see [9, 10, 11, 13])

f (x) ∼
∞∑

k=−∞

CnEα (iα (nx)
α
), (41)

where the Fourier coefficients are represented as (see [9, 10, 11, 13]):

Cn =
1

(2π)
α

∫ π

−π

f (x)Eα (−iα (nx)
α
) (dx)

α
. (42)

Theorem 27 Suppose that f (x) is 2π-periodic, bounded and local fractional
integral on [−π, π]. Then, the local fractional series of the function f (x) in-
volving the Mattig-Leffer function defined on Cantor sets converges to f (x) at
x ∈ [−π, π], and (see [9, 10, 11, 13])

f (x+ 0) + f (x− 0)

2
=

∞∑
k=−∞

CnEα (iα (nx)
α
), (43)

where the Fourier type coefficients are expressed by

Cn =
1

(2l)
α

∫ l

−l

f (x)Eα (παiα (nx)
α
) (dx)

α
. (44)
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Definition 16 Let f (x) be 2l-periodic. For n ∈ Z, the complex generalized
Mittag-Leffler form of the local fractional Fourier type series of the function
f (x) involving the Mattig-Leffer function defined on Cantor sets is defined as
(see [9, 10, 11, 13])

f (x) ∼
∞∑

k=−∞

CnEα

(
παiα (nx)

α

lα

)
, (45)

where the Fourier type coefficients are given as

Cn =
1

(2l)
α

∫ l

−l

f (x)Eα

(
−παiα (nx)

α

lα

)
(dx)

α
. (46)

Theorem 28 Suppose that f (x) is 2l-periodic, bounded and local fractional
integral on [−l, l]. Then, the local fractional series of the function f (x) involving
the Mattig-Leffer function defined on Cantor sets converges to f (x) at x ∈
[−l, l], and (see [9, 10, 11, 13])

f (x+ 0) + f (x− 0)

2
=

∞∑
k=−∞

CnEα

(
παiα (nx)

α

lα

)
, (47)

where the Fourier type coefficients are represented as

Cn =
1

(2l)
α

∫ l

−l

f (x)Eα

(
−παiα (nx)

α

lα

)
(dx)

α
. (48)

5.2 The Fourier type transform via Mattig-Leffer function
defined on Cantor sets

In this subsection, we introduce the concepts and theorems of the Fourier type
transform involving the Mattig-Leffer function defined on Cantor sets.

Definition 17 The local fractional Fourier type transform of the function f (x)
involving the Mattig-Leffer function defined on Cantor sets is defined as (see
[9, 10, 11, 13])

Fα {f (x)} = fF,α
ω (ω) :=

1

Γ (1 + α)

∫ ∞

−∞
Eα (−iαωαxα) f (x) (dx)

α
,

where the latter converges.
The sufficient condition for convergence is given as (see [9, 10, 11, 13])∣∣∣∣ 1

Γ (1 + α)

∫ ∞

−∞
f (x)Eα (−iαωαxα) (dx)

α

∣∣∣∣ ≤ 1

Γ (1 + α)

∫ ∞

−∞
|f (x)| (dx)α = ∥f∥1,α < ∞,

which can be written as f ∈ L1,α [R].
If f ∈ L1,α [R], then local fractional Fourier type transform of the function

f (x) exists.
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The inverse local fractional Fourier type transform involving the Mattig-
Leffer function defined on Cantor sets is defined as (see [9, 10, 11, 13])

f (x) = F−1
α

(
fF,α
ω (ω)

)
:=

1

(2π)
α

∫ ∞

−∞
Eα (iαωαxα) fF,α

ω (ω) (dω)
α
,

where the latter converges.

Definition 18 The local fractional convolution of the functions f1 (x) and f2 (x)
is defined as (see [9, 10, 11, 13])

f1 (x) ∗ f2 (x) =
1

Γ (1 + α)

∫ ∞

−∞
f1 (t) f2 (x− t) (dt)

α
.

There are the equalities as follows (see [9, 10, 11, 13]):

f1 (x) ∗ f2 (x) = f2 (x) ∗ f1 (x) ,

f1 (x) ∗ (f2 (x) + f3 (x)) = f1 (x) ∗ f2 (x) + f1 (x) ∗ f3 (x) .
The theorems for the local fractional Fourier type transform are presented as
follows (see [9, 10, 11, 13]):

Let f, f1, f2 ∈ L1,α [R], Fα {f (x)} = fF,α
ω (ω), Fα {f1 (x)} = fF,α

ω,1 (ω) and

Fα {f2 (x)} = fF,α
ω,2 (ω). Then, we have the following:

(1) Fα {f1 (x) + f2 (x)} = Fα {f1 (x)}+ Fα {f2 (x)};
(2) Fα {f1 (x) ∗ f2 (x)} = fF,α

ω,1 (ω) fF,α
ω,2 (ω);

(3) Fα

{
f (α) (x)

}
= iαωαFα {f (x)}, where lim

|x|→∞
f (x) = 0;

(4) Fα

{
−∞I

(α)
x f (x)

}
= Fα {f (x)} / (iαωα), where lim

x→∞−∞I
(α)
x f (x) → 0.

6. Local fractional vector calculus with an appli-
cation in fractal fracture mechanics

In this chapter, we introduce the theory of the local fractional vector calculus
and present an application to the Rice theory in the fractal fracture mechanics.

6.1 Local fractional vector calculus

In this subsection, we introduce the basic theory and theorems of the local
fractional vector calculus.

Definition 19 For 1 > α > 0, the local fractional line integral of the function
u (xP , yP , zP ) along a fractal line lα is defined as (see [2, 12])∫

l(α)

u (xP , yP , zP ) · dl(α) = lim
N→∞

N∑
P=1

u (xP , yP , zP ) ·∆l
(α)
P (49)

where the elements of line ∆l
(α)
P is required that all |∆lαP | → 0as N → ∞ and

β = 2α.

19



Definition 20 For γ = 3
2β = 3α, 1 > α > 0, the local fractional surface integral

of u (rP ) is defined as (see [2, 12]):∫∫
u (rP ) dS

(β) = lim
N→∞

N∑
P=1

u (rP )nP∆S
(β)
P (50)

where dS(β) is N elements of area with a unit normal local fractional vector nP ,

∆S
(β)
P → 0 as N → ∞.

Definition 21 For γ = 3
2β = 3α, 1 > α > 0, the local fractional volume integral

of the function u (rP ) is defined as (see [2, 12]):∫∫∫
u (rP ) dV

(γ) = lim
N→∞

N∑
P=1

u (rP )∆V
(γ)
P , (51)

where ∆V
(γ)
P is the elements of volume ∆V

(γ)
P → 0 as N → ∞.

Basic operators of the local fractional vector integrals are as follows (see
[2, 12]): ∫

l(α)

(u1 + u2) · dl(α) =
∫

l(α)

u1 · dl(α) +
∫

l(α)

u2 · dl(α),

∫
l(α)

u · dl(α) =
∫

l
(α)
1

u · dl(α) +
∫

l
(α)
2

u · dl(α),

∫ ∫
S(β)

(u1 + u2) · dS(β) =

∫ ∫
S(β)

u1 · dS(β) +

∫ ∫
S(β)

u2 · dS(β),

∫ ∫
S(β)

u · dS(β) =

∫ ∫
S

(β)
1

u · dS(β) +

∫ ∫
S

(β)
2

u · dS(β),

∫∫∫
V (γ)

(u1 + u2) · dV (γ) =

∫∫∫
V (γ)

u1 · dV (γ) +

∫∫∫
V (γ)

u2 · dV (γ),

∫∫∫
V (γ)

(u1 + u2) · dV (γ) =

∫∫∫
V

(γ)
1

u · dV (γ) +

∫∫∫
V

(γ)
2

u · dV (γ),

where l(α) = l
(α)
1 + l

(α)
2 , S(β) = S

(β)
1 + S

(β)
2 and V (γ) = V

(γ)
1 + V

(γ)
2 .

Definition 22 For γ = 3
2β = 3α, 1 > α > 0, the local fractional gradient of the

scale function φ is defined as (see [2, 12])

∇αφ = lim
dV (γ)→0

 1

dV (γ)

∫∫
⃝

S(β)

φdS(β)

 =
∂αφ

∂xα
1

eα1 +
∂αφ

∂xα
2

eα2 +
∂αφ

∂xα
3

eα3 , (52)
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where V (γ) is a small fractal volume enclosing P , S(β) is its bounding fractal
surface, and ∇α is a local fractional Hamilton operator.

Definition 23 For γ = 3
2β = 3α, 1 > α > 0, the local fractional divergence of

the vector function u is defined by (see [2, 12])

∇α • u = lim
dV (γ)→0

 1

dV (γ)

∫∫
⃝

S(2α)

u • dS(β)

 =
∂αu1

∂xα
1

+
∂αu2

∂xα
2

+
∂αu3

∂xα
3

, (53)

where u = u1e
α
1 + u2e

α
2 + u3e

α
3 .

Definition 24 For γ = 3
2β = 3α, 1 > α > 0, the local fractional curl of the

vector function u is defined by (see [2, 12]):

∇α × u = lim
dS(β)→0

(
1

dS(β)

∮
l(α)

u · dl(α)
)
nP

=
(

∂αu3

∂xα
2

− ∂αu2

∂xα
3

)
eα1 +

(
∂αu1

∂xα
3

− ∂αu3

∂xα
1

)
eα2 +

(
∂αu2

∂xα
1

− ∂αu1

∂xα
2

)
eα3 ,

(54)

where u = u1e
α
1 + u2e

α
2 + u3e

α
3 .

Theorem 29 (Local fractional Gauss theorem)
For γ = 3

2β = 3α, 1 > α > 0, the local fractional Gauss theorem of the
fractal vector field states that (see [2, 12])∫∫∫

V (γ)

∇α · udV (γ) =

∫∫
⃝

S(β)

u · dS(β). (55)

Theorem 30 (Local fractional Stokes’ theorem)
For β = 2α, 1 > α > 0, the local fractional Stokes’ theorem of the fractal

field states that (see [2, 12])∮
l(α)

u · dlα =

∫ ∫
S(β)

(∇α × u) · dS(β).

For more details of the local fractional vector calculus, see [2, 12].

6.2 An application to Rice theory in fractal mechanics

Let us consider the work of the traction in fractal boundary, the elastic energy
in fractal medium and the fractal losing energy be

W1 =

∫ ∫
S(β)

p · udS(β), W2 = −
∫∫∫
V (γ)

wdV (γ)

and

W3 =

∫
l(α)

D · dl(α),
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respectively, where p is the traction in the fractal boundary, u is the fractal
displacement, w is the fractal elastic energy density, and D is the fractal losing
energy in unit fractal line.

The energy in fractal medium can be written as

W=

∫
l(α)

piuidl
(α) −

∫ ∫
S(β)

wdS(β), (56)

where pi and ui are components of both traction in the fractal boundary and
the fractal displacement.

Consider the fractal losing energy and finding the LFD, we give

∂αW

∂tα
=

∂α

∂tα

∫
l(α)

piuidl
(α) − ∂α

∂tα

∫ ∫
S(β)

wdS(β) − ∂αD

∂tα
. (57)

With the use of

∂α

∂tα

∫
l(α)

piuidl
(α) =

∫
l(α)

pi
∂αui

∂tα
dl(α) =

∫
l(α)

pi
∂αui

∂aα

(
∂a

∂t

)α

dl(α),

∂α

∂tα

∫ ∫
S(β)

wdS(β) =

∫ ∫
S(β)

∂αw

∂tα
dS(β) =

∫ ∫
S(β)

∂αw

∂aα

(
∂a

∂t

)α

dS(β),

∂αD

∂tα
=

∂αD

∂aα

(
∂a

∂t

)α

,

where a is the length of crack, we obtain from Eq.(57) that

∂αW
∂tα

=
∫

l(α)

pi
∂αui

∂aα

(
∂a
∂t

)α
dl(α) −

∫ ∫
S(β)

∂αw
∂aα

(
∂a
∂t

)α
dS(β) − ∂αD

∂aα

(
∂a
∂t

)α
=
(
∂a
∂t

)α( ∫
l(α)

pi
∂αui

∂aα dl(α) −
∫ ∫
S(β)

∂αw
∂aα dS(β) − ∂αD

∂aα

)
.

(58)

When ∂αW/∂tα = 0, we have from Eq.(58) that∫
l(α)

pi
∂αui

∂aα
dl(α) −

∫ ∫
S(β)

∂αw

∂aα
dS(β) − ∂αD

∂aα
= 0. (59)

The J-integral in fractal medium is defined as

Jα =
∂αD

∂aα
.

From Eq.(59), we obtain that

Jα =

∫
l(α)

pi
∂αui

∂aα
dl(α) −

∫ ∫
S(β)

∂αw

∂aα
dS(β). (60)
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As an extended version of the Rice’s theory, we give that

∂αW

∂tα
≥ 0. (61)

From Eq.(61), there are two cases:
Case 1. When the crack tip is super-static, there is ∂αW/∂tα > 0;
Case 2. When the crack tip is sub-static, there is ∂αW/∂tα = 0.
When the crack length has is greater and the horizontal coordinate value is

smaller, there is relationship of both increment of crack length and increment
of horizontal coordinate value given as

(dx)
α
= − (da)

α
(62)

which leads to

Jα =

∫
l(α)

pi
∂αui

∂aα
dl(α) −

∫ ∫
S(β)

∂αw

∂aα
dS(β) =

∫
l(α)

w (dy)
α
dl(α) −

∫
l(α)

pi
∂αui

∂aα
dl(α).

(63)
By using the traction on the fractal boundary given as

P = N · σ, (64)

we have
(dx)

α
= (N1) · dl(α), (dy)α = N2dl

(α), (65)

where

N1 =
(dx)

α√
(dx)

α
+ (dy)

α , N2 = − (dy)
α√

(dx)
α
+ (dy)

α . (66)

Suppose that w =
∫ εij
0

σijd (εij)
α
, where σij = ∂αw/∂ (εij)

α
and εij = ∂αui/∂x

α
j ,

we have

∫
l(α)

w (dy)
α
dl(α) =

∫ ∫
S(β)

∂αw

∂xα
dS(β) =

∫ ∫
S(β)

σij
∂αεij
∂xα

dS(β) =

∮
l(α)

σijNj
∂αui

∂xα
dl(α),

(67)
which leads to

Jα =

∮
l(α)

(σijNj − pi)
∂αui

∂xα
dl(α) = 0, (68)

where l(α) is the closed circle.
The result states the crack tip is always super-static or sub-static in the real

materials and the two cases always take place in the real crack progression in
the differential fractal dimension of the material surface (see [12]).
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7. Conclusion

In the present work, we introduce the analysis of the LFC for the first time. The
concepts and properties of the LFD and LFI in the fractional real and complex
sets, the series and transforms involving the Mattig-Leffer function defined on
Cantor sets are investigated in detail. The unique of the solutions of the local
fractional differential and integral equations and local fractional inequalities
were also discussed. The local fractional vector calculus were used to describe
the extended version of the Rice theory in fractal fracture mechanics with aid of
the LFC operator. The results are accurate and efficient for handling a family
of the fractal problems by using the local fractional differential and integral
equations from the functional analysis point of view.
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